ftdi_eeprom: Fix segmentation fault after --flash_eeprom
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
8a987aa2 5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
1bfc403c 21 http://www.intra2net.com/en/developer/libftdi/
b5ec1820 22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
579b006f 31#include <libusb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
b56d5a64 34#include <stdio.h>
579b006f 35#include <stdlib.h>
0e302db6 36
b790d38e 37#include "ftdi_i.h"
98452d97 38#include "ftdi.h"
0220adfa 39#include "ftdi_version_i.h"
a3da1d95 40
21abaf2e 41#define ftdi_error_return(code, str) do { \
2f73e59f 42 ftdi->error_str = str; \
21abaf2e 43 return code; \
d2f10023 44 } while(0);
c3d95b87 45
99650502
UB
46#define ftdi_error_return_free_device_list(code, str, devs) do { \
47 libusb_free_device_list(devs,1); \
48 ftdi->error_str = str; \
49 return code; \
50 } while(0);
51
418aaa72 52
f3f81007
TJ
53/**
54 Internal function to close usb device pointer.
55 Sets ftdi->usb_dev to NULL.
56 \internal
57
58 \param ftdi pointer to ftdi_context
59
579b006f 60 \retval none
f3f81007 61*/
579b006f 62static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 63{
22a1b5c1 64 if (ftdi && ftdi->usb_dev)
dff4fdb0 65 {
56ac0383
TJ
66 libusb_close (ftdi->usb_dev);
67 ftdi->usb_dev = NULL;
44f41f11
UB
68 if(ftdi->eeprom)
69 ftdi->eeprom->initialized_for_connected_device = 0;
dff4fdb0 70 }
dff4fdb0 71}
c3d95b87 72
1941414d
TJ
73/**
74 Initializes a ftdi_context.
4837f98a 75
1941414d 76 \param ftdi pointer to ftdi_context
4837f98a 77
1941414d
TJ
78 \retval 0: all fine
79 \retval -1: couldn't allocate read buffer
a35aa9bd 80 \retval -2: couldn't allocate struct buffer
3a284749 81 \retval -3: libusb_init() failed
1941414d
TJ
82
83 \remark This should be called before all functions
948f9ada 84*/
a8f46ddc
TJ
85int ftdi_init(struct ftdi_context *ftdi)
86{
a35aa9bd 87 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
02212d8e 88 ftdi->usb_ctx = NULL;
98452d97 89 ftdi->usb_dev = NULL;
545820ce
TJ
90 ftdi->usb_read_timeout = 5000;
91 ftdi->usb_write_timeout = 5000;
a3da1d95 92
53ad271d 93 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 94 ftdi->baudrate = -1;
418aaa72 95 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 96
948f9ada
TJ
97 ftdi->readbuffer = NULL;
98 ftdi->readbuffer_offset = 0;
99 ftdi->readbuffer_remaining = 0;
100 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 101 ftdi->max_packet_size = 0;
3a284749
TJ
102 ftdi->error_str = NULL;
103 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
104
105 if (libusb_init(&ftdi->usb_ctx) < 0)
106 ftdi_error_return(-3, "libusb_init() failed");
948f9ada 107
ac0af8ec 108 ftdi_set_interface(ftdi, INTERFACE_ANY);
418aaa72 109 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 110
a35aa9bd
UB
111 if (eeprom == 0)
112 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
b4d19dea 113 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
a35aa9bd 114 ftdi->eeprom = eeprom;
c201f80f 115
1c733d33
TJ
116 /* All fine. Now allocate the readbuffer */
117 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 118}
4837f98a 119
1941414d 120/**
cef378aa
TJ
121 Allocate and initialize a new ftdi_context
122
123 \return a pointer to a new ftdi_context, or NULL on failure
124*/
672ac008 125struct ftdi_context *ftdi_new(void)
cef378aa
TJ
126{
127 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
128
22d12cda
TJ
129 if (ftdi == NULL)
130 {
cef378aa
TJ
131 return NULL;
132 }
133
22d12cda
TJ
134 if (ftdi_init(ftdi) != 0)
135 {
cef378aa 136 free(ftdi);
cdf448f6 137 return NULL;
cef378aa
TJ
138 }
139
140 return ftdi;
141}
142
143/**
1941414d
TJ
144 Open selected channels on a chip, otherwise use first channel.
145
146 \param ftdi pointer to ftdi_context
f9d69895 147 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
148
149 \retval 0: all fine
150 \retval -1: unknown interface
22a1b5c1 151 \retval -2: USB device unavailable
1c5fa36b 152 \retval -3: Device already open, interface can't be set in that state
c4446c36 153*/
0ce2f5fa 154int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 155{
1971c26d 156 if (ftdi == NULL)
22a1b5c1
TJ
157 ftdi_error_return(-2, "USB device unavailable");
158
1c5fa36b
TJ
159 if (ftdi->usb_dev != NULL)
160 {
161 int check_interface = interface;
162 if (check_interface == INTERFACE_ANY)
163 check_interface = INTERFACE_A;
164
165 if (ftdi->index != check_interface)
166 ftdi_error_return(-3, "Interface can not be changed on an already open device");
167 }
168
22d12cda
TJ
169 switch (interface)
170 {
171 case INTERFACE_ANY:
172 case INTERFACE_A:
ac0af8ec
VY
173 ftdi->interface = 0;
174 ftdi->index = INTERFACE_A;
175 ftdi->in_ep = 0x02;
176 ftdi->out_ep = 0x81;
22d12cda
TJ
177 break;
178 case INTERFACE_B:
179 ftdi->interface = 1;
180 ftdi->index = INTERFACE_B;
181 ftdi->in_ep = 0x04;
182 ftdi->out_ep = 0x83;
183 break;
f9d69895
AH
184 case INTERFACE_C:
185 ftdi->interface = 2;
186 ftdi->index = INTERFACE_C;
187 ftdi->in_ep = 0x06;
188 ftdi->out_ep = 0x85;
189 break;
190 case INTERFACE_D:
191 ftdi->interface = 3;
192 ftdi->index = INTERFACE_D;
193 ftdi->in_ep = 0x08;
194 ftdi->out_ep = 0x87;
195 break;
22d12cda
TJ
196 default:
197 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
198 }
199 return 0;
200}
948f9ada 201
1941414d
TJ
202/**
203 Deinitializes a ftdi_context.
4837f98a 204
1941414d 205 \param ftdi pointer to ftdi_context
4837f98a 206*/
a8f46ddc
TJ
207void ftdi_deinit(struct ftdi_context *ftdi)
208{
22a1b5c1
TJ
209 if (ftdi == NULL)
210 return;
211
f3f81007 212 ftdi_usb_close_internal (ftdi);
dff4fdb0 213
22d12cda
TJ
214 if (ftdi->readbuffer != NULL)
215 {
d9f0cce7
TJ
216 free(ftdi->readbuffer);
217 ftdi->readbuffer = NULL;
948f9ada 218 }
a35aa9bd
UB
219
220 if (ftdi->eeprom != NULL)
221 {
74e8e79d
UB
222 if (ftdi->eeprom->manufacturer != 0)
223 {
224 free(ftdi->eeprom->manufacturer);
225 ftdi->eeprom->manufacturer = 0;
226 }
227 if (ftdi->eeprom->product != 0)
228 {
229 free(ftdi->eeprom->product);
230 ftdi->eeprom->product = 0;
231 }
232 if (ftdi->eeprom->serial != 0)
233 {
234 free(ftdi->eeprom->serial);
235 ftdi->eeprom->serial = 0;
236 }
a35aa9bd
UB
237 free(ftdi->eeprom);
238 ftdi->eeprom = NULL;
239 }
3a284749
TJ
240
241 if (ftdi->usb_ctx)
242 {
243 libusb_exit(ftdi->usb_ctx);
244 ftdi->usb_ctx = NULL;
245 }
a3da1d95
GE
246}
247
1941414d 248/**
cef378aa
TJ
249 Deinitialize and free an ftdi_context.
250
251 \param ftdi pointer to ftdi_context
252*/
253void ftdi_free(struct ftdi_context *ftdi)
254{
255 ftdi_deinit(ftdi);
256 free(ftdi);
257}
258
259/**
1941414d
TJ
260 Use an already open libusb device.
261
262 \param ftdi pointer to ftdi_context
579b006f 263 \param usb libusb libusb_device_handle to use
4837f98a 264*/
579b006f 265void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 266{
22a1b5c1
TJ
267 if (ftdi == NULL)
268 return;
269
98452d97
TJ
270 ftdi->usb_dev = usb;
271}
272
0220adfa
TJ
273/**
274 * @brief Get libftdi library version
275 *
276 * @return ftdi_version_info Library version information
277 **/
278struct ftdi_version_info ftdi_get_library_version()
279{
280 struct ftdi_version_info ver;
281
282 ver.major = FTDI_MAJOR_VERSION;
283 ver.minor = FTDI_MINOR_VERSION;
284 ver.micro = FTDI_MICRO_VERSION;
285 ver.version_str = FTDI_VERSION_STRING;
286 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
287
288 return ver;
289}
98452d97 290
1941414d 291/**
7879216a
UB
292 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
293 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
294 use. With VID:PID 0:0, search for the default devices
295 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014)
1941414d
TJ
296
297 \param ftdi pointer to ftdi_context
298 \param devlist Pointer where to store list of found devices
299 \param vendor Vendor ID to search for
300 \param product Product ID to search for
edb82cbf 301
1941414d 302 \retval >0: number of devices found
1941414d 303 \retval -3: out of memory
579b006f
JZ
304 \retval -5: libusb_get_device_list() failed
305 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 306*/
d2f10023 307int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
308{
309 struct ftdi_device_list **curdev;
579b006f
JZ
310 libusb_device *dev;
311 libusb_device **devs;
edb82cbf 312 int count = 0;
579b006f
JZ
313 int i = 0;
314
02212d8e 315 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 316 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
317
318 curdev = devlist;
6db32169 319 *curdev = NULL;
579b006f
JZ
320
321 while ((dev = devs[i++]) != NULL)
22d12cda 322 {
579b006f 323 struct libusb_device_descriptor desc;
d2f10023 324
579b006f 325 if (libusb_get_device_descriptor(dev, &desc) < 0)
77377af7 326 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
edb82cbf 327
56631bed
UB
328 if (((vendor != 0 && product != 0) &&
329 desc.idVendor == vendor && desc.idProduct == product) ||
330 ((vendor == 0 && product == 0) &&
331 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
7879216a 332 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014)))
579b006f
JZ
333 {
334 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
335 if (!*curdev)
77377af7 336 ftdi_error_return_free_device_list(-3, "out of memory", devs);
56ac0383 337
579b006f
JZ
338 (*curdev)->next = NULL;
339 (*curdev)->dev = dev;
0c33162c 340 libusb_ref_device(dev);
579b006f
JZ
341 curdev = &(*curdev)->next;
342 count++;
edb82cbf
TJ
343 }
344 }
77377af7 345 libusb_free_device_list(devs,1);
edb82cbf
TJ
346 return count;
347}
348
1941414d
TJ
349/**
350 Frees a usb device list.
edb82cbf 351
1941414d 352 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 353*/
d2f10023 354void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 355{
6db32169
TJ
356 struct ftdi_device_list *curdev, *next;
357
22d12cda
TJ
358 for (curdev = *devlist; curdev != NULL;)
359 {
6db32169 360 next = curdev->next;
0c33162c 361 libusb_unref_device(curdev->dev);
6db32169
TJ
362 free(curdev);
363 curdev = next;
edb82cbf
TJ
364 }
365
6db32169 366 *devlist = NULL;
edb82cbf
TJ
367}
368
1941414d 369/**
cef378aa
TJ
370 Frees a usb device list.
371
372 \param devlist USB device list created by ftdi_usb_find_all()
373*/
374void ftdi_list_free2(struct ftdi_device_list *devlist)
375{
376 ftdi_list_free(&devlist);
377}
378
379/**
474786c0
TJ
380 Return device ID strings from the usb device.
381
382 The parameters manufacturer, description and serial may be NULL
383 or pointer to buffers to store the fetched strings.
384
898c34dd
TJ
385 \note Use this function only in combination with ftdi_usb_find_all()
386 as it closes the internal "usb_dev" after use.
387
474786c0
TJ
388 \param ftdi pointer to ftdi_context
389 \param dev libusb usb_dev to use
390 \param manufacturer Store manufacturer string here if not NULL
391 \param mnf_len Buffer size of manufacturer string
392 \param description Store product description string here if not NULL
393 \param desc_len Buffer size of product description string
394 \param serial Store serial string here if not NULL
395 \param serial_len Buffer size of serial string
396
397 \retval 0: all fine
398 \retval -1: wrong arguments
399 \retval -4: unable to open device
400 \retval -7: get product manufacturer failed
401 \retval -8: get product description failed
402 \retval -9: get serial number failed
579b006f 403 \retval -11: libusb_get_device_descriptor() failed
474786c0 404*/
579b006f 405int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
22d12cda 406 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
474786c0 407{
579b006f
JZ
408 struct libusb_device_descriptor desc;
409
474786c0
TJ
410 if ((ftdi==NULL) || (dev==NULL))
411 return -1;
412
579b006f
JZ
413 if (libusb_open(dev, &ftdi->usb_dev) < 0)
414 ftdi_error_return(-4, "libusb_open() failed");
415
416 if (libusb_get_device_descriptor(dev, &desc) < 0)
417 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 418
22d12cda
TJ
419 if (manufacturer != NULL)
420 {
579b006f 421 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 422 {
f3f81007 423 ftdi_usb_close_internal (ftdi);
579b006f 424 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
425 }
426 }
427
22d12cda
TJ
428 if (description != NULL)
429 {
579b006f 430 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 431 {
f3f81007 432 ftdi_usb_close_internal (ftdi);
579b006f 433 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
434 }
435 }
436
22d12cda
TJ
437 if (serial != NULL)
438 {
579b006f 439 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 440 {
f3f81007 441 ftdi_usb_close_internal (ftdi);
579b006f 442 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
443 }
444 }
445
579b006f 446 ftdi_usb_close_internal (ftdi);
474786c0
TJ
447
448 return 0;
449}
450
451/**
e2f12a4f
TJ
452 * Internal function to determine the maximum packet size.
453 * \param ftdi pointer to ftdi_context
454 * \param dev libusb usb_dev to use
455 * \retval Maximum packet size for this device
456 */
579b006f 457static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 458{
579b006f
JZ
459 struct libusb_device_descriptor desc;
460 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
461 unsigned int packet_size;
462
22a1b5c1
TJ
463 // Sanity check
464 if (ftdi == NULL || dev == NULL)
465 return 64;
466
e2f12a4f
TJ
467 // Determine maximum packet size. Init with default value.
468 // New hi-speed devices from FTDI use a packet size of 512 bytes
469 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
c7e4c09e 470 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
e2f12a4f
TJ
471 packet_size = 512;
472 else
473 packet_size = 64;
474
579b006f
JZ
475 if (libusb_get_device_descriptor(dev, &desc) < 0)
476 return packet_size;
477
478 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
479 return packet_size;
e2f12a4f 480
579b006f
JZ
481 if (desc.bNumConfigurations > 0)
482 {
483 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 484 {
579b006f 485 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
486 if (interface.num_altsetting > 0)
487 {
579b006f 488 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
489 if (descriptor.bNumEndpoints > 0)
490 {
491 packet_size = descriptor.endpoint[0].wMaxPacketSize;
492 }
493 }
494 }
495 }
496
579b006f 497 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
498 return packet_size;
499}
500
501/**
418aaa72 502 Opens a ftdi device given by an usb_device.
7b18bef6 503
1941414d
TJ
504 \param ftdi pointer to ftdi_context
505 \param dev libusb usb_dev to use
506
507 \retval 0: all fine
23b1798d 508 \retval -3: unable to config device
1941414d
TJ
509 \retval -4: unable to open device
510 \retval -5: unable to claim device
511 \retval -6: reset failed
512 \retval -7: set baudrate failed
22a1b5c1 513 \retval -8: ftdi context invalid
579b006f
JZ
514 \retval -9: libusb_get_device_descriptor() failed
515 \retval -10: libusb_get_config_descriptor() failed
e375e6cb 516 \retval -11: libusb_detach_kernel_driver() failed
579b006f 517 \retval -12: libusb_get_configuration() failed
7b18bef6 518*/
579b006f 519int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 520{
579b006f
JZ
521 struct libusb_device_descriptor desc;
522 struct libusb_config_descriptor *config0;
43aee24f 523 int cfg, cfg0, detach_errno = 0;
579b006f 524
22a1b5c1
TJ
525 if (ftdi == NULL)
526 ftdi_error_return(-8, "ftdi context invalid");
527
579b006f
JZ
528 if (libusb_open(dev, &ftdi->usb_dev) < 0)
529 ftdi_error_return(-4, "libusb_open() failed");
530
531 if (libusb_get_device_descriptor(dev, &desc) < 0)
532 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
533
534 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
535 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
536 cfg0 = config0->bConfigurationValue;
537 libusb_free_config_descriptor (config0);
d2f10023 538
22592e17 539 // Try to detach ftdi_sio kernel module.
22592e17
TJ
540 //
541 // The return code is kept in a separate variable and only parsed
542 // if usb_set_configuration() or usb_claim_interface() fails as the
543 // detach operation might be denied and everything still works fine.
