Fix doxygen documentation
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
22a1b5c1 5 copyright : (C) 2003-2010 by Intra2net AG
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
1bfc403c 21 http://www.intra2net.com/en/developer/libftdi/
b5ec1820 22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
579b006f 31#include <libusb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
b56d5a64 34#include <stdio.h>
579b006f 35#include <stdlib.h>
0e302db6 36
98452d97 37#include "ftdi.h"
a3da1d95 38
21abaf2e 39#define ftdi_error_return(code, str) do { \
2f73e59f 40 ftdi->error_str = str; \
21abaf2e 41 return code; \
d2f10023 42 } while(0);
c3d95b87 43
99650502
UB
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
418aaa72 50
f3f81007
TJ
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
579b006f 58 \retval none
f3f81007 59*/
579b006f 60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 61{
22a1b5c1 62 if (ftdi && ftdi->usb_dev)
dff4fdb0 63 {
56ac0383
TJ
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
dff4fdb0 66 }
dff4fdb0 67}
c3d95b87 68
1941414d
TJ
69/**
70 Initializes a ftdi_context.
4837f98a 71
1941414d 72 \param ftdi pointer to ftdi_context
4837f98a 73
1941414d
TJ
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
a35aa9bd 76 \retval -2: couldn't allocate struct buffer
1941414d
TJ
77
78 \remark This should be called before all functions
948f9ada 79*/
a8f46ddc
TJ
80int ftdi_init(struct ftdi_context *ftdi)
81{
a35aa9bd 82 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
02212d8e 83 ftdi->usb_ctx = NULL;
98452d97 84 ftdi->usb_dev = NULL;
545820ce
TJ
85 ftdi->usb_read_timeout = 5000;
86 ftdi->usb_write_timeout = 5000;
a3da1d95 87
53ad271d 88 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 89 ftdi->baudrate = -1;
418aaa72 90 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 91
948f9ada
TJ
92 ftdi->readbuffer = NULL;
93 ftdi->readbuffer_offset = 0;
94 ftdi->readbuffer_remaining = 0;
95 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 96 ftdi->max_packet_size = 0;
948f9ada 97
ac0af8ec 98 ftdi_set_interface(ftdi, INTERFACE_ANY);
418aaa72 99 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 100
a3da1d95
GE
101 ftdi->error_str = NULL;
102
a35aa9bd
UB
103 if (eeprom == 0)
104 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
b4d19dea 105 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
a35aa9bd 106 ftdi->eeprom = eeprom;
c201f80f 107
1c733d33
TJ
108 /* All fine. Now allocate the readbuffer */
109 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 110}
4837f98a 111
1941414d 112/**
cef378aa
TJ
113 Allocate and initialize a new ftdi_context
114
115 \return a pointer to a new ftdi_context, or NULL on failure
116*/
672ac008 117struct ftdi_context *ftdi_new(void)
cef378aa
TJ
118{
119 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
120
22d12cda
TJ
121 if (ftdi == NULL)
122 {
cef378aa
TJ
123 return NULL;
124 }
125
22d12cda
TJ
126 if (ftdi_init(ftdi) != 0)
127 {
cef378aa 128 free(ftdi);
cdf448f6 129 return NULL;
cef378aa
TJ
130 }
131
132 return ftdi;
133}
134
135/**
1941414d
TJ
136 Open selected channels on a chip, otherwise use first channel.
137
138 \param ftdi pointer to ftdi_context
f9d69895 139 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
140
141 \retval 0: all fine
142 \retval -1: unknown interface
22a1b5c1 143 \retval -2: USB device unavailable
c4446c36 144*/
0ce2f5fa 145int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 146{
1971c26d 147 if (ftdi == NULL)
22a1b5c1
TJ
148 ftdi_error_return(-2, "USB device unavailable");
149
22d12cda
TJ
150 switch (interface)
151 {
152 case INTERFACE_ANY:
153 case INTERFACE_A:
ac0af8ec
VY
154 ftdi->interface = 0;
155 ftdi->index = INTERFACE_A;
156 ftdi->in_ep = 0x02;
157 ftdi->out_ep = 0x81;
22d12cda
TJ
158 break;
159 case INTERFACE_B:
160 ftdi->interface = 1;
161 ftdi->index = INTERFACE_B;
162 ftdi->in_ep = 0x04;
163 ftdi->out_ep = 0x83;
164 break;
f9d69895
AH
165 case INTERFACE_C:
166 ftdi->interface = 2;
167 ftdi->index = INTERFACE_C;
168 ftdi->in_ep = 0x06;
169 ftdi->out_ep = 0x85;
170 break;
171 case INTERFACE_D:
172 ftdi->interface = 3;
173 ftdi->index = INTERFACE_D;
174 ftdi->in_ep = 0x08;
175 ftdi->out_ep = 0x87;
176 break;
22d12cda
TJ
177 default:
178 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
179 }
180 return 0;
181}
948f9ada 182
1941414d
TJ
183/**
184 Deinitializes a ftdi_context.
4837f98a 185
1941414d 186 \param ftdi pointer to ftdi_context
4837f98a 187*/
a8f46ddc
TJ
188void ftdi_deinit(struct ftdi_context *ftdi)
189{
22a1b5c1
TJ
190 if (ftdi == NULL)
191 return;
192
f3f81007 193 ftdi_usb_close_internal (ftdi);
dff4fdb0 194
22d12cda
TJ
195 if (ftdi->readbuffer != NULL)
196 {
d9f0cce7
TJ
197 free(ftdi->readbuffer);
198 ftdi->readbuffer = NULL;
948f9ada 199 }
a35aa9bd
UB
200
201 if (ftdi->eeprom != NULL)
202 {
74e8e79d
UB
203 if (ftdi->eeprom->manufacturer != 0)
204 {
205 free(ftdi->eeprom->manufacturer);
206 ftdi->eeprom->manufacturer = 0;
207 }
208 if (ftdi->eeprom->product != 0)
209 {
210 free(ftdi->eeprom->product);
211 ftdi->eeprom->product = 0;
212 }
213 if (ftdi->eeprom->serial != 0)
214 {
215 free(ftdi->eeprom->serial);
216 ftdi->eeprom->serial = 0;
217 }
a35aa9bd
UB
218 free(ftdi->eeprom);
219 ftdi->eeprom = NULL;
220 }
02212d8e 221 libusb_exit(ftdi->usb_ctx);
a3da1d95
GE
222}
223
1941414d 224/**
cef378aa
TJ
225 Deinitialize and free an ftdi_context.
226
227 \param ftdi pointer to ftdi_context
228*/
229void ftdi_free(struct ftdi_context *ftdi)
230{
231 ftdi_deinit(ftdi);
232 free(ftdi);
233}
234
235/**
1941414d
TJ
236 Use an already open libusb device.
237
238 \param ftdi pointer to ftdi_context
579b006f 239 \param usb libusb libusb_device_handle to use
4837f98a 240*/
579b006f 241void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 242{
22a1b5c1
TJ
243 if (ftdi == NULL)
244 return;
245
98452d97
TJ
246 ftdi->usb_dev = usb;
247}
248
249
1941414d
TJ
250/**
251 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
252 needs to be deallocated by ftdi_list_free() after use.
253
254 \param ftdi pointer to ftdi_context
255 \param devlist Pointer where to store list of found devices
256 \param vendor Vendor ID to search for
257 \param product Product ID to search for
edb82cbf 258
1941414d 259 \retval >0: number of devices found
1941414d 260 \retval -3: out of memory
579b006f
JZ
261 \retval -4: libusb_init() failed
262 \retval -5: libusb_get_device_list() failed
263 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 264*/
d2f10023 265int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
266{
267 struct ftdi_device_list **curdev;
579b006f
JZ
268 libusb_device *dev;
269 libusb_device **devs;
edb82cbf 270 int count = 0;
579b006f
JZ
271 int i = 0;
272
02212d8e 273 if (libusb_init(&ftdi->usb_ctx) < 0)
579b006f 274 ftdi_error_return(-4, "libusb_init() failed");
d2f10023 275
02212d8e 276 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 277 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
278
279 curdev = devlist;
6db32169 280 *curdev = NULL;
579b006f
JZ
281
282 while ((dev = devs[i++]) != NULL)
22d12cda 283 {
579b006f 284 struct libusb_device_descriptor desc;
d2f10023 285
579b006f
JZ
286 if (libusb_get_device_descriptor(dev, &desc) < 0)
287 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
edb82cbf 288
579b006f
JZ
289 if (desc.idVendor == vendor && desc.idProduct == product)
290 {
291 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
292 if (!*curdev)
293 ftdi_error_return(-3, "out of memory");
56ac0383 294
579b006f
JZ
295 (*curdev)->next = NULL;
296 (*curdev)->dev = dev;
297
298 curdev = &(*curdev)->next;
299 count++;
edb82cbf
TJ
300 }
301 }
d2f10023 302
edb82cbf
TJ
303 return count;
304}
305
1941414d
TJ
306/**
307 Frees a usb device list.
edb82cbf 308
1941414d 309 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 310*/
d2f10023 311void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 312{
6db32169
TJ
313 struct ftdi_device_list *curdev, *next;
314
22d12cda
TJ
315 for (curdev = *devlist; curdev != NULL;)
316 {
6db32169
TJ
317 next = curdev->next;
318 free(curdev);
319 curdev = next;
edb82cbf
TJ
320 }
321
6db32169 322 *devlist = NULL;
edb82cbf
TJ
323}
324
1941414d 325/**
cef378aa
TJ
326 Frees a usb device list.
327
328 \param devlist USB device list created by ftdi_usb_find_all()
329*/
330void ftdi_list_free2(struct ftdi_device_list *devlist)
331{
332 ftdi_list_free(&devlist);
333}
334
335/**
474786c0
TJ
336 Return device ID strings from the usb device.
337
338 The parameters manufacturer, description and serial may be NULL
339 or pointer to buffers to store the fetched strings.
340
898c34dd
TJ
341 \note Use this function only in combination with ftdi_usb_find_all()
342 as it closes the internal "usb_dev" after use.
343
474786c0
TJ
344 \param ftdi pointer to ftdi_context
345 \param dev libusb usb_dev to use
346 \param manufacturer Store manufacturer string here if not NULL
347 \param mnf_len Buffer size of manufacturer string
348 \param description Store product description string here if not NULL
349 \param desc_len Buffer size of product description string
350 \param serial Store serial string here if not NULL
351 \param serial_len Buffer size of serial string
352
353 \retval 0: all fine
354 \retval -1: wrong arguments
355 \retval -4: unable to open device
356 \retval -7: get product manufacturer failed
357 \retval -8: get product description failed
358 \retval -9: get serial number failed
579b006f 359 \retval -11: libusb_get_device_descriptor() failed
474786c0 360*/
579b006f 361int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
22d12cda 362 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
474786c0 363{
579b006f
JZ
364 struct libusb_device_descriptor desc;
365
474786c0
TJ
366 if ((ftdi==NULL) || (dev==NULL))
367 return -1;
368
579b006f
JZ
369 if (libusb_open(dev, &ftdi->usb_dev) < 0)
370 ftdi_error_return(-4, "libusb_open() failed");
371
372 if (libusb_get_device_descriptor(dev, &desc) < 0)
373 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 374
22d12cda
TJ
375 if (manufacturer != NULL)
376 {
579b006f 377 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 378 {
f3f81007 379 ftdi_usb_close_internal (ftdi);
579b006f 380 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
381 }
382 }
383
22d12cda
TJ
384 if (description != NULL)
385 {
579b006f 386 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 387 {
f3f81007 388 ftdi_usb_close_internal (ftdi);
579b006f 389 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
390 }
391 }
392
22d12cda
TJ
393 if (serial != NULL)
394 {
579b006f 395 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 396 {
f3f81007 397 ftdi_usb_close_internal (ftdi);
579b006f 398 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
399 }
400 }
401
579b006f 402 ftdi_usb_close_internal (ftdi);
474786c0
TJ
403
404 return 0;
405}
406
407/**
e2f12a4f
TJ
408 * Internal function to determine the maximum packet size.
