libftdi: pass eeprom strings as const
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
79646368 5 copyright : (C) 2003-2017 by Intra2net AG and the libftdi developers
5fdb1cb1 6 email : opensource@intra2net.com
5b110dec 7 SPDX-License-Identifier: LGPL-2.1-only
a3da1d95
GE
8 ***************************************************************************/
9
10/***************************************************************************
11 * *
12 * This program is free software; you can redistribute it and/or modify *
13 * it under the terms of the GNU Lesser General Public License *
14 * version 2.1 as published by the Free Software Foundation; *
15 * *
16 ***************************************************************************/
d9f0cce7 17
b5ec1820
TJ
18/**
19 \mainpage libftdi API documentation
20
ad397a4b 21 Library to talk to FTDI chips. You find the latest versions of libftdi at
79646368 22 https://www.intra2net.com/en/developer/libftdi/
b5ec1820 23
ad397a4b
TJ
24 The library is easy to use. Have a look at this short example:
25 \include simple.c
26
27 More examples can be found in the "examples" directory.
b5ec1820
TJ
28*/
29/** \addtogroup libftdi */
30/* @{ */
31
579b006f 32#include <libusb.h>
a8f46ddc 33#include <string.h>
d2f10023 34#include <errno.h>
b56d5a64 35#include <stdio.h>
579b006f 36#include <stdlib.h>
0e302db6 37
b790d38e 38#include "ftdi_i.h"
ed46f09c
ES
39/* Prevent deprecated messages when building library */
40#define _FTDI_DISABLE_DEPRECATED
98452d97 41#include "ftdi.h"
0220adfa 42#include "ftdi_version_i.h"
a3da1d95 43
21abaf2e 44#define ftdi_error_return(code, str) do { \
b0a50459
PS
45 if ( ftdi ) \
46 ftdi->error_str = str; \
47 else \
48 fprintf(stderr, str); \
21abaf2e 49 return code; \
d2f10023 50 } while(0);
c3d95b87 51
99650502
UB
52#define ftdi_error_return_free_device_list(code, str, devs) do { \
53 libusb_free_device_list(devs,1); \
54 ftdi->error_str = str; \
55 return code; \
56 } while(0);
57
418aaa72 58
f3f81007
TJ
59/**
60 Internal function to close usb device pointer.
61 Sets ftdi->usb_dev to NULL.
62 \internal
63
64 \param ftdi pointer to ftdi_context
65
579b006f 66 \retval none
f3f81007 67*/
579b006f 68static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 69{
22a1b5c1 70 if (ftdi && ftdi->usb_dev)
dff4fdb0 71 {
56ac0383
TJ
72 libusb_close (ftdi->usb_dev);
73 ftdi->usb_dev = NULL;
44f41f11
UB
74 if(ftdi->eeprom)
75 ftdi->eeprom->initialized_for_connected_device = 0;
dff4fdb0 76 }
dff4fdb0 77}
c3d95b87 78
1941414d
TJ
79/**
80 Initializes a ftdi_context.
4837f98a 81
1941414d 82 \param ftdi pointer to ftdi_context
4837f98a 83
1941414d
TJ
84 \retval 0: all fine
85 \retval -1: couldn't allocate read buffer
a35aa9bd 86 \retval -2: couldn't allocate struct buffer
3a284749 87 \retval -3: libusb_init() failed
1941414d
TJ
88
89 \remark This should be called before all functions
948f9ada 90*/
a8f46ddc
TJ
91int ftdi_init(struct ftdi_context *ftdi)
92{
3b3a9614 93 struct ftdi_eeprom* eeprom;
02212d8e 94 ftdi->usb_ctx = NULL;
98452d97 95 ftdi->usb_dev = NULL;
545820ce
TJ
96 ftdi->usb_read_timeout = 5000;
97 ftdi->usb_write_timeout = 5000;
a3da1d95 98
53ad271d 99 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 100 ftdi->baudrate = -1;
418aaa72 101 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 102
948f9ada
TJ
103 ftdi->readbuffer = NULL;
104 ftdi->readbuffer_offset = 0;
105 ftdi->readbuffer_remaining = 0;
106 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 107 ftdi->max_packet_size = 0;
3a284749
TJ
108 ftdi->error_str = NULL;
109 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
110
111 if (libusb_init(&ftdi->usb_ctx) < 0)
112 ftdi_error_return(-3, "libusb_init() failed");
948f9ada 113
ac0af8ec 114 ftdi_set_interface(ftdi, INTERFACE_ANY);
418aaa72 115 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 116
3b3a9614 117 eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
a35aa9bd
UB
118 if (eeprom == 0)
119 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
b4d19dea 120 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
a35aa9bd 121 ftdi->eeprom = eeprom;
c201f80f 122
1c733d33
TJ
123 /* All fine. Now allocate the readbuffer */
124 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 125}
4837f98a 126
1941414d 127/**
cef378aa
TJ
128 Allocate and initialize a new ftdi_context
129
130 \return a pointer to a new ftdi_context, or NULL on failure
131*/
672ac008 132struct ftdi_context *ftdi_new(void)
cef378aa
TJ
133{
134 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
135
22d12cda
TJ
136 if (ftdi == NULL)
137 {
cef378aa
TJ
138 return NULL;
139 }
140
22d12cda
TJ
141 if (ftdi_init(ftdi) != 0)
142 {
cef378aa 143 free(ftdi);
cdf448f6 144 return NULL;
cef378aa
TJ
145 }
146
147 return ftdi;
148}
149
150/**
1941414d
TJ
151 Open selected channels on a chip, otherwise use first channel.
152
153 \param ftdi pointer to ftdi_context
f9d69895 154 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
155
156 \retval 0: all fine
157 \retval -1: unknown interface
22a1b5c1 158 \retval -2: USB device unavailable
1c5fa36b 159 \retval -3: Device already open, interface can't be set in that state
c4446c36 160*/
0ce2f5fa 161int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 162{
1971c26d 163 if (ftdi == NULL)
22a1b5c1
TJ
164 ftdi_error_return(-2, "USB device unavailable");
165
1c5fa36b
TJ
166 if (ftdi->usb_dev != NULL)
167 {
168 int check_interface = interface;
169 if (check_interface == INTERFACE_ANY)
170 check_interface = INTERFACE_A;
171
172 if (ftdi->index != check_interface)
173 ftdi_error_return(-3, "Interface can not be changed on an already open device");
174 }
175
22d12cda
TJ
176 switch (interface)
177 {
178 case INTERFACE_ANY:
179 case INTERFACE_A:
ac0af8ec
VY
180 ftdi->interface = 0;
181 ftdi->index = INTERFACE_A;
182 ftdi->in_ep = 0x02;
183 ftdi->out_ep = 0x81;
22d12cda
TJ
184 break;
185 case INTERFACE_B:
186 ftdi->interface = 1;
187 ftdi->index = INTERFACE_B;
188 ftdi->in_ep = 0x04;
189 ftdi->out_ep = 0x83;
190 break;
f9d69895
AH
191 case INTERFACE_C:
192 ftdi->interface = 2;
193 ftdi->index = INTERFACE_C;
194 ftdi->in_ep = 0x06;
195 ftdi->out_ep = 0x85;
196 break;
197 case INTERFACE_D:
198 ftdi->interface = 3;
199 ftdi->index = INTERFACE_D;
200 ftdi->in_ep = 0x08;
201 ftdi->out_ep = 0x87;
202 break;
22d12cda
TJ
203 default:
204 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
205 }
206 return 0;
207}
948f9ada 208
1941414d
TJ
209/**
210 Deinitializes a ftdi_context.
4837f98a 211
1941414d 212 \param ftdi pointer to ftdi_context
4837f98a 213*/
a8f46ddc
TJ
214void ftdi_deinit(struct ftdi_context *ftdi)
215{
22a1b5c1
TJ
216 if (ftdi == NULL)
217 return;
218
f3f81007 219 ftdi_usb_close_internal (ftdi);
dff4fdb0 220
22d12cda
TJ
221 if (ftdi->readbuffer != NULL)
222 {
d9f0cce7
TJ
223 free(ftdi->readbuffer);
224 ftdi->readbuffer = NULL;
948f9ada 225 }
a35aa9bd
UB
226
227 if (ftdi->eeprom != NULL)
228 {
74e8e79d
UB
229 if (ftdi->eeprom->manufacturer != 0)
230 {
231 free(ftdi->eeprom->manufacturer);
232 ftdi->eeprom->manufacturer = 0;
233 }
234 if (ftdi->eeprom->product != 0)
235 {
236 free(ftdi->eeprom->product);
237 ftdi->eeprom->product = 0;
238 }
239 if (ftdi->eeprom->serial != 0)
240 {
241 free(ftdi->eeprom->serial);
242 ftdi->eeprom->serial = 0;
243 }
a35aa9bd
UB
244 free(ftdi->eeprom);
245 ftdi->eeprom = NULL;
246 }
3a284749
TJ
247
248 if (ftdi->usb_ctx)
249 {
250 libusb_exit(ftdi->usb_ctx);
251 ftdi->usb_ctx = NULL;
252 }
a3da1d95
GE
253}
254
1941414d 255/**
cef378aa
TJ
256 Deinitialize and free an ftdi_context.
257
258 \param ftdi pointer to ftdi_context
259*/
260void ftdi_free(struct ftdi_context *ftdi)
261{
262 ftdi_deinit(ftdi);
263 free(ftdi);
264}
265
266/**
1941414d
TJ
267 Use an already open libusb device.
268
269 \param ftdi pointer to ftdi_context
579b006f 270 \param usb libusb libusb_device_handle to use
4837f98a 271*/
579b006f 272void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 273{
22a1b5c1
TJ
274 if (ftdi == NULL)
275 return;
276
98452d97
TJ
277 ftdi->usb_dev = usb;
278}
279
0220adfa
TJ
280/**
281 * @brief Get libftdi library version
282 *
283 * @return ftdi_version_info Library version information
284 **/
bd6941fd 285struct ftdi_version_info ftdi_get_library_version(void)
0220adfa
TJ
286{
287 struct ftdi_version_info ver;
288
289 ver.major = FTDI_MAJOR_VERSION;
290 ver.minor = FTDI_MINOR_VERSION;
291 ver.micro = FTDI_MICRO_VERSION;
292 ver.version_str = FTDI_VERSION_STRING;
293 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
294
295 return ver;
296}
98452d97 297
1941414d 298/**
7879216a
UB
299 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
300 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
301 use. With VID:PID 0:0, search for the default devices
809d711d 302 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014, 0x403:0x6015)
1941414d
TJ
303
304 \param ftdi pointer to ftdi_context
305 \param devlist Pointer where to store list of found devices
306 \param vendor Vendor ID to search for
307 \param product Product ID to search for
edb82cbf 308
1941414d 309 \retval >0: number of devices found
1941414d 310 \retval -3: out of memory
579b006f
JZ
311 \retval -5: libusb_get_device_list() failed
312 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 313*/
d2f10023 314int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
315{
316 struct ftdi_device_list **curdev;
579b006f
JZ
317 libusb_device *dev;
318 libusb_device **devs;
edb82cbf 319 int count = 0;
579b006f
JZ
320 int i = 0;
321
02212d8e 322 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 323 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
324
325 curdev = devlist;
6db32169 326 *curdev = NULL;
579b006f
JZ
327
328 while ((dev = devs[i++]) != NULL)
22d12cda 329 {
579b006f 330 struct libusb_device_descriptor desc;
d2f10023 331
579b006f 332 if (libusb_get_device_descriptor(dev, &desc) < 0)
77377af7 333 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
edb82cbf 334
8de26dde 335 if (((vendor || product) &&
74387f27 336 desc.idVendor == vendor && desc.idProduct == product) ||
8de26dde 337 (!(vendor || product) &&
74387f27 338 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
809d711d
TJ
339 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014
340 || desc.idProduct == 0x6015)))
579b006f
JZ
341 {
342 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
343 if (!*curdev)
77377af7 344 ftdi_error_return_free_device_list(-3, "out of memory", devs);
56ac0383 345
579b006f
JZ
346 (*curdev)->next = NULL;
347 (*curdev)->dev = dev;
0c33162c 348 libusb_ref_device(dev);
579b006f
JZ
349 curdev = &(*curdev)->next;
350 count++;
edb82cbf
TJ
351 }
352 }
77377af7 353 libusb_free_device_list(devs,1);
edb82cbf
TJ
354 return count;
355}
356
1941414d
TJ
357/**
358 Frees a usb device list.
edb82cbf 359
1941414d 360 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 361*/
d2f10023 362void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 363{
6db32169
TJ
364 struct ftdi_device_list *curdev, *next;
365
22d12cda
TJ
366 for (curdev = *devlist; curdev != NULL;)
367 {
6db32169 368 next = curdev->next;
0c33162c 369 libusb_unref_device(curdev->dev);
6db32169
TJ
370 free(curdev);
371 curdev = next;
edb82cbf
TJ
372 }
373
6db32169 374 *devlist = NULL;
edb82cbf
TJ
375}
376
1941414d 377/**
cef378aa
TJ
378 Frees a usb device list.
379
380 \param devlist USB device list created by ftdi_usb_find_all()
381*/
382void ftdi_list_free2(struct ftdi_device_list *devlist)
383{
384 ftdi_list_free(&devlist);
385}
386
387/**
474786c0
TJ
388 Return device ID strings from the usb device.
389
390 The parameters manufacturer, description and serial may be NULL
391 or pointer to buffers to store the fetched strings.
392
898c34dd
TJ
393 \note Use this function only in combination with ftdi_usb_find_all()
394 as it closes the internal "usb_dev" after use.
395
474786c0
TJ
396 \param ftdi pointer to ftdi_context
397 \param dev libusb usb_dev to use
398 \param manufacturer Store manufacturer string here if not NULL
399 \param mnf_len Buffer size of manufacturer string
400 \param description Store product description string here if not NULL
401 \param desc_len Buffer size of product description string
402 \param serial Store serial string here if not NULL
403 \param serial_len Buffer size of serial string
404
405 \retval 0: all fine
406 \retval -1: wrong arguments
407 \retval -4: unable to open device
408 \retval -7: get product manufacturer failed
409 \retval -8: get product description failed
410 \retval -9: get serial number failed
579b006f 411 \retval -11: libusb_get_device_descriptor() failed
474786c0 412*/
15079e78
FH
413int ftdi_usb_get_strings(struct ftdi_context *ftdi,
414 struct libusb_device *dev,
415 char *manufacturer, int mnf_len,
416 char *description, int desc_len,
417 char *serial, int serial_len)
474786c0 418{
15079e78 419 int ret;
579b006f 420
474786c0
TJ
421 if ((ftdi==NULL) || (dev==NULL))
422 return -1;
423
bc384123 424 if (ftdi->usb_dev == NULL && libusb_open(dev, &ftdi->usb_dev) < 0)
15079e78
FH
425 ftdi_error_return(-4, "libusb_open() failed");
426
427 // ftdi->usb_dev will not be NULL when entering ftdi_usb_get_strings2(), so
428 // it won't be closed either. This allows us to close it whether we actually
429 // called libusb_open() up above or not. This matches the expected behavior
430 // (and note) for ftdi_usb_get_strings().
431 ret = ftdi_usb_get_strings2(ftdi, dev,
432 manufacturer, mnf_len,
433 description, desc_len,
434 serial, serial_len);
435
436 // only close it if it was successful, as all other return codes close
437 // before returning already.