544 // Likely scenario is a static ftdi_sio kernel module.
a3d86bdb
TJ
545 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
546 {
547 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
548 detach_errno = errno;
549 }
d2f10023 550
579b006f
JZ
551 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
552 ftdi_error_return(-12, "libusb_get_configuration () failed");
b57aedfd
GE
553 // set configuration (needed especially for windows)
554 // tolerate EBUSY: one device with one configuration, but two interfaces
555 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 556 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 557 {
579b006f 558 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 559 {
a56ba2bd 560 ftdi_usb_close_internal (ftdi);
56ac0383 561 if (detach_errno == EPERM)
43aee24f
UB
562 {
563 ftdi_error_return(-8, "inappropriate permissions on device!");
564 }
565 else
566 {
c16b162d 567 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
43aee24f 568 }
23b1798d
TJ
569 }
570 }
571
579b006f 572 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 573 {
f3f81007 574 ftdi_usb_close_internal (ftdi);
56ac0383 575 if (detach_errno == EPERM)
43aee24f
UB
576 {
577 ftdi_error_return(-8, "inappropriate permissions on device!");
578 }
579 else
580 {
c16b162d 581 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
43aee24f 582 }
7b18bef6
TJ
583 }
584
22d12cda
TJ
585 if (ftdi_usb_reset (ftdi) != 0)
586 {
f3f81007 587 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
588 ftdi_error_return(-6, "ftdi_usb_reset failed");
589 }
590
7b18bef6
TJ
591 // Try to guess chip type
592 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f 593 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
56ac0383 594 && desc.iSerialNumber == 0))
7b18bef6 595 ftdi->type = TYPE_BM;
579b006f 596 else if (desc.bcdDevice == 0x200)
7b18bef6 597 ftdi->type = TYPE_AM;
579b006f 598 else if (desc.bcdDevice == 0x500)
7b18bef6 599 ftdi->type = TYPE_2232C;
579b006f 600 else if (desc.bcdDevice == 0x600)
cb6250fa 601 ftdi->type = TYPE_R;
579b006f 602 else if (desc.bcdDevice == 0x700)
0beb9686 603 ftdi->type = TYPE_2232H;
579b006f 604 else if (desc.bcdDevice == 0x800)
0beb9686 605 ftdi->type = TYPE_4232H;
c7e4c09e
UB
606 else if (desc.bcdDevice == 0x900)
607 ftdi->type = TYPE_232H;
7b18bef6 608
e2f12a4f
TJ
609 // Determine maximum packet size
610 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
611
ef6f4838
TE
612 if (ftdi_set_baudrate (ftdi, 9600) != 0)
613 {
614 ftdi_usb_close_internal (ftdi);
615 ftdi_error_return(-7, "set baudrate failed");
616 }
617
7b18bef6
TJ
618 ftdi_error_return(0, "all fine");
619}
620
1941414d
TJ
621/**
622 Opens the first device with a given vendor and product ids.
623
624 \param ftdi pointer to ftdi_context
625 \param vendor Vendor ID
626 \param product Product ID
627
9bec2387 628 \retval same as ftdi_usb_open_desc()
1941414d 629*/
edb82cbf
TJ
630int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
631{
632 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
633}
634
1941414d
TJ
635/**
636 Opens the first device with a given, vendor id, product id,
637 description and serial.
638
639 \param ftdi pointer to ftdi_context
640 \param vendor Vendor ID
641 \param product Product ID
642 \param description Description to search for. Use NULL if not needed.
643 \param serial Serial to search for. Use NULL if not needed.
644
645 \retval 0: all fine
1941414d
TJ
646 \retval -3: usb device not found
647 \retval -4: unable to open device
648 \retval -5: unable to claim device
649 \retval -6: reset failed
650 \retval -7: set baudrate failed
651 \retval -8: get product description failed
652 \retval -9: get serial number failed
579b006f
JZ
653 \retval -12: libusb_get_device_list() failed
654 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 655*/
04e1ea0a 656int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
657 const char* description, const char* serial)
658{
5ebbdab9
GE
659 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
660}
661
662/**
663 Opens the index-th device with a given, vendor id, product id,
664 description and serial.
665
666 \param ftdi pointer to ftdi_context
667 \param vendor Vendor ID
668 \param product Product ID
669 \param description Description to search for. Use NULL if not needed.
670 \param serial Serial to search for. Use NULL if not needed.
671 \param index Number of matching device to open if there are more than one, starts with 0.
672
673 \retval 0: all fine
674 \retval -1: usb_find_busses() failed
675 \retval -2: usb_find_devices() failed
676 \retval -3: usb device not found
677 \retval -4: unable to open device
678 \retval -5: unable to claim device
679 \retval -6: reset failed
680 \retval -7: set baudrate failed
681 \retval -8: get product description failed
682 \retval -9: get serial number failed
683 \retval -10: unable to close device
22a1b5c1 684 \retval -11: ftdi context invalid
5ebbdab9
GE
685*/
686int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
56ac0383 687 const char* description, const char* serial, unsigned int index)
5ebbdab9 688{
579b006f
JZ
689 libusb_device *dev;
690 libusb_device **devs;
c3d95b87 691 char string[256];
579b006f 692 int i = 0;
98452d97 693
22a1b5c1
TJ
694 if (ftdi == NULL)
695 ftdi_error_return(-11, "ftdi context invalid");
696
02212d8e 697 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
99650502
UB
698 ftdi_error_return(-12, "libusb_get_device_list() failed");
699
579b006f 700 while ((dev = devs[i++]) != NULL)
22d12cda 701 {
579b006f 702 struct libusb_device_descriptor desc;
99650502 703 int res;
579b006f
JZ
704
705 if (libusb_get_device_descriptor(dev, &desc) < 0)
99650502 706 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
579b006f
JZ
707
708 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 709 {
579b006f 710 if (libusb_open(dev, &ftdi->usb_dev) < 0)
99650502 711 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
c3d95b87 712
579b006f
JZ
713 if (description != NULL)
714 {
715 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 716 {
d4afae5f 717 ftdi_usb_close_internal (ftdi);
99650502 718 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
a8f46ddc 719 }
579b006f 720 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 721 {
d4afae5f 722 ftdi_usb_close_internal (ftdi);
579b006f 723 continue;
a8f46ddc 724 }
579b006f
JZ
725 }
726 if (serial != NULL)
727 {
728 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
729 {
730 ftdi_usb_close_internal (ftdi);
99650502 731 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
579b006f
JZ
732 }
733 if (strncmp(string, serial, sizeof(string)) != 0)
734 {
735 ftdi_usb_close_internal (ftdi);
736 continue;
737 }
738 }
98452d97 739
579b006f 740 ftdi_usb_close_internal (ftdi);
d2f10023 741
56ac0383
TJ
742 if (index > 0)
743 {
744 index--;
745 continue;
746 }
5ebbdab9 747
99650502
UB
748 res = ftdi_usb_open_dev(ftdi, dev);
749 libusb_free_device_list(devs,1);
750 return res;
98452d97 751 }
98452d97 752 }
a3da1d95 753
98452d97 754 // device not found
99650502 755 ftdi_error_return_free_device_list(-3, "device not found", devs);
a3da1d95
GE
756}
757
1941414d 758/**
5ebbdab9
GE
759 Opens the ftdi-device described by a description-string.
760 Intended to be used for parsing a device-description given as commandline argument.
761
762 \param ftdi pointer to ftdi_context
763 \param description NULL-terminated description-string, using this format:
764 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
765 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
766 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
767 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
768
769 \note The description format may be extended in later versions.
770
771 \retval 0: all fine
579b006f 772 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
773 \retval -3: usb device not found
774 \retval -4: unable to open device
775 \retval -5: unable to claim device
776 \retval -6: reset failed
777 \retval -7: set baudrate failed
778 \retval -8: get product description failed
779 \retval -9: get serial number failed
780 \retval -10: unable to close device
781 \retval -11: illegal description format
22a1b5c1 782 \retval -12: ftdi context invalid
5ebbdab9
GE
783*/
784int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
785{
22a1b5c1
TJ
786 if (ftdi == NULL)
787 ftdi_error_return(-12, "ftdi context invalid");
788
5ebbdab9
GE
789 if (description[0] == 0 || description[1] != ':')
790 ftdi_error_return(-11, "illegal description format");
791
792 if (description[0] == 'd')
793 {
579b006f
JZ
794 libusb_device *dev;
795 libusb_device **devs;
56ac0383
TJ
796 unsigned int bus_number, device_address;
797 int i = 0;
579b006f 798
56ac0383
TJ
799 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
800 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 801
579b006f
JZ
802 /* XXX: This doesn't handle symlinks/odd paths/etc... */
803 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
56ac0383 804 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
5ebbdab9 805
56ac0383 806 while ((dev = devs[i++]) != NULL)
5ebbdab9 807 {
99650502 808 int ret;
56ac0383
TJ
809 if (bus_number == libusb_get_bus_number (dev)
810 && device_address == libusb_get_device_address (dev))
99650502
UB
811 {
812 ret = ftdi_usb_open_dev(ftdi, dev);
813 libusb_free_device_list(devs,1);
814 return ret;
815 }
5ebbdab9
GE
816 }
817
818 // device not found
99650502 819 ftdi_error_return_free_device_list(-3, "device not found", devs);
5ebbdab9
GE
820 }
821 else if (description[0] == 'i' || description[0] == 's')
822 {
823 unsigned int vendor;
824 unsigned int product;
825 unsigned int index=0;
0e6cf62b 826 const char *serial=NULL;
5ebbdab9
GE
827 const char *startp, *endp;
828
829 errno=0;
830 startp=description+2;
831 vendor=strtoul((char*)startp,(char**)&endp,0);
832 if (*endp != ':' || endp == startp || errno != 0)
833 ftdi_error_return(-11, "illegal description format");
834
835 startp=endp+1;
836 product=strtoul((char*)startp,(char**)&endp,0);
837 if (endp == startp || errno != 0)
838 ftdi_error_return(-11, "illegal description format");
839
840 if (description[0] == 'i' && *endp != 0)
841 {
842 /* optional index field in i-mode */
843 if (*endp != ':')
844 ftdi_error_return(-11, "illegal description format");
845
846 startp=endp+1;
847 index=strtoul((char*)startp,(char**)&endp,0);
848 if (*endp != 0 || endp == startp || errno != 0)
849 ftdi_error_return(-11, "illegal description format");
850 }
851 if (description[0] == 's')
852 {
853 if (*endp != ':')
854 ftdi_error_return(-11, "illegal description format");
855
856 /* rest of the description is the serial */
857 serial=endp+1;
858 }
859
860 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
861 }
862 else
863 {
864 ftdi_error_return(-11, "illegal description format");
865 }
866}
867
868/**
1941414d 869 Resets the ftdi device.
a3da1d95 870
1941414d
TJ
871 \param ftdi pointer to ftdi_context
872
873 \retval 0: all fine
874 \retval -1: FTDI reset failed
22a1b5c1 875 \retval -2: USB device unavailable
4837f98a 876*/
edb82cbf 877int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 878{
22a1b5c1
TJ
879 if (ftdi == NULL || ftdi->usb_dev == NULL)
880 ftdi_error_return(-2, "USB device unavailable");
881
579b006f
JZ
882 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
883 SIO_RESET_REQUEST, SIO_RESET_SIO,
884 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 885 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 886
545820ce 887 // Invalidate data in the readbuffer
bfcee05b
TJ
888 ftdi->readbuffer_offset = 0;
889 ftdi->readbuffer_remaining = 0;
890
a3da1d95
GE
891 return 0;
892}
893
1941414d 894/**
1189b11a 895 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
896
897 \param ftdi pointer to ftdi_context
4837f98a 898
1941414d 899 \retval 0: all fine
1189b11a 900 \retval -1: read buffer purge failed
22a1b5c1 901 \retval -2: USB device unavailable
4837f98a 902*/
1189b11a 903int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 904{
22a1b5c1
TJ
905 if (ftdi == NULL || ftdi->usb_dev == NULL)
906 ftdi_error_return(-2, "USB device unavailable");
907
579b006f
JZ
908 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
909 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
910 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
911 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
912
545820ce 913 // Invalidate data in the readbuffer
bfcee05b
TJ
914 ftdi->readbuffer_offset = 0;
915 ftdi->readbuffer_remaining = 0;
a60be878 916
1189b11a
TJ
917 return 0;
918}
919
920/**
921 Clears the write buffer on the chip.
922
923 \param ftdi pointer to ftdi_context
924
925 \retval 0: all fine
926 \retval -1: write buffer purge failed
22a1b5c1 927 \retval -2: USB device unavailable
1189b11a
TJ
928*/
929int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
930{
22a1b5c1
TJ
931 if (ftdi == NULL || ftdi->usb_dev == NULL)
932 ftdi_error_return(-2, "USB device unavailable");
933
579b006f
JZ
934 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
935 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
936 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
937 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
938
939 return 0;
940}
941
942/**
943 Clears the buffers on the chip and the internal read buffer.
944
945 \param ftdi pointer to ftdi_context
946
947 \retval 0: all fine
948 \retval -1: read buffer purge failed
949 \retval -2: write buffer purge failed
22a1b5c1 950 \retval -3: USB device unavailable
1189b11a
TJ
951*/
952int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
953{
954 int result;
955
22a1b5c1
TJ
956 if (ftdi == NULL || ftdi->usb_dev == NULL)
957 ftdi_error_return(-3, "USB device unavailable");
958
1189b11a 959 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 960 if (result < 0)
1189b11a
TJ
961 return -1;
962
963 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 964 if (result < 0)
1189b11a 965 return -2;
545820ce 966
a60be878
TJ
967 return 0;
968}
a3da1d95 969
f3f81007
TJ
970
971
1941414d
TJ
972/**
973 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
974
975 \param ftdi pointer to ftdi_context
976
977 \retval 0: all fine
978 \retval -1: usb_release failed
22a1b5c1 979 \retval -3: ftdi context invalid
a3da1d95 980*/
a8f46ddc
TJ
981int ftdi_usb_close(struct ftdi_context *ftdi)
982{
a3da1d95
GE
983 int rtn = 0;
984
22a1b5c1
TJ
985 if (ftdi == NULL)
986 ftdi_error_return(-3, "ftdi context invalid");
987
dff4fdb0 988 if (ftdi->usb_dev != NULL)
579b006f 989 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 990 rtn = -1;
98452d97 991
579b006f 992 ftdi_usb_close_internal (ftdi);
98452d97 993
a3da1d95
GE
994 return rtn;
995}
996
f15786e4
UB
997/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
998 to encoded divisor and the achievable baudrate
53ad271d 999 Function is only used internally
b5ec1820 1000 \internal
f15786e4
UB
1001
1002 See AN120
1003 clk/1 -> 0
1004 clk/1.5 -> 1
1005 clk/2 -> 2
1006 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1007 The fractional part has frac_code encoding
53ad271d 1008*/
f15786e4
UB
1009static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1010
a8f46ddc 1011{
f15786e4 1012 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
53ad271d
TJ
1013 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1014 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
53ad271d 1015 int divisor, best_divisor, best_baud, best_baud_diff;
53ad271d 1016 divisor = 24000000 / baudrate;
f15786e4 1017 int i;
53ad271d 1018
f15786e4
UB
1019 // Round down to supported fraction (AM only)
1020 divisor -= am_adjust_dn[divisor & 7];
53ad271d
TJ
1021
1022 // Try this divisor and the one above it (because division rounds down)
1023 best_divisor = 0;
1024 best_baud = 0;
1025 best_baud_diff = 0;
22d12cda
TJ
1026 for (i = 0; i < 2; i++)
1027 {
53ad271d
TJ
1028 int try_divisor = divisor + i;
1029 int baud_estimate;
1030 int baud_diff;
1031
1032 // Round up to supported divisor value
22d12cda
TJ
1033 if (try_divisor <= 8)
1034 {
53ad271d
TJ
1035 // Round up to minimum supported divisor
1036 try_divisor = 8;
22d12cda 1037 }
22d12cda
TJ
1038 else if (divisor < 16)
1039 {
53ad271d
TJ
1040 // AM doesn't support divisors 9 through 15 inclusive
1041 try_divisor = 16;
22d12cda
TJ
1042 }
1043 else
1044 {
f15786e4
UB
1045 // Round up to supported fraction (AM only)
1046 try_divisor += am_adjust_up[try_divisor & 7];
1047 if (try_divisor > 0x1FFF8)
22d12cda 1048 {
f15786e4
UB
1049 // Round down to maximum supported divisor value (for AM)
1050 try_divisor = 0x1FFF8;
53ad271d
TJ
1051 }
1052 }
1053 // Get estimated baud rate (to nearest integer)
1054 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1055 // Get absolute difference from requested baud rate
22d12cda
TJ
1056 if (baud_estimate < baudrate)
1057 {
53ad271d 1058 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
1059 }
1060 else
1061 {
53ad271d
TJ
1062 baud_diff = baud_estimate - baudrate;
1063 }
22d12cda
TJ
1064 if (i == 0 || baud_diff < best_baud_diff)
1065 {
53ad271d
TJ
1066 // Closest to requested baud rate so far
1067 best_divisor = try_divisor;
1068 best_baud = baud_estimate;
1069 best_baud_diff = baud_diff;
22d12cda
TJ
1070 if (baud_diff == 0)
1071 {
53ad271d
TJ
1072 // Spot on! No point trying
1073 break;
1074 }
1075 }
1076 }
1077 // Encode the best divisor value
f15786e4 1078 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
53ad271d 1079 // Deal with special cases for encoded value
f15786e4 1080 if (*encoded_divisor == 1)
22d12cda 1081 {
f15786e4 1082 *encoded_divisor = 0; // 3000000 baud
22d12cda 1083 }
f15786e4
UB
1084 else if (*encoded_divisor == 0x4001)
1085 {
1086 *encoded_divisor = 1; // 2000000 baud (BM only)
1087 }
1088 return best_baud;
1089}
1090
1091/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1092 to encoded divisor and the achievable baudrate