409 * \param ftdi pointer to ftdi_context
410 * \param dev libusb usb_dev to use
411 * \retval Maximum packet size for this device
412 */
579b006f 413static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 414{
579b006f
JZ
415 struct libusb_device_descriptor desc;
416 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
417 unsigned int packet_size;
418
22a1b5c1
TJ
419 // Sanity check
420 if (ftdi == NULL || dev == NULL)
421 return 64;
422
e2f12a4f
TJ
423 // Determine maximum packet size. Init with default value.
424 // New hi-speed devices from FTDI use a packet size of 512 bytes
425 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
426 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
427 packet_size = 512;
428 else
429 packet_size = 64;
430
579b006f
JZ
431 if (libusb_get_device_descriptor(dev, &desc) < 0)
432 return packet_size;
433
434 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
435 return packet_size;
e2f12a4f 436
579b006f
JZ
437 if (desc.bNumConfigurations > 0)
438 {
439 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 440 {
579b006f 441 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
442 if (interface.num_altsetting > 0)
443 {
579b006f 444 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
445 if (descriptor.bNumEndpoints > 0)
446 {
447 packet_size = descriptor.endpoint[0].wMaxPacketSize;
448 }
449 }
450 }
451 }
452
579b006f 453 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
454 return packet_size;
455}
456
457/**
418aaa72 458 Opens a ftdi device given by an usb_device.
7b18bef6 459
1941414d
TJ
460 \param ftdi pointer to ftdi_context
461 \param dev libusb usb_dev to use
462
463 \retval 0: all fine
23b1798d 464 \retval -3: unable to config device
1941414d
TJ
465 \retval -4: unable to open device
466 \retval -5: unable to claim device
467 \retval -6: reset failed
468 \retval -7: set baudrate failed
22a1b5c1 469 \retval -8: ftdi context invalid
579b006f
JZ
470 \retval -9: libusb_get_device_descriptor() failed
471 \retval -10: libusb_get_config_descriptor() failed
472 \retval -11: libusb_etach_kernel_driver() failed
473 \retval -12: libusb_get_configuration() failed
7b18bef6 474*/
579b006f 475int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 476{
579b006f
JZ
477 struct libusb_device_descriptor desc;
478 struct libusb_config_descriptor *config0;
43aee24f 479 int cfg, cfg0, detach_errno = 0;
579b006f 480
22a1b5c1
TJ
481 if (ftdi == NULL)
482 ftdi_error_return(-8, "ftdi context invalid");
483
579b006f
JZ
484 if (libusb_open(dev, &ftdi->usb_dev) < 0)
485 ftdi_error_return(-4, "libusb_open() failed");
486
487 if (libusb_get_device_descriptor(dev, &desc) < 0)
488 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
489
490 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
491 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
492 cfg0 = config0->bConfigurationValue;
493 libusb_free_config_descriptor (config0);
d2f10023 494
22592e17 495 // Try to detach ftdi_sio kernel module.
22592e17
TJ
496 //
497 // The return code is kept in a separate variable and only parsed
498 // if usb_set_configuration() or usb_claim_interface() fails as the
499 // detach operation might be denied and everything still works fine.
500 // Likely scenario is a static ftdi_sio kernel module.
43aee24f
UB
501 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
502 detach_errno = errno;
d2f10023 503
579b006f
JZ
504 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
505 ftdi_error_return(-12, "libusb_get_configuration () failed");
b57aedfd
GE
506 // set configuration (needed especially for windows)
507 // tolerate EBUSY: one device with one configuration, but two interfaces
508 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 509 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 510 {
579b006f 511 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 512 {
a56ba2bd 513 ftdi_usb_close_internal (ftdi);
56ac0383 514 if (detach_errno == EPERM)
43aee24f
UB
515 {
516 ftdi_error_return(-8, "inappropriate permissions on device!");
517 }
518 else
519 {
c16b162d 520 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
43aee24f 521 }
23b1798d
TJ
522 }
523 }
524
579b006f 525 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 526 {
f3f81007 527 ftdi_usb_close_internal (ftdi);
56ac0383 528 if (detach_errno == EPERM)
43aee24f
UB
529 {
530 ftdi_error_return(-8, "inappropriate permissions on device!");
531 }
532 else
533 {
c16b162d 534 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
43aee24f 535 }
7b18bef6
TJ
536 }
537
22d12cda
TJ
538 if (ftdi_usb_reset (ftdi) != 0)
539 {
f3f81007 540 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
541 ftdi_error_return(-6, "ftdi_usb_reset failed");
542 }
543
7b18bef6
TJ
544 // Try to guess chip type
545 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f 546 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
56ac0383 547 && desc.iSerialNumber == 0))
7b18bef6 548 ftdi->type = TYPE_BM;
579b006f 549 else if (desc.bcdDevice == 0x200)
7b18bef6 550 ftdi->type = TYPE_AM;
579b006f 551 else if (desc.bcdDevice == 0x500)
7b18bef6 552 ftdi->type = TYPE_2232C;
579b006f 553 else if (desc.bcdDevice == 0x600)
cb6250fa 554 ftdi->type = TYPE_R;
579b006f 555 else if (desc.bcdDevice == 0x700)
0beb9686 556 ftdi->type = TYPE_2232H;
579b006f 557 else if (desc.bcdDevice == 0x800)
0beb9686 558 ftdi->type = TYPE_4232H;
7b18bef6 559
e2f12a4f
TJ
560 // Determine maximum packet size
561 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
562
ef6f4838
TE
563 if (ftdi_set_baudrate (ftdi, 9600) != 0)
564 {
565 ftdi_usb_close_internal (ftdi);
566 ftdi_error_return(-7, "set baudrate failed");
567 }
568
7b18bef6
TJ
569 ftdi_error_return(0, "all fine");
570}
571
1941414d
TJ
572/**
573 Opens the first device with a given vendor and product ids.
574
575 \param ftdi pointer to ftdi_context
576 \param vendor Vendor ID
577 \param product Product ID
578
9bec2387 579 \retval same as ftdi_usb_open_desc()
1941414d 580*/
edb82cbf
TJ
581int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
582{
583 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
584}
585
1941414d
TJ
586/**
587 Opens the first device with a given, vendor id, product id,
588 description and serial.
589
590 \param ftdi pointer to ftdi_context
591 \param vendor Vendor ID
592 \param product Product ID
593 \param description Description to search for. Use NULL if not needed.
594 \param serial Serial to search for. Use NULL if not needed.
595
596 \retval 0: all fine
1941414d
TJ
597 \retval -3: usb device not found
598 \retval -4: unable to open device
599 \retval -5: unable to claim device
600 \retval -6: reset failed
601 \retval -7: set baudrate failed
602 \retval -8: get product description failed
603 \retval -9: get serial number failed
579b006f
JZ
604 \retval -11: libusb_init() failed
605 \retval -12: libusb_get_device_list() failed
606 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 607*/
04e1ea0a 608int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
609 const char* description, const char* serial)
610{
5ebbdab9
GE
611 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
612}
613
614/**
615 Opens the index-th device with a given, vendor id, product id,
616 description and serial.
617
618 \param ftdi pointer to ftdi_context
619 \param vendor Vendor ID
620 \param product Product ID
621 \param description Description to search for. Use NULL if not needed.
622 \param serial Serial to search for. Use NULL if not needed.
623 \param index Number of matching device to open if there are more than one, starts with 0.
624
625 \retval 0: all fine
626 \retval -1: usb_find_busses() failed
627 \retval -2: usb_find_devices() failed
628 \retval -3: usb device not found
629 \retval -4: unable to open device
630 \retval -5: unable to claim device
631 \retval -6: reset failed
632 \retval -7: set baudrate failed
633 \retval -8: get product description failed
634 \retval -9: get serial number failed
635 \retval -10: unable to close device
22a1b5c1 636 \retval -11: ftdi context invalid
5ebbdab9
GE
637*/
638int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
56ac0383 639 const char* description, const char* serial, unsigned int index)
5ebbdab9 640{
579b006f
JZ
641 libusb_device *dev;
642 libusb_device **devs;
c3d95b87 643 char string[256];
579b006f 644 int i = 0;
98452d97 645
02212d8e 646 if (libusb_init(&ftdi->usb_ctx) < 0)
579b006f 647 ftdi_error_return(-11, "libusb_init() failed");
98452d97 648
22a1b5c1
TJ
649 if (ftdi == NULL)
650 ftdi_error_return(-11, "ftdi context invalid");
651
02212d8e 652 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
99650502
UB
653 ftdi_error_return(-12, "libusb_get_device_list() failed");
654
579b006f 655 while ((dev = devs[i++]) != NULL)
22d12cda 656 {
579b006f 657 struct libusb_device_descriptor desc;
99650502 658 int res;
579b006f
JZ
659
660 if (libusb_get_device_descriptor(dev, &desc) < 0)
99650502 661 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
579b006f
JZ
662
663 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 664 {
579b006f 665 if (libusb_open(dev, &ftdi->usb_dev) < 0)
99650502 666 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
c3d95b87 667
579b006f
JZ
668 if (description != NULL)
669 {
670 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 671 {
579b006f 672 libusb_close (ftdi->usb_dev);
99650502 673 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
a8f46ddc 674 }
579b006f 675 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 676 {
579b006f
JZ
677 libusb_close (ftdi->usb_dev);
678 continue;
a8f46ddc 679 }
579b006f
JZ
680 }
681 if (serial != NULL)
682 {
683 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
684 {
685 ftdi_usb_close_internal (ftdi);
99650502 686 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
579b006f
JZ
687 }
688 if (strncmp(string, serial, sizeof(string)) != 0)
689 {
690 ftdi_usb_close_internal (ftdi);
691 continue;
692 }
693 }
98452d97 694
579b006f 695 ftdi_usb_close_internal (ftdi);
d2f10023 696
56ac0383
TJ
697 if (index > 0)
698 {
699 index--;
700 continue;
701 }
5ebbdab9 702
99650502
UB
703 res = ftdi_usb_open_dev(ftdi, dev);
704 libusb_free_device_list(devs,1);
705 return res;
98452d97 706 }
98452d97 707 }
a3da1d95 708
98452d97 709 // device not found
99650502 710 ftdi_error_return_free_device_list(-3, "device not found", devs);
a3da1d95
GE
711}
712
1941414d 713/**
5ebbdab9
GE
714 Opens the ftdi-device described by a description-string.
715 Intended to be used for parsing a device-description given as commandline argument.
716
717 \param ftdi pointer to ftdi_context
718 \param description NULL-terminated description-string, using this format:
719 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
720 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
721 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
722 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
723
724 \note The description format may be extended in later versions.
