ftdi_eeprom: the chip type is given by the connected device, we may not change it
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
8a987aa2 5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
1bfc403c 21 http://www.intra2net.com/en/developer/libftdi/
b5ec1820 22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
579b006f 31#include <libusb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
b56d5a64 34#include <stdio.h>
579b006f 35#include <stdlib.h>
0e302db6 36
98452d97 37#include "ftdi.h"
a3da1d95 38
21abaf2e 39#define ftdi_error_return(code, str) do { \
2f73e59f 40 ftdi->error_str = str; \
21abaf2e 41 return code; \
d2f10023 42 } while(0);
c3d95b87 43
99650502
UB
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
418aaa72 50
f3f81007
TJ
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
579b006f 58 \retval none
f3f81007 59*/
579b006f 60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 61{
22a1b5c1 62 if (ftdi && ftdi->usb_dev)
dff4fdb0 63 {
56ac0383
TJ
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
44f41f11
UB
66 if(ftdi->eeprom)
67 ftdi->eeprom->initialized_for_connected_device = 0;
dff4fdb0 68 }
dff4fdb0 69}
c3d95b87 70
1941414d
TJ
71/**
72 Initializes a ftdi_context.
4837f98a 73
1941414d 74 \param ftdi pointer to ftdi_context
4837f98a 75
1941414d
TJ
76 \retval 0: all fine
77 \retval -1: couldn't allocate read buffer
a35aa9bd 78 \retval -2: couldn't allocate struct buffer
3a284749 79 \retval -3: libusb_init() failed
1941414d
TJ
80
81 \remark This should be called before all functions
948f9ada 82*/
a8f46ddc
TJ
83int ftdi_init(struct ftdi_context *ftdi)
84{
a35aa9bd 85 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
02212d8e 86 ftdi->usb_ctx = NULL;
98452d97 87 ftdi->usb_dev = NULL;
545820ce
TJ
88 ftdi->usb_read_timeout = 5000;
89 ftdi->usb_write_timeout = 5000;
a3da1d95 90
53ad271d 91 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 92 ftdi->baudrate = -1;
418aaa72 93 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 94
948f9ada
TJ
95 ftdi->readbuffer = NULL;
96 ftdi->readbuffer_offset = 0;
97 ftdi->readbuffer_remaining = 0;
98 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 99 ftdi->max_packet_size = 0;
3a284749
TJ
100 ftdi->error_str = NULL;
101 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
102
103 if (libusb_init(&ftdi->usb_ctx) < 0)
104 ftdi_error_return(-3, "libusb_init() failed");
948f9ada 105
ac0af8ec 106 ftdi_set_interface(ftdi, INTERFACE_ANY);
418aaa72 107 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 108
a35aa9bd
UB
109 if (eeprom == 0)
110 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
b4d19dea 111 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
a35aa9bd 112 ftdi->eeprom = eeprom;
c201f80f 113
1c733d33
TJ
114 /* All fine. Now allocate the readbuffer */
115 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 116}
4837f98a 117
1941414d 118/**
cef378aa
TJ
119 Allocate and initialize a new ftdi_context
120
121 \return a pointer to a new ftdi_context, or NULL on failure
122*/
672ac008 123struct ftdi_context *ftdi_new(void)
cef378aa
TJ
124{
125 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
126
22d12cda
TJ
127 if (ftdi == NULL)
128 {
cef378aa
TJ
129 return NULL;
130 }
131
22d12cda
TJ
132 if (ftdi_init(ftdi) != 0)
133 {
cef378aa 134 free(ftdi);
cdf448f6 135 return NULL;
cef378aa
TJ
136 }
137
138 return ftdi;
139}
140
141/**
1941414d
TJ
142 Open selected channels on a chip, otherwise use first channel.
143
144 \param ftdi pointer to ftdi_context
f9d69895 145 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
146
147 \retval 0: all fine
148 \retval -1: unknown interface
22a1b5c1 149 \retval -2: USB device unavailable
c4446c36 150*/
0ce2f5fa 151int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 152{
1971c26d 153 if (ftdi == NULL)
22a1b5c1
TJ
154 ftdi_error_return(-2, "USB device unavailable");
155
22d12cda
TJ
156 switch (interface)
157 {
158 case INTERFACE_ANY:
159 case INTERFACE_A:
ac0af8ec
VY
160 ftdi->interface = 0;
161 ftdi->index = INTERFACE_A;
162 ftdi->in_ep = 0x02;
163 ftdi->out_ep = 0x81;
22d12cda
TJ
164 break;
165 case INTERFACE_B:
166 ftdi->interface = 1;
167 ftdi->index = INTERFACE_B;
168 ftdi->in_ep = 0x04;
169 ftdi->out_ep = 0x83;
170 break;
f9d69895
AH
171 case INTERFACE_C:
172 ftdi->interface = 2;
173 ftdi->index = INTERFACE_C;
174 ftdi->in_ep = 0x06;
175 ftdi->out_ep = 0x85;
176 break;
177 case INTERFACE_D:
178 ftdi->interface = 3;
179 ftdi->index = INTERFACE_D;
180 ftdi->in_ep = 0x08;
181 ftdi->out_ep = 0x87;
182 break;
22d12cda
TJ
183 default:
184 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
185 }
186 return 0;
187}
948f9ada 188
1941414d
TJ
189/**
190 Deinitializes a ftdi_context.
4837f98a 191
1941414d 192 \param ftdi pointer to ftdi_context
4837f98a 193*/
a8f46ddc
TJ
194void ftdi_deinit(struct ftdi_context *ftdi)
195{
22a1b5c1
TJ
196 if (ftdi == NULL)
197 return;
198
f3f81007 199 ftdi_usb_close_internal (ftdi);
dff4fdb0 200
22d12cda
TJ
201 if (ftdi->readbuffer != NULL)
202 {
d9f0cce7
TJ
203 free(ftdi->readbuffer);
204 ftdi->readbuffer = NULL;
948f9ada 205 }
a35aa9bd
UB
206
207 if (ftdi->eeprom != NULL)
208 {
74e8e79d
UB
209 if (ftdi->eeprom->manufacturer != 0)
210 {
211 free(ftdi->eeprom->manufacturer);
212 ftdi->eeprom->manufacturer = 0;
213 }
214 if (ftdi->eeprom->product != 0)
215 {
216 free(ftdi->eeprom->product);
217 ftdi->eeprom->product = 0;
218 }
219 if (ftdi->eeprom->serial != 0)
220 {
221 free(ftdi->eeprom->serial);
222 ftdi->eeprom->serial = 0;
223 }
a35aa9bd
UB
224 free(ftdi->eeprom);
225 ftdi->eeprom = NULL;
226 }
3a284749
TJ
227
228 if (ftdi->usb_ctx)
229 {
230 libusb_exit(ftdi->usb_ctx);
231 ftdi->usb_ctx = NULL;
232 }
a3da1d95
GE
233}
234
1941414d 235/**
cef378aa
TJ
236 Deinitialize and free an ftdi_context.
237
238 \param ftdi pointer to ftdi_context
239*/
240void ftdi_free(struct ftdi_context *ftdi)
241{
242 ftdi_deinit(ftdi);
243 free(ftdi);
244}
245
246/**
1941414d
TJ
247 Use an already open libusb device.
248
249 \param ftdi pointer to ftdi_context
579b006f 250 \param usb libusb libusb_device_handle to use
4837f98a 251*/
579b006f 252void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 253{
22a1b5c1
TJ
254 if (ftdi == NULL)
255 return;
256
98452d97
TJ
257 ftdi->usb_dev = usb;
258}
259
260
1941414d 261/**
7879216a
UB
262 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
263 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
264 use. With VID:PID 0:0, search for the default devices
265 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014)
1941414d
TJ
266
267 \param ftdi pointer to ftdi_context
268 \param devlist Pointer where to store list of found devices
269 \param vendor Vendor ID to search for
270 \param product Product ID to search for
edb82cbf 271
1941414d 272 \retval >0: number of devices found
1941414d 273 \retval -3: out of memory
579b006f
JZ
274 \retval -5: libusb_get_device_list() failed
275 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 276*/
d2f10023 277int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
278{
279 struct ftdi_device_list **curdev;
579b006f
JZ
280 libusb_device *dev;
281 libusb_device **devs;
edb82cbf 282 int count = 0;
579b006f
JZ
283 int i = 0;
284
02212d8e 285 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 286 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
287
288 curdev = devlist;
6db32169 289 *curdev = NULL;
579b006f
JZ
290
291 while ((dev = devs[i++]) != NULL)
22d12cda 292 {
579b006f 293 struct libusb_device_descriptor desc;
d2f10023 294
579b006f 295 if (libusb_get_device_descriptor(dev, &desc) < 0)
77377af7 296 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
edb82cbf 297
56631bed
UB
298 if (((vendor != 0 && product != 0) &&
299 desc.idVendor == vendor && desc.idProduct == product) ||
300 ((vendor == 0 && product == 0) &&
301 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
7879216a 302 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014)))
579b006f
JZ
303 {
304 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
305 if (!*curdev)
77377af7 306 ftdi_error_return_free_device_list(-3, "out of memory", devs);
56ac0383 307
579b006f
JZ
308 (*curdev)->next = NULL;
309 (*curdev)->dev = dev;
0c33162c 310 libusb_ref_device(dev);
579b006f
JZ
311 curdev = &(*curdev)->next;
312 count++;
edb82cbf
TJ
313 }
314 }
77377af7 315 libusb_free_device_list(devs,1);
edb82cbf
TJ
316 return count;
317}
318
1941414d
TJ
319/**
320 Frees a usb device list.
edb82cbf 321
1941414d 322 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 323*/
d2f10023 324void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 325{
6db32169
TJ
326 struct ftdi_device_list *curdev, *next;
327
22d12cda
TJ
328 for (curdev = *devlist; curdev != NULL;)
329 {
6db32169 330 next = curdev->next;
0c33162c 331 libusb_unref_device(curdev->dev);
6db32169
TJ
332 free(curdev);
333 curdev = next;
edb82cbf
TJ
334 }
335
6db32169 336 *devlist = NULL;
edb82cbf
TJ
337}
338
1941414d 339/**
cef378aa
TJ
340 Frees a usb device list.
341
342 \param devlist USB device list created by ftdi_usb_find_all()
343*/
344void ftdi_list_free2(struct ftdi_device_list *devlist)
345{
346 ftdi_list_free(&devlist);
347}
348
349/**
474786c0
TJ
350 Return device ID strings from the usb device.
351
352 The parameters manufacturer, description and serial may be NULL
353 or pointer to buffers to store the fetched strings.
354
898c34dd
TJ
355 \note Use this function only in combination with ftdi_usb_find_all()
356 as it closes the internal "usb_dev" after use.
357
474786c0
TJ
358 \param ftdi pointer to ftdi_context
359 \param dev libusb usb_dev to use
360 \param manufacturer Store manufacturer string here if not NULL
361 \param mnf_len Buffer size of manufacturer string
362 \param description Store product description string here if not NULL
363 \param desc_len Buffer size of product description string
364 \param serial Store serial string here if not NULL
365 \param serial_len Buffer size of serial string
366
367 \retval 0: all fine
368 \retval -1: wrong arguments
369 \retval -4: unable to open device
370 \retval -7: get product manufacturer failed
371 \retval -8: get product description failed
372 \retval -9: get serial number failed
579b006f 373 \retval -11: libusb_get_device_descriptor() failed
474786c0 374*/
579b006f 375int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
22d12cda 376 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
474786c0 377{
579b006f
JZ
378 struct libusb_device_descriptor desc;
379
474786c0
TJ
380 if ((ftdi==NULL) || (dev==NULL))
381 return -1;
382
579b006f
JZ
383 if (libusb_open(dev, &ftdi->usb_dev) < 0)
384 ftdi_error_return(-4, "libusb_open() failed");
385
386 if (libusb_get_device_descriptor(dev, &desc) < 0)
387 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 388
22d12cda
TJ
389 if (manufacturer != NULL)
390 {
579b006f 391 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 392 {
f3f81007 393 ftdi_usb_close_internal (ftdi);
579b006f 394 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
395 }
396 }
397
22d12cda
TJ
398 if (description != NULL)
399 {
579b006f 400 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 401 {
f3f81007 402 ftdi_usb_close_internal (ftdi);
579b006f 403 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
404 }
405 }
406
22d12cda
TJ
407 if (serial != NULL)
408 {
579b006f 409 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 410 {
f3f81007 411 ftdi_usb_close_internal (ftdi);
579b006f 412 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
413 }
414 }
415
579b006f 416 ftdi_usb_close_internal (ftdi);
474786c0
TJ
417
418 return 0;
419}
420
421/**
e2f12a4f
TJ
422 * Internal function to determine the maximum packet size.
423 * \param ftdi pointer to ftdi_context
424 * \param dev libusb usb_dev to use
425 * \retval Maximum packet size for this device
426 */
579b006f 427static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 428{
579b006f
JZ
429 struct libusb_device_descriptor desc;
430 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
431 unsigned int packet_size;
432
22a1b5c1
TJ
433 // Sanity check
434 if (ftdi == NULL || dev == NULL)
435 return 64;
436
e2f12a4f
TJ
437 // Determine maximum packet size. Init with default value.
438 // New hi-speed devices from FTDI use a packet size of 512 bytes
439 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
c7e4c09e 440 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
e2f12a4f
TJ
441 packet_size = 512;
442 else
443 packet_size = 64;
444
579b006f
JZ
445 if (libusb_get_device_descriptor(dev, &desc) < 0)
446 return packet_size;
447
448 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
449 return packet_size;
e2f12a4f 450
579b006f
JZ
451 if (desc.bNumConfigurations > 0)
452 {
453 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 454 {
579b006f 455 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
456 if (interface.num_altsetting > 0)
457 {
579b006f 458 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
459 if (descriptor.bNumEndpoints > 0)
460 {
461 packet_size = descriptor.endpoint[0].wMaxPacketSize;
462 }
463 }
464 }
465 }
466
579b006f 467 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
468 return packet_size;
469}
470
471/**
418aaa72 472 Opens a ftdi device given by an usb_device.
7b18bef6 473
1941414d
TJ
474 \param ftdi pointer to ftdi_context
475 \param dev libusb usb_dev to use
476
477 \retval 0: all fine
23b1798d 478 \retval -3: unable to config device
1941414d
TJ
479 \retval -4: unable to open device
480 \retval -5: unable to claim device
481 \retval -6: reset failed
482 \retval -7: set baudrate failed
22a1b5c1 483 \retval -8: ftdi context invalid
579b006f
JZ
484 \retval -9: libusb_get_device_descriptor() failed
485 \retval -10: libusb_get_config_descriptor() failed
e375e6cb 486 \retval -11: libusb_detach_kernel_driver() failed
579b006f 487 \retval -12: libusb_get_configuration() failed
7b18bef6 488*/
579b006f 489int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 490{
579b006f
JZ
491 struct libusb_device_descriptor desc;
492 struct libusb_config_descriptor *config0;
43aee24f 493 int cfg, cfg0, detach_errno = 0;
579b006f 494
22a1b5c1
TJ
495 if (ftdi == NULL)
496 ftdi_error_return(-8, "ftdi context invalid");
497
579b006f
JZ
498 if (libusb_open(dev, &ftdi->usb_dev) < 0)
499 ftdi_error_return(-4, "libusb_open() failed");
500
501 if (libusb_get_device_descriptor(dev, &desc) < 0)
502 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
503
504 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
505 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
506 cfg0 = config0->bConfigurationValue;
507 libusb_free_config_descriptor (config0);
d2f10023 508
22592e17 509 // Try to detach ftdi_sio kernel module.
22592e17
TJ
510 //
511 // The return code is kept in a separate variable and only parsed
512 // if usb_set_configuration() or usb_claim_interface() fails as the
513 // detach operation might be denied and everything still works fine.