1093 Function is only used internally
1094 \internal
1095
1096 See AN120
1097 clk/1 -> 0
1098 clk/1.5 -> 1
1099 clk/2 -> 2
1100 From /2, 0.125 steps may be taken.
1101 The fractional part has frac_code encoding
9956d428
UB
1102
1103 value[13:0] of value is the divisor
1104 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1105
1106 H Type have all features above with
1107 {index[8],value[15:14]} is the encoded subdivisor
1108
1109 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
1110 {index[0],value[15:14]} is the encoded subdivisor
1111
1112 AM Type chips have only four fractional subdivisors at value[15:14]
1113 for subdivisors 0, 0.5, 0.25, 0.125
f15786e4
UB
1114*/
1115static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor)
1116{
1117 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1118 int best_baud = 0;
1119 int divisor, best_divisor;
1120 if (baudrate >= clk/clk_div)
1121 {
1122 *encoded_divisor = 0;
1123 best_baud = clk/clk_div;
1124 }
1125 else if (baudrate >= clk/(clk_div + clk_div/2))
1126 {
1127 *encoded_divisor = 1;
1128 best_baud = clk/(clk_div + clk_div/2);
1129 }
1130 else if (baudrate >= clk/(2*clk_div))
1131 {
1132 *encoded_divisor = 2;
1133 best_baud = clk/(2*clk_div);
1134 }
1135 else
1136 {
1137 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1138 divisor = clk*16/clk_div / baudrate;
1139 if (divisor & 1) /* Decide if to round up or down*/
1140 best_divisor = divisor /2 +1;
1141 else
1142 best_divisor = divisor/2;
1143 if(best_divisor > 0x20000)
1144 best_divisor = 0x1ffff;
aae08071
UB
1145 best_baud = clk*16/clk_div/best_divisor;
1146 if (best_baud & 1) /* Decide if to round up or down*/
1147 best_baud = best_baud /2 +1;
1148 else
1149 best_baud = best_baud /2;
f15786e4
UB
1150 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1151 }
1152 return best_baud;
1153}
1154/**
1155 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1156 Function is only used internally
1157 \internal
1158*/
1159static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1160 unsigned short *value, unsigned short *index)
1161{
1162 int best_baud;
1163 unsigned long encoded_divisor;
1164
1165 if (baudrate <= 0)
1166 {
1167 // Return error
1168 return -1;
1169 }
1170
1171#define H_CLK 120000000
1172#define C_CLK 48000000
1173 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H ))
1174 {
1175 if(baudrate*10 > H_CLK /0x3fff)
1176 {
1177 /* On H Devices, use 12 000 000 Baudrate when possible
1178 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
1179 three fractional bits and a 120 MHz clock
1180 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1181 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1182 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1183 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1184 }
1185 else
1186 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1187 }
1188 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R ))
1189 {
1190 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1191 }
1192 else
22d12cda 1193 {
f15786e4 1194 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
53ad271d
TJ
1195 }
1196 // Split into "value" and "index" values
1197 *value = (unsigned short)(encoded_divisor & 0xFFFF);
e03f60a1 1198 if (ftdi->type == TYPE_2232H ||
f15786e4 1199 ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
22d12cda 1200 {
0126d22e
TJ
1201 *index = (unsigned short)(encoded_divisor >> 8);
1202 *index &= 0xFF00;
a9c57c05 1203 *index |= ftdi->index;
0126d22e
TJ
1204 }
1205 else
1206 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 1207
53ad271d
TJ
1208 // Return the nearest baud rate
1209 return best_baud;
1210}
1211
1941414d 1212/**
ac6944cc
TJ
1213 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1214 * Do not use, it's only for the unit test framework
1215 **/
1216int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1217 unsigned short *value, unsigned short *index)
1218{
1219 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1220}
1221
1222/**
9bec2387 1223 Sets the chip baud rate
1941414d
TJ
1224
1225 \param ftdi pointer to ftdi_context
9bec2387 1226 \param baudrate baud rate to set
1941414d
TJ
1227
1228 \retval 0: all fine
1229 \retval -1: invalid baudrate
1230 \retval -2: setting baudrate failed
22a1b5c1 1231 \retval -3: USB device unavailable
a3da1d95 1232*/
a8f46ddc
TJ
1233int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1234{
53ad271d
TJ
1235 unsigned short value, index;
1236 int actual_baudrate;
a3da1d95 1237
22a1b5c1
TJ
1238 if (ftdi == NULL || ftdi->usb_dev == NULL)
1239 ftdi_error_return(-3, "USB device unavailable");
1240
22d12cda
TJ
1241 if (ftdi->bitbang_enabled)
1242 {
a3da1d95
GE
1243 baudrate = baudrate*4;
1244 }
1245
25707904 1246 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1247 if (actual_baudrate <= 0)
1248 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1249
53ad271d
TJ
1250 // Check within tolerance (about 5%)
1251 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1252 || ((actual_baudrate < baudrate)
1253 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1254 : (baudrate * 21 < actual_baudrate * 20)))
1255 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1256
579b006f
JZ
1257 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1258 SIO_SET_BAUDRATE_REQUEST, value,
1259 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1260 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1261
1262 ftdi->baudrate = baudrate;
1263 return 0;
1264}
1265
1941414d 1266/**
6c32e222
TJ
1267 Set (RS232) line characteristics.
1268 The break type can only be set via ftdi_set_line_property2()
1269 and defaults to "off".
4837f98a 1270
1941414d
TJ
1271 \param ftdi pointer to ftdi_context
1272 \param bits Number of bits
1273 \param sbit Number of stop bits
1274 \param parity Parity mode
1275
1276 \retval 0: all fine
1277 \retval -1: Setting line property failed
2f73e59f
TJ
1278*/
1279int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1280 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1281{
6c32e222
TJ
1282 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1283}
1284
1285/**
1286 Set (RS232) line characteristics
1287
1288 \param ftdi pointer to ftdi_context
1289 \param bits Number of bits
1290 \param sbit Number of stop bits
1291 \param parity Parity mode
1292 \param break_type Break type
1293
1294 \retval 0: all fine
1295 \retval -1: Setting line property failed
22a1b5c1 1296 \retval -2: USB device unavailable
6c32e222
TJ
1297*/
1298int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1299 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1300 enum ftdi_break_type break_type)
6c32e222 1301{
2f73e59f
TJ
1302 unsigned short value = bits;
1303
22a1b5c1
TJ
1304 if (ftdi == NULL || ftdi->usb_dev == NULL)
1305 ftdi_error_return(-2, "USB device unavailable");
1306
22d12cda
TJ
1307 switch (parity)
1308 {
1309 case NONE:
1310 value |= (0x00 << 8);
1311 break;
1312 case ODD:
1313 value |= (0x01 << 8);
1314 break;
1315 case EVEN:
1316 value |= (0x02 << 8);
1317 break;
1318 case MARK:
1319 value |= (0x03 << 8);
1320 break;
1321 case SPACE:
1322 value |= (0x04 << 8);
1323 break;
2f73e59f 1324 }
d2f10023 1325
22d12cda
TJ
1326 switch (sbit)
1327 {
1328 case STOP_BIT_1:
1329 value |= (0x00 << 11);
1330 break;
1331 case STOP_BIT_15:
1332 value |= (0x01 << 11);
1333 break;
1334 case STOP_BIT_2:
1335 value |= (0x02 << 11);
1336 break;
2f73e59f 1337 }
d2f10023 1338
22d12cda
TJ
1339 switch (break_type)
1340 {
1341 case BREAK_OFF:
1342 value |= (0x00 << 14);
1343 break;
1344 case BREAK_ON:
1345 value |= (0x01 << 14);
1346 break;
6c32e222
TJ
1347 }
1348
579b006f
JZ
1349 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1350 SIO_SET_DATA_REQUEST, value,
1351 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1352 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1353
2f73e59f
TJ
1354 return 0;
1355}
a3da1d95 1356
1941414d
TJ
1357/**
1358 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1359
1360 \param ftdi pointer to ftdi_context
1361 \param buf Buffer with the data
1362 \param size Size of the buffer
1363
22a1b5c1 1364 \retval -666: USB device unavailable
1941414d
TJ
1365 \retval <0: error code from usb_bulk_write()
1366 \retval >0: number of bytes written
1367*/
a8f46ddc
TJ
1368int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1369{
a3da1d95 1370 int offset = 0;
579b006f 1371 int actual_length;
c3d95b87 1372
22a1b5c1
TJ
1373 if (ftdi == NULL || ftdi->usb_dev == NULL)
1374 ftdi_error_return(-666, "USB device unavailable");
1375
22d12cda
TJ
1376 while (offset < size)
1377 {
948f9ada 1378 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1379
1380 if (offset+write_size > size)
1381 write_size = size-offset;
1382
579b006f
JZ
1383 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1384 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1385
579b006f 1386 offset += actual_length;
a3da1d95
GE
1387 }
1388
579b006f 1389 return offset;
a3da1d95
GE
1390}
1391
579b006f 1392static void ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1393{
579b006f
JZ
1394 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1395 struct ftdi_context *ftdi = tc->ftdi;
1396 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1397
b1139150 1398 packet_size = ftdi->max_packet_size;
579b006f
JZ
1399
1400 actual_length = transfer->actual_length;
1401
1402 if (actual_length > 2)
1403 {
1404 // skip FTDI status bytes.
1405 // Maybe stored in the future to enable modem use
1406 num_of_chunks = actual_length / packet_size;
1407 chunk_remains = actual_length % packet_size;
1408 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1409
1410 ftdi->readbuffer_offset += 2;
1411 actual_length -= 2;
1412
1413 if (actual_length > packet_size - 2)
1414 {
1415 for (i = 1; i < num_of_chunks; i++)
56ac0383
TJ
1416 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1417 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1418 packet_size - 2);
579b006f
JZ
1419 if (chunk_remains > 2)
1420 {
1421 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1422 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1423 chunk_remains-2);
1424 actual_length -= 2*num_of_chunks;
1425 }
1426 else
56ac0383 1427 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
579b006f
JZ
1428 }
1429
1430 if (actual_length > 0)
1431 {
1432 // data still fits in buf?
1433 if (tc->offset + actual_length <= tc->size)
1434 {
1435 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1436 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1437 tc->offset += actual_length;
1438
1439 ftdi->readbuffer_offset = 0;
1440 ftdi->readbuffer_remaining = 0;
1441
1442 /* Did we read exactly the right amount of bytes? */
1443 if (tc->offset == tc->size)
1444 {
1445 //printf("read_data exact rem %d offset %d\n",
1446 //ftdi->readbuffer_remaining, offset);
1447 tc->completed = 1;
1448 return;
1449 }
1450 }
1451 else
1452 {
1453 // only copy part of the data or size <= readbuffer_chunksize
1454 int part_size = tc->size - tc->offset;
1455 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1456 tc->offset += part_size;
1457
1458 ftdi->readbuffer_offset += part_size;
1459 ftdi->readbuffer_remaining = actual_length - part_size;
1460
1461 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1462 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1463 tc->completed = 1;
1464 return;
1465 }
1466 }
1467 }
1468 ret = libusb_submit_transfer (transfer);
1469 if (ret < 0)
1470 tc->completed = 1;
1471}
1472
1473
1474static void ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1475{
579b006f
JZ
1476 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1477 struct ftdi_context *ftdi = tc->ftdi;
56ac0383 1478
90ef163e 1479 tc->offset += transfer->actual_length;
56ac0383 1480
579b006f 1481 if (tc->offset == tc->size)
22d12cda 1482 {
579b006f 1483 tc->completed = 1;
7cc9950e 1484 }
579b006f
JZ
1485 else
1486 {
1487 int write_size = ftdi->writebuffer_chunksize;
1488 int ret;
7cc9950e 1489
579b006f
JZ
1490 if (tc->offset + write_size > tc->size)
1491 write_size = tc->size - tc->offset;
1492
1493 transfer->length = write_size;
1494 transfer->buffer = tc->buf + tc->offset;
1495 ret = libusb_submit_transfer (transfer);
1496 if (ret < 0)
1497 tc->completed = 1;
1498 }
7cc9950e
GE
1499}
1500
579b006f 1501
84f85aaa 1502/**
579b006f
JZ
1503 Writes data to the chip. Does not wait for completion of the transfer
1504 nor does it make sure that the transfer was successful.
1505
249888c8 1506 Use libusb 1.0 asynchronous API.
84f85aaa
GE
1507
1508 \param ftdi pointer to ftdi_context
579b006f
JZ
1509 \param buf Buffer with the data
1510 \param size Size of the buffer
84f85aaa 1511
579b006f
JZ
1512 \retval NULL: Some error happens when submit transfer
1513 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1514*/
579b006f
JZ
1515
1516struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1517{
579b006f 1518 struct ftdi_transfer_control *tc;
5e77e870 1519 struct libusb_transfer *transfer;
579b006f 1520 int write_size, ret;
22d12cda 1521
22a1b5c1 1522 if (ftdi == NULL || ftdi->usb_dev == NULL)
22a1b5c1 1523 return NULL;
22a1b5c1 1524
579b006f 1525 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
5e77e870
TJ
1526 if (!tc)
1527 return NULL;
22d12cda 1528
5e77e870
TJ
1529 transfer = libusb_alloc_transfer(0);
1530 if (!transfer)
1531 {
1532 free(tc);
579b006f 1533 return NULL;
5e77e870 1534 }
22d12cda 1535
579b006f
JZ
1536 tc->ftdi = ftdi;
1537 tc->completed = 0;
1538 tc->buf = buf;
1539 tc->size = size;
1540 tc->offset = 0;
7cc9950e 1541
579b006f 1542 if (size < ftdi->writebuffer_chunksize)
56ac0383 1543 write_size = size;
579b006f 1544 else
56ac0383 1545 write_size = ftdi->writebuffer_chunksize;
22d12cda 1546
90ef163e
YSL
1547 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1548 write_size, ftdi_write_data_cb, tc,
1549 ftdi->usb_write_timeout);
579b006f 1550 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1551
579b006f
JZ
1552 ret = libusb_submit_transfer(transfer);
1553 if (ret < 0)
1554 {
1555 libusb_free_transfer(transfer);
5e77e870 1556 free(tc);
579b006f 1557 return NULL;
7cc9950e 1558 }
579b006f
JZ
1559 tc->transfer = transfer;
1560
1561 return tc;
7cc9950e
GE
1562}
1563
1564/**
579b006f
JZ
1565 Reads data from the chip. Does not wait for completion of the transfer
1566 nor does it make sure that the transfer was successful.
1567
249888c8 1568 Use libusb 1.0 asynchronous API.
7cc9950e
GE
1569
1570 \param ftdi pointer to ftdi_context
579b006f
JZ
1571 \param buf Buffer with the data
1572 \param size Size of the buffer
4c9e3812 1573
579b006f
JZ
1574 \retval NULL: Some error happens when submit transfer
1575 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1576*/
579b006f
JZ
1577
1578struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1579{
579b006f
JZ
1580 struct ftdi_transfer_control *tc;
1581 struct libusb_transfer *transfer;
1582 int ret;
22d12cda 1583
22a1b5c1
TJ
1584 if (ftdi == NULL || ftdi->usb_dev == NULL)
1585 return NULL;
1586
579b006f
JZ
1587 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1588 if (!tc)
1589 return NULL;
1590
1591 tc->ftdi = ftdi;
1592 tc->buf = buf;
1593 tc->size = size;
1594
1595 if (size <= ftdi->readbuffer_remaining)
7cc9950e 1596 {
579b006f 1597 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1598
579b006f
JZ
1599 // Fix offsets
1600 ftdi->readbuffer_remaining -= size;
1601 ftdi->readbuffer_offset += size;
7cc9950e 1602
579b006f 1603 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1604
579b006f
JZ
1605 tc->completed = 1;
1606 tc->offset = size;
1607 tc->transfer = NULL;
1608 return tc;
1609 }
4c9e3812 1610
579b006f
JZ
1611 tc->completed = 0;
1612 if (ftdi->readbuffer_remaining != 0)
1613 {
1614 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1615
579b006f
JZ
1616 tc->offset = ftdi->readbuffer_remaining;
1617 }
1618 else
1619 tc->offset = 0;
22d12cda 1620
579b006f
JZ
1621 transfer = libusb_alloc_transfer(0);
1622 if (!transfer)
1623 {
1624 free (tc);
1625 return NULL;
1626 }
22d12cda 1627
579b006f
JZ
1628 ftdi->readbuffer_remaining = 0;
1629 ftdi->readbuffer_offset = 0;
1630
1631 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1632 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1633
1634 ret = libusb_submit_transfer(transfer);
1635 if (ret < 0)
1636 {
1637 libusb_free_transfer(transfer);
1638 free (tc);
1639 return NULL;
22d12cda 1640 }
579b006f
JZ
1641 tc->transfer = transfer;
1642
1643 return tc;
4c9e3812
GE
1644}
1645
1646/**
579b006f 1647 Wait for completion of the transfer.
4c9e3812 1648
249888c8 1649 Use libusb 1.0 asynchronous API.
4c9e3812 1650
579b006f 1651 \param tc pointer to ftdi_transfer_control
4c9e3812 1652
579b006f
JZ
1653 \retval < 0: Some error happens
1654 \retval >= 0: Data size transferred
4c9e3812 1655*/
579b006f
JZ
1656
1657int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1658{
1659 int ret;
4c9e3812 1660
579b006f 1661 while (!tc->completed)
22d12cda 1662 {
29b1dfd9 1663 ret = libusb_handle_events(tc->ftdi->usb_ctx);
4c9e3812 1664 if (ret < 0)
579b006f
JZ
1665 {
1666 if (ret == LIBUSB_ERROR_INTERRUPTED)
1667 continue;
1668 libusb_cancel_transfer(tc->transfer);
1669 while (!tc->completed)
29b1dfd9 1670 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
579b006f
JZ
1671 break;
1672 libusb_free_transfer(tc->transfer);
1673 free (tc);
579b006f
JZ
1674 return ret;
1675 }
4c9e3812
GE
1676 }
1677
90ef163e
YSL
1678 ret = tc->offset;
1679 /**
1680 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
ef15fab5 1681 * at ftdi_read_data_submit(). Therefore, we need to check it here.