725
726 \retval 0: all fine
579b006f
JZ
727 \retval -1: libusb_init() failed
728 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
729 \retval -3: usb device not found
730 \retval -4: unable to open device
731 \retval -5: unable to claim device
732 \retval -6: reset failed
733 \retval -7: set baudrate failed
734 \retval -8: get product description failed
735 \retval -9: get serial number failed
736 \retval -10: unable to close device
737 \retval -11: illegal description format
22a1b5c1 738 \retval -12: ftdi context invalid
5ebbdab9
GE
739*/
740int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
741{
22a1b5c1
TJ
742 if (ftdi == NULL)
743 ftdi_error_return(-12, "ftdi context invalid");
744
5ebbdab9
GE
745 if (description[0] == 0 || description[1] != ':')
746 ftdi_error_return(-11, "illegal description format");
747
748 if (description[0] == 'd')
749 {
579b006f
JZ
750 libusb_device *dev;
751 libusb_device **devs;
56ac0383
TJ
752 unsigned int bus_number, device_address;
753 int i = 0;
579b006f 754
02212d8e 755 if (libusb_init (&ftdi->usb_ctx) < 0)
56ac0383 756 ftdi_error_return(-1, "libusb_init() failed");
5ebbdab9 757
56ac0383
TJ
758 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
759 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 760
579b006f
JZ
761 /* XXX: This doesn't handle symlinks/odd paths/etc... */
762 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
56ac0383 763 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
5ebbdab9 764
56ac0383 765 while ((dev = devs[i++]) != NULL)
5ebbdab9 766 {
99650502 767 int ret;
56ac0383
TJ
768 if (bus_number == libusb_get_bus_number (dev)
769 && device_address == libusb_get_device_address (dev))
99650502
UB
770 {
771 ret = ftdi_usb_open_dev(ftdi, dev);
772 libusb_free_device_list(devs,1);
773 return ret;
774 }
5ebbdab9
GE
775 }
776
777 // device not found
99650502 778 ftdi_error_return_free_device_list(-3, "device not found", devs);
5ebbdab9
GE
779 }
780 else if (description[0] == 'i' || description[0] == 's')
781 {
782 unsigned int vendor;
783 unsigned int product;
784 unsigned int index=0;
0e6cf62b 785 const char *serial=NULL;
5ebbdab9
GE
786 const char *startp, *endp;
787
788 errno=0;
789 startp=description+2;
790 vendor=strtoul((char*)startp,(char**)&endp,0);
791 if (*endp != ':' || endp == startp || errno != 0)
792 ftdi_error_return(-11, "illegal description format");
793
794 startp=endp+1;
795 product=strtoul((char*)startp,(char**)&endp,0);
796 if (endp == startp || errno != 0)
797 ftdi_error_return(-11, "illegal description format");
798
799 if (description[0] == 'i' && *endp != 0)
800 {
801 /* optional index field in i-mode */
802 if (*endp != ':')
803 ftdi_error_return(-11, "illegal description format");
804
805 startp=endp+1;
806 index=strtoul((char*)startp,(char**)&endp,0);
807 if (*endp != 0 || endp == startp || errno != 0)
808 ftdi_error_return(-11, "illegal description format");
809 }
810 if (description[0] == 's')
811 {
812 if (*endp != ':')
813 ftdi_error_return(-11, "illegal description format");
814
815 /* rest of the description is the serial */
816 serial=endp+1;
817 }
818
819 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
820 }
821 else
822 {
823 ftdi_error_return(-11, "illegal description format");
824 }
825}
826
827/**
1941414d 828 Resets the ftdi device.
a3da1d95 829
1941414d
TJ
830 \param ftdi pointer to ftdi_context
831
832 \retval 0: all fine
833 \retval -1: FTDI reset failed
22a1b5c1 834 \retval -2: USB device unavailable
4837f98a 835*/
edb82cbf 836int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 837{
22a1b5c1
TJ
838 if (ftdi == NULL || ftdi->usb_dev == NULL)
839 ftdi_error_return(-2, "USB device unavailable");
840
579b006f
JZ
841 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
842 SIO_RESET_REQUEST, SIO_RESET_SIO,
843 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 844 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 845
545820ce 846 // Invalidate data in the readbuffer
bfcee05b
TJ
847 ftdi->readbuffer_offset = 0;
848 ftdi->readbuffer_remaining = 0;
849
a3da1d95
GE
850 return 0;
851}
852
1941414d 853/**
1189b11a 854 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
855
856 \param ftdi pointer to ftdi_context
4837f98a 857
1941414d 858 \retval 0: all fine
1189b11a 859 \retval -1: read buffer purge failed
22a1b5c1 860 \retval -2: USB device unavailable
4837f98a 861*/
1189b11a 862int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 863{
22a1b5c1
TJ
864 if (ftdi == NULL || ftdi->usb_dev == NULL)
865 ftdi_error_return(-2, "USB device unavailable");
866
579b006f
JZ
867 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
868 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
869 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
870 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
871
545820ce 872 // Invalidate data in the readbuffer
bfcee05b
TJ
873 ftdi->readbuffer_offset = 0;
874 ftdi->readbuffer_remaining = 0;
a60be878 875
1189b11a
TJ
876 return 0;
877}
878
879/**
880 Clears the write buffer on the chip.
881
882 \param ftdi pointer to ftdi_context
883
884 \retval 0: all fine
885 \retval -1: write buffer purge failed
22a1b5c1 886 \retval -2: USB device unavailable
1189b11a
TJ
887*/
888int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
889{
22a1b5c1
TJ
890 if (ftdi == NULL || ftdi->usb_dev == NULL)
891 ftdi_error_return(-2, "USB device unavailable");
892
579b006f
JZ
893 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
894 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
895 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
896 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
897
898 return 0;
899}
900
901/**
902 Clears the buffers on the chip and the internal read buffer.
903
904 \param ftdi pointer to ftdi_context
905
906 \retval 0: all fine
907 \retval -1: read buffer purge failed
908 \retval -2: write buffer purge failed
22a1b5c1 909 \retval -3: USB device unavailable
1189b11a
TJ
910*/
911int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
912{
913 int result;
914
22a1b5c1
TJ
915 if (ftdi == NULL || ftdi->usb_dev == NULL)
916 ftdi_error_return(-3, "USB device unavailable");
917
1189b11a 918 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 919 if (result < 0)
1189b11a
TJ
920 return -1;
921
922 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 923 if (result < 0)
1189b11a 924 return -2;
545820ce 925
a60be878
TJ
926 return 0;
927}
a3da1d95 928
f3f81007
TJ
929
930
1941414d
TJ
931/**
932 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
933
934 \param ftdi pointer to ftdi_context
935
936 \retval 0: all fine
937 \retval -1: usb_release failed
22a1b5c1 938 \retval -3: ftdi context invalid
a3da1d95 939*/
a8f46ddc
TJ
940int ftdi_usb_close(struct ftdi_context *ftdi)
941{
a3da1d95
GE
942 int rtn = 0;
943
22a1b5c1
TJ
944 if (ftdi == NULL)
945 ftdi_error_return(-3, "ftdi context invalid");
946
dff4fdb0 947 if (ftdi->usb_dev != NULL)
579b006f 948 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 949 rtn = -1;
98452d97 950
579b006f 951 ftdi_usb_close_internal (ftdi);
98452d97 952
a3da1d95
GE
953 return rtn;
954}
955
418aaa72 956/**
53ad271d
TJ
957 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
958 Function is only used internally
b5ec1820 959 \internal
53ad271d 960*/
0126d22e 961static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
a8f46ddc
TJ
962 unsigned short *value, unsigned short *index)
963{
53ad271d
TJ
964 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
965 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
966 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
967 int divisor, best_divisor, best_baud, best_baud_diff;
968 unsigned long encoded_divisor;
969 int i;
970
22d12cda
TJ
971 if (baudrate <= 0)
972 {
53ad271d
TJ
973 // Return error
974 return -1;
975 }
976
977 divisor = 24000000 / baudrate;
978
22d12cda
TJ
979 if (ftdi->type == TYPE_AM)
980 {
53ad271d
TJ
981 // Round down to supported fraction (AM only)
982 divisor -= am_adjust_dn[divisor & 7];
983 }
984
985 // Try this divisor and the one above it (because division rounds down)
986 best_divisor = 0;
987 best_baud = 0;
988 best_baud_diff = 0;
22d12cda
TJ
989 for (i = 0; i < 2; i++)
990 {
53ad271d
TJ
991 int try_divisor = divisor + i;
992 int baud_estimate;
993 int baud_diff;
994
995 // Round up to supported divisor value
22d12cda
TJ
996 if (try_divisor <= 8)
997 {
53ad271d
TJ
998 // Round up to minimum supported divisor
999 try_divisor = 8;
22d12cda
TJ
1000 }
1001 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1002 {
53ad271d
TJ
1003 // BM doesn't support divisors 9 through 11 inclusive
1004 try_divisor = 12;
22d12cda
TJ
1005 }
1006 else if (divisor < 16)
1007 {
53ad271d
TJ
1008 // AM doesn't support divisors 9 through 15 inclusive
1009 try_divisor = 16;
22d12cda
TJ
1010 }
1011 else
1012 {
1013 if (ftdi->type == TYPE_AM)
1014 {
53ad271d
TJ
1015 // Round up to supported fraction (AM only)
1016 try_divisor += am_adjust_up[try_divisor & 7];
22d12cda
TJ
1017 if (try_divisor > 0x1FFF8)
1018 {
53ad271d
TJ
1019 // Round down to maximum supported divisor value (for AM)
1020 try_divisor = 0x1FFF8;
1021 }
22d12cda
TJ
1022 }
1023 else
1024 {
1025 if (try_divisor > 0x1FFFF)
1026 {
53ad271d
TJ
1027 // Round down to maximum supported divisor value (for BM)
1028 try_divisor = 0x1FFFF;
1029 }
1030 }
1031 }
1032 // Get estimated baud rate (to nearest integer)
1033 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1034 // Get absolute difference from requested baud rate
22d12cda
TJ
1035 if (baud_estimate < baudrate)
1036 {
53ad271d 1037 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
1038 }
1039 else
1040 {
53ad271d
TJ
1041 baud_diff = baud_estimate - baudrate;
1042 }
22d12cda
TJ
1043 if (i == 0 || baud_diff < best_baud_diff)
1044 {
53ad271d
TJ
1045 // Closest to requested baud rate so far
1046 best_divisor = try_divisor;
1047 best_baud = baud_estimate;
1048 best_baud_diff = baud_diff;
22d12cda
TJ
1049 if (baud_diff == 0)
1050 {
53ad271d
TJ
1051 // Spot on! No point trying
1052 break;
1053 }
1054 }
1055 }
1056 // Encode the best divisor value
1057 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1058 // Deal with special cases for encoded value
22d12cda
TJ
1059 if (encoded_divisor == 1)
1060 {
4837f98a 1061 encoded_divisor = 0; // 3000000 baud
22d12cda
TJ
1062 }
1063 else if (encoded_divisor == 0x4001)
1064 {
4837f98a 1065 encoded_divisor = 1; // 2000000 baud (BM only)
53ad271d
TJ
1066 }
1067 // Split into "value" and "index" values
1068 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1416eb14 1069 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
22d12cda 1070 {
0126d22e
TJ
1071 *index = (unsigned short)(encoded_divisor >> 8);
1072 *index &= 0xFF00;
a9c57c05 1073 *index |= ftdi->index;
0126d22e
TJ
1074 }
1075 else
1076 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 1077
53ad271d
TJ
1078 // Return the nearest baud rate
1079 return best_baud;
1080}
1081
1941414d 1082/**
9bec2387 1083 Sets the chip baud rate
1941414d
TJ
1084
1085 \param ftdi pointer to ftdi_context
9bec2387 1086 \param baudrate baud rate to set
1941414d
TJ
1087
1088 \retval 0: all fine
1089 \retval -1: invalid baudrate
1090 \retval -2: setting baudrate failed
22a1b5c1 1091 \retval -3: USB device unavailable
a3da1d95 1092*/
a8f46ddc
TJ
1093int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1094{
53ad271d
TJ
1095 unsigned short value, index;
1096 int actual_baudrate;
a3da1d95 1097
22a1b5c1
TJ
1098 if (ftdi == NULL || ftdi->usb_dev == NULL)
1099 ftdi_error_return(-3, "USB device unavailable");
1100
22d12cda
TJ
1101 if (ftdi->bitbang_enabled)
1102 {
a3da1d95
GE
1103 baudrate = baudrate*4;
1104 }
1105
25707904 1106 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1107 if (actual_baudrate <= 0)
1108 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1109
53ad271d
TJ
1110 // Check within tolerance (about 5%)
1111 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1112 || ((actual_baudrate < baudrate)
1113 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1114 : (baudrate * 21 < actual_baudrate * 20)))
1115 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1116
579b006f
JZ
1117 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1118 SIO_SET_BAUDRATE_REQUEST, value,
1119 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1120 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1121
1122 ftdi->baudrate = baudrate;
1123 return 0;