438 if (ret == 0)
439 ftdi_usb_close_internal(ftdi);
440
441 return ret;
442}
443
444/**
445 Return device ID strings from the usb device.
446
447 The parameters manufacturer, description and serial may be NULL
448 or pointer to buffers to store the fetched strings.
449
450 \note The old function ftdi_usb_get_strings() always closes the device.
451 This version only closes the device if it was opened by it.
452
453 \param ftdi pointer to ftdi_context
454 \param dev libusb usb_dev to use
455 \param manufacturer Store manufacturer string here if not NULL
456 \param mnf_len Buffer size of manufacturer string
457 \param description Store product description string here if not NULL
458 \param desc_len Buffer size of product description string
459 \param serial Store serial string here if not NULL
460 \param serial_len Buffer size of serial string
461
462 \retval 0: all fine
463 \retval -1: wrong arguments
464 \retval -4: unable to open device
465 \retval -7: get product manufacturer failed
466 \retval -8: get product description failed
467 \retval -9: get serial number failed
468 \retval -11: libusb_get_device_descriptor() failed
469*/
470int ftdi_usb_get_strings2(struct ftdi_context *ftdi, struct libusb_device *dev,
471 char *manufacturer, int mnf_len,
472 char *description, int desc_len,
473 char *serial, int serial_len)
474{
475 struct libusb_device_descriptor desc;
c45d2630 476 char need_open;
15079e78
FH
477
478 if ((ftdi==NULL) || (dev==NULL))
479 return -1;
480
c45d2630 481 need_open = (ftdi->usb_dev == NULL);
15079e78
FH
482 if (need_open && libusb_open(dev, &ftdi->usb_dev) < 0)
483 ftdi_error_return(-4, "libusb_open() failed");
579b006f
JZ
484
485 if (libusb_get_device_descriptor(dev, &desc) < 0)
486 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 487
22d12cda
TJ
488 if (manufacturer != NULL)
489 {
579b006f 490 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 491 {
f3f81007 492 ftdi_usb_close_internal (ftdi);
579b006f 493 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
494 }
495 }
496
22d12cda
TJ
497 if (description != NULL)
498 {
579b006f 499 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 500 {
f3f81007 501 ftdi_usb_close_internal (ftdi);
579b006f 502 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
503 }
504 }
505
22d12cda
TJ
506 if (serial != NULL)
507 {
579b006f 508 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 509 {
f3f81007 510 ftdi_usb_close_internal (ftdi);
579b006f 511 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
512 }
513 }
514
15079e78
FH
515 if (need_open)
516 ftdi_usb_close_internal (ftdi);
474786c0
TJ
517
518 return 0;
519}
520
521/**
e2f12a4f
TJ
522 * Internal function to determine the maximum packet size.
523 * \param ftdi pointer to ftdi_context
524 * \param dev libusb usb_dev to use
525 * \retval Maximum packet size for this device
526 */
579b006f 527static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 528{
579b006f
JZ
529 struct libusb_device_descriptor desc;
530 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
531 unsigned int packet_size;
532
22a1b5c1
TJ
533 // Sanity check
534 if (ftdi == NULL || dev == NULL)
535 return 64;
536
e2f12a4f
TJ
537 // Determine maximum packet size. Init with default value.
538 // New hi-speed devices from FTDI use a packet size of 512 bytes
539 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
6ae693b2 540 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
e2f12a4f
TJ
541 packet_size = 512;
542 else
543 packet_size = 64;
544
579b006f
JZ
545 if (libusb_get_device_descriptor(dev, &desc) < 0)
546 return packet_size;
547
548 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
549 return packet_size;
e2f12a4f 550
579b006f
JZ
551 if (desc.bNumConfigurations > 0)
552 {
553 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 554 {
579b006f 555 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
556 if (interface.num_altsetting > 0)
557 {
579b006f 558 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
559 if (descriptor.bNumEndpoints > 0)
560 {
561 packet_size = descriptor.endpoint[0].wMaxPacketSize;
562 }
563 }
564 }
565 }
566
579b006f 567 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
568 return packet_size;
569}
570
571/**
418aaa72 572 Opens a ftdi device given by an usb_device.
7b18bef6 573
1941414d
TJ
574 \param ftdi pointer to ftdi_context
575 \param dev libusb usb_dev to use
576
577 \retval 0: all fine
23b1798d 578 \retval -3: unable to config device
1941414d
TJ
579 \retval -4: unable to open device
580 \retval -5: unable to claim device
581 \retval -6: reset failed
582 \retval -7: set baudrate failed
22a1b5c1 583 \retval -8: ftdi context invalid
579b006f
JZ
584 \retval -9: libusb_get_device_descriptor() failed
585 \retval -10: libusb_get_config_descriptor() failed
e375e6cb 586 \retval -11: libusb_detach_kernel_driver() failed
579b006f 587 \retval -12: libusb_get_configuration() failed
7b18bef6 588*/
579b006f 589int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 590{
579b006f
JZ
591 struct libusb_device_descriptor desc;
592 struct libusb_config_descriptor *config0;
43aee24f 593 int cfg, cfg0, detach_errno = 0;
579b006f 594
22a1b5c1
TJ
595 if (ftdi == NULL)
596 ftdi_error_return(-8, "ftdi context invalid");
597
579b006f
JZ
598 if (libusb_open(dev, &ftdi->usb_dev) < 0)
599 ftdi_error_return(-4, "libusb_open() failed");
600
601 if (libusb_get_device_descriptor(dev, &desc) < 0)
602 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
603
604 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
605 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
606 cfg0 = config0->bConfigurationValue;
607 libusb_free_config_descriptor (config0);
d2f10023 608
22592e17 609 // Try to detach ftdi_sio kernel module.
22592e17
TJ
610 //
611 // The return code is kept in a separate variable and only parsed
612 // if usb_set_configuration() or usb_claim_interface() fails as the
613 // detach operation might be denied and everything still works fine.
614 // Likely scenario is a static ftdi_sio kernel module.
a3d86bdb
TJ
615 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
616 {
617 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
618 detach_errno = errno;
619 }
5bf1c1e3
RM
620 else if (ftdi->module_detach_mode == AUTO_DETACH_REATACH_SIO_MODULE)
621 {
622 if (libusb_set_auto_detach_kernel_driver(ftdi->usb_dev, 1) != LIBUSB_SUCCESS)
623 detach_errno = errno;
624 }
d2f10023 625
579b006f
JZ
626 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
627 ftdi_error_return(-12, "libusb_get_configuration () failed");
b57aedfd
GE
628 // set configuration (needed especially for windows)
629 // tolerate EBUSY: one device with one configuration, but two interfaces
630 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 631 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 632 {
579b006f 633 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 634 {
a56ba2bd 635 ftdi_usb_close_internal (ftdi);
56ac0383 636 if (detach_errno == EPERM)
43aee24f
UB
637 {
638 ftdi_error_return(-8, "inappropriate permissions on device!");
639 }
640 else
641 {
c16b162d 642 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
43aee24f 643 }
23b1798d
TJ
644 }
645 }
646
579b006f 647 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 648 {
f3f81007 649 ftdi_usb_close_internal (ftdi);
56ac0383 650 if (detach_errno == EPERM)
43aee24f
UB
651 {
652 ftdi_error_return(-8, "inappropriate permissions on device!");
653 }
654 else
655 {
c16b162d 656 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
43aee24f 657 }
7b18bef6
TJ
658 }
659
22d12cda
TJ
660 if (ftdi_usb_reset (ftdi) != 0)
661 {
f3f81007 662 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
663 ftdi_error_return(-6, "ftdi_usb_reset failed");
664 }
665
7b18bef6
TJ
666 // Try to guess chip type
667 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f 668 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
56ac0383 669 && desc.iSerialNumber == 0))
7b18bef6 670 ftdi->type = TYPE_BM;
579b006f 671 else if (desc.bcdDevice == 0x200)
7b18bef6 672 ftdi->type = TYPE_AM;
579b006f 673 else if (desc.bcdDevice == 0x500)
7b18bef6 674 ftdi->type = TYPE_2232C;
579b006f 675 else if (desc.bcdDevice == 0x600)
cb6250fa 676 ftdi->type = TYPE_R;
579b006f 677 else if (desc.bcdDevice == 0x700)
0beb9686 678 ftdi->type = TYPE_2232H;
579b006f 679 else if (desc.bcdDevice == 0x800)
0beb9686 680 ftdi->type = TYPE_4232H;
c7e4c09e
UB
681 else if (desc.bcdDevice == 0x900)
682 ftdi->type = TYPE_232H;
2f80efc2
NP
683 else if (desc.bcdDevice == 0x1000)
684 ftdi->type = TYPE_230X;
7b18bef6 685
e2f12a4f
TJ
686 // Determine maximum packet size
687 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
688
ef6f4838
TE
689 if (ftdi_set_baudrate (ftdi, 9600) != 0)
690 {
691 ftdi_usb_close_internal (ftdi);
692 ftdi_error_return(-7, "set baudrate failed");
693 }
694
7b18bef6
TJ
695 ftdi_error_return(0, "all fine");
696}
697
1941414d
TJ
698/**
699 Opens the first device with a given vendor and product ids.
700
701 \param ftdi pointer to ftdi_context
702 \param vendor Vendor ID
703 \param product Product ID
704
9bec2387 705 \retval same as ftdi_usb_open_desc()
1941414d 706*/
edb82cbf
TJ
707int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
708{
709 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
710}
711
1941414d
TJ
712/**
713 Opens the first device with a given, vendor id, product id,
714 description and serial.
715
716 \param ftdi pointer to ftdi_context
717 \param vendor Vendor ID
718 \param product Product ID
719 \param description Description to search for. Use NULL if not needed.
720 \param serial Serial to search for. Use NULL if not needed.
721
722 \retval 0: all fine
1941414d
TJ
723 \retval -3: usb device not found
724 \retval -4: unable to open device
725 \retval -5: unable to claim device
726 \retval -6: reset failed
727 \retval -7: set baudrate failed
728 \retval -8: get product description failed
729 \retval -9: get serial number failed
579b006f
JZ
730 \retval -12: libusb_get_device_list() failed
731 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 732*/
04e1ea0a 733int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
734 const char* description, const char* serial)
735{
5ebbdab9
GE
736 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
737}
738
739/**
740 Opens the index-th device with a given, vendor id, product id,
741 description and serial.
742
743 \param ftdi pointer to ftdi_context
744 \param vendor Vendor ID
745 \param product Product ID
746 \param description Description to search for. Use NULL if not needed.
747 \param serial Serial to search for. Use NULL if not needed.
748 \param index Number of matching device to open if there are more than one, starts with 0.
749
750 \retval 0: all fine
751 \retval -1: usb_find_busses() failed
752 \retval -2: usb_find_devices() failed
753 \retval -3: usb device not found
754 \retval -4: unable to open device
755 \retval -5: unable to claim device
756 \retval -6: reset failed
757 \retval -7: set baudrate failed
758 \retval -8: get product description failed
759 \retval -9: get serial number failed
760 \retval -10: unable to close device
22a1b5c1 761 \retval -11: ftdi context invalid
4fe1a3f0 762 \retval -12: libusb_get_device_list() failed
5ebbdab9
GE
763*/
764int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
56ac0383 765 const char* description, const char* serial, unsigned int index)
5ebbdab9 766{
579b006f
JZ
767 libusb_device *dev;
768 libusb_device **devs;
c3d95b87 769 char string[256];
579b006f 770 int i = 0;
98452d97 771
22a1b5c1
TJ
772 if (ftdi == NULL)
773 ftdi_error_return(-11, "ftdi context invalid");
774
02212d8e 775 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
99650502
UB
776 ftdi_error_return(-12, "libusb_get_device_list() failed");
777
579b006f 778 while ((dev = devs[i++]) != NULL)
22d12cda 779 {
579b006f 780 struct libusb_device_descriptor desc;
99650502 781 int res;
579b006f
JZ
782
783 if (libusb_get_device_descriptor(dev, &desc) < 0)
99650502 784 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
579b006f
JZ
785
786 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 787 {
579b006f 788 if (libusb_open(dev, &ftdi->usb_dev) < 0)
99650502 789 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
c3d95b87 790
579b006f
JZ
791 if (description != NULL)
792 {
793 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 794 {
d4afae5f 795 ftdi_usb_close_internal (ftdi);
99650502 796 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
a8f46ddc 797 }
579b006f 798 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 799 {
d4afae5f 800 ftdi_usb_close_internal (ftdi);
579b006f 801 continue;
a8f46ddc 802 }
579b006f
JZ
803 }
804 if (serial != NULL)
805 {
806 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
807 {
808 ftdi_usb_close_internal (ftdi);
99650502 809 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
579b006f
JZ
810 }
811 if (strncmp(string, serial, sizeof(string)) != 0)
812 {
813 ftdi_usb_close_internal (ftdi);
814 continue;
815 }
816 }
98452d97 817
579b006f 818 ftdi_usb_close_internal (ftdi);
d2f10023 819
56ac0383
TJ
820 if (index > 0)
821 {
822 index--;
823 continue;
824 }
5ebbdab9 825
99650502
UB
826 res = ftdi_usb_open_dev(ftdi, dev);
827 libusb_free_device_list(devs,1);
814e69f5
MD
828 return res;
829 }
830 }
831
832 // device not found
833 ftdi_error_return_free_device_list(-3, "device not found", devs);
834}
835
836/**
30ea3095 837 Opens the device at a given USB bus and device address.
814e69f5
MD
838
839 \param ftdi pointer to ftdi_context
840 \param bus Bus number
30ea3095 841 \param addr Device address
814e69f5
MD
842
843 \retval 0: all fine
844 \retval -1: usb_find_busses() failed
845 \retval -2: usb_find_devices() failed
846 \retval -3: usb device not found
847 \retval -4: unable to open device
848 \retval -5: unable to claim device
849 \retval -6: reset failed
850 \retval -7: set baudrate failed
851 \retval -8: get product description failed
852 \retval -9: get serial number failed
853 \retval -10: unable to close device
854 \retval -11: ftdi context invalid
4fe1a3f0 855 \retval -12: libusb_get_device_list() failed
814e69f5 856*/
30ea3095 857int ftdi_usb_open_bus_addr(struct ftdi_context *ftdi, uint8_t bus, uint8_t addr)
814e69f5
MD
858{
859 libusb_device *dev;
860 libusb_device **devs;
861 int i = 0;
862
863 if (ftdi == NULL)
864 ftdi_error_return(-11, "ftdi context invalid");
865
866 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
867 ftdi_error_return(-12, "libusb_get_device_list() failed");
868
869 while ((dev = devs[i++]) != NULL)
870 {
30ea3095 871 if (libusb_get_bus_number(dev) == bus && libusb_get_device_address(dev) == addr)
814e69f5
MD
872 {
873 int res;
874 res = ftdi_usb_open_dev(ftdi, dev);
875 libusb_free_device_list(devs,1);
99650502 876 return res;
98452d97 877 }
98452d97 878 }
a3da1d95 879
98452d97 880 // device not found
99650502 881 ftdi_error_return_free_device_list(-3, "device not found", devs);
a3da1d95
GE
882}
883
1941414d 884/**
5ebbdab9
GE
885 Opens the ftdi-device described by a description-string.
886 Intended to be used for parsing a device-description given as commandline argument.
887
888 \param ftdi pointer to ftdi_context
889 \param description NULL-terminated description-string, using this format:
890 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
891 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
892 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
893 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
894
895 \note The description format may be extended in later versions.