90ef163e 1682 **/
ef15fab5
TJ
1683 if (tc->transfer)
1684 {
1685 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1686 ret = -1;
1687 libusb_free_transfer(tc->transfer);
90ef163e 1688 }
579b006f
JZ
1689 free(tc);
1690 return ret;
4c9e3812 1691}
579b006f 1692
1941414d
TJ
1693/**
1694 Configure write buffer chunk size.
1695 Default is 4096.
1696
1697 \param ftdi pointer to ftdi_context
1698 \param chunksize Chunk size
a3da1d95 1699
1941414d 1700 \retval 0: all fine
22a1b5c1 1701 \retval -1: ftdi context invalid
1941414d 1702*/
a8f46ddc
TJ
1703int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1704{
22a1b5c1
TJ
1705 if (ftdi == NULL)
1706 ftdi_error_return(-1, "ftdi context invalid");
1707
948f9ada
TJ
1708 ftdi->writebuffer_chunksize = chunksize;
1709 return 0;
1710}
1711
1941414d
TJ
1712/**
1713 Get write buffer chunk size.
1714
1715 \param ftdi pointer to ftdi_context
1716 \param chunksize Pointer to store chunk size in
948f9ada 1717
1941414d 1718 \retval 0: all fine
22a1b5c1 1719 \retval -1: ftdi context invalid
1941414d 1720*/
a8f46ddc
TJ
1721int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1722{
22a1b5c1
TJ
1723 if (ftdi == NULL)
1724 ftdi_error_return(-1, "ftdi context invalid");
1725
948f9ada
TJ
1726 *chunksize = ftdi->writebuffer_chunksize;
1727 return 0;
1728}
cbabb7d3 1729
1941414d
TJ
1730/**
1731 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1732
1733 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1734
1941414d
TJ
1735 \param ftdi pointer to ftdi_context
1736 \param buf Buffer to store data in
1737 \param size Size of the buffer
1738
22a1b5c1 1739 \retval -666: USB device unavailable
579b006f 1740 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 1741 \retval 0: no data was available
1941414d
TJ
1742 \retval >0: number of bytes read
1743
1941414d 1744*/
a8f46ddc
TJ
1745int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1746{
579b006f 1747 int offset = 0, ret, i, num_of_chunks, chunk_remains;
e2f12a4f 1748 int packet_size = ftdi->max_packet_size;
579b006f 1749 int actual_length = 1;
f2f00cb5 1750
22a1b5c1
TJ
1751 if (ftdi == NULL || ftdi->usb_dev == NULL)
1752 ftdi_error_return(-666, "USB device unavailable");
1753
e2f12a4f
TJ
1754 // Packet size sanity check (avoid division by zero)
1755 if (packet_size == 0)
1756 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 1757
948f9ada 1758 // everything we want is still in the readbuffer?
22d12cda
TJ
1759 if (size <= ftdi->readbuffer_remaining)
1760 {
d9f0cce7
TJ
1761 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1762
1763 // Fix offsets
1764 ftdi->readbuffer_remaining -= size;
1765 ftdi->readbuffer_offset += size;
1766
545820ce 1767 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1768
1769 return size;
979a145c 1770 }
948f9ada 1771 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
1772 if (ftdi->readbuffer_remaining != 0)
1773 {
d9f0cce7 1774 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1775
d9f0cce7
TJ
1776 // Fix offset
1777 offset += ftdi->readbuffer_remaining;
948f9ada 1778 }
948f9ada 1779 // do the actual USB read
579b006f 1780 while (offset < size && actual_length > 0)
22d12cda 1781 {
d9f0cce7
TJ
1782 ftdi->readbuffer_remaining = 0;
1783 ftdi->readbuffer_offset = 0;
98452d97 1784 /* returns how much received */
579b006f 1785 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
1786 if (ret < 0)
1787 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1788
579b006f 1789 if (actual_length > 2)
22d12cda 1790 {
d9f0cce7
TJ
1791 // skip FTDI status bytes.
1792 // Maybe stored in the future to enable modem use
579b006f
JZ
1793 num_of_chunks = actual_length / packet_size;
1794 chunk_remains = actual_length % packet_size;
1795 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 1796
d9f0cce7 1797 ftdi->readbuffer_offset += 2;
579b006f 1798 actual_length -= 2;
1c733d33 1799
579b006f 1800 if (actual_length > packet_size - 2)
22d12cda 1801 {
1c733d33 1802 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
1803 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1804 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1805 packet_size - 2);
22d12cda
TJ
1806 if (chunk_remains > 2)
1807 {
f2f00cb5
DC
1808 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1809 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 1810 chunk_remains-2);
579b006f 1811 actual_length -= 2*num_of_chunks;
22d12cda
TJ
1812 }
1813 else
579b006f 1814 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 1815 }
22d12cda 1816 }
579b006f 1817 else if (actual_length <= 2)
22d12cda 1818 {
d9f0cce7
TJ
1819 // no more data to read?
1820 return offset;
1821 }
579b006f 1822 if (actual_length > 0)
22d12cda 1823 {
d9f0cce7 1824 // data still fits in buf?
579b006f 1825 if (offset+actual_length <= size)
22d12cda 1826 {
579b006f 1827 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 1828 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 1829 offset += actual_length;
d9f0cce7 1830
53ad271d 1831 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1832 if (offset == size)
c4446c36
TJ
1833 //printf("read_data exact rem %d offset %d\n",
1834 //ftdi->readbuffer_remaining, offset);
d9f0cce7 1835 return offset;
22d12cda
TJ
1836 }
1837 else
1838 {
d9f0cce7
TJ
1839 // only copy part of the data or size <= readbuffer_chunksize
1840 int part_size = size-offset;
1841 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1842
d9f0cce7 1843 ftdi->readbuffer_offset += part_size;
579b006f 1844 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
1845 offset += part_size;
1846
579b006f
JZ
1847 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1848 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1849
1850 return offset;
1851 }
1852 }
cbabb7d3 1853 }
948f9ada 1854 // never reached
29c4af7f 1855 return -127;
a3da1d95
GE
1856}
1857
1941414d
TJ
1858/**
1859 Configure read buffer chunk size.
1860 Default is 4096.
1861
1862 Automatically reallocates the buffer.
a3da1d95 1863
1941414d
TJ
1864 \param ftdi pointer to ftdi_context
1865 \param chunksize Chunk size
1866
1867 \retval 0: all fine
22a1b5c1 1868 \retval -1: ftdi context invalid
1941414d 1869*/
a8f46ddc
TJ
1870int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1871{
29c4af7f
TJ
1872 unsigned char *new_buf;
1873
22a1b5c1
TJ
1874 if (ftdi == NULL)
1875 ftdi_error_return(-1, "ftdi context invalid");
1876
948f9ada
TJ
1877 // Invalidate all remaining data
1878 ftdi->readbuffer_offset = 0;
1879 ftdi->readbuffer_remaining = 0;
8de6eea4
JZ
1880#ifdef __linux__
1881 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1882 which is defined in libusb-1.0. Otherwise, each USB read request will
2e685a1f 1883 be divided into multiple URBs. This will cause issues on Linux kernel
8de6eea4
JZ
1884 older than 2.6.32. */
1885 if (chunksize > 16384)
1886 chunksize = 16384;
1887#endif
948f9ada 1888
c3d95b87
TJ
1889 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1890 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1891
948f9ada
TJ
1892 ftdi->readbuffer = new_buf;
1893 ftdi->readbuffer_chunksize = chunksize;
1894
1895 return 0;
1896}
1897
1941414d
TJ
1898/**
1899 Get read buffer chunk size.
948f9ada 1900
1941414d
TJ
1901 \param ftdi pointer to ftdi_context
1902 \param chunksize Pointer to store chunk size in
1903
1904 \retval 0: all fine
22a1b5c1 1905 \retval -1: FTDI context invalid
1941414d 1906*/
a8f46ddc
TJ
1907int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1908{
22a1b5c1
TJ
1909 if (ftdi == NULL)
1910 ftdi_error_return(-1, "FTDI context invalid");
1911
948f9ada
TJ
1912 *chunksize = ftdi->readbuffer_chunksize;
1913 return 0;
1914}
1915
1941414d 1916/**
2d790e37 1917 Enable/disable bitbang modes.
1941414d
TJ
1918
1919 \param ftdi pointer to ftdi_context
1920 \param bitmask Bitmask to configure lines.
1921 HIGH/ON value configures a line as output.
2d790e37 1922 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
1923
1924 \retval 0: all fine
1925 \retval -1: can't enable bitbang mode
22a1b5c1 1926 \retval -2: USB device unavailable
1941414d 1927*/
2d790e37 1928int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
a8f46ddc 1929{
a3da1d95
GE
1930 unsigned short usb_val;
1931
22a1b5c1
TJ
1932 if (ftdi == NULL || ftdi->usb_dev == NULL)
1933 ftdi_error_return(-2, "USB device unavailable");
1934
d9f0cce7 1935 usb_val = bitmask; // low byte: bitmask
2d790e37
TJ
1936 usb_val |= (mode << 8);
1937 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1938 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
c3d95b87 1939
2d790e37
TJ
1940 ftdi->bitbang_mode = mode;
1941 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
a3da1d95
GE
1942 return 0;
1943}
1944
1941414d
TJ
1945/**
1946 Disable bitbang mode.
a3da1d95 1947
1941414d
TJ
1948 \param ftdi pointer to ftdi_context
1949
1950 \retval 0: all fine
1951 \retval -1: can't disable bitbang mode
22a1b5c1 1952 \retval -2: USB device unavailable
1941414d 1953*/
a8f46ddc
TJ
1954int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1955{
22a1b5c1
TJ
1956 if (ftdi == NULL || ftdi->usb_dev == NULL)
1957 ftdi_error_return(-2, "USB device unavailable");
1958
579b006f 1959 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1960 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1961
1962 ftdi->bitbang_enabled = 0;
1963 return 0;
1964}
1965
c4446c36 1966
1941414d 1967/**
418aaa72 1968 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
1969
1970 \param ftdi pointer to ftdi_context
1971 \param pins Pointer to store pins into
1972
1973 \retval 0: all fine
1974 \retval -1: read pins failed
22a1b5c1 1975 \retval -2: USB device unavailable
1941414d 1976*/
a8f46ddc
TJ
1977int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1978{
22a1b5c1
TJ
1979 if (ftdi == NULL || ftdi->usb_dev == NULL)
1980 ftdi_error_return(-2, "USB device unavailable");
1981
579b006f 1982 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1983 ftdi_error_return(-1, "read pins failed");
a3da1d95 1984
a3da1d95
GE
1985 return 0;
1986}
1987
1941414d
TJ
1988/**
1989 Set latency timer
1990
1991 The FTDI chip keeps data in the internal buffer for a specific
1992 amount of time if the buffer is not full yet to decrease
1993 load on the usb bus.
a3da1d95 1994
1941414d
TJ
1995 \param ftdi pointer to ftdi_context
1996 \param latency Value between 1 and 255
1997
1998 \retval 0: all fine
1999 \retval -1: latency out of range
2000 \retval -2: unable to set latency timer
22a1b5c1 2001 \retval -3: USB device unavailable
1941414d 2002*/
a8f46ddc
TJ
2003int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2004{
a3da1d95
GE
2005 unsigned short usb_val;
2006
c3d95b87
TJ
2007 if (latency < 1)
2008 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 2009
22a1b5c1
TJ
2010 if (ftdi == NULL || ftdi->usb_dev == NULL)
2011 ftdi_error_return(-3, "USB device unavailable");
2012
d79d2e68 2013 usb_val = latency;
579b006f 2014 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
2015 ftdi_error_return(-2, "unable to set latency timer");
2016
a3da1d95
GE
2017 return 0;
2018}
2019
1941414d
TJ
2020/**
2021 Get latency timer
a3da1d95 2022
1941414d
TJ
2023 \param ftdi pointer to ftdi_context
2024 \param latency Pointer to store latency value in
2025
2026 \retval 0: all fine
2027 \retval -1: unable to get latency timer
22a1b5c1 2028 \retval -2: USB device unavailable
1941414d 2029*/
a8f46ddc
TJ
2030int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2031{
a3da1d95 2032 unsigned short usb_val;
22a1b5c1
TJ
2033
2034 if (ftdi == NULL || ftdi->usb_dev == NULL)
2035 ftdi_error_return(-2, "USB device unavailable");
2036
579b006f 2037 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 2038 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
2039
2040 *latency = (unsigned char)usb_val;
2041 return 0;
2042}
2043
1941414d 2044/**
1189b11a
TJ
2045 Poll modem status information
2046
2047 This function allows the retrieve the two status bytes of the device.
2048 The device sends these bytes also as a header for each read access
2049 where they are discarded by ftdi_read_data(). The chip generates
2050 the two stripped status bytes in the absence of data every 40 ms.
2051
2052 Layout of the first byte:
2053 - B0..B3 - must be 0
2054 - B4 Clear to send (CTS)
2055 0 = inactive
2056 1 = active
2057 - B5 Data set ready (DTS)
2058 0 = inactive
2059 1 = active
2060 - B6 Ring indicator (RI)
2061 0 = inactive
2062 1 = active
2063 - B7 Receive line signal detect (RLSD)
2064 0 = inactive
2065 1 = active
2066
2067 Layout of the second byte:
2068 - B0 Data ready (DR)
2069 - B1 Overrun error (OE)
2070 - B2 Parity error (PE)
2071 - B3 Framing error (FE)
2072 - B4 Break interrupt (BI)
2073 - B5 Transmitter holding register (THRE)
2074 - B6 Transmitter empty (TEMT)
2075 - B7 Error in RCVR FIFO
2076
2077 \param ftdi pointer to ftdi_context
2078 \param status Pointer to store status information in. Must be two bytes.