1124}
1125
1941414d 1126/**
6c32e222
TJ
1127 Set (RS232) line characteristics.
1128 The break type can only be set via ftdi_set_line_property2()
1129 and defaults to "off".
4837f98a 1130
1941414d
TJ
1131 \param ftdi pointer to ftdi_context
1132 \param bits Number of bits
1133 \param sbit Number of stop bits
1134 \param parity Parity mode
1135
1136 \retval 0: all fine
1137 \retval -1: Setting line property failed
2f73e59f
TJ
1138*/
1139int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1140 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1141{
6c32e222
TJ
1142 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1143}
1144
1145/**
1146 Set (RS232) line characteristics
1147
1148 \param ftdi pointer to ftdi_context
1149 \param bits Number of bits
1150 \param sbit Number of stop bits
1151 \param parity Parity mode
1152 \param break_type Break type
1153
1154 \retval 0: all fine
1155 \retval -1: Setting line property failed
22a1b5c1 1156 \retval -2: USB device unavailable
6c32e222
TJ
1157*/
1158int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1159 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1160 enum ftdi_break_type break_type)
6c32e222 1161{
2f73e59f
TJ
1162 unsigned short value = bits;
1163
22a1b5c1
TJ
1164 if (ftdi == NULL || ftdi->usb_dev == NULL)
1165 ftdi_error_return(-2, "USB device unavailable");
1166
22d12cda
TJ
1167 switch (parity)
1168 {
1169 case NONE:
1170 value |= (0x00 << 8);
1171 break;
1172 case ODD:
1173 value |= (0x01 << 8);
1174 break;
1175 case EVEN:
1176 value |= (0x02 << 8);
1177 break;
1178 case MARK:
1179 value |= (0x03 << 8);
1180 break;
1181 case SPACE:
1182 value |= (0x04 << 8);
1183 break;
2f73e59f 1184 }
d2f10023 1185
22d12cda
TJ
1186 switch (sbit)
1187 {
1188 case STOP_BIT_1:
1189 value |= (0x00 << 11);
1190 break;
1191 case STOP_BIT_15:
1192 value |= (0x01 << 11);
1193 break;
1194 case STOP_BIT_2:
1195 value |= (0x02 << 11);
1196 break;
2f73e59f 1197 }
d2f10023 1198
22d12cda
TJ
1199 switch (break_type)
1200 {
1201 case BREAK_OFF:
1202 value |= (0x00 << 14);
1203 break;
1204 case BREAK_ON:
1205 value |= (0x01 << 14);
1206 break;
6c32e222
TJ
1207 }
1208
579b006f
JZ
1209 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1210 SIO_SET_DATA_REQUEST, value,
1211 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1212 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1213
2f73e59f
TJ
1214 return 0;
1215}
a3da1d95 1216
1941414d
TJ
1217/**
1218 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1219
1220 \param ftdi pointer to ftdi_context
1221 \param buf Buffer with the data
1222 \param size Size of the buffer
1223
22a1b5c1 1224 \retval -666: USB device unavailable
1941414d
TJ
1225 \retval <0: error code from usb_bulk_write()
1226 \retval >0: number of bytes written
1227*/
a8f46ddc
TJ
1228int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1229{
a3da1d95 1230 int offset = 0;
579b006f 1231 int actual_length;
c3d95b87 1232
22a1b5c1
TJ
1233 if (ftdi == NULL || ftdi->usb_dev == NULL)
1234 ftdi_error_return(-666, "USB device unavailable");
1235
22d12cda
TJ
1236 while (offset < size)
1237 {
948f9ada 1238 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1239
1240 if (offset+write_size > size)
1241 write_size = size-offset;
1242
579b006f
JZ
1243 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1244 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1245
579b006f 1246 offset += actual_length;
a3da1d95
GE
1247 }
1248
579b006f 1249 return offset;
a3da1d95
GE
1250}
1251
579b006f 1252static void ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1253{
579b006f
JZ
1254 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1255 struct ftdi_context *ftdi = tc->ftdi;
1256 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1257
b1139150 1258 packet_size = ftdi->max_packet_size;
579b006f
JZ
1259
1260 actual_length = transfer->actual_length;
1261
1262 if (actual_length > 2)
1263 {
1264 // skip FTDI status bytes.
1265 // Maybe stored in the future to enable modem use
1266 num_of_chunks = actual_length / packet_size;
1267 chunk_remains = actual_length % packet_size;
1268 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1269
1270 ftdi->readbuffer_offset += 2;
1271 actual_length -= 2;
1272
1273 if (actual_length > packet_size - 2)
1274 {
1275 for (i = 1; i < num_of_chunks; i++)
56ac0383
TJ
1276 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1277 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1278 packet_size - 2);
579b006f
JZ
1279 if (chunk_remains > 2)
1280 {
1281 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1282 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1283 chunk_remains-2);
1284 actual_length -= 2*num_of_chunks;
1285 }
1286 else
56ac0383 1287 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
579b006f
JZ
1288 }
1289
1290 if (actual_length > 0)
1291 {
1292 // data still fits in buf?
1293 if (tc->offset + actual_length <= tc->size)
1294 {
1295 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1296 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1297 tc->offset += actual_length;
1298
1299 ftdi->readbuffer_offset = 0;
1300 ftdi->readbuffer_remaining = 0;
1301
1302 /* Did we read exactly the right amount of bytes? */
1303 if (tc->offset == tc->size)
1304 {
1305 //printf("read_data exact rem %d offset %d\n",
1306 //ftdi->readbuffer_remaining, offset);
1307 tc->completed = 1;
1308 return;
1309 }
1310 }
1311 else
1312 {
1313 // only copy part of the data or size <= readbuffer_chunksize
1314 int part_size = tc->size - tc->offset;
1315 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1316 tc->offset += part_size;
1317
1318 ftdi->readbuffer_offset += part_size;
1319 ftdi->readbuffer_remaining = actual_length - part_size;
1320
1321 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1322 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1323 tc->completed = 1;
1324 return;
1325 }
1326 }
1327 }
1328 ret = libusb_submit_transfer (transfer);
1329 if (ret < 0)
1330 tc->completed = 1;
1331}
1332
1333
1334static void ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1335{
579b006f
JZ
1336 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1337 struct ftdi_context *ftdi = tc->ftdi;
56ac0383 1338
90ef163e 1339 tc->offset += transfer->actual_length;
56ac0383 1340
579b006f 1341 if (tc->offset == tc->size)
22d12cda 1342 {
579b006f 1343 tc->completed = 1;
7cc9950e 1344 }
579b006f
JZ
1345 else
1346 {
1347 int write_size = ftdi->writebuffer_chunksize;
1348 int ret;
7cc9950e 1349
579b006f
JZ
1350 if (tc->offset + write_size > tc->size)
1351 write_size = tc->size - tc->offset;
1352
1353 transfer->length = write_size;
1354 transfer->buffer = tc->buf + tc->offset;
1355 ret = libusb_submit_transfer (transfer);
1356 if (ret < 0)
1357 tc->completed = 1;
1358 }
7cc9950e
GE
1359}
1360
579b006f 1361
84f85aaa 1362/**
579b006f
JZ
1363 Writes data to the chip. Does not wait for completion of the transfer
1364 nor does it make sure that the transfer was successful.
1365
249888c8 1366 Use libusb 1.0 asynchronous API.
84f85aaa
GE
1367
1368 \param ftdi pointer to ftdi_context
579b006f
JZ
1369 \param buf Buffer with the data
1370 \param size Size of the buffer
84f85aaa 1371
579b006f
JZ
1372 \retval NULL: Some error happens when submit transfer
1373 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1374*/
579b006f
JZ
1375
1376struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1377{
579b006f
JZ
1378 struct ftdi_transfer_control *tc;
1379 struct libusb_transfer *transfer = libusb_alloc_transfer(0);
1380 int write_size, ret;
22d12cda 1381
22a1b5c1
TJ
1382 if (ftdi == NULL || ftdi->usb_dev == NULL)
1383 {
1384 libusb_free_transfer(transfer);
1385 return NULL;
1386 }
1387
579b006f 1388 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
22d12cda 1389
579b006f
JZ
1390 if (!tc || !transfer)
1391 return NULL;
22d12cda 1392
579b006f
JZ
1393 tc->ftdi = ftdi;
1394 tc->completed = 0;
1395 tc->buf = buf;
1396 tc->size = size;
1397 tc->offset = 0;
7cc9950e 1398
579b006f 1399 if (size < ftdi->writebuffer_chunksize)
56ac0383 1400 write_size = size;
579b006f 1401 else
56ac0383 1402 write_size = ftdi->writebuffer_chunksize;
22d12cda 1403
90ef163e
YSL
1404 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1405 write_size, ftdi_write_data_cb, tc,
1406 ftdi->usb_write_timeout);
579b006f 1407 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1408
579b006f
JZ
1409 ret = libusb_submit_transfer(transfer);
1410 if (ret < 0)
1411 {
1412 libusb_free_transfer(transfer);
1413 tc->completed = 1;
1414 tc->transfer = NULL;
1415 return NULL;
7cc9950e 1416 }
579b006f
JZ
1417 tc->transfer = transfer;
1418
1419 return tc;
7cc9950e
GE
1420}
1421
1422/**
579b006f
JZ
1423 Reads data from the chip. Does not wait for completion of the transfer
1424 nor does it make sure that the transfer was successful.