896
897 \retval 0: all fine
579b006f 898 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
899 \retval -3: usb device not found
900 \retval -4: unable to open device
901 \retval -5: unable to claim device
902 \retval -6: reset failed
903 \retval -7: set baudrate failed
904 \retval -8: get product description failed
905 \retval -9: get serial number failed
906 \retval -10: unable to close device
907 \retval -11: illegal description format
22a1b5c1 908 \retval -12: ftdi context invalid
5ebbdab9
GE
909*/
910int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
911{
22a1b5c1
TJ
912 if (ftdi == NULL)
913 ftdi_error_return(-12, "ftdi context invalid");
914
5ebbdab9
GE
915 if (description[0] == 0 || description[1] != ':')
916 ftdi_error_return(-11, "illegal description format");
917
918 if (description[0] == 'd')
919 {
579b006f
JZ
920 libusb_device *dev;
921 libusb_device **devs;
56ac0383
TJ
922 unsigned int bus_number, device_address;
923 int i = 0;
579b006f 924
56ac0383
TJ
925 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
926 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 927
579b006f
JZ
928 /* XXX: This doesn't handle symlinks/odd paths/etc... */
929 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
56ac0383 930 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
5ebbdab9 931
56ac0383 932 while ((dev = devs[i++]) != NULL)
5ebbdab9 933 {
99650502 934 int ret;
56ac0383
TJ
935 if (bus_number == libusb_get_bus_number (dev)
936 && device_address == libusb_get_device_address (dev))
99650502
UB
937 {
938 ret = ftdi_usb_open_dev(ftdi, dev);
939 libusb_free_device_list(devs,1);
940 return ret;
941 }
5ebbdab9
GE
942 }
943
944 // device not found
99650502 945 ftdi_error_return_free_device_list(-3, "device not found", devs);
5ebbdab9
GE
946 }
947 else if (description[0] == 'i' || description[0] == 's')
948 {
949 unsigned int vendor;
950 unsigned int product;
951 unsigned int index=0;
0e6cf62b 952 const char *serial=NULL;
5ebbdab9
GE
953 const char *startp, *endp;
954
955 errno=0;
956 startp=description+2;
957 vendor=strtoul((char*)startp,(char**)&endp,0);
958 if (*endp != ':' || endp == startp || errno != 0)
959 ftdi_error_return(-11, "illegal description format");
960
961 startp=endp+1;
962 product=strtoul((char*)startp,(char**)&endp,0);
963 if (endp == startp || errno != 0)
964 ftdi_error_return(-11, "illegal description format");
965
966 if (description[0] == 'i' && *endp != 0)
967 {
968 /* optional index field in i-mode */
969 if (*endp != ':')
970 ftdi_error_return(-11, "illegal description format");
971
972 startp=endp+1;
973 index=strtoul((char*)startp,(char**)&endp,0);
974 if (*endp != 0 || endp == startp || errno != 0)
975 ftdi_error_return(-11, "illegal description format");
976 }
977 if (description[0] == 's')
978 {
979 if (*endp != ':')
980 ftdi_error_return(-11, "illegal description format");
981
982 /* rest of the description is the serial */
983 serial=endp+1;
984 }
985
986 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
987 }
988 else
989 {
990 ftdi_error_return(-11, "illegal description format");
991 }
992}
993
994/**
1941414d 995 Resets the ftdi device.
a3da1d95 996
1941414d
TJ
997 \param ftdi pointer to ftdi_context
998
999 \retval 0: all fine
1000 \retval -1: FTDI reset failed
22a1b5c1 1001 \retval -2: USB device unavailable
4837f98a 1002*/
edb82cbf 1003int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 1004{
22a1b5c1
TJ
1005 if (ftdi == NULL || ftdi->usb_dev == NULL)
1006 ftdi_error_return(-2, "USB device unavailable");
1007
579b006f
JZ
1008 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1009 SIO_RESET_REQUEST, SIO_RESET_SIO,
1010 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 1011 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 1012
545820ce 1013 // Invalidate data in the readbuffer
bfcee05b
TJ
1014 ftdi->readbuffer_offset = 0;
1015 ftdi->readbuffer_remaining = 0;
1016
a3da1d95
GE
1017 return 0;
1018}
1019
1941414d 1020/**
1189b11a 1021 Clears the read buffer on the chip and the internal read buffer.
ed46f09c 1022 This is the correct behavior for an RX flush.
1941414d
TJ
1023
1024 \param ftdi pointer to ftdi_context
4837f98a 1025
1941414d 1026 \retval 0: all fine
1189b11a 1027 \retval -1: read buffer purge failed
22a1b5c1 1028 \retval -2: USB device unavailable
4837f98a 1029*/
ed46f09c
ES
1030int ftdi_tciflush(struct ftdi_context *ftdi)
1031{
1032 if (ftdi == NULL || ftdi->usb_dev == NULL)
1033 ftdi_error_return(-2, "USB device unavailable");
1034
1035 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1036 SIO_RESET_REQUEST, SIO_TCIFLUSH,
1037 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1038 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
1039
1040 // Invalidate data in the readbuffer
1041 ftdi->readbuffer_offset = 0;
1042 ftdi->readbuffer_remaining = 0;
1043
1044 return 0;
1045}
1046
1047
1048/**
1049 Clears the write buffer on the chip and the internal read buffer.
1050 This is incorrect behavior for an RX flush.
1051
1052 \param ftdi pointer to ftdi_context
1053
1054 \retval 0: all fine
1055 \retval -1: write buffer purge failed
1056 \retval -2: USB device unavailable
1057
1058 \deprecated Use \ref ftdi_tciflush(struct ftdi_context *ftdi)
1059*/
1189b11a 1060int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 1061{
22a1b5c1
TJ
1062 if (ftdi == NULL || ftdi->usb_dev == NULL)
1063 ftdi_error_return(-2, "USB device unavailable");
1064
579b006f
JZ
1065 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1066 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
1067 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1068 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
1069
545820ce 1070 // Invalidate data in the readbuffer
bfcee05b
TJ
1071 ftdi->readbuffer_offset = 0;
1072 ftdi->readbuffer_remaining = 0;
a60be878 1073
1189b11a
TJ
1074 return 0;
1075}
1076
1077/**
1078 Clears the write buffer on the chip.
ed46f09c 1079 This is correct behavior for a TX flush.
1189b11a
TJ
1080
1081 \param ftdi pointer to ftdi_context
1082
1083 \retval 0: all fine
1084 \retval -1: write buffer purge failed
22a1b5c1 1085 \retval -2: USB device unavailable
1189b11a 1086*/
ed46f09c
ES
1087int ftdi_tcoflush(struct ftdi_context *ftdi)
1088{
1089 if (ftdi == NULL || ftdi->usb_dev == NULL)
1090 ftdi_error_return(-2, "USB device unavailable");
1091
1092 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1093 SIO_RESET_REQUEST, SIO_TCOFLUSH,
1094 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1095 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
1096
1097 return 0;
1098}
1099
1100
1101/**
1102 Clears the read buffer on the chip.
1103 This is incorrect behavior for a TX flush.
1104
1105 \param ftdi pointer to ftdi_context
1106
1107 \retval 0: all fine
1108 \retval -1: read buffer purge failed
1109 \retval -2: USB device unavailable
1110
1111 \deprecated Use \ref ftdi_tcoflush(struct ftdi_context *ftdi)
1112*/
1189b11a
TJ
1113int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
1114{
22a1b5c1
TJ
1115 if (ftdi == NULL || ftdi->usb_dev == NULL)
1116 ftdi_error_return(-2, "USB device unavailable");
1117
579b006f
JZ
1118 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1119 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
1120 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
1121 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
1122
1123 return 0;
1124}
1125
1126/**
ed46f09c
ES
1127 Clears the RX and TX FIFOs on the chip and the internal read buffer.
1128 This is correct behavior for both RX and TX flush.
1129
1130 \param ftdi pointer to ftdi_context
1131
1132 \retval 0: all fine
1133 \retval -1: read buffer purge failed
1134 \retval -2: write buffer purge failed
1135 \retval -3: USB device unavailable
1136*/
1137int ftdi_tcioflush(struct ftdi_context *ftdi)
1138{
1139 int result;
1140
1141 if (ftdi == NULL || ftdi->usb_dev == NULL)
1142 ftdi_error_return(-3, "USB device unavailable");
1143
1144 result = ftdi_tcoflush(ftdi);
1145 if (result < 0)
1146 return -1;
1147
1148 result = ftdi_tciflush(ftdi);
1149 if (result < 0)
1150 return -2;
1151
1152 return 0;
1153}
1154
1155/**
1189b11a 1156 Clears the buffers on the chip and the internal read buffer.
ed46f09c 1157 While coded incorrectly, the result is satisfactory.
1189b11a
TJ
1158
1159 \param ftdi pointer to ftdi_context
1160
1161 \retval 0: all fine
1162 \retval -1: read buffer purge failed
1163 \retval -2: write buffer purge failed
22a1b5c1 1164 \retval -3: USB device unavailable
ed46f09c
ES
1165
1166 \deprecated Use \ref ftdi_tcioflush(struct ftdi_context *ftdi)
1189b11a
TJ
1167*/
1168int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
1169{
1170 int result;
1171
22a1b5c1
TJ
1172 if (ftdi == NULL || ftdi->usb_dev == NULL)
1173 ftdi_error_return(-3, "USB device unavailable");
1174
1189b11a 1175 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 1176 if (result < 0)
1189b11a
TJ
1177 return -1;
1178
1179 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 1180 if (result < 0)
1189b11a 1181 return -2;
545820ce 1182
a60be878
TJ
1183 return 0;
1184}
a3da1d95 1185
f3f81007
TJ
1186
1187
1941414d
TJ
1188/**
1189 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
1190
1191 \param ftdi pointer to ftdi_context
1192
1193 \retval 0: all fine
1194 \retval -1: usb_release failed
22a1b5c1 1195 \retval -3: ftdi context invalid
a3da1d95 1196*/
a8f46ddc
TJ
1197int ftdi_usb_close(struct ftdi_context *ftdi)
1198{
a3da1d95
GE
1199 int rtn = 0;
1200
22a1b5c1
TJ
1201 if (ftdi == NULL)
1202 ftdi_error_return(-3, "ftdi context invalid");
1203
dff4fdb0 1204 if (ftdi->usb_dev != NULL)
579b006f 1205 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 1206 rtn = -1;
98452d97 1207
579b006f 1208 ftdi_usb_close_internal (ftdi);
98452d97 1209
a3da1d95
GE
1210 return rtn;
1211}
1212
74387f27 1213/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
f15786e4 1214 to encoded divisor and the achievable baudrate
53ad271d 1215 Function is only used internally
b5ec1820 1216 \internal
f15786e4
UB
1217
1218 See AN120
1219 clk/1 -> 0
1220 clk/1.5 -> 1
1221 clk/2 -> 2
1222 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1223 The fractional part has frac_code encoding
53ad271d 1224*/
f15786e4
UB
1225static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1226
a8f46ddc 1227{
f15786e4 1228 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
53ad271d
TJ
1229 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1230 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
53ad271d 1231 int divisor, best_divisor, best_baud, best_baud_diff;
f15786e4 1232 int i;
32e2d8b0 1233 divisor = 24000000 / baudrate;
53ad271d 1234
f15786e4
UB
1235 // Round down to supported fraction (AM only)
1236 divisor -= am_adjust_dn[divisor & 7];
53ad271d
TJ
1237
1238 // Try this divisor and the one above it (because division rounds down)
1239 best_divisor = 0;
1240 best_baud = 0;
1241 best_baud_diff = 0;
22d12cda
TJ
1242 for (i = 0; i < 2; i++)
1243 {
53ad271d
TJ
1244 int try_divisor = divisor + i;
1245 int baud_estimate;
1246 int baud_diff;
1247
1248 // Round up to supported divisor value
22d12cda
TJ
1249 if (try_divisor <= 8)
1250 {
53ad271d
TJ
1251 // Round up to minimum supported divisor
1252 try_divisor = 8;
22d12cda 1253 }
22d12cda
TJ
1254 else if (divisor < 16)
1255 {
53ad271d
TJ
1256 // AM doesn't support divisors 9 through 15 inclusive
1257 try_divisor = 16;
22d12cda
TJ
1258 }
1259 else
1260 {
f15786e4
UB
1261 // Round up to supported fraction (AM only)
1262 try_divisor += am_adjust_up[try_divisor & 7];
1263 if (try_divisor > 0x1FFF8)
22d12cda 1264 {
f15786e4
UB
1265 // Round down to maximum supported divisor value (for AM)
1266 try_divisor = 0x1FFF8;
53ad271d
TJ
1267 }
1268 }
1269 // Get estimated baud rate (to nearest integer)
1270 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1271 // Get absolute difference from requested baud rate
22d12cda
TJ
1272 if (baud_estimate < baudrate)
1273 {
53ad271d 1274 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
1275 }
1276 else
1277 {
53ad271d
TJ
1278 baud_diff = baud_estimate - baudrate;
1279 }
22d12cda
TJ
1280 if (i == 0 || baud_diff < best_baud_diff)
1281 {
53ad271d
TJ
1282 // Closest to requested baud rate so far
1283 best_divisor = try_divisor;
1284 best_baud = baud_estimate;
1285 best_baud_diff = baud_diff;
22d12cda
TJ
1286 if (baud_diff == 0)
1287 {
53ad271d
TJ
1288 // Spot on! No point trying
1289 break;
1290 }
1291 }
1292 }
1293 // Encode the best divisor value
f15786e4 1294 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
53ad271d 1295 // Deal with special cases for encoded value
f15786e4 1296 if (*encoded_divisor == 1)
22d12cda 1297 {
f15786e4 1298 *encoded_divisor = 0; // 3000000 baud
22d12cda 1299 }
f15786e4
UB
1300 else if (*encoded_divisor == 0x4001)
1301 {
1302 *encoded_divisor = 1; // 2000000 baud (BM only)
1303 }
1304 return best_baud;
1305}
1306
1307/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1308 to encoded divisor and the achievable baudrate
