Handle the FT232H CBUS Bits, Keep Values list numbered
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
8a987aa2 5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
1bfc403c 21 http://www.intra2net.com/en/developer/libftdi/
b5ec1820 22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
579b006f 31#include <libusb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
b56d5a64 34#include <stdio.h>
579b006f 35#include <stdlib.h>
0e302db6 36
98452d97 37#include "ftdi.h"
a3da1d95 38
21abaf2e 39#define ftdi_error_return(code, str) do { \
2f73e59f 40 ftdi->error_str = str; \
21abaf2e 41 return code; \
d2f10023 42 } while(0);
c3d95b87 43
99650502
UB
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
418aaa72 50
f3f81007
TJ
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
579b006f 58 \retval none
f3f81007 59*/
579b006f 60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 61{
22a1b5c1 62 if (ftdi && ftdi->usb_dev)
dff4fdb0 63 {
56ac0383
TJ
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
dff4fdb0 66 }
dff4fdb0 67}
c3d95b87 68
1941414d
TJ
69/**
70 Initializes a ftdi_context.
4837f98a 71
1941414d 72 \param ftdi pointer to ftdi_context
4837f98a 73
1941414d
TJ
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
a35aa9bd 76 \retval -2: couldn't allocate struct buffer
3a284749 77 \retval -3: libusb_init() failed
1941414d
TJ
78
79 \remark This should be called before all functions
948f9ada 80*/
a8f46ddc
TJ
81int ftdi_init(struct ftdi_context *ftdi)
82{
a35aa9bd 83 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
02212d8e 84 ftdi->usb_ctx = NULL;
98452d97 85 ftdi->usb_dev = NULL;
545820ce
TJ
86 ftdi->usb_read_timeout = 5000;
87 ftdi->usb_write_timeout = 5000;
a3da1d95 88
53ad271d 89 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 90 ftdi->baudrate = -1;
418aaa72 91 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 92
948f9ada
TJ
93 ftdi->readbuffer = NULL;
94 ftdi->readbuffer_offset = 0;
95 ftdi->readbuffer_remaining = 0;
96 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 97 ftdi->max_packet_size = 0;
3a284749
TJ
98 ftdi->error_str = NULL;
99 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
100
101 if (libusb_init(&ftdi->usb_ctx) < 0)
102 ftdi_error_return(-3, "libusb_init() failed");
948f9ada 103
ac0af8ec 104 ftdi_set_interface(ftdi, INTERFACE_ANY);
418aaa72 105 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 106
a35aa9bd
UB
107 if (eeprom == 0)
108 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
b4d19dea 109 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
a35aa9bd 110 ftdi->eeprom = eeprom;
c201f80f 111
1c733d33
TJ
112 /* All fine. Now allocate the readbuffer */
113 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 114}
4837f98a 115
1941414d 116/**
cef378aa
TJ
117 Allocate and initialize a new ftdi_context
118
119 \return a pointer to a new ftdi_context, or NULL on failure
120*/
672ac008 121struct ftdi_context *ftdi_new(void)
cef378aa
TJ
122{
123 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
124
22d12cda
TJ
125 if (ftdi == NULL)
126 {
cef378aa
TJ
127 return NULL;
128 }
129
22d12cda
TJ
130 if (ftdi_init(ftdi) != 0)
131 {
cef378aa 132 free(ftdi);
cdf448f6 133 return NULL;
cef378aa
TJ
134 }
135
136 return ftdi;
137}
138
139/**
1941414d
TJ
140 Open selected channels on a chip, otherwise use first channel.
141
142 \param ftdi pointer to ftdi_context
f9d69895 143 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
144
145 \retval 0: all fine
146 \retval -1: unknown interface
22a1b5c1 147 \retval -2: USB device unavailable
c4446c36 148*/
0ce2f5fa 149int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 150{
1971c26d 151 if (ftdi == NULL)
22a1b5c1
TJ
152 ftdi_error_return(-2, "USB device unavailable");
153
22d12cda
TJ
154 switch (interface)
155 {
156 case INTERFACE_ANY:
157 case INTERFACE_A:
ac0af8ec
VY
158 ftdi->interface = 0;
159 ftdi->index = INTERFACE_A;
160 ftdi->in_ep = 0x02;
161 ftdi->out_ep = 0x81;
22d12cda
TJ
162 break;
163 case INTERFACE_B:
164 ftdi->interface = 1;
165 ftdi->index = INTERFACE_B;
166 ftdi->in_ep = 0x04;
167 ftdi->out_ep = 0x83;
168 break;
f9d69895
AH
169 case INTERFACE_C:
170 ftdi->interface = 2;
171 ftdi->index = INTERFACE_C;
172 ftdi->in_ep = 0x06;
173 ftdi->out_ep = 0x85;
174 break;
175 case INTERFACE_D:
176 ftdi->interface = 3;
177 ftdi->index = INTERFACE_D;
178 ftdi->in_ep = 0x08;
179 ftdi->out_ep = 0x87;
180 break;
22d12cda
TJ
181 default:
182 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
183 }
184 return 0;
185}
948f9ada 186
1941414d
TJ
187/**
188 Deinitializes a ftdi_context.
4837f98a 189
1941414d 190 \param ftdi pointer to ftdi_context
4837f98a 191*/
a8f46ddc
TJ
192void ftdi_deinit(struct ftdi_context *ftdi)
193{
22a1b5c1
TJ
194 if (ftdi == NULL)
195 return;
196
f3f81007 197 ftdi_usb_close_internal (ftdi);
dff4fdb0 198
22d12cda
TJ
199 if (ftdi->readbuffer != NULL)
200 {
d9f0cce7
TJ
201 free(ftdi->readbuffer);
202 ftdi->readbuffer = NULL;
948f9ada 203 }
a35aa9bd
UB
204
205 if (ftdi->eeprom != NULL)
206 {
74e8e79d
UB
207 if (ftdi->eeprom->manufacturer != 0)
208 {
209 free(ftdi->eeprom->manufacturer);
210 ftdi->eeprom->manufacturer = 0;
211 }
212 if (ftdi->eeprom->product != 0)
213 {
214 free(ftdi->eeprom->product);
215 ftdi->eeprom->product = 0;
216 }
217 if (ftdi->eeprom->serial != 0)
218 {
219 free(ftdi->eeprom->serial);
220 ftdi->eeprom->serial = 0;
221 }
a35aa9bd
UB
222 free(ftdi->eeprom);
223 ftdi->eeprom = NULL;
224 }
3a284749
TJ
225
226 if (ftdi->usb_ctx)
227 {
228 libusb_exit(ftdi->usb_ctx);
229 ftdi->usb_ctx = NULL;
230 }
a3da1d95
GE
231}
232
1941414d 233/**
cef378aa
TJ
234 Deinitialize and free an ftdi_context.
235
236 \param ftdi pointer to ftdi_context
237*/
238void ftdi_free(struct ftdi_context *ftdi)
239{
240 ftdi_deinit(ftdi);
241 free(ftdi);
242}
243
244/**
1941414d
TJ
245 Use an already open libusb device.
246
247 \param ftdi pointer to ftdi_context
579b006f 248 \param usb libusb libusb_device_handle to use
4837f98a 249*/
579b006f 250void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 251{
22a1b5c1
TJ
252 if (ftdi == NULL)
253 return;
254
98452d97
TJ
255 ftdi->usb_dev = usb;
256}
257
258
1941414d
TJ
259/**
260 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
261 needs to be deallocated by ftdi_list_free() after use.
262
263 \param ftdi pointer to ftdi_context
264 \param devlist Pointer where to store list of found devices
265 \param vendor Vendor ID to search for
266 \param product Product ID to search for
edb82cbf 267
1941414d 268 \retval >0: number of devices found
1941414d 269 \retval -3: out of memory
579b006f
JZ
270 \retval -5: libusb_get_device_list() failed
271 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 272*/
d2f10023 273int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
274{
275 struct ftdi_device_list **curdev;
579b006f
JZ
276 libusb_device *dev;
277 libusb_device **devs;
edb82cbf 278 int count = 0;
579b006f
JZ
279 int i = 0;
280
02212d8e 281 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 282 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
283
284 curdev = devlist;
6db32169 285 *curdev = NULL;
579b006f
JZ
286
287 while ((dev = devs[i++]) != NULL)
22d12cda 288 {
579b006f 289 struct libusb_device_descriptor desc;
d2f10023 290
579b006f 291 if (libusb_get_device_descriptor(dev, &desc) < 0)
77377af7 292 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
edb82cbf 293
579b006f
JZ
294 if (desc.idVendor == vendor && desc.idProduct == product)
295 {
296 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
297 if (!*curdev)
77377af7 298 ftdi_error_return_free_device_list(-3, "out of memory", devs);
56ac0383 299
579b006f
JZ
300 (*curdev)->next = NULL;
301 (*curdev)->dev = dev;
302
303 curdev = &(*curdev)->next;
304 count++;
edb82cbf
TJ
305 }
306 }
77377af7 307 libusb_free_device_list(devs,1);
edb82cbf
TJ
308 return count;
309}
310
1941414d
TJ
311/**
312 Frees a usb device list.
edb82cbf 313
1941414d 314 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 315*/
d2f10023 316void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 317{
6db32169
TJ
318 struct ftdi_device_list *curdev, *next;
319
22d12cda
TJ
320 for (curdev = *devlist; curdev != NULL;)
321 {
6db32169
TJ
322 next = curdev->next;
323 free(curdev);
324 curdev = next;
edb82cbf
TJ
325 }
326
6db32169 327 *devlist = NULL;
edb82cbf
TJ
328}
329
1941414d 330/**
cef378aa
TJ
331 Frees a usb device list.
332
333 \param devlist USB device list created by ftdi_usb_find_all()
334*/
335void ftdi_list_free2(struct ftdi_device_list *devlist)
336{
337 ftdi_list_free(&devlist);
338}
339
340/**
474786c0
TJ
341 Return device ID strings from the usb device.
342
343 The parameters manufacturer, description and serial may be NULL
344 or pointer to buffers to store the fetched strings.
345
898c34dd
TJ
346 \note Use this function only in combination with ftdi_usb_find_all()
347 as it closes the internal "usb_dev" after use.
348
474786c0
TJ
349 \param ftdi pointer to ftdi_context
350 \param dev libusb usb_dev to use
351 \param manufacturer Store manufacturer string here if not NULL
352 \param mnf_len Buffer size of manufacturer string
353 \param description Store product description string here if not NULL
354 \param desc_len Buffer size of product description string
355 \param serial Store serial string here if not NULL
356 \param serial_len Buffer size of serial string
357
358 \retval 0: all fine
359 \retval -1: wrong arguments
360 \retval -4: unable to open device
361 \retval -7: get product manufacturer failed
362 \retval -8: get product description failed
363 \retval -9: get serial number failed
579b006f 364 \retval -11: libusb_get_device_descriptor() failed
474786c0 365*/
579b006f 366int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
22d12cda 367 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
474786c0 368{
579b006f
JZ
369 struct libusb_device_descriptor desc;
370
474786c0
TJ
371 if ((ftdi==NULL) || (dev==NULL))
372 return -1;
373
579b006f
JZ
374 if (libusb_open(dev, &ftdi->usb_dev) < 0)
375 ftdi_error_return(-4, "libusb_open() failed");
376
377 if (libusb_get_device_descriptor(dev, &desc) < 0)
378 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 379
22d12cda
TJ
380 if (manufacturer != NULL)
381 {
579b006f 382 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 383 {
f3f81007 384 ftdi_usb_close_internal (ftdi);
579b006f 385 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
386 }
387 }
388
22d12cda
TJ
389 if (description != NULL)
390 {
579b006f 391 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 392 {
f3f81007 393 ftdi_usb_close_internal (ftdi);
579b006f 394 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
395 }
396 }
397
22d12cda
TJ
398 if (serial != NULL)
399 {
579b006f 400 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 401 {
f3f81007 402 ftdi_usb_close_internal (ftdi);
579b006f 403 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
404 }
405 }
406
579b006f 407 ftdi_usb_close_internal (ftdi);
474786c0
TJ
408
409 return 0;
410}
411
412/**
e2f12a4f
TJ
413 * Internal function to determine the maximum packet size.
414 * \param ftdi pointer to ftdi_context
415 * \param dev libusb usb_dev to use
416 * \retval Maximum packet size for this device
417 */
579b006f 418static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 419{
579b006f
JZ
420 struct libusb_device_descriptor desc;
421 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
422 unsigned int packet_size;
423
22a1b5c1
TJ
424 // Sanity check
425 if (ftdi == NULL || dev == NULL)
426 return 64;
427
e2f12a4f
TJ
428 // Determine maximum packet size. Init with default value.
429 // New hi-speed devices from FTDI use a packet size of 512 bytes
430 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
c7e4c09e 431 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
e2f12a4f
TJ
432 packet_size = 512;
433 else
434 packet_size = 64;
435
579b006f
JZ
436 if (libusb_get_device_descriptor(dev, &desc) < 0)
437 return packet_size;
438
439 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
440 return packet_size;
e2f12a4f 441
579b006f
JZ
442 if (desc.bNumConfigurations > 0)
443 {
444 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 445 {
579b006f 446 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
447 if (interface.num_altsetting > 0)
448 {
579b006f 449 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
450 if (descriptor.bNumEndpoints > 0)
451 {
452 packet_size = descriptor.endpoint[0].wMaxPacketSize;
453 }
454 }
455 }
456 }
457
579b006f 458 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
459 return packet_size;
460}
461
462/**
418aaa72 463 Opens a ftdi device given by an usb_device.
7b18bef6 464
1941414d
TJ
465 \param ftdi pointer to ftdi_context
466 \param dev libusb usb_dev to use
467
468 \retval 0: all fine
23b1798d 469 \retval -3: unable to config device
1941414d
TJ
470 \retval -4: unable to open device
471 \retval -5: unable to claim device
472 \retval -6: reset failed
473 \retval -7: set baudrate failed
22a1b5c1 474 \retval -8: ftdi context invalid
579b006f
JZ
475 \retval -9: libusb_get_device_descriptor() failed
476 \retval -10: libusb_get_config_descriptor() failed
e375e6cb 477 \retval -11: libusb_detach_kernel_driver() failed
579b006f 478 \retval -12: libusb_get_configuration() failed
7b18bef6 479*/
579b006f 480int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 481{
579b006f
JZ
482 struct libusb_device_descriptor desc;
483 struct libusb_config_descriptor *config0;
43aee24f 484 int cfg, cfg0, detach_errno = 0;
579b006f 485
22a1b5c1
TJ
486 if (ftdi == NULL)
487 ftdi_error_return(-8, "ftdi context invalid");
488
579b006f
JZ
489 if (libusb_open(dev, &ftdi->usb_dev) < 0)
490 ftdi_error_return(-4, "libusb_open() failed");
491
492 if (libusb_get_device_descriptor(dev, &desc) < 0)
493 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
494
495 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
496 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
497 cfg0 = config0->bConfigurationValue;
498 libusb_free_config_descriptor (config0);
d2f10023 499
22592e17 500 // Try to detach ftdi_sio kernel module.
22592e17
TJ
501 //
502 // The return code is kept in a separate variable and only parsed
503 // if usb_set_configuration() or usb_claim_interface() fails as the
504 // detach operation might be denied and everything still works fine.