1425
249888c8 1426 Use libusb 1.0 asynchronous API.
7cc9950e
GE
1427
1428 \param ftdi pointer to ftdi_context
579b006f
JZ
1429 \param buf Buffer with the data
1430 \param size Size of the buffer
4c9e3812 1431
579b006f
JZ
1432 \retval NULL: Some error happens when submit transfer
1433 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1434*/
579b006f
JZ
1435
1436struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1437{
579b006f
JZ
1438 struct ftdi_transfer_control *tc;
1439 struct libusb_transfer *transfer;
1440 int ret;
22d12cda 1441
22a1b5c1
TJ
1442 if (ftdi == NULL || ftdi->usb_dev == NULL)
1443 return NULL;
1444
579b006f
JZ
1445 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1446 if (!tc)
1447 return NULL;
1448
1449 tc->ftdi = ftdi;
1450 tc->buf = buf;
1451 tc->size = size;
1452
1453 if (size <= ftdi->readbuffer_remaining)
7cc9950e 1454 {
579b006f 1455 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1456
579b006f
JZ
1457 // Fix offsets
1458 ftdi->readbuffer_remaining -= size;
1459 ftdi->readbuffer_offset += size;
7cc9950e 1460
579b006f 1461 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1462
579b006f
JZ
1463 tc->completed = 1;
1464 tc->offset = size;
1465 tc->transfer = NULL;
1466 return tc;
1467 }
4c9e3812 1468
579b006f
JZ
1469 tc->completed = 0;
1470 if (ftdi->readbuffer_remaining != 0)
1471 {
1472 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1473
579b006f
JZ
1474 tc->offset = ftdi->readbuffer_remaining;
1475 }
1476 else
1477 tc->offset = 0;
22d12cda 1478
579b006f
JZ
1479 transfer = libusb_alloc_transfer(0);
1480 if (!transfer)
1481 {
1482 free (tc);
1483 return NULL;
1484 }
22d12cda 1485
579b006f
JZ
1486 ftdi->readbuffer_remaining = 0;
1487 ftdi->readbuffer_offset = 0;
1488
1489 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1490 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1491
1492 ret = libusb_submit_transfer(transfer);
1493 if (ret < 0)
1494 {
1495 libusb_free_transfer(transfer);
1496 free (tc);
1497 return NULL;
22d12cda 1498 }
579b006f
JZ
1499 tc->transfer = transfer;
1500
1501 return tc;
4c9e3812
GE
1502}
1503
1504/**
579b006f 1505 Wait for completion of the transfer.
4c9e3812 1506
249888c8 1507 Use libusb 1.0 asynchronous API.
4c9e3812 1508
579b006f 1509 \param tc pointer to ftdi_transfer_control
4c9e3812 1510
579b006f
JZ
1511 \retval < 0: Some error happens
1512 \retval >= 0: Data size transferred
4c9e3812 1513*/
579b006f
JZ
1514
1515int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1516{
1517 int ret;
4c9e3812 1518
579b006f 1519 while (!tc->completed)
22d12cda 1520 {
29b1dfd9 1521 ret = libusb_handle_events(tc->ftdi->usb_ctx);
4c9e3812 1522 if (ret < 0)
579b006f
JZ
1523 {
1524 if (ret == LIBUSB_ERROR_INTERRUPTED)
1525 continue;
1526 libusb_cancel_transfer(tc->transfer);
1527 while (!tc->completed)
29b1dfd9 1528 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
579b006f
JZ
1529 break;
1530 libusb_free_transfer(tc->transfer);
1531 free (tc);
579b006f
JZ
1532 return ret;
1533 }
4c9e3812
GE
1534 }
1535
90ef163e
YSL
1536 ret = tc->offset;
1537 /**
1538 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
ef15fab5 1539 * at ftdi_read_data_submit(). Therefore, we need to check it here.
90ef163e 1540 **/
ef15fab5
TJ
1541 if (tc->transfer)
1542 {
1543 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1544 ret = -1;
1545 libusb_free_transfer(tc->transfer);
90ef163e 1546 }
579b006f
JZ
1547 free(tc);
1548 return ret;
4c9e3812 1549}
579b006f 1550
1941414d
TJ
1551/**
1552 Configure write buffer chunk size.
1553 Default is 4096.
1554
1555 \param ftdi pointer to ftdi_context
1556 \param chunksize Chunk size
a3da1d95 1557
1941414d 1558 \retval 0: all fine
22a1b5c1 1559 \retval -1: ftdi context invalid
1941414d 1560*/
a8f46ddc
TJ
1561int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1562{
22a1b5c1
TJ
1563 if (ftdi == NULL)
1564 ftdi_error_return(-1, "ftdi context invalid");
1565
948f9ada
TJ
1566 ftdi->writebuffer_chunksize = chunksize;
1567 return 0;
1568}
1569
1941414d
TJ
1570/**
1571 Get write buffer chunk size.
1572
1573 \param ftdi pointer to ftdi_context
1574 \param chunksize Pointer to store chunk size in
948f9ada 1575
1941414d 1576 \retval 0: all fine
22a1b5c1 1577 \retval -1: ftdi context invalid
1941414d 1578*/
a8f46ddc
TJ
1579int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1580{
22a1b5c1
TJ
1581 if (ftdi == NULL)
1582 ftdi_error_return(-1, "ftdi context invalid");
1583
948f9ada
TJ
1584 *chunksize = ftdi->writebuffer_chunksize;
1585 return 0;
1586}
cbabb7d3 1587
1941414d
TJ
1588/**
1589 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1590
1591 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1592
1941414d
TJ
1593 \param ftdi pointer to ftdi_context
1594 \param buf Buffer to store data in
1595 \param size Size of the buffer
1596
22a1b5c1 1597 \retval -666: USB device unavailable
579b006f 1598 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 1599 \retval 0: no data was available
1941414d
TJ
1600 \retval >0: number of bytes read
1601
1941414d 1602*/
a8f46ddc
TJ
1603int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1604{
579b006f 1605 int offset = 0, ret, i, num_of_chunks, chunk_remains;
e2f12a4f 1606 int packet_size = ftdi->max_packet_size;
579b006f 1607 int actual_length = 1;
f2f00cb5 1608
22a1b5c1
TJ
1609 if (ftdi == NULL || ftdi->usb_dev == NULL)
1610 ftdi_error_return(-666, "USB device unavailable");
1611
e2f12a4f
TJ
1612 // Packet size sanity check (avoid division by zero)
1613 if (packet_size == 0)
1614 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 1615
948f9ada 1616 // everything we want is still in the readbuffer?
22d12cda
TJ
1617 if (size <= ftdi->readbuffer_remaining)
1618 {
d9f0cce7
TJ
1619 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1620
1621 // Fix offsets
1622 ftdi->readbuffer_remaining -= size;
1623 ftdi->readbuffer_offset += size;
1624
545820ce 1625 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1626
1627 return size;
979a145c 1628 }
948f9ada 1629 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
1630 if (ftdi->readbuffer_remaining != 0)
1631 {
d9f0cce7 1632 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1633
d9f0cce7
TJ
1634 // Fix offset
1635 offset += ftdi->readbuffer_remaining;
948f9ada 1636 }
948f9ada 1637 // do the actual USB read
579b006f 1638 while (offset < size && actual_length > 0)
22d12cda 1639 {
d9f0cce7
TJ
1640 ftdi->readbuffer_remaining = 0;
1641 ftdi->readbuffer_offset = 0;
98452d97 1642 /* returns how much received */
579b006f 1643 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
1644 if (ret < 0)
1645 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1646
579b006f 1647 if (actual_length > 2)
22d12cda 1648 {
d9f0cce7
TJ
1649 // skip FTDI status bytes.
1650 // Maybe stored in the future to enable modem use
579b006f
JZ
1651 num_of_chunks = actual_length / packet_size;
1652 chunk_remains = actual_length % packet_size;
1653 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 1654
d9f0cce7 1655 ftdi->readbuffer_offset += 2;
579b006f 1656 actual_length -= 2;
1c733d33 1657
579b006f 1658 if (actual_length > packet_size - 2)
22d12cda 1659 {
1c733d33 1660 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
1661 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1662 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1663 packet_size - 2);
22d12cda
TJ
1664 if (chunk_remains > 2)
1665 {
f2f00cb5
DC
1666 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1667 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 1668 chunk_remains-2);
579b006f 1669 actual_length -= 2*num_of_chunks;
22d12cda
TJ
1670 }
1671 else
579b006f 1672 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 1673 }
22d12cda 1674 }
579b006f 1675 else if (actual_length <= 2)
22d12cda 1676 {
d9f0cce7
TJ
1677 // no more data to read?
1678 return offset;
1679 }
579b006f 1680 if (actual_length > 0)
22d12cda 1681 {
d9f0cce7 1682 // data still fits in buf?
579b006f 1683 if (offset+actual_length <= size)
22d12cda 1684 {
579b006f 1685 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 1686 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 1687 offset += actual_length;
d9f0cce7 1688
53ad271d 1689 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1690 if (offset == size)
c4446c36
TJ
1691 //printf("read_data exact rem %d offset %d\n",
1692 //ftdi->readbuffer_remaining, offset);
d9f0cce7 1693 return offset;
22d12cda
TJ
1694 }
1695 else
1696 {
d9f0cce7
TJ
1697 // only copy part of the data or size <= readbuffer_chunksize
1698 int part_size = size-offset;
1699 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1700
d9f0cce7 1701 ftdi->readbuffer_offset += part_size;
579b006f 1702 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
1703 offset += part_size;
1704
579b006f
JZ
1705 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1706 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1707
1708 return offset;
1709 }
1710 }
cbabb7d3 1711 }
948f9ada 1712 // never reached
29c4af7f 1713 return -127;
a3da1d95
GE
1714}
1715
1941414d
TJ
1716/**
1717 Configure read buffer chunk size.
1718 Default is 4096.
1719
1720 Automatically reallocates the buffer.
a3da1d95 1721
1941414d
TJ
1722 \param ftdi pointer to ftdi_context
1723 \param chunksize Chunk size
1724
1725 \retval 0: all fine
22a1b5c1 1726 \retval -1: ftdi context invalid
1941414d 1727*/
a8f46ddc
TJ
1728int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1729{
29c4af7f
TJ
1730 unsigned char *new_buf;
1731
22a1b5c1
TJ
1732 if (ftdi == NULL)
1733 ftdi_error_return(-1, "ftdi context invalid");
1734
948f9ada
TJ
1735 // Invalidate all remaining data
1736 ftdi->readbuffer_offset = 0;
1737 ftdi->readbuffer_remaining = 0;
8de6eea4
JZ
1738#ifdef __linux__
1739 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1740 which is defined in libusb-1.0. Otherwise, each USB read request will
2e685a1f 1741 be divided into multiple URBs. This will cause issues on Linux kernel
8de6eea4
JZ
1742 older than 2.6.32. */
1743 if (chunksize > 16384)
1744 chunksize = 16384;
1745#endif
948f9ada 1746
c3d95b87
TJ
1747 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1748 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1749
948f9ada
TJ
1750 ftdi->readbuffer = new_buf;
1751 ftdi->readbuffer_chunksize = chunksize;
1752
1753 return 0;
1754}
1755
1941414d
TJ
1756/**
1757 Get read buffer chunk size.
948f9ada 1758
1941414d
TJ
1759 \param ftdi pointer to ftdi_context
1760 \param chunksize Pointer to store chunk size in
1761
1762 \retval 0: all fine
22a1b5c1 1763 \retval -1: FTDI context invalid
1941414d 1764*/
a8f46ddc
TJ
1765int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1766{
22a1b5c1
TJ
1767 if (ftdi == NULL)
1768 ftdi_error_return(-1, "FTDI context invalid");
1769
948f9ada
TJ
1770 *chunksize = ftdi->readbuffer_chunksize;
1771 return 0;
1772}
1773
1774
1941414d
TJ
1775/**
1776 Enable bitbang mode.
948f9ada 1777
fd282db3 1778 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1941414d
TJ
1779
1780 \param ftdi pointer to ftdi_context
1781 \param bitmask Bitmask to configure lines.