1309 Function is only used internally
1310 \internal
1311
1312 See AN120
1313 clk/1 -> 0
1314 clk/1.5 -> 1
1315 clk/2 -> 2
1316 From /2, 0.125 steps may be taken.
1317 The fractional part has frac_code encoding
9956d428
UB
1318
1319 value[13:0] of value is the divisor
1320 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1321
1322 H Type have all features above with
1323 {index[8],value[15:14]} is the encoded subdivisor
1324
74387f27 1325 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
9956d428
UB
1326 {index[0],value[15:14]} is the encoded subdivisor
1327
1328 AM Type chips have only four fractional subdivisors at value[15:14]
1329 for subdivisors 0, 0.5, 0.25, 0.125
f15786e4
UB
1330*/
1331static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor)
1332{
1333 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1334 int best_baud = 0;
1335 int divisor, best_divisor;
1336 if (baudrate >= clk/clk_div)
1337 {
1338 *encoded_divisor = 0;
1339 best_baud = clk/clk_div;
1340 }
1341 else if (baudrate >= clk/(clk_div + clk_div/2))
1342 {
1343 *encoded_divisor = 1;
1344 best_baud = clk/(clk_div + clk_div/2);
1345 }
1346 else if (baudrate >= clk/(2*clk_div))
1347 {
1348 *encoded_divisor = 2;
1349 best_baud = clk/(2*clk_div);
1350 }
1351 else
1352 {
1353 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1354 divisor = clk*16/clk_div / baudrate;
1355 if (divisor & 1) /* Decide if to round up or down*/
1356 best_divisor = divisor /2 +1;
1357 else
1358 best_divisor = divisor/2;
1359 if(best_divisor > 0x20000)
1360 best_divisor = 0x1ffff;
aae08071
UB
1361 best_baud = clk*16/clk_div/best_divisor;
1362 if (best_baud & 1) /* Decide if to round up or down*/
1363 best_baud = best_baud /2 +1;
1364 else
1365 best_baud = best_baud /2;
f15786e4
UB
1366 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1367 }
1368 return best_baud;
74387f27 1369}
f15786e4
UB
1370/**
1371 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1372 Function is only used internally
1373 \internal
1374*/
1375static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1376 unsigned short *value, unsigned short *index)
1377{
1378 int best_baud;
1379 unsigned long encoded_divisor;
1380
1381 if (baudrate <= 0)
1382 {
1383 // Return error
1384 return -1;
1385 }
1386
1387#define H_CLK 120000000
1388#define C_CLK 48000000
6ae693b2 1389 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H))
f15786e4
UB
1390 {
1391 if(baudrate*10 > H_CLK /0x3fff)
1392 {
1393 /* On H Devices, use 12 000 000 Baudrate when possible
74387f27 1394 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
f15786e4
UB
1395 three fractional bits and a 120 MHz clock
1396 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1397 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1398 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1399 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1400 }
1401 else
1402 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1403 }
913ca54f 1404 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R) || (ftdi->type == TYPE_230X))
f15786e4
UB
1405 {
1406 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1407 }
1408 else
22d12cda 1409 {
f15786e4 1410 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
53ad271d
TJ
1411 }
1412 // Split into "value" and "index" values
1413 *value = (unsigned short)(encoded_divisor & 0xFFFF);
6ae693b2 1414 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
22d12cda 1415 {
0126d22e
TJ
1416 *index = (unsigned short)(encoded_divisor >> 8);
1417 *index &= 0xFF00;
a9c57c05 1418 *index |= ftdi->index;
0126d22e
TJ
1419 }
1420 else
1421 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 1422
53ad271d
TJ
1423 // Return the nearest baud rate
1424 return best_baud;
1425}
1426
1941414d 1427/**
ac6944cc
TJ
1428 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1429 * Do not use, it's only for the unit test framework
1430 **/
1431int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
74387f27 1432 unsigned short *value, unsigned short *index)
ac6944cc
TJ
1433{
1434 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1435}
1436
1437/**
9bec2387 1438 Sets the chip baud rate
1941414d
TJ
1439
1440 \param ftdi pointer to ftdi_context
9bec2387 1441 \param baudrate baud rate to set
1941414d
TJ
1442
1443 \retval 0: all fine
1444 \retval -1: invalid baudrate
1445 \retval -2: setting baudrate failed
22a1b5c1 1446 \retval -3: USB device unavailable
a3da1d95 1447*/
a8f46ddc
TJ
1448int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1449{
53ad271d
TJ
1450 unsigned short value, index;
1451 int actual_baudrate;
a3da1d95 1452
22a1b5c1
TJ
1453 if (ftdi == NULL || ftdi->usb_dev == NULL)
1454 ftdi_error_return(-3, "USB device unavailable");
1455
22d12cda
TJ
1456 if (ftdi->bitbang_enabled)
1457 {
a3da1d95
GE
1458 baudrate = baudrate*4;
1459 }
1460
25707904 1461 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1462 if (actual_baudrate <= 0)
1463 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1464
53ad271d
TJ
1465 // Check within tolerance (about 5%)
1466 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1467 || ((actual_baudrate < baudrate)
1468 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1469 : (baudrate * 21 < actual_baudrate * 20)))
1470 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1471
579b006f
JZ
1472 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1473 SIO_SET_BAUDRATE_REQUEST, value,
1474 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1475 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1476
1477 ftdi->baudrate = baudrate;
1478 return 0;
1479}
1480
1941414d 1481/**
6c32e222
TJ
1482 Set (RS232) line characteristics.
1483 The break type can only be set via ftdi_set_line_property2()
1484 and defaults to "off".
4837f98a 1485
1941414d
TJ
1486 \param ftdi pointer to ftdi_context
1487 \param bits Number of bits
1488 \param sbit Number of stop bits
1489 \param parity Parity mode
1490
1491 \retval 0: all fine
1492 \retval -1: Setting line property failed
2f73e59f
TJ
1493*/
1494int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1495 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1496{
6c32e222
TJ
1497 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1498}
1499
1500/**
1501 Set (RS232) line characteristics
1502
1503 \param ftdi pointer to ftdi_context
1504 \param bits Number of bits
1505 \param sbit Number of stop bits
1506 \param parity Parity mode
1507 \param break_type Break type
1508
1509 \retval 0: all fine
1510 \retval -1: Setting line property failed
22a1b5c1 1511 \retval -2: USB device unavailable
6c32e222
TJ
1512*/
1513int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1514 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1515 enum ftdi_break_type break_type)
6c32e222 1516{
2f73e59f
TJ
1517 unsigned short value = bits;
1518
22a1b5c1
TJ
1519 if (ftdi == NULL || ftdi->usb_dev == NULL)
1520 ftdi_error_return(-2, "USB device unavailable");
1521
22d12cda
TJ
1522 switch (parity)
1523 {
1524 case NONE:
1525 value |= (0x00 << 8);
1526 break;
1527 case ODD:
1528 value |= (0x01 << 8);
1529 break;
1530 case EVEN:
1531 value |= (0x02 << 8);
1532 break;
1533 case MARK:
1534 value |= (0x03 << 8);
1535 break;
1536 case SPACE:
1537 value |= (0x04 << 8);
1538 break;
2f73e59f 1539 }
d2f10023 1540
22d12cda
TJ
1541 switch (sbit)
1542 {
1543 case STOP_BIT_1:
1544 value |= (0x00 << 11);
1545 break;
1546 case STOP_BIT_15:
1547 value |= (0x01 << 11);
1548 break;
1549 case STOP_BIT_2:
1550 value |= (0x02 << 11);
1551 break;
2f73e59f 1552 }
d2f10023 1553
22d12cda
TJ
1554 switch (break_type)
1555 {
1556 case BREAK_OFF:
1557 value |= (0x00 << 14);
1558 break;
1559 case BREAK_ON:
1560 value |= (0x01 << 14);
1561 break;
6c32e222
TJ
1562 }
1563
579b006f
JZ
1564 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1565 SIO_SET_DATA_REQUEST, value,
1566 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1567 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1568
2f73e59f
TJ
1569 return 0;
1570}
a3da1d95 1571
1941414d
TJ
1572/**
1573 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1574
1575 \param ftdi pointer to ftdi_context
1576 \param buf Buffer with the data
1577 \param size Size of the buffer
1578
22a1b5c1 1579 \retval -666: USB device unavailable
1941414d
TJ
1580 \retval <0: error code from usb_bulk_write()
1581 \retval >0: number of bytes written
1582*/
276750c1 1583int ftdi_write_data(struct ftdi_context *ftdi, const unsigned char *buf, int size)
a8f46ddc 1584{
a3da1d95 1585 int offset = 0;
579b006f 1586 int actual_length;
c3d95b87 1587
22a1b5c1
TJ
1588 if (ftdi == NULL || ftdi->usb_dev == NULL)
1589 ftdi_error_return(-666, "USB device unavailable");
1590
22d12cda
TJ
1591 while (offset < size)
1592 {
948f9ada 1593 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1594
1595 if (offset+write_size > size)
1596 write_size = size-offset;
1597
276750c1 1598 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, (unsigned char *)buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
579b006f 1599 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1600
579b006f 1601 offset += actual_length;
a3da1d95
GE
1602 }
1603
579b006f 1604 return offset;
a3da1d95
GE
1605}
1606
32e2d8b0 1607static void LIBUSB_CALL ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1608{
579b006f
JZ
1609 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1610 struct ftdi_context *ftdi = tc->ftdi;
1611 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1612
b1139150 1613 packet_size = ftdi->max_packet_size;
579b006f
JZ
1614
1615 actual_length = transfer->actual_length;
1616
1617 if (actual_length > 2)
1618 {
1619 // skip FTDI status bytes.
1620 // Maybe stored in the future to enable modem use
1621 num_of_chunks = actual_length / packet_size;
1622 chunk_remains = actual_length % packet_size;
1623 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1624
1625 ftdi->readbuffer_offset += 2;
1626 actual_length -= 2;
1627
1628 if (actual_length > packet_size - 2)
1629 {
1630 for (i = 1; i < num_of_chunks; i++)
56ac0383
TJ
1631 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1632 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1633 packet_size - 2);
579b006f
JZ
1634 if (chunk_remains > 2)
1635 {
1636 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1637 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1638 chunk_remains-2);
1639 actual_length -= 2*num_of_chunks;
1640 }
1641 else
56ac0383 1642 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
579b006f
JZ
1643 }
1644
1645 if (actual_length > 0)
1646 {
1647 // data still fits in buf?
1648 if (tc->offset + actual_length <= tc->size)
1649 {
1650 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1651 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1652 tc->offset += actual_length;
1653
1654 ftdi->readbuffer_offset = 0;
1655 ftdi->readbuffer_remaining = 0;
1656
1657 /* Did we read exactly the right amount of bytes? */
1658 if (tc->offset == tc->size)
1659 {
1660 //printf("read_data exact rem %d offset %d\n",
1661 //ftdi->readbuffer_remaining, offset);
1662 tc->completed = 1;
1663 return;
1664 }
1665 }
1666 else
1667 {
1668 // only copy part of the data or size <= readbuffer_chunksize
1669 int part_size = tc->size - tc->offset;
1670 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1671 tc->offset += part_size;
1672
1673 ftdi->readbuffer_offset += part_size;
1674 ftdi->readbuffer_remaining = actual_length - part_size;
1675
1676 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1677 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1678 tc->completed = 1;
1679 return;
1680 }
1681 }
1682 }
1b1bf7e4
EH
1683
1684 if (transfer->status == LIBUSB_TRANSFER_CANCELLED)
1685 tc->completed = LIBUSB_TRANSFER_CANCELLED;
1686 else
1687 {
1688 ret = libusb_submit_transfer (transfer);
1689 if (ret < 0)
1690 tc->completed = 1;
1691 }
579b006f
JZ
1692}
1693
1694
32e2d8b0 1695static void LIBUSB_CALL ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1696{
579b006f
JZ
1697 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1698 struct ftdi_context *ftdi = tc->ftdi;
56ac0383 1699
90ef163e 1700 tc->offset += transfer->actual_length;
56ac0383 1701
579b006f 1702 if (tc->offset == tc->size)
22d12cda 1703 {
579b006f 1704 tc->completed = 1;
7cc9950e 1705 }
579b006f
JZ
1706 else
1707 {
1708 int write_size = ftdi->writebuffer_chunksize;
1709 int ret;
7cc9950e 1710
579b006f
JZ
1711 if (tc->offset + write_size > tc->size)
1712 write_size = tc->size - tc->offset;
1713
1714 transfer->length = write_size;
1715 transfer->buffer = tc->buf + tc->offset;
1b1bf7e4
EH
1716
1717 if (transfer->status == LIBUSB_TRANSFER_CANCELLED)
1718 tc->completed = LIBUSB_TRANSFER_CANCELLED;
1719 else
1720 {
1721 ret = libusb_submit_transfer (transfer);
1722 if (ret < 0)
1723 tc->completed = 1;
1724 }
579b006f 1725 }
7cc9950e
GE
1726}
1727
579b006f 1728
84f85aaa 1729/**
579b006f
JZ
1730 Writes data to the chip. Does not wait for completion of the transfer
1731 nor does it make sure that the transfer was successful.
1732
249888c8 1733 Use libusb 1.0 asynchronous API.
84f85aaa
GE
1734
1735 \param ftdi pointer to ftdi_context
579b006f
JZ
1736 \param buf Buffer with the data
1737 \param size Size of the buffer
84f85aaa 1738
579b006f
JZ
1739 \retval NULL: Some error happens when submit transfer
1740 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1741*/
579b006f
JZ
1742
1743struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1744{
579b006f 1745 struct ftdi_transfer_control *tc;
5e77e870 1746 struct libusb_transfer *transfer;
579b006f 1747 int write_size, ret;
22d12cda 1748
22a1b5c1 1749 if (ftdi == NULL || ftdi->usb_dev == NULL)
22a1b5c1 1750 return NULL;
22a1b5c1 1751
579b006f 1752 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
5e77e870
TJ
1753 if (!tc)
1754 return NULL;
22d12cda 1755
5e77e870
TJ
1756 transfer = libusb_alloc_transfer(0);
1757 if (!transfer)
1758 {
1759 free(tc);
579b006f 1760 return NULL;
5e77e870 1761 }
22d12cda 1762
579b006f
JZ
1763 tc->ftdi = ftdi;
1764 tc->completed = 0;
1765 tc->buf = buf;
1766 tc->size = size;
1767 tc->offset = 0;
7cc9950e 1768
9e44fc94 1769 if (size < (int)ftdi->writebuffer_chunksize)
56ac0383 1770 write_size = size;
579b006f 1771 else
56ac0383 1772 write_size = ftdi->writebuffer_chunksize;
22d12cda 1773
90ef163e
YSL
1774 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1775 write_size, ftdi_write_data_cb, tc,
1776 ftdi->usb_write_timeout);
579b006f 1777 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1778
579b006f
JZ
1779 ret = libusb_submit_transfer(transfer);
1780 if (ret < 0)
1781 {
1782 libusb_free_transfer(transfer);
5e77e870 1783 free(tc);
579b006f 1784 return NULL;
7cc9950e 1785 }
579b006f
JZ
1786 tc->transfer = transfer;
1787
1788 return tc;
7cc9950e
GE
1789}
1790
1791/**
579b006f
JZ
1792 Reads data from the chip. Does not wait for completion of the transfer
1793 nor does it make sure that the transfer was successful.
1794
249888c8 1795 Use libusb 1.0 asynchronous API.
7cc9950e
GE
1796
1797 \param ftdi pointer to ftdi_context
579b006f
JZ
1798 \param buf Buffer with the data
1799 \param size Size of the buffer
4c9e3812 1800
579b006f
JZ
1801 \retval NULL: Some error happens when submit transfer
1802 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1803*/
579b006f
JZ
1804
1805struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1806{
579b006f
JZ
1807 struct ftdi_transfer_control *tc;
1808 struct libusb_transfer *transfer;
1809 int ret;
22d12cda 1810
22a1b5c1
TJ
1811 if (ftdi == NULL || ftdi->usb_dev == NULL)
1812 return NULL;
1813
579b006f
JZ
1814 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1815 if (!tc)
1816 return NULL;
1817
1818 tc->ftdi = ftdi;
1819 tc->buf = buf;
1820 tc->size = size;
1821
9e44fc94 1822 if (size <= (int)ftdi->readbuffer_remaining)
7cc9950e 1823 {
579b006f 1824 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1825
579b006f
JZ
1826 // Fix offsets
1827 ftdi->readbuffer_remaining -= size;
1828 ftdi->readbuffer_offset += size;
7cc9950e 1829
579b006f 1830 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1831
579b006f
JZ
1832 tc->completed = 1;
1833 tc->offset = size;
1834 tc->transfer = NULL;
1835 return tc;
1836 }
4c9e3812 1837
579b006f
JZ
1838 tc->completed = 0;
1839 if (ftdi->readbuffer_remaining != 0)
1840 {
1841 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1842
579b006f
JZ
1843 tc->offset = ftdi->readbuffer_remaining;
1844 }
1845 else
1846 tc->offset = 0;
22d12cda 1847
579b006f
JZ
1848 transfer = libusb_alloc_transfer(0);
1849 if (!transfer)
1850 {
1851 free (tc);
1852 return NULL;
1853 }
22d12cda 1854
579b006f
JZ
1855 ftdi->readbuffer_remaining = 0;
1856 ftdi->readbuffer_offset = 0;
1857
1858 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1859 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1860
1861 ret = libusb_submit_transfer(transfer);
1862 if (ret < 0)
1863 {
1864 libusb_free_transfer(transfer);
1865 free (tc);
1866 return NULL;
22d12cda 1867 }
579b006f
JZ
1868 tc->transfer = transfer;
1869
1870 return tc;
4c9e3812
GE
1871}
1872
1873/**
579b006f 1874 Wait for completion of the transfer.