2079
2080 \retval 0: all fine
2081 \retval -1: unable to retrieve status information
22a1b5c1 2082 \retval -2: USB device unavailable
1189b11a
TJ
2083*/
2084int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2085{
2086 char usb_val[2];
2087
22a1b5c1
TJ
2088 if (ftdi == NULL || ftdi->usb_dev == NULL)
2089 ftdi_error_return(-2, "USB device unavailable");
2090
579b006f 2091 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
2092 ftdi_error_return(-1, "getting modem status failed");
2093
dc09eaa8 2094 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
1189b11a
TJ
2095
2096 return 0;
2097}
2098
a7fb8440
TJ
2099/**
2100 Set flowcontrol for ftdi chip
2101
2102 \param ftdi pointer to ftdi_context
22d12cda
TJ
2103 \param flowctrl flow control to use. should be
2104 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
a7fb8440
TJ
2105
2106 \retval 0: all fine
2107 \retval -1: set flow control failed
22a1b5c1 2108 \retval -2: USB device unavailable
a7fb8440
TJ
2109*/
2110int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2111{
22a1b5c1
TJ
2112 if (ftdi == NULL || ftdi->usb_dev == NULL)
2113 ftdi_error_return(-2, "USB device unavailable");
2114
579b006f
JZ
2115 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2116 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2117 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2118 ftdi_error_return(-1, "set flow control failed");
2119
2120 return 0;
2121}
2122
2123/**
2124 Set dtr line
2125
2126 \param ftdi pointer to ftdi_context
2127 \param state state to set line to (1 or 0)
2128
2129 \retval 0: all fine
2130 \retval -1: set dtr failed
22a1b5c1 2131 \retval -2: USB device unavailable
a7fb8440
TJ
2132*/
2133int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2134{
2135 unsigned short usb_val;
2136
22a1b5c1
TJ
2137 if (ftdi == NULL || ftdi->usb_dev == NULL)
2138 ftdi_error_return(-2, "USB device unavailable");
2139
a7fb8440
TJ
2140 if (state)
2141 usb_val = SIO_SET_DTR_HIGH;
2142 else
2143 usb_val = SIO_SET_DTR_LOW;
2144
579b006f
JZ
2145 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2146 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2147 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2148 ftdi_error_return(-1, "set dtr failed");
2149
2150 return 0;
2151}
2152
2153/**
2154 Set rts line
2155
2156 \param ftdi pointer to ftdi_context
2157 \param state state to set line to (1 or 0)
2158
2159 \retval 0: all fine
22a1b5c1
TJ
2160 \retval -1: set rts failed
2161 \retval -2: USB device unavailable
a7fb8440
TJ
2162*/
2163int ftdi_setrts(struct ftdi_context *ftdi, int state)
2164{
2165 unsigned short usb_val;
2166
22a1b5c1
TJ
2167 if (ftdi == NULL || ftdi->usb_dev == NULL)
2168 ftdi_error_return(-2, "USB device unavailable");
2169
a7fb8440
TJ
2170 if (state)
2171 usb_val = SIO_SET_RTS_HIGH;
2172 else
2173 usb_val = SIO_SET_RTS_LOW;
2174
579b006f
JZ
2175 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2176 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2177 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2178 ftdi_error_return(-1, "set of rts failed");
2179
2180 return 0;
2181}
2182
1189b11a 2183/**
22a1b5c1 2184 Set dtr and rts line in one pass
9ecfef2a 2185
22a1b5c1
TJ
2186 \param ftdi pointer to ftdi_context
2187 \param dtr DTR state to set line to (1 or 0)
2188 \param rts RTS state to set line to (1 or 0)
9ecfef2a 2189
22a1b5c1
TJ
2190 \retval 0: all fine
2191 \retval -1: set dtr/rts failed
2192 \retval -2: USB device unavailable
9ecfef2a
TJ
2193 */
2194int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2195{
2196 unsigned short usb_val;
2197
22a1b5c1
TJ
2198 if (ftdi == NULL || ftdi->usb_dev == NULL)
2199 ftdi_error_return(-2, "USB device unavailable");
2200
9ecfef2a 2201 if (dtr)
22d12cda 2202 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 2203 else
22d12cda 2204 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
2205
2206 if (rts)
22d12cda 2207 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 2208 else
22d12cda 2209 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 2210
579b006f
JZ
2211 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2212 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2213 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 2214 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
2215
2216 return 0;
2217}
2218
2219/**
1189b11a
TJ
2220 Set the special event character
2221
2222 \param ftdi pointer to ftdi_context
2223 \param eventch Event character
2224 \param enable 0 to disable the event character, non-zero otherwise
2225
2226 \retval 0: all fine
2227 \retval -1: unable to set event character
22a1b5c1 2228 \retval -2: USB device unavailable
1189b11a
TJ
2229*/
2230int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 2231 unsigned char eventch, unsigned char enable)
1189b11a
TJ
2232{
2233 unsigned short usb_val;
2234
22a1b5c1
TJ
2235 if (ftdi == NULL || ftdi->usb_dev == NULL)
2236 ftdi_error_return(-2, "USB device unavailable");
2237
1189b11a
TJ
2238 usb_val = eventch;
2239 if (enable)
2240 usb_val |= 1 << 8;
2241
579b006f 2242 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2243 ftdi_error_return(-1, "setting event character failed");
2244
2245 return 0;
2246}
2247
2248/**
2249 Set error character
2250
2251 \param ftdi pointer to ftdi_context
2252 \param errorch Error character
2253 \param enable 0 to disable the error character, non-zero otherwise
2254
2255 \retval 0: all fine
2256 \retval -1: unable to set error character
22a1b5c1 2257 \retval -2: USB device unavailable
1189b11a
TJ
2258*/
2259int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 2260 unsigned char errorch, unsigned char enable)
1189b11a
TJ
2261{
2262 unsigned short usb_val;
2263
22a1b5c1
TJ
2264 if (ftdi == NULL || ftdi->usb_dev == NULL)
2265 ftdi_error_return(-2, "USB device unavailable");
2266
1189b11a
TJ
2267 usb_val = errorch;
2268 if (enable)
2269 usb_val |= 1 << 8;
2270
579b006f 2271 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2272 ftdi_error_return(-1, "setting error character failed");
2273
2274 return 0;
2275}
2276
2277/**
44f41f11 2278 Init eeprom with default values for the connected device
a35aa9bd 2279 \param ftdi pointer to ftdi_context
f14f84d3
UB
2280 \param manufacturer String to use as Manufacturer
2281 \param product String to use as Product description
2282 \param serial String to use as Serial number description
4e74064b 2283
f14f84d3
UB
2284 \retval 0: all fine
2285 \retval -1: No struct ftdi_context
2286 \retval -2: No struct ftdi_eeprom
44f41f11 2287 \retval -3: No connected device or device not yet opened
1941414d 2288*/
f14f84d3 2289int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
56ac0383 2290 char * product, char * serial)
a8f46ddc 2291{
c0a96aed 2292 struct ftdi_eeprom *eeprom;
f505134f 2293
c0a96aed 2294 if (ftdi == NULL)
f14f84d3 2295 ftdi_error_return(-1, "No struct ftdi_context");
c0a96aed
UB
2296
2297 if (ftdi->eeprom == NULL)
56ac0383 2298 ftdi_error_return(-2,"No struct ftdi_eeprom");
22a1b5c1 2299
c0a96aed 2300 eeprom = ftdi->eeprom;
a02587d5 2301 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
c0a96aed 2302
44f41f11
UB
2303 if (ftdi->usb_dev == NULL)
2304 ftdi_error_return(-3, "No connected device or device not yet opened");
2305
f396dbad 2306 eeprom->vendor_id = 0x0403;
d4b5af27 2307 eeprom->use_serial = 1;
56ac0383
TJ
2308 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2309 (ftdi->type == TYPE_R))
a02587d5 2310 eeprom->product_id = 0x6001;
c7e4c09e
UB
2311 else if (ftdi->type == TYPE_4232H)
2312 eeprom->product_id = 0x6011;
2313 else if (ftdi->type == TYPE_232H)
2314 eeprom->product_id = 0x6014;
a02587d5
UB
2315 else
2316 eeprom->product_id = 0x6010;
b1859923
UB
2317 if (ftdi->type == TYPE_AM)
2318 eeprom->usb_version = 0x0101;
2319 else
2320 eeprom->usb_version = 0x0200;
a886436a 2321 eeprom->max_power = 100;
d9f0cce7 2322
74e8e79d
UB
2323 if (eeprom->manufacturer)
2324 free (eeprom->manufacturer);
b8aa7b35 2325 eeprom->manufacturer = NULL;
74e8e79d
UB
2326 if (manufacturer)
2327 {
2328 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2329 if (eeprom->manufacturer)
2330 strcpy(eeprom->manufacturer, manufacturer);
2331 }
2332
2333 if (eeprom->product)
2334 free (eeprom->product);
b8aa7b35 2335 eeprom->product = NULL;
10771971 2336 if(product)
74e8e79d
UB
2337 {
2338 eeprom->product = malloc(strlen(product)+1);
2339 if (eeprom->product)
2340 strcpy(eeprom->product, product);
2341 }
6a6fcd89
UB
2342 else
2343 {
2344 const char* default_product;
2345 switch(ftdi->type)
2346 {
2347 case TYPE_AM: default_product = "AM"; break;
2348 case TYPE_BM: default_product = "BM"; break;
2349 case TYPE_2232C: default_product = "Dual RS232"; break;
2350 case TYPE_R: default_product = "FT232R USB UART"; break;
2351 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2352 case TYPE_4232H: default_product = "FT4232H"; break;
2353 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2354 default:
2355 ftdi_error_return(-3, "Unknown chip type");
2356 }
2357 eeprom->product = malloc(strlen(default_product) +1);
2358 if (eeprom->product)
2359 strcpy(eeprom->product, default_product);
2360 }
74e8e79d
UB
2361
2362 if (eeprom->serial)
2363 free (eeprom->serial);
b8aa7b35 2364 eeprom->serial = NULL;
74e8e79d
UB
2365 if (serial)
2366 {
2367 eeprom->serial = malloc(strlen(serial)+1);
2368 if (eeprom->serial)
2369 strcpy(eeprom->serial, serial);
2370 }
2371
c201f80f 2372
56ac0383 2373 if (ftdi->type == TYPE_R)
a4980043 2374 {
a886436a 2375 eeprom->max_power = 90;
a02587d5 2376 eeprom->size = 0x80;
a4980043
UB
2377 eeprom->cbus_function[0] = CBUS_TXLED;
2378 eeprom->cbus_function[1] = CBUS_RXLED;
2379 eeprom->cbus_function[2] = CBUS_TXDEN;
2380 eeprom->cbus_function[3] = CBUS_PWREN;
2381 eeprom->cbus_function[4] = CBUS_SLEEP;
2382 }
a02587d5 2383 else
263d3ba0
UB
2384 {
2385 if(ftdi->type == TYPE_232H)
2386 {
2387 int i;
2388 for (i=0; i<10; i++)
2389 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2390 }
a02587d5 2391 eeprom->size = -1;
263d3ba0 2392 }
44f41f11 2393 eeprom->initialized_for_connected_device = 1;
f14f84d3 2394 return 0;
b8aa7b35 2395}
263d3ba0
UB
2396/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2397void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2398{
2399 int i;
2400 for(i=0; i<5;i++)
2401 {
2402 int mode_low, mode_high;
2403 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2404 mode_low = CBUSH_TRISTATE;
2405 else
2406 mode_low = eeprom->cbus_function[2*i];
2407 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2408 mode_high = CBUSH_TRISTATE;
2409 else
2410 mode_high = eeprom->cbus_function[2*i];
b8aa7b35 2411
263d3ba0
UB
2412 output[0x18+i] = mode_high <<4 | mode_low;
2413 }
2414}
c8f69686
UB
2415/* Return the bits for the encoded EEPROM Structure of a requested Mode
2416 *
2417 */
2418static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2419{
2420 switch (chip)
2421 {
2422 case TYPE_2232H:
2423 case TYPE_2232C:
2424 {
2425 switch (type)
2426 {
2427 case CHANNEL_IS_UART: return 0;
2428 case CHANNEL_IS_FIFO: return 0x01;
2429 case CHANNEL_IS_OPTO: return 0x02;
2430 case CHANNEL_IS_CPU : return 0x04;
2431 default: return 0;
2432 }
2433 }
2434 case TYPE_232H:
2435 {
2436 switch (type)
2437 {
2438 case CHANNEL_IS_UART : return 0;
2439 case CHANNEL_IS_FIFO : return 0x01;
2440 case CHANNEL_IS_OPTO : return 0x02;
2441 case CHANNEL_IS_CPU : return 0x04;
2442 case CHANNEL_IS_FT1284 : return 0x08;
2443 default: return 0;
2444 }
2445 }
2446 default: return 0;
2447 }
2448 return 0;
2449}
2450
1941414d 2451/**
a35aa9bd 2452 Build binary buffer from ftdi_eeprom structure.
22a1b5c1 2453 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2454
a35aa9bd 2455 \param ftdi pointer to ftdi_context
1941414d 2456
516ebfb1 2457 \retval >=0: size of eeprom user area in bytes
22a1b5c1 2458 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2c1e2bde
TJ
2459 \retval -2: Invalid eeprom or ftdi pointer
2460 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2461 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2462 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2b9a3c82 2463 \retval -6: No connected EEPROM or EEPROM Type unknown
b8aa7b35 2464*/
a35aa9bd 2465int ftdi_eeprom_build(struct ftdi_context *ftdi)
a8f46ddc 2466{
e2bbd9af 2467 unsigned char i, j, eeprom_size_mask;
b8aa7b35
TJ
2468 unsigned short checksum, value;
2469 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
516ebfb1 2470 int user_area_size;
c0a96aed 2471 struct ftdi_eeprom *eeprom;
a35aa9bd 2472 unsigned char * output;
b8aa7b35 2473
c0a96aed 2474 if (ftdi == NULL)
cc9c9d58 2475 ftdi_error_return(-2,"No context");
c0a96aed 2476 if (ftdi->eeprom == NULL)
cc9c9d58 2477 ftdi_error_return(-2,"No eeprom structure");
c0a96aed
UB
2478
2479 eeprom= ftdi->eeprom;
a35aa9bd 2480 output = eeprom->buf;
22a1b5c1 2481
56ac0383 2482 if (eeprom->chip == -1)
2c1e2bde 2483 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2b9a3c82 2484
f75bf139
UB
2485 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2486 eeprom->size = 0x100;
2487 else
2488 eeprom->size = 0x80;
2489
b8aa7b35 2490 if (eeprom->manufacturer != NULL)
d9f0cce7 2491 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2492 if (eeprom->product != NULL)
d9f0cce7 2493 product_size = strlen(eeprom->product);
b8aa7b35 2494 if (eeprom->serial != NULL)
d9f0cce7 2495 serial_size = strlen(eeprom->serial);
b8aa7b35 2496
814710ba
TJ
2497 // eeprom size check
2498 switch (ftdi->type)
2499 {
2500 case TYPE_AM:
2501 case TYPE_BM:
2502 user_area_size = 96; // base size for strings (total of 48 characters)
2503 break;
2504 case TYPE_2232C:
56ac0383
TJ
2505 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2506 break;
814710ba 2507 case TYPE_R:
56ac0383
TJ
2508 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2509 break;
814710ba
TJ
2510 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2511 case TYPE_4232H:
56ac0383 2512 user_area_size = 86;
118c4561 2513 break;
c1c3d564
UB
2514 case TYPE_232H:
2515 user_area_size = 80;
2516 break;
2c1e2bde
TJ
2517 default:
2518 user_area_size = 0;
56ac0383 2519 break;
665cda04
UB
2520 }
2521 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
814710ba 2522
516ebfb1
TJ
2523 if (user_area_size < 0)
2524 ftdi_error_return(-1,"eeprom size exceeded");
b8aa7b35
TJ
2525
2526 // empty eeprom
a35aa9bd 2527 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
b8aa7b35 2528
93738c79
UB
2529 // Bytes and Bits set for all Types
2530
b8aa7b35
TJ
2531 // Addr 02: Vendor ID
2532 output[0x02] = eeprom->vendor_id;
2533 output[0x03] = eeprom->vendor_id >> 8;
2534
2535 // Addr 04: Product ID
2536 output[0x04] = eeprom->product_id;
2537 output[0x05] = eeprom->product_id >> 8;
2538
2539 // Addr 06: Device release number (0400h for BM features)
2540 output[0x06] = 0x00;
814710ba
TJ
2541 switch (ftdi->type)
2542 {
f505134f
HK
2543 case TYPE_AM:
2544 output[0x07] = 0x02;
2545 break;
2546 case TYPE_BM:
2547 output[0x07] = 0x04;
2548 break;
2549 case TYPE_2232C:
2550 output[0x07] = 0x05;
2551 break;
2552 case TYPE_R:
2553 output[0x07] = 0x06;
2554 break;
56ac0383 2555 case TYPE_2232H:
6123f7ab
UB
2556 output[0x07] = 0x07;
2557 break;
56ac0383 2558 case TYPE_4232H:
6123f7ab
UB
2559 output[0x07] = 0x08;
2560 break;
c7e4c09e
UB
2561 case TYPE_232H:
2562 output[0x07] = 0x09;
2563 break;
f505134f
HK
2564 default:
2565 output[0x07] = 0x00;
2566 }
b8aa7b35
TJ
2567
2568 // Addr 08: Config descriptor
8fae3e8e
TJ
2569 // Bit 7: always 1
2570 // Bit 6: 1 if this device is self powered, 0 if bus powered
2571 // Bit 5: 1 if this device uses remote wakeup
37186e34 2572 // Bit 4-0: reserved - 0
5a1dcd55 2573 j = 0x80;
b8aa7b35 2574 if (eeprom->self_powered == 1)
5a1dcd55 2575 j |= 0x40;
b8aa7b35 2576 if (eeprom->remote_wakeup == 1)
5a1dcd55 2577 j |= 0x20;
b8aa7b35
TJ
2578 output[0x08] = j;
2579
2580 // Addr 09: Max power consumption: max power = value * 2 mA
bb5ec68a 2581 output[0x09] = eeprom->max_power>>1;