1782 HIGH/ON value configures a line as output.
1783
1784 \retval 0: all fine
1785 \retval -1: can't enable bitbang mode
22a1b5c1 1786 \retval -2: USB device unavailable
1941414d 1787*/
a8f46ddc
TJ
1788int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1789{
a3da1d95
GE
1790 unsigned short usb_val;
1791
22a1b5c1
TJ
1792 if (ftdi == NULL || ftdi->usb_dev == NULL)
1793 ftdi_error_return(-2, "USB device unavailable");
1794
d9f0cce7 1795 usb_val = bitmask; // low byte: bitmask
3119537f
TJ
1796 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1797 usb_val |= (ftdi->bitbang_mode << 8);
1798
579b006f
JZ
1799 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1800 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1801 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1802 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1803
a3da1d95
GE
1804 ftdi->bitbang_enabled = 1;
1805 return 0;
1806}
1807
1941414d
TJ
1808/**
1809 Disable bitbang mode.
a3da1d95 1810
1941414d
TJ
1811 \param ftdi pointer to ftdi_context
1812
1813 \retval 0: all fine
1814 \retval -1: can't disable bitbang mode
22a1b5c1 1815 \retval -2: USB device unavailable
1941414d 1816*/
a8f46ddc
TJ
1817int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1818{
22a1b5c1
TJ
1819 if (ftdi == NULL || ftdi->usb_dev == NULL)
1820 ftdi_error_return(-2, "USB device unavailable");
1821
579b006f 1822 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1823 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1824
1825 ftdi->bitbang_enabled = 0;
1826 return 0;
1827}
1828
1941414d 1829/**
418aaa72 1830 Enable/disable bitbang modes.
a3da1d95 1831
1941414d
TJ
1832 \param ftdi pointer to ftdi_context
1833 \param bitmask Bitmask to configure lines.
1834 HIGH/ON value configures a line as output.
fd282db3 1835 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
1836
1837 \retval 0: all fine
1838 \retval -1: can't enable bitbang mode
22a1b5c1 1839 \retval -2: USB device unavailable
1941414d 1840*/
c4446c36
TJ
1841int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1842{
1843 unsigned short usb_val;
1844
22a1b5c1
TJ
1845 if (ftdi == NULL || ftdi->usb_dev == NULL)
1846 ftdi_error_return(-2, "USB device unavailable");
1847
c4446c36
TJ
1848 usb_val = bitmask; // low byte: bitmask
1849 usb_val |= (mode << 8);
579b006f
JZ
1850 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1851 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
c4446c36
TJ
1852
1853 ftdi->bitbang_mode = mode;
418aaa72 1854 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
c4446c36
TJ
1855 return 0;
1856}
1857
1941414d 1858/**
418aaa72 1859 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
1860
1861 \param ftdi pointer to ftdi_context
1862 \param pins Pointer to store pins into
1863
1864 \retval 0: all fine
1865 \retval -1: read pins failed
22a1b5c1 1866 \retval -2: USB device unavailable
1941414d 1867*/
a8f46ddc
TJ
1868int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1869{
22a1b5c1
TJ
1870 if (ftdi == NULL || ftdi->usb_dev == NULL)
1871 ftdi_error_return(-2, "USB device unavailable");
1872
579b006f 1873 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1874 ftdi_error_return(-1, "read pins failed");
a3da1d95 1875
a3da1d95
GE
1876 return 0;
1877}
1878
1941414d
TJ
1879/**
1880 Set latency timer
1881
1882 The FTDI chip keeps data in the internal buffer for a specific
1883 amount of time if the buffer is not full yet to decrease
1884 load on the usb bus.
a3da1d95 1885
1941414d
TJ
1886 \param ftdi pointer to ftdi_context
1887 \param latency Value between 1 and 255
1888
1889 \retval 0: all fine
1890 \retval -1: latency out of range
1891 \retval -2: unable to set latency timer
22a1b5c1 1892 \retval -3: USB device unavailable
1941414d 1893*/
a8f46ddc
TJ
1894int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1895{
a3da1d95
GE
1896 unsigned short usb_val;
1897
c3d95b87
TJ
1898 if (latency < 1)
1899 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 1900
22a1b5c1
TJ
1901 if (ftdi == NULL || ftdi->usb_dev == NULL)
1902 ftdi_error_return(-3, "USB device unavailable");
1903
d79d2e68 1904 usb_val = latency;
579b006f 1905 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1906 ftdi_error_return(-2, "unable to set latency timer");
1907
a3da1d95
GE
1908 return 0;
1909}
1910
1941414d
TJ
1911/**
1912 Get latency timer
a3da1d95 1913
1941414d
TJ
1914 \param ftdi pointer to ftdi_context
1915 \param latency Pointer to store latency value in
1916
1917 \retval 0: all fine
1918 \retval -1: unable to get latency timer
22a1b5c1 1919 \retval -2: USB device unavailable
1941414d 1920*/
a8f46ddc
TJ
1921int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1922{
a3da1d95 1923 unsigned short usb_val;
22a1b5c1
TJ
1924
1925 if (ftdi == NULL || ftdi->usb_dev == NULL)
1926 ftdi_error_return(-2, "USB device unavailable");
1927
579b006f 1928 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1929 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
1930
1931 *latency = (unsigned char)usb_val;
1932 return 0;
1933}
1934
1941414d 1935/**
1189b11a
TJ
1936 Poll modem status information
1937
1938 This function allows the retrieve the two status bytes of the device.
1939 The device sends these bytes also as a header for each read access
1940 where they are discarded by ftdi_read_data(). The chip generates
1941 the two stripped status bytes in the absence of data every 40 ms.
1942
1943 Layout of the first byte:
1944 - B0..B3 - must be 0
1945 - B4 Clear to send (CTS)
1946 0 = inactive
1947 1 = active
1948 - B5 Data set ready (DTS)
1949 0 = inactive
1950 1 = active
1951 - B6 Ring indicator (RI)
1952 0 = inactive
1953 1 = active
1954 - B7 Receive line signal detect (RLSD)
1955 0 = inactive
1956 1 = active
1957
1958 Layout of the second byte:
1959 - B0 Data ready (DR)
1960 - B1 Overrun error (OE)
1961 - B2 Parity error (PE)
1962 - B3 Framing error (FE)
1963 - B4 Break interrupt (BI)
1964 - B5 Transmitter holding register (THRE)
1965 - B6 Transmitter empty (TEMT)
1966 - B7 Error in RCVR FIFO
1967
1968 \param ftdi pointer to ftdi_context
1969 \param status Pointer to store status information in. Must be two bytes.
1970
1971 \retval 0: all fine
1972 \retval -1: unable to retrieve status information
22a1b5c1 1973 \retval -2: USB device unavailable
1189b11a
TJ
1974*/
1975int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1976{
1977 char usb_val[2];
1978
22a1b5c1
TJ
1979 if (ftdi == NULL || ftdi->usb_dev == NULL)
1980 ftdi_error_return(-2, "USB device unavailable");
1981
579b006f 1982 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
1983 ftdi_error_return(-1, "getting modem status failed");
1984
1985 *status = (usb_val[1] << 8) | usb_val[0];
1986
1987 return 0;
1988}
1989
a7fb8440
TJ
1990/**
1991 Set flowcontrol for ftdi chip
1992
1993 \param ftdi pointer to ftdi_context
22d12cda
TJ
1994 \param flowctrl flow control to use. should be
1995 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
a7fb8440
TJ
1996
1997 \retval 0: all fine
1998 \retval -1: set flow control failed
22a1b5c1 1999 \retval -2: USB device unavailable
a7fb8440
TJ
2000*/
2001int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2002{
22a1b5c1
TJ
2003 if (ftdi == NULL || ftdi->usb_dev == NULL)
2004 ftdi_error_return(-2, "USB device unavailable");
2005
579b006f
JZ
2006 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2007 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2008 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2009 ftdi_error_return(-1, "set flow control failed");
2010
2011 return 0;
2012}
2013
2014/**
2015 Set dtr line
2016
2017 \param ftdi pointer to ftdi_context
2018 \param state state to set line to (1 or 0)
2019
2020 \retval 0: all fine
2021 \retval -1: set dtr failed
22a1b5c1 2022 \retval -2: USB device unavailable
a7fb8440
TJ
2023*/
2024int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2025{
2026 unsigned short usb_val;
2027
22a1b5c1
TJ
2028 if (ftdi == NULL || ftdi->usb_dev == NULL)
2029 ftdi_error_return(-2, "USB device unavailable");
2030
a7fb8440
TJ
2031 if (state)
2032 usb_val = SIO_SET_DTR_HIGH;
2033 else
2034 usb_val = SIO_SET_DTR_LOW;
2035
579b006f
JZ
2036 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2037 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2038 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2039 ftdi_error_return(-1, "set dtr failed");
2040
2041 return 0;
2042}
2043
2044/**
2045 Set rts line
2046
2047 \param ftdi pointer to ftdi_context
2048 \param state state to set line to (1 or 0)
2049
2050 \retval 0: all fine
22a1b5c1
TJ
2051 \retval -1: set rts failed
2052 \retval -2: USB device unavailable
a7fb8440
TJ
2053*/
2054int ftdi_setrts(struct ftdi_context *ftdi, int state)
2055{
2056 unsigned short usb_val;
2057
22a1b5c1
TJ
2058 if (ftdi == NULL || ftdi->usb_dev == NULL)
2059 ftdi_error_return(-2, "USB device unavailable");
2060
a7fb8440
TJ
2061 if (state)
2062 usb_val = SIO_SET_RTS_HIGH;
2063 else
2064 usb_val = SIO_SET_RTS_LOW;
2065
579b006f
JZ
2066 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2067 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2068 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2069 ftdi_error_return(-1, "set of rts failed");
2070
2071 return 0;
2072}
2073
1189b11a 2074/**
22a1b5c1 2075 Set dtr and rts line in one pass
9ecfef2a 2076
22a1b5c1
TJ
2077 \param ftdi pointer to ftdi_context
2078 \param dtr DTR state to set line to (1 or 0)
2079 \param rts RTS state to set line to (1 or 0)
9ecfef2a 2080
22a1b5c1
TJ
2081 \retval 0: all fine
2082 \retval -1: set dtr/rts failed
2083 \retval -2: USB device unavailable
9ecfef2a
TJ
2084 */
2085int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2086{
2087 unsigned short usb_val;
2088
22a1b5c1
TJ
2089 if (ftdi == NULL || ftdi->usb_dev == NULL)
2090 ftdi_error_return(-2, "USB device unavailable");
2091
9ecfef2a 2092 if (dtr)
22d12cda 2093 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 2094 else
22d12cda 2095 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
2096
2097 if (rts)
22d12cda 2098 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 2099 else
22d12cda 2100 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 2101
579b006f
JZ
2102 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2103 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2104 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 2105 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
2106
2107 return 0;
2108}
2109
2110/**
1189b11a
TJ
2111 Set the special event character
2112
2113 \param ftdi pointer to ftdi_context
2114 \param eventch Event character
2115 \param enable 0 to disable the event character, non-zero otherwise
2116
2117 \retval 0: all fine
2118 \retval -1: unable to set event character
22a1b5c1 2119 \retval -2: USB device unavailable
1189b11a
TJ
2120*/
2121int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 2122 unsigned char eventch, unsigned char enable)
1189b11a
TJ
2123{
2124 unsigned short usb_val;
2125
22a1b5c1
TJ
2126 if (ftdi == NULL || ftdi->usb_dev == NULL)
2127 ftdi_error_return(-2, "USB device unavailable");
2128
1189b11a
TJ
2129 usb_val = eventch;
2130 if (enable)
2131 usb_val |= 1 << 8;
2132
579b006f 2133 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2134 ftdi_error_return(-1, "setting event character failed");
2135
2136 return 0;
2137}
2138
2139/**
2140 Set error character
2141
2142 \param ftdi pointer to ftdi_context
2143 \param errorch Error character
2144 \param enable 0 to disable the error character, non-zero otherwise
2145
2146 \retval 0: all fine
2147 \retval -1: unable to set error character
22a1b5c1 2148 \retval -2: USB device unavailable
1189b11a
TJ
2149*/
2150int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 2151 unsigned char errorch, unsigned char enable)
1189b11a
TJ
2152{
2153 unsigned short usb_val;
2154
22a1b5c1
TJ
2155 if (ftdi == NULL || ftdi->usb_dev == NULL)
2156 ftdi_error_return(-2, "USB device unavailable");
2157
1189b11a
TJ
2158 usb_val = errorch;
2159 if (enable)
2160 usb_val |= 1 << 8;
2161
579b006f 2162 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2163 ftdi_error_return(-1, "setting error character failed");
2164
2165 return 0;
2166}
2167
2168/**
1941414d 2169 Init eeprom with default values.