4c9e3812 1875
249888c8 1876 Use libusb 1.0 asynchronous API.
4c9e3812 1877
579b006f 1878 \param tc pointer to ftdi_transfer_control
4c9e3812 1879
579b006f
JZ
1880 \retval < 0: Some error happens
1881 \retval >= 0: Data size transferred
4c9e3812 1882*/
579b006f
JZ
1883
1884int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1885{
1886 int ret;
1b1bf7e4 1887 struct timeval to = { 0, 0 };
579b006f 1888 while (!tc->completed)
22d12cda 1889 {
1b1bf7e4
EH
1890 ret = libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx,
1891 &to, &tc->completed);
4c9e3812 1892 if (ret < 0)
579b006f
JZ
1893 {
1894 if (ret == LIBUSB_ERROR_INTERRUPTED)
1895 continue;
1896 libusb_cancel_transfer(tc->transfer);
1897 while (!tc->completed)
1b1bf7e4
EH
1898 if (libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx,
1899 &to, &tc->completed) < 0)
579b006f
JZ
1900 break;
1901 libusb_free_transfer(tc->transfer);
1902 free (tc);
579b006f
JZ
1903 return ret;
1904 }
4c9e3812
GE
1905 }
1906
90ef163e
YSL
1907 ret = tc->offset;
1908 /**
1909 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
ef15fab5 1910 * at ftdi_read_data_submit(). Therefore, we need to check it here.
90ef163e 1911 **/
ef15fab5
TJ
1912 if (tc->transfer)
1913 {
1914 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1915 ret = -1;
1916 libusb_free_transfer(tc->transfer);
90ef163e 1917 }
579b006f
JZ
1918 free(tc);
1919 return ret;
4c9e3812 1920}
579b006f 1921
1941414d 1922/**
1b1bf7e4
EH
1923 Cancel transfer and wait for completion.
1924
1925 Use libusb 1.0 asynchronous API.
1926
1927 \param tc pointer to ftdi_transfer_control
1928 \param to pointer to timeout value or NULL for infinite
1929*/
1930
1931void ftdi_transfer_data_cancel(struct ftdi_transfer_control *tc,
1932 struct timeval * to)
1933{
1934 struct timeval tv = { 0, 0 };
1935
1936 if (!tc->completed && tc->transfer != NULL)
1937 {
1938 if (to == NULL)
1939 to = &tv;
1940
1941 libusb_cancel_transfer(tc->transfer);
1942 while (!tc->completed)
1943 {
1944 if (libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx, to, &tc->completed) < 0)
1945 break;
1946 }
1947 }
1948
1949 if (tc->transfer)
1950 libusb_free_transfer(tc->transfer);
1951
1952 free (tc);
1953}
1954
1955/**
1941414d
TJ
1956 Configure write buffer chunk size.
1957 Default is 4096.
1958
1959 \param ftdi pointer to ftdi_context
1960 \param chunksize Chunk size
a3da1d95 1961
1941414d 1962 \retval 0: all fine
22a1b5c1 1963 \retval -1: ftdi context invalid
1941414d 1964*/
a8f46ddc
TJ
1965int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1966{
22a1b5c1
TJ
1967 if (ftdi == NULL)
1968 ftdi_error_return(-1, "ftdi context invalid");
1969
948f9ada
TJ
1970 ftdi->writebuffer_chunksize = chunksize;
1971 return 0;
1972}
1973
1941414d
TJ
1974/**
1975 Get write buffer chunk size.
1976
1977 \param ftdi pointer to ftdi_context
1978 \param chunksize Pointer to store chunk size in
948f9ada 1979
1941414d 1980 \retval 0: all fine
22a1b5c1 1981 \retval -1: ftdi context invalid
1941414d 1982*/
a8f46ddc
TJ
1983int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1984{
22a1b5c1
TJ
1985 if (ftdi == NULL)
1986 ftdi_error_return(-1, "ftdi context invalid");
1987
948f9ada
TJ
1988 *chunksize = ftdi->writebuffer_chunksize;
1989 return 0;
1990}
cbabb7d3 1991
1941414d
TJ
1992/**
1993 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1994
1995 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1996
1941414d
TJ
1997 \param ftdi pointer to ftdi_context
1998 \param buf Buffer to store data in
1999 \param size Size of the buffer
2000
22a1b5c1 2001 \retval -666: USB device unavailable
579b006f 2002 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 2003 \retval 0: no data was available
1941414d
TJ
2004 \retval >0: number of bytes read
2005
1941414d 2006*/
a8f46ddc
TJ
2007int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
2008{
579b006f 2009 int offset = 0, ret, i, num_of_chunks, chunk_remains;
5193cc23 2010 int packet_size;
579b006f 2011 int actual_length = 1;
f2f00cb5 2012
22a1b5c1
TJ
2013 if (ftdi == NULL || ftdi->usb_dev == NULL)
2014 ftdi_error_return(-666, "USB device unavailable");
2015
e2f12a4f 2016 // Packet size sanity check (avoid division by zero)
5193cc23 2017 packet_size = ftdi->max_packet_size;
e2f12a4f
TJ
2018 if (packet_size == 0)
2019 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 2020
948f9ada 2021 // everything we want is still in the readbuffer?
9e44fc94 2022 if (size <= (int)ftdi->readbuffer_remaining)
22d12cda 2023 {
d9f0cce7
TJ
2024 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
2025
2026 // Fix offsets
2027 ftdi->readbuffer_remaining -= size;
2028 ftdi->readbuffer_offset += size;
2029
545820ce 2030 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
2031
2032 return size;
979a145c 2033 }
948f9ada 2034 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
2035 if (ftdi->readbuffer_remaining != 0)
2036 {
d9f0cce7 2037 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 2038
d9f0cce7
TJ
2039 // Fix offset
2040 offset += ftdi->readbuffer_remaining;
948f9ada 2041 }
948f9ada 2042 // do the actual USB read
579b006f 2043 while (offset < size && actual_length > 0)
22d12cda 2044 {
d9f0cce7
TJ
2045 ftdi->readbuffer_remaining = 0;
2046 ftdi->readbuffer_offset = 0;
98452d97 2047 /* returns how much received */
579b006f 2048 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
2049 if (ret < 0)
2050 ftdi_error_return(ret, "usb bulk read failed");
98452d97 2051
579b006f 2052 if (actual_length > 2)
22d12cda 2053 {
d9f0cce7
TJ
2054 // skip FTDI status bytes.
2055 // Maybe stored in the future to enable modem use
579b006f
JZ
2056 num_of_chunks = actual_length / packet_size;
2057 chunk_remains = actual_length % packet_size;
2058 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 2059
d9f0cce7 2060 ftdi->readbuffer_offset += 2;
579b006f 2061 actual_length -= 2;
1c733d33 2062
579b006f 2063 if (actual_length > packet_size - 2)
22d12cda 2064 {
1c733d33 2065 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
2066 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
2067 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
2068 packet_size - 2);
22d12cda
TJ
2069 if (chunk_remains > 2)
2070 {
f2f00cb5
DC
2071 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
2072 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 2073 chunk_remains-2);
579b006f 2074 actual_length -= 2*num_of_chunks;
22d12cda
TJ
2075 }
2076 else
579b006f 2077 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 2078 }
22d12cda 2079 }
579b006f 2080 else if (actual_length <= 2)
22d12cda 2081 {
d9f0cce7
TJ
2082 // no more data to read?
2083 return offset;
2084 }
579b006f 2085 if (actual_length > 0)
22d12cda 2086 {
d9f0cce7 2087 // data still fits in buf?
579b006f 2088 if (offset+actual_length <= size)
22d12cda 2089 {
579b006f 2090 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 2091 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 2092 offset += actual_length;
d9f0cce7 2093
53ad271d 2094 /* Did we read exactly the right amount of bytes? */
d9f0cce7 2095 if (offset == size)
c4446c36
TJ
2096 //printf("read_data exact rem %d offset %d\n",
2097 //ftdi->readbuffer_remaining, offset);
d9f0cce7 2098 return offset;
22d12cda
TJ
2099 }
2100 else
2101 {
d9f0cce7
TJ
2102 // only copy part of the data or size <= readbuffer_chunksize
2103 int part_size = size-offset;
2104 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 2105
d9f0cce7 2106 ftdi->readbuffer_offset += part_size;
579b006f 2107 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
2108 offset += part_size;
2109
579b006f
JZ
2110 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
2111 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
2112
2113 return offset;
2114 }
2115 }
cbabb7d3 2116 }
948f9ada 2117 // never reached
29c4af7f 2118 return -127;
a3da1d95
GE
2119}
2120
1941414d
TJ
2121/**
2122 Configure read buffer chunk size.
2123 Default is 4096.
2124
2125 Automatically reallocates the buffer.
a3da1d95 2126
1941414d
TJ
2127 \param ftdi pointer to ftdi_context
2128 \param chunksize Chunk size
2129
2130 \retval 0: all fine
22a1b5c1 2131 \retval -1: ftdi context invalid
1941414d 2132*/
a8f46ddc
TJ
2133int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
2134{
29c4af7f
TJ
2135 unsigned char *new_buf;
2136
22a1b5c1
TJ
2137 if (ftdi == NULL)
2138 ftdi_error_return(-1, "ftdi context invalid");
2139
948f9ada
TJ
2140 // Invalidate all remaining data
2141 ftdi->readbuffer_offset = 0;
2142 ftdi->readbuffer_remaining = 0;
8de6eea4
JZ
2143#ifdef __linux__
2144 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
2145 which is defined in libusb-1.0. Otherwise, each USB read request will
2e685a1f 2146 be divided into multiple URBs. This will cause issues on Linux kernel
8de6eea4
JZ
2147 older than 2.6.32. */
2148 if (chunksize > 16384)
2149 chunksize = 16384;
2150#endif
948f9ada 2151
c3d95b87
TJ
2152 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
2153 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 2154
948f9ada
TJ
2155 ftdi->readbuffer = new_buf;
2156 ftdi->readbuffer_chunksize = chunksize;
2157
2158 return 0;
2159}
2160
1941414d
TJ
2161/**
2162 Get read buffer chunk size.
948f9ada 2163
1941414d
TJ
2164 \param ftdi pointer to ftdi_context
2165 \param chunksize Pointer to store chunk size in
2166
2167 \retval 0: all fine
22a1b5c1 2168 \retval -1: FTDI context invalid
1941414d 2169*/
a8f46ddc
TJ
2170int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
2171{
22a1b5c1
TJ
2172 if (ftdi == NULL)
2173 ftdi_error_return(-1, "FTDI context invalid");
2174
948f9ada
TJ
2175 *chunksize = ftdi->readbuffer_chunksize;
2176 return 0;
2177}
2178
1941414d 2179/**
2d790e37 2180 Enable/disable bitbang modes.
1941414d
TJ
2181
2182 \param ftdi pointer to ftdi_context
2183 \param bitmask Bitmask to configure lines.
2184 HIGH/ON value configures a line as output.
2d790e37 2185 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
2186
2187 \retval 0: all fine
2188 \retval -1: can't enable bitbang mode
22a1b5c1 2189 \retval -2: USB device unavailable
1941414d 2190*/
2d790e37 2191int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
a8f46ddc 2192{
a3da1d95
GE
2193 unsigned short usb_val;
2194
22a1b5c1
TJ
2195 if (ftdi == NULL || ftdi->usb_dev == NULL)
2196 ftdi_error_return(-2, "USB device unavailable");
2197
d9f0cce7 2198 usb_val = bitmask; // low byte: bitmask
2d790e37
TJ
2199 usb_val |= (mode << 8);
2200 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2201 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
c3d95b87 2202
2d790e37
TJ
2203 ftdi->bitbang_mode = mode;
2204 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
a3da1d95
GE
2205 return 0;
2206}
2207
1941414d
TJ
2208/**
2209 Disable bitbang mode.
a3da1d95 2210
1941414d
TJ
2211 \param ftdi pointer to ftdi_context
2212
2213 \retval 0: all fine
2214 \retval -1: can't disable bitbang mode
22a1b5c1 2215 \retval -2: USB device unavailable
1941414d 2216*/
a8f46ddc
TJ
2217int ftdi_disable_bitbang(struct ftdi_context *ftdi)
2218{
22a1b5c1
TJ
2219 if (ftdi == NULL || ftdi->usb_dev == NULL)
2220 ftdi_error_return(-2, "USB device unavailable");
2221
579b006f 2222 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 2223 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
2224
2225 ftdi->bitbang_enabled = 0;
2226 return 0;
2227}
2228
c4446c36 2229
1941414d 2230/**
418aaa72 2231 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
2232
2233 \param ftdi pointer to ftdi_context
2234 \param pins Pointer to store pins into
2235
2236 \retval 0: all fine
2237 \retval -1: read pins failed
22a1b5c1 2238 \retval -2: USB device unavailable
1941414d 2239*/
a8f46ddc
TJ
2240int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
2241{
22a1b5c1
TJ
2242 if (ftdi == NULL || ftdi->usb_dev == NULL)
2243 ftdi_error_return(-2, "USB device unavailable");
2244
579b006f 2245 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 2246 ftdi_error_return(-1, "read pins failed");
a3da1d95 2247
a3da1d95
GE
2248 return 0;
2249}
2250
1941414d
TJ
2251/**
2252 Set latency timer
2253
2254 The FTDI chip keeps data in the internal buffer for a specific
2255 amount of time if the buffer is not full yet to decrease
2256 load on the usb bus.
a3da1d95 2257
1941414d
TJ
2258 \param ftdi pointer to ftdi_context
2259 \param latency Value between 1 and 255
2260
2261 \retval 0: all fine
2262 \retval -1: latency out of range
2263 \retval -2: unable to set latency timer
22a1b5c1 2264 \retval -3: USB device unavailable
1941414d 2265*/
a8f46ddc
TJ
2266int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2267{
a3da1d95
GE
2268 unsigned short usb_val;
2269
c3d95b87
TJ
2270 if (latency < 1)
2271 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 2272
22a1b5c1
TJ
2273 if (ftdi == NULL || ftdi->usb_dev == NULL)
2274 ftdi_error_return(-3, "USB device unavailable");
2275
d79d2e68 2276 usb_val = latency;
579b006f 2277 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
2278 ftdi_error_return(-2, "unable to set latency timer");
2279
a3da1d95
GE
2280 return 0;
2281}
2282
1941414d
TJ
2283/**
2284 Get latency timer
a3da1d95 2285
1941414d
TJ
2286 \param ftdi pointer to ftdi_context
2287 \param latency Pointer to store latency value in
2288
2289 \retval 0: all fine
2290 \retval -1: unable to get latency timer
22a1b5c1 2291 \retval -2: USB device unavailable
1941414d 2292*/
a8f46ddc
TJ
2293int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2294{
a3da1d95 2295 unsigned short usb_val;
22a1b5c1
TJ
2296
2297 if (ftdi == NULL || ftdi->usb_dev == NULL)
2298 ftdi_error_return(-2, "USB device unavailable");
2299
579b006f 2300 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 2301 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
2302
2303 *latency = (unsigned char)usb_val;
2304 return 0;
2305}
2306
1941414d 2307/**
1189b11a
TJ
2308 Poll modem status information
2309
2310 This function allows the retrieve the two status bytes of the device.
2311 The device sends these bytes also as a header for each read access
2312 where they are discarded by ftdi_read_data(). The chip generates
2313 the two stripped status bytes in the absence of data every 40 ms.