514 // Likely scenario is a static ftdi_sio kernel module.
a3d86bdb
TJ
515 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
516 {
517 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
518 detach_errno = errno;
519 }
d2f10023 520
579b006f
JZ
521 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
522 ftdi_error_return(-12, "libusb_get_configuration () failed");
b57aedfd
GE
523 // set configuration (needed especially for windows)
524 // tolerate EBUSY: one device with one configuration, but two interfaces
525 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 526 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 527 {
579b006f 528 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 529 {
a56ba2bd 530 ftdi_usb_close_internal (ftdi);
56ac0383 531 if (detach_errno == EPERM)
43aee24f
UB
532 {
533 ftdi_error_return(-8, "inappropriate permissions on device!");
534 }
535 else
536 {
c16b162d 537 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
43aee24f 538 }
23b1798d
TJ
539 }
540 }
541
579b006f 542 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 543 {
f3f81007 544 ftdi_usb_close_internal (ftdi);
56ac0383 545 if (detach_errno == EPERM)
43aee24f
UB
546 {
547 ftdi_error_return(-8, "inappropriate permissions on device!");
548 }
549 else
550 {
c16b162d 551 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
43aee24f 552 }
7b18bef6
TJ
553 }
554
22d12cda
TJ
555 if (ftdi_usb_reset (ftdi) != 0)
556 {
f3f81007 557 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
558 ftdi_error_return(-6, "ftdi_usb_reset failed");
559 }
560
7b18bef6
TJ
561 // Try to guess chip type
562 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f 563 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
56ac0383 564 && desc.iSerialNumber == 0))
7b18bef6 565 ftdi->type = TYPE_BM;
579b006f 566 else if (desc.bcdDevice == 0x200)
7b18bef6 567 ftdi->type = TYPE_AM;
579b006f 568 else if (desc.bcdDevice == 0x500)
7b18bef6 569 ftdi->type = TYPE_2232C;
579b006f 570 else if (desc.bcdDevice == 0x600)
cb6250fa 571 ftdi->type = TYPE_R;
579b006f 572 else if (desc.bcdDevice == 0x700)
0beb9686 573 ftdi->type = TYPE_2232H;
579b006f 574 else if (desc.bcdDevice == 0x800)
0beb9686 575 ftdi->type = TYPE_4232H;
c7e4c09e
UB
576 else if (desc.bcdDevice == 0x900)
577 ftdi->type = TYPE_232H;
7b18bef6 578
e2f12a4f
TJ
579 // Determine maximum packet size
580 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
581
ef6f4838
TE
582 if (ftdi_set_baudrate (ftdi, 9600) != 0)
583 {
584 ftdi_usb_close_internal (ftdi);
585 ftdi_error_return(-7, "set baudrate failed");
586 }
587
7b18bef6
TJ
588 ftdi_error_return(0, "all fine");
589}
590
1941414d
TJ
591/**
592 Opens the first device with a given vendor and product ids.
593
594 \param ftdi pointer to ftdi_context
595 \param vendor Vendor ID
596 \param product Product ID
597
9bec2387 598 \retval same as ftdi_usb_open_desc()
1941414d 599*/
edb82cbf
TJ
600int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
601{
602 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
603}
604
1941414d
TJ
605/**
606 Opens the first device with a given, vendor id, product id,
607 description and serial.
608
609 \param ftdi pointer to ftdi_context
610 \param vendor Vendor ID
611 \param product Product ID
612 \param description Description to search for. Use NULL if not needed.
613 \param serial Serial to search for. Use NULL if not needed.
614
615 \retval 0: all fine
1941414d
TJ
616 \retval -3: usb device not found
617 \retval -4: unable to open device
618 \retval -5: unable to claim device
619 \retval -6: reset failed
620 \retval -7: set baudrate failed
621 \retval -8: get product description failed
622 \retval -9: get serial number failed
579b006f
JZ
623 \retval -12: libusb_get_device_list() failed
624 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 625*/
04e1ea0a 626int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
627 const char* description, const char* serial)
628{
5ebbdab9
GE
629 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
630}
631
632/**
633 Opens the index-th device with a given, vendor id, product id,
634 description and serial.
635
636 \param ftdi pointer to ftdi_context
637 \param vendor Vendor ID
638 \param product Product ID
639 \param description Description to search for. Use NULL if not needed.
640 \param serial Serial to search for. Use NULL if not needed.
641 \param index Number of matching device to open if there are more than one, starts with 0.
642
643 \retval 0: all fine
644 \retval -1: usb_find_busses() failed
645 \retval -2: usb_find_devices() failed
646 \retval -3: usb device not found
647 \retval -4: unable to open device
648 \retval -5: unable to claim device
649 \retval -6: reset failed
650 \retval -7: set baudrate failed
651 \retval -8: get product description failed
652 \retval -9: get serial number failed
653 \retval -10: unable to close device
22a1b5c1 654 \retval -11: ftdi context invalid
5ebbdab9
GE
655*/
656int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
56ac0383 657 const char* description, const char* serial, unsigned int index)
5ebbdab9 658{
579b006f
JZ
659 libusb_device *dev;
660 libusb_device **devs;
c3d95b87 661 char string[256];
579b006f 662 int i = 0;
98452d97 663
22a1b5c1
TJ
664 if (ftdi == NULL)
665 ftdi_error_return(-11, "ftdi context invalid");
666
02212d8e 667 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
99650502
UB
668 ftdi_error_return(-12, "libusb_get_device_list() failed");
669
579b006f 670 while ((dev = devs[i++]) != NULL)
22d12cda 671 {
579b006f 672 struct libusb_device_descriptor desc;
99650502 673 int res;
579b006f
JZ
674
675 if (libusb_get_device_descriptor(dev, &desc) < 0)
99650502 676 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
579b006f
JZ
677
678 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 679 {
579b006f 680 if (libusb_open(dev, &ftdi->usb_dev) < 0)
99650502 681 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
c3d95b87 682
579b006f
JZ
683 if (description != NULL)
684 {
685 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 686 {
d4afae5f 687 ftdi_usb_close_internal (ftdi);
99650502 688 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
a8f46ddc 689 }
579b006f 690 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 691 {
d4afae5f 692 ftdi_usb_close_internal (ftdi);
579b006f 693 continue;
a8f46ddc 694 }
579b006f
JZ
695 }
696 if (serial != NULL)
697 {
698 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
699 {
700 ftdi_usb_close_internal (ftdi);
99650502 701 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
579b006f
JZ
702 }
703 if (strncmp(string, serial, sizeof(string)) != 0)
704 {
705 ftdi_usb_close_internal (ftdi);
706 continue;
707 }
708 }
98452d97 709
579b006f 710 ftdi_usb_close_internal (ftdi);
d2f10023 711
56ac0383
TJ
712 if (index > 0)
713 {
714 index--;
715 continue;
716 }
5ebbdab9 717
99650502
UB
718 res = ftdi_usb_open_dev(ftdi, dev);
719 libusb_free_device_list(devs,1);
720 return res;
98452d97 721 }
98452d97 722 }
a3da1d95 723
98452d97 724 // device not found
99650502 725 ftdi_error_return_free_device_list(-3, "device not found", devs);
a3da1d95
GE
726}
727
1941414d 728/**
5ebbdab9
GE
729 Opens the ftdi-device described by a description-string.
730 Intended to be used for parsing a device-description given as commandline argument.
731
732 \param ftdi pointer to ftdi_context
733 \param description NULL-terminated description-string, using this format:
734 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
735 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
736 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
737 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
738
739 \note The description format may be extended in later versions.
740
741 \retval 0: all fine
579b006f 742 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
743 \retval -3: usb device not found
744 \retval -4: unable to open device
745 \retval -5: unable to claim device
746 \retval -6: reset failed
747 \retval -7: set baudrate failed
748 \retval -8: get product description failed
749 \retval -9: get serial number failed
750 \retval -10: unable to close device
751 \retval -11: illegal description format
22a1b5c1 752 \retval -12: ftdi context invalid
5ebbdab9
GE
753*/
754int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
755{
22a1b5c1
TJ
756 if (ftdi == NULL)
757 ftdi_error_return(-12, "ftdi context invalid");
758
5ebbdab9
GE
759 if (description[0] == 0 || description[1] != ':')
760 ftdi_error_return(-11, "illegal description format");
761
762 if (description[0] == 'd')
763 {
579b006f
JZ
764 libusb_device *dev;
765 libusb_device **devs;
56ac0383
TJ
766 unsigned int bus_number, device_address;
767 int i = 0;
579b006f 768
56ac0383
TJ
769 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
770 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 771
579b006f
JZ
772 /* XXX: This doesn't handle symlinks/odd paths/etc... */
773 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
56ac0383 774 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
5ebbdab9 775
56ac0383 776 while ((dev = devs[i++]) != NULL)
5ebbdab9 777 {
99650502 778 int ret;
56ac0383
TJ
779 if (bus_number == libusb_get_bus_number (dev)
780 && device_address == libusb_get_device_address (dev))
99650502
UB
781 {
782 ret = ftdi_usb_open_dev(ftdi, dev);
783 libusb_free_device_list(devs,1);
784 return ret;
785 }
5ebbdab9
GE
786 }
787
788 // device not found
99650502 789 ftdi_error_return_free_device_list(-3, "device not found", devs);
5ebbdab9
GE
790 }
791 else if (description[0] == 'i' || description[0] == 's')
792 {
793 unsigned int vendor;
794 unsigned int product;
795 unsigned int index=0;
0e6cf62b 796 const char *serial=NULL;
5ebbdab9
GE
797 const char *startp, *endp;
798
799 errno=0;
800 startp=description+2;
801 vendor=strtoul((char*)startp,(char**)&endp,0);
802 if (*endp != ':' || endp == startp || errno != 0)
803 ftdi_error_return(-11, "illegal description format");
804
805 startp=endp+1;
806 product=strtoul((char*)startp,(char**)&endp,0);
807 if (endp == startp || errno != 0)
808 ftdi_error_return(-11, "illegal description format");
809
810 if (description[0] == 'i' && *endp != 0)
811 {
812 /* optional index field in i-mode */
813 if (*endp != ':')
814 ftdi_error_return(-11, "illegal description format");
815
816 startp=endp+1;
817 index=strtoul((char*)startp,(char**)&endp,0);
818 if (*endp != 0 || endp == startp || errno != 0)
819 ftdi_error_return(-11, "illegal description format");
820 }
821 if (description[0] == 's')
822 {
823 if (*endp != ':')
824 ftdi_error_return(-11, "illegal description format");
825
826 /* rest of the description is the serial */
827 serial=endp+1;
828 }
829
830 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
831 }
832 else
833 {
834 ftdi_error_return(-11, "illegal description format");
835 }
836}
837
838/**
1941414d 839 Resets the ftdi device.
a3da1d95 840
1941414d
TJ
841 \param ftdi pointer to ftdi_context
842
843 \retval 0: all fine
844 \retval -1: FTDI reset failed
22a1b5c1 845 \retval -2: USB device unavailable
4837f98a 846*/
edb82cbf 847int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 848{
22a1b5c1
TJ
849 if (ftdi == NULL || ftdi->usb_dev == NULL)
850 ftdi_error_return(-2, "USB device unavailable");
851
579b006f
JZ
852 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
853 SIO_RESET_REQUEST, SIO_RESET_SIO,
854 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 855 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 856
545820ce 857 // Invalidate data in the readbuffer
bfcee05b
TJ
858 ftdi->readbuffer_offset = 0;
859 ftdi->readbuffer_remaining = 0;
860
a3da1d95
GE
861 return 0;
862}
863
1941414d 864/**
1189b11a 865 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
866
867 \param ftdi pointer to ftdi_context
4837f98a 868
1941414d 869 \retval 0: all fine
1189b11a 870 \retval -1: read buffer purge failed
22a1b5c1 871 \retval -2: USB device unavailable
4837f98a 872*/
1189b11a 873int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 874{
22a1b5c1
TJ
875 if (ftdi == NULL || ftdi->usb_dev == NULL)
876 ftdi_error_return(-2, "USB device unavailable");
877
579b006f
JZ
878 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
879 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
880 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
881 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
882
545820ce 883 // Invalidate data in the readbuffer
bfcee05b
TJ
884 ftdi->readbuffer_offset = 0;
885 ftdi->readbuffer_remaining = 0;
a60be878 886
1189b11a
TJ
887 return 0;
888}
889
890/**
891 Clears the write buffer on the chip.
892
893 \param ftdi pointer to ftdi_context
894
895 \retval 0: all fine
896 \retval -1: write buffer purge failed
22a1b5c1 897 \retval -2: USB device unavailable
1189b11a
TJ
898*/
899int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
900{
22a1b5c1
TJ
901 if (ftdi == NULL || ftdi->usb_dev == NULL)
902 ftdi_error_return(-2, "USB device unavailable");
903
579b006f
JZ
904 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
905 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
906 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
907 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
908
909 return 0;
910}
911
912/**
913 Clears the buffers on the chip and the internal read buffer.
914
915 \param ftdi pointer to ftdi_context
916
917 \retval 0: all fine
918 \retval -1: read buffer purge failed
919 \retval -2: write buffer purge failed
22a1b5c1 920 \retval -3: USB device unavailable
1189b11a
TJ
921*/
922int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
923{
924 int result;
925
22a1b5c1
TJ
926 if (ftdi == NULL || ftdi->usb_dev == NULL)
927 ftdi_error_return(-3, "USB device unavailable");
928
1189b11a 929 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 930 if (result < 0)
1189b11a
TJ
931 return -1;
932
933 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 934 if (result < 0)
1189b11a 935 return -2;
545820ce 936
a60be878
TJ
937 return 0;
938}
a3da1d95 939
f3f81007
TJ
940
941
1941414d
TJ
942/**
943 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
944
945 \param ftdi pointer to ftdi_context
946
947 \retval 0: all fine
948 \retval -1: usb_release failed
22a1b5c1 949 \retval -3: ftdi context invalid
a3da1d95 950*/
a8f46ddc
TJ
951int ftdi_usb_close(struct ftdi_context *ftdi)
952{
a3da1d95
GE
953 int rtn = 0;
954
22a1b5c1
TJ
955 if (ftdi == NULL)
956 ftdi_error_return(-3, "ftdi context invalid");
957
dff4fdb0 958 if (ftdi->usb_dev != NULL)
579b006f 959 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 960 rtn = -1;
98452d97 961
579b006f 962 ftdi_usb_close_internal (ftdi);
98452d97 963
a3da1d95
GE
964 return rtn;
965}
966
418aaa72 967/**
53ad271d
TJ
968 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
969 Function is only used internally
b5ec1820 970 \internal
53ad271d 971*/
0126d22e 972static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
a8f46ddc
TJ
973 unsigned short *value, unsigned short *index)
974{
53ad271d
TJ
975 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
976 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
977 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
978 int divisor, best_divisor, best_baud, best_baud_diff;
979 unsigned long encoded_divisor;
980 int i;
981
22d12cda
TJ
982 if (baudrate <= 0)
983 {
53ad271d
TJ
984 // Return error
985 return -1;
986 }
987
988 divisor = 24000000 / baudrate;
989
22d12cda
TJ
990 if (ftdi->type == TYPE_AM)
991 {
53ad271d
TJ
992 // Round down to supported fraction (AM only)
993 divisor -= am_adjust_dn[divisor & 7];
994 }
995
996 // Try this divisor and the one above it (because division rounds down)
997 best_divisor = 0;
998 best_baud = 0;
999 best_baud_diff = 0;
22d12cda
TJ
1000 for (i = 0; i < 2; i++)
1001 {
53ad271d
TJ
1002 int try_divisor = divisor + i;
1003 int baud_estimate;
1004 int baud_diff;
1005
1006 // Round up to supported divisor value
22d12cda
TJ
1007 if (try_divisor <= 8)
1008 {
53ad271d
TJ
1009 // Round up to minimum supported divisor
1010 try_divisor = 8;
22d12cda
TJ
1011 }
1012 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1013 {
53ad271d
TJ
1014 // BM doesn't support divisors 9 through 11 inclusive
1015 try_divisor = 12;
22d12cda
TJ
1016 }
1017 else if (divisor < 16)
1018 {
53ad271d
TJ
1019 // AM doesn't support divisors 9 through 15 inclusive
1020 try_divisor = 16;
22d12cda
TJ
1021 }
1022 else
1023 {
1024 if (ftdi->type == TYPE_AM)
1025 {
53ad271d
TJ
1026 // Round up to supported fraction (AM only)
1027 try_divisor += am_adjust_up[try_divisor & 7];
22d12cda
TJ
1028 if (try_divisor > 0x1FFF8)
1029 {
53ad271d
TJ
1030 // Round down to maximum supported divisor value (for AM)
1031 try_divisor = 0x1FFF8;
1032 }
22d12cda
TJ
1033 }
1034 else
1035 {
1036 if (try_divisor > 0x1FFFF)
1037 {
53ad271d
TJ
1038 // Round down to maximum supported divisor value (for BM)
1039 try_divisor = 0x1FFFF;
1040 }
1041 }
1042 }
1043 // Get estimated baud rate (to nearest integer)
1044 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1045 // Get absolute difference from requested baud rate
22d12cda
TJ
1046 if (baud_estimate < baudrate)
1047 {
53ad271d 1048 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
1049 }
1050 else
1051 {
53ad271d
TJ
1052 baud_diff = baud_estimate - baudrate;
1053 }
22d12cda
TJ
1054 if (i == 0 || baud_diff < best_baud_diff)
1055 {
53ad271d
TJ
1056 // Closest to requested baud rate so far
1057 best_divisor = try_divisor;
1058 best_baud = baud_estimate;
1059 best_baud_diff = baud_diff;
22d12cda
TJ
1060 if (baud_diff == 0)
1061 {
53ad271d
TJ
1062 // Spot on! No point trying
1063 break;
1064 }
1065 }
1066 }
1067 // Encode the best divisor value
1068 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1069 // Deal with special cases for encoded value
22d12cda
TJ
1070 if (encoded_divisor == 1)
1071 {
4837f98a 1072 encoded_divisor = 0; // 3000000 baud
22d12cda
TJ
1073 }
1074 else if (encoded_divisor == 0x4001)
1075 {
4837f98a 1076 encoded_divisor = 1; // 2000000 baud (BM only)
53ad271d
TJ
1077 }
1078 // Split into "value" and "index" values
1079 *value = (unsigned short)(encoded_divisor & 0xFFFF);
bb104e5b 1080 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
22d12cda 1081 {
0126d22e
TJ
1082 *index = (unsigned short)(encoded_divisor >> 8);
1083 *index &= 0xFF00;
a9c57c05 1084 *index |= ftdi->index;
0126d22e
TJ
1085 }
1086 else
1087 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 1088
53ad271d
TJ
1089 // Return the nearest baud rate
1090 return best_baud;
1091}
1092
1941414d 1093/**
ac6944cc
TJ
1094 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1095 * Do not use, it's only for the unit test framework
1096 **/
1097int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1098 unsigned short *value, unsigned short *index)
1099{
1100 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1101}
1102
1103/**
9bec2387 1104 Sets the chip baud rate
1941414d
TJ
1105
1106 \param ftdi pointer to ftdi_context
9bec2387 1107 \param baudrate baud rate to set
1941414d
TJ
1108
1109 \retval 0: all fine
1110 \retval -1: invalid baudrate
1111 \retval -2: setting baudrate failed
22a1b5c1 1112 \retval -3: USB device unavailable
a3da1d95 1113*/
a8f46ddc
TJ
1114int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1115{
53ad271d
TJ
1116 unsigned short value, index;
1117 int actual_baudrate;
a3da1d95 1118
22a1b5c1
TJ
1119 if (ftdi == NULL || ftdi->usb_dev == NULL)
1120 ftdi_error_return(-3, "USB device unavailable");
1121
22d12cda
TJ
1122 if (ftdi->bitbang_enabled)
1123 {
a3da1d95
GE
1124 baudrate = baudrate*4;
1125 }
1126
25707904 1127 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1128 if (actual_baudrate <= 0)
1129 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1130
53ad271d
TJ
1131 // Check within tolerance (about 5%)
1132 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1133 || ((actual_baudrate < baudrate)
1134 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1135 : (baudrate * 21 < actual_baudrate * 20)))
1136 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1137
579b006f
JZ
1138 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1139 SIO_SET_BAUDRATE_REQUEST, value,
1140 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1141 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1142
1143 ftdi->baudrate = baudrate;
1144 return 0;
1145}
1146
1941414d 1147/**
6c32e222
TJ
1148 Set (RS232) line characteristics.
1149 The break type can only be set via ftdi_set_line_property2()
1150 and defaults to "off".