505 // Likely scenario is a static ftdi_sio kernel module.
a3d86bdb
TJ
506 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
507 {
508 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
509 detach_errno = errno;
510 }
d2f10023 511
579b006f
JZ
512 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
513 ftdi_error_return(-12, "libusb_get_configuration () failed");
b57aedfd
GE
514 // set configuration (needed especially for windows)
515 // tolerate EBUSY: one device with one configuration, but two interfaces
516 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 517 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 518 {
579b006f 519 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 520 {
a56ba2bd 521 ftdi_usb_close_internal (ftdi);
56ac0383 522 if (detach_errno == EPERM)
43aee24f
UB
523 {
524 ftdi_error_return(-8, "inappropriate permissions on device!");
525 }
526 else
527 {
c16b162d 528 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
43aee24f 529 }
23b1798d
TJ
530 }
531 }
532
579b006f 533 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 534 {
f3f81007 535 ftdi_usb_close_internal (ftdi);
56ac0383 536 if (detach_errno == EPERM)
43aee24f
UB
537 {
538 ftdi_error_return(-8, "inappropriate permissions on device!");
539 }
540 else
541 {
c16b162d 542 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
43aee24f 543 }
7b18bef6
TJ
544 }
545
22d12cda
TJ
546 if (ftdi_usb_reset (ftdi) != 0)
547 {
f3f81007 548 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
549 ftdi_error_return(-6, "ftdi_usb_reset failed");
550 }
551
7b18bef6
TJ
552 // Try to guess chip type
553 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f 554 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
56ac0383 555 && desc.iSerialNumber == 0))
7b18bef6 556 ftdi->type = TYPE_BM;
579b006f 557 else if (desc.bcdDevice == 0x200)
7b18bef6 558 ftdi->type = TYPE_AM;
579b006f 559 else if (desc.bcdDevice == 0x500)
7b18bef6 560 ftdi->type = TYPE_2232C;
579b006f 561 else if (desc.bcdDevice == 0x600)
cb6250fa 562 ftdi->type = TYPE_R;
579b006f 563 else if (desc.bcdDevice == 0x700)
0beb9686 564 ftdi->type = TYPE_2232H;
579b006f 565 else if (desc.bcdDevice == 0x800)
0beb9686 566 ftdi->type = TYPE_4232H;
c7e4c09e
UB
567 else if (desc.bcdDevice == 0x900)
568 ftdi->type = TYPE_232H;
7b18bef6 569
e2f12a4f
TJ
570 // Determine maximum packet size
571 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
572
ef6f4838
TE
573 if (ftdi_set_baudrate (ftdi, 9600) != 0)
574 {
575 ftdi_usb_close_internal (ftdi);
576 ftdi_error_return(-7, "set baudrate failed");
577 }
578
7b18bef6
TJ
579 ftdi_error_return(0, "all fine");
580}
581
1941414d
TJ
582/**
583 Opens the first device with a given vendor and product ids.
584
585 \param ftdi pointer to ftdi_context
586 \param vendor Vendor ID
587 \param product Product ID
588
9bec2387 589 \retval same as ftdi_usb_open_desc()
1941414d 590*/
edb82cbf
TJ
591int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
592{
593 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
594}
595
1941414d
TJ
596/**
597 Opens the first device with a given, vendor id, product id,
598 description and serial.
599
600 \param ftdi pointer to ftdi_context
601 \param vendor Vendor ID
602 \param product Product ID
603 \param description Description to search for. Use NULL if not needed.
604 \param serial Serial to search for. Use NULL if not needed.
605
606 \retval 0: all fine
1941414d
TJ
607 \retval -3: usb device not found
608 \retval -4: unable to open device
609 \retval -5: unable to claim device
610 \retval -6: reset failed
611 \retval -7: set baudrate failed
612 \retval -8: get product description failed
613 \retval -9: get serial number failed
579b006f
JZ
614 \retval -11: libusb_init() failed
615 \retval -12: libusb_get_device_list() failed
616 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 617*/
04e1ea0a 618int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
619 const char* description, const char* serial)
620{
5ebbdab9
GE
621 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
622}
623
624/**
625 Opens the index-th device with a given, vendor id, product id,
626 description and serial.
627
628 \param ftdi pointer to ftdi_context
629 \param vendor Vendor ID
630 \param product Product ID
631 \param description Description to search for. Use NULL if not needed.
632 \param serial Serial to search for. Use NULL if not needed.
633 \param index Number of matching device to open if there are more than one, starts with 0.
634
635 \retval 0: all fine
636 \retval -1: usb_find_busses() failed
637 \retval -2: usb_find_devices() failed
638 \retval -3: usb device not found
639 \retval -4: unable to open device
640 \retval -5: unable to claim device
641 \retval -6: reset failed
642 \retval -7: set baudrate failed
643 \retval -8: get product description failed
644 \retval -9: get serial number failed
645 \retval -10: unable to close device
22a1b5c1 646 \retval -11: ftdi context invalid
5ebbdab9
GE
647*/
648int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
56ac0383 649 const char* description, const char* serial, unsigned int index)
5ebbdab9 650{
579b006f
JZ
651 libusb_device *dev;
652 libusb_device **devs;
c3d95b87 653 char string[256];
579b006f 654 int i = 0;
98452d97 655
22a1b5c1
TJ
656 if (ftdi == NULL)
657 ftdi_error_return(-11, "ftdi context invalid");
658
6ab07768
UB
659 if (libusb_init(&ftdi->usb_ctx) < 0)
660 ftdi_error_return(-11, "libusb_init() failed");
661
02212d8e 662 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
99650502
UB
663 ftdi_error_return(-12, "libusb_get_device_list() failed");
664
579b006f 665 while ((dev = devs[i++]) != NULL)
22d12cda 666 {
579b006f 667 struct libusb_device_descriptor desc;
99650502 668 int res;
579b006f
JZ
669
670 if (libusb_get_device_descriptor(dev, &desc) < 0)
99650502 671 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
579b006f
JZ
672
673 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 674 {
579b006f 675 if (libusb_open(dev, &ftdi->usb_dev) < 0)
99650502 676 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
c3d95b87 677
579b006f
JZ
678 if (description != NULL)
679 {
680 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 681 {
d4afae5f 682 ftdi_usb_close_internal (ftdi);
99650502 683 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
a8f46ddc 684 }
579b006f 685 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 686 {
d4afae5f 687 ftdi_usb_close_internal (ftdi);
579b006f 688 continue;
a8f46ddc 689 }
579b006f
JZ
690 }
691 if (serial != NULL)
692 {
693 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
694 {
695 ftdi_usb_close_internal (ftdi);
99650502 696 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
579b006f
JZ
697 }
698 if (strncmp(string, serial, sizeof(string)) != 0)
699 {
700 ftdi_usb_close_internal (ftdi);
701 continue;
702 }
703 }
98452d97 704
579b006f 705 ftdi_usb_close_internal (ftdi);
d2f10023 706
56ac0383
TJ
707 if (index > 0)
708 {
709 index--;
710 continue;
711 }
5ebbdab9 712
99650502
UB
713 res = ftdi_usb_open_dev(ftdi, dev);
714 libusb_free_device_list(devs,1);
715 return res;
98452d97 716 }
98452d97 717 }
a3da1d95 718
98452d97 719 // device not found
99650502 720 ftdi_error_return_free_device_list(-3, "device not found", devs);
a3da1d95
GE
721}
722
1941414d 723/**
5ebbdab9
GE
724 Opens the ftdi-device described by a description-string.
725 Intended to be used for parsing a device-description given as commandline argument.
726
727 \param ftdi pointer to ftdi_context
728 \param description NULL-terminated description-string, using this format:
729 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
730 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
731 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
732 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
733
734 \note The description format may be extended in later versions.
735
736 \retval 0: all fine
579b006f
JZ
737 \retval -1: libusb_init() failed
738 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
739 \retval -3: usb device not found
740 \retval -4: unable to open device
741 \retval -5: unable to claim device
742 \retval -6: reset failed
743 \retval -7: set baudrate failed
744 \retval -8: get product description failed
745 \retval -9: get serial number failed
746 \retval -10: unable to close device
747 \retval -11: illegal description format
22a1b5c1 748 \retval -12: ftdi context invalid
5ebbdab9
GE
749*/
750int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
751{
22a1b5c1
TJ
752 if (ftdi == NULL)
753 ftdi_error_return(-12, "ftdi context invalid");
754
5ebbdab9
GE
755 if (description[0] == 0 || description[1] != ':')
756 ftdi_error_return(-11, "illegal description format");
757
758 if (description[0] == 'd')
759 {
579b006f
JZ
760 libusb_device *dev;
761 libusb_device **devs;
56ac0383
TJ
762 unsigned int bus_number, device_address;
763 int i = 0;
579b006f 764
02212d8e 765 if (libusb_init (&ftdi->usb_ctx) < 0)
56ac0383 766 ftdi_error_return(-1, "libusb_init() failed");
5ebbdab9 767
56ac0383
TJ
768 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
769 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 770
579b006f
JZ
771 /* XXX: This doesn't handle symlinks/odd paths/etc... */
772 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
56ac0383 773 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
5ebbdab9 774
56ac0383 775 while ((dev = devs[i++]) != NULL)
5ebbdab9 776 {
99650502 777 int ret;
56ac0383
TJ
778 if (bus_number == libusb_get_bus_number (dev)
779 && device_address == libusb_get_device_address (dev))
99650502
UB
780 {
781 ret = ftdi_usb_open_dev(ftdi, dev);
782 libusb_free_device_list(devs,1);
783 return ret;
784 }
5ebbdab9
GE
785 }
786
787 // device not found
99650502 788 ftdi_error_return_free_device_list(-3, "device not found", devs);
5ebbdab9
GE
789 }
790 else if (description[0] == 'i' || description[0] == 's')
791 {
792 unsigned int vendor;
793 unsigned int product;
794 unsigned int index=0;
0e6cf62b 795 const char *serial=NULL;
5ebbdab9
GE
796 const char *startp, *endp;
797
798 errno=0;
799 startp=description+2;
800 vendor=strtoul((char*)startp,(char**)&endp,0);
801 if (*endp != ':' || endp == startp || errno != 0)
802 ftdi_error_return(-11, "illegal description format");
803
804 startp=endp+1;
805 product=strtoul((char*)startp,(char**)&endp,0);
806 if (endp == startp || errno != 0)
807 ftdi_error_return(-11, "illegal description format");
808
809 if (description[0] == 'i' && *endp != 0)
810 {
811 /* optional index field in i-mode */
812 if (*endp != ':')
813 ftdi_error_return(-11, "illegal description format");
814
815 startp=endp+1;
816 index=strtoul((char*)startp,(char**)&endp,0);
817 if (*endp != 0 || endp == startp || errno != 0)
818 ftdi_error_return(-11, "illegal description format");
819 }
820 if (description[0] == 's')
821 {
822 if (*endp != ':')
823 ftdi_error_return(-11, "illegal description format");
824
825 /* rest of the description is the serial */
826 serial=endp+1;
827 }
828
829 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
830 }
831 else
832 {
833 ftdi_error_return(-11, "illegal description format");
834 }
835}
836
837/**
1941414d 838 Resets the ftdi device.
a3da1d95 839
1941414d
TJ
840 \param ftdi pointer to ftdi_context
841
842 \retval 0: all fine
843 \retval -1: FTDI reset failed
22a1b5c1 844 \retval -2: USB device unavailable
4837f98a 845*/
edb82cbf 846int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 847{
22a1b5c1
TJ
848 if (ftdi == NULL || ftdi->usb_dev == NULL)
849 ftdi_error_return(-2, "USB device unavailable");
850
579b006f
JZ
851 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
852 SIO_RESET_REQUEST, SIO_RESET_SIO,
853 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 854 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 855
545820ce 856 // Invalidate data in the readbuffer
bfcee05b
TJ
857 ftdi->readbuffer_offset = 0;
858 ftdi->readbuffer_remaining = 0;
859
a3da1d95
GE
860 return 0;
861}
862
1941414d 863/**
1189b11a 864 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
865
866 \param ftdi pointer to ftdi_context
4837f98a 867
1941414d 868 \retval 0: all fine
1189b11a 869 \retval -1: read buffer purge failed
22a1b5c1 870 \retval -2: USB device unavailable
4837f98a 871*/
1189b11a 872int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 873{
22a1b5c1
TJ
874 if (ftdi == NULL || ftdi->usb_dev == NULL)
875 ftdi_error_return(-2, "USB device unavailable");
876
579b006f
JZ
877 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
878 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
879 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
880 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
881
545820ce 882 // Invalidate data in the readbuffer
bfcee05b
TJ
883 ftdi->readbuffer_offset = 0;
884 ftdi->readbuffer_remaining = 0;
a60be878 885
1189b11a
TJ
886 return 0;
887}
888
889/**
890 Clears the write buffer on the chip.
891
892 \param ftdi pointer to ftdi_context
893
894 \retval 0: all fine
895 \retval -1: write buffer purge failed
22a1b5c1 896 \retval -2: USB device unavailable
1189b11a
TJ
897*/
898int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
899{
22a1b5c1
TJ
900 if (ftdi == NULL || ftdi->usb_dev == NULL)
901 ftdi_error_return(-2, "USB device unavailable");
902
579b006f
JZ
903 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
904 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
905 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
906 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
907
908 return 0;
909}
910
911/**
912 Clears the buffers on the chip and the internal read buffer.
913
914 \param ftdi pointer to ftdi_context
915
916 \retval 0: all fine
917 \retval -1: read buffer purge failed
918 \retval -2: write buffer purge failed
22a1b5c1 919 \retval -3: USB device unavailable
1189b11a
TJ
920*/
921int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
922{
923 int result;
924
22a1b5c1
TJ
925 if (ftdi == NULL || ftdi->usb_dev == NULL)
926 ftdi_error_return(-3, "USB device unavailable");
927
1189b11a 928 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 929 if (result < 0)
1189b11a
TJ
930 return -1;
931
932 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 933 if (result < 0)
1189b11a 934 return -2;
545820ce 935
a60be878
TJ
936 return 0;
937}
a3da1d95 938
f3f81007
TJ
939
940
1941414d
TJ
941/**
942 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
943
944 \param ftdi pointer to ftdi_context
945
946 \retval 0: all fine
947 \retval -1: usb_release failed
22a1b5c1 948 \retval -3: ftdi context invalid
a3da1d95 949*/
a8f46ddc
TJ
950int ftdi_usb_close(struct ftdi_context *ftdi)
951{
a3da1d95
GE
952 int rtn = 0;
953
22a1b5c1
TJ
954 if (ftdi == NULL)
955 ftdi_error_return(-3, "ftdi context invalid");
956
dff4fdb0 957 if (ftdi->usb_dev != NULL)
579b006f 958 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 959 rtn = -1;
98452d97 960
579b006f 961 ftdi_usb_close_internal (ftdi);
98452d97 962
a3da1d95
GE
963 return rtn;
964}
965
418aaa72 966/**
53ad271d
TJ
967 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
968 Function is only used internally
b5ec1820 969 \internal
53ad271d 970*/
0126d22e 971static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
a8f46ddc
TJ
972 unsigned short *value, unsigned short *index)
973{
53ad271d
TJ
974 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
975 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
976 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
977 int divisor, best_divisor, best_baud, best_baud_diff;
978 unsigned long encoded_divisor;
979 int i;
980
22d12cda
TJ
981 if (baudrate <= 0)
982 {
53ad271d
TJ
983 // Return error
984 return -1;
985 }
986
987 divisor = 24000000 / baudrate;
988
22d12cda
TJ
989 if (ftdi->type == TYPE_AM)
990 {
53ad271d
TJ
991 // Round down to supported fraction (AM only)
992 divisor -= am_adjust_dn[divisor & 7];
993 }
994
995 // Try this divisor and the one above it (because division rounds down)
996 best_divisor = 0;
997 best_baud = 0;
998 best_baud_diff = 0;
22d12cda
TJ
999 for (i = 0; i < 2; i++)
1000 {
53ad271d
TJ
1001 int try_divisor = divisor + i;
1002 int baud_estimate;
1003 int baud_diff;
1004
1005 // Round up to supported divisor value
22d12cda
TJ
1006 if (try_divisor <= 8)
1007 {
53ad271d
TJ
1008 // Round up to minimum supported divisor
1009 try_divisor = 8;
22d12cda
TJ
1010 }
1011 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1012 {
53ad271d
TJ
1013 // BM doesn't support divisors 9 through 11 inclusive
1014 try_divisor = 12;
22d12cda
TJ
1015 }
1016 else if (divisor < 16)
1017 {
53ad271d
TJ
1018 // AM doesn't support divisors 9 through 15 inclusive
1019 try_divisor = 16;
22d12cda
TJ
1020 }
1021 else
1022 {
1023 if (ftdi->type == TYPE_AM)
1024 {
53ad271d
TJ
1025 // Round up to supported fraction (AM only)
1026 try_divisor += am_adjust_up[try_divisor & 7];
22d12cda
TJ
1027 if (try_divisor > 0x1FFF8)
1028 {
53ad271d
TJ
1029 // Round down to maximum supported divisor value (for AM)
1030 try_divisor = 0x1FFF8;
1031 }
22d12cda
TJ
1032 }
1033 else
1034 {
1035 if (try_divisor > 0x1FFFF)
1036 {
53ad271d
TJ
1037 // Round down to maximum supported divisor value (for BM)
1038 try_divisor = 0x1FFFF;
1039 }
1040 }
1041 }
1042 // Get estimated baud rate (to nearest integer)
1043 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1044 // Get absolute difference from requested baud rate
22d12cda
TJ
1045 if (baud_estimate < baudrate)
1046 {
53ad271d 1047 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
1048 }
1049 else
1050 {
53ad271d
TJ
1051 baud_diff = baud_estimate - baudrate;
1052 }
22d12cda
TJ
1053 if (i == 0 || baud_diff < best_baud_diff)
1054 {
53ad271d
TJ
1055 // Closest to requested baud rate so far
1056 best_divisor = try_divisor;
1057 best_baud = baud_estimate;
1058 best_baud_diff = baud_diff;
22d12cda
TJ
1059 if (baud_diff == 0)
1060 {
53ad271d
TJ
1061 // Spot on! No point trying
1062 break;
1063 }
1064 }
1065 }
1066 // Encode the best divisor value
1067 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1068 // Deal with special cases for encoded value
22d12cda
TJ
1069 if (encoded_divisor == 1)
1070 {
4837f98a 1071 encoded_divisor = 0; // 3000000 baud
22d12cda
TJ
1072 }
1073 else if (encoded_divisor == 0x4001)
1074 {
4837f98a 1075 encoded_divisor = 1; // 2000000 baud (BM only)
53ad271d
TJ
1076 }
1077 // Split into "value" and "index" values
1078 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1416eb14 1079 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
22d12cda 1080 {
0126d22e
TJ
1081 *index = (unsigned short)(encoded_divisor >> 8);
1082 *index &= 0xFF00;
a9c57c05 1083 *index |= ftdi->index;
0126d22e
TJ
1084 }
1085 else
1086 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 1087
53ad271d
TJ
1088 // Return the nearest baud rate
1089 return best_baud;
1090}
1091
1941414d 1092/**
9bec2387 1093 Sets the chip baud rate
1941414d
TJ
1094
1095 \param ftdi pointer to ftdi_context
9bec2387 1096 \param baudrate baud rate to set
1941414d
TJ
1097
1098 \retval 0: all fine
1099 \retval -1: invalid baudrate
1100 \retval -2: setting baudrate failed
22a1b5c1 1101 \retval -3: USB device unavailable
a3da1d95 1102*/
a8f46ddc
TJ
1103int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1104{
53ad271d
TJ
1105 unsigned short value, index;
1106 int actual_baudrate;
a3da1d95 1107
22a1b5c1
TJ
1108 if (ftdi == NULL || ftdi->usb_dev == NULL)
1109 ftdi_error_return(-3, "USB device unavailable");
1110
22d12cda
TJ
1111 if (ftdi->bitbang_enabled)
1112 {
a3da1d95
GE
1113 baudrate = baudrate*4;
1114 }
1115
25707904 1116 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1117 if (actual_baudrate <= 0)
1118 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1119
53ad271d
TJ
1120 // Check within tolerance (about 5%)
1121 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1122 || ((actual_baudrate < baudrate)
1123 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1124 : (baudrate * 21 < actual_baudrate * 20)))
1125 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1126
579b006f
JZ
1127 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1128 SIO_SET_BAUDRATE_REQUEST, value,
1129 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1130 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1131
1132 ftdi->baudrate = baudrate;
1133 return 0;