a35aa9bd 2170 \param ftdi pointer to ftdi_context
f14f84d3
UB
2171 \param manufacturer String to use as Manufacturer
2172 \param product String to use as Product description
2173 \param serial String to use as Serial number description
4e74064b 2174
f14f84d3
UB
2175 \retval 0: all fine
2176 \retval -1: No struct ftdi_context
2177 \retval -2: No struct ftdi_eeprom
1941414d 2178*/
f14f84d3 2179int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
56ac0383 2180 char * product, char * serial)
a8f46ddc 2181{
c0a96aed 2182 struct ftdi_eeprom *eeprom;
f505134f 2183
c0a96aed 2184 if (ftdi == NULL)
f14f84d3 2185 ftdi_error_return(-1, "No struct ftdi_context");
c0a96aed
UB
2186
2187 if (ftdi->eeprom == NULL)
56ac0383 2188 ftdi_error_return(-2,"No struct ftdi_eeprom");
22a1b5c1 2189
c0a96aed 2190 eeprom = ftdi->eeprom;
a02587d5 2191 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
c0a96aed 2192
f396dbad 2193 eeprom->vendor_id = 0x0403;
a02587d5 2194 eeprom->use_serial = USE_SERIAL_NUM;
56ac0383
TJ
2195 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2196 (ftdi->type == TYPE_R))
a02587d5
UB
2197 eeprom->product_id = 0x6001;
2198 else
2199 eeprom->product_id = 0x6010;
b1859923
UB
2200 if (ftdi->type == TYPE_AM)
2201 eeprom->usb_version = 0x0101;
2202 else
2203 eeprom->usb_version = 0x0200;
a886436a 2204 eeprom->max_power = 100;
d9f0cce7 2205
74e8e79d
UB
2206 if (eeprom->manufacturer)
2207 free (eeprom->manufacturer);
b8aa7b35 2208 eeprom->manufacturer = NULL;
74e8e79d
UB
2209 if (manufacturer)
2210 {
2211 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2212 if (eeprom->manufacturer)
2213 strcpy(eeprom->manufacturer, manufacturer);
2214 }
2215
2216 if (eeprom->product)
2217 free (eeprom->product);
b8aa7b35 2218 eeprom->product = NULL;
74e8e79d
UB
2219 {
2220 eeprom->product = malloc(strlen(product)+1);
2221 if (eeprom->product)
2222 strcpy(eeprom->product, product);
2223 }
2224
2225 if (eeprom->serial)
2226 free (eeprom->serial);
b8aa7b35 2227 eeprom->serial = NULL;
74e8e79d
UB
2228 if (serial)
2229 {
2230 eeprom->serial = malloc(strlen(serial)+1);
2231 if (eeprom->serial)
2232 strcpy(eeprom->serial, serial);
2233 }
2234
c201f80f 2235
56ac0383 2236 if (ftdi->type == TYPE_R)
a4980043 2237 {
a886436a 2238 eeprom->max_power = 90;
a02587d5 2239 eeprom->size = 0x80;
a4980043
UB
2240 eeprom->cbus_function[0] = CBUS_TXLED;
2241 eeprom->cbus_function[1] = CBUS_RXLED;
2242 eeprom->cbus_function[2] = CBUS_TXDEN;
2243 eeprom->cbus_function[3] = CBUS_PWREN;
2244 eeprom->cbus_function[4] = CBUS_SLEEP;
2245 }
a02587d5
UB
2246 else
2247 eeprom->size = -1;
f14f84d3 2248 return 0;
b8aa7b35
TJ
2249}
2250
1941414d 2251/**
a35aa9bd 2252 Build binary buffer from ftdi_eeprom structure.
22a1b5c1 2253 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2254
a35aa9bd 2255 \param ftdi pointer to ftdi_context
1941414d 2256
516ebfb1 2257 \retval >=0: size of eeprom user area in bytes
22a1b5c1 2258 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2c1e2bde
TJ
2259 \retval -2: Invalid eeprom or ftdi pointer
2260 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2261 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2262 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2b9a3c82 2263 \retval -6: No connected EEPROM or EEPROM Type unknown
b8aa7b35 2264*/
a35aa9bd 2265int ftdi_eeprom_build(struct ftdi_context *ftdi)
a8f46ddc 2266{
e2bbd9af 2267 unsigned char i, j, eeprom_size_mask;
b8aa7b35
TJ
2268 unsigned short checksum, value;
2269 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
516ebfb1 2270 int user_area_size;
c0a96aed 2271 struct ftdi_eeprom *eeprom;
a35aa9bd 2272 unsigned char * output;
b8aa7b35 2273
c0a96aed 2274 if (ftdi == NULL)
cc9c9d58 2275 ftdi_error_return(-2,"No context");
c0a96aed 2276 if (ftdi->eeprom == NULL)
cc9c9d58 2277 ftdi_error_return(-2,"No eeprom structure");
c0a96aed
UB
2278
2279 eeprom= ftdi->eeprom;
a35aa9bd 2280 output = eeprom->buf;
22a1b5c1 2281
56ac0383 2282 if (eeprom->chip == -1)
2c1e2bde 2283 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2b9a3c82 2284
f75bf139
UB
2285 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2286 eeprom->size = 0x100;
2287 else
2288 eeprom->size = 0x80;
2289
b8aa7b35 2290 if (eeprom->manufacturer != NULL)
d9f0cce7 2291 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2292 if (eeprom->product != NULL)
d9f0cce7 2293 product_size = strlen(eeprom->product);
b8aa7b35 2294 if (eeprom->serial != NULL)
d9f0cce7 2295 serial_size = strlen(eeprom->serial);
b8aa7b35 2296
814710ba
TJ
2297 // eeprom size check
2298 switch (ftdi->type)
2299 {
2300 case TYPE_AM:
2301 case TYPE_BM:
2302 user_area_size = 96; // base size for strings (total of 48 characters)
2303 break;
2304 case TYPE_2232C:
56ac0383
TJ
2305 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2306 break;
814710ba 2307 case TYPE_R:
56ac0383
TJ
2308 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2309 break;
814710ba
TJ
2310 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2311 case TYPE_4232H:
56ac0383 2312 user_area_size = 86;
2c1e2bde
TJ
2313 default:
2314 user_area_size = 0;
56ac0383 2315 break;
665cda04
UB
2316 }
2317 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
814710ba 2318
516ebfb1
TJ
2319 if (user_area_size < 0)
2320 ftdi_error_return(-1,"eeprom size exceeded");
b8aa7b35
TJ
2321
2322 // empty eeprom
a35aa9bd 2323 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
b8aa7b35 2324
93738c79
UB
2325 // Bytes and Bits set for all Types
2326
b8aa7b35
TJ
2327 // Addr 02: Vendor ID
2328 output[0x02] = eeprom->vendor_id;
2329 output[0x03] = eeprom->vendor_id >> 8;
2330
2331 // Addr 04: Product ID
2332 output[0x04] = eeprom->product_id;
2333 output[0x05] = eeprom->product_id >> 8;
2334
2335 // Addr 06: Device release number (0400h for BM features)
2336 output[0x06] = 0x00;
814710ba
TJ
2337 switch (ftdi->type)
2338 {
f505134f
HK
2339 case TYPE_AM:
2340 output[0x07] = 0x02;
2341 break;
2342 case TYPE_BM:
2343 output[0x07] = 0x04;
2344 break;
2345 case TYPE_2232C:
2346 output[0x07] = 0x05;
2347 break;
2348 case TYPE_R:
2349 output[0x07] = 0x06;
2350 break;
56ac0383 2351 case TYPE_2232H:
6123f7ab
UB
2352 output[0x07] = 0x07;
2353 break;
56ac0383 2354 case TYPE_4232H:
6123f7ab
UB
2355 output[0x07] = 0x08;
2356 break;
f505134f
HK
2357 default:
2358 output[0x07] = 0x00;
2359 }
b8aa7b35
TJ
2360
2361 // Addr 08: Config descriptor
8fae3e8e
TJ
2362 // Bit 7: always 1
2363 // Bit 6: 1 if this device is self powered, 0 if bus powered
2364 // Bit 5: 1 if this device uses remote wakeup
37186e34 2365 // Bit 4-0: reserved - 0
5a1dcd55 2366 j = 0x80;
b8aa7b35 2367 if (eeprom->self_powered == 1)
5a1dcd55 2368 j |= 0x40;
b8aa7b35 2369 if (eeprom->remote_wakeup == 1)
5a1dcd55 2370 j |= 0x20;
b8aa7b35
TJ
2371 output[0x08] = j;
2372
2373 // Addr 09: Max power consumption: max power = value * 2 mA
bb5ec68a 2374 output[0x09] = eeprom->max_power>>1;
d9f0cce7 2375
56ac0383 2376 if (ftdi->type != TYPE_AM)
93738c79
UB
2377 {
2378 // Addr 0A: Chip configuration
2379 // Bit 7: 0 - reserved
2380 // Bit 6: 0 - reserved
2381 // Bit 5: 0 - reserved
56ac0383 2382 // Bit 4: 1 - Change USB version
93738c79
UB
2383 // Bit 3: 1 - Use the serial number string
2384 // Bit 2: 1 - Enable suspend pull downs for lower power
2385 // Bit 1: 1 - Out EndPoint is Isochronous
2386 // Bit 0: 1 - In EndPoint is Isochronous
2387 //
2388 j = 0;
2389 if (eeprom->in_is_isochronous == 1)
2390 j = j | 1;
2391 if (eeprom->out_is_isochronous == 1)
2392 j = j | 2;
2393 output[0x0A] = j;
2394 }
f505134f 2395
b8aa7b35 2396 // Dynamic content
93738c79
UB
2397 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2398 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2399 i = 0;
56ac0383
TJ
2400 switch (ftdi->type)
2401 {
2402 case TYPE_2232H:
2403 case TYPE_4232H:
2404 i += 2;
2405 case TYPE_R:
2406 i += 2;
2407 case TYPE_2232C:
2408 i += 2;
2409 case TYPE_AM:
2410 case TYPE_BM:
2411 i += 0x94;
f505134f 2412 }
93738c79 2413 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