4837f98a 1151
1941414d
TJ
1152 \param ftdi pointer to ftdi_context
1153 \param bits Number of bits
1154 \param sbit Number of stop bits
1155 \param parity Parity mode
1156
1157 \retval 0: all fine
1158 \retval -1: Setting line property failed
2f73e59f
TJ
1159*/
1160int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1161 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1162{
6c32e222
TJ
1163 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1164}
1165
1166/**
1167 Set (RS232) line characteristics
1168
1169 \param ftdi pointer to ftdi_context
1170 \param bits Number of bits
1171 \param sbit Number of stop bits
1172 \param parity Parity mode
1173 \param break_type Break type
1174
1175 \retval 0: all fine
1176 \retval -1: Setting line property failed
22a1b5c1 1177 \retval -2: USB device unavailable
6c32e222
TJ
1178*/
1179int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1180 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1181 enum ftdi_break_type break_type)
6c32e222 1182{
2f73e59f
TJ
1183 unsigned short value = bits;
1184
22a1b5c1
TJ
1185 if (ftdi == NULL || ftdi->usb_dev == NULL)
1186 ftdi_error_return(-2, "USB device unavailable");
1187
22d12cda
TJ
1188 switch (parity)
1189 {
1190 case NONE:
1191 value |= (0x00 << 8);
1192 break;
1193 case ODD:
1194 value |= (0x01 << 8);
1195 break;
1196 case EVEN:
1197 value |= (0x02 << 8);
1198 break;
1199 case MARK:
1200 value |= (0x03 << 8);
1201 break;
1202 case SPACE:
1203 value |= (0x04 << 8);
1204 break;
2f73e59f 1205 }
d2f10023 1206
22d12cda
TJ
1207 switch (sbit)
1208 {
1209 case STOP_BIT_1:
1210 value |= (0x00 << 11);
1211 break;
1212 case STOP_BIT_15:
1213 value |= (0x01 << 11);
1214 break;
1215 case STOP_BIT_2:
1216 value |= (0x02 << 11);
1217 break;
2f73e59f 1218 }
d2f10023 1219
22d12cda
TJ
1220 switch (break_type)
1221 {
1222 case BREAK_OFF:
1223 value |= (0x00 << 14);
1224 break;
1225 case BREAK_ON:
1226 value |= (0x01 << 14);
1227 break;
6c32e222
TJ
1228 }
1229
579b006f
JZ
1230 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1231 SIO_SET_DATA_REQUEST, value,
1232 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1233 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1234
2f73e59f
TJ
1235 return 0;
1236}
a3da1d95 1237
1941414d
TJ
1238/**
1239 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1240
1241 \param ftdi pointer to ftdi_context
1242 \param buf Buffer with the data
1243 \param size Size of the buffer
1244
22a1b5c1 1245 \retval -666: USB device unavailable
1941414d
TJ
1246 \retval <0: error code from usb_bulk_write()
1247 \retval >0: number of bytes written
1248*/
a8f46ddc
TJ
1249int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1250{
a3da1d95 1251 int offset = 0;
579b006f 1252 int actual_length;
c3d95b87 1253
22a1b5c1
TJ
1254 if (ftdi == NULL || ftdi->usb_dev == NULL)
1255 ftdi_error_return(-666, "USB device unavailable");
1256
22d12cda
TJ
1257 while (offset < size)
1258 {
948f9ada 1259 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1260
1261 if (offset+write_size > size)
1262 write_size = size-offset;
1263
579b006f
JZ
1264 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1265 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1266
579b006f 1267 offset += actual_length;
a3da1d95
GE
1268 }
1269
579b006f 1270 return offset;
a3da1d95
GE
1271}
1272
579b006f 1273static void ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1274{
579b006f
JZ
1275 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1276 struct ftdi_context *ftdi = tc->ftdi;
1277 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1278
b1139150 1279 packet_size = ftdi->max_packet_size;
579b006f
JZ
1280
1281 actual_length = transfer->actual_length;
1282
1283 if (actual_length > 2)
1284 {
1285 // skip FTDI status bytes.
1286 // Maybe stored in the future to enable modem use
1287 num_of_chunks = actual_length / packet_size;
1288 chunk_remains = actual_length % packet_size;
1289 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1290
1291 ftdi->readbuffer_offset += 2;
1292 actual_length -= 2;
1293
1294 if (actual_length > packet_size - 2)
1295 {
1296 for (i = 1; i < num_of_chunks; i++)
56ac0383
TJ
1297 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1298 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1299 packet_size - 2);
579b006f
JZ
1300 if (chunk_remains > 2)
1301 {
1302 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1303 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1304 chunk_remains-2);
1305 actual_length -= 2*num_of_chunks;
1306 }
1307 else
56ac0383 1308 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
579b006f
JZ
1309 }
1310
1311 if (actual_length > 0)
1312 {
1313 // data still fits in buf?
1314 if (tc->offset + actual_length <= tc->size)
1315 {
1316 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1317 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1318 tc->offset += actual_length;
1319
1320 ftdi->readbuffer_offset = 0;
1321 ftdi->readbuffer_remaining = 0;
1322
1323 /* Did we read exactly the right amount of bytes? */
1324 if (tc->offset == tc->size)
1325 {
1326 //printf("read_data exact rem %d offset %d\n",
1327 //ftdi->readbuffer_remaining, offset);
1328 tc->completed = 1;
1329 return;
1330 }
1331 }
1332 else
1333 {
1334 // only copy part of the data or size <= readbuffer_chunksize
1335 int part_size = tc->size - tc->offset;
1336 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1337 tc->offset += part_size;
1338
1339 ftdi->readbuffer_offset += part_size;
1340 ftdi->readbuffer_remaining = actual_length - part_size;
1341
1342 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1343 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1344 tc->completed = 1;
1345 return;
1346 }
1347 }
1348 }
1349 ret = libusb_submit_transfer (transfer);
1350 if (ret < 0)
1351 tc->completed = 1;
1352}
1353
1354
1355static void ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1356{
579b006f
JZ
1357 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1358 struct ftdi_context *ftdi = tc->ftdi;
56ac0383 1359
90ef163e 1360 tc->offset += transfer->actual_length;
56ac0383 1361
579b006f 1362 if (tc->offset == tc->size)
22d12cda 1363 {
579b006f 1364 tc->completed = 1;
7cc9950e 1365 }
579b006f
JZ
1366 else
1367 {
1368 int write_size = ftdi->writebuffer_chunksize;
1369 int ret;
7cc9950e 1370
579b006f
JZ
1371 if (tc->offset + write_size > tc->size)
1372 write_size = tc->size - tc->offset;
1373
1374 transfer->length = write_size;
1375 transfer->buffer = tc->buf + tc->offset;
1376 ret = libusb_submit_transfer (transfer);
1377 if (ret < 0)
1378 tc->completed = 1;
1379 }
7cc9950e
GE
1380}
1381
579b006f 1382
84f85aaa 1383/**
579b006f
JZ
1384 Writes data to the chip. Does not wait for completion of the transfer
1385 nor does it make sure that the transfer was successful.
1386
249888c8 1387 Use libusb 1.0 asynchronous API.
84f85aaa
GE
1388
1389 \param ftdi pointer to ftdi_context
579b006f
JZ
1390 \param buf Buffer with the data
1391 \param size Size of the buffer
84f85aaa 1392
579b006f
JZ
1393 \retval NULL: Some error happens when submit transfer
1394 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1395*/
579b006f
JZ
1396
1397struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1398{
579b006f 1399 struct ftdi_transfer_control *tc;
5e77e870 1400 struct libusb_transfer *transfer;
579b006f 1401 int write_size, ret;
22d12cda 1402
22a1b5c1 1403 if (ftdi == NULL || ftdi->usb_dev == NULL)
22a1b5c1 1404 return NULL;
22a1b5c1 1405
579b006f 1406 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
5e77e870
TJ
1407 if (!tc)
1408 return NULL;
22d12cda 1409
5e77e870
TJ
1410 transfer = libusb_alloc_transfer(0);
1411 if (!transfer)
1412 {
1413 free(tc);
579b006f 1414 return NULL;
5e77e870 1415 }
22d12cda 1416
579b006f
JZ
1417 tc->ftdi = ftdi;
1418 tc->completed = 0;
1419 tc->buf = buf;
1420 tc->size = size;
1421 tc->offset = 0;
7cc9950e 1422
579b006f 1423 if (size < ftdi->writebuffer_chunksize)
56ac0383 1424 write_size = size;
579b006f 1425 else
56ac0383 1426 write_size = ftdi->writebuffer_chunksize;
22d12cda 1427
90ef163e
YSL
1428 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1429 write_size, ftdi_write_data_cb, tc,
1430 ftdi->usb_write_timeout);
579b006f 1431 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1432
579b006f
JZ
1433 ret = libusb_submit_transfer(transfer);
1434 if (ret < 0)
1435 {
1436 libusb_free_transfer(transfer);
5e77e870 1437 free(tc);
579b006f 1438 return NULL;
7cc9950e 1439 }
579b006f
JZ
1440 tc->transfer = transfer;
1441
1442 return tc;
7cc9950e
GE
1443}
1444
1445/**
579b006f
JZ
1446 Reads data from the chip. Does not wait for completion of the transfer
1447 nor does it make sure that the transfer was successful.
1448
249888c8 1449 Use libusb 1.0 asynchronous API.
7cc9950e
GE
1450
1451 \param ftdi pointer to ftdi_context
579b006f
JZ
1452 \param buf Buffer with the data
1453 \param size Size of the buffer
4c9e3812 1454
579b006f
JZ
1455 \retval NULL: Some error happens when submit transfer
1456 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1457*/
579b006f
JZ
1458
1459struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1460{
579b006f
JZ
1461 struct ftdi_transfer_control *tc;
1462 struct libusb_transfer *transfer;
1463 int ret;
22d12cda 1464
22a1b5c1
TJ
1465 if (ftdi == NULL || ftdi->usb_dev == NULL)
1466 return NULL;
1467
579b006f
JZ
1468 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1469 if (!tc)
1470 return NULL;
1471
1472 tc->ftdi = ftdi;
1473 tc->buf = buf;
1474 tc->size = size;
1475
1476 if (size <= ftdi->readbuffer_remaining)
7cc9950e 1477 {
579b006f 1478 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1479
579b006f
JZ
1480 // Fix offsets
1481 ftdi->readbuffer_remaining -= size;
1482 ftdi->readbuffer_offset += size;
7cc9950e 1483
579b006f 1484 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1485
579b006f
JZ
1486 tc->completed = 1;
1487 tc->offset = size;
1488 tc->transfer = NULL;
1489 return tc;
1490 }
4c9e3812 1491
579b006f
JZ
1492 tc->completed = 0;
1493 if (ftdi->readbuffer_remaining != 0)
1494 {
1495 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1496
579b006f
JZ
1497 tc->offset = ftdi->readbuffer_remaining;
1498 }
1499 else
1500 tc->offset = 0;
22d12cda 1501
579b006f
JZ
1502 transfer = libusb_alloc_transfer(0);
1503 if (!transfer)
1504 {
1505 free (tc);
1506 return NULL;
1507 }
22d12cda 1508
579b006f
JZ
1509 ftdi->readbuffer_remaining = 0;
1510 ftdi->readbuffer_offset = 0;
1511
1512 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1513 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1514
1515 ret = libusb_submit_transfer(transfer);
1516 if (ret < 0)
1517 {
1518 libusb_free_transfer(transfer);
1519 free (tc);
1520 return NULL;
22d12cda 1521 }
579b006f
JZ
1522 tc->transfer = transfer;
1523
1524 return tc;
4c9e3812
GE
1525}
1526
1527/**
579b006f 1528 Wait for completion of the transfer.
4c9e3812 1529
249888c8 1530 Use libusb 1.0 asynchronous API.
4c9e3812 1531
579b006f 1532 \param tc pointer to ftdi_transfer_control
4c9e3812 1533
579b006f
JZ
1534 \retval < 0: Some error happens
1535 \retval >= 0: Data size transferred
4c9e3812 1536*/
579b006f
JZ
1537
1538int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1539{
1540 int ret;
4c9e3812 1541
579b006f 1542 while (!tc->completed)
22d12cda 1543 {
29b1dfd9 1544 ret = libusb_handle_events(tc->ftdi->usb_ctx);
4c9e3812 1545 if (ret < 0)
579b006f
JZ
1546 {
1547 if (ret == LIBUSB_ERROR_INTERRUPTED)
1548 continue;
1549 libusb_cancel_transfer(tc->transfer);
1550 while (!tc->completed)
29b1dfd9 1551 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
579b006f
JZ
1552 break;
1553 libusb_free_transfer(tc->transfer);
1554 free (tc);
579b006f
JZ
1555 return ret;
1556 }
4c9e3812
GE
1557 }
1558
90ef163e
YSL
1559 ret = tc->offset;
1560 /**
1561 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
ef15fab5 1562 * at ftdi_read_data_submit(). Therefore, we need to check it here.
90ef163e 1563 **/
ef15fab5
TJ
1564 if (tc->transfer)
1565 {
1566 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1567 ret = -1;
1568 libusb_free_transfer(tc->transfer);
90ef163e 1569 }
579b006f
JZ
1570 free(tc);
1571 return ret;
4c9e3812 1572}
579b006f 1573
1941414d
TJ
1574/**
1575 Configure write buffer chunk size.
1576 Default is 4096.
1577
1578 \param ftdi pointer to ftdi_context
1579 \param chunksize Chunk size
a3da1d95 1580
1941414d 1581 \retval 0: all fine
22a1b5c1 1582 \retval -1: ftdi context invalid
1941414d 1583*/
a8f46ddc
TJ
1584int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1585{
22a1b5c1
TJ
1586 if (ftdi == NULL)
1587 ftdi_error_return(-1, "ftdi context invalid");
1588
948f9ada
TJ
1589 ftdi->writebuffer_chunksize = chunksize;
1590 return 0;
1591}
1592
1941414d
TJ
1593/**
1594 Get write buffer chunk size.
1595
1596 \param ftdi pointer to ftdi_context
1597 \param chunksize Pointer to store chunk size in
948f9ada 1598
1941414d 1599 \retval 0: all fine
22a1b5c1 1600 \retval -1: ftdi context invalid
1941414d 1601*/
a8f46ddc
TJ
1602int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1603{
22a1b5c1
TJ
1604 if (ftdi == NULL)
1605 ftdi_error_return(-1, "ftdi context invalid");
1606
948f9ada
TJ
1607 *chunksize = ftdi->writebuffer_chunksize;
1608 return 0;
1609}
cbabb7d3 1610
1941414d
TJ
1611/**
1612 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1613
1614 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1615
1941414d
TJ
1616 \param ftdi pointer to ftdi_context
1617 \param buf Buffer to store data in
1618 \param size Size of the buffer
1619
22a1b5c1 1620 \retval -666: USB device unavailable
579b006f 1621 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 1622 \retval 0: no data was available
1941414d
TJ
1623 \retval >0: number of bytes read
1624
1941414d 1625*/
a8f46ddc
TJ
1626int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1627{
579b006f 1628 int offset = 0, ret, i, num_of_chunks, chunk_remains;
e2f12a4f 1629 int packet_size = ftdi->max_packet_size;
579b006f 1630 int actual_length = 1;
f2f00cb5 1631
22a1b5c1
TJ
1632 if (ftdi == NULL || ftdi->usb_dev == NULL)
1633 ftdi_error_return(-666, "USB device unavailable");
1634
e2f12a4f
TJ
1635 // Packet size sanity check (avoid division by zero)
1636 if (packet_size == 0)
1637 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 1638
948f9ada 1639 // everything we want is still in the readbuffer?