1134}
1135
1941414d 1136/**
6c32e222
TJ
1137 Set (RS232) line characteristics.
1138 The break type can only be set via ftdi_set_line_property2()
1139 and defaults to "off".
4837f98a 1140
1941414d
TJ
1141 \param ftdi pointer to ftdi_context
1142 \param bits Number of bits
1143 \param sbit Number of stop bits
1144 \param parity Parity mode
1145
1146 \retval 0: all fine
1147 \retval -1: Setting line property failed
2f73e59f
TJ
1148*/
1149int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1150 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1151{
6c32e222
TJ
1152 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1153}
1154
1155/**
1156 Set (RS232) line characteristics
1157
1158 \param ftdi pointer to ftdi_context
1159 \param bits Number of bits
1160 \param sbit Number of stop bits
1161 \param parity Parity mode
1162 \param break_type Break type
1163
1164 \retval 0: all fine
1165 \retval -1: Setting line property failed
22a1b5c1 1166 \retval -2: USB device unavailable
6c32e222
TJ
1167*/
1168int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1169 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1170 enum ftdi_break_type break_type)
6c32e222 1171{
2f73e59f
TJ
1172 unsigned short value = bits;
1173
22a1b5c1
TJ
1174 if (ftdi == NULL || ftdi->usb_dev == NULL)
1175 ftdi_error_return(-2, "USB device unavailable");
1176
22d12cda
TJ
1177 switch (parity)
1178 {
1179 case NONE:
1180 value |= (0x00 << 8);
1181 break;
1182 case ODD:
1183 value |= (0x01 << 8);
1184 break;
1185 case EVEN:
1186 value |= (0x02 << 8);
1187 break;
1188 case MARK:
1189 value |= (0x03 << 8);
1190 break;
1191 case SPACE:
1192 value |= (0x04 << 8);
1193 break;
2f73e59f 1194 }
d2f10023 1195
22d12cda
TJ
1196 switch (sbit)
1197 {
1198 case STOP_BIT_1:
1199 value |= (0x00 << 11);
1200 break;
1201 case STOP_BIT_15:
1202 value |= (0x01 << 11);
1203 break;
1204 case STOP_BIT_2:
1205 value |= (0x02 << 11);
1206 break;
2f73e59f 1207 }
d2f10023 1208
22d12cda
TJ
1209 switch (break_type)
1210 {
1211 case BREAK_OFF:
1212 value |= (0x00 << 14);
1213 break;
1214 case BREAK_ON:
1215 value |= (0x01 << 14);
1216 break;
6c32e222
TJ
1217 }
1218
579b006f
JZ
1219 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1220 SIO_SET_DATA_REQUEST, value,
1221 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1222 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1223
2f73e59f
TJ
1224 return 0;
1225}
a3da1d95 1226
1941414d
TJ
1227/**
1228 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1229
1230 \param ftdi pointer to ftdi_context
1231 \param buf Buffer with the data
1232 \param size Size of the buffer
1233
22a1b5c1 1234 \retval -666: USB device unavailable
1941414d
TJ
1235 \retval <0: error code from usb_bulk_write()
1236 \retval >0: number of bytes written
1237*/
a8f46ddc
TJ
1238int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1239{
a3da1d95 1240 int offset = 0;
579b006f 1241 int actual_length;
c3d95b87 1242
22a1b5c1
TJ
1243 if (ftdi == NULL || ftdi->usb_dev == NULL)
1244 ftdi_error_return(-666, "USB device unavailable");
1245
22d12cda
TJ
1246 while (offset < size)
1247 {
948f9ada 1248 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1249
1250 if (offset+write_size > size)
1251 write_size = size-offset;
1252
579b006f
JZ
1253 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1254 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1255
579b006f 1256 offset += actual_length;
a3da1d95
GE
1257 }
1258
579b006f 1259 return offset;
a3da1d95
GE
1260}
1261
579b006f 1262static void ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1263{
579b006f
JZ
1264 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1265 struct ftdi_context *ftdi = tc->ftdi;
1266 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1267
b1139150 1268 packet_size = ftdi->max_packet_size;
579b006f
JZ
1269
1270 actual_length = transfer->actual_length;
1271
1272 if (actual_length > 2)
1273 {
1274 // skip FTDI status bytes.
1275 // Maybe stored in the future to enable modem use
1276 num_of_chunks = actual_length / packet_size;
1277 chunk_remains = actual_length % packet_size;
1278 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1279
1280 ftdi->readbuffer_offset += 2;
1281 actual_length -= 2;
1282
1283 if (actual_length > packet_size - 2)
1284 {
1285 for (i = 1; i < num_of_chunks; i++)
56ac0383
TJ
1286 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1287 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1288 packet_size - 2);
579b006f
JZ
1289 if (chunk_remains > 2)
1290 {
1291 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1292 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1293 chunk_remains-2);
1294 actual_length -= 2*num_of_chunks;
1295 }
1296 else
56ac0383 1297 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
579b006f
JZ
1298 }
1299
1300 if (actual_length > 0)
1301 {
1302 // data still fits in buf?
1303 if (tc->offset + actual_length <= tc->size)
1304 {
1305 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1306 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1307 tc->offset += actual_length;
1308
1309 ftdi->readbuffer_offset = 0;
1310 ftdi->readbuffer_remaining = 0;
1311
1312 /* Did we read exactly the right amount of bytes? */
1313 if (tc->offset == tc->size)
1314 {
1315 //printf("read_data exact rem %d offset %d\n",
1316 //ftdi->readbuffer_remaining, offset);
1317 tc->completed = 1;
1318 return;
1319 }
1320 }
1321 else
1322 {
1323 // only copy part of the data or size <= readbuffer_chunksize
1324 int part_size = tc->size - tc->offset;
1325 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1326 tc->offset += part_size;
1327
1328 ftdi->readbuffer_offset += part_size;
1329 ftdi->readbuffer_remaining = actual_length - part_size;
1330
1331 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1332 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1333 tc->completed = 1;
1334 return;
1335 }
1336 }
1337 }
1338 ret = libusb_submit_transfer (transfer);
1339 if (ret < 0)
1340 tc->completed = 1;
1341}
1342
1343
1344static void ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1345{
579b006f
JZ
1346 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1347 struct ftdi_context *ftdi = tc->ftdi;
56ac0383 1348
90ef163e 1349 tc->offset += transfer->actual_length;
56ac0383 1350
579b006f 1351 if (tc->offset == tc->size)
22d12cda 1352 {
579b006f 1353 tc->completed = 1;
7cc9950e 1354 }
579b006f
JZ
1355 else
1356 {
1357 int write_size = ftdi->writebuffer_chunksize;
1358 int ret;
7cc9950e 1359
579b006f
JZ
1360 if (tc->offset + write_size > tc->size)
1361 write_size = tc->size - tc->offset;
1362
1363 transfer->length = write_size;
1364 transfer->buffer = tc->buf + tc->offset;
1365 ret = libusb_submit_transfer (transfer);
1366 if (ret < 0)
1367 tc->completed = 1;
1368 }
7cc9950e
GE
1369}
1370
579b006f 1371
84f85aaa 1372/**
579b006f
JZ
1373 Writes data to the chip. Does not wait for completion of the transfer
1374 nor does it make sure that the transfer was successful.
1375
249888c8 1376 Use libusb 1.0 asynchronous API.
84f85aaa
GE
1377
1378 \param ftdi pointer to ftdi_context
579b006f
JZ
1379 \param buf Buffer with the data
1380 \param size Size of the buffer
84f85aaa 1381
579b006f
JZ
1382 \retval NULL: Some error happens when submit transfer
1383 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1384*/
579b006f
JZ
1385
1386struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1387{
579b006f 1388 struct ftdi_transfer_control *tc;
5e77e870 1389 struct libusb_transfer *transfer;
579b006f 1390 int write_size, ret;
22d12cda 1391
22a1b5c1 1392 if (ftdi == NULL || ftdi->usb_dev == NULL)
22a1b5c1 1393 return NULL;
22a1b5c1 1394
579b006f 1395 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
5e77e870
TJ
1396 if (!tc)
1397 return NULL;
22d12cda 1398
5e77e870
TJ
1399 transfer = libusb_alloc_transfer(0);
1400 if (!transfer)
1401 {
1402 free(tc);
579b006f 1403 return NULL;
5e77e870 1404 }
22d12cda 1405
579b006f
JZ
1406 tc->ftdi = ftdi;
1407 tc->completed = 0;
1408 tc->buf = buf;
1409 tc->size = size;
1410 tc->offset = 0;
7cc9950e 1411
579b006f 1412 if (size < ftdi->writebuffer_chunksize)
56ac0383 1413 write_size = size;
579b006f 1414 else
56ac0383 1415 write_size = ftdi->writebuffer_chunksize;
22d12cda 1416
90ef163e
YSL
1417 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1418 write_size, ftdi_write_data_cb, tc,
1419 ftdi->usb_write_timeout);
579b006f 1420 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1421
579b006f
JZ
1422 ret = libusb_submit_transfer(transfer);
1423 if (ret < 0)
1424 {
1425 libusb_free_transfer(transfer);
5e77e870 1426 free(tc);
579b006f 1427 return NULL;
7cc9950e 1428 }
579b006f
JZ
1429 tc->transfer = transfer;
1430
1431 return tc;
7cc9950e
GE
1432}
1433
1434/**
579b006f
JZ
1435 Reads data from the chip. Does not wait for completion of the transfer
1436 nor does it make sure that the transfer was successful.
1437
249888c8 1438 Use libusb 1.0 asynchronous API.
7cc9950e
GE
1439
1440 \param ftdi pointer to ftdi_context
579b006f
JZ
1441 \param buf Buffer with the data
1442 \param size Size of the buffer
4c9e3812 1443
579b006f
JZ
1444 \retval NULL: Some error happens when submit transfer
1445 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1446*/
579b006f
JZ
1447
1448struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1449{
579b006f
JZ
1450 struct ftdi_transfer_control *tc;
1451 struct libusb_transfer *transfer;
1452 int ret;
22d12cda 1453
22a1b5c1
TJ
1454 if (ftdi == NULL || ftdi->usb_dev == NULL)
1455 return NULL;
1456
579b006f
JZ
1457 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1458 if (!tc)
1459 return NULL;
1460
1461 tc->ftdi = ftdi;
1462 tc->buf = buf;
1463 tc->size = size;
1464
1465 if (size <= ftdi->readbuffer_remaining)
7cc9950e 1466 {
579b006f 1467 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1468
579b006f
JZ
1469 // Fix offsets
1470 ftdi->readbuffer_remaining -= size;
1471 ftdi->readbuffer_offset += size;
7cc9950e 1472
579b006f 1473 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1474
579b006f
JZ
1475 tc->completed = 1;
1476 tc->offset = size;
1477 tc->transfer = NULL;
1478 return tc;
1479 }
4c9e3812 1480
579b006f
JZ
1481 tc->completed = 0;
1482 if (ftdi->readbuffer_remaining != 0)
1483 {
1484 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1485
579b006f
JZ
1486 tc->offset = ftdi->readbuffer_remaining;
1487 }
1488 else
1489 tc->offset = 0;
22d12cda 1490
579b006f
JZ
1491 transfer = libusb_alloc_transfer(0);
1492 if (!transfer)
1493 {
1494 free (tc);
1495 return NULL;
1496 }
22d12cda 1497
579b006f
JZ
1498 ftdi->readbuffer_remaining = 0;
1499 ftdi->readbuffer_offset = 0;
1500
1501 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1502 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1503
1504 ret = libusb_submit_transfer(transfer);
1505 if (ret < 0)
1506 {
1507 libusb_free_transfer(transfer);
1508 free (tc);
1509 return NULL;
22d12cda 1510 }
579b006f
JZ
1511 tc->transfer = transfer;
1512
1513 return tc;
4c9e3812
GE
1514}
1515
1516/**
579b006f 1517 Wait for completion of the transfer.
4c9e3812 1518
249888c8 1519 Use libusb 1.0 asynchronous API.
4c9e3812 1520
579b006f 1521 \param tc pointer to ftdi_transfer_control
4c9e3812 1522
579b006f
JZ
1523 \retval < 0: Some error happens
1524 \retval >= 0: Data size transferred
4c9e3812 1525*/
579b006f
JZ
1526
1527int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1528{
1529 int ret;
4c9e3812 1530
579b006f 1531 while (!tc->completed)
22d12cda 1532 {
29b1dfd9 1533 ret = libusb_handle_events(tc->ftdi->usb_ctx);
4c9e3812 1534 if (ret < 0)
579b006f
JZ
1535 {
1536 if (ret == LIBUSB_ERROR_INTERRUPTED)
1537 continue;
1538 libusb_cancel_transfer(tc->transfer);
1539 while (!tc->completed)
29b1dfd9 1540 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
579b006f
JZ
1541 break;
1542 libusb_free_transfer(tc->transfer);
1543 free (tc);
579b006f
JZ
1544 return ret;
1545 }
4c9e3812
GE
1546 }
1547
90ef163e
YSL
1548 ret = tc->offset;
1549 /**
1550 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
ef15fab5 1551 * at ftdi_read_data_submit(). Therefore, we need to check it here.