2314
2315 Layout of the first byte:
2316 - B0..B3 - must be 0
2317 - B4 Clear to send (CTS)
2318 0 = inactive
2319 1 = active
2320 - B5 Data set ready (DTS)
2321 0 = inactive
2322 1 = active
2323 - B6 Ring indicator (RI)
2324 0 = inactive
2325 1 = active
2326 - B7 Receive line signal detect (RLSD)
2327 0 = inactive
2328 1 = active
2329
2330 Layout of the second byte:
2331 - B0 Data ready (DR)
2332 - B1 Overrun error (OE)
2333 - B2 Parity error (PE)
2334 - B3 Framing error (FE)
2335 - B4 Break interrupt (BI)
2336 - B5 Transmitter holding register (THRE)
2337 - B6 Transmitter empty (TEMT)
2338 - B7 Error in RCVR FIFO
2339
2340 \param ftdi pointer to ftdi_context
2341 \param status Pointer to store status information in. Must be two bytes.
2342
2343 \retval 0: all fine
2344 \retval -1: unable to retrieve status information
22a1b5c1 2345 \retval -2: USB device unavailable
1189b11a
TJ
2346*/
2347int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2348{
2349 char usb_val[2];
2350
22a1b5c1
TJ
2351 if (ftdi == NULL || ftdi->usb_dev == NULL)
2352 ftdi_error_return(-2, "USB device unavailable");
2353
579b006f 2354 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
2355 ftdi_error_return(-1, "getting modem status failed");
2356
dc09eaa8 2357 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
1189b11a
TJ
2358
2359 return 0;
2360}
2361
a7fb8440
TJ
2362/**
2363 Set flowcontrol for ftdi chip
2364
fdb93a5e
PJ
2365 Note: Do not use this function to enable XON/XOFF mode, use ftdi_setflowctrl_xonxoff() instead.
2366
a7fb8440 2367 \param ftdi pointer to ftdi_context
22d12cda 2368 \param flowctrl flow control to use. should be
fdb93a5e 2369 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS
a7fb8440
TJ
2370
2371 \retval 0: all fine
2372 \retval -1: set flow control failed
22a1b5c1 2373 \retval -2: USB device unavailable
a7fb8440
TJ
2374*/
2375int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2376{
22a1b5c1
TJ
2377 if (ftdi == NULL || ftdi->usb_dev == NULL)
2378 ftdi_error_return(-2, "USB device unavailable");
2379
579b006f
JZ
2380 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2381 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2382 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2383 ftdi_error_return(-1, "set flow control failed");
2384
2385 return 0;
2386}
2387
2388/**
fdb93a5e
PJ
2389 Set XON/XOFF flowcontrol for ftdi chip
2390
2391 \param ftdi pointer to ftdi_context
2392 \param xon character code used to resume transmission
2393 \param xoff character code used to pause transmission
2394
2395 \retval 0: all fine
2396 \retval -1: set flow control failed
2397 \retval -2: USB device unavailable
2398*/
2399int ftdi_setflowctrl_xonxoff(struct ftdi_context *ftdi, unsigned char xon, unsigned char xoff)
2400{
2401 if (ftdi == NULL || ftdi->usb_dev == NULL)
2402 ftdi_error_return(-2, "USB device unavailable");
2403
2404 uint16_t xonxoff = xon | (xoff << 8);
2405 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2406 SIO_SET_FLOW_CTRL_REQUEST, xonxoff, (SIO_XON_XOFF_HS | ftdi->index),
2407 NULL, 0, ftdi->usb_write_timeout) < 0)
2408 ftdi_error_return(-1, "set flow control failed");
2409
2410 return 0;
2411}
2412
2413/**
a7fb8440
TJ
2414 Set dtr line
2415
2416 \param ftdi pointer to ftdi_context
2417 \param state state to set line to (1 or 0)
2418
2419 \retval 0: all fine
2420 \retval -1: set dtr failed
22a1b5c1 2421 \retval -2: USB device unavailable
a7fb8440
TJ
2422*/
2423int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2424{
2425 unsigned short usb_val;
2426
22a1b5c1
TJ
2427 if (ftdi == NULL || ftdi->usb_dev == NULL)
2428 ftdi_error_return(-2, "USB device unavailable");
2429
a7fb8440
TJ
2430 if (state)
2431 usb_val = SIO_SET_DTR_HIGH;
2432 else
2433 usb_val = SIO_SET_DTR_LOW;
2434
579b006f
JZ
2435 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2436 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2437 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2438 ftdi_error_return(-1, "set dtr failed");
2439
2440 return 0;
2441}
2442
2443/**
2444 Set rts line
2445
2446 \param ftdi pointer to ftdi_context
2447 \param state state to set line to (1 or 0)
2448
2449 \retval 0: all fine
22a1b5c1
TJ
2450 \retval -1: set rts failed
2451 \retval -2: USB device unavailable
a7fb8440
TJ
2452*/
2453int ftdi_setrts(struct ftdi_context *ftdi, int state)
2454{
2455 unsigned short usb_val;
2456
22a1b5c1
TJ
2457 if (ftdi == NULL || ftdi->usb_dev == NULL)
2458 ftdi_error_return(-2, "USB device unavailable");
2459
a7fb8440
TJ
2460 if (state)
2461 usb_val = SIO_SET_RTS_HIGH;
2462 else
2463 usb_val = SIO_SET_RTS_LOW;
2464
579b006f
JZ
2465 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2466 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2467 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2468 ftdi_error_return(-1, "set of rts failed");
2469
2470 return 0;
2471}
2472
1189b11a 2473/**
22a1b5c1 2474 Set dtr and rts line in one pass
9ecfef2a 2475
22a1b5c1
TJ
2476 \param ftdi pointer to ftdi_context
2477 \param dtr DTR state to set line to (1 or 0)
2478 \param rts RTS state to set line to (1 or 0)
9ecfef2a 2479
22a1b5c1
TJ
2480 \retval 0: all fine
2481 \retval -1: set dtr/rts failed
2482 \retval -2: USB device unavailable
9ecfef2a
TJ
2483 */
2484int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2485{
2486 unsigned short usb_val;
2487
22a1b5c1
TJ
2488 if (ftdi == NULL || ftdi->usb_dev == NULL)
2489 ftdi_error_return(-2, "USB device unavailable");
2490
9ecfef2a 2491 if (dtr)
22d12cda 2492 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 2493 else
22d12cda 2494 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
2495
2496 if (rts)
22d12cda 2497 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 2498 else
22d12cda 2499 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 2500
579b006f
JZ
2501 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2502 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2503 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 2504 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
2505
2506 return 0;
2507}
2508
2509/**
1189b11a
TJ
2510 Set the special event character
2511
2512 \param ftdi pointer to ftdi_context
2513 \param eventch Event character
2514 \param enable 0 to disable the event character, non-zero otherwise
2515
2516 \retval 0: all fine
2517 \retval -1: unable to set event character
22a1b5c1 2518 \retval -2: USB device unavailable
1189b11a
TJ
2519*/
2520int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 2521 unsigned char eventch, unsigned char enable)
1189b11a
TJ
2522{
2523 unsigned short usb_val;
2524
22a1b5c1
TJ
2525 if (ftdi == NULL || ftdi->usb_dev == NULL)
2526 ftdi_error_return(-2, "USB device unavailable");
2527
1189b11a
TJ
2528 usb_val = eventch;
2529 if (enable)
2530 usb_val |= 1 << 8;
2531
579b006f 2532 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2533 ftdi_error_return(-1, "setting event character failed");
2534
2535 return 0;
2536}
2537
2538/**
2539 Set error character
2540
2541 \param ftdi pointer to ftdi_context
2542 \param errorch Error character
2543 \param enable 0 to disable the error character, non-zero otherwise
2544
2545 \retval 0: all fine
2546 \retval -1: unable to set error character
22a1b5c1 2547 \retval -2: USB device unavailable
1189b11a
TJ
2548*/
2549int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 2550 unsigned char errorch, unsigned char enable)
1189b11a
TJ
2551{
2552 unsigned short usb_val;
2553
22a1b5c1
TJ
2554 if (ftdi == NULL || ftdi->usb_dev == NULL)
2555 ftdi_error_return(-2, "USB device unavailable");
2556
1189b11a
TJ
2557 usb_val = errorch;
2558 if (enable)
2559 usb_val |= 1 << 8;
2560
579b006f 2561 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2562 ftdi_error_return(-1, "setting error character failed");
2563
2564 return 0;
2565}
2566
2567/**
44f41f11 2568 Init eeprom with default values for the connected device
a35aa9bd 2569 \param ftdi pointer to ftdi_context
f14f84d3
UB
2570 \param manufacturer String to use as Manufacturer
2571 \param product String to use as Product description
2572 \param serial String to use as Serial number description
4e74064b 2573
f14f84d3
UB
2574 \retval 0: all fine
2575 \retval -1: No struct ftdi_context
2576 \retval -2: No struct ftdi_eeprom
44f41f11 2577 \retval -3: No connected device or device not yet opened
1941414d 2578*/
f14f84d3 2579int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
56ac0383 2580 char * product, char * serial)
a8f46ddc 2581{
c0a96aed 2582 struct ftdi_eeprom *eeprom;
f505134f 2583
c0a96aed 2584 if (ftdi == NULL)
f14f84d3 2585 ftdi_error_return(-1, "No struct ftdi_context");
c0a96aed
UB
2586
2587 if (ftdi->eeprom == NULL)
56ac0383 2588 ftdi_error_return(-2,"No struct ftdi_eeprom");
22a1b5c1 2589
c0a96aed 2590 eeprom = ftdi->eeprom;
a02587d5 2591 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
c0a96aed 2592
44f41f11
UB
2593 if (ftdi->usb_dev == NULL)
2594 ftdi_error_return(-3, "No connected device or device not yet opened");
2595
f396dbad 2596 eeprom->vendor_id = 0x0403;
d4b5af27 2597 eeprom->use_serial = 1;
56ac0383
TJ
2598 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2599 (ftdi->type == TYPE_R))
a02587d5 2600 eeprom->product_id = 0x6001;
c7e4c09e
UB
2601 else if (ftdi->type == TYPE_4232H)
2602 eeprom->product_id = 0x6011;
2603 else if (ftdi->type == TYPE_232H)
2604 eeprom->product_id = 0x6014;
2f80efc2
NP
2605 else if (ftdi->type == TYPE_230X)
2606 eeprom->product_id = 0x6015;
a02587d5
UB
2607 else
2608 eeprom->product_id = 0x6010;
2f80efc2 2609
b1859923
UB
2610 if (ftdi->type == TYPE_AM)
2611 eeprom->usb_version = 0x0101;
2612 else
2613 eeprom->usb_version = 0x0200;
a886436a 2614 eeprom->max_power = 100;
d9f0cce7 2615
74e8e79d
UB
2616 if (eeprom->manufacturer)
2617 free (eeprom->manufacturer);
b8aa7b35 2618 eeprom->manufacturer = NULL;
74e8e79d
UB
2619 if (manufacturer)
2620 {
c45d2630 2621 eeprom->manufacturer = (char *)malloc(strlen(manufacturer)+1);
74e8e79d
UB
2622 if (eeprom->manufacturer)
2623 strcpy(eeprom->manufacturer, manufacturer);
2624 }
2625
2626 if (eeprom->product)
2627 free (eeprom->product);
b8aa7b35 2628 eeprom->product = NULL;
10771971 2629 if(product)
74e8e79d 2630 {
c45d2630 2631 eeprom->product = (char *)malloc(strlen(product)+1);
74e8e79d
UB
2632 if (eeprom->product)
2633 strcpy(eeprom->product, product);
2634 }
6a6fcd89
UB
2635 else
2636 {
2637 const char* default_product;
2638 switch(ftdi->type)
2639 {
74387f27
TJ
2640 case TYPE_AM: default_product = "AM"; break;
2641 case TYPE_BM: default_product = "BM"; break;
2642 case TYPE_2232C: default_product = "Dual RS232"; break;
2643 case TYPE_R: default_product = "FT232R USB UART"; break;
2644 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2645 case TYPE_4232H: default_product = "FT4232H"; break;
2646 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2647 case TYPE_230X: default_product = "FT230X Basic UART"; break;
2648 default:
2649 ftdi_error_return(-3, "Unknown chip type");
6a6fcd89 2650 }
c45d2630 2651 eeprom->product = (char *)malloc(strlen(default_product) +1);
6a6fcd89
UB
2652 if (eeprom->product)
2653 strcpy(eeprom->product, default_product);
2654 }
74e8e79d
UB
2655
2656 if (eeprom->serial)
2657 free (eeprom->serial);
b8aa7b35 2658 eeprom->serial = NULL;
74e8e79d
UB
2659 if (serial)
2660 {
c45d2630 2661 eeprom->serial = (char *)malloc(strlen(serial)+1);
74e8e79d
UB
2662 if (eeprom->serial)
2663 strcpy(eeprom->serial, serial);
2664 }
2665
56ac0383 2666 if (ftdi->type == TYPE_R)
a4980043 2667 {
a886436a 2668 eeprom->max_power = 90;
a02587d5 2669 eeprom->size = 0x80;
a4980043
UB
2670 eeprom->cbus_function[0] = CBUS_TXLED;
2671 eeprom->cbus_function[1] = CBUS_RXLED;
2672 eeprom->cbus_function[2] = CBUS_TXDEN;
2673 eeprom->cbus_function[3] = CBUS_PWREN;
2674 eeprom->cbus_function[4] = CBUS_SLEEP;
2675 }
2f80efc2
NP
2676 else if (ftdi->type == TYPE_230X)
2677 {
2678 eeprom->max_power = 90;
2679 eeprom->size = 0x100;
add00ad6
RH
2680 eeprom->cbus_function[0] = CBUSX_TXDEN;
2681 eeprom->cbus_function[1] = CBUSX_RXLED;
2682 eeprom->cbus_function[2] = CBUSX_TXLED;
2683 eeprom->cbus_function[3] = CBUSX_SLEEP;
2f80efc2 2684 }
a02587d5 2685 else
263d3ba0
UB
2686 {
2687 if(ftdi->type == TYPE_232H)
2688 {
2689 int i;
2690 for (i=0; i<10; i++)
2691 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2692 }
a02587d5 2693 eeprom->size = -1;
263d3ba0 2694 }
68e78641
JS
2695 switch (ftdi->type)
2696 {
2697 case TYPE_AM:
2698 eeprom->release_number = 0x0200;
2699 break;
2700 case TYPE_BM:
2701 eeprom->release_number = 0x0400;
2702 break;
2703 case TYPE_2232C:
2704 eeprom->release_number = 0x0500;
2705 break;
2706 case TYPE_R:
2707 eeprom->release_number = 0x0600;
2708 break;
2709 case TYPE_2232H:
2710 eeprom->release_number = 0x0700;
2711 break;
2712 case TYPE_4232H:
2713 eeprom->release_number = 0x0800;
2714 break;
2715 case TYPE_232H:
2716 eeprom->release_number = 0x0900;
2717 break;
2f80efc2
NP
2718 case TYPE_230X:
2719 eeprom->release_number = 0x1000;
2720 break;
68e78641
JS
2721 default:
2722 eeprom->release_number = 0x00;
2723 }
f14f84d3 2724 return 0;
b8aa7b35 2725}
878f0c6a 2726
ae3d154b
DD
2727int ftdi_eeprom_set_strings(struct ftdi_context *ftdi, const char * manufacturer,
2728 const char * product, const char * serial)
878f0c6a
NP
2729{
2730 struct ftdi_eeprom *eeprom;
2731
2732 if (ftdi == NULL)
2733 ftdi_error_return(-1, "No struct ftdi_context");
2734
2735 if (ftdi->eeprom == NULL)
2736 ftdi_error_return(-2,"No struct ftdi_eeprom");
2737
2738 eeprom = ftdi->eeprom;
2739
2740 if (ftdi->usb_dev == NULL)
2741 ftdi_error_return(-3, "No connected device or device not yet opened");
2742
74387f27
TJ
2743 if (manufacturer)
2744 {
878f0c6a
NP
2745 if (eeprom->manufacturer)
2746 free (eeprom->manufacturer);
c45d2630 2747 eeprom->manufacturer = (char *)malloc(strlen(manufacturer)+1);
878f0c6a
NP
2748 if (eeprom->manufacturer)
2749 strcpy(eeprom->manufacturer, manufacturer);
2750 }
2751
74387f27
TJ
2752 if(product)
2753 {
878f0c6a
NP
2754 if (eeprom->product)
2755 free (eeprom->product);
c45d2630 2756 eeprom->product = (char *)malloc(strlen(product)+1);
878f0c6a
NP
2757 if (eeprom->product)
2758 strcpy(eeprom->product, product);
2759 }
2760
74387f27
TJ
2761 if (serial)
2762 {
878f0c6a
NP
2763 if (eeprom->serial)
2764 free (eeprom->serial);
c45d2630 2765 eeprom->serial = (char *)malloc(strlen(serial)+1);
74387f27
TJ
2766 if (eeprom->serial)
2767 {
878f0c6a
NP
2768 strcpy(eeprom->serial, serial);
2769 eeprom->use_serial = 1;
2770 }
2771 }
2772 return 0;