22d12cda
TJ
1640 if (size <= ftdi->readbuffer_remaining)
1641 {
d9f0cce7
TJ
1642 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1643
1644 // Fix offsets
1645 ftdi->readbuffer_remaining -= size;
1646 ftdi->readbuffer_offset += size;
1647
545820ce 1648 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1649
1650 return size;
979a145c 1651 }
948f9ada 1652 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
1653 if (ftdi->readbuffer_remaining != 0)
1654 {
d9f0cce7 1655 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1656
d9f0cce7
TJ
1657 // Fix offset
1658 offset += ftdi->readbuffer_remaining;
948f9ada 1659 }
948f9ada 1660 // do the actual USB read
579b006f 1661 while (offset < size && actual_length > 0)
22d12cda 1662 {
d9f0cce7
TJ
1663 ftdi->readbuffer_remaining = 0;
1664 ftdi->readbuffer_offset = 0;
98452d97 1665 /* returns how much received */
579b006f 1666 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
1667 if (ret < 0)
1668 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1669
579b006f 1670 if (actual_length > 2)
22d12cda 1671 {
d9f0cce7
TJ
1672 // skip FTDI status bytes.
1673 // Maybe stored in the future to enable modem use
579b006f
JZ
1674 num_of_chunks = actual_length / packet_size;
1675 chunk_remains = actual_length % packet_size;
1676 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 1677
d9f0cce7 1678 ftdi->readbuffer_offset += 2;
579b006f 1679 actual_length -= 2;
1c733d33 1680
579b006f 1681 if (actual_length > packet_size - 2)
22d12cda 1682 {
1c733d33 1683 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
1684 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1685 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1686 packet_size - 2);
22d12cda
TJ
1687 if (chunk_remains > 2)
1688 {
f2f00cb5
DC
1689 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1690 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 1691 chunk_remains-2);
579b006f 1692 actual_length -= 2*num_of_chunks;
22d12cda
TJ
1693 }
1694 else
579b006f 1695 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 1696 }
22d12cda 1697 }
579b006f 1698 else if (actual_length <= 2)
22d12cda 1699 {
d9f0cce7
TJ
1700 // no more data to read?
1701 return offset;
1702 }
579b006f 1703 if (actual_length > 0)
22d12cda 1704 {
d9f0cce7 1705 // data still fits in buf?
579b006f 1706 if (offset+actual_length <= size)
22d12cda 1707 {
579b006f 1708 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 1709 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 1710 offset += actual_length;
d9f0cce7 1711
53ad271d 1712 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1713 if (offset == size)
c4446c36
TJ
1714 //printf("read_data exact rem %d offset %d\n",
1715 //ftdi->readbuffer_remaining, offset);
d9f0cce7 1716 return offset;
22d12cda
TJ
1717 }
1718 else
1719 {
d9f0cce7
TJ
1720 // only copy part of the data or size <= readbuffer_chunksize
1721 int part_size = size-offset;
1722 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1723
d9f0cce7 1724 ftdi->readbuffer_offset += part_size;
579b006f 1725 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
1726 offset += part_size;
1727
579b006f
JZ
1728 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1729 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1730
1731 return offset;
1732 }
1733 }
cbabb7d3 1734 }
948f9ada 1735 // never reached
29c4af7f 1736 return -127;
a3da1d95
GE
1737}
1738
1941414d
TJ
1739/**
1740 Configure read buffer chunk size.
1741 Default is 4096.
1742
1743 Automatically reallocates the buffer.
a3da1d95 1744
1941414d
TJ
1745 \param ftdi pointer to ftdi_context
1746 \param chunksize Chunk size
1747
1748 \retval 0: all fine
22a1b5c1 1749 \retval -1: ftdi context invalid
1941414d 1750*/
a8f46ddc
TJ
1751int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1752{
29c4af7f
TJ
1753 unsigned char *new_buf;
1754
22a1b5c1
TJ
1755 if (ftdi == NULL)
1756 ftdi_error_return(-1, "ftdi context invalid");
1757
948f9ada
TJ
1758 // Invalidate all remaining data
1759 ftdi->readbuffer_offset = 0;
1760 ftdi->readbuffer_remaining = 0;
8de6eea4
JZ
1761#ifdef __linux__
1762 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1763 which is defined in libusb-1.0. Otherwise, each USB read request will
2e685a1f 1764 be divided into multiple URBs. This will cause issues on Linux kernel
8de6eea4
JZ
1765 older than 2.6.32. */
1766 if (chunksize > 16384)
1767 chunksize = 16384;
1768#endif
948f9ada 1769
c3d95b87
TJ
1770 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1771 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1772
948f9ada
TJ
1773 ftdi->readbuffer = new_buf;
1774 ftdi->readbuffer_chunksize = chunksize;
1775
1776 return 0;
1777}
1778
1941414d
TJ
1779/**
1780 Get read buffer chunk size.
948f9ada 1781
1941414d
TJ
1782 \param ftdi pointer to ftdi_context
1783 \param chunksize Pointer to store chunk size in
1784
1785 \retval 0: all fine
22a1b5c1 1786 \retval -1: FTDI context invalid
1941414d 1787*/
a8f46ddc
TJ
1788int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1789{
22a1b5c1
TJ
1790 if (ftdi == NULL)
1791 ftdi_error_return(-1, "FTDI context invalid");
1792
948f9ada
TJ
1793 *chunksize = ftdi->readbuffer_chunksize;
1794 return 0;
1795}
1796
1797
1941414d
TJ
1798/**
1799 Enable bitbang mode.
948f9ada 1800
fd282db3 1801 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1941414d
TJ
1802
1803 \param ftdi pointer to ftdi_context
1804 \param bitmask Bitmask to configure lines.
1805 HIGH/ON value configures a line as output.
1806
1807 \retval 0: all fine
1808 \retval -1: can't enable bitbang mode
22a1b5c1 1809 \retval -2: USB device unavailable
1941414d 1810*/
a8f46ddc
TJ
1811int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1812{
a3da1d95
GE
1813 unsigned short usb_val;
1814
22a1b5c1
TJ
1815 if (ftdi == NULL || ftdi->usb_dev == NULL)
1816 ftdi_error_return(-2, "USB device unavailable");
1817
d9f0cce7 1818 usb_val = bitmask; // low byte: bitmask
3119537f
TJ
1819 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1820 usb_val |= (ftdi->bitbang_mode << 8);
1821
579b006f
JZ
1822 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1823 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1824 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1825 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1826
a3da1d95
GE
1827 ftdi->bitbang_enabled = 1;
1828 return 0;
1829}
1830
1941414d
TJ
1831/**
1832 Disable bitbang mode.
a3da1d95 1833
1941414d
TJ
1834 \param ftdi pointer to ftdi_context
1835
1836 \retval 0: all fine
1837 \retval -1: can't disable bitbang mode
22a1b5c1 1838 \retval -2: USB device unavailable
1941414d 1839*/
a8f46ddc
TJ
1840int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1841{
22a1b5c1
TJ
1842 if (ftdi == NULL || ftdi->usb_dev == NULL)
1843 ftdi_error_return(-2, "USB device unavailable");
1844
579b006f 1845 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1846 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1847
1848 ftdi->bitbang_enabled = 0;
1849 return 0;
1850}
1851
1941414d 1852/**
418aaa72 1853 Enable/disable bitbang modes.
a3da1d95 1854
1941414d
TJ
1855 \param ftdi pointer to ftdi_context
1856 \param bitmask Bitmask to configure lines.
1857 HIGH/ON value configures a line as output.
fd282db3 1858 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
1859
1860 \retval 0: all fine
1861 \retval -1: can't enable bitbang mode
22a1b5c1 1862 \retval -2: USB device unavailable
1941414d 1863*/
c4446c36
TJ
1864int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1865{
1866 unsigned short usb_val;
1867
22a1b5c1
TJ
1868 if (ftdi == NULL || ftdi->usb_dev == NULL)
1869 ftdi_error_return(-2, "USB device unavailable");
1870
c4446c36
TJ
1871 usb_val = bitmask; // low byte: bitmask
1872 usb_val |= (mode << 8);
579b006f
JZ
1873 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1874 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
c4446c36
TJ
1875
1876 ftdi->bitbang_mode = mode;
418aaa72 1877 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
c4446c36
TJ
1878 return 0;
1879}
1880
1941414d 1881/**
418aaa72 1882 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
1883
1884 \param ftdi pointer to ftdi_context
1885 \param pins Pointer to store pins into
1886
1887 \retval 0: all fine
1888 \retval -1: read pins failed
22a1b5c1 1889 \retval -2: USB device unavailable
1941414d 1890*/
a8f46ddc
TJ
1891int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1892{
22a1b5c1
TJ
1893 if (ftdi == NULL || ftdi->usb_dev == NULL)
1894 ftdi_error_return(-2, "USB device unavailable");
1895
579b006f 1896 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1897 ftdi_error_return(-1, "read pins failed");
a3da1d95 1898
a3da1d95
GE
1899 return 0;
1900}
1901
1941414d
TJ
1902/**
1903 Set latency timer
1904
1905 The FTDI chip keeps data in the internal buffer for a specific
1906 amount of time if the buffer is not full yet to decrease
1907 load on the usb bus.
a3da1d95 1908
1941414d
TJ
1909 \param ftdi pointer to ftdi_context
1910 \param latency Value between 1 and 255
1911
1912 \retval 0: all fine
1913 \retval -1: latency out of range
1914 \retval -2: unable to set latency timer
22a1b5c1 1915 \retval -3: USB device unavailable
1941414d 1916*/
a8f46ddc
TJ
1917int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1918{
a3da1d95
GE
1919 unsigned short usb_val;
1920
c3d95b87
TJ
1921 if (latency < 1)
1922 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 1923
22a1b5c1
TJ
1924 if (ftdi == NULL || ftdi->usb_dev == NULL)
1925 ftdi_error_return(-3, "USB device unavailable");
1926
d79d2e68 1927 usb_val = latency;
579b006f 1928 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1929 ftdi_error_return(-2, "unable to set latency timer");
1930
a3da1d95
GE
1931 return 0;
1932}
1933
1941414d
TJ
1934/**
1935 Get latency timer
a3da1d95 1936
1941414d
TJ
1937 \param ftdi pointer to ftdi_context
1938 \param latency Pointer to store latency value in
1939
1940 \retval 0: all fine
1941 \retval -1: unable to get latency timer
22a1b5c1 1942 \retval -2: USB device unavailable
1941414d 1943*/
a8f46ddc
TJ
1944int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1945{
a3da1d95 1946 unsigned short usb_val;
22a1b5c1
TJ
1947
1948 if (ftdi == NULL || ftdi->usb_dev == NULL)
1949 ftdi_error_return(-2, "USB device unavailable");
1950
579b006f 1951 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1952 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
1953
1954 *latency = (unsigned char)usb_val;
1955 return 0;
1956}
1957
1941414d 1958/**
1189b11a
TJ
1959 Poll modem status information
1960
1961 This function allows the retrieve the two status bytes of the device.
1962 The device sends these bytes also as a header for each read access
1963 where they are discarded by ftdi_read_data(). The chip generates
1964 the two stripped status bytes in the absence of data every 40 ms.
1965
1966 Layout of the first byte:
1967 - B0..B3 - must be 0
1968 - B4 Clear to send (CTS)
1969 0 = inactive
1970 1 = active
1971 - B5 Data set ready (DTS)
1972 0 = inactive
1973 1 = active
1974 - B6 Ring indicator (RI)
1975 0 = inactive
1976 1 = active
1977 - B7 Receive line signal detect (RLSD)
1978 0 = inactive
1979 1 = active
1980
1981 Layout of the second byte:
1982 - B0 Data ready (DR)
1983 - B1 Overrun error (OE)
1984 - B2 Parity error (PE)
1985 - B3 Framing error (FE)
1986 - B4 Break interrupt (BI)
1987 - B5 Transmitter holding register (THRE)
1988 - B6 Transmitter empty (TEMT)
1989 - B7 Error in RCVR FIFO
1990
1991 \param ftdi pointer to ftdi_context
1992 \param status Pointer to store status information in. Must be two bytes.