90ef163e 1552 **/
ef15fab5
TJ
1553 if (tc->transfer)
1554 {
1555 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1556 ret = -1;
1557 libusb_free_transfer(tc->transfer);
90ef163e 1558 }
579b006f
JZ
1559 free(tc);
1560 return ret;
4c9e3812 1561}
579b006f 1562
1941414d
TJ
1563/**
1564 Configure write buffer chunk size.
1565 Default is 4096.
1566
1567 \param ftdi pointer to ftdi_context
1568 \param chunksize Chunk size
a3da1d95 1569
1941414d 1570 \retval 0: all fine
22a1b5c1 1571 \retval -1: ftdi context invalid
1941414d 1572*/
a8f46ddc
TJ
1573int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1574{
22a1b5c1
TJ
1575 if (ftdi == NULL)
1576 ftdi_error_return(-1, "ftdi context invalid");
1577
948f9ada
TJ
1578 ftdi->writebuffer_chunksize = chunksize;
1579 return 0;
1580}
1581
1941414d
TJ
1582/**
1583 Get write buffer chunk size.
1584
1585 \param ftdi pointer to ftdi_context
1586 \param chunksize Pointer to store chunk size in
948f9ada 1587
1941414d 1588 \retval 0: all fine
22a1b5c1 1589 \retval -1: ftdi context invalid
1941414d 1590*/
a8f46ddc
TJ
1591int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1592{
22a1b5c1
TJ
1593 if (ftdi == NULL)
1594 ftdi_error_return(-1, "ftdi context invalid");
1595
948f9ada
TJ
1596 *chunksize = ftdi->writebuffer_chunksize;
1597 return 0;
1598}
cbabb7d3 1599
1941414d
TJ
1600/**
1601 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1602
1603 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1604
1941414d
TJ
1605 \param ftdi pointer to ftdi_context
1606 \param buf Buffer to store data in
1607 \param size Size of the buffer
1608
22a1b5c1 1609 \retval -666: USB device unavailable
579b006f 1610 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 1611 \retval 0: no data was available
1941414d
TJ
1612 \retval >0: number of bytes read
1613
1941414d 1614*/
a8f46ddc
TJ
1615int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1616{
579b006f 1617 int offset = 0, ret, i, num_of_chunks, chunk_remains;
e2f12a4f 1618 int packet_size = ftdi->max_packet_size;
579b006f 1619 int actual_length = 1;
f2f00cb5 1620
22a1b5c1
TJ
1621 if (ftdi == NULL || ftdi->usb_dev == NULL)
1622 ftdi_error_return(-666, "USB device unavailable");
1623
e2f12a4f
TJ
1624 // Packet size sanity check (avoid division by zero)
1625 if (packet_size == 0)
1626 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 1627
948f9ada 1628 // everything we want is still in the readbuffer?
22d12cda
TJ
1629 if (size <= ftdi->readbuffer_remaining)
1630 {
d9f0cce7
TJ
1631 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1632
1633 // Fix offsets
1634 ftdi->readbuffer_remaining -= size;
1635 ftdi->readbuffer_offset += size;
1636
545820ce 1637 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1638
1639 return size;
979a145c 1640 }
948f9ada 1641 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
1642 if (ftdi->readbuffer_remaining != 0)
1643 {
d9f0cce7 1644 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1645
d9f0cce7
TJ
1646 // Fix offset
1647 offset += ftdi->readbuffer_remaining;
948f9ada 1648 }
948f9ada 1649 // do the actual USB read
579b006f 1650 while (offset < size && actual_length > 0)
22d12cda 1651 {
d9f0cce7
TJ
1652 ftdi->readbuffer_remaining = 0;
1653 ftdi->readbuffer_offset = 0;
98452d97 1654 /* returns how much received */
579b006f 1655 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
1656 if (ret < 0)
1657 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1658
579b006f 1659 if (actual_length > 2)
22d12cda 1660 {
d9f0cce7
TJ
1661 // skip FTDI status bytes.
1662 // Maybe stored in the future to enable modem use
579b006f
JZ
1663 num_of_chunks = actual_length / packet_size;
1664 chunk_remains = actual_length % packet_size;
1665 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 1666
d9f0cce7 1667 ftdi->readbuffer_offset += 2;
579b006f 1668 actual_length -= 2;
1c733d33 1669
579b006f 1670 if (actual_length > packet_size - 2)
22d12cda 1671 {
1c733d33 1672 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
1673 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1674 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1675 packet_size - 2);
22d12cda
TJ
1676 if (chunk_remains > 2)
1677 {
f2f00cb5
DC
1678 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1679 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 1680 chunk_remains-2);
579b006f 1681 actual_length -= 2*num_of_chunks;
22d12cda
TJ
1682 }
1683 else
579b006f 1684 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 1685 }
22d12cda 1686 }
579b006f 1687 else if (actual_length <= 2)
22d12cda 1688 {
d9f0cce7
TJ
1689 // no more data to read?
1690 return offset;
1691 }
579b006f 1692 if (actual_length > 0)
22d12cda 1693 {
d9f0cce7 1694 // data still fits in buf?
579b006f 1695 if (offset+actual_length <= size)
22d12cda 1696 {
579b006f 1697 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 1698 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 1699 offset += actual_length;
d9f0cce7 1700
53ad271d 1701 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1702 if (offset == size)
c4446c36
TJ
1703 //printf("read_data exact rem %d offset %d\n",
1704 //ftdi->readbuffer_remaining, offset);
d9f0cce7 1705 return offset;
22d12cda
TJ
1706 }
1707 else
1708 {
d9f0cce7
TJ
1709 // only copy part of the data or size <= readbuffer_chunksize
1710 int part_size = size-offset;
1711 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1712
d9f0cce7 1713 ftdi->readbuffer_offset += part_size;
579b006f 1714 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
1715 offset += part_size;
1716
579b006f
JZ
1717 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1718 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1719
1720 return offset;
1721 }
1722 }
cbabb7d3 1723 }
948f9ada 1724 // never reached
29c4af7f 1725 return -127;
a3da1d95
GE
1726}
1727
1941414d
TJ
1728/**
1729 Configure read buffer chunk size.
1730 Default is 4096.
1731
1732 Automatically reallocates the buffer.
a3da1d95 1733
1941414d
TJ
1734 \param ftdi pointer to ftdi_context
1735 \param chunksize Chunk size
1736
1737 \retval 0: all fine
22a1b5c1 1738 \retval -1: ftdi context invalid
1941414d 1739*/
a8f46ddc
TJ
1740int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1741{
29c4af7f
TJ
1742 unsigned char *new_buf;
1743
22a1b5c1
TJ
1744 if (ftdi == NULL)
1745 ftdi_error_return(-1, "ftdi context invalid");
1746
948f9ada
TJ
1747 // Invalidate all remaining data
1748 ftdi->readbuffer_offset = 0;
1749 ftdi->readbuffer_remaining = 0;
8de6eea4
JZ
1750#ifdef __linux__
1751 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1752 which is defined in libusb-1.0. Otherwise, each USB read request will
2e685a1f 1753 be divided into multiple URBs. This will cause issues on Linux kernel
8de6eea4
JZ
1754 older than 2.6.32. */
1755 if (chunksize > 16384)
1756 chunksize = 16384;
1757#endif
948f9ada 1758
c3d95b87
TJ
1759 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1760 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1761
948f9ada
TJ
1762 ftdi->readbuffer = new_buf;
1763 ftdi->readbuffer_chunksize = chunksize;
1764
1765 return 0;
1766}
1767
1941414d
TJ
1768/**
1769 Get read buffer chunk size.
948f9ada 1770
1941414d
TJ
1771 \param ftdi pointer to ftdi_context
1772 \param chunksize Pointer to store chunk size in
1773
1774 \retval 0: all fine
22a1b5c1 1775 \retval -1: FTDI context invalid
1941414d 1776*/
a8f46ddc
TJ
1777int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1778{
22a1b5c1
TJ
1779 if (ftdi == NULL)
1780 ftdi_error_return(-1, "FTDI context invalid");
1781
948f9ada
TJ
1782 *chunksize = ftdi->readbuffer_chunksize;
1783 return 0;
1784}
1785
1786
1941414d
TJ
1787/**
1788 Enable bitbang mode.
948f9ada 1789
fd282db3 1790 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1941414d
TJ
1791
1792 \param ftdi pointer to ftdi_context
1793 \param bitmask Bitmask to configure lines.
1794 HIGH/ON value configures a line as output.
1795
1796 \retval 0: all fine
1797 \retval -1: can't enable bitbang mode
22a1b5c1 1798 \retval -2: USB device unavailable
1941414d 1799*/
a8f46ddc
TJ
1800int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1801{
a3da1d95
GE
1802 unsigned short usb_val;
1803
22a1b5c1
TJ
1804 if (ftdi == NULL || ftdi->usb_dev == NULL)
1805 ftdi_error_return(-2, "USB device unavailable");
1806
d9f0cce7 1807 usb_val = bitmask; // low byte: bitmask
3119537f
TJ
1808 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1809 usb_val |= (ftdi->bitbang_mode << 8);
1810
579b006f
JZ
1811 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1812 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1813 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1814 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1815
a3da1d95
GE
1816 ftdi->bitbang_enabled = 1;
1817 return 0;
1818}
1819
1941414d
TJ
1820/**
1821 Disable bitbang mode.
a3da1d95 1822
1941414d
TJ
1823 \param ftdi pointer to ftdi_context
1824
1825 \retval 0: all fine
1826 \retval -1: can't disable bitbang mode
22a1b5c1 1827 \retval -2: USB device unavailable
1941414d 1828*/
a8f46ddc
TJ
1829int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1830{
22a1b5c1
TJ
1831 if (ftdi == NULL || ftdi->usb_dev == NULL)
1832 ftdi_error_return(-2, "USB device unavailable");
1833
579b006f 1834 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1835 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1836
1837 ftdi->bitbang_enabled = 0;
1838 return 0;
1839}
1840
1941414d 1841/**
418aaa72 1842 Enable/disable bitbang modes.
a3da1d95 1843
1941414d
TJ
1844 \param ftdi pointer to ftdi_context
1845 \param bitmask Bitmask to configure lines.
1846 HIGH/ON value configures a line as output.
fd282db3 1847 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
1848
1849 \retval 0: all fine
1850 \retval -1: can't enable bitbang mode
22a1b5c1 1851 \retval -2: USB device unavailable
1941414d 1852*/
c4446c36
TJ
1853int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1854{
1855 unsigned short usb_val;
1856
22a1b5c1
TJ
1857 if (ftdi == NULL || ftdi->usb_dev == NULL)
1858 ftdi_error_return(-2, "USB device unavailable");
1859
c4446c36
TJ
1860 usb_val = bitmask; // low byte: bitmask
1861 usb_val |= (mode << 8);
579b006f
JZ
1862 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1863 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
c4446c36
TJ
1864
1865 ftdi->bitbang_mode = mode;
418aaa72 1866 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
c4446c36
TJ
1867 return 0;
1868}
1869
1941414d 1870/**
418aaa72 1871 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
1872
1873 \param ftdi pointer to ftdi_context
1874 \param pins Pointer to store pins into
1875
1876 \retval 0: all fine
1877 \retval -1: read pins failed
22a1b5c1 1878 \retval -2: USB device unavailable
1941414d 1879*/
a8f46ddc
TJ
1880int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1881{
22a1b5c1
TJ
1882 if (ftdi == NULL || ftdi->usb_dev == NULL)
1883 ftdi_error_return(-2, "USB device unavailable");
1884
579b006f 1885 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1886 ftdi_error_return(-1, "read pins failed");
a3da1d95 1887
a3da1d95
GE
1888 return 0;
1889}
1890
1941414d
TJ
1891/**
1892 Set latency timer
1893
1894 The FTDI chip keeps data in the internal buffer for a specific
1895 amount of time if the buffer is not full yet to decrease
1896 load on the usb bus.
a3da1d95 1897
1941414d
TJ
1898 \param ftdi pointer to ftdi_context
1899 \param latency Value between 1 and 255
1900
1901 \retval 0: all fine
1902 \retval -1: latency out of range
1903 \retval -2: unable to set latency timer
22a1b5c1 1904 \retval -3: USB device unavailable
1941414d 1905*/
a8f46ddc
TJ
1906int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1907{
a3da1d95
GE
1908 unsigned short usb_val;
1909
c3d95b87
TJ
1910 if (latency < 1)
1911 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 1912
22a1b5c1
TJ
1913 if (ftdi == NULL || ftdi->usb_dev == NULL)
1914 ftdi_error_return(-3, "USB device unavailable");
1915
d79d2e68 1916 usb_val = latency;
579b006f 1917 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1918 ftdi_error_return(-2, "unable to set latency timer");
1919
a3da1d95
GE
1920 return 0;
1921}
1922
1941414d
TJ
1923/**
1924 Get latency timer
a3da1d95 1925
1941414d
TJ
1926 \param ftdi pointer to ftdi_context
1927 \param latency Pointer to store latency value in
1928
1929 \retval 0: all fine
1930 \retval -1: unable to get latency timer
22a1b5c1 1931 \retval -2: USB device unavailable
1941414d 1932*/
a8f46ddc
TJ
1933int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1934{
a3da1d95 1935 unsigned short usb_val;
22a1b5c1
TJ
1936
1937 if (ftdi == NULL || ftdi->usb_dev == NULL)
1938 ftdi_error_return(-2, "USB device unavailable");
1939
579b006f 1940 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1941 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
1942
1943 *latency = (unsigned char)usb_val;
1944 return 0;
1945}
1946
1941414d 1947/**
1189b11a
TJ
1948 Poll modem status information
1949
1950 This function allows the retrieve the two status bytes of the device.
1951 The device sends these bytes also as a header for each read access
1952 where they are discarded by ftdi_read_data(). The chip generates
1953 the two stripped status bytes in the absence of data every 40 ms.
1954
1955 Layout of the first byte:
1956 - B0..B3 - must be 0
1957 - B4 Clear to send (CTS)
1958 0 = inactive
1959 1 = active
1960 - B5 Data set ready (DTS)
1961 0 = inactive
1962 1 = active
1963 - B6 Ring indicator (RI)
1964 0 = inactive
1965 1 = active
1966 - B7 Receive line signal detect (RLSD)
1967 0 = inactive
1968 1 = active
1969
1970 Layout of the second byte:
1971 - B0 Data ready (DR)
1972 - B1 Overrun error (OE)
1973 - B2 Parity error (PE)
1974 - B3 Framing error (FE)
1975 - B4 Break interrupt (BI)
1976 - B5 Transmitter holding register (THRE)
1977 - B6 Transmitter empty (TEMT)
1978 - B7 Error in RCVR FIFO
1979
1980 \param ftdi pointer to ftdi_context
1981 \param status Pointer to store status information in. Must be two bytes.