2773}
2774
934173a3
TJ
2775/**
2776 Return device ID strings from the eeprom. Device needs to be connected.
2777
2778 The parameters manufacturer, description and serial may be NULL
2779 or pointer to buffers to store the fetched strings.
2780
2781 \param ftdi pointer to ftdi_context
2782 \param manufacturer Store manufacturer string here if not NULL
2783 \param mnf_len Buffer size of manufacturer string
2784 \param product Store product description string here if not NULL
2785 \param prod_len Buffer size of product description string
2786 \param serial Store serial string here if not NULL
2787 \param serial_len Buffer size of serial string
2788
2789 \retval 0: all fine
2790 \retval -1: ftdi context invalid
2791 \retval -2: ftdi eeprom buffer invalid
934173a3 2792*/
c9eeb2f1
AM
2793int ftdi_eeprom_get_strings(struct ftdi_context *ftdi,
2794 char *manufacturer, int mnf_len,
2795 char *product, int prod_len,
2796 char *serial, int serial_len)
2797{
2798 struct ftdi_eeprom *eeprom;
2799
2800 if (ftdi == NULL)
2801 ftdi_error_return(-1, "No struct ftdi_context");
c9eeb2f1 2802 if (ftdi->eeprom == NULL)
4effe148 2803 ftdi_error_return(-2, "No struct ftdi_eeprom");
c9eeb2f1
AM
2804
2805 eeprom = ftdi->eeprom;
2806
c9eeb2f1
AM
2807 if (manufacturer)
2808 {
2809 strncpy(manufacturer, eeprom->manufacturer, mnf_len);
2810 if (mnf_len > 0)
2811 manufacturer[mnf_len - 1] = '\0';
2812 }
2813
2814 if (product)
2815 {
2816 strncpy(product, eeprom->product, prod_len);
2817 if (prod_len > 0)
2818 product[prod_len - 1] = '\0';
2819 }
2820
2821 if (serial)
2822 {
2823 strncpy(serial, eeprom->serial, serial_len);
2824 if (serial_len > 0)
2825 serial[serial_len - 1] = '\0';
2826 }
2827
2828 return 0;
2829}
878f0c6a 2830
add00ad6 2831/*FTD2XX doesn't check for values not fitting in the ACBUS Signal options*/
263d3ba0
UB
2832void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2833{
2834 int i;
74387f27 2835 for(i=0; i<5; i++)
263d3ba0
UB
2836 {
2837 int mode_low, mode_high;
2838 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2839 mode_low = CBUSH_TRISTATE;
2840 else
2841 mode_low = eeprom->cbus_function[2*i];
2842 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2843 mode_high = CBUSH_TRISTATE;
2844 else
f37a1524 2845 mode_high = eeprom->cbus_function[2*i+1];
b8aa7b35 2846
f37a1524 2847 output[0x18+i] = (mode_high <<4) | mode_low;
263d3ba0
UB
2848 }
2849}
c8f69686
UB
2850/* Return the bits for the encoded EEPROM Structure of a requested Mode
2851 *
2852 */
2853static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2854{
2855 switch (chip)
2856 {
74387f27
TJ
2857 case TYPE_2232H:
2858 case TYPE_2232C:
c8f69686 2859 {
74387f27
TJ
2860 switch (type)
2861 {
2862 case CHANNEL_IS_UART: return 0;
2863 case CHANNEL_IS_FIFO: return 0x01;
2864 case CHANNEL_IS_OPTO: return 0x02;
2865 case CHANNEL_IS_CPU : return 0x04;
2866 default: return 0;
2867 }
c8f69686 2868 }
74387f27 2869 case TYPE_232H:
c8f69686 2870 {
74387f27
TJ
2871 switch (type)
2872 {
2873 case CHANNEL_IS_UART : return 0;
2874 case CHANNEL_IS_FIFO : return 0x01;
2875 case CHANNEL_IS_OPTO : return 0x02;
2876 case CHANNEL_IS_CPU : return 0x04;
2877 case CHANNEL_IS_FT1284 : return 0x08;
2878 default: return 0;
2879 }
c8f69686 2880 }
6f9f969d
RF
2881 case TYPE_R:
2882 {
2883 switch (type)
2884 {
2885 case CHANNEL_IS_UART : return 0;
2886 case CHANNEL_IS_FIFO : return 0x01;
2887 default: return 0;
2888 }
2889 }
74387f27
TJ
2890 case TYPE_230X: /* FT230X is only UART */
2891 default: return 0;
c8f69686
UB
2892 }
2893 return 0;
74387f27 2894}
c8f69686 2895
1941414d 2896/**
a35aa9bd 2897 Build binary buffer from ftdi_eeprom structure.
22a1b5c1 2898 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2899
a35aa9bd 2900 \param ftdi pointer to ftdi_context
1941414d 2901
516ebfb1 2902 \retval >=0: size of eeprom user area in bytes
22a1b5c1 2903 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2c1e2bde
TJ
2904 \retval -2: Invalid eeprom or ftdi pointer
2905 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2906 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2907 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2b9a3c82 2908 \retval -6: No connected EEPROM or EEPROM Type unknown
b8aa7b35 2909*/
a35aa9bd 2910int ftdi_eeprom_build(struct ftdi_context *ftdi)
a8f46ddc 2911{
e2bbd9af 2912 unsigned char i, j, eeprom_size_mask;
b8aa7b35
TJ
2913 unsigned short checksum, value;
2914 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
6e962b9a 2915 int user_area_size, free_start, free_end;
c0a96aed 2916 struct ftdi_eeprom *eeprom;
a35aa9bd 2917 unsigned char * output;
b8aa7b35 2918
c0a96aed 2919 if (ftdi == NULL)
cc9c9d58 2920 ftdi_error_return(-2,"No context");
c0a96aed 2921 if (ftdi->eeprom == NULL)
cc9c9d58 2922 ftdi_error_return(-2,"No eeprom structure");
c0a96aed
UB
2923
2924 eeprom= ftdi->eeprom;
a35aa9bd 2925 output = eeprom->buf;
22a1b5c1 2926
56ac0383 2927 if (eeprom->chip == -1)
2c1e2bde 2928 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2b9a3c82 2929
74387f27
TJ
2930 if (eeprom->size == -1)
2931 {
2f80efc2
NP
2932 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2933 eeprom->size = 0x100;
2934 else
2935 eeprom->size = 0x80;
2936 }
f75bf139 2937
b8aa7b35 2938 if (eeprom->manufacturer != NULL)
d9f0cce7 2939 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2940 if (eeprom->product != NULL)
d9f0cce7 2941 product_size = strlen(eeprom->product);
b8aa7b35 2942 if (eeprom->serial != NULL)
d9f0cce7 2943 serial_size = strlen(eeprom->serial);
b8aa7b35 2944
814710ba
TJ
2945 // eeprom size check
2946 switch (ftdi->type)
2947 {
2948 case TYPE_AM:
2949 case TYPE_BM:
6e962b9a 2950 case TYPE_R:
814710ba
TJ
2951 user_area_size = 96; // base size for strings (total of 48 characters)
2952 break;
2953 case TYPE_2232C:
56ac0383
TJ
2954 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2955 break;
2f80efc2 2956 case TYPE_230X:
56ac0383
TJ
2957 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2958 break;
814710ba
TJ
2959 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2960 case TYPE_4232H:
56ac0383 2961 user_area_size = 86;
118c4561 2962 break;
c1c3d564
UB
2963 case TYPE_232H:
2964 user_area_size = 80;
2965 break;
2c1e2bde
TJ
2966 default:
2967 user_area_size = 0;
56ac0383 2968 break;
665cda04
UB
2969 }
2970 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
814710ba 2971
516ebfb1
TJ
2972 if (user_area_size < 0)
2973 ftdi_error_return(-1,"eeprom size exceeded");
b8aa7b35
TJ
2974
2975 // empty eeprom
74387f27
TJ
2976 if (ftdi->type == TYPE_230X)
2977 {
2f80efc2
NP
2978 /* FT230X have a reserved section in the middle of the MTP,
2979 which cannot be written to, but must be included in the checksum */
2980 memset(ftdi->eeprom->buf, 0, 0x80);
2981 memset((ftdi->eeprom->buf + 0xa0), 0, (FTDI_MAX_EEPROM_SIZE - 0xa0));
74387f27
TJ
2982 }
2983 else
2984 {
2f80efc2
NP
2985 memset(ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2986 }
b8aa7b35 2987
93738c79
UB
2988 // Bytes and Bits set for all Types
2989
b8aa7b35
TJ
2990 // Addr 02: Vendor ID
2991 output[0x02] = eeprom->vendor_id;
2992 output[0x03] = eeprom->vendor_id >> 8;
2993
2994 // Addr 04: Product ID
2995 output[0x04] = eeprom->product_id;
2996 output[0x05] = eeprom->product_id >> 8;
2997
2998 // Addr 06: Device release number (0400h for BM features)
68e78641
JS
2999 output[0x06] = eeprom->release_number;
3000 output[0x07] = eeprom->release_number >> 8;
b8aa7b35
TJ
3001
3002 // Addr 08: Config descriptor
8fae3e8e
TJ
3003 // Bit 7: always 1
3004 // Bit 6: 1 if this device is self powered, 0 if bus powered
3005 // Bit 5: 1 if this device uses remote wakeup
37186e34 3006 // Bit 4-0: reserved - 0
5a1dcd55 3007 j = 0x80;
afb90824 3008 if (eeprom->self_powered)
5a1dcd55 3009 j |= 0x40;
afb90824 3010 if (eeprom->remote_wakeup)
5a1dcd55 3011 j |= 0x20;
b8aa7b35
TJ
3012 output[0x08] = j;
3013
3014 // Addr 09: Max power consumption: max power = value * 2 mA
a7c32c59 3015 output[0x09] = eeprom->max_power / MAX_POWER_MILLIAMP_PER_UNIT;
d9f0cce7 3016
2f80efc2 3017 if ((ftdi->type != TYPE_AM) && (ftdi->type != TYPE_230X))
93738c79
UB
3018 {
3019 // Addr 0A: Chip configuration
3020 // Bit 7: 0 - reserved
3021 // Bit 6: 0 - reserved
3022 // Bit 5: 0 - reserved
56ac0383 3023 // Bit 4: 1 - Change USB version
93738c79
UB
3024 // Bit 3: 1 - Use the serial number string
3025 // Bit 2: 1 - Enable suspend pull downs for lower power
3026 // Bit 1: 1 - Out EndPoint is Isochronous
3027 // Bit 0: 1 - In EndPoint is Isochronous
3028 //
3029 j = 0;
afb90824 3030 if (eeprom->in_is_isochronous)
93738c79 3031 j = j | 1;
afb90824 3032 if (eeprom->out_is_isochronous)
93738c79
UB
3033 j = j | 2;
3034 output[0x0A] = j;
3035 }
f505134f 3036
b8aa7b35 3037 // Dynamic content
93738c79
UB
3038 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
3039 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
c7e4c09e 3040 // 0xa0 (TYPE_232H)
93738c79 3041 i = 0;
56ac0383
TJ
3042 switch (ftdi->type)
3043 {
3044 case TYPE_2232H:
3045 case TYPE_4232H:
3046 i += 2;
3047 case TYPE_R:
3048 i += 2;
3049 case TYPE_2232C:
3050 i += 2;
3051 case TYPE_AM:
3052 case TYPE_BM:
3053 i += 0x94;
2f80efc2 3054 break;
fa3032f0 3055 case TYPE_232H:
2f80efc2
NP
3056 case TYPE_230X:
3057 i = 0xa0;
3058 break;
f505134f 3059 }
93738c79 3060 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
e2bbd9af 3061 eeprom_size_mask = eeprom->size -1;
6e962b9a 3062 free_end = i & eeprom_size_mask;
c201f80f 3063
93738c79
UB
3064 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3065 // Addr 0F: Length of manufacturer string
22d12cda 3066 // Output manufacturer
93738c79 3067 output[0x0E] = i; // calculate offset
e2bbd9af
TJ
3068 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
3069 output[i & eeprom_size_mask] = 0x03, i++; // type: string
22d12cda
TJ
3070 for (j = 0; j < manufacturer_size; j++)
3071 {
e2bbd9af
TJ
3072 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
3073 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 3074 }
93738c79 3075 output[0x0F] = manufacturer_size*2 + 2;
b8aa7b35 3076
93738c79
UB
3077 // Addr 10: Offset of the product string + 0x80, calculated later
3078 // Addr 11: Length of product string
c201f80f 3079 output[0x10] = i | 0x80; // calculate offset
e2bbd9af
TJ
3080 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
3081 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
3082 for (j = 0; j < product_size; j++)
3083 {
e2bbd9af
TJ
3084 output[i & eeprom_size_mask] = eeprom->product[j], i++;
3085 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 3086 }
93738c79 3087 output[0x11] = product_size*2 + 2;
37186e34 3088
93738c79
UB
3089 // Addr 12: Offset of the serial string + 0x80, calculated later
3090 // Addr 13: Length of serial string
c201f80f 3091 output[0x12] = i | 0x80; // calculate offset
e2bbd9af
TJ
3092 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
3093 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
3094 for (j = 0; j < serial_size; j++)
3095 {
e2bbd9af
TJ
3096 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