1993
1994 \retval 0: all fine
1995 \retval -1: unable to retrieve status information
22a1b5c1 1996 \retval -2: USB device unavailable
1189b11a
TJ
1997*/
1998int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1999{
2000 char usb_val[2];
2001
22a1b5c1
TJ
2002 if (ftdi == NULL || ftdi->usb_dev == NULL)
2003 ftdi_error_return(-2, "USB device unavailable");
2004
579b006f 2005 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
2006 ftdi_error_return(-1, "getting modem status failed");
2007
dc09eaa8 2008 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
1189b11a
TJ
2009
2010 return 0;
2011}
2012
a7fb8440
TJ
2013/**
2014 Set flowcontrol for ftdi chip
2015
2016 \param ftdi pointer to ftdi_context
22d12cda
TJ
2017 \param flowctrl flow control to use. should be
2018 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
a7fb8440
TJ
2019
2020 \retval 0: all fine
2021 \retval -1: set flow control failed
22a1b5c1 2022 \retval -2: USB device unavailable
a7fb8440
TJ
2023*/
2024int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2025{
22a1b5c1
TJ
2026 if (ftdi == NULL || ftdi->usb_dev == NULL)
2027 ftdi_error_return(-2, "USB device unavailable");
2028
579b006f
JZ
2029 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2030 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2031 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2032 ftdi_error_return(-1, "set flow control failed");
2033
2034 return 0;
2035}
2036
2037/**
2038 Set dtr line
2039
2040 \param ftdi pointer to ftdi_context
2041 \param state state to set line to (1 or 0)
2042
2043 \retval 0: all fine
2044 \retval -1: set dtr failed
22a1b5c1 2045 \retval -2: USB device unavailable
a7fb8440
TJ
2046*/
2047int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2048{
2049 unsigned short usb_val;
2050
22a1b5c1
TJ
2051 if (ftdi == NULL || ftdi->usb_dev == NULL)
2052 ftdi_error_return(-2, "USB device unavailable");
2053
a7fb8440
TJ
2054 if (state)
2055 usb_val = SIO_SET_DTR_HIGH;
2056 else
2057 usb_val = SIO_SET_DTR_LOW;
2058
579b006f
JZ
2059 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2060 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2061 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2062 ftdi_error_return(-1, "set dtr failed");
2063
2064 return 0;
2065}
2066
2067/**
2068 Set rts line
2069
2070 \param ftdi pointer to ftdi_context
2071 \param state state to set line to (1 or 0)
2072
2073 \retval 0: all fine
22a1b5c1
TJ
2074 \retval -1: set rts failed
2075 \retval -2: USB device unavailable
a7fb8440
TJ
2076*/
2077int ftdi_setrts(struct ftdi_context *ftdi, int state)
2078{
2079 unsigned short usb_val;
2080
22a1b5c1
TJ
2081 if (ftdi == NULL || ftdi->usb_dev == NULL)
2082 ftdi_error_return(-2, "USB device unavailable");
2083
a7fb8440
TJ
2084 if (state)
2085 usb_val = SIO_SET_RTS_HIGH;
2086 else
2087 usb_val = SIO_SET_RTS_LOW;
2088
579b006f
JZ
2089 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2090 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2091 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2092 ftdi_error_return(-1, "set of rts failed");
2093
2094 return 0;
2095}
2096
1189b11a 2097/**
22a1b5c1 2098 Set dtr and rts line in one pass
9ecfef2a 2099
22a1b5c1
TJ
2100 \param ftdi pointer to ftdi_context
2101 \param dtr DTR state to set line to (1 or 0)
2102 \param rts RTS state to set line to (1 or 0)
9ecfef2a 2103
22a1b5c1
TJ
2104 \retval 0: all fine
2105 \retval -1: set dtr/rts failed
2106 \retval -2: USB device unavailable
9ecfef2a
TJ
2107 */
2108int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2109{
2110 unsigned short usb_val;
2111
22a1b5c1
TJ
2112 if (ftdi == NULL || ftdi->usb_dev == NULL)
2113 ftdi_error_return(-2, "USB device unavailable");
2114
9ecfef2a 2115 if (dtr)
22d12cda 2116 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 2117 else
22d12cda 2118 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
2119
2120 if (rts)
22d12cda 2121 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 2122 else
22d12cda 2123 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 2124
579b006f
JZ
2125 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2126 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2127 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 2128 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
2129
2130 return 0;
2131}
2132
2133/**
1189b11a
TJ
2134 Set the special event character
2135
2136 \param ftdi pointer to ftdi_context
2137 \param eventch Event character
2138 \param enable 0 to disable the event character, non-zero otherwise
2139
2140 \retval 0: all fine
2141 \retval -1: unable to set event character
22a1b5c1 2142 \retval -2: USB device unavailable
1189b11a
TJ
2143*/
2144int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 2145 unsigned char eventch, unsigned char enable)
1189b11a
TJ
2146{
2147 unsigned short usb_val;
2148
22a1b5c1
TJ
2149 if (ftdi == NULL || ftdi->usb_dev == NULL)
2150 ftdi_error_return(-2, "USB device unavailable");
2151
1189b11a
TJ
2152 usb_val = eventch;
2153 if (enable)
2154 usb_val |= 1 << 8;
2155
579b006f 2156 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2157 ftdi_error_return(-1, "setting event character failed");
2158
2159 return 0;
2160}
2161
2162/**
2163 Set error character
2164
2165 \param ftdi pointer to ftdi_context
2166 \param errorch Error character
2167 \param enable 0 to disable the error character, non-zero otherwise
2168
2169 \retval 0: all fine
2170 \retval -1: unable to set error character
22a1b5c1 2171 \retval -2: USB device unavailable
1189b11a
TJ
2172*/
2173int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 2174 unsigned char errorch, unsigned char enable)
1189b11a
TJ
2175{
2176 unsigned short usb_val;
2177
22a1b5c1
TJ
2178 if (ftdi == NULL || ftdi->usb_dev == NULL)
2179 ftdi_error_return(-2, "USB device unavailable");
2180
1189b11a
TJ
2181 usb_val = errorch;
2182 if (enable)
2183 usb_val |= 1 << 8;
2184
579b006f 2185 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2186 ftdi_error_return(-1, "setting error character failed");
2187
2188 return 0;
2189}
2190
2191/**
44f41f11 2192 Init eeprom with default values for the connected device
a35aa9bd 2193 \param ftdi pointer to ftdi_context
f14f84d3
UB
2194 \param manufacturer String to use as Manufacturer
2195 \param product String to use as Product description
2196 \param serial String to use as Serial number description
4e74064b 2197
f14f84d3
UB
2198 \retval 0: all fine
2199 \retval -1: No struct ftdi_context
2200 \retval -2: No struct ftdi_eeprom
44f41f11 2201 \retval -3: No connected device or device not yet opened
1941414d 2202*/
f14f84d3 2203int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
56ac0383 2204 char * product, char * serial)
a8f46ddc 2205{
c0a96aed 2206 struct ftdi_eeprom *eeprom;
f505134f 2207
c0a96aed 2208 if (ftdi == NULL)
f14f84d3 2209 ftdi_error_return(-1, "No struct ftdi_context");
c0a96aed
UB
2210
2211 if (ftdi->eeprom == NULL)
56ac0383 2212 ftdi_error_return(-2,"No struct ftdi_eeprom");
22a1b5c1 2213
c0a96aed 2214 eeprom = ftdi->eeprom;
a02587d5 2215 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
c0a96aed 2216
44f41f11
UB
2217 if (ftdi->usb_dev == NULL)
2218 ftdi_error_return(-3, "No connected device or device not yet opened");
2219
f396dbad 2220 eeprom->vendor_id = 0x0403;
a02587d5 2221 eeprom->use_serial = USE_SERIAL_NUM;
56ac0383
TJ
2222 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2223 (ftdi->type == TYPE_R))
a02587d5 2224 eeprom->product_id = 0x6001;
c7e4c09e
UB
2225 else if (ftdi->type == TYPE_4232H)
2226 eeprom->product_id = 0x6011;
2227 else if (ftdi->type == TYPE_232H)
2228 eeprom->product_id = 0x6014;
a02587d5
UB
2229 else
2230 eeprom->product_id = 0x6010;
b1859923
UB
2231 if (ftdi->type == TYPE_AM)
2232 eeprom->usb_version = 0x0101;
2233 else
2234 eeprom->usb_version = 0x0200;
a886436a 2235 eeprom->max_power = 100;
d9f0cce7 2236
74e8e79d
UB
2237 if (eeprom->manufacturer)
2238 free (eeprom->manufacturer);
b8aa7b35 2239 eeprom->manufacturer = NULL;
74e8e79d
UB
2240 if (manufacturer)
2241 {
2242 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2243 if (eeprom->manufacturer)
2244 strcpy(eeprom->manufacturer, manufacturer);
2245 }
2246
2247 if (eeprom->product)
2248 free (eeprom->product);
b8aa7b35 2249 eeprom->product = NULL;
10771971 2250 if(product)
74e8e79d
UB
2251 {
2252 eeprom->product = malloc(strlen(product)+1);
2253 if (eeprom->product)
2254 strcpy(eeprom->product, product);
2255 }
2256
2257 if (eeprom->serial)
2258 free (eeprom->serial);
b8aa7b35 2259 eeprom->serial = NULL;
74e8e79d
UB
2260 if (serial)
2261 {
2262 eeprom->serial = malloc(strlen(serial)+1);
2263 if (eeprom->serial)
2264 strcpy(eeprom->serial, serial);
2265 }
2266
c201f80f 2267
56ac0383 2268 if (ftdi->type == TYPE_R)
a4980043 2269 {
a886436a 2270 eeprom->max_power = 90;
a02587d5 2271 eeprom->size = 0x80;
a4980043
UB
2272 eeprom->cbus_function[0] = CBUS_TXLED;
2273 eeprom->cbus_function[1] = CBUS_RXLED;
2274 eeprom->cbus_function[2] = CBUS_TXDEN;
2275 eeprom->cbus_function[3] = CBUS_PWREN;
2276 eeprom->cbus_function[4] = CBUS_SLEEP;
2277 }
a02587d5 2278 else
263d3ba0
UB
2279 {
2280 if(ftdi->type == TYPE_232H)
2281 {
2282 int i;
2283 for (i=0; i<10; i++)
2284 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2285 }
a02587d5 2286 eeprom->size = -1;
263d3ba0 2287 }
44f41f11 2288 eeprom->initialized_for_connected_device = 1;
f14f84d3 2289 return 0;
b8aa7b35 2290}
263d3ba0
UB
2291/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2292void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2293{
2294 int i;
2295 for(i=0; i<5;i++)
2296 {
2297 int mode_low, mode_high;
2298 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2299 mode_low = CBUSH_TRISTATE;
2300 else
2301 mode_low = eeprom->cbus_function[2*i];
2302 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2303 mode_high = CBUSH_TRISTATE;
2304 else
2305 mode_high = eeprom->cbus_function[2*i];
b8aa7b35 2306
263d3ba0
UB
2307 output[0x18+i] = mode_high <<4 | mode_low;
2308 }
2309}
c8f69686
UB
2310/* Return the bits for the encoded EEPROM Structure of a requested Mode
2311 *
2312 */
2313static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2314{
2315 switch (chip)
2316 {
2317 case TYPE_2232H:
2318 case TYPE_2232C:
2319 {
2320 switch (type)
2321 {
2322 case CHANNEL_IS_UART: return 0;
2323 case CHANNEL_IS_FIFO: return 0x01;
2324 case CHANNEL_IS_OPTO: return 0x02;
2325 case CHANNEL_IS_CPU : return 0x04;
2326 default: return 0;
2327 }
2328 }
2329 case TYPE_232H:
2330 {
2331 switch (type)
2332 {
2333 case CHANNEL_IS_UART : return 0;
2334 case CHANNEL_IS_FIFO : return 0x01;
2335 case CHANNEL_IS_OPTO : return 0x02;
2336 case CHANNEL_IS_CPU : return 0x04;
2337 case CHANNEL_IS_FT1284 : return 0x08;
2338 default: return 0;
2339 }
2340 }
2341 default: return 0;
2342 }
2343 return 0;
2344}
2345
1941414d 2346/**
a35aa9bd 2347 Build binary buffer from ftdi_eeprom structure.
22a1b5c1 2348 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2349
a35aa9bd 2350 \param ftdi pointer to ftdi_context
1941414d 2351
516ebfb1 2352 \retval >=0: size of eeprom user area in bytes
22a1b5c1 2353 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2c1e2bde
TJ
2354 \retval -2: Invalid eeprom or ftdi pointer
2355 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2356 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2357 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2b9a3c82 2358 \retval -6: No connected EEPROM or EEPROM Type unknown
b8aa7b35 2359*/
a35aa9bd 2360int ftdi_eeprom_build(struct ftdi_context *ftdi)
a8f46ddc 2361{
e2bbd9af 2362 unsigned char i, j, eeprom_size_mask;
b8aa7b35
TJ
2363 unsigned short checksum, value;
2364 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
516ebfb1 2365 int user_area_size;
c0a96aed 2366 struct ftdi_eeprom *eeprom;
a35aa9bd 2367 unsigned char * output;
b8aa7b35 2368
c0a96aed 2369 if (ftdi == NULL)
cc9c9d58 2370 ftdi_error_return(-2,"No context");
c0a96aed 2371 if (ftdi->eeprom == NULL)
cc9c9d58 2372 ftdi_error_return(-2,"No eeprom structure");
c0a96aed
UB
2373
2374 eeprom= ftdi->eeprom;
a35aa9bd 2375 output = eeprom->buf;
22a1b5c1 2376
56ac0383 2377 if (eeprom->chip == -1)
2c1e2bde 2378 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2b9a3c82 2379
f75bf139
UB
2380 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2381 eeprom->size = 0x100;
2382 else
2383 eeprom->size = 0x80;
2384
b8aa7b35 2385 if (eeprom->manufacturer != NULL)
d9f0cce7 2386 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2387 if (eeprom->product != NULL)
d9f0cce7 2388 product_size = strlen(eeprom->product);
b8aa7b35 2389 if (eeprom->serial != NULL)
d9f0cce7 2390 serial_size = strlen(eeprom->serial);
b8aa7b35 2391
814710ba
TJ
2392 // eeprom size check
2393 switch (ftdi->type)
2394 {
2395 case TYPE_AM:
2396 case TYPE_BM:
2397 user_area_size = 96; // base size for strings (total of 48 characters)
2398 break;
2399 case TYPE_2232C:
56ac0383
TJ
2400 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2401 break;
814710ba 2402 case TYPE_R:
56ac0383
TJ
2403 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2404 break;
814710ba
TJ
2405 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2406 case TYPE_4232H:
56ac0383 2407 user_area_size = 86;
118c4561 2408 break;
c1c3d564
UB
2409 case TYPE_232H:
2410 user_area_size = 80;
2411 break;
2c1e2bde
TJ
2412 default:
2413 user_area_size = 0;
56ac0383 2414 break;
665cda04
UB
2415 }
2416 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
814710ba 2417
516ebfb1
TJ
2418 if (user_area_size < 0)
2419 ftdi_error_return(-1,"eeprom size exceeded");
b8aa7b35
TJ
2420
2421 // empty eeprom
a35aa9bd 2422 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
b8aa7b35 2423
93738c79
UB
2424 // Bytes and Bits set for all Types
2425
b8aa7b35
TJ
2426 // Addr 02: Vendor ID
2427 output[0x02] = eeprom->vendor_id;
2428 output[0x03] = eeprom->vendor_id >> 8;
2429
2430 // Addr 04: Product ID
2431 output[0x04] = eeprom->product_id;
2432 output[0x05] = eeprom->product_id >> 8;
2433
2434 // Addr 06: Device release number (0400h for BM features)
2435 output[0x06] = 0x00;
814710ba
TJ
2436 switch (ftdi->type)
2437 {
f505134f
HK
2438 case TYPE_AM:
2439 output[0x07] = 0x02;
2440 break;
2441 case TYPE_BM:
2442 output[0x07] = 0x04;
2443 break;
2444 case TYPE_2232C:
2445 output[0x07] = 0x05;
2446 break;
2447 case TYPE_R:
2448 output[0x07] = 0x06;
2449 break;
56ac0383 2450 case TYPE_2232H:
6123f7ab
UB
2451 output[0x07] = 0x07;
2452 break;
56ac0383 2453 case TYPE_4232H:
6123f7ab
UB
2454 output[0x07] = 0x08;
2455 break;
c7e4c09e
UB
2456 case TYPE_232H:
2457 output[0x07] = 0x09;
2458 break;
f505134f
HK
2459 default:
2460 output[0x07] = 0x00;
2461 }
b8aa7b35
TJ
2462
2463 // Addr 08: Config descriptor
8fae3e8e
TJ
2464 // Bit 7: always 1
2465 // Bit 6: 1 if this device is self powered, 0 if bus powered
2466 // Bit 5: 1 if this device uses remote wakeup
37186e34 2467 // Bit 4-0: reserved - 0
5a1dcd55 2468 j = 0x80;
b8aa7b35 2469 if (eeprom->self_powered == 1)
5a1dcd55 2470 j |= 0x40;
b8aa7b35 2471 if (eeprom->remote_wakeup == 1)
5a1dcd55 2472 j |= 0x20;
b8aa7b35
TJ
2473 output[0x08] = j;
2474
2475 // Addr 09: Max power consumption: max power = value * 2 mA
bb5ec68a 2476 output[0x09] = eeprom->max_power>>1;
d9f0cce7 2477
56ac0383 2478 if (ftdi->type != TYPE_AM)
93738c79
UB
2479 {
2480 // Addr 0A: Chip configuration
2481 // Bit 7: 0 - reserved
2482 // Bit 6: 0 - reserved
2483 // Bit 5: 0 - reserved
56ac0383 2484 // Bit 4: 1 - Change USB version
93738c79
UB
2485 // Bit 3: 1 - Use the serial number string
2486 // Bit 2: 1 - Enable suspend pull downs for lower power
2487 // Bit 1: 1 - Out EndPoint is Isochronous
2488 // Bit 0: 1 - In EndPoint is Isochronous
2489 //
2490 j = 0;
2491 if (eeprom->in_is_isochronous == 1)