d9f0cce7 2582
56ac0383 2583 if (ftdi->type != TYPE_AM)
93738c79
UB
2584 {
2585 // Addr 0A: Chip configuration
2586 // Bit 7: 0 - reserved
2587 // Bit 6: 0 - reserved
2588 // Bit 5: 0 - reserved
56ac0383 2589 // Bit 4: 1 - Change USB version
93738c79
UB
2590 // Bit 3: 1 - Use the serial number string
2591 // Bit 2: 1 - Enable suspend pull downs for lower power
2592 // Bit 1: 1 - Out EndPoint is Isochronous
2593 // Bit 0: 1 - In EndPoint is Isochronous
2594 //
2595 j = 0;
2596 if (eeprom->in_is_isochronous == 1)
2597 j = j | 1;
2598 if (eeprom->out_is_isochronous == 1)
2599 j = j | 2;
2600 output[0x0A] = j;
2601 }
f505134f 2602
b8aa7b35 2603 // Dynamic content
93738c79
UB
2604 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2605 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
c7e4c09e 2606 // 0xa0 (TYPE_232H)
93738c79 2607 i = 0;
56ac0383
TJ
2608 switch (ftdi->type)
2609 {
c7e4c09e
UB
2610 case TYPE_232H:
2611 i += 2;
56ac0383
TJ
2612 case TYPE_2232H:
2613 case TYPE_4232H:
2614 i += 2;
2615 case TYPE_R:
2616 i += 2;
2617 case TYPE_2232C:
2618 i += 2;
2619 case TYPE_AM:
2620 case TYPE_BM:
2621 i += 0x94;
f505134f 2622 }
93738c79 2623 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
e2bbd9af 2624 eeprom_size_mask = eeprom->size -1;
c201f80f 2625
93738c79
UB
2626 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2627 // Addr 0F: Length of manufacturer string
22d12cda 2628 // Output manufacturer
93738c79 2629 output[0x0E] = i; // calculate offset
e2bbd9af
TJ
2630 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2631 output[i & eeprom_size_mask] = 0x03, i++; // type: string
22d12cda
TJ
2632 for (j = 0; j < manufacturer_size; j++)
2633 {
e2bbd9af
TJ
2634 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2635 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2636 }
93738c79 2637 output[0x0F] = manufacturer_size*2 + 2;
b8aa7b35 2638
93738c79
UB
2639 // Addr 10: Offset of the product string + 0x80, calculated later
2640 // Addr 11: Length of product string
c201f80f 2641 output[0x10] = i | 0x80; // calculate offset
e2bbd9af
TJ
2642 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2643 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2644 for (j = 0; j < product_size; j++)
2645 {
e2bbd9af
TJ
2646 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2647 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2648 }
93738c79 2649 output[0x11] = product_size*2 + 2;
37186e34 2650
93738c79
UB
2651 // Addr 12: Offset of the serial string + 0x80, calculated later
2652 // Addr 13: Length of serial string
c201f80f 2653 output[0x12] = i | 0x80; // calculate offset
e2bbd9af
TJ
2654 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2655 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2656 for (j = 0; j < serial_size; j++)
2657 {
e2bbd9af
TJ
2658 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2659 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2660 }
c2700d6d
TJ
2661
2662 // Legacy port name and PnP fields for FT2232 and newer chips
2663 if (ftdi->type > TYPE_BM)
2664 {
2665 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2666 i++;
2667 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2668 i++;
2669 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2670 i++;
2671 }
802a949e 2672
93738c79 2673 output[0x13] = serial_size*2 + 2;
b8aa7b35 2674
56ac0383 2675 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
bf2f6ef7 2676 {
d4b5af27 2677 if (eeprom->use_serial)
bf2f6ef7
UB
2678 output[0x0A] |= USE_SERIAL_NUM;
2679 else
2680 output[0x0A] &= ~USE_SERIAL_NUM;
2681 }
3802140c
UB
2682
2683 /* Bytes and Bits specific to (some) types
2684 Write linear, as this allows easier fixing*/
56ac0383
TJ
2685 switch (ftdi->type)
2686 {
2687 case TYPE_AM:
2688 break;
2689 case TYPE_BM:
2690 output[0x0C] = eeprom->usb_version & 0xff;
2691 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2692 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2693 output[0x0A] |= USE_USB_VERSION_BIT;
2694 else
2695 output[0x0A] &= ~USE_USB_VERSION_BIT;
caec1294 2696
56ac0383
TJ
2697 break;
2698 case TYPE_2232C:
3802140c 2699
c8f69686 2700 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
56ac0383
TJ
2701 if ( eeprom->channel_a_driver == DRIVER_VCP)
2702 output[0x00] |= DRIVER_VCP;
2703 else
2704 output[0x00] &= ~DRIVER_VCP;
4e74064b 2705
56ac0383
TJ
2706 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2707 output[0x00] |= HIGH_CURRENT_DRIVE;
2708 else
2709 output[0x00] &= ~HIGH_CURRENT_DRIVE;
3802140c 2710
c8f69686 2711 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
56ac0383
TJ
2712 if ( eeprom->channel_b_driver == DRIVER_VCP)
2713 output[0x01] |= DRIVER_VCP;
2714 else
2715 output[0x01] &= ~DRIVER_VCP;
4e74064b 2716
56ac0383
TJ
2717 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2718 output[0x01] |= HIGH_CURRENT_DRIVE;
2719 else
2720 output[0x01] &= ~HIGH_CURRENT_DRIVE;
3802140c 2721
56ac0383
TJ
2722 if (eeprom->in_is_isochronous == 1)
2723 output[0x0A] |= 0x1;
2724 else
2725 output[0x0A] &= ~0x1;
2726 if (eeprom->out_is_isochronous == 1)
2727 output[0x0A] |= 0x2;
2728 else
2729 output[0x0A] &= ~0x2;
2730 if (eeprom->suspend_pull_downs == 1)
2731 output[0x0A] |= 0x4;
2732 else
2733 output[0x0A] &= ~0x4;
2734 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2735 output[0x0A] |= USE_USB_VERSION_BIT;
2736 else
2737 output[0x0A] &= ~USE_USB_VERSION_BIT;
4e74064b 2738
56ac0383
TJ
2739 output[0x0C] = eeprom->usb_version & 0xff;
2740 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2741 output[0x14] = eeprom->chip;
2742 break;
2743 case TYPE_R:
2744 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2745 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2746 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
4e74064b 2747
56ac0383
TJ
2748 if (eeprom->suspend_pull_downs == 1)
2749 output[0x0A] |= 0x4;
2750 else
2751 output[0x0A] &= ~0x4;
2752 output[0x0B] = eeprom->invert;
2753 output[0x0C] = eeprom->usb_version & 0xff;
2754 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
4e74064b 2755
56ac0383
TJ
2756 if (eeprom->cbus_function[0] > CBUS_BB)
2757 output[0x14] = CBUS_TXLED;
2758 else
2759 output[0x14] = eeprom->cbus_function[0];
4e74064b 2760
56ac0383
TJ
2761 if (eeprom->cbus_function[1] > CBUS_BB)
2762 output[0x14] |= CBUS_RXLED<<4;
2763 else
2764 output[0x14] |= eeprom->cbus_function[1]<<4;
4e74064b 2765
56ac0383
TJ
2766 if (eeprom->cbus_function[2] > CBUS_BB)
2767 output[0x15] = CBUS_TXDEN;
2768 else
2769 output[0x15] = eeprom->cbus_function[2];
4e74064b 2770
56ac0383
TJ
2771 if (eeprom->cbus_function[3] > CBUS_BB)
2772 output[0x15] |= CBUS_PWREN<<4;
2773 else
2774 output[0x15] |= eeprom->cbus_function[3]<<4;
4e74064b 2775
56ac0383
TJ
2776 if (eeprom->cbus_function[4] > CBUS_CLK6)
2777 output[0x16] = CBUS_SLEEP;
2778 else
2779 output[0x16] = eeprom->cbus_function[4];
2780 break;
2781 case TYPE_2232H:
c8f69686 2782 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
56ac0383
TJ
2783 if ( eeprom->channel_a_driver == DRIVER_VCP)
2784 output[0x00] |= DRIVER_VCP;
2785 else
2786 output[0x00] &= ~DRIVER_VCP;
6e6a1c3f 2787
c8f69686 2788 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
56ac0383
TJ
2789 if ( eeprom->channel_b_driver == DRIVER_VCP)
2790 output[0x01] |= DRIVER_VCP;
2791 else
2792 output[0x01] &= ~DRIVER_VCP;
2793 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2794 output[0x01] |= SUSPEND_DBUS7_BIT;
2795 else
2796 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2797
2798 if (eeprom->suspend_pull_downs == 1)
2799 output[0x0A] |= 0x4;
2800 else
2801 output[0x0A] &= ~0x4;
2802
2803 if (eeprom->group0_drive > DRIVE_16MA)
2804 output[0x0c] |= DRIVE_16MA;
2805 else
2806 output[0x0c] |= eeprom->group0_drive;
2807 if (eeprom->group0_schmitt == IS_SCHMITT)
2808 output[0x0c] |= IS_SCHMITT;
2809 if (eeprom->group0_slew == SLOW_SLEW)
2810 output[0x0c] |= SLOW_SLEW;
2811
2812 if (eeprom->group1_drive > DRIVE_16MA)
2813 output[0x0c] |= DRIVE_16MA<<4;
2814 else
2815 output[0x0c] |= eeprom->group1_drive<<4;
2816 if (eeprom->group1_schmitt == IS_SCHMITT)
2817 output[0x0c] |= IS_SCHMITT<<4;
2818 if (eeprom->group1_slew == SLOW_SLEW)
2819 output[0x0c] |= SLOW_SLEW<<4;
2820
2821 if (eeprom->group2_drive > DRIVE_16MA)
2822 output[0x0d] |= DRIVE_16MA;
2823 else
2824 output[0x0d] |= eeprom->group2_drive;
2825 if (eeprom->group2_schmitt == IS_SCHMITT)
2826 output[0x0d] |= IS_SCHMITT;
2827 if (eeprom->group2_slew == SLOW_SLEW)
2828 output[0x0d] |= SLOW_SLEW;
2829
2830 if (eeprom->group3_drive > DRIVE_16MA)
2831 output[0x0d] |= DRIVE_16MA<<4;
2832 else
2833 output[0x0d] |= eeprom->group3_drive<<4;
2834 if (eeprom->group3_schmitt == IS_SCHMITT)
2835 output[0x0d] |= IS_SCHMITT<<4;
2836 if (eeprom->group3_slew == SLOW_SLEW)
2837 output[0x0d] |= SLOW_SLEW<<4;
3802140c 2838
56ac0383 2839 output[0x18] = eeprom->chip;
3802140c 2840
56ac0383
TJ
2841 break;
2842 case TYPE_4232H:
c7e4c09e 2843 output[0x18] = eeprom->chip;
56ac0383 2844 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
c7e4c09e
UB
2845 break;
2846 case TYPE_232H:
c8f69686 2847 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
ac4a82a5
UB
2848 if ( eeprom->channel_a_driver == DRIVER_VCP)
2849 output[0x00] |= DRIVER_VCPH;
2850 else
2851 output[0x00] &= ~DRIVER_VCPH;
837a71d6
UB
2852 if (eeprom->powersave)
2853 output[0x01] |= POWER_SAVE_DISABLE_H;
2854 else
2855 output[0x01] &= ~POWER_SAVE_DISABLE_H;
18199b76
UB
2856 if (eeprom->clock_polarity)
2857 output[0x01] |= FT1284_CLK_IDLE_STATE;
2858 else
2859 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
2860 if (eeprom->data_order)
2861 output[0x01] |= FT1284_DATA_LSB;
2862 else
2863 output[0x01] &= ~FT1284_DATA_LSB;
2864 if (eeprom->flow_control)
2865 output[0x01] |= FT1284_FLOW_CONTROL;
2866 else
2867 output[0x01] &= ~FT1284_FLOW_CONTROL;
91d7a201
UB
2868 if (eeprom->group0_drive > DRIVE_16MA)
2869 output[0x0c] |= DRIVE_16MA;
2870 else
2871 output[0x0c] |= eeprom->group0_drive;
2872 if (eeprom->group0_schmitt == IS_SCHMITT)
2873 output[0x0c] |= IS_SCHMITT;
2874 if (eeprom->group0_slew == SLOW_SLEW)
2875 output[0x0c] |= SLOW_SLEW;
2876
2877 if (eeprom->group1_drive > DRIVE_16MA)
2878 output[0x0d] |= DRIVE_16MA;
2879 else
2880 output[0x0d] |= eeprom->group1_drive;
2881 if (eeprom->group1_schmitt == IS_SCHMITT)
2882 output[0x0d] |= IS_SCHMITT;
2883 if (eeprom->group1_slew == SLOW_SLEW)
2884 output[0x0d] |= SLOW_SLEW;
2885
263d3ba0
UB
2886 set_ft232h_cbus(eeprom, output);
2887
c7e4c09e
UB
2888 output[0x1e] = eeprom->chip;
2889 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
2890 break;
2891
3802140c
UB
2892 }
2893
cbf65673 2894 // calculate checksum
b8aa7b35 2895 checksum = 0xAAAA;
d9f0cce7 2896
22d12cda
TJ
2897 for (i = 0; i < eeprom->size/2-1; i++)
2898 {
d9f0cce7
TJ
2899 value = output[i*2];
2900 value += output[(i*2)+1] << 8;
b8aa7b35 2901
d9f0cce7
TJ
2902 checksum = value^checksum;
2903 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
2904 }
2905
c201f80f
TJ
2906 output[eeprom->size-2] = checksum;
2907 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 2908
516ebfb1 2909 return user_area_size;
b8aa7b35 2910}
c8f69686
UB
2911/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
2912 * EEPROM structure
2913 *
2914 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
2915 */
2916static unsigned char bit2type(unsigned char bits)
0fc2170c
UB
2917{
2918 switch (bits)
2919 {
c8f69686
UB
2920 case 0: return CHANNEL_IS_UART;
2921 case 1: return CHANNEL_IS_FIFO;
2922 case 2: return CHANNEL_IS_OPTO;
2923 case 4: return CHANNEL_IS_CPU;
2924 case 8: return CHANNEL_IS_FT1284;
0fc2170c
UB
2925 default:
2926 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
2927 bits);
2928 }
2929 return 0;
2930}
4af1d1bb
MK
2931/**
2932 Decode binary EEPROM image into an ftdi_eeprom structure.
2933
a35aa9bd
UB
2934 \param ftdi pointer to ftdi_context
2935 \param verbose Decode EEPROM on stdout
56ac0383 2936
4af1d1bb
MK
2937 \retval 0: all fine
2938 \retval -1: something went wrong
2939
2940 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2941 FIXME: Strings are malloc'ed here and should be freed somewhere
2942*/
a35aa9bd 2943int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
b56d5a64
MK
2944{
2945 unsigned char i, j;
2946 unsigned short checksum, eeprom_checksum, value;
2947 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
f2cd9fd5 2948 int eeprom_size;
c0a96aed 2949 struct ftdi_eeprom *eeprom;
a35aa9bd 2950 unsigned char *buf = ftdi->eeprom->buf;
38801bf8 2951 int release;
22a1b5c1 2952
c0a96aed 2953 if (ftdi == NULL)
cc9c9d58 2954 ftdi_error_return(-1,"No context");
c0a96aed 2955 if (ftdi->eeprom == NULL)
6cd4f922 2956 ftdi_error_return(-1,"No eeprom structure");
56ac0383 2957
c0a96aed 2958 eeprom = ftdi->eeprom;
a35aa9bd 2959 eeprom_size = eeprom->size;
b56d5a64 2960
b56d5a64
MK
2961 // Addr 02: Vendor ID
2962 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2963
2964 // Addr 04: Product ID
2965 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
22d12cda 2966
38801bf8 2967 release = buf[0x06] + (buf[0x07]<<8);
b56d5a64
MK
2968
2969 // Addr 08: Config descriptor
2970 // Bit 7: always 1
2971 // Bit 6: 1 if this device is self powered, 0 if bus powered
2972 // Bit 5: 1 if this device uses remote wakeup
f6ef2983 2973 eeprom->self_powered = buf[0x08] & 0x40;
814710ba 2974 eeprom->remote_wakeup = buf[0x08] & 0x20;
b56d5a64
MK
2975
2976 // Addr 09: Max power consumption: max power = value * 2 mA
2977 eeprom->max_power = buf[0x09];
2978
2979 // Addr 0A: Chip configuration
2980 // Bit 7: 0 - reserved
2981 // Bit 6: 0 - reserved
2982 // Bit 5: 0 - reserved
caec1294 2983 // Bit 4: 1 - Change USB version on BM and 2232C
b56d5a64
MK
2984 // Bit 3: 1 - Use the serial number string
2985 // Bit 2: 1 - Enable suspend pull downs for lower power
2986 // Bit 1: 1 - Out EndPoint is Isochronous
2987 // Bit 0: 1 - In EndPoint is Isochronous
2988 //
8d3fe5c9
UB
2989 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2990 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2991 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
d4b5af27 2992 eeprom->use_serial = (buf[0x0A] & USE_SERIAL_NUM)?1:0;
caec1294 2993 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
b56d5a64 2994
b1859923 2995 // Addr 0C: USB version low byte when 0x0A
56ac0383 2996 // Addr 0D: USB version high byte when 0x0A
b1859923 2997 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
b56d5a64
MK
2998
2999 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3000 // Addr 0F: Length of manufacturer string
3001 manufacturer_size = buf[0x0F]/2;
56ac0383 3002 if (eeprom->manufacturer)
74e8e79d 3003 free(eeprom->manufacturer);
56ac0383 3004 if (manufacturer_size > 0)
acc1fa05
UB
3005 {
3006 eeprom->manufacturer = malloc(manufacturer_size);
3007 if (eeprom->manufacturer)
3008 {
3009 // Decode manufacturer
84ec032f 3010 i = buf[0x0E] & (eeprom_size -1); // offset
acc1fa05
UB
3011 for (j=0;j<manufacturer_size-1;j++)
3012 {
3013 eeprom->manufacturer[j] = buf[2*j+i+2];
3014 }
3015 eeprom->manufacturer[j] = '\0';
3016 }
3017 }
b56d5a64
MK
3018 else eeprom->manufacturer = NULL;
3019
3020 // Addr 10: Offset of the product string + 0x80, calculated later
3021 // Addr 11: Length of product string
56ac0383 3022 if (eeprom->product)
74e8e79d 3023 free(eeprom->product);
b56d5a64 3024 product_size = buf[0x11]/2;
acc1fa05
UB
3025 if (product_size > 0)
3026 {
3027 eeprom->product = malloc(product_size);
56ac0383 3028 if (eeprom->product)
acc1fa05
UB
3029 {
3030 // Decode product name
84ec032f 3031 i = buf[0x10] & (eeprom_size -1); // offset
acc1fa05
UB
3032 for (j=0;j<product_size-1;j++)
3033 {
3034 eeprom->product[j] = buf[2*j+i+2];
3035 }
3036 eeprom->product[j] = '\0';
3037 }
3038 }
b56d5a64
MK
3039 else eeprom->product = NULL;
3040
3041 // Addr 12: Offset of the serial string + 0x80, calculated later
3042 // Addr 13: Length of serial string
56ac0383 3043 if (eeprom->serial)
74e8e79d 3044 free(eeprom->serial);