1982
1983 \retval 0: all fine
1984 \retval -1: unable to retrieve status information
22a1b5c1 1985 \retval -2: USB device unavailable
1189b11a
TJ
1986*/
1987int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1988{
1989 char usb_val[2];
1990
22a1b5c1
TJ
1991 if (ftdi == NULL || ftdi->usb_dev == NULL)
1992 ftdi_error_return(-2, "USB device unavailable");
1993
579b006f 1994 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
1995 ftdi_error_return(-1, "getting modem status failed");
1996
dc09eaa8 1997 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
1189b11a
TJ
1998
1999 return 0;
2000}
2001
a7fb8440
TJ
2002/**
2003 Set flowcontrol for ftdi chip
2004
2005 \param ftdi pointer to ftdi_context
22d12cda
TJ
2006 \param flowctrl flow control to use. should be
2007 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
a7fb8440
TJ
2008
2009 \retval 0: all fine
2010 \retval -1: set flow control failed
22a1b5c1 2011 \retval -2: USB device unavailable
a7fb8440
TJ
2012*/
2013int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2014{
22a1b5c1
TJ
2015 if (ftdi == NULL || ftdi->usb_dev == NULL)
2016 ftdi_error_return(-2, "USB device unavailable");
2017
579b006f
JZ
2018 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2019 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2020 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2021 ftdi_error_return(-1, "set flow control failed");
2022
2023 return 0;
2024}
2025
2026/**
2027 Set dtr line
2028
2029 \param ftdi pointer to ftdi_context
2030 \param state state to set line to (1 or 0)
2031
2032 \retval 0: all fine
2033 \retval -1: set dtr failed
22a1b5c1 2034 \retval -2: USB device unavailable
a7fb8440
TJ
2035*/
2036int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2037{
2038 unsigned short usb_val;
2039
22a1b5c1
TJ
2040 if (ftdi == NULL || ftdi->usb_dev == NULL)
2041 ftdi_error_return(-2, "USB device unavailable");
2042
a7fb8440
TJ
2043 if (state)
2044 usb_val = SIO_SET_DTR_HIGH;
2045 else
2046 usb_val = SIO_SET_DTR_LOW;
2047
579b006f
JZ
2048 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2049 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2050 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2051 ftdi_error_return(-1, "set dtr failed");
2052
2053 return 0;
2054}
2055
2056/**
2057 Set rts line
2058
2059 \param ftdi pointer to ftdi_context
2060 \param state state to set line to (1 or 0)
2061
2062 \retval 0: all fine
22a1b5c1
TJ
2063 \retval -1: set rts failed
2064 \retval -2: USB device unavailable
a7fb8440
TJ
2065*/
2066int ftdi_setrts(struct ftdi_context *ftdi, int state)
2067{
2068 unsigned short usb_val;
2069
22a1b5c1
TJ
2070 if (ftdi == NULL || ftdi->usb_dev == NULL)
2071 ftdi_error_return(-2, "USB device unavailable");
2072
a7fb8440
TJ
2073 if (state)
2074 usb_val = SIO_SET_RTS_HIGH;
2075 else
2076 usb_val = SIO_SET_RTS_LOW;
2077
579b006f
JZ
2078 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2079 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2080 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2081 ftdi_error_return(-1, "set of rts failed");
2082
2083 return 0;
2084}
2085
1189b11a 2086/**
22a1b5c1 2087 Set dtr and rts line in one pass
9ecfef2a 2088
22a1b5c1
TJ
2089 \param ftdi pointer to ftdi_context
2090 \param dtr DTR state to set line to (1 or 0)
2091 \param rts RTS state to set line to (1 or 0)
9ecfef2a 2092
22a1b5c1
TJ
2093 \retval 0: all fine
2094 \retval -1: set dtr/rts failed
2095 \retval -2: USB device unavailable
9ecfef2a
TJ
2096 */
2097int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2098{
2099 unsigned short usb_val;
2100
22a1b5c1
TJ
2101 if (ftdi == NULL || ftdi->usb_dev == NULL)
2102 ftdi_error_return(-2, "USB device unavailable");
2103
9ecfef2a 2104 if (dtr)
22d12cda 2105 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 2106 else
22d12cda 2107 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
2108
2109 if (rts)
22d12cda 2110 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 2111 else
22d12cda 2112 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 2113
579b006f
JZ
2114 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2115 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2116 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 2117 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
2118
2119 return 0;
2120}
2121
2122/**
1189b11a
TJ
2123 Set the special event character
2124
2125 \param ftdi pointer to ftdi_context
2126 \param eventch Event character
2127 \param enable 0 to disable the event character, non-zero otherwise
2128
2129 \retval 0: all fine
2130 \retval -1: unable to set event character
22a1b5c1 2131 \retval -2: USB device unavailable
1189b11a
TJ
2132*/
2133int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 2134 unsigned char eventch, unsigned char enable)
1189b11a
TJ
2135{
2136 unsigned short usb_val;
2137
22a1b5c1
TJ
2138 if (ftdi == NULL || ftdi->usb_dev == NULL)
2139 ftdi_error_return(-2, "USB device unavailable");
2140
1189b11a
TJ
2141 usb_val = eventch;
2142 if (enable)
2143 usb_val |= 1 << 8;
2144
579b006f 2145 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2146 ftdi_error_return(-1, "setting event character failed");
2147
2148 return 0;
2149}
2150
2151/**
2152 Set error character
2153
2154 \param ftdi pointer to ftdi_context
2155 \param errorch Error character
2156 \param enable 0 to disable the error character, non-zero otherwise
2157
2158 \retval 0: all fine
2159 \retval -1: unable to set error character
22a1b5c1 2160 \retval -2: USB device unavailable
1189b11a
TJ
2161*/
2162int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 2163 unsigned char errorch, unsigned char enable)
1189b11a
TJ
2164{
2165 unsigned short usb_val;
2166
22a1b5c1
TJ
2167 if (ftdi == NULL || ftdi->usb_dev == NULL)
2168 ftdi_error_return(-2, "USB device unavailable");
2169
1189b11a
TJ
2170 usb_val = errorch;
2171 if (enable)
2172 usb_val |= 1 << 8;
2173
579b006f 2174 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2175 ftdi_error_return(-1, "setting error character failed");
2176
2177 return 0;
2178}
2179
2180/**
1941414d 2181 Init eeprom with default values.
a35aa9bd 2182 \param ftdi pointer to ftdi_context
f14f84d3
UB
2183 \param manufacturer String to use as Manufacturer
2184 \param product String to use as Product description
2185 \param serial String to use as Serial number description
4e74064b 2186
f14f84d3
UB
2187 \retval 0: all fine
2188 \retval -1: No struct ftdi_context
2189 \retval -2: No struct ftdi_eeprom
1941414d 2190*/
f14f84d3 2191int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
56ac0383 2192 char * product, char * serial)
a8f46ddc 2193{
c0a96aed 2194 struct ftdi_eeprom *eeprom;
f505134f 2195
c0a96aed 2196 if (ftdi == NULL)
f14f84d3 2197 ftdi_error_return(-1, "No struct ftdi_context");
c0a96aed
UB
2198
2199 if (ftdi->eeprom == NULL)
56ac0383 2200 ftdi_error_return(-2,"No struct ftdi_eeprom");
22a1b5c1 2201
c0a96aed 2202 eeprom = ftdi->eeprom;
a02587d5 2203 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
c0a96aed 2204
f396dbad 2205 eeprom->vendor_id = 0x0403;
a02587d5 2206 eeprom->use_serial = USE_SERIAL_NUM;
56ac0383
TJ
2207 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2208 (ftdi->type == TYPE_R))
a02587d5 2209 eeprom->product_id = 0x6001;
c7e4c09e
UB
2210 else if (ftdi->type == TYPE_4232H)
2211 eeprom->product_id = 0x6011;
2212 else if (ftdi->type == TYPE_232H)
2213 eeprom->product_id = 0x6014;
a02587d5
UB
2214 else
2215 eeprom->product_id = 0x6010;
b1859923
UB
2216 if (ftdi->type == TYPE_AM)
2217 eeprom->usb_version = 0x0101;
2218 else
2219 eeprom->usb_version = 0x0200;
a886436a 2220 eeprom->max_power = 100;
d9f0cce7 2221
74e8e79d
UB
2222 if (eeprom->manufacturer)
2223 free (eeprom->manufacturer);
b8aa7b35 2224 eeprom->manufacturer = NULL;
74e8e79d
UB
2225 if (manufacturer)
2226 {
2227 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2228 if (eeprom->manufacturer)
2229 strcpy(eeprom->manufacturer, manufacturer);
2230 }
2231
2232 if (eeprom->product)
2233 free (eeprom->product);
b8aa7b35 2234 eeprom->product = NULL;
10771971 2235 if(product)
74e8e79d
UB
2236 {
2237 eeprom->product = malloc(strlen(product)+1);
2238 if (eeprom->product)
2239 strcpy(eeprom->product, product);
2240 }
2241
2242 if (eeprom->serial)
2243 free (eeprom->serial);
b8aa7b35 2244 eeprom->serial = NULL;
74e8e79d
UB
2245 if (serial)
2246 {
2247 eeprom->serial = malloc(strlen(serial)+1);
2248 if (eeprom->serial)
2249 strcpy(eeprom->serial, serial);
2250 }
2251
c201f80f 2252
56ac0383 2253 if (ftdi->type == TYPE_R)
a4980043 2254 {
a886436a 2255 eeprom->max_power = 90;
a02587d5 2256 eeprom->size = 0x80;
a4980043
UB
2257 eeprom->cbus_function[0] = CBUS_TXLED;
2258 eeprom->cbus_function[1] = CBUS_RXLED;
2259 eeprom->cbus_function[2] = CBUS_TXDEN;
2260 eeprom->cbus_function[3] = CBUS_PWREN;
2261 eeprom->cbus_function[4] = CBUS_SLEEP;
2262 }
a02587d5 2263 else
263d3ba0
UB
2264 {
2265 if(ftdi->type == TYPE_232H)
2266 {
2267 int i;
2268 for (i=0; i<10; i++)
2269 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2270 }
a02587d5 2271 eeprom->size = -1;
263d3ba0 2272 }
f14f84d3 2273 return 0;
b8aa7b35 2274}
263d3ba0
UB
2275/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2276void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2277{
2278 int i;
2279 for(i=0; i<5;i++)
2280 {
2281 int mode_low, mode_high;
2282 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2283 mode_low = CBUSH_TRISTATE;
2284 else
2285 mode_low = eeprom->cbus_function[2*i];
2286 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2287 mode_high = CBUSH_TRISTATE;
2288 else
2289 mode_high = eeprom->cbus_function[2*i];
b8aa7b35 2290
263d3ba0
UB
2291 output[0x18+i] = mode_high <<4 | mode_low;
2292 }
2293}
1941414d 2294/**
a35aa9bd 2295 Build binary buffer from ftdi_eeprom structure.
22a1b5c1 2296 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2297
a35aa9bd 2298 \param ftdi pointer to ftdi_context
1941414d 2299
516ebfb1 2300 \retval >=0: size of eeprom user area in bytes
22a1b5c1 2301 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2c1e2bde
TJ
2302 \retval -2: Invalid eeprom or ftdi pointer
2303 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2304 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2305 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2b9a3c82 2306 \retval -6: No connected EEPROM or EEPROM Type unknown
b8aa7b35 2307*/
a35aa9bd 2308int ftdi_eeprom_build(struct ftdi_context *ftdi)
a8f46ddc 2309{
e2bbd9af 2310 unsigned char i, j, eeprom_size_mask;
b8aa7b35
TJ
2311 unsigned short checksum, value;
2312 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
516ebfb1 2313 int user_area_size;
c0a96aed 2314 struct ftdi_eeprom *eeprom;
a35aa9bd 2315 unsigned char * output;
b8aa7b35 2316
c0a96aed 2317 if (ftdi == NULL)
cc9c9d58 2318 ftdi_error_return(-2,"No context");
c0a96aed 2319 if (ftdi->eeprom == NULL)
cc9c9d58 2320 ftdi_error_return(-2,"No eeprom structure");
c0a96aed
UB
2321
2322 eeprom= ftdi->eeprom;
a35aa9bd 2323 output = eeprom->buf;
22a1b5c1 2324
56ac0383 2325 if (eeprom->chip == -1)
2c1e2bde 2326 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2b9a3c82 2327
f75bf139
UB
2328 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2329 eeprom->size = 0x100;
2330 else
2331 eeprom->size = 0x80;
2332
b8aa7b35 2333 if (eeprom->manufacturer != NULL)
d9f0cce7 2334 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2335 if (eeprom->product != NULL)
d9f0cce7 2336 product_size = strlen(eeprom->product);
b8aa7b35 2337 if (eeprom->serial != NULL)
d9f0cce7 2338 serial_size = strlen(eeprom->serial);
b8aa7b35 2339
814710ba
TJ
2340 // eeprom size check
2341 switch (ftdi->type)
2342 {
2343 case TYPE_AM:
2344 case TYPE_BM:
2345 user_area_size = 96; // base size for strings (total of 48 characters)
2346 break;
2347 case TYPE_2232C:
56ac0383
TJ
2348 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2349 break;
814710ba 2350 case TYPE_R:
56ac0383
TJ
2351 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2352 break;
814710ba
TJ
2353 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2354 case TYPE_4232H:
56ac0383 2355 user_area_size = 86;
118c4561 2356 break;
2c1e2bde
TJ
2357 default:
2358 user_area_size = 0;
56ac0383 2359 break;
665cda04
UB
2360 }
2361 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
814710ba 2362
516ebfb1
TJ
2363 if (user_area_size < 0)
2364 ftdi_error_return(-1,"eeprom size exceeded");
b8aa7b35
TJ
2365
2366 // empty eeprom
a35aa9bd 2367 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
b8aa7b35 2368
93738c79
UB
2369 // Bytes and Bits set for all Types
2370
b8aa7b35
TJ
2371 // Addr 02: Vendor ID
2372 output[0x02] = eeprom->vendor_id;
2373 output[0x03] = eeprom->vendor_id >> 8;
2374
2375 // Addr 04: Product ID
2376 output[0x04] = eeprom->product_id;
2377 output[0x05] = eeprom->product_id >> 8;
2378
2379 // Addr 06: Device release number (0400h for BM features)
2380 output[0x06] = 0x00;
814710ba
TJ
2381 switch (ftdi->type)
2382 {
f505134f
HK
2383 case TYPE_AM:
2384 output[0x07] = 0x02;
2385 break;
2386 case TYPE_BM:
2387 output[0x07] = 0x04;
2388 break;
2389 case TYPE_2232C:
2390 output[0x07] = 0x05;
2391 break;
2392 case TYPE_R:
2393 output[0x07] = 0x06;
2394 break;
56ac0383 2395 case TYPE_2232H:
6123f7ab
UB
2396 output[0x07] = 0x07;
2397 break;
56ac0383 2398 case TYPE_4232H:
6123f7ab
UB
2399 output[0x07] = 0x08;
2400 break;
c7e4c09e
UB
2401 case TYPE_232H:
2402 output[0x07] = 0x09;
2403 break;
f505134f
HK
2404 default:
2405 output[0x07] = 0x00;
2406 }
b8aa7b35
TJ
2407
2408 // Addr 08: Config descriptor
8fae3e8e
TJ
2409 // Bit 7: always 1
2410 // Bit 6: 1 if this device is self powered, 0 if bus powered
2411 // Bit 5: 1 if this device uses remote wakeup
37186e34 2412 // Bit 4-0: reserved - 0
5a1dcd55 2413 j = 0x80;
b8aa7b35 2414 if (eeprom->self_powered == 1)
5a1dcd55 2415 j |= 0x40;
b8aa7b35 2416 if (eeprom->remote_wakeup == 1)
5a1dcd55 2417 j |= 0x20;
b8aa7b35
TJ
2418 output[0x08] = j;
2419
2420 // Addr 09: Max power consumption: max power = value * 2 mA
bb5ec68a 2421 output[0x09] = eeprom->max_power>>1;
d9f0cce7 2422
56ac0383 2423 if (ftdi->type != TYPE_AM)
93738c79
UB
2424 {
2425 // Addr 0A: Chip configuration
2426 // Bit 7: 0 - reserved
2427 // Bit 6: 0 - reserved
2428 // Bit 5: 0 - reserved
56ac0383 2429 // Bit 4: 1 - Change USB version
93738c79
UB
2430 // Bit 3: 1 - Use the serial number string
2431 // Bit 2: 1 - Enable suspend pull downs for lower power
2432 // Bit 1: 1 - Out EndPoint is Isochronous
2433 // Bit 0: 1 - In EndPoint is Isochronous
2434 //
2435 j = 0;
2436 if (eeprom->in_is_isochronous == 1)
2437 j = j | 1;
2438 if (eeprom->out_is_isochronous == 1)
2439 j = j | 2;
2440 output[0x0A] = j;
2441 }
f505134f 2442
b8aa7b35 2443 // Dynamic content
93738c79
UB
2444 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2445 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
c7e4c09e 2446 // 0xa0 (TYPE_232H)
93738c79 2447 i = 0;
56ac0383
TJ
2448 switch (ftdi->type)