2492 j = j | 1;
2493 if (eeprom->out_is_isochronous == 1)
2494 j = j | 2;
2495 output[0x0A] = j;
2496 }
f505134f 2497
b8aa7b35 2498 // Dynamic content
93738c79
UB
2499 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2500 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
c7e4c09e 2501 // 0xa0 (TYPE_232H)
93738c79 2502 i = 0;
56ac0383
TJ
2503 switch (ftdi->type)
2504 {
c7e4c09e
UB
2505 case TYPE_232H:
2506 i += 2;
56ac0383
TJ
2507 case TYPE_2232H:
2508 case TYPE_4232H:
2509 i += 2;
2510 case TYPE_R:
2511 i += 2;
2512 case TYPE_2232C:
2513 i += 2;
2514 case TYPE_AM:
2515 case TYPE_BM:
2516 i += 0x94;
f505134f 2517 }
93738c79 2518 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
e2bbd9af 2519 eeprom_size_mask = eeprom->size -1;
c201f80f 2520
93738c79
UB
2521 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2522 // Addr 0F: Length of manufacturer string
22d12cda 2523 // Output manufacturer
93738c79 2524 output[0x0E] = i; // calculate offset
e2bbd9af
TJ
2525 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2526 output[i & eeprom_size_mask] = 0x03, i++; // type: string
22d12cda
TJ
2527 for (j = 0; j < manufacturer_size; j++)
2528 {
e2bbd9af
TJ
2529 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2530 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2531 }
93738c79 2532 output[0x0F] = manufacturer_size*2 + 2;
b8aa7b35 2533
93738c79
UB
2534 // Addr 10: Offset of the product string + 0x80, calculated later
2535 // Addr 11: Length of product string
c201f80f 2536 output[0x10] = i | 0x80; // calculate offset
e2bbd9af
TJ
2537 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2538 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2539 for (j = 0; j < product_size; j++)
2540 {
e2bbd9af
TJ
2541 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2542 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2543 }
93738c79 2544 output[0x11] = product_size*2 + 2;
37186e34 2545
93738c79
UB
2546 // Addr 12: Offset of the serial string + 0x80, calculated later
2547 // Addr 13: Length of serial string
c201f80f 2548 output[0x12] = i | 0x80; // calculate offset
e2bbd9af
TJ
2549 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2550 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2551 for (j = 0; j < serial_size; j++)
2552 {
e2bbd9af
TJ
2553 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2554 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2555 }
c2700d6d
TJ
2556
2557 // Legacy port name and PnP fields for FT2232 and newer chips
2558 if (ftdi->type > TYPE_BM)
2559 {
2560 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2561 i++;
2562 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2563 i++;
2564 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2565 i++;
2566 }
802a949e 2567
93738c79 2568 output[0x13] = serial_size*2 + 2;
b8aa7b35 2569
56ac0383 2570 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
bf2f6ef7
UB
2571 {
2572 if (eeprom->use_serial == USE_SERIAL_NUM )
2573 output[0x0A] |= USE_SERIAL_NUM;
2574 else
2575 output[0x0A] &= ~USE_SERIAL_NUM;
2576 }
3802140c
UB
2577
2578 /* Bytes and Bits specific to (some) types
2579 Write linear, as this allows easier fixing*/
56ac0383
TJ
2580 switch (ftdi->type)
2581 {
2582 case TYPE_AM:
2583 break;
2584 case TYPE_BM:
2585 output[0x0C] = eeprom->usb_version & 0xff;
2586 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2587 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2588 output[0x0A] |= USE_USB_VERSION_BIT;
2589 else
2590 output[0x0A] &= ~USE_USB_VERSION_BIT;
caec1294 2591
56ac0383
TJ
2592 break;
2593 case TYPE_2232C:
3802140c 2594
c8f69686 2595 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
56ac0383
TJ
2596 if ( eeprom->channel_a_driver == DRIVER_VCP)
2597 output[0x00] |= DRIVER_VCP;
2598 else
2599 output[0x00] &= ~DRIVER_VCP;
4e74064b 2600
56ac0383
TJ
2601 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2602 output[0x00] |= HIGH_CURRENT_DRIVE;
2603 else
2604 output[0x00] &= ~HIGH_CURRENT_DRIVE;
3802140c 2605
c8f69686 2606 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
56ac0383
TJ
2607 if ( eeprom->channel_b_driver == DRIVER_VCP)
2608 output[0x01] |= DRIVER_VCP;
2609 else
2610 output[0x01] &= ~DRIVER_VCP;
4e74064b 2611
56ac0383
TJ
2612 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2613 output[0x01] |= HIGH_CURRENT_DRIVE;
2614 else
2615 output[0x01] &= ~HIGH_CURRENT_DRIVE;
3802140c 2616
56ac0383
TJ
2617 if (eeprom->in_is_isochronous == 1)
2618 output[0x0A] |= 0x1;
2619 else
2620 output[0x0A] &= ~0x1;
2621 if (eeprom->out_is_isochronous == 1)
2622 output[0x0A] |= 0x2;
2623 else
2624 output[0x0A] &= ~0x2;
2625 if (eeprom->suspend_pull_downs == 1)
2626 output[0x0A] |= 0x4;
2627 else
2628 output[0x0A] &= ~0x4;
2629 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2630 output[0x0A] |= USE_USB_VERSION_BIT;
2631 else
2632 output[0x0A] &= ~USE_USB_VERSION_BIT;
4e74064b 2633
56ac0383
TJ
2634 output[0x0C] = eeprom->usb_version & 0xff;
2635 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2636 output[0x14] = eeprom->chip;
2637 break;
2638 case TYPE_R:
2639 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2640 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2641 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
4e74064b 2642
56ac0383
TJ
2643 if (eeprom->suspend_pull_downs == 1)
2644 output[0x0A] |= 0x4;
2645 else
2646 output[0x0A] &= ~0x4;
2647 output[0x0B] = eeprom->invert;
2648 output[0x0C] = eeprom->usb_version & 0xff;
2649 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
4e74064b 2650
56ac0383
TJ
2651 if (eeprom->cbus_function[0] > CBUS_BB)
2652 output[0x14] = CBUS_TXLED;
2653 else
2654 output[0x14] = eeprom->cbus_function[0];
4e74064b 2655
56ac0383
TJ
2656 if (eeprom->cbus_function[1] > CBUS_BB)
2657 output[0x14] |= CBUS_RXLED<<4;
2658 else
2659 output[0x14] |= eeprom->cbus_function[1]<<4;
4e74064b 2660
56ac0383
TJ
2661 if (eeprom->cbus_function[2] > CBUS_BB)
2662 output[0x15] = CBUS_TXDEN;
2663 else
2664 output[0x15] = eeprom->cbus_function[2];
4e74064b 2665
56ac0383
TJ
2666 if (eeprom->cbus_function[3] > CBUS_BB)
2667 output[0x15] |= CBUS_PWREN<<4;
2668 else
2669 output[0x15] |= eeprom->cbus_function[3]<<4;
4e74064b 2670
56ac0383
TJ
2671 if (eeprom->cbus_function[4] > CBUS_CLK6)
2672 output[0x16] = CBUS_SLEEP;
2673 else
2674 output[0x16] = eeprom->cbus_function[4];
2675 break;
2676 case TYPE_2232H:
c8f69686 2677 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
56ac0383
TJ
2678 if ( eeprom->channel_a_driver == DRIVER_VCP)
2679 output[0x00] |= DRIVER_VCP;
2680 else
2681 output[0x00] &= ~DRIVER_VCP;
6e6a1c3f 2682
c8f69686 2683 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
56ac0383
TJ
2684 if ( eeprom->channel_b_driver == DRIVER_VCP)
2685 output[0x01] |= DRIVER_VCP;
2686 else
2687 output[0x01] &= ~DRIVER_VCP;
2688 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2689 output[0x01] |= SUSPEND_DBUS7_BIT;
2690 else
2691 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2692
2693 if (eeprom->suspend_pull_downs == 1)
2694 output[0x0A] |= 0x4;
2695 else
2696 output[0x0A] &= ~0x4;
2697
2698 if (eeprom->group0_drive > DRIVE_16MA)
2699 output[0x0c] |= DRIVE_16MA;
2700 else
2701 output[0x0c] |= eeprom->group0_drive;
2702 if (eeprom->group0_schmitt == IS_SCHMITT)
2703 output[0x0c] |= IS_SCHMITT;
2704 if (eeprom->group0_slew == SLOW_SLEW)
2705 output[0x0c] |= SLOW_SLEW;
2706
2707 if (eeprom->group1_drive > DRIVE_16MA)
2708 output[0x0c] |= DRIVE_16MA<<4;
2709 else
2710 output[0x0c] |= eeprom->group1_drive<<4;
2711 if (eeprom->group1_schmitt == IS_SCHMITT)
2712 output[0x0c] |= IS_SCHMITT<<4;
2713 if (eeprom->group1_slew == SLOW_SLEW)
2714 output[0x0c] |= SLOW_SLEW<<4;
2715
2716 if (eeprom->group2_drive > DRIVE_16MA)
2717 output[0x0d] |= DRIVE_16MA;
2718 else
2719 output[0x0d] |= eeprom->group2_drive;
2720 if (eeprom->group2_schmitt == IS_SCHMITT)
2721 output[0x0d] |= IS_SCHMITT;
2722 if (eeprom->group2_slew == SLOW_SLEW)
2723 output[0x0d] |= SLOW_SLEW;
2724
2725 if (eeprom->group3_drive > DRIVE_16MA)
2726 output[0x0d] |= DRIVE_16MA<<4;
2727 else
2728 output[0x0d] |= eeprom->group3_drive<<4;
2729 if (eeprom->group3_schmitt == IS_SCHMITT)
2730 output[0x0d] |= IS_SCHMITT<<4;
2731 if (eeprom->group3_slew == SLOW_SLEW)
2732 output[0x0d] |= SLOW_SLEW<<4;
3802140c 2733
56ac0383 2734 output[0x18] = eeprom->chip;
3802140c 2735
56ac0383
TJ
2736 break;
2737 case TYPE_4232H:
c7e4c09e 2738 output[0x18] = eeprom->chip;
56ac0383 2739 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
c7e4c09e
UB
2740 break;
2741 case TYPE_232H:
c8f69686 2742 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
ac4a82a5
UB
2743 if ( eeprom->channel_a_driver == DRIVER_VCP)
2744 output[0x00] |= DRIVER_VCPH;
2745 else
2746 output[0x00] &= ~DRIVER_VCPH;
837a71d6
UB
2747 if (eeprom->powersave)
2748 output[0x01] |= POWER_SAVE_DISABLE_H;
2749 else
2750 output[0x01] &= ~POWER_SAVE_DISABLE_H;
18199b76
UB
2751 if (eeprom->clock_polarity)
2752 output[0x01] |= FT1284_CLK_IDLE_STATE;
2753 else
2754 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
2755 if (eeprom->data_order)
2756 output[0x01] |= FT1284_DATA_LSB;
2757 else
2758 output[0x01] &= ~FT1284_DATA_LSB;
2759 if (eeprom->flow_control)
2760 output[0x01] |= FT1284_FLOW_CONTROL;
2761 else
2762 output[0x01] &= ~FT1284_FLOW_CONTROL;
91d7a201
UB
2763 if (eeprom->group0_drive > DRIVE_16MA)
2764 output[0x0c] |= DRIVE_16MA;
2765 else
2766 output[0x0c] |= eeprom->group0_drive;
2767 if (eeprom->group0_schmitt == IS_SCHMITT)
2768 output[0x0c] |= IS_SCHMITT;
2769 if (eeprom->group0_slew == SLOW_SLEW)
2770 output[0x0c] |= SLOW_SLEW;
2771
2772 if (eeprom->group1_drive > DRIVE_16MA)
2773 output[0x0d] |= DRIVE_16MA;
2774 else
2775 output[0x0d] |= eeprom->group1_drive;
2776 if (eeprom->group1_schmitt == IS_SCHMITT)
2777 output[0x0d] |= IS_SCHMITT;
2778 if (eeprom->group1_slew == SLOW_SLEW)
2779 output[0x0d] |= SLOW_SLEW;
2780
263d3ba0
UB
2781 set_ft232h_cbus(eeprom, output);
2782
c7e4c09e
UB
2783 output[0x1e] = eeprom->chip;
2784 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
2785 break;
2786
3802140c
UB
2787 }
2788
cbf65673 2789 // calculate checksum
b8aa7b35 2790 checksum = 0xAAAA;
d9f0cce7 2791
22d12cda
TJ
2792 for (i = 0; i < eeprom->size/2-1; i++)
2793 {
d9f0cce7
TJ
2794 value = output[i*2];
2795 value += output[(i*2)+1] << 8;
b8aa7b35 2796
d9f0cce7
TJ
2797 checksum = value^checksum;
2798 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
2799 }
2800
c201f80f
TJ
2801 output[eeprom->size-2] = checksum;
2802 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 2803
516ebfb1 2804 return user_area_size;
b8aa7b35 2805}
c8f69686
UB
2806/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
2807 * EEPROM structure
2808 *
2809 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
2810 */
2811static unsigned char bit2type(unsigned char bits)
0fc2170c
UB
2812{
2813 switch (bits)
2814 {
c8f69686
UB
2815 case 0: return CHANNEL_IS_UART;
2816 case 1: return CHANNEL_IS_FIFO;
2817 case 2: return CHANNEL_IS_OPTO;
2818 case 4: return CHANNEL_IS_CPU;
2819 case 8: return CHANNEL_IS_FT1284;
0fc2170c
UB
2820 default:
2821 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
2822 bits);
2823 }
2824 return 0;
2825}
4af1d1bb
MK
2826/**
2827 Decode binary EEPROM image into an ftdi_eeprom structure.
2828
a35aa9bd
UB
2829 \param ftdi pointer to ftdi_context
2830 \param verbose Decode EEPROM on stdout
56ac0383 2831
4af1d1bb
MK
2832 \retval 0: all fine
2833 \retval -1: something went wrong
2834
2835 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2836 FIXME: Strings are malloc'ed here and should be freed somewhere
2837*/
a35aa9bd 2838int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
b56d5a64
MK
2839{
2840 unsigned char i, j;
2841 unsigned short checksum, eeprom_checksum, value;
2842 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
f2cd9fd5 2843 int eeprom_size;
c0a96aed 2844 struct ftdi_eeprom *eeprom;
a35aa9bd 2845 unsigned char *buf = ftdi->eeprom->buf;
38801bf8 2846 int release;
22a1b5c1 2847
c0a96aed 2848 if (ftdi == NULL)
cc9c9d58 2849 ftdi_error_return(-1,"No context");
c0a96aed 2850 if (ftdi->eeprom == NULL)
6cd4f922 2851 ftdi_error_return(-1,"No eeprom structure");
56ac0383 2852
c0a96aed 2853 eeprom = ftdi->eeprom;
a35aa9bd 2854 eeprom_size = eeprom->size;
b56d5a64 2855
b56d5a64
MK
2856 // Addr 02: Vendor ID
2857 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2858
2859 // Addr 04: Product ID
2860 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
22d12cda 2861
38801bf8 2862 release = buf[0x06] + (buf[0x07]<<8);
b56d5a64
MK
2863
2864 // Addr 08: Config descriptor
2865 // Bit 7: always 1
2866 // Bit 6: 1 if this device is self powered, 0 if bus powered
2867 // Bit 5: 1 if this device uses remote wakeup
f6ef2983 2868 eeprom->self_powered = buf[0x08] & 0x40;
814710ba 2869 eeprom->remote_wakeup = buf[0x08] & 0x20;
b56d5a64
MK
2870
2871 // Addr 09: Max power consumption: max power = value * 2 mA
2872 eeprom->max_power = buf[0x09];
2873
2874 // Addr 0A: Chip configuration
2875 // Bit 7: 0 - reserved
2876 // Bit 6: 0 - reserved
2877 // Bit 5: 0 - reserved
caec1294 2878 // Bit 4: 1 - Change USB version on BM and 2232C
b56d5a64
MK
2879 // Bit 3: 1 - Use the serial number string
2880 // Bit 2: 1 - Enable suspend pull downs for lower power
2881 // Bit 1: 1 - Out EndPoint is Isochronous
2882 // Bit 0: 1 - In EndPoint is Isochronous
2883 //
8d3fe5c9
UB
2884 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2885 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2886 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
a02587d5 2887 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
caec1294 2888 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
b56d5a64 2889
b1859923 2890 // Addr 0C: USB version low byte when 0x0A
56ac0383 2891 // Addr 0D: USB version high byte when 0x0A
b1859923 2892 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
b56d5a64
MK
2893
2894 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2895 // Addr 0F: Length of manufacturer string
2896 manufacturer_size = buf[0x0F]/2;
56ac0383 2897 if (eeprom->manufacturer)
74e8e79d 2898 free(eeprom->manufacturer);
56ac0383 2899 if (manufacturer_size > 0)
acc1fa05
UB
2900 {
2901 eeprom->manufacturer = malloc(manufacturer_size);
2902 if (eeprom->manufacturer)
2903 {
2904 // Decode manufacturer
84ec032f 2905 i = buf[0x0E] & (eeprom_size -1); // offset
acc1fa05
UB
2906 for (j=0;j<manufacturer_size-1;j++)
2907 {
2908 eeprom->manufacturer[j] = buf[2*j+i+2];
2909 }
2910 eeprom->manufacturer[j] = '\0';
2911 }
2912 }
b56d5a64
MK
2913 else eeprom->manufacturer = NULL;
2914
2915 // Addr 10: Offset of the product string + 0x80, calculated later
2916 // Addr 11: Length of product string
56ac0383 2917 if (eeprom->product)
74e8e79d 2918 free(eeprom->product);
b56d5a64 2919 product_size = buf[0x11]/2;
acc1fa05
UB
2920 if (product_size > 0)
2921 {
2922 eeprom->product = malloc(product_size);
56ac0383 2923 if (eeprom->product)
acc1fa05
UB
2924 {
2925 // Decode product name
84ec032f 2926 i = buf[0x10] & (eeprom_size -1); // offset
acc1fa05
UB
2927 for (j=0;j<product_size-1;j++)
2928 {
2929 eeprom->product[j] = buf[2*j+i+2];
2930 }
2931 eeprom->product[j] = '\0';
2932 }
2933 }
b56d5a64
MK
2934 else eeprom->product = NULL;
2935
2936 // Addr 12: Offset of the serial string + 0x80, calculated later
2937 // Addr 13: Length of serial string
56ac0383 2938 if (eeprom->serial)
74e8e79d 2939 free(eeprom->serial);
b56d5a64 2940 serial_size = buf[0x13]/2;
acc1fa05
UB
2941 if (serial_size > 0)
2942 {
2943 eeprom->serial = malloc(serial_size);
56ac0383 2944 if (eeprom->serial)
acc1fa05
UB
2945 {
2946 // Decode serial
84ec032f 2947 i = buf[0x12] & (eeprom_size -1); // offset
acc1fa05
UB
2948 for (j=0;j<serial_size-1;j++)
2949 {
2950 eeprom->serial[j] = buf[2*j+i+2];