3097 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 3098 }
c2700d6d
TJ
3099
3100 // Legacy port name and PnP fields for FT2232 and newer chips
3101 if (ftdi->type > TYPE_BM)
3102 {
3103 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
3104 i++;
3105 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
3106 i++;
3107 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
3108 i++;
3109 }
802a949e 3110
93738c79 3111 output[0x13] = serial_size*2 + 2;
b8aa7b35 3112
56ac0383 3113 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
bf2f6ef7 3114 {
d4b5af27 3115 if (eeprom->use_serial)
bf2f6ef7
UB
3116 output[0x0A] |= USE_SERIAL_NUM;
3117 else
3118 output[0x0A] &= ~USE_SERIAL_NUM;
3119 }
3802140c
UB
3120
3121 /* Bytes and Bits specific to (some) types
3122 Write linear, as this allows easier fixing*/
56ac0383
TJ
3123 switch (ftdi->type)
3124 {
3125 case TYPE_AM:
3126 break;
3127 case TYPE_BM:
3128 output[0x0C] = eeprom->usb_version & 0xff;
3129 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3986243d 3130 if (eeprom->use_usb_version)
56ac0383
TJ
3131 output[0x0A] |= USE_USB_VERSION_BIT;
3132 else
3133 output[0x0A] &= ~USE_USB_VERSION_BIT;
caec1294 3134
56ac0383
TJ
3135 break;
3136 case TYPE_2232C:
3802140c 3137
c8f69686 3138 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
56ac0383
TJ
3139 if ( eeprom->channel_a_driver == DRIVER_VCP)
3140 output[0x00] |= DRIVER_VCP;
3141 else
3142 output[0x00] &= ~DRIVER_VCP;
4e74064b 3143
56ac0383
TJ
3144 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
3145 output[0x00] |= HIGH_CURRENT_DRIVE;
3146 else
3147 output[0x00] &= ~HIGH_CURRENT_DRIVE;
3802140c 3148
c8f69686 3149 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
56ac0383
TJ
3150 if ( eeprom->channel_b_driver == DRIVER_VCP)
3151 output[0x01] |= DRIVER_VCP;
3152 else
3153 output[0x01] &= ~DRIVER_VCP;
4e74064b 3154
56ac0383
TJ
3155 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
3156 output[0x01] |= HIGH_CURRENT_DRIVE;
3157 else
3158 output[0x01] &= ~HIGH_CURRENT_DRIVE;
3802140c 3159
afb90824 3160 if (eeprom->in_is_isochronous)
56ac0383
TJ
3161 output[0x0A] |= 0x1;
3162 else
3163 output[0x0A] &= ~0x1;
afb90824 3164 if (eeprom->out_is_isochronous)
56ac0383
TJ
3165 output[0x0A] |= 0x2;
3166 else
3167 output[0x0A] &= ~0x2;
afb90824 3168 if (eeprom->suspend_pull_downs)
56ac0383
TJ
3169 output[0x0A] |= 0x4;
3170 else
3171 output[0x0A] &= ~0x4;
3986243d 3172 if (eeprom->use_usb_version)
56ac0383
TJ
3173 output[0x0A] |= USE_USB_VERSION_BIT;
3174 else
3175 output[0x0A] &= ~USE_USB_VERSION_BIT;
4e74064b 3176
56ac0383
TJ
3177 output[0x0C] = eeprom->usb_version & 0xff;
3178 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3179 output[0x14] = eeprom->chip;
3180 break;
3181 case TYPE_R:
6f9f969d 3182 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_R);
56ac0383
TJ
3183 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
3184 output[0x00] |= HIGH_CURRENT_DRIVE_R;
08518f8e
RA
3185 if (eeprom->external_oscillator)
3186 output[0x00] |= 0x02;
56ac0383 3187 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
4e74064b 3188
afb90824 3189 if (eeprom->suspend_pull_downs)
56ac0383
TJ
3190 output[0x0A] |= 0x4;
3191 else
3192 output[0x0A] &= ~0x4;
3193 output[0x0B] = eeprom->invert;
3194 output[0x0C] = eeprom->usb_version & 0xff;
3195 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
4e74064b 3196
add00ad6 3197 if (eeprom->cbus_function[0] > CBUS_BB_RD)
56ac0383
TJ
3198 output[0x14] = CBUS_TXLED;
3199 else
3200 output[0x14] = eeprom->cbus_function[0];
4e74064b 3201
add00ad6 3202 if (eeprom->cbus_function[1] > CBUS_BB_RD)
56ac0383
TJ
3203 output[0x14] |= CBUS_RXLED<<4;
3204 else
3205 output[0x14] |= eeprom->cbus_function[1]<<4;
4e74064b 3206
add00ad6 3207 if (eeprom->cbus_function[2] > CBUS_BB_RD)
56ac0383
TJ
3208 output[0x15] = CBUS_TXDEN;
3209 else
3210 output[0x15] = eeprom->cbus_function[2];
4e74064b 3211
add00ad6 3212 if (eeprom->cbus_function[3] > CBUS_BB_RD)
56ac0383
TJ
3213 output[0x15] |= CBUS_PWREN<<4;
3214 else
3215 output[0x15] |= eeprom->cbus_function[3]<<4;
4e74064b 3216
56ac0383
TJ
3217 if (eeprom->cbus_function[4] > CBUS_CLK6)
3218 output[0x16] = CBUS_SLEEP;
3219 else
3220 output[0x16] = eeprom->cbus_function[4];
3221 break;
3222 case TYPE_2232H:
c8f69686 3223 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
56ac0383
TJ
3224 if ( eeprom->channel_a_driver == DRIVER_VCP)
3225 output[0x00] |= DRIVER_VCP;
3226 else
3227 output[0x00] &= ~DRIVER_VCP;
6e6a1c3f 3228
c8f69686 3229 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
56ac0383
TJ
3230 if ( eeprom->channel_b_driver == DRIVER_VCP)
3231 output[0x01] |= DRIVER_VCP;
3232 else
3233 output[0x01] &= ~DRIVER_VCP;
3234 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
3235 output[0x01] |= SUSPEND_DBUS7_BIT;
3236 else
3237 output[0x01] &= ~SUSPEND_DBUS7_BIT;
3238
afb90824 3239 if (eeprom->suspend_pull_downs)
56ac0383
TJ
3240 output[0x0A] |= 0x4;
3241 else
3242 output[0x0A] &= ~0x4;
3243
3244 if (eeprom->group0_drive > DRIVE_16MA)
3245 output[0x0c] |= DRIVE_16MA;
3246 else
3247 output[0x0c] |= eeprom->group0_drive;
3248 if (eeprom->group0_schmitt == IS_SCHMITT)
3249 output[0x0c] |= IS_SCHMITT;
3250 if (eeprom->group0_slew == SLOW_SLEW)
3251 output[0x0c] |= SLOW_SLEW;
3252
3253 if (eeprom->group1_drive > DRIVE_16MA)
3254 output[0x0c] |= DRIVE_16MA<<4;
3255 else
3256 output[0x0c] |= eeprom->group1_drive<<4;
3257 if (eeprom->group1_schmitt == IS_SCHMITT)
3258 output[0x0c] |= IS_SCHMITT<<4;
3259 if (eeprom->group1_slew == SLOW_SLEW)
3260 output[0x0c] |= SLOW_SLEW<<4;
3261
3262 if (eeprom->group2_drive > DRIVE_16MA)
3263 output[0x0d] |= DRIVE_16MA;
3264 else
3265 output[0x0d] |= eeprom->group2_drive;
3266 if (eeprom->group2_schmitt == IS_SCHMITT)
3267 output[0x0d] |= IS_SCHMITT;
3268 if (eeprom->group2_slew == SLOW_SLEW)
3269 output[0x0d] |= SLOW_SLEW;
3270
3271 if (eeprom->group3_drive > DRIVE_16MA)
3272 output[0x0d] |= DRIVE_16MA<<4;
3273 else
3274 output[0x0d] |= eeprom->group3_drive<<4;
3275 if (eeprom->group3_schmitt == IS_SCHMITT)
3276 output[0x0d] |= IS_SCHMITT<<4;
3277 if (eeprom->group3_slew == SLOW_SLEW)
3278 output[0x0d] |= SLOW_SLEW<<4;
3802140c 3279
56ac0383 3280 output[0x18] = eeprom->chip;
3802140c 3281
56ac0383
TJ
3282 break;
3283 case TYPE_4232H:
be4bae37
AL
3284 if (eeprom->channel_a_driver == DRIVER_VCP)
3285 output[0x00] |= DRIVER_VCP;
3286 else
3287 output[0x00] &= ~DRIVER_VCP;
3288 if (eeprom->channel_b_driver == DRIVER_VCP)
3289 output[0x01] |= DRIVER_VCP;
3290 else
3291 output[0x01] &= ~DRIVER_VCP;
3292 if (eeprom->channel_c_driver == DRIVER_VCP)
3293 output[0x00] |= (DRIVER_VCP << 4);
3294 else
3295 output[0x00] &= ~(DRIVER_VCP << 4);
3296 if (eeprom->channel_d_driver == DRIVER_VCP)
3297 output[0x01] |= (DRIVER_VCP << 4);
3298 else
3299 output[0x01] &= ~(DRIVER_VCP << 4);
3300
afb90824 3301 if (eeprom->suspend_pull_downs)
be4bae37
AL
3302 output[0x0a] |= 0x4;
3303 else
3304 output[0x0a] &= ~0x4;
3305
3306 if (eeprom->channel_a_rs485enable)
3307 output[0x0b] |= CHANNEL_IS_RS485 << 0;
3308 else
3309 output[0x0b] &= ~(CHANNEL_IS_RS485 << 0);
3310 if (eeprom->channel_b_rs485enable)
3311 output[0x0b] |= CHANNEL_IS_RS485 << 1;
3312 else
3313 output[0x0b] &= ~(CHANNEL_IS_RS485 << 1);
3314 if (eeprom->channel_c_rs485enable)
3315 output[0x0b] |= CHANNEL_IS_RS485 << 2;
3316 else
3317 output[0x0b] &= ~(CHANNEL_IS_RS485 << 2);
3318 if (eeprom->channel_d_rs485enable)
3319 output[0x0b] |= CHANNEL_IS_RS485 << 3;
3320 else
3321 output[0x0b] &= ~(CHANNEL_IS_RS485 << 3);
3322
3323 if (eeprom->group0_drive > DRIVE_16MA)
3324 output[0x0c] |= DRIVE_16MA;
3325 else
3326 output[0x0c] |= eeprom->group0_drive;
3327 if (eeprom->group0_schmitt == IS_SCHMITT)
3328 output[0x0c] |= IS_SCHMITT;
3329 if (eeprom->group0_slew == SLOW_SLEW)
3330 output[0x0c] |= SLOW_SLEW;
3331
3332 if (eeprom->group1_drive > DRIVE_16MA)
3333 output[0x0c] |= DRIVE_16MA<<4;
3334 else
3335 output[0x0c] |= eeprom->group1_drive<<4;
3336 if (eeprom->group1_schmitt == IS_SCHMITT)
3337 output[0x0c] |= IS_SCHMITT<<4;
3338 if (eeprom->group1_slew == SLOW_SLEW)
3339 output[0x0c] |= SLOW_SLEW<<4;
3340
3341 if (eeprom->group2_drive > DRIVE_16MA)
3342 output[0x0d] |= DRIVE_16MA;
3343 else
3344 output[0x0d] |= eeprom->group2_drive;
3345 if (eeprom->group2_schmitt == IS_SCHMITT)
3346 output[0x0d] |= IS_SCHMITT;
3347 if (eeprom->group2_slew == SLOW_SLEW)
3348 output[0x0d] |= SLOW_SLEW;
3349
3350 if (eeprom->group3_drive > DRIVE_16MA)
3351 output[0x0d] |= DRIVE_16MA<<4;
3352 else
3353 output[0x0d] |= eeprom->group3_drive<<4;
3354 if (eeprom->group3_schmitt == IS_SCHMITT)
3355 output[0x0d] |= IS_SCHMITT<<4;
3356 if (eeprom->group3_slew == SLOW_SLEW)
3357 output[0x0d] |= SLOW_SLEW<<4;
3358
c7e4c09e 3359 output[0x18] = eeprom->chip;
be4bae37 3360
c7e4c09e
UB
3361 break;
3362 case TYPE_232H:
c8f69686 3363 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
ac4a82a5
UB
3364 if ( eeprom->channel_a_driver == DRIVER_VCP)
3365 output[0x00] |= DRIVER_VCPH;
3366 else
3367 output[0x00] &= ~DRIVER_VCPH;
837a71d6
UB
3368 if (eeprom->powersave)
3369 output[0x01] |= POWER_SAVE_DISABLE_H;
3370 else
3371 output[0x01] &= ~POWER_SAVE_DISABLE_H;
a7e05353
DM
3372
3373 if (eeprom->suspend_pull_downs)
3374 output[0x0a] |= 0x4;
3375 else
3376 output[0x0a] &= ~0x4;
3377
18199b76
UB
3378 if (eeprom->clock_polarity)
3379 output[0x01] |= FT1284_CLK_IDLE_STATE;
3380 else
3381 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
3382 if (eeprom->data_order)
3383 output[0x01] |= FT1284_DATA_LSB;
3384 else
3385 output[0x01] &= ~FT1284_DATA_LSB;
3386 if (eeprom->flow_control)
3387 output[0x01] |= FT1284_FLOW_CONTROL;
3388 else
3389 output[0x01] &= ~FT1284_FLOW_CONTROL;
91d7a201
UB
3390 if (eeprom->group0_drive > DRIVE_16MA)
3391 output[0x0c] |= DRIVE_16MA;
3392 else
3393 output[0x0c] |= eeprom->group0_drive;
3394 if (eeprom->group0_schmitt == IS_SCHMITT)
3395 output[0x0c] |= IS_SCHMITT;
3396 if (eeprom->group0_slew == SLOW_SLEW)
3397 output[0x0c] |= SLOW_SLEW;
3398
3399 if (eeprom->group1_drive > DRIVE_16MA)
3400 output[0x0d] |= DRIVE_16MA;
3401 else
3402 output[0x0d] |= eeprom->group1_drive;
3403 if (eeprom->group1_schmitt == IS_SCHMITT)
3404 output[0x0d] |= IS_SCHMITT;
3405 if (eeprom->group1_slew == SLOW_SLEW)
3406 output[0x0d] |= SLOW_SLEW;
3407
263d3ba0
UB
3408 set_ft232h_cbus(eeprom, output);
3409
c7e4c09e
UB
3410 output[0x1e] = eeprom->chip;
3411 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
3412 break;
2f80efc2
NP
3413 case TYPE_230X:
3414 output[0x00] = 0x80; /* Actually, leave the default value */
e659737a
UB
3415 /*FIXME: Make DBUS & CBUS Control configurable*/
3416 output[0x0c] = 0; /* DBUS drive 4mA, CBUS drive 4 mA like factory default */
74387f27
TJ
3417 for (j = 0; j <= 6; j++)
3418 {
2f80efc2
NP
3419 output[0x1a + j] = eeprom->cbus_function[j];
3420 }
347d87e5 3421 output[0x0b] = eeprom->invert;
2f80efc2 3422 break;
3802140c
UB
3423 }
3424
6e962b9a
SET
3425 /* First address without use */
3426 free_start = 0;
3427 switch (ftdi->type)
3428 {
3429 case TYPE_230X:
3430 free_start += 2;
3431 case TYPE_232H:
3432 free_start +=