2449 {
c7e4c09e
UB
2450 case TYPE_232H:
2451 i += 2;
56ac0383
TJ
2452 case TYPE_2232H:
2453 case TYPE_4232H:
2454 i += 2;
2455 case TYPE_R:
2456 i += 2;
2457 case TYPE_2232C:
2458 i += 2;
2459 case TYPE_AM:
2460 case TYPE_BM:
2461 i += 0x94;
f505134f 2462 }
93738c79 2463 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
e2bbd9af 2464 eeprom_size_mask = eeprom->size -1;
c201f80f 2465
93738c79
UB
2466 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2467 // Addr 0F: Length of manufacturer string
22d12cda 2468 // Output manufacturer
93738c79 2469 output[0x0E] = i; // calculate offset
e2bbd9af
TJ
2470 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2471 output[i & eeprom_size_mask] = 0x03, i++; // type: string
22d12cda
TJ
2472 for (j = 0; j < manufacturer_size; j++)
2473 {
e2bbd9af
TJ
2474 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2475 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2476 }
93738c79 2477 output[0x0F] = manufacturer_size*2 + 2;
b8aa7b35 2478
93738c79
UB
2479 // Addr 10: Offset of the product string + 0x80, calculated later
2480 // Addr 11: Length of product string
c201f80f 2481 output[0x10] = i | 0x80; // calculate offset
e2bbd9af
TJ
2482 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2483 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2484 for (j = 0; j < product_size; j++)
2485 {
e2bbd9af
TJ
2486 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2487 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2488 }
93738c79 2489 output[0x11] = product_size*2 + 2;
37186e34 2490
93738c79
UB
2491 // Addr 12: Offset of the serial string + 0x80, calculated later
2492 // Addr 13: Length of serial string
c201f80f 2493 output[0x12] = i | 0x80; // calculate offset
e2bbd9af
TJ
2494 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2495 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2496 for (j = 0; j < serial_size; j++)
2497 {
e2bbd9af
TJ
2498 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2499 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2500 }
c2700d6d
TJ
2501
2502 // Legacy port name and PnP fields for FT2232 and newer chips
2503 if (ftdi->type > TYPE_BM)
2504 {
2505 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2506 i++;
2507 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2508 i++;
2509 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2510 i++;
2511 }
802a949e 2512
93738c79 2513 output[0x13] = serial_size*2 + 2;
b8aa7b35 2514
56ac0383 2515 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
bf2f6ef7
UB
2516 {
2517 if (eeprom->use_serial == USE_SERIAL_NUM )
2518 output[0x0A] |= USE_SERIAL_NUM;
2519 else
2520 output[0x0A] &= ~USE_SERIAL_NUM;
2521 }
3802140c
UB
2522
2523 /* Bytes and Bits specific to (some) types
2524 Write linear, as this allows easier fixing*/
56ac0383
TJ
2525 switch (ftdi->type)
2526 {
2527 case TYPE_AM:
2528 break;
2529 case TYPE_BM:
2530 output[0x0C] = eeprom->usb_version & 0xff;
2531 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2532 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2533 output[0x0A] |= USE_USB_VERSION_BIT;
2534 else
2535 output[0x0A] &= ~USE_USB_VERSION_BIT;
caec1294 2536
56ac0383
TJ
2537 break;
2538 case TYPE_2232C:
3802140c 2539
56ac0383
TJ
2540 output[0x00] = (eeprom->channel_a_type);
2541 if ( eeprom->channel_a_driver == DRIVER_VCP)
2542 output[0x00] |= DRIVER_VCP;
2543 else
2544 output[0x00] &= ~DRIVER_VCP;
4e74064b 2545
56ac0383
TJ
2546 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2547 output[0x00] |= HIGH_CURRENT_DRIVE;
2548 else
2549 output[0x00] &= ~HIGH_CURRENT_DRIVE;
3802140c 2550
56ac0383
TJ
2551 output[0x01] = (eeprom->channel_b_type);
2552 if ( eeprom->channel_b_driver == DRIVER_VCP)
2553 output[0x01] |= DRIVER_VCP;
2554 else
2555 output[0x01] &= ~DRIVER_VCP;
4e74064b 2556
56ac0383
TJ
2557 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2558 output[0x01] |= HIGH_CURRENT_DRIVE;
2559 else
2560 output[0x01] &= ~HIGH_CURRENT_DRIVE;
3802140c 2561
56ac0383
TJ
2562 if (eeprom->in_is_isochronous == 1)
2563 output[0x0A] |= 0x1;
2564 else
2565 output[0x0A] &= ~0x1;
2566 if (eeprom->out_is_isochronous == 1)
2567 output[0x0A] |= 0x2;
2568 else
2569 output[0x0A] &= ~0x2;
2570 if (eeprom->suspend_pull_downs == 1)
2571 output[0x0A] |= 0x4;
2572 else
2573 output[0x0A] &= ~0x4;
2574 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2575 output[0x0A] |= USE_USB_VERSION_BIT;
2576 else
2577 output[0x0A] &= ~USE_USB_VERSION_BIT;
4e74064b 2578
56ac0383
TJ
2579 output[0x0C] = eeprom->usb_version & 0xff;
2580 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2581 output[0x14] = eeprom->chip;
2582 break;
2583 case TYPE_R:
2584 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2585 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2586 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
4e74064b 2587
56ac0383
TJ
2588 if (eeprom->suspend_pull_downs == 1)
2589 output[0x0A] |= 0x4;
2590 else
2591 output[0x0A] &= ~0x4;
2592 output[0x0B] = eeprom->invert;
2593 output[0x0C] = eeprom->usb_version & 0xff;
2594 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
4e74064b 2595
56ac0383
TJ
2596 if (eeprom->cbus_function[0] > CBUS_BB)
2597 output[0x14] = CBUS_TXLED;
2598 else
2599 output[0x14] = eeprom->cbus_function[0];
4e74064b 2600
56ac0383
TJ
2601 if (eeprom->cbus_function[1] > CBUS_BB)
2602 output[0x14] |= CBUS_RXLED<<4;
2603 else
2604 output[0x14] |= eeprom->cbus_function[1]<<4;
4e74064b 2605
56ac0383
TJ
2606 if (eeprom->cbus_function[2] > CBUS_BB)
2607 output[0x15] = CBUS_TXDEN;
2608 else
2609 output[0x15] = eeprom->cbus_function[2];
4e74064b 2610
56ac0383
TJ
2611 if (eeprom->cbus_function[3] > CBUS_BB)
2612 output[0x15] |= CBUS_PWREN<<4;
2613 else
2614 output[0x15] |= eeprom->cbus_function[3]<<4;
4e74064b 2615
56ac0383
TJ
2616 if (eeprom->cbus_function[4] > CBUS_CLK6)
2617 output[0x16] = CBUS_SLEEP;
2618 else
2619 output[0x16] = eeprom->cbus_function[4];
2620 break;
2621 case TYPE_2232H:
2622 output[0x00] = (eeprom->channel_a_type);
2623 if ( eeprom->channel_a_driver == DRIVER_VCP)
2624 output[0x00] |= DRIVER_VCP;
2625 else
2626 output[0x00] &= ~DRIVER_VCP;
6e6a1c3f 2627
56ac0383
TJ
2628 output[0x01] = (eeprom->channel_b_type);
2629 if ( eeprom->channel_b_driver == DRIVER_VCP)
2630 output[0x01] |= DRIVER_VCP;
2631 else
2632 output[0x01] &= ~DRIVER_VCP;
2633 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2634 output[0x01] |= SUSPEND_DBUS7_BIT;
2635 else
2636 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2637
2638 if (eeprom->suspend_pull_downs == 1)
2639 output[0x0A] |= 0x4;
2640 else
2641 output[0x0A] &= ~0x4;
2642
2643 if (eeprom->group0_drive > DRIVE_16MA)
2644 output[0x0c] |= DRIVE_16MA;
2645 else
2646 output[0x0c] |= eeprom->group0_drive;
2647 if (eeprom->group0_schmitt == IS_SCHMITT)
2648 output[0x0c] |= IS_SCHMITT;
2649 if (eeprom->group0_slew == SLOW_SLEW)
2650 output[0x0c] |= SLOW_SLEW;
2651
2652 if (eeprom->group1_drive > DRIVE_16MA)
2653 output[0x0c] |= DRIVE_16MA<<4;
2654 else
2655 output[0x0c] |= eeprom->group1_drive<<4;
2656 if (eeprom->group1_schmitt == IS_SCHMITT)
2657 output[0x0c] |= IS_SCHMITT<<4;
2658 if (eeprom->group1_slew == SLOW_SLEW)
2659 output[0x0c] |= SLOW_SLEW<<4;
2660
2661 if (eeprom->group2_drive > DRIVE_16MA)
2662 output[0x0d] |= DRIVE_16MA;
2663 else
2664 output[0x0d] |= eeprom->group2_drive;
2665 if (eeprom->group2_schmitt == IS_SCHMITT)
2666 output[0x0d] |= IS_SCHMITT;
2667 if (eeprom->group2_slew == SLOW_SLEW)
2668 output[0x0d] |= SLOW_SLEW;
2669
2670 if (eeprom->group3_drive > DRIVE_16MA)
2671 output[0x0d] |= DRIVE_16MA<<4;
2672 else
2673 output[0x0d] |= eeprom->group3_drive<<4;
2674 if (eeprom->group3_schmitt == IS_SCHMITT)
2675 output[0x0d] |= IS_SCHMITT<<4;
2676 if (eeprom->group3_slew == SLOW_SLEW)
2677 output[0x0d] |= SLOW_SLEW<<4;
3802140c 2678
56ac0383 2679 output[0x18] = eeprom->chip;
3802140c 2680
56ac0383
TJ
2681 break;
2682 case TYPE_4232H:
c7e4c09e 2683 output[0x18] = eeprom->chip;
56ac0383 2684 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
c7e4c09e
UB
2685 break;
2686 case TYPE_232H:
ac4a82a5
UB
2687 output[0x00] = (eeprom->channel_a_type);
2688 if ( eeprom->channel_a_driver == DRIVER_VCP)
2689 output[0x00] |= DRIVER_VCPH;
2690 else
2691 output[0x00] &= ~DRIVER_VCPH;
837a71d6
UB
2692 if (eeprom->powersave)
2693 output[0x01] |= POWER_SAVE_DISABLE_H;
2694 else
2695 output[0x01] &= ~POWER_SAVE_DISABLE_H;
18199b76
UB
2696 if (eeprom->clock_polarity)
2697 output[0x01] |= FT1284_CLK_IDLE_STATE;
2698 else
2699 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
2700 if (eeprom->data_order)
2701 output[0x01] |= FT1284_DATA_LSB;
2702 else
2703 output[0x01] &= ~FT1284_DATA_LSB;
2704 if (eeprom->flow_control)
2705 output[0x01] |= FT1284_FLOW_CONTROL;
2706 else
2707 output[0x01] &= ~FT1284_FLOW_CONTROL;
91d7a201
UB
2708 if (eeprom->group0_drive > DRIVE_16MA)
2709 output[0x0c] |= DRIVE_16MA;
2710 else
2711 output[0x0c] |= eeprom->group0_drive;
2712 if (eeprom->group0_schmitt == IS_SCHMITT)
2713 output[0x0c] |= IS_SCHMITT;
2714 if (eeprom->group0_slew == SLOW_SLEW)
2715 output[0x0c] |= SLOW_SLEW;
2716
2717 if (eeprom->group1_drive > DRIVE_16MA)
2718 output[0x0d] |= DRIVE_16MA;
2719 else
2720 output[0x0d] |= eeprom->group1_drive;
2721 if (eeprom->group1_schmitt == IS_SCHMITT)
2722 output[0x0d] |= IS_SCHMITT;
2723 if (eeprom->group1_slew == SLOW_SLEW)
2724 output[0x0d] |= SLOW_SLEW;
2725
263d3ba0
UB
2726 set_ft232h_cbus(eeprom, output);
2727
c7e4c09e
UB
2728 output[0x1e] = eeprom->chip;
2729 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
2730 break;
2731
3802140c
UB
2732 }
2733
cbf65673 2734 // calculate checksum
b8aa7b35 2735 checksum = 0xAAAA;
d9f0cce7 2736
22d12cda
TJ
2737 for (i = 0; i < eeprom->size/2-1; i++)
2738 {
d9f0cce7
TJ
2739 value = output[i*2];
2740 value += output[(i*2)+1] << 8;
b8aa7b35 2741
d9f0cce7
TJ
2742 checksum = value^checksum;
2743 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
2744 }
2745
c201f80f
TJ
2746 output[eeprom->size-2] = checksum;
2747 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 2748
516ebfb1 2749 return user_area_size;
b8aa7b35
TJ
2750}
2751
4af1d1bb
MK
2752/**
2753 Decode binary EEPROM image into an ftdi_eeprom structure.
2754
a35aa9bd
UB
2755 \param ftdi pointer to ftdi_context
2756 \param verbose Decode EEPROM on stdout
56ac0383 2757
4af1d1bb
MK
2758 \retval 0: all fine
2759 \retval -1: something went wrong
2760
2761 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2762 FIXME: Strings are malloc'ed here and should be freed somewhere
2763*/
a35aa9bd 2764int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
b56d5a64
MK
2765{
2766 unsigned char i, j;
2767 unsigned short checksum, eeprom_checksum, value;
2768 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
f2cd9fd5 2769 int eeprom_size;
c0a96aed 2770 struct ftdi_eeprom *eeprom;
a35aa9bd 2771 unsigned char *buf = ftdi->eeprom->buf;
38801bf8 2772 int release;
22a1b5c1 2773
c0a96aed 2774 if (ftdi == NULL)
cc9c9d58 2775 ftdi_error_return(-1,"No context");
c0a96aed 2776 if (ftdi->eeprom == NULL)
6cd4f922 2777 ftdi_error_return(-1,"No eeprom structure");
56ac0383 2778
c0a96aed 2779 eeprom = ftdi->eeprom;
a35aa9bd 2780 eeprom_size = eeprom->size;
b56d5a64 2781
b56d5a64
MK
2782 // Addr 02: Vendor ID
2783 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2784
2785 // Addr 04: Product ID
2786 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
22d12cda 2787
38801bf8 2788 release = buf[0x06] + (buf[0x07]<<8);
b56d5a64
MK
2789
2790 // Addr 08: Config descriptor
2791 // Bit 7: always 1
2792 // Bit 6: 1 if this device is self powered, 0 if bus powered
2793 // Bit 5: 1 if this device uses remote wakeup
f6ef2983 2794 eeprom->self_powered = buf[0x08] & 0x40;
814710ba 2795 eeprom->remote_wakeup = buf[0x08] & 0x20;
b56d5a64
MK
2796
2797 // Addr 09: Max power consumption: max power = value * 2 mA
2798 eeprom->max_power = buf[0x09];
2799
2800 // Addr 0A: Chip configuration
2801 // Bit 7: 0 - reserved
2802 // Bit 6: 0 - reserved
2803 // Bit 5: 0 - reserved
caec1294 2804 // Bit 4: 1 - Change USB version on BM and 2232C
b56d5a64
MK
2805 // Bit 3: 1 - Use the serial number string
2806 // Bit 2: 1 - Enable suspend pull downs for lower power
2807 // Bit 1: 1 - Out EndPoint is Isochronous
2808 // Bit 0: 1 - In EndPoint is Isochronous
2809 //
8d3fe5c9
UB
2810 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2811 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2812 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
a02587d5 2813 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
caec1294 2814 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
b56d5a64 2815
b1859923 2816 // Addr 0C: USB version low byte when 0x0A
56ac0383 2817 // Addr 0D: USB version high byte when 0x0A
b1859923 2818 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
b56d5a64
MK
2819
2820 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2821 // Addr 0F: Length of manufacturer string
2822 manufacturer_size = buf[0x0F]/2;
56ac0383 2823 if (eeprom->manufacturer)
74e8e79d 2824 free(eeprom->manufacturer);
56ac0383 2825 if (manufacturer_size > 0)
acc1fa05
UB
2826 {
2827 eeprom->manufacturer = malloc(manufacturer_size);
2828 if (eeprom->manufacturer)
2829 {
2830 // Decode manufacturer
84ec032f 2831 i = buf[0x0E] & (eeprom_size -1); // offset
acc1fa05
UB
2832 for (j=0;j<manufacturer_size-1;j++)
2833 {
2834 eeprom->manufacturer[j] = buf[2*j+i+2];
2835 }
2836 eeprom->manufacturer[j] = '\0';
2837 }
2838 }
b56d5a64
MK
2839 else eeprom->manufacturer = NULL;
2840
2841 // Addr 10: Offset of the product string + 0x80, calculated later
2842 // Addr 11: Length of product string
56ac0383 2843 if (eeprom->product)
74e8e79d 2844 free(eeprom->product);
b56d5a64 2845 product_size = buf[0x11]/2;
acc1fa05
UB
2846 if (product_size > 0)
2847 {
2848 eeprom->product = malloc(product_size);
56ac0383 2849 if (eeprom->product)
acc1fa05
UB
2850 {
2851 // Decode product name
84ec032f 2852 i = buf[0x10] & (eeprom_size -1); // offset
acc1fa05
UB
2853 for (j=0;j<product_size-1;j++)
2854 {
2855 eeprom->product[j] = buf[2*j+i+2];
2856 }
2857 eeprom->product[j] = '\0';
2858 }
2859 }
b56d5a64
MK
2860 else eeprom->product = NULL;
2861
2862 // Addr 12: Offset of the serial string + 0x80, calculated later
2863 // Addr 13: Length of serial string
56ac0383 2864 if (eeprom->serial)
74e8e79d 2865 free(eeprom->serial);
b56d5a64 2866 serial_size = buf[0x13]/2;
acc1fa05
UB
2867 if (serial_size > 0)
2868 {
2869 eeprom->serial = malloc(serial_size);
56ac0383 2870 if (eeprom->serial)
acc1fa05
UB
2871 {
2872 // Decode serial
84ec032f 2873 i = buf[0x12] & (eeprom_size -1); // offset
acc1fa05
UB
2874 for (j=0;j<serial_size-1;j++)
2875 {
2876 eeprom->serial[j] = buf[2*j+i+2];
2877 }
2878 eeprom->serial[j] = '\0';
2879 }
2880 }
b56d5a64
MK
2881 else eeprom->serial = NULL;
2882
b56d5a64
MK
2883 // verify checksum
2884 checksum = 0xAAAA;
2885
22d12cda
TJ
2886 for (i = 0; i < eeprom_size/2-1; i++)
2887 {
b56d5a64
MK