2951 }
2952 eeprom->serial[j] = '\0';
2953 }
2954 }
b56d5a64
MK
2955 else eeprom->serial = NULL;
2956
b56d5a64
MK
2957 // verify checksum
2958 checksum = 0xAAAA;
2959
22d12cda
TJ
2960 for (i = 0; i < eeprom_size/2-1; i++)
2961 {
b56d5a64
MK
2962 value = buf[i*2];
2963 value += buf[(i*2)+1] << 8;
2964
2965 checksum = value^checksum;
2966 checksum = (checksum << 1) | (checksum >> 15);
2967 }
2968
2969 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2970
22d12cda
TJ
2971 if (eeprom_checksum != checksum)
2972 {
2973 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
cc9c9d58 2974 ftdi_error_return(-1,"EEPROM checksum error");
4af1d1bb
MK
2975 }
2976
eb498cff 2977 eeprom->channel_a_type = 0;
aa099f46 2978 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
f6ef2983 2979 {
6cd4f922 2980 eeprom->chip = -1;
f6ef2983 2981 }
56ac0383 2982 else if (ftdi->type == TYPE_2232C)
f6ef2983 2983 {
0fc2170c 2984 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2cde7c52
UB
2985 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2986 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2987 eeprom->channel_b_type = buf[0x01] & 0x7;
2988 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2989 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
6cd4f922 2990 eeprom->chip = buf[0x14];
065edc58 2991 }
56ac0383 2992 else if (ftdi->type == TYPE_R)
564b2716 2993 {
2cde7c52
UB
2994 /* TYPE_R flags D2XX, not VCP as all others*/
2995 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2996 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
56ac0383
TJ
2997 if ( (buf[0x01]&0x40) != 0x40)
2998 fprintf(stderr,
2999 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3000 " If this happened with the\n"
3001 " EEPROM programmed by FTDI tools, please report "
3002 "to libftdi@developer.intra2net.com\n");
2cde7c52 3003
6cd4f922 3004 eeprom->chip = buf[0x16];
cecb9cb2
UB
3005 // Addr 0B: Invert data lines
3006 // Works only on FT232R, not FT245R, but no way to distinguish
07851949
UB
3007 eeprom->invert = buf[0x0B];
3008 // Addr 14: CBUS function: CBUS0, CBUS1
3009 // Addr 15: CBUS function: CBUS2, CBUS3
3010 // Addr 16: CBUS function: CBUS5
3011 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3012 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3013 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3014 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3015 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
564b2716 3016 }
56ac0383 3017 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
db099ec5 3018 {
0fc2170c 3019 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2cde7c52 3020 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
c8f69686 3021 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
2cde7c52
UB
3022 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3023
56ac0383 3024 if (ftdi->type == TYPE_2232H)
ec0dcd3f 3025 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
2cde7c52 3026
6cd4f922 3027 eeprom->chip = buf[0x18];
db099ec5
UB
3028 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3029 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3030 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3031 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3032 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3033 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3034 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3035 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3036 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3037 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3038 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3039 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
947d9552 3040 }
c7e4c09e
UB
3041 else if (ftdi->type == TYPE_232H)
3042 {
263d3ba0
UB
3043 int i;
3044
ac4a82a5
UB
3045 eeprom->channel_a_type = buf[0x00] & 0xf;
3046 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
18199b76
UB
3047 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3048 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3049 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
837a71d6 3050 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
91d7a201
UB
3051 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3052 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3053 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3054 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3055 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3056 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3057
263d3ba0
UB
3058 for(i=0; i<5; i++)
3059 {
3060 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3061 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3062 }
c7e4c09e
UB
3063 eeprom->chip = buf[0x1e];
3064 /*FIXME: Decipher more values*/
3065 }
56ac0383
TJ
3066
3067 if (verbose)
f6ef2983 3068 {
c8f69686 3069 char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
f6ef2983
UB
3070 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3071 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
38801bf8 3072 fprintf(stdout, "Release: 0x%04x\n",release);
f6ef2983 3073
56ac0383 3074 if (eeprom->self_powered)
f6ef2983
UB
3075 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3076 else
1cd815ad 3077 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
f6ef2983 3078 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
56ac0383 3079 if (eeprom->manufacturer)
f6ef2983 3080 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
56ac0383 3081 if (eeprom->product)
f6ef2983 3082 fprintf(stdout, "Product: %s\n",eeprom->product);
56ac0383 3083 if (eeprom->serial)
f6ef2983 3084 fprintf(stdout, "Serial: %s\n",eeprom->serial);
e107f509 3085 fprintf(stdout, "Checksum : %04x\n", checksum);
6cd4f922
UB
3086 if (ftdi->type == TYPE_R)
3087 fprintf(stdout, "Internal EEPROM\n");
3088 else if (eeprom->chip >= 0x46)
3089 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
56ac0383
TJ
3090 if (eeprom->suspend_dbus7)
3091 fprintf(stdout, "Suspend on DBUS7\n");
3092 if (eeprom->suspend_pull_downs)
fb9bfdd1 3093 fprintf(stdout, "Pull IO pins low during suspend\n");
837a71d6
UB
3094 if(eeprom->powersave)
3095 {
3096 if(ftdi->type >= TYPE_232H)
3097 fprintf(stdout,"Enter low power state on ACBUS7\n");
3098 }
56ac0383 3099 if (eeprom->remote_wakeup)
fb9bfdd1 3100 fprintf(stdout, "Enable Remote Wake Up\n");
802a949e 3101 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
db099ec5 3102 if (ftdi->type >= TYPE_2232C)
56ac0383 3103 fprintf(stdout,"Channel A has Mode %s%s%s\n",
e107f509 3104 channel_mode[eeprom->channel_a_type],
2cde7c52
UB
3105 (eeprom->channel_a_driver)?" VCP":"",
3106 (eeprom->high_current_a)?" High Current IO":"");
18199b76
UB
3107 if (ftdi->type >= TYPE_232H)
3108 {
3109 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3110 (eeprom->clock_polarity)?"HIGH":"LOW",
3111 (eeprom->data_order)?"LSB":"MSB",
3112 (eeprom->flow_control)?"":"No ");
3113 }
c7e4c09e 3114 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
56ac0383 3115 fprintf(stdout,"Channel B has Mode %s%s%s\n",
e107f509 3116 channel_mode[eeprom->channel_b_type],
2cde7c52
UB
3117 (eeprom->channel_b_driver)?" VCP":"",
3118 (eeprom->high_current_b)?" High Current IO":"");
caec1294 3119 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
56ac0383 3120 eeprom->use_usb_version == USE_USB_VERSION_BIT)
caec1294
UB
3121 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3122
56ac0383 3123 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
db099ec5
UB
3124 {
3125 fprintf(stdout,"%s has %d mA drive%s%s\n",
3126 (ftdi->type == TYPE_2232H)?"AL":"A",
3127 (eeprom->group0_drive+1) *4,
3128 (eeprom->group0_schmitt)?" Schmitt Input":"",
3129 (eeprom->group0_slew)?" Slow Slew":"");
3130 fprintf(stdout,"%s has %d mA drive%s%s\n",
3131 (ftdi->type == TYPE_2232H)?"AH":"B",
3132 (eeprom->group1_drive+1) *4,
3133 (eeprom->group1_schmitt)?" Schmitt Input":"",
3134 (eeprom->group1_slew)?" Slow Slew":"");
3135 fprintf(stdout,"%s has %d mA drive%s%s\n",
3136 (ftdi->type == TYPE_2232H)?"BL":"C",
3137 (eeprom->group2_drive+1) *4,
3138 (eeprom->group2_schmitt)?" Schmitt Input":"",
3139 (eeprom->group2_slew)?" Slow Slew":"");
3140 fprintf(stdout,"%s has %d mA drive%s%s\n",
3141 (ftdi->type == TYPE_2232H)?"BH":"D",
3142 (eeprom->group3_drive+1) *4,
3143 (eeprom->group3_schmitt)?" Schmitt Input":"",
3144 (eeprom->group3_slew)?" Slow Slew":"");
3145 }
91d7a201
UB
3146 else if (ftdi->type == TYPE_232H)
3147 {
263d3ba0
UB
3148 int i;
3149 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3150 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3151 "CLK30","CLK15","CLK7_5"
3152 };
91d7a201
UB
3153 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3154 (eeprom->group0_drive+1) *4,
3155 (eeprom->group0_schmitt)?" Schmitt Input":"",
3156 (eeprom->group0_slew)?" Slow Slew":"");
3157 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3158 (eeprom->group1_drive+1) *4,
3159 (eeprom->group1_schmitt)?" Schmitt Input":"",
3160 (eeprom->group1_slew)?" Slow Slew":"");
263d3ba0
UB
3161 for (i=0; i<10; i++)
3162 {
3163 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3164 fprintf(stdout,"C%d Function: %s\n", i,
3165 cbush_mux[eeprom->cbus_function[i]]);
3166 }
3167
91d7a201
UB
3168 }
3169
a4980043
UB
3170 if (ftdi->type == TYPE_R)
3171 {
3172 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
13f00d3c 3173 "SLEEP","CLK48","CLK24","CLK12","CLK6",
56ac0383
TJ
3174 "IOMODE","BB_WR","BB_RD"
3175 };
13f00d3c 3176 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
56ac0383
TJ
3177
3178 if (eeprom->invert)
3179 {
a4980043
UB
3180 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3181 fprintf(stdout,"Inverted bits:");
3182 for (i=0; i<8; i++)
56ac0383 3183 if ((eeprom->invert & (1<<i)) == (1<<i))
a4980043
UB
3184 fprintf(stdout," %s",r_bits[i]);
3185 fprintf(stdout,"\n");
3186 }
56ac0383 3187 for (i=0; i<5; i++)
a4980043 3188 {
56ac0383 3189 if (eeprom->cbus_function[i]<CBUS_BB)
a4980043
UB
3190 fprintf(stdout,"C%d Function: %s\n", i,
3191 cbus_mux[eeprom->cbus_function[i]]);
3192 else
17431287 3193 {
598b2334
UB
3194 if (i < 4)
3195 /* Running MPROG show that C0..3 have fixed function Synchronous
3196 Bit Bang mode */
3197 fprintf(stdout,"C%d BB Function: %s\n", i,
3198 cbus_BB[i]);
3199 else
3200 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
17431287 3201 }
a4980043
UB
3202 }
3203 }
f6ef2983 3204 }
4af1d1bb 3205 return 0;
b56d5a64
MK
3206}
3207
1941414d 3208/**
44ef02bd
UB
3209 Get a value from the decoded EEPROM structure
3210
735e81ea
TJ
3211 \param ftdi pointer to ftdi_context
3212 \param value_name Enum of the value to query
3213 \param value Pointer to store read value
44ef02bd 3214
735e81ea
TJ
3215 \retval 0: all fine
3216 \retval -1: Value doesn't exist
44ef02bd
UB
3217*/
3218int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3219{
3220 switch (value_name)
3221 {
56ac0383
TJ
3222 case VENDOR_ID:
3223 *value = ftdi->eeprom->vendor_id;
3224 break;
3225 case PRODUCT_ID:
3226 *value = ftdi->eeprom->product_id;
3227 break;
3228 case SELF_POWERED:
3229 *value = ftdi->eeprom->self_powered;
3230 break;
3231 case REMOTE_WAKEUP:
3232 *value = ftdi->eeprom->remote_wakeup;
3233 break;
3234 case IS_NOT_PNP:
3235 *value = ftdi->eeprom->is_not_pnp;
3236 break;
3237 case SUSPEND_DBUS7:
3238 *value = ftdi->eeprom->suspend_dbus7;
3239 break;
3240 case IN_IS_ISOCHRONOUS:
3241 *value = ftdi->eeprom->in_is_isochronous;
3242 break;
cffed9f5
UB
3243 case OUT_IS_ISOCHRONOUS:
3244 *value = ftdi->eeprom->out_is_isochronous;
3245 break;
56ac0383
TJ
3246 case SUSPEND_PULL_DOWNS:
3247 *value = ftdi->eeprom->suspend_pull_downs;
3248 break;
3249 case USE_SERIAL:
3250 *value = ftdi->eeprom->use_serial;
3251 break;
3252 case USB_VERSION:
3253 *value = ftdi->eeprom->usb_version;
3254 break;
cffed9f5
UB
3255 case USE_USB_VERSION:
3256 *value = ftdi->eeprom->use_usb_version;
3257 break;
56ac0383
TJ
3258 case MAX_POWER:
3259 *value = ftdi->eeprom->max_power;
3260 break;
3261 case CHANNEL_A_TYPE:
3262 *value = ftdi->eeprom->channel_a_type;
3263 break;
3264 case CHANNEL_B_TYPE:
3265 *value = ftdi->eeprom->channel_b_type;
3266 break;
3267 case CHANNEL_A_DRIVER:
3268 *value = ftdi->eeprom->channel_a_driver;
3269 break;
3270 case CHANNEL_B_DRIVER:
3271 *value = ftdi->eeprom->channel_b_driver;
3272 break;
3273 case CBUS_FUNCTION_0:
3274 *value = ftdi->eeprom->cbus_function[0];
3275 break;
3276 case CBUS_FUNCTION_1:
3277 *value = ftdi->eeprom->cbus_function[1];
3278 break;
3279 case CBUS_FUNCTION_2:
3280 *value = ftdi->eeprom->cbus_function[2];
3281 break;
3282 case CBUS_FUNCTION_3:
3283 *value = ftdi->eeprom->cbus_function[3];
3284 break;
3285 case CBUS_FUNCTION_4:
3286 *value = ftdi->eeprom->cbus_function[4];
3287 break;
263d3ba0
UB
3288 case CBUS_FUNCTION_5:
3289 *value = ftdi->eeprom->cbus_function[5];
3290 break;
3291 case CBUS_FUNCTION_6:
3292 *value = ftdi->eeprom->cbus_function[6];
3293 break;
3294 case CBUS_FUNCTION_7:
3295 *value = ftdi->eeprom->cbus_function[7];
3296 break;
3297 case CBUS_FUNCTION_8:
3298 *value = ftdi->eeprom->cbus_function[8];
3299 break;
3300 case CBUS_FUNCTION_9:
3301 *value = ftdi->eeprom->cbus_function[8];
3302 break;
56ac0383
TJ
3303 case HIGH_CURRENT:
3304 *value = ftdi->eeprom->high_current;
3305 break;
3306 case HIGH_CURRENT_A:
3307 *value = ftdi->eeprom->high_current_a;
3308 break;
3309 case HIGH_CURRENT_B:
3310 *value = ftdi->eeprom->high_current_b;
3311 break;
3312 case INVERT:
3313 *value = ftdi->eeprom->invert;
3314 break;
3315 case GROUP0_DRIVE:
3316 *value = ftdi->eeprom->group0_drive;
3317 break;
3318 case GROUP0_SCHMITT:
3319 *value = ftdi->eeprom->group0_schmitt;
3320 break;
3321 case GROUP0_SLEW:
3322 *value = ftdi->eeprom->group0_slew;
3323 break;
3324 case GROUP1_DRIVE:
3325 *value = ftdi->eeprom->group1_drive;
3326 break;
3327 case GROUP1_SCHMITT:
3328 *value = ftdi->eeprom->group1_schmitt;
3329 break;
3330 case GROUP1_SLEW:
3331 *value = ftdi->eeprom->group1_slew;
3332 break;
3333 case GROUP2_DRIVE:
3334 *value = ftdi->eeprom->group2_drive;
3335 break;
3336 case GROUP2_SCHMITT:
3337 *value = ftdi->eeprom->group2_schmitt;
3338 break;
3339 case GROUP2_SLEW:
3340 *value = ftdi->eeprom->group2_slew;
3341 break;
3342 case GROUP3_DRIVE:
3343 *value = ftdi->eeprom->group3_drive;
3344 break;
3345 case GROUP3_SCHMITT:
3346 *value = ftdi->eeprom->group3_schmitt;
3347 break;
3348 case GROUP3_SLEW:
3349 *value = ftdi->eeprom->group3_slew;
3350 break;
837a71d6
UB
3351 case POWER_SAVE:
3352 *value = ftdi->eeprom->powersave;
3353 break;
18199b76
UB
3354 case CLOCK_POLARITY:
3355 *value = ftdi->eeprom->clock_polarity;
3356 break;
3357 case DATA_ORDER:
3358 *value = ftdi->eeprom->data_order;
3359 break;
3360 case FLOW_CONTROL:
3361 *value = ftdi->eeprom->flow_control;
3362 break;
3363 case CHIP_TYPE:
56ac0383
TJ
3364 *value = ftdi->eeprom->chip;
3365 break;
3366 case CHIP_SIZE:
3367 *value = ftdi->eeprom->size;
3368 break;
3369 default:
3370 ftdi_error_return(-1, "Request for unknown EEPROM value");
44ef02bd
UB
3371 }
3372 return 0;
3373}
3374
3375/**
3376 Set a value in the decoded EEPROM Structure
3377 No parameter checking is performed
3378
735e81ea 3379 \param ftdi pointer to ftdi_context
545f9df9 3380 \param value_name Enum of the value to set
735e81ea 3381 \param value to set
44ef02bd 3382
735e81ea
TJ
3383 \retval 0: all fine
3384 \retval -1: Value doesn't exist
3385 \retval -2: Value not user settable
44ef02bd
UB
3386*/
3387int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3388{
3389 switch (value_name)
3390 {
56ac0383
TJ
3391 case VENDOR_ID:
3392 ftdi->eeprom->vendor_id = value;
3393 break;
3394 case PRODUCT_ID:
3395 ftdi->eeprom->product_id = value;
3396 break;
3397 case SELF_POWERED:
3398 ftdi->eeprom->self_powered = value;