b56d5a64 3045 serial_size = buf[0x13]/2;
acc1fa05
UB
3046 if (serial_size > 0)
3047 {
3048 eeprom->serial = malloc(serial_size);
56ac0383 3049 if (eeprom->serial)
acc1fa05
UB
3050 {
3051 // Decode serial
84ec032f 3052 i = buf[0x12] & (eeprom_size -1); // offset
acc1fa05
UB
3053 for (j=0;j<serial_size-1;j++)
3054 {
3055 eeprom->serial[j] = buf[2*j+i+2];
3056 }
3057 eeprom->serial[j] = '\0';
3058 }
3059 }
b56d5a64
MK
3060 else eeprom->serial = NULL;
3061
b56d5a64
MK
3062 // verify checksum
3063 checksum = 0xAAAA;
3064
22d12cda
TJ
3065 for (i = 0; i < eeprom_size/2-1; i++)
3066 {
b56d5a64
MK
3067 value = buf[i*2];
3068 value += buf[(i*2)+1] << 8;
3069
3070 checksum = value^checksum;
3071 checksum = (checksum << 1) | (checksum >> 15);
3072 }
3073
3074 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3075
22d12cda
TJ
3076 if (eeprom_checksum != checksum)
3077 {
3078 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
cc9c9d58 3079 ftdi_error_return(-1,"EEPROM checksum error");
4af1d1bb
MK
3080 }
3081
eb498cff 3082 eeprom->channel_a_type = 0;
aa099f46 3083 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
f6ef2983 3084 {
6cd4f922 3085 eeprom->chip = -1;
f6ef2983 3086 }
56ac0383 3087 else if (ftdi->type == TYPE_2232C)
f6ef2983 3088 {
0fc2170c 3089 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2cde7c52
UB
3090 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3091 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
3092 eeprom->channel_b_type = buf[0x01] & 0x7;
3093 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3094 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
6cd4f922 3095 eeprom->chip = buf[0x14];
065edc58 3096 }
56ac0383 3097 else if (ftdi->type == TYPE_R)
564b2716 3098 {
2cde7c52
UB
3099 /* TYPE_R flags D2XX, not VCP as all others*/
3100 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
3101 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
56ac0383
TJ
3102 if ( (buf[0x01]&0x40) != 0x40)
3103 fprintf(stderr,
3104 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3105 " If this happened with the\n"
3106 " EEPROM programmed by FTDI tools, please report "
3107 "to libftdi@developer.intra2net.com\n");
2cde7c52 3108
6cd4f922 3109 eeprom->chip = buf[0x16];
cecb9cb2
UB
3110 // Addr 0B: Invert data lines
3111 // Works only on FT232R, not FT245R, but no way to distinguish
07851949
UB
3112 eeprom->invert = buf[0x0B];
3113 // Addr 14: CBUS function: CBUS0, CBUS1
3114 // Addr 15: CBUS function: CBUS2, CBUS3
3115 // Addr 16: CBUS function: CBUS5
3116 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3117 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3118 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3119 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3120 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
564b2716 3121 }
56ac0383 3122 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
db099ec5 3123 {
0fc2170c 3124 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2cde7c52 3125 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
c8f69686 3126 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
2cde7c52
UB
3127 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3128
56ac0383 3129 if (ftdi->type == TYPE_2232H)
ec0dcd3f 3130 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
2cde7c52 3131
6cd4f922 3132 eeprom->chip = buf[0x18];
db099ec5
UB
3133 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3134 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3135 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3136 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3137 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3138 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3139 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3140 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3141 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3142 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3143 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3144 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
947d9552 3145 }
c7e4c09e
UB
3146 else if (ftdi->type == TYPE_232H)
3147 {
263d3ba0
UB
3148 int i;
3149
ac4a82a5
UB
3150 eeprom->channel_a_type = buf[0x00] & 0xf;
3151 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
18199b76
UB
3152 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3153 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3154 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
837a71d6 3155 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
91d7a201
UB
3156 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3157 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3158 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3159 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3160 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3161 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3162
263d3ba0
UB
3163 for(i=0; i<5; i++)
3164 {
3165 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3166 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3167 }
c7e4c09e
UB
3168 eeprom->chip = buf[0x1e];
3169 /*FIXME: Decipher more values*/
3170 }
56ac0383
TJ
3171
3172 if (verbose)
f6ef2983 3173 {
c8f69686 3174 char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
f6ef2983
UB
3175 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3176 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
38801bf8 3177 fprintf(stdout, "Release: 0x%04x\n",release);
f6ef2983 3178
56ac0383 3179 if (eeprom->self_powered)
f6ef2983
UB
3180 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3181 else
1cd815ad 3182 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
f6ef2983 3183 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
56ac0383 3184 if (eeprom->manufacturer)
f6ef2983 3185 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
56ac0383 3186 if (eeprom->product)
f6ef2983 3187 fprintf(stdout, "Product: %s\n",eeprom->product);
56ac0383 3188 if (eeprom->serial)
f6ef2983 3189 fprintf(stdout, "Serial: %s\n",eeprom->serial);
e107f509 3190 fprintf(stdout, "Checksum : %04x\n", checksum);
6cd4f922
UB
3191 if (ftdi->type == TYPE_R)
3192 fprintf(stdout, "Internal EEPROM\n");
3193 else if (eeprom->chip >= 0x46)
3194 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
56ac0383
TJ
3195 if (eeprom->suspend_dbus7)
3196 fprintf(stdout, "Suspend on DBUS7\n");
3197 if (eeprom->suspend_pull_downs)
fb9bfdd1 3198 fprintf(stdout, "Pull IO pins low during suspend\n");
837a71d6
UB
3199 if(eeprom->powersave)
3200 {
3201 if(ftdi->type >= TYPE_232H)
3202 fprintf(stdout,"Enter low power state on ACBUS7\n");
3203 }
56ac0383 3204 if (eeprom->remote_wakeup)
fb9bfdd1 3205 fprintf(stdout, "Enable Remote Wake Up\n");
802a949e 3206 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
db099ec5 3207 if (ftdi->type >= TYPE_2232C)
56ac0383 3208 fprintf(stdout,"Channel A has Mode %s%s%s\n",
e107f509 3209 channel_mode[eeprom->channel_a_type],
2cde7c52
UB
3210 (eeprom->channel_a_driver)?" VCP":"",
3211 (eeprom->high_current_a)?" High Current IO":"");
18199b76
UB
3212 if (ftdi->type >= TYPE_232H)
3213 {
3214 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3215 (eeprom->clock_polarity)?"HIGH":"LOW",
3216 (eeprom->data_order)?"LSB":"MSB",
3217 (eeprom->flow_control)?"":"No ");
3218 }
c7e4c09e 3219 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
56ac0383 3220 fprintf(stdout,"Channel B has Mode %s%s%s\n",
e107f509 3221 channel_mode[eeprom->channel_b_type],
2cde7c52
UB
3222 (eeprom->channel_b_driver)?" VCP":"",
3223 (eeprom->high_current_b)?" High Current IO":"");
caec1294 3224 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
56ac0383 3225 eeprom->use_usb_version == USE_USB_VERSION_BIT)
caec1294
UB
3226 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3227
56ac0383 3228 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
db099ec5
UB
3229 {
3230 fprintf(stdout,"%s has %d mA drive%s%s\n",
3231 (ftdi->type == TYPE_2232H)?"AL":"A",
3232 (eeprom->group0_drive+1) *4,
3233 (eeprom->group0_schmitt)?" Schmitt Input":"",
3234 (eeprom->group0_slew)?" Slow Slew":"");
3235 fprintf(stdout,"%s has %d mA drive%s%s\n",
3236 (ftdi->type == TYPE_2232H)?"AH":"B",
3237 (eeprom->group1_drive+1) *4,
3238 (eeprom->group1_schmitt)?" Schmitt Input":"",
3239 (eeprom->group1_slew)?" Slow Slew":"");
3240 fprintf(stdout,"%s has %d mA drive%s%s\n",
3241 (ftdi->type == TYPE_2232H)?"BL":"C",
3242 (eeprom->group2_drive+1) *4,
3243 (eeprom->group2_schmitt)?" Schmitt Input":"",
3244 (eeprom->group2_slew)?" Slow Slew":"");
3245 fprintf(stdout,"%s has %d mA drive%s%s\n",
3246 (ftdi->type == TYPE_2232H)?"BH":"D",
3247 (eeprom->group3_drive+1) *4,
3248 (eeprom->group3_schmitt)?" Schmitt Input":"",
3249 (eeprom->group3_slew)?" Slow Slew":"");
3250 }
91d7a201
UB
3251 else if (ftdi->type == TYPE_232H)
3252 {
263d3ba0
UB
3253 int i;
3254 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3255 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3256 "CLK30","CLK15","CLK7_5"
3257 };
91d7a201
UB
3258 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3259 (eeprom->group0_drive+1) *4,
3260 (eeprom->group0_schmitt)?" Schmitt Input":"",
3261 (eeprom->group0_slew)?" Slow Slew":"");
3262 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3263 (eeprom->group1_drive+1) *4,
3264 (eeprom->group1_schmitt)?" Schmitt Input":"",
3265 (eeprom->group1_slew)?" Slow Slew":"");
263d3ba0
UB
3266 for (i=0; i<10; i++)
3267 {
3268 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3269 fprintf(stdout,"C%d Function: %s\n", i,
3270 cbush_mux[eeprom->cbus_function[i]]);
3271 }
3272
91d7a201
UB
3273 }
3274
a4980043
UB
3275 if (ftdi->type == TYPE_R)
3276 {
3277 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
13f00d3c 3278 "SLEEP","CLK48","CLK24","CLK12","CLK6",
56ac0383
TJ
3279 "IOMODE","BB_WR","BB_RD"
3280 };
13f00d3c 3281 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
56ac0383
TJ
3282
3283 if (eeprom->invert)
3284 {
a4980043
UB
3285 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3286 fprintf(stdout,"Inverted bits:");
3287 for (i=0; i<8; i++)
56ac0383 3288 if ((eeprom->invert & (1<<i)) == (1<<i))
a4980043
UB
3289 fprintf(stdout," %s",r_bits[i]);
3290 fprintf(stdout,"\n");
3291 }
56ac0383 3292 for (i=0; i<5; i++)
a4980043 3293 {
56ac0383 3294 if (eeprom->cbus_function[i]<CBUS_BB)
a4980043
UB
3295 fprintf(stdout,"C%d Function: %s\n", i,
3296 cbus_mux[eeprom->cbus_function[i]]);
3297 else
17431287 3298 {
598b2334
UB
3299 if (i < 4)
3300 /* Running MPROG show that C0..3 have fixed function Synchronous
3301 Bit Bang mode */
3302 fprintf(stdout,"C%d BB Function: %s\n", i,
3303 cbus_BB[i]);
3304 else
3305 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
17431287 3306 }
a4980043
UB
3307 }
3308 }
f6ef2983 3309 }
4af1d1bb 3310 return 0;
b56d5a64
MK
3311}
3312
1941414d 3313/**
44ef02bd
UB
3314 Get a value from the decoded EEPROM structure
3315
735e81ea
TJ
3316 \param ftdi pointer to ftdi_context
3317 \param value_name Enum of the value to query
3318 \param value Pointer to store read value
44ef02bd 3319
735e81ea
TJ
3320 \retval 0: all fine
3321 \retval -1: Value doesn't exist
44ef02bd
UB
3322*/
3323int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3324{
3325 switch (value_name)
3326 {
56ac0383
TJ
3327 case VENDOR_ID:
3328 *value = ftdi->eeprom->vendor_id;
3329 break;
3330 case PRODUCT_ID:
3331 *value = ftdi->eeprom->product_id;
3332 break;
3333 case SELF_POWERED:
3334 *value = ftdi->eeprom->self_powered;
3335 break;
3336 case REMOTE_WAKEUP:
3337 *value = ftdi->eeprom->remote_wakeup;
3338 break;
3339 case IS_NOT_PNP:
3340 *value = ftdi->eeprom->is_not_pnp;
3341 break;
3342 case SUSPEND_DBUS7:
3343 *value = ftdi->eeprom->suspend_dbus7;
3344 break;
3345 case IN_IS_ISOCHRONOUS:
3346 *value = ftdi->eeprom->in_is_isochronous;
3347 break;
cffed9f5
UB
3348 case OUT_IS_ISOCHRONOUS:
3349 *value = ftdi->eeprom->out_is_isochronous;
3350 break;
56ac0383
TJ
3351 case SUSPEND_PULL_DOWNS:
3352 *value = ftdi->eeprom->suspend_pull_downs;
3353 break;
3354 case USE_SERIAL:
3355 *value = ftdi->eeprom->use_serial;
3356 break;
3357 case USB_VERSION:
3358 *value = ftdi->eeprom->usb_version;
3359 break;
cffed9f5
UB
3360 case USE_USB_VERSION:
3361 *value = ftdi->eeprom->use_usb_version;
3362 break;
56ac0383
TJ
3363 case MAX_POWER:
3364 *value = ftdi->eeprom->max_power;
3365 break;
3366 case CHANNEL_A_TYPE:
3367 *value = ftdi->eeprom->channel_a_type;
3368 break;
3369 case CHANNEL_B_TYPE:
3370 *value = ftdi->eeprom->channel_b_type;
3371 break;
3372 case CHANNEL_A_DRIVER:
3373 *value = ftdi->eeprom->channel_a_driver;
3374 break;
3375 case CHANNEL_B_DRIVER:
3376 *value = ftdi->eeprom->channel_b_driver;
3377 break;
3378 case CBUS_FUNCTION_0:
3379 *value = ftdi->eeprom->cbus_function[0];
3380 break;
3381 case CBUS_FUNCTION_1:
3382 *value = ftdi->eeprom->cbus_function[1];
3383 break;
3384 case CBUS_FUNCTION_2:
3385 *value = ftdi->eeprom->cbus_function[2];
3386 break;
3387 case CBUS_FUNCTION_3:
3388 *value = ftdi->eeprom->cbus_function[3];
3389 break;
3390 case CBUS_FUNCTION_4:
3391 *value = ftdi->eeprom->cbus_function[4];
3392 break;
263d3ba0
UB
3393 case CBUS_FUNCTION_5:
3394 *value = ftdi->eeprom->cbus_function[5];
3395 break;
3396 case CBUS_FUNCTION_6:
3397 *value = ftdi->eeprom->cbus_function[6];
3398 break;
3399 case CBUS_FUNCTION_7:
3400 *value = ftdi->eeprom->cbus_function[7];
3401 break;
3402 case CBUS_FUNCTION_8:
3403 *value = ftdi->eeprom->cbus_function[8];
3404 break;
3405 case CBUS_FUNCTION_9:
3406 *value = ftdi->eeprom->cbus_function[8];
3407 break;
56ac0383
TJ
3408 case HIGH_CURRENT:
3409 *value = ftdi->eeprom->high_current;
3410 break;
3411 case HIGH_CURRENT_A:
3412 *value = ftdi->eeprom->high_current_a;
3413 break;
3414 case HIGH_CURRENT_B:
3415 *value = ftdi->eeprom->high_current_b;
3416 break;
3417 case INVERT:
3418 *value = ftdi->eeprom->invert;
3419 break;
3420 case GROUP0_DRIVE:
3421 *value = ftdi->eeprom->group0_drive;
3422 break;
3423 case GROUP0_SCHMITT:
3424 *value = ftdi->eeprom->group0_schmitt;
3425 break;
3426 case GROUP0_SLEW:
3427 *value = ftdi->eeprom->group0_slew;
3428 break;
3429 case GROUP1_DRIVE:
3430 *value = ftdi->eeprom->group1_drive;
3431 break;
3432 case GROUP1_SCHMITT:
3433 *value = ftdi->eeprom->group1_schmitt;
3434 break;
3435 case GROUP1_SLEW:
3436 *value = ftdi->eeprom->group1_slew;
3437 break;
3438 case GROUP2_DRIVE:
3439 *value = ftdi->eeprom->group2_drive;
3440 break;
3441 case GROUP2_SCHMITT:
3442 *value = ftdi->eeprom->group2_schmitt;
3443 break;
3444 case GROUP2_SLEW:
3445 *value = ftdi->eeprom->group2_slew;
3446 break;
3447 case GROUP3_DRIVE:
3448 *value = ftdi->eeprom->group3_drive;
3449 break;
3450 case GROUP3_SCHMITT:
3451 *value = ftdi->eeprom->group3_schmitt;
3452 break;
3453 case GROUP3_SLEW:
3454 *value = ftdi->eeprom->group3_slew;
3455 break;
837a71d6
UB
3456 case POWER_SAVE:
3457 *value = ftdi->eeprom->powersave;
3458 break;
18199b76
UB
3459 case CLOCK_POLARITY:
3460 *value = ftdi->eeprom->clock_polarity;
3461 break;
3462 case DATA_ORDER:
3463 *value = ftdi->eeprom->data_order;
3464 break;
3465 case FLOW_CONTROL:
3466 *value = ftdi->eeprom->flow_control;
3467 break;
3468 case CHIP_TYPE:
56ac0383
TJ
3469 *value = ftdi->eeprom->chip;
3470 break;
3471 case CHIP_SIZE:
3472 *value = ftdi->eeprom->size;
3473 break;
3474 default:
3475 ftdi_error_return(-1, "Request for unknown EEPROM value");
44ef02bd
UB
3476 }
3477 return 0;
3478}
3479
3480/**
3481 Set a value in the decoded EEPROM Structure
3482 No parameter checking is performed
3483
735e81ea 3484 \param ftdi pointer to ftdi_context
545f9df9 3485 \param value_name Enum of the value to set
735e81ea 3486 \param value to set
44ef02bd 3487
735e81ea
TJ
3488 \retval 0: all fine
3489 \retval -1: Value doesn't exist
3490 \retval -2: Value not user settable
44ef02bd
UB
3491*/
3492int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3493{
3494 switch (value_name)
3495 {
56ac0383
TJ
3496 case VENDOR_ID:
3497 ftdi->eeprom->vendor_id = value;
3498 break;
3499 case PRODUCT_ID:
3500 ftdi->eeprom->product_id = value;
3501 break;
3502 case SELF_POWERED:
3503 ftdi->eeprom->self_powered = value;
3504 break;
3505 case REMOTE_WAKEUP:
3506 ftdi->eeprom->remote_wakeup = value;
3507 break;
3508 case IS_NOT_PNP:
3509 ftdi->eeprom->is_not_pnp = value;
3510 break;
3511 case SUSPEND_DBUS7:
3512 ftdi->eeprom->suspend_dbus7 = value;
3513 break;
3514 case IN_IS_ISOCHRONOUS:
3515 ftdi->eeprom->in_is_isochronous = value;
3516 break;
cffed9f5
UB
3517 case OUT_IS_ISOCHRONOUS:
3518 ftdi->eeprom->out_is_isochronous = value;
3519 break;
56ac0383
TJ
3520 case SUSPEND_PULL_DOWNS:
3521 ftdi->eeprom->suspend_pull_downs = value;
3522 break;
3523 case USE_SERIAL:
3524 ftdi->eeprom->use_serial = value;
3525 break;
3526 case USB_VERSION:
3527 ftdi->eeprom->usb_version = value;
3528 break;
cffed9f5
UB
3529 case USE_USB_VERSION:
3530 ftdi->eeprom->use_usb_version = value;
3531 break;
56ac0383
TJ
3532 case MAX_POWER:
3533 ftdi->eeprom->max_power = value;
3534 break;
3535 case CHANNEL_A_TYPE:
3536 ftdi->eeprom->channel_a_type = value;
3537 break;
3538 case CHANNEL_B_TYPE:
3539 ftdi->eeprom->channel_b_type = value;
3540 break;
3541 case CHANNEL_A_DRIVER:
3542 ftdi->eeprom->channel_a_driver = value;
3543 break;
3544 case CHANNEL_B_DRIVER:
3545 ftdi->eeprom->channel_b_driver = value;
3546 break;
3547 case CBUS_FUNCTION_0:
3548 ftdi->eeprom->cbus_function[0] = value;
3549 break;
3550 case CBUS_FUNCTION_1:
3551 ftdi->eeprom->cbus_function[1] = value;
3552 break;
3553 case CBUS_FUNCTION_2:
3554 ftdi->eeprom->cbus_function[2] = value;
3555 break;
3556 case CBUS_FUNCTION_3:
3557 ftdi->eeprom->cbus_function[3] = value;
3558 break;
3559 case CBUS_FUNCTION_4:
3560 ftdi->eeprom->cbus_function[4] = value;
3561 break;
263d3ba0
UB
3562 case CBUS_FUNCTION_5:
3563 ftdi->eeprom->cbus_function[5] = value;
3564 break;
3565 case CBUS_FUNCTION_6:
3566 ftdi->eeprom->cbus_function[6] = value;
3567 break;
3568 case CBUS_FUNCTION_7:
3569 ftdi->eeprom->cbus_function[7] = value;
3570 break;
3571 case CBUS_FUNCTION_8:
3572 ftdi->eeprom->cbus_function[8] = value;
3573 break;
3574 case CBUS_FUNCTION_9:
3575 ftdi->eeprom->cbus_function[9] = value;
3576 break;
56ac0383
TJ
3577 case HIGH_CURRENT:
3578 ftdi->eeprom->high_current = value;
3579 break;
3580 case HIGH_CURRENT_A:
3581 ftdi->eeprom->high_current_a = value;
3582 break;
3583 case HIGH_CURRENT_B:
3584 ftdi->eeprom->high_current_b = value;
3585 break;
3586 case INVERT:
3587 ftdi->eeprom->invert = value;
3588 break;
3589 case GROUP0_DRIVE:
3590 ftdi->eeprom->group0_drive = value;
3591 break;
3592 case GROUP0_SCHMITT:
3593 ftdi->eeprom->group0_schmitt = value;
3594 break;
3595 case GROUP0_SLEW:
3596 ftdi->eeprom->group0_slew = value;
3597 break;
3598 case GROUP1_DRIVE:
3599 ftdi->eeprom->group1_drive = value;
3600 break;
3601 case GROUP1_SCHMITT:
3602 ftdi->eeprom->group1_schmitt = value;
3603 break;
3604 case GROUP1_SLEW:
3605 ftdi->eeprom->group1_slew = value;
3606 break;
3607 case GROUP2_DRIVE:
3608 ftdi->eeprom->group2_drive = value;
3609 break;
3610 case GROUP2_SCHMITT:
3611 ftdi->eeprom->group2_schmitt = value;
3612 break;
3613 case GROUP2_SLEW:
3614 ftdi->eeprom->group2_slew = value;
3615 break;
3616 case GROUP3_DRIVE:
3617 ftdi->eeprom->group3_drive = value;
3618 break;
3619 case GROUP3_SCHMITT:
3620 ftdi->eeprom->group3_schmitt = value;
3621 break;
3622 case GROUP3_SLEW:
3623 ftdi->eeprom->group3_slew = value;
3624 break;
3625 case CHIP_TYPE:
3626 ftdi->eeprom->chip = value;
3627 break;
837a71d6
UB
3628 case POWER_SAVE:
3629 ftdi->eeprom->powersave = value;
3630 break;
18199b76
UB
3631 case CLOCK_POLARITY:
3632 ftdi->eeprom->clock_polarity = value;
3633 break;
3634 case DATA_ORDER:
3635 ftdi->eeprom->data_order = value;
3636 break;
3637 case FLOW_CONTROL:
3638 ftdi->eeprom->flow_control = value;
3639 break;
56ac0383
TJ
3640 case CHIP_SIZE:
3641 ftdi_error_return(-2, "EEPROM Value can't be changed");
3642 default :
3643 ftdi_error_return(-1, "Request to unknown EEPROM value");
44ef02bd
UB
3644 }
3645 return 0;
3646}
3647
3648/** Get the read-only buffer to the binary EEPROM content
3649
3650 \param ftdi pointer to ftdi_context
735e81ea 3651 \param buf buffer to receive EEPROM content
44ef02bd
UB
3652 \param size Size of receiving buffer
3653
3654 \retval 0: All fine
3655 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
200bd3ed 3656 \retval -2: Not enough room to store eeprom
44ef02bd 3657*/
56ac0383
TJ
3658int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3659{
3660 if (!ftdi || !(ftdi->eeprom))
3661 ftdi_error_return(-1, "No appropriate structure");
b95e4654 3662
200bd3ed
TJ
3663 if (!buf || size < ftdi->eeprom->size)
3664 ftdi_error_return(-1, "Not enough room to store eeprom");
3665
b95e4654
TJ
3666 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3667 if (size > FTDI_MAX_EEPROM_SIZE)
3668 size = FTDI_MAX_EEPROM_SIZE;
3669
56ac0383 3670 memcpy(buf, ftdi->eeprom->buf, size);
b95e4654 3671
56ac0383
TJ
3672 return 0;
3673}
44ef02bd 3674
672fd368
UB
3675/** Set the EEPROM content from the user-supplied prefilled buffer
3676
3677 \param ftdi pointer to ftdi_context
3678 \param buf buffer to read EEPROM content
3679 \param size Size of buffer
3680
3681 \retval 0: All fine
3682 \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing
3683*/
3684int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
3685{
3686 if (!ftdi || !(ftdi->eeprom) || !buf)
3687 ftdi_error_return(-1, "No appropriate structure");
3688
3689 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3690 if (size > FTDI_MAX_EEPROM_SIZE)
3691 size = FTDI_MAX_EEPROM_SIZE;
3692
3693 memcpy(ftdi->eeprom->buf, buf, size);
3694
3695 return 0;
3696}
3697
44ef02bd 3698/**
c1c70e13
OS
3699 Read eeprom location
3700
3701 \param ftdi pointer to ftdi_context
3702 \param eeprom_addr Address of eeprom location to be read
3703 \param eeprom_val Pointer to store read eeprom location
3704
3705 \retval 0: all fine
3706 \retval -1: read failed
22a1b5c1 3707 \retval -2: USB device unavailable
c1c70e13
OS
3708*/
3709int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3710{
22a1b5c1
TJ
3711 if (ftdi == NULL || ftdi->usb_dev == NULL)
3712 ftdi_error_return(-2, "USB device unavailable");
3713
97c6b5f6 3714 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
c1c70e13
OS
3715 ftdi_error_return(-1, "reading eeprom failed");
3716
3717 return 0;
3718}
3719
3720/**
1941414d
TJ
3721 Read eeprom
3722
3723 \param ftdi pointer to ftdi_context
b8aa7b35 3724
1941414d
TJ
3725 \retval 0: all fine
3726 \retval -1: read failed
22a1b5c1 3727 \retval -2: USB device unavailable
1941414d 3728*/
a35aa9bd 3729int ftdi_read_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3730{
a3da1d95 3731 int i;
a35aa9bd 3732 unsigned char *buf;
a3da1d95 3733
22a1b5c1
TJ
3734 if (ftdi == NULL || ftdi->usb_dev == NULL)
3735 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 3736 buf = ftdi->eeprom->buf;
22a1b5c1 3737
2d543486 3738 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
22d12cda 3739 {
a35aa9bd 3740 if (libusb_control_transfer(
56ac0383
TJ
3741 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3742 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
c3d95b87 3743 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
3744 }
3745
2d543486 3746 if (ftdi->type == TYPE_R)
a35aa9bd 3747 ftdi->eeprom->size = 0x80;
56ac0383 3748 /* Guesses size of eeprom by comparing halves
2d543486 3749 - will not work with blank eeprom */
a35aa9bd 3750 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
2d543486 3751 ftdi->eeprom->size = -1;
56ac0383 3752 else if (memcmp(buf,&buf[0x80],0x80) == 0)
2d543486 3753 ftdi->eeprom->size = 0x80;
56ac0383 3754 else if (memcmp(buf,&buf[0x40],0x40) == 0)
2d543486
UB
3755 ftdi->eeprom->size = 0x40;
3756 else
3757 ftdi->eeprom->size = 0x100;
a3da1d95
GE
3758 return 0;
3759}
3760
cb6250fa
TJ
3761/*
3762 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3763 Function is only used internally
3764 \internal
3765*/
3766static unsigned char ftdi_read_chipid_shift(unsigned char value)
3767{
3768 return ((value & 1) << 1) |
22d12cda
TJ
3769 ((value & 2) << 5) |
3770 ((value & 4) >> 2) |
3771 ((value & 8) << 4) |
3772 ((value & 16) >> 1) |
3773 ((value & 32) >> 1) |
3774 ((value & 64) >> 4) |
3775 ((value & 128) >> 2);
cb6250fa
TJ
3776}
3777
3778/**
3779 Read the FTDIChip-ID from R-type devices
3780
3781 \param ftdi pointer to ftdi_context
3782 \param chipid Pointer to store FTDIChip-ID
3783
3784 \retval 0: all fine
3785 \retval -1: read failed
22a1b5c1 3786 \retval -2: USB device unavailable
cb6250fa
TJ
3787*/
3788int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3789{
c7eb3112 3790 unsigned int a = 0, b = 0;
cb6250fa 3791
22a1b5c1
TJ
3792 if (ftdi == NULL || ftdi->usb_dev == NULL)
3793 ftdi_error_return(-2, "USB device unavailable");
3794
579b006f 3795 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3796 {
3797 a = a << 8 | a >> 8;
579b006f 3798 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3799 {
3800 b = b << 8 | b >> 8;
5230676f 3801 a = (a << 16) | (b & 0xFFFF);
912d50ca
TJ
3802 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3803 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 3804 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 3805 return 0;
cb6250fa
TJ
3806 }
3807 }
3808
c7eb3112 3809 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
3810}
3811
1941414d 3812/**
c1c70e13
OS
3813 Write eeprom location
3814
3815 \param ftdi pointer to ftdi_context
3816 \param eeprom_addr Address of eeprom location to be written
3817 \param eeprom_val Value to be written
3818
3819 \retval 0: all fine
a661e3e4 3820 \retval -1: write failed
22a1b5c1 3821 \retval -2: USB device unavailable
a661e3e4
UB
3822 \retval -3: Invalid access to checksum protected area below 0x80
3823 \retval -4: Device can't access unprotected area
3824 \retval -5: Reading chip type failed
c1c70e13 3825*/
56ac0383 3826int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
a661e3e4 3827 unsigned short eeprom_val)
c1c70e13 3828{
a661e3e4
UB
3829 int chip_type_location;
3830 unsigned short chip_type;
3831
22a1b5c1
TJ
3832 if (ftdi == NULL || ftdi->usb_dev == NULL)
3833 ftdi_error_return(-2, "USB device unavailable");
3834
56ac0383 3835 if (eeprom_addr <0x80)
a661e3e4
UB
3836 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3837
3838
3839 switch (ftdi->type)
3840 {
56ac0383
TJ
3841 case TYPE_BM:
3842 case TYPE_2232C:
3843 chip_type_location = 0x14;
3844 break;
3845 case TYPE_2232H:
3846 case TYPE_4232H:
3847 chip_type_location = 0x18;
3848 break;
c7e4c09e
UB
3849 case TYPE_232H:
3850 chip_type_location = 0x1e;
3851 break;
56ac0383
TJ
3852 default:
3853 ftdi_error_return(-4, "Device can't access unprotected area");
a661e3e4
UB
3854 }
3855
56ac0383 3856 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
a661e3e4 3857 ftdi_error_return(-5, "Reading failed failed");
56ac0383
TJ
3858 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3859 if ((chip_type & 0xff) != 0x66)
a661e3e4
UB
3860 {
3861 ftdi_error_return(-6, "EEPROM is not of 93x66");
3862 }
3863
579b006f 3864 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
3865 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3866 NULL, 0, ftdi->usb_write_timeout) != 0)
c1c70e13
OS
3867 ftdi_error_return(-1, "unable to write eeprom");
3868
3869 return 0;
3870}
3871
3872/**
1941414d 3873 Write eeprom
a3da1d95 3874
1941414d 3875 \param ftdi pointer to ftdi_context
56ac0383 3876
1941414d
TJ
3877 \retval 0: all fine
3878 \retval -1: read failed
22a1b5c1 3879 \retval -2: USB device unavailable
44f41f11 3880 \retval -3: EEPROM not initialized for the connected device;
1941414d 3881*/
a35aa9bd 3882int ftdi_write_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3883{
ba5329be 3884 unsigned short usb_val, status;
e30da501 3885 int i, ret;
a35aa9bd 3886 unsigned char *eeprom;
a3da1d95 3887
22a1b5c1
TJ
3888 if (ftdi == NULL || ftdi->usb_dev == NULL)
3889 ftdi_error_return(-2, "USB device unavailable");
44f41f11
UB
3890
3891 if(ftdi->eeprom->initialized_for_connected_device == 0)
3892 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
3893
a35aa9bd 3894 eeprom = ftdi->eeprom->buf;
22a1b5c1 3895
ba5329be 3896 /* These commands were traced while running MProg */
e30da501
TJ
3897 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3898 return ret;
3899 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3900 return ret;
3901 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3902 return ret;
ba5329be 3903
c0a96aed 3904 for (i = 0; i < ftdi->eeprom->size/2; i++)
22d12cda 3905 {
d9f0cce7
TJ
3906 usb_val = eeprom[i*2];
3907 usb_val += eeprom[(i*2)+1] << 8;
579b006f
JZ
3908 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3909 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3910 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3911 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
3912 }
3913
3914 return 0;
3915}
3916
1941414d
TJ
3917/**
3918 Erase eeprom
a3da1d95 3919
a5e1bd8c
MK
3920 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3921
1941414d
TJ
3922 \param ftdi pointer to ftdi_context
3923
3924 \retval 0: all fine
3925 \retval -1: erase failed
22a1b5c1 3926 \retval -2: USB device unavailable
99404ad5
UB
3927 \retval -3: Writing magic failed
3928 \retval -4: Read EEPROM failed
3929 \retval -5: Unexpected EEPROM value
1941414d 3930*/
99404ad5 3931#define MAGIC 0x55aa
a8f46ddc
TJ
3932int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3933{
99404ad5 3934 unsigned short eeprom_value;
22a1b5c1
TJ
3935 if (ftdi == NULL || ftdi->usb_dev == NULL)
3936 ftdi_error_return(-2, "USB device unavailable");
3937
56ac0383 3938 if (ftdi->type == TYPE_R)
99404ad5
UB
3939 {
3940 ftdi->eeprom->chip = 0;
3941 return 0;
3942 }
3943
56ac0383 3944 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5 3945 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3946 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95 3947
56ac0383 3948
99404ad5
UB
3949 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3950 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3951 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3952 Chip is 93x66 if magic is only read at word position 0xc0*/
10186c1f 3953 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
3954 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3955 NULL, 0, ftdi->usb_write_timeout) != 0)
99404ad5 3956 ftdi_error_return(-3, "Writing magic failed");
56ac0383 3957 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
99404ad5 3958 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3959 if (eeprom_value == MAGIC)
99404ad5
UB
3960 {
3961 ftdi->eeprom->chip = 0x46;
3962 }
56ac0383 3963 else
99404ad5 3964 {
56ac0383 3965 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
99404ad5 3966 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3967 if (eeprom_value == MAGIC)
99404ad5 3968 ftdi->eeprom->chip = 0x56;
56ac0383 3969 else
99404ad5 3970 {
56ac0383 3971 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
99404ad5 3972 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3973 if (eeprom_value == MAGIC)
99404ad5
UB
3974 ftdi->eeprom->chip = 0x66;
3975 else
3976 {
3977 ftdi->eeprom->chip = -1;
3978 }
3979 }
3980 }
56ac0383 3981 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5
UB
3982 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3983 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
3984 return 0;
3985}
c3d95b87 3986
1941414d
TJ
3987/**
3988 Get string representation for last error code
c3d95b87 3989
1941414d
TJ
3990 \param ftdi pointer to ftdi_context
3991
3992 \retval Pointer to error string
3993*/
c3d95b87
TJ
3994char *ftdi_get_error_string (struct ftdi_context *ftdi)
3995{
22a1b5c1
TJ
3996 if (ftdi == NULL)
3997 return "";
3998
c3d95b87
TJ
3999 return ftdi->error_str;
4000}
a01d31e2 4001
b5ec1820 4002/* @} end of doxygen libftdi group */