2888 value = buf[i*2];
2889 value += buf[(i*2)+1] << 8;
2890
2891 checksum = value^checksum;
2892 checksum = (checksum << 1) | (checksum >> 15);
2893 }
2894
2895 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2896
22d12cda
TJ
2897 if (eeprom_checksum != checksum)
2898 {
2899 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
cc9c9d58 2900 ftdi_error_return(-1,"EEPROM checksum error");
4af1d1bb
MK
2901 }
2902
eb498cff 2903 eeprom->channel_a_type = 0;
aa099f46 2904 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
f6ef2983 2905 {
6cd4f922 2906 eeprom->chip = -1;
f6ef2983 2907 }
56ac0383 2908 else if (ftdi->type == TYPE_2232C)
f6ef2983 2909 {
2cde7c52
UB
2910 eeprom->channel_a_type = buf[0x00] & 0x7;
2911 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2912 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2913 eeprom->channel_b_type = buf[0x01] & 0x7;
2914 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2915 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
6cd4f922 2916 eeprom->chip = buf[0x14];
065edc58 2917 }
56ac0383 2918 else if (ftdi->type == TYPE_R)
564b2716 2919 {
2cde7c52
UB
2920 /* TYPE_R flags D2XX, not VCP as all others*/
2921 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2922 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
56ac0383
TJ
2923 if ( (buf[0x01]&0x40) != 0x40)
2924 fprintf(stderr,
2925 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2926 " If this happened with the\n"
2927 " EEPROM programmed by FTDI tools, please report "
2928 "to libftdi@developer.intra2net.com\n");
2cde7c52 2929
6cd4f922 2930 eeprom->chip = buf[0x16];
cecb9cb2
UB
2931 // Addr 0B: Invert data lines
2932 // Works only on FT232R, not FT245R, but no way to distinguish
07851949
UB
2933 eeprom->invert = buf[0x0B];
2934 // Addr 14: CBUS function: CBUS0, CBUS1
2935 // Addr 15: CBUS function: CBUS2, CBUS3
2936 // Addr 16: CBUS function: CBUS5
2937 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2938 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2939 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2940 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2941 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
564b2716 2942 }
56ac0383 2943 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
db099ec5 2944 {
c6b94478 2945 eeprom->channel_a_type = buf[0x00] & 0x7;
2cde7c52
UB
2946 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2947 eeprom->channel_b_type = buf[0x01] & 0x7;
2948 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2949
56ac0383 2950 if (ftdi->type == TYPE_2232H)
ec0dcd3f 2951 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
2cde7c52 2952
6cd4f922 2953 eeprom->chip = buf[0x18];
db099ec5
UB
2954 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2955 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2956 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2957 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2958 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2959 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2960 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2961 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2962 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2963 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2964 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2965 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
947d9552 2966 }
c7e4c09e
UB
2967 else if (ftdi->type == TYPE_232H)
2968 {
263d3ba0
UB
2969 int i;
2970
ac4a82a5
UB
2971 eeprom->channel_a_type = buf[0x00] & 0xf;
2972 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
18199b76
UB
2973 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
2974 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
2975 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
837a71d6 2976 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
91d7a201
UB
2977 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2978 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2979 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2980 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
2981 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
2982 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
2983
263d3ba0
UB
2984 for(i=0; i<5; i++)
2985 {
2986 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
2987 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
2988 }
c7e4c09e
UB
2989 eeprom->chip = buf[0x1e];
2990 /*FIXME: Decipher more values*/
2991 }
56ac0383
TJ
2992
2993 if (verbose)
f6ef2983 2994 {
ac4a82a5 2995 char *channel_mode[] = {"UART","245","CPU", "unknown", "OPTO", "unknown1","unknown2","unknown3","FT1284"};
f6ef2983
UB
2996 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
2997 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
38801bf8 2998 fprintf(stdout, "Release: 0x%04x\n",release);
f6ef2983 2999
56ac0383 3000 if (eeprom->self_powered)
f6ef2983
UB
3001 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3002 else
1cd815ad 3003 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
f6ef2983 3004 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
56ac0383 3005 if (eeprom->manufacturer)
f6ef2983 3006 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
56ac0383 3007 if (eeprom->product)
f6ef2983 3008 fprintf(stdout, "Product: %s\n",eeprom->product);
56ac0383 3009 if (eeprom->serial)
f6ef2983 3010 fprintf(stdout, "Serial: %s\n",eeprom->serial);
e107f509 3011 fprintf(stdout, "Checksum : %04x\n", checksum);
6cd4f922
UB
3012 if (ftdi->type == TYPE_R)
3013 fprintf(stdout, "Internal EEPROM\n");
3014 else if (eeprom->chip >= 0x46)
3015 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
56ac0383
TJ
3016 if (eeprom->suspend_dbus7)
3017 fprintf(stdout, "Suspend on DBUS7\n");
3018 if (eeprom->suspend_pull_downs)
fb9bfdd1 3019 fprintf(stdout, "Pull IO pins low during suspend\n");
837a71d6
UB
3020 if(eeprom->powersave)
3021 {
3022 if(ftdi->type >= TYPE_232H)
3023 fprintf(stdout,"Enter low power state on ACBUS7\n");
3024 }
56ac0383 3025 if (eeprom->remote_wakeup)
fb9bfdd1 3026 fprintf(stdout, "Enable Remote Wake Up\n");
802a949e 3027 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
db099ec5 3028 if (ftdi->type >= TYPE_2232C)
56ac0383 3029 fprintf(stdout,"Channel A has Mode %s%s%s\n",
e107f509 3030 channel_mode[eeprom->channel_a_type],
2cde7c52
UB
3031 (eeprom->channel_a_driver)?" VCP":"",
3032 (eeprom->high_current_a)?" High Current IO":"");
18199b76
UB
3033 if (ftdi->type >= TYPE_232H)
3034 {
3035 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3036 (eeprom->clock_polarity)?"HIGH":"LOW",
3037 (eeprom->data_order)?"LSB":"MSB",
3038 (eeprom->flow_control)?"":"No ");
3039 }
c7e4c09e 3040 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
56ac0383 3041 fprintf(stdout,"Channel B has Mode %s%s%s\n",
e107f509 3042 channel_mode[eeprom->channel_b_type],
2cde7c52
UB
3043 (eeprom->channel_b_driver)?" VCP":"",
3044 (eeprom->high_current_b)?" High Current IO":"");
caec1294 3045 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
56ac0383 3046 eeprom->use_usb_version == USE_USB_VERSION_BIT)
caec1294
UB
3047 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3048
56ac0383 3049 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
db099ec5
UB
3050 {
3051 fprintf(stdout,"%s has %d mA drive%s%s\n",
3052 (ftdi->type == TYPE_2232H)?"AL":"A",
3053 (eeprom->group0_drive+1) *4,
3054 (eeprom->group0_schmitt)?" Schmitt Input":"",
3055 (eeprom->group0_slew)?" Slow Slew":"");
3056 fprintf(stdout,"%s has %d mA drive%s%s\n",
3057 (ftdi->type == TYPE_2232H)?"AH":"B",
3058 (eeprom->group1_drive+1) *4,
3059 (eeprom->group1_schmitt)?" Schmitt Input":"",
3060 (eeprom->group1_slew)?" Slow Slew":"");
3061 fprintf(stdout,"%s has %d mA drive%s%s\n",
3062 (ftdi->type == TYPE_2232H)?"BL":"C",
3063 (eeprom->group2_drive+1) *4,
3064 (eeprom->group2_schmitt)?" Schmitt Input":"",
3065 (eeprom->group2_slew)?" Slow Slew":"");
3066 fprintf(stdout,"%s has %d mA drive%s%s\n",
3067 (ftdi->type == TYPE_2232H)?"BH":"D",
3068 (eeprom->group3_drive+1) *4,
3069 (eeprom->group3_schmitt)?" Schmitt Input":"",
3070 (eeprom->group3_slew)?" Slow Slew":"");
3071 }
91d7a201
UB
3072 else if (ftdi->type == TYPE_232H)
3073 {
263d3ba0
UB
3074 int i;
3075 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3076 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3077 "CLK30","CLK15","CLK7_5"
3078 };
91d7a201
UB
3079 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3080 (eeprom->group0_drive+1) *4,
3081 (eeprom->group0_schmitt)?" Schmitt Input":"",
3082 (eeprom->group0_slew)?" Slow Slew":"");
3083 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3084 (eeprom->group1_drive+1) *4,
3085 (eeprom->group1_schmitt)?" Schmitt Input":"",
3086 (eeprom->group1_slew)?" Slow Slew":"");
263d3ba0
UB
3087 for (i=0; i<10; i++)
3088 {
3089 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3090 fprintf(stdout,"C%d Function: %s\n", i,
3091 cbush_mux[eeprom->cbus_function[i]]);
3092 }
3093
91d7a201
UB
3094 }
3095
a4980043
UB
3096 if (ftdi->type == TYPE_R)
3097 {
3098 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
13f00d3c 3099 "SLEEP","CLK48","CLK24","CLK12","CLK6",
56ac0383
TJ
3100 "IOMODE","BB_WR","BB_RD"
3101 };
13f00d3c 3102 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
56ac0383
TJ
3103
3104 if (eeprom->invert)
3105 {
a4980043
UB
3106 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3107 fprintf(stdout,"Inverted bits:");
3108 for (i=0; i<8; i++)
56ac0383 3109 if ((eeprom->invert & (1<<i)) == (1<<i))
a4980043
UB
3110 fprintf(stdout," %s",r_bits[i]);
3111 fprintf(stdout,"\n");
3112 }
56ac0383 3113 for (i=0; i<5; i++)
a4980043 3114 {
56ac0383 3115 if (eeprom->cbus_function[i]<CBUS_BB)
a4980043
UB
3116 fprintf(stdout,"C%d Function: %s\n", i,
3117 cbus_mux[eeprom->cbus_function[i]]);
3118 else
17431287 3119 {
598b2334
UB
3120 if (i < 4)
3121 /* Running MPROG show that C0..3 have fixed function Synchronous
3122 Bit Bang mode */
3123 fprintf(stdout,"C%d BB Function: %s\n", i,
3124 cbus_BB[i]);
3125 else
3126 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
17431287 3127 }
a4980043
UB
3128 }
3129 }
f6ef2983 3130 }
4af1d1bb 3131 return 0;
b56d5a64
MK
3132}
3133
1941414d 3134/**
44ef02bd
UB
3135 Get a value from the decoded EEPROM structure
3136
735e81ea
TJ
3137 \param ftdi pointer to ftdi_context
3138 \param value_name Enum of the value to query
3139 \param value Pointer to store read value
44ef02bd 3140
735e81ea
TJ
3141 \retval 0: all fine
3142 \retval -1: Value doesn't exist
44ef02bd
UB
3143*/
3144int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3145{
3146 switch (value_name)
3147 {
56ac0383
TJ
3148 case VENDOR_ID:
3149 *value = ftdi->eeprom->vendor_id;
3150 break;
3151 case PRODUCT_ID:
3152 *value = ftdi->eeprom->product_id;
3153 break;
3154 case SELF_POWERED:
3155 *value = ftdi->eeprom->self_powered;
3156 break;
3157 case REMOTE_WAKEUP:
3158 *value = ftdi->eeprom->remote_wakeup;
3159 break;
3160 case IS_NOT_PNP:
3161 *value = ftdi->eeprom->is_not_pnp;
3162 break;
3163 case SUSPEND_DBUS7:
3164 *value = ftdi->eeprom->suspend_dbus7;
3165 break;
3166 case IN_IS_ISOCHRONOUS:
3167 *value = ftdi->eeprom->in_is_isochronous;
3168 break;
3169 case SUSPEND_PULL_DOWNS:
3170 *value = ftdi->eeprom->suspend_pull_downs;
3171 break;
3172 case USE_SERIAL:
3173 *value = ftdi->eeprom->use_serial;
3174 break;
3175 case USB_VERSION:
3176 *value = ftdi->eeprom->usb_version;
3177 break;
3178 case MAX_POWER:
3179 *value = ftdi->eeprom->max_power;
3180 break;
3181 case CHANNEL_A_TYPE:
3182 *value = ftdi->eeprom->channel_a_type;
3183 break;
3184 case CHANNEL_B_TYPE:
3185 *value = ftdi->eeprom->channel_b_type;
3186 break;
3187 case CHANNEL_A_DRIVER:
3188 *value = ftdi->eeprom->channel_a_driver;
3189 break;
3190 case CHANNEL_B_DRIVER:
3191 *value = ftdi->eeprom->channel_b_driver;
3192 break;
3193 case CBUS_FUNCTION_0:
3194 *value = ftdi->eeprom->cbus_function[0];
3195 break;
3196 case CBUS_FUNCTION_1:
3197 *value = ftdi->eeprom->cbus_function[1];
3198 break;
3199 case CBUS_FUNCTION_2:
3200 *value = ftdi->eeprom->cbus_function[2];
3201 break;
3202 case CBUS_FUNCTION_3:
3203 *value = ftdi->eeprom->cbus_function[3];
3204 break;
3205 case CBUS_FUNCTION_4:
3206 *value = ftdi->eeprom->cbus_function[4];
3207 break;
263d3ba0
UB
3208 case CBUS_FUNCTION_5:
3209 *value = ftdi->eeprom->cbus_function[5];
3210 break;
3211 case CBUS_FUNCTION_6:
3212 *value = ftdi->eeprom->cbus_function[6];
3213 break;
3214 case CBUS_FUNCTION_7:
3215 *value = ftdi->eeprom->cbus_function[7];
3216 break;
3217 case CBUS_FUNCTION_8:
3218 *value = ftdi->eeprom->cbus_function[8];
3219 break;
3220 case CBUS_FUNCTION_9:
3221 *value = ftdi->eeprom->cbus_function[8];
3222 break;
56ac0383
TJ
3223 case HIGH_CURRENT:
3224 *value = ftdi->eeprom->high_current;
3225 break;
3226 case HIGH_CURRENT_A:
3227 *value = ftdi->eeprom->high_current_a;
3228 break;
3229 case HIGH_CURRENT_B:
3230 *value = ftdi->eeprom->high_current_b;
3231 break;
3232 case INVERT:
3233 *value = ftdi->eeprom->invert;
3234 break;
3235 case GROUP0_DRIVE:
3236 *value = ftdi->eeprom->group0_drive;
3237 break;
3238 case GROUP0_SCHMITT:
3239 *value = ftdi->eeprom->group0_schmitt;
3240 break;
3241 case GROUP0_SLEW:
3242 *value = ftdi->eeprom->group0_slew;
3243 break;
3244 case GROUP1_DRIVE:
3245 *value = ftdi->eeprom->group1_drive;
3246 break;
3247 case GROUP1_SCHMITT:
3248 *value = ftdi->eeprom->group1_schmitt;
3249 break;
3250 case GROUP1_SLEW:
3251 *value = ftdi->eeprom->group1_slew;
3252 break;
3253 case GROUP2_DRIVE:
3254 *value = ftdi->eeprom->group2_drive;
3255 break;
3256 case GROUP2_SCHMITT:
3257 *value = ftdi->eeprom->group2_schmitt;
3258 break;
3259 case GROUP2_SLEW:
3260 *value = ftdi->eeprom->group2_slew;
3261 break;
3262 case GROUP3_DRIVE:
3263 *value = ftdi->eeprom->group3_drive;
3264 break;
3265 case GROUP3_SCHMITT:
3266 *value = ftdi->eeprom->group3_schmitt;
3267 break;
3268 case GROUP3_SLEW:
3269 *value = ftdi->eeprom->group3_slew;
3270 break;
837a71d6
UB
3271 case POWER_SAVE:
3272 *value = ftdi->eeprom->powersave;
3273 break;
18199b76
UB
3274 case CLOCK_POLARITY:
3275 *value = ftdi->eeprom->clock_polarity;
3276 break;
3277 case DATA_ORDER:
3278 *value = ftdi->eeprom->data_order;
3279 break;
3280 case FLOW_CONTROL:
3281 *value = ftdi->eeprom->flow_control;
3282 break;
3283 case CHIP_TYPE:
56ac0383
TJ
3284 *value = ftdi->eeprom->chip;
3285 break;
3286 case CHIP_SIZE:
3287 *value = ftdi->eeprom->size;
3288 break;
3289 default:
3290 ftdi_error_return(-1, "Request for unknown EEPROM value");
44ef02bd
UB
3291 }
3292 return 0;
3293}
3294
3295/**
3296 Set a value in the decoded EEPROM Structure
3297 No parameter checking is performed
3298
735e81ea 3299 \param ftdi pointer to ftdi_context
545f9df9 3300 \param value_name Enum of the value to set
735e81ea 3301 \param value to set
44ef02bd 3302
735e81ea
TJ
3303 \retval 0: all fine
3304 \retval -1: Value doesn't exist
3305 \retval -2: Value not user settable