3399 break;
3400 case REMOTE_WAKEUP:
3401 ftdi->eeprom->remote_wakeup = value;
3402 break;
3403 case IS_NOT_PNP:
3404 ftdi->eeprom->is_not_pnp = value;
3405 break;
3406 case SUSPEND_DBUS7:
3407 ftdi->eeprom->suspend_dbus7 = value;
3408 break;
3409 case IN_IS_ISOCHRONOUS:
3410 ftdi->eeprom->in_is_isochronous = value;
3411 break;
cffed9f5
UB
3412 case OUT_IS_ISOCHRONOUS:
3413 ftdi->eeprom->out_is_isochronous = value;
3414 break;
56ac0383
TJ
3415 case SUSPEND_PULL_DOWNS:
3416 ftdi->eeprom->suspend_pull_downs = value;
3417 break;
3418 case USE_SERIAL:
3419 ftdi->eeprom->use_serial = value;
3420 break;
3421 case USB_VERSION:
3422 ftdi->eeprom->usb_version = value;
3423 break;
cffed9f5
UB
3424 case USE_USB_VERSION:
3425 ftdi->eeprom->use_usb_version = value;
3426 break;
56ac0383
TJ
3427 case MAX_POWER:
3428 ftdi->eeprom->max_power = value;
3429 break;
3430 case CHANNEL_A_TYPE:
3431 ftdi->eeprom->channel_a_type = value;
3432 break;
3433 case CHANNEL_B_TYPE:
3434 ftdi->eeprom->channel_b_type = value;
3435 break;
3436 case CHANNEL_A_DRIVER:
3437 ftdi->eeprom->channel_a_driver = value;
3438 break;
3439 case CHANNEL_B_DRIVER:
3440 ftdi->eeprom->channel_b_driver = value;
3441 break;
3442 case CBUS_FUNCTION_0:
3443 ftdi->eeprom->cbus_function[0] = value;
3444 break;
3445 case CBUS_FUNCTION_1:
3446 ftdi->eeprom->cbus_function[1] = value;
3447 break;
3448 case CBUS_FUNCTION_2:
3449 ftdi->eeprom->cbus_function[2] = value;
3450 break;
3451 case CBUS_FUNCTION_3:
3452 ftdi->eeprom->cbus_function[3] = value;
3453 break;
3454 case CBUS_FUNCTION_4:
3455 ftdi->eeprom->cbus_function[4] = value;
3456 break;
263d3ba0
UB
3457 case CBUS_FUNCTION_5:
3458 ftdi->eeprom->cbus_function[5] = value;
3459 break;
3460 case CBUS_FUNCTION_6:
3461 ftdi->eeprom->cbus_function[6] = value;
3462 break;
3463 case CBUS_FUNCTION_7:
3464 ftdi->eeprom->cbus_function[7] = value;
3465 break;
3466 case CBUS_FUNCTION_8:
3467 ftdi->eeprom->cbus_function[8] = value;
3468 break;
3469 case CBUS_FUNCTION_9:
3470 ftdi->eeprom->cbus_function[9] = value;
3471 break;
56ac0383
TJ
3472 case HIGH_CURRENT:
3473 ftdi->eeprom->high_current = value;
3474 break;
3475 case HIGH_CURRENT_A:
3476 ftdi->eeprom->high_current_a = value;
3477 break;
3478 case HIGH_CURRENT_B:
3479 ftdi->eeprom->high_current_b = value;
3480 break;
3481 case INVERT:
3482 ftdi->eeprom->invert = value;
3483 break;
3484 case GROUP0_DRIVE:
3485 ftdi->eeprom->group0_drive = value;
3486 break;
3487 case GROUP0_SCHMITT:
3488 ftdi->eeprom->group0_schmitt = value;
3489 break;
3490 case GROUP0_SLEW:
3491 ftdi->eeprom->group0_slew = value;
3492 break;
3493 case GROUP1_DRIVE:
3494 ftdi->eeprom->group1_drive = value;
3495 break;
3496 case GROUP1_SCHMITT:
3497 ftdi->eeprom->group1_schmitt = value;
3498 break;
3499 case GROUP1_SLEW:
3500 ftdi->eeprom->group1_slew = value;
3501 break;
3502 case GROUP2_DRIVE:
3503 ftdi->eeprom->group2_drive = value;
3504 break;
3505 case GROUP2_SCHMITT:
3506 ftdi->eeprom->group2_schmitt = value;
3507 break;
3508 case GROUP2_SLEW:
3509 ftdi->eeprom->group2_slew = value;
3510 break;
3511 case GROUP3_DRIVE:
3512 ftdi->eeprom->group3_drive = value;
3513 break;
3514 case GROUP3_SCHMITT:
3515 ftdi->eeprom->group3_schmitt = value;
3516 break;
3517 case GROUP3_SLEW:
3518 ftdi->eeprom->group3_slew = value;
3519 break;
3520 case CHIP_TYPE:
3521 ftdi->eeprom->chip = value;
3522 break;
837a71d6
UB
3523 case POWER_SAVE:
3524 ftdi->eeprom->powersave = value;
3525 break;
18199b76
UB
3526 case CLOCK_POLARITY:
3527 ftdi->eeprom->clock_polarity = value;
3528 break;
3529 case DATA_ORDER:
3530 ftdi->eeprom->data_order = value;
3531 break;
3532 case FLOW_CONTROL:
3533 ftdi->eeprom->flow_control = value;
3534 break;
56ac0383
TJ
3535 case CHIP_SIZE:
3536 ftdi_error_return(-2, "EEPROM Value can't be changed");
3537 default :
3538 ftdi_error_return(-1, "Request to unknown EEPROM value");
44ef02bd
UB
3539 }
3540 return 0;
3541}
3542
3543/** Get the read-only buffer to the binary EEPROM content
3544
3545 \param ftdi pointer to ftdi_context
735e81ea 3546 \param buf buffer to receive EEPROM content
44ef02bd
UB
3547 \param size Size of receiving buffer
3548
3549 \retval 0: All fine
3550 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
200bd3ed 3551 \retval -2: Not enough room to store eeprom
44ef02bd 3552*/
56ac0383
TJ
3553int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3554{
3555 if (!ftdi || !(ftdi->eeprom))
3556 ftdi_error_return(-1, "No appropriate structure");
b95e4654 3557
200bd3ed
TJ
3558 if (!buf || size < ftdi->eeprom->size)
3559 ftdi_error_return(-1, "Not enough room to store eeprom");
3560
b95e4654
TJ
3561 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3562 if (size > FTDI_MAX_EEPROM_SIZE)
3563 size = FTDI_MAX_EEPROM_SIZE;
3564
56ac0383 3565 memcpy(buf, ftdi->eeprom->buf, size);
b95e4654 3566
56ac0383
TJ
3567 return 0;
3568}
44ef02bd 3569
672fd368
UB
3570/** Set the EEPROM content from the user-supplied prefilled buffer
3571
3572 \param ftdi pointer to ftdi_context
3573 \param buf buffer to read EEPROM content
3574 \param size Size of buffer
3575
3576 \retval 0: All fine
3577 \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing
3578*/
3579int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
3580{
3581 if (!ftdi || !(ftdi->eeprom) || !buf)
3582 ftdi_error_return(-1, "No appropriate structure");
3583
3584 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3585 if (size > FTDI_MAX_EEPROM_SIZE)
3586 size = FTDI_MAX_EEPROM_SIZE;
3587
3588 memcpy(ftdi->eeprom->buf, buf, size);
3589
3590 return 0;
3591}
3592
44ef02bd 3593/**
c1c70e13
OS
3594 Read eeprom location
3595
3596 \param ftdi pointer to ftdi_context
3597 \param eeprom_addr Address of eeprom location to be read
3598 \param eeprom_val Pointer to store read eeprom location
3599
3600 \retval 0: all fine
3601 \retval -1: read failed
22a1b5c1 3602 \retval -2: USB device unavailable
c1c70e13
OS
3603*/
3604int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3605{
22a1b5c1
TJ
3606 if (ftdi == NULL || ftdi->usb_dev == NULL)
3607 ftdi_error_return(-2, "USB device unavailable");
3608
97c6b5f6 3609 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
c1c70e13
OS
3610 ftdi_error_return(-1, "reading eeprom failed");
3611
3612 return 0;
3613}
3614
3615/**
1941414d
TJ
3616 Read eeprom
3617
3618 \param ftdi pointer to ftdi_context
b8aa7b35 3619
1941414d
TJ
3620 \retval 0: all fine
3621 \retval -1: read failed
22a1b5c1 3622 \retval -2: USB device unavailable
1941414d 3623*/
a35aa9bd 3624int ftdi_read_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3625{
a3da1d95 3626 int i;
a35aa9bd 3627 unsigned char *buf;
a3da1d95 3628
22a1b5c1
TJ
3629 if (ftdi == NULL || ftdi->usb_dev == NULL)
3630 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 3631 buf = ftdi->eeprom->buf;
22a1b5c1 3632
2d543486 3633 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
22d12cda 3634 {
a35aa9bd 3635 if (libusb_control_transfer(
56ac0383
TJ
3636 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3637 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
c3d95b87 3638 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
3639 }
3640
2d543486 3641 if (ftdi->type == TYPE_R)
a35aa9bd 3642 ftdi->eeprom->size = 0x80;
56ac0383 3643 /* Guesses size of eeprom by comparing halves
2d543486 3644 - will not work with blank eeprom */
a35aa9bd 3645 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
2d543486 3646 ftdi->eeprom->size = -1;
56ac0383 3647 else if (memcmp(buf,&buf[0x80],0x80) == 0)
2d543486 3648 ftdi->eeprom->size = 0x80;
56ac0383 3649 else if (memcmp(buf,&buf[0x40],0x40) == 0)
2d543486
UB
3650 ftdi->eeprom->size = 0x40;
3651 else
3652 ftdi->eeprom->size = 0x100;
a3da1d95
GE
3653 return 0;
3654}
3655
cb6250fa
TJ
3656/*
3657 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3658 Function is only used internally
3659 \internal
3660*/
3661static unsigned char ftdi_read_chipid_shift(unsigned char value)
3662{
3663 return ((value & 1) << 1) |
22d12cda
TJ
3664 ((value & 2) << 5) |
3665 ((value & 4) >> 2) |
3666 ((value & 8) << 4) |
3667 ((value & 16) >> 1) |
3668 ((value & 32) >> 1) |
3669 ((value & 64) >> 4) |
3670 ((value & 128) >> 2);
cb6250fa
TJ
3671}
3672
3673/**
3674 Read the FTDIChip-ID from R-type devices
3675
3676 \param ftdi pointer to ftdi_context
3677 \param chipid Pointer to store FTDIChip-ID
3678
3679 \retval 0: all fine
3680 \retval -1: read failed
22a1b5c1 3681 \retval -2: USB device unavailable
cb6250fa
TJ
3682*/
3683int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3684{
c7eb3112 3685 unsigned int a = 0, b = 0;
cb6250fa 3686
22a1b5c1
TJ
3687 if (ftdi == NULL || ftdi->usb_dev == NULL)
3688 ftdi_error_return(-2, "USB device unavailable");
3689
579b006f 3690 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3691 {
3692 a = a << 8 | a >> 8;
579b006f 3693 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3694 {
3695 b = b << 8 | b >> 8;
5230676f 3696 a = (a << 16) | (b & 0xFFFF);
912d50ca
TJ
3697 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3698 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 3699 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 3700 return 0;
cb6250fa
TJ
3701 }
3702 }
3703
c7eb3112 3704 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
3705}
3706
1941414d 3707/**
c1c70e13
OS
3708 Write eeprom location
3709
3710 \param ftdi pointer to ftdi_context
3711 \param eeprom_addr Address of eeprom location to be written
3712 \param eeprom_val Value to be written
3713
3714 \retval 0: all fine
a661e3e4 3715 \retval -1: write failed
22a1b5c1 3716 \retval -2: USB device unavailable
a661e3e4
UB
3717 \retval -3: Invalid access to checksum protected area below 0x80
3718 \retval -4: Device can't access unprotected area
3719 \retval -5: Reading chip type failed
c1c70e13 3720*/
56ac0383 3721int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
a661e3e4 3722 unsigned short eeprom_val)
c1c70e13 3723{
a661e3e4
UB
3724 int chip_type_location;
3725 unsigned short chip_type;
3726
22a1b5c1
TJ
3727 if (ftdi == NULL || ftdi->usb_dev == NULL)
3728 ftdi_error_return(-2, "USB device unavailable");
3729
56ac0383 3730 if (eeprom_addr <0x80)
a661e3e4
UB
3731 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3732
3733
3734 switch (ftdi->type)
3735 {
56ac0383
TJ
3736 case TYPE_BM:
3737 case TYPE_2232C:
3738 chip_type_location = 0x14;
3739 break;
3740 case TYPE_2232H:
3741 case TYPE_4232H:
3742 chip_type_location = 0x18;
3743 break;
c7e4c09e
UB
3744 case TYPE_232H:
3745 chip_type_location = 0x1e;
3746 break;
56ac0383
TJ
3747 default:
3748 ftdi_error_return(-4, "Device can't access unprotected area");
a661e3e4
UB
3749 }
3750
56ac0383 3751 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
a661e3e4 3752 ftdi_error_return(-5, "Reading failed failed");
56ac0383
TJ
3753 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3754 if ((chip_type & 0xff) != 0x66)
a661e3e4
UB
3755 {
3756 ftdi_error_return(-6, "EEPROM is not of 93x66");
3757 }
3758
579b006f 3759 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
3760 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3761 NULL, 0, ftdi->usb_write_timeout) != 0)
c1c70e13
OS
3762 ftdi_error_return(-1, "unable to write eeprom");
3763
3764 return 0;
3765}
3766
3767/**
1941414d 3768 Write eeprom
a3da1d95 3769
1941414d 3770 \param ftdi pointer to ftdi_context
56ac0383 3771
1941414d
TJ
3772 \retval 0: all fine
3773 \retval -1: read failed
22a1b5c1 3774 \retval -2: USB device unavailable
44f41f11 3775 \retval -3: EEPROM not initialized for the connected device;
1941414d 3776*/
a35aa9bd 3777int ftdi_write_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3778{
ba5329be 3779 unsigned short usb_val, status;
e30da501 3780 int i, ret;
a35aa9bd 3781 unsigned char *eeprom;
a3da1d95 3782
22a1b5c1
TJ
3783 if (ftdi == NULL || ftdi->usb_dev == NULL)
3784 ftdi_error_return(-2, "USB device unavailable");
44f41f11
UB
3785
3786 if(ftdi->eeprom->initialized_for_connected_device == 0)
3787 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
3788
a35aa9bd 3789 eeprom = ftdi->eeprom->buf;
22a1b5c1 3790
ba5329be 3791 /* These commands were traced while running MProg */
e30da501
TJ
3792 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3793 return ret;
3794 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3795 return ret;
3796 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3797 return ret;
ba5329be 3798
c0a96aed 3799 for (i = 0; i < ftdi->eeprom->size/2; i++)
22d12cda 3800 {
d9f0cce7
TJ
3801 usb_val = eeprom[i*2];
3802 usb_val += eeprom[(i*2)+1] << 8;
579b006f
JZ
3803 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3804 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3805 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3806 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
3807 }
3808
3809 return 0;
3810}
3811
1941414d
TJ
3812/**
3813 Erase eeprom
a3da1d95 3814
a5e1bd8c
MK
3815 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3816
1941414d
TJ
3817 \param ftdi pointer to ftdi_context
3818
3819 \retval 0: all fine
3820 \retval -1: erase failed
22a1b5c1 3821 \retval -2: USB device unavailable
99404ad5
UB
3822 \retval -3: Writing magic failed
3823 \retval -4: Read EEPROM failed
3824 \retval -5: Unexpected EEPROM value
1941414d 3825*/
99404ad5 3826#define MAGIC 0x55aa
a8f46ddc
TJ
3827int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3828{
99404ad5 3829 unsigned short eeprom_value;
22a1b5c1
TJ
3830 if (ftdi == NULL || ftdi->usb_dev == NULL)
3831 ftdi_error_return(-2, "USB device unavailable");
3832
56ac0383 3833 if (ftdi->type == TYPE_R)
99404ad5
UB
3834 {
3835 ftdi->eeprom->chip = 0;
3836 return 0;
3837 }
3838
56ac0383 3839 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5 3840 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3841 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95 3842
56ac0383 3843
99404ad5
UB
3844 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3845 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3846 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3847 Chip is 93x66 if magic is only read at word position 0xc0*/
10186c1f 3848 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
3849 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3850 NULL, 0, ftdi->usb_write_timeout) != 0)
99404ad5 3851 ftdi_error_return(-3, "Writing magic failed");
56ac0383 3852 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
99404ad5 3853 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3854 if (eeprom_value == MAGIC)
99404ad5
UB
3855 {
3856 ftdi->eeprom->chip = 0x46;
3857 }
56ac0383 3858 else
99404ad5 3859 {
56ac0383 3860 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
99404ad5 3861 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3862 if (eeprom_value == MAGIC)
99404ad5 3863 ftdi->eeprom->chip = 0x56;
56ac0383 3864 else
99404ad5 3865 {
56ac0383 3866 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
99404ad5 3867 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3868 if (eeprom_value == MAGIC)
99404ad5
UB
3869 ftdi->eeprom->chip = 0x66;
3870 else
3871 {
3872 ftdi->eeprom->chip = -1;
3873 }
3874 }
3875 }
56ac0383 3876 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5
UB
3877 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3878 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
3879 return 0;
3880}
c3d95b87 3881
1941414d
TJ
3882/**
3883 Get string representation for last error code
c3d95b87 3884
1941414d
TJ
3885 \param ftdi pointer to ftdi_context
3886
3887 \retval Pointer to error string
3888*/
c3d95b87
TJ
3889char *ftdi_get_error_string (struct ftdi_context *ftdi)
3890{
22a1b5c1
TJ
3891 if (ftdi == NULL)
3892 return "";
3893
c3d95b87
TJ
3894 return ftdi->error_str;
3895}
a01d31e2 3896
b5ec1820 3897/* @} end of doxygen libftdi group */