44ef02bd
UB
3306*/
3307int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3308{
3309 switch (value_name)
3310 {
56ac0383
TJ
3311 case VENDOR_ID:
3312 ftdi->eeprom->vendor_id = value;
3313 break;
3314 case PRODUCT_ID:
3315 ftdi->eeprom->product_id = value;
3316 break;
3317 case SELF_POWERED:
3318 ftdi->eeprom->self_powered = value;
3319 break;
3320 case REMOTE_WAKEUP:
3321 ftdi->eeprom->remote_wakeup = value;
3322 break;
3323 case IS_NOT_PNP:
3324 ftdi->eeprom->is_not_pnp = value;
3325 break;
3326 case SUSPEND_DBUS7:
3327 ftdi->eeprom->suspend_dbus7 = value;
3328 break;
3329 case IN_IS_ISOCHRONOUS:
3330 ftdi->eeprom->in_is_isochronous = value;
3331 break;
3332 case SUSPEND_PULL_DOWNS:
3333 ftdi->eeprom->suspend_pull_downs = value;
3334 break;
3335 case USE_SERIAL:
3336 ftdi->eeprom->use_serial = value;
3337 break;
3338 case USB_VERSION:
3339 ftdi->eeprom->usb_version = value;
3340 break;
3341 case MAX_POWER:
3342 ftdi->eeprom->max_power = value;
3343 break;
3344 case CHANNEL_A_TYPE:
3345 ftdi->eeprom->channel_a_type = value;
3346 break;
3347 case CHANNEL_B_TYPE:
3348 ftdi->eeprom->channel_b_type = value;
3349 break;
3350 case CHANNEL_A_DRIVER:
3351 ftdi->eeprom->channel_a_driver = value;
3352 break;
3353 case CHANNEL_B_DRIVER:
3354 ftdi->eeprom->channel_b_driver = value;
3355 break;
3356 case CBUS_FUNCTION_0:
3357 ftdi->eeprom->cbus_function[0] = value;
3358 break;
3359 case CBUS_FUNCTION_1:
3360 ftdi->eeprom->cbus_function[1] = value;
3361 break;
3362 case CBUS_FUNCTION_2:
3363 ftdi->eeprom->cbus_function[2] = value;
3364 break;
3365 case CBUS_FUNCTION_3:
3366 ftdi->eeprom->cbus_function[3] = value;
3367 break;
3368 case CBUS_FUNCTION_4:
3369 ftdi->eeprom->cbus_function[4] = value;
3370 break;
263d3ba0
UB
3371 case CBUS_FUNCTION_5:
3372 ftdi->eeprom->cbus_function[5] = value;
3373 break;
3374 case CBUS_FUNCTION_6:
3375 ftdi->eeprom->cbus_function[6] = value;
3376 break;
3377 case CBUS_FUNCTION_7:
3378 ftdi->eeprom->cbus_function[7] = value;
3379 break;
3380 case CBUS_FUNCTION_8:
3381 ftdi->eeprom->cbus_function[8] = value;
3382 break;
3383 case CBUS_FUNCTION_9:
3384 ftdi->eeprom->cbus_function[9] = value;
3385 break;
56ac0383
TJ
3386 case HIGH_CURRENT:
3387 ftdi->eeprom->high_current = value;
3388 break;
3389 case HIGH_CURRENT_A:
3390 ftdi->eeprom->high_current_a = value;
3391 break;
3392 case HIGH_CURRENT_B:
3393 ftdi->eeprom->high_current_b = value;
3394 break;
3395 case INVERT:
3396 ftdi->eeprom->invert = value;
3397 break;
3398 case GROUP0_DRIVE:
3399 ftdi->eeprom->group0_drive = value;
3400 break;
3401 case GROUP0_SCHMITT:
3402 ftdi->eeprom->group0_schmitt = value;
3403 break;
3404 case GROUP0_SLEW:
3405 ftdi->eeprom->group0_slew = value;
3406 break;
3407 case GROUP1_DRIVE:
3408 ftdi->eeprom->group1_drive = value;
3409 break;
3410 case GROUP1_SCHMITT:
3411 ftdi->eeprom->group1_schmitt = value;
3412 break;
3413 case GROUP1_SLEW:
3414 ftdi->eeprom->group1_slew = value;
3415 break;
3416 case GROUP2_DRIVE:
3417 ftdi->eeprom->group2_drive = value;
3418 break;
3419 case GROUP2_SCHMITT:
3420 ftdi->eeprom->group2_schmitt = value;
3421 break;
3422 case GROUP2_SLEW:
3423 ftdi->eeprom->group2_slew = value;
3424 break;
3425 case GROUP3_DRIVE:
3426 ftdi->eeprom->group3_drive = value;
3427 break;
3428 case GROUP3_SCHMITT:
3429 ftdi->eeprom->group3_schmitt = value;
3430 break;
3431 case GROUP3_SLEW:
3432 ftdi->eeprom->group3_slew = value;
3433 break;
3434 case CHIP_TYPE:
3435 ftdi->eeprom->chip = value;
3436 break;
837a71d6
UB
3437 case POWER_SAVE:
3438 ftdi->eeprom->powersave = value;
3439 break;
18199b76
UB
3440 case CLOCK_POLARITY:
3441 ftdi->eeprom->clock_polarity = value;
3442 break;
3443 case DATA_ORDER:
3444 ftdi->eeprom->data_order = value;
3445 break;
3446 case FLOW_CONTROL:
3447 ftdi->eeprom->flow_control = value;
3448 break;
56ac0383
TJ
3449 case CHIP_SIZE:
3450 ftdi_error_return(-2, "EEPROM Value can't be changed");
3451 default :
3452 ftdi_error_return(-1, "Request to unknown EEPROM value");
44ef02bd
UB
3453 }
3454 return 0;
3455}
3456
3457/** Get the read-only buffer to the binary EEPROM content
3458
3459 \param ftdi pointer to ftdi_context
735e81ea 3460 \param buf buffer to receive EEPROM content
44ef02bd
UB
3461 \param size Size of receiving buffer
3462
3463 \retval 0: All fine
3464 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
200bd3ed 3465 \retval -2: Not enough room to store eeprom
44ef02bd 3466*/
56ac0383
TJ
3467int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3468{
3469 if (!ftdi || !(ftdi->eeprom))
3470 ftdi_error_return(-1, "No appropriate structure");
b95e4654 3471
200bd3ed
TJ
3472 if (!buf || size < ftdi->eeprom->size)
3473 ftdi_error_return(-1, "Not enough room to store eeprom");
3474
b95e4654
TJ
3475 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3476 if (size > FTDI_MAX_EEPROM_SIZE)
3477 size = FTDI_MAX_EEPROM_SIZE;
3478
56ac0383 3479 memcpy(buf, ftdi->eeprom->buf, size);
b95e4654 3480
56ac0383
TJ
3481 return 0;
3482}
44ef02bd
UB
3483
3484/**
c1c70e13
OS
3485 Read eeprom location
3486
3487 \param ftdi pointer to ftdi_context
3488 \param eeprom_addr Address of eeprom location to be read
3489 \param eeprom_val Pointer to store read eeprom location
3490
3491 \retval 0: all fine
3492 \retval -1: read failed
22a1b5c1 3493 \retval -2: USB device unavailable
c1c70e13
OS
3494*/
3495int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3496{
22a1b5c1
TJ
3497 if (ftdi == NULL || ftdi->usb_dev == NULL)
3498 ftdi_error_return(-2, "USB device unavailable");
3499
97c6b5f6 3500 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
c1c70e13
OS
3501 ftdi_error_return(-1, "reading eeprom failed");
3502
3503 return 0;
3504}
3505
3506/**
1941414d
TJ
3507 Read eeprom
3508
3509 \param ftdi pointer to ftdi_context
b8aa7b35 3510
1941414d
TJ
3511 \retval 0: all fine
3512 \retval -1: read failed
22a1b5c1 3513 \retval -2: USB device unavailable
1941414d 3514*/
a35aa9bd 3515int ftdi_read_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3516{
a3da1d95 3517 int i;
a35aa9bd 3518 unsigned char *buf;
a3da1d95 3519
22a1b5c1
TJ
3520 if (ftdi == NULL || ftdi->usb_dev == NULL)
3521 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 3522 buf = ftdi->eeprom->buf;
22a1b5c1 3523
2d543486 3524 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
22d12cda 3525 {
a35aa9bd 3526 if (libusb_control_transfer(
56ac0383
TJ
3527 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3528 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
c3d95b87 3529 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
3530 }
3531
2d543486 3532 if (ftdi->type == TYPE_R)
a35aa9bd 3533 ftdi->eeprom->size = 0x80;
56ac0383 3534 /* Guesses size of eeprom by comparing halves
2d543486 3535 - will not work with blank eeprom */
a35aa9bd 3536 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
2d543486 3537 ftdi->eeprom->size = -1;
56ac0383 3538 else if (memcmp(buf,&buf[0x80],0x80) == 0)
2d543486 3539 ftdi->eeprom->size = 0x80;
56ac0383 3540 else if (memcmp(buf,&buf[0x40],0x40) == 0)
2d543486
UB
3541 ftdi->eeprom->size = 0x40;
3542 else
3543 ftdi->eeprom->size = 0x100;
a3da1d95
GE
3544 return 0;
3545}
3546
cb6250fa
TJ
3547/*
3548 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3549 Function is only used internally
3550 \internal
3551*/
3552static unsigned char ftdi_read_chipid_shift(unsigned char value)
3553{
3554 return ((value & 1) << 1) |
22d12cda
TJ
3555 ((value & 2) << 5) |
3556 ((value & 4) >> 2) |
3557 ((value & 8) << 4) |
3558 ((value & 16) >> 1) |
3559 ((value & 32) >> 1) |
3560 ((value & 64) >> 4) |
3561 ((value & 128) >> 2);
cb6250fa
TJ
3562}
3563
3564/**
3565 Read the FTDIChip-ID from R-type devices
3566
3567 \param ftdi pointer to ftdi_context
3568 \param chipid Pointer to store FTDIChip-ID
3569
3570 \retval 0: all fine
3571 \retval -1: read failed
22a1b5c1 3572 \retval -2: USB device unavailable
cb6250fa
TJ
3573*/
3574int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3575{
c7eb3112 3576 unsigned int a = 0, b = 0;
cb6250fa 3577
22a1b5c1
TJ
3578 if (ftdi == NULL || ftdi->usb_dev == NULL)
3579 ftdi_error_return(-2, "USB device unavailable");
3580
579b006f 3581 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3582 {
3583 a = a << 8 | a >> 8;
579b006f 3584 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3585 {
3586 b = b << 8 | b >> 8;
5230676f 3587 a = (a << 16) | (b & 0xFFFF);
912d50ca
TJ
3588 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3589 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 3590 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 3591 return 0;
cb6250fa
TJ
3592 }
3593 }
3594
c7eb3112 3595 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
3596}
3597
1941414d 3598/**
c1c70e13
OS
3599 Write eeprom location
3600
3601 \param ftdi pointer to ftdi_context
3602 \param eeprom_addr Address of eeprom location to be written
3603 \param eeprom_val Value to be written
3604
3605 \retval 0: all fine
a661e3e4 3606 \retval -1: write failed
22a1b5c1 3607 \retval -2: USB device unavailable
a661e3e4
UB
3608 \retval -3: Invalid access to checksum protected area below 0x80
3609 \retval -4: Device can't access unprotected area
3610 \retval -5: Reading chip type failed
c1c70e13 3611*/
56ac0383 3612int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
a661e3e4 3613 unsigned short eeprom_val)
c1c70e13 3614{
a661e3e4
UB
3615 int chip_type_location;
3616 unsigned short chip_type;
3617
22a1b5c1
TJ
3618 if (ftdi == NULL || ftdi->usb_dev == NULL)
3619 ftdi_error_return(-2, "USB device unavailable");
3620
56ac0383 3621 if (eeprom_addr <0x80)
a661e3e4
UB
3622 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3623
3624
3625 switch (ftdi->type)
3626 {
56ac0383
TJ
3627 case TYPE_BM:
3628 case TYPE_2232C:
3629 chip_type_location = 0x14;
3630 break;
3631 case TYPE_2232H:
3632 case TYPE_4232H:
3633 chip_type_location = 0x18;
3634 break;
c7e4c09e
UB
3635 case TYPE_232H:
3636 chip_type_location = 0x1e;
3637 break;
56ac0383
TJ
3638 default:
3639 ftdi_error_return(-4, "Device can't access unprotected area");
a661e3e4
UB
3640 }
3641
56ac0383 3642 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
a661e3e4 3643 ftdi_error_return(-5, "Reading failed failed");
56ac0383
TJ
3644 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3645 if ((chip_type & 0xff) != 0x66)
a661e3e4
UB
3646 {
3647 ftdi_error_return(-6, "EEPROM is not of 93x66");
3648 }
3649
579b006f 3650 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
3651 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3652 NULL, 0, ftdi->usb_write_timeout) != 0)
c1c70e13
OS
3653 ftdi_error_return(-1, "unable to write eeprom");
3654
3655 return 0;
3656}
3657
3658/**
1941414d 3659 Write eeprom
a3da1d95 3660
1941414d 3661 \param ftdi pointer to ftdi_context
56ac0383 3662
1941414d
TJ
3663 \retval 0: all fine
3664 \retval -1: read failed
22a1b5c1 3665 \retval -2: USB device unavailable
1941414d 3666*/
a35aa9bd 3667int ftdi_write_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3668{
ba5329be 3669 unsigned short usb_val, status;
e30da501 3670 int i, ret;
a35aa9bd 3671 unsigned char *eeprom;
a3da1d95 3672
22a1b5c1
TJ
3673 if (ftdi == NULL || ftdi->usb_dev == NULL)
3674 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 3675 eeprom = ftdi->eeprom->buf;
22a1b5c1 3676
ba5329be 3677 /* These commands were traced while running MProg */
e30da501
TJ
3678 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3679 return ret;
3680 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3681 return ret;
3682 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3683 return ret;
ba5329be 3684
c0a96aed 3685 for (i = 0; i < ftdi->eeprom->size/2; i++)
22d12cda 3686 {
d9f0cce7
TJ
3687 usb_val = eeprom[i*2];
3688 usb_val += eeprom[(i*2)+1] << 8;
579b006f
JZ
3689 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3690 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3691 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3692 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
3693 }
3694
3695 return 0;
3696}
3697
1941414d
TJ
3698/**
3699 Erase eeprom
a3da1d95 3700
a5e1bd8c
MK
3701 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3702
1941414d
TJ
3703 \param ftdi pointer to ftdi_context
3704
3705 \retval 0: all fine
3706 \retval -1: erase failed
22a1b5c1 3707 \retval -2: USB device unavailable
99404ad5
UB
3708 \retval -3: Writing magic failed
3709 \retval -4: Read EEPROM failed
3710 \retval -5: Unexpected EEPROM value
1941414d 3711*/
99404ad5 3712#define MAGIC 0x55aa
a8f46ddc
TJ
3713int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3714{
99404ad5 3715 unsigned short eeprom_value;
22a1b5c1
TJ
3716 if (ftdi == NULL || ftdi->usb_dev == NULL)
3717 ftdi_error_return(-2, "USB device unavailable");
3718
56ac0383 3719 if (ftdi->type == TYPE_R)
99404ad5
UB
3720 {
3721 ftdi->eeprom->chip = 0;
3722 return 0;
3723 }
3724
56ac0383 3725 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5 3726 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3727 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95 3728
56ac0383 3729
99404ad5
UB
3730 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3731 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3732 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3733 Chip is 93x66 if magic is only read at word position 0xc0*/
10186c1f 3734 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
3735 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3736 NULL, 0, ftdi->usb_write_timeout) != 0)
99404ad5 3737 ftdi_error_return(-3, "Writing magic failed");
56ac0383 3738 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
99404ad5 3739 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3740 if (eeprom_value == MAGIC)
99404ad5
UB
3741 {
3742 ftdi->eeprom->chip = 0x46;
3743 }
56ac0383 3744 else
99404ad5 3745 {
56ac0383 3746 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
99404ad5 3747 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3748 if (eeprom_value == MAGIC)
99404ad5 3749 ftdi->eeprom->chip = 0x56;
56ac0383 3750 else
99404ad5 3751 {
56ac0383 3752 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
99404ad5 3753 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3754 if (eeprom_value == MAGIC)
99404ad5
UB
3755 ftdi->eeprom->chip = 0x66;
3756 else
3757 {
3758 ftdi->eeprom->chip = -1;
3759 }
3760 }
3761 }
56ac0383 3762 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5
UB
3763 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3764 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
3765 return 0;
3766}
c3d95b87 3767
1941414d
TJ
3768/**
3769 Get string representation for last error code
c3d95b87 3770
1941414d
TJ
3771 \param ftdi pointer to ftdi_context
3772
3773 \retval Pointer to error string
3774*/
c3d95b87
TJ
3775char *ftdi_get_error_string (struct ftdi_context *ftdi)
3776{
22a1b5c1
TJ
3777 if (ftdi == NULL)
3778 return "";
3779
c3d95b87
TJ
3780 return ftdi->error_str;
3781}
a01d31e2 3782
b5ec1820 3783/* @} end of doxygen libftdi group */