e2bbd9af 2414 eeprom_size_mask = eeprom->size -1;
c201f80f 2415
93738c79
UB
2416 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2417 // Addr 0F: Length of manufacturer string
22d12cda 2418 // Output manufacturer
93738c79 2419 output[0x0E] = i; // calculate offset
e2bbd9af
TJ
2420 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2421 output[i & eeprom_size_mask] = 0x03, i++; // type: string
22d12cda
TJ
2422 for (j = 0; j < manufacturer_size; j++)
2423 {
e2bbd9af
TJ
2424 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2425 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2426 }
93738c79 2427 output[0x0F] = manufacturer_size*2 + 2;
b8aa7b35 2428
93738c79
UB
2429 // Addr 10: Offset of the product string + 0x80, calculated later
2430 // Addr 11: Length of product string
c201f80f 2431 output[0x10] = i | 0x80; // calculate offset
e2bbd9af
TJ
2432 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2433 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2434 for (j = 0; j < product_size; j++)
2435 {
e2bbd9af
TJ
2436 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2437 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2438 }
93738c79 2439 output[0x11] = product_size*2 + 2;
37186e34 2440
93738c79
UB
2441 // Addr 12: Offset of the serial string + 0x80, calculated later
2442 // Addr 13: Length of serial string
c201f80f 2443 output[0x12] = i | 0x80; // calculate offset
e2bbd9af
TJ
2444 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2445 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2446 for (j = 0; j < serial_size; j++)
2447 {
e2bbd9af
TJ
2448 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2449 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2450 }
c2700d6d
TJ
2451
2452 // Legacy port name and PnP fields for FT2232 and newer chips
2453 if (ftdi->type > TYPE_BM)
2454 {
2455 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2456 i++;
2457 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2458 i++;
2459 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2460 i++;
2461 }
802a949e 2462
93738c79 2463 output[0x13] = serial_size*2 + 2;
b8aa7b35 2464
56ac0383 2465 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
bf2f6ef7
UB
2466 {
2467 if (eeprom->use_serial == USE_SERIAL_NUM )
2468 output[0x0A] |= USE_SERIAL_NUM;
2469 else
2470 output[0x0A] &= ~USE_SERIAL_NUM;
2471 }
3802140c
UB
2472
2473 /* Bytes and Bits specific to (some) types
2474 Write linear, as this allows easier fixing*/
56ac0383
TJ
2475 switch (ftdi->type)
2476 {
2477 case TYPE_AM:
2478 break;
2479 case TYPE_BM:
2480 output[0x0C] = eeprom->usb_version & 0xff;
2481 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2482 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2483 output[0x0A] |= USE_USB_VERSION_BIT;
2484 else
2485 output[0x0A] &= ~USE_USB_VERSION_BIT;
caec1294 2486
56ac0383
TJ
2487 break;
2488 case TYPE_2232C:
3802140c 2489
56ac0383
TJ
2490 output[0x00] = (eeprom->channel_a_type);
2491 if ( eeprom->channel_a_driver == DRIVER_VCP)
2492 output[0x00] |= DRIVER_VCP;
2493 else
2494 output[0x00] &= ~DRIVER_VCP;
4e74064b 2495
56ac0383
TJ
2496 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2497 output[0x00] |= HIGH_CURRENT_DRIVE;
2498 else
2499 output[0x00] &= ~HIGH_CURRENT_DRIVE;
3802140c 2500
56ac0383
TJ
2501 output[0x01] = (eeprom->channel_b_type);
2502 if ( eeprom->channel_b_driver == DRIVER_VCP)
2503 output[0x01] |= DRIVER_VCP;
2504 else
2505 output[0x01] &= ~DRIVER_VCP;
4e74064b 2506
56ac0383
TJ
2507 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2508 output[0x01] |= HIGH_CURRENT_DRIVE;
2509 else
2510 output[0x01] &= ~HIGH_CURRENT_DRIVE;
3802140c 2511
56ac0383
TJ
2512 if (eeprom->in_is_isochronous == 1)
2513 output[0x0A] |= 0x1;
2514 else
2515 output[0x0A] &= ~0x1;
2516 if (eeprom->out_is_isochronous == 1)
2517 output[0x0A] |= 0x2;
2518 else
2519 output[0x0A] &= ~0x2;
2520 if (eeprom->suspend_pull_downs == 1)
2521 output[0x0A] |= 0x4;
2522 else
2523 output[0x0A] &= ~0x4;
2524 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2525 output[0x0A] |= USE_USB_VERSION_BIT;
2526 else
2527 output[0x0A] &= ~USE_USB_VERSION_BIT;
4e74064b 2528
56ac0383
TJ
2529 output[0x0C] = eeprom->usb_version & 0xff;
2530 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2531 output[0x14] = eeprom->chip;
2532 break;
2533 case TYPE_R:
2534 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2535 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2536 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
4e74064b 2537
56ac0383
TJ
2538 if (eeprom->suspend_pull_downs == 1)
2539 output[0x0A] |= 0x4;
2540 else
2541 output[0x0A] &= ~0x4;
2542 output[0x0B] = eeprom->invert;
2543 output[0x0C] = eeprom->usb_version & 0xff;
2544 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
4e74064b 2545
56ac0383
TJ
2546 if (eeprom->cbus_function[0] > CBUS_BB)
2547 output[0x14] = CBUS_TXLED;
2548 else
2549 output[0x14] = eeprom->cbus_function[0];
4e74064b 2550
56ac0383
TJ
2551 if (eeprom->cbus_function[1] > CBUS_BB)
2552 output[0x14] |= CBUS_RXLED<<4;
2553 else
2554 output[0x14] |= eeprom->cbus_function[1]<<4;
4e74064b 2555
56ac0383
TJ
2556 if (eeprom->cbus_function[2] > CBUS_BB)
2557 output[0x15] = CBUS_TXDEN;
2558 else
2559 output[0x15] = eeprom->cbus_function[2];
4e74064b 2560
56ac0383
TJ
2561 if (eeprom->cbus_function[3] > CBUS_BB)
2562 output[0x15] |= CBUS_PWREN<<4;
2563 else
2564 output[0x15] |= eeprom->cbus_function[3]<<4;
4e74064b 2565
56ac0383
TJ
2566 if (eeprom->cbus_function[4] > CBUS_CLK6)
2567 output[0x16] = CBUS_SLEEP;
2568 else
2569 output[0x16] = eeprom->cbus_function[4];
2570 break;
2571 case TYPE_2232H:
2572 output[0x00] = (eeprom->channel_a_type);
2573 if ( eeprom->channel_a_driver == DRIVER_VCP)
2574 output[0x00] |= DRIVER_VCP;
2575 else
2576 output[0x00] &= ~DRIVER_VCP;
6e6a1c3f 2577
56ac0383
TJ
2578 output[0x01] = (eeprom->channel_b_type);
2579 if ( eeprom->channel_b_driver == DRIVER_VCP)
2580 output[0x01] |= DRIVER_VCP;
2581 else
2582 output[0x01] &= ~DRIVER_VCP;
2583 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2584 output[0x01] |= SUSPEND_DBUS7_BIT;
2585 else
2586 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2587
2588 if (eeprom->suspend_pull_downs == 1)
2589 output[0x0A] |= 0x4;
2590 else
2591 output[0x0A] &= ~0x4;
2592
2593 if (eeprom->group0_drive > DRIVE_16MA)
2594 output[0x0c] |= DRIVE_16MA;
2595 else
2596 output[0x0c] |= eeprom->group0_drive;
2597 if (eeprom->group0_schmitt == IS_SCHMITT)
2598 output[0x0c] |= IS_SCHMITT;
2599 if (eeprom->group0_slew == SLOW_SLEW)
2600 output[0x0c] |= SLOW_SLEW;
2601
2602 if (eeprom->group1_drive > DRIVE_16MA)
2603 output[0x0c] |= DRIVE_16MA<<4;
2604 else
2605 output[0x0c] |= eeprom->group1_drive<<4;
2606 if (eeprom->group1_schmitt == IS_SCHMITT)
2607 output[0x0c] |= IS_SCHMITT<<4;
2608 if (eeprom->group1_slew == SLOW_SLEW)
2609 output[0x0c] |= SLOW_SLEW<<4;
2610
2611 if (eeprom->group2_drive > DRIVE_16MA)
2612 output[0x0d] |= DRIVE_16MA;
2613 else
2614 output[0x0d] |= eeprom->group2_drive;
2615 if (eeprom->group2_schmitt == IS_SCHMITT)
2616 output[0x0d] |= IS_SCHMITT;
2617 if (eeprom->group2_slew == SLOW_SLEW)
2618 output[0x0d] |= SLOW_SLEW;
2619
2620 if (eeprom->group3_drive > DRIVE_16MA)
2621 output[0x0d] |= DRIVE_16MA<<4;
2622 else
2623 output[0x0d] |= eeprom->group3_drive<<4;
2624 if (eeprom->group3_schmitt == IS_SCHMITT)
2625 output[0x0d] |= IS_SCHMITT<<4;
2626 if (eeprom->group3_slew == SLOW_SLEW)
2627 output[0x0d] |= SLOW_SLEW<<4;
3802140c 2628
56ac0383 2629 output[0x18] = eeprom->chip;
3802140c 2630
56ac0383
TJ
2631 break;
2632 case TYPE_4232H:
2633 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
3802140c
UB
2634 }
2635
cbf65673 2636 // calculate checksum
b8aa7b35 2637 checksum = 0xAAAA;
d9f0cce7 2638
22d12cda
TJ
2639 for (i = 0; i < eeprom->size/2-1; i++)
2640 {
d9f0cce7
TJ
2641 value = output[i*2];
2642 value += output[(i*2)+1] << 8;
b8aa7b35 2643
d9f0cce7
TJ
2644 checksum = value^checksum;
2645 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
2646 }
2647
c201f80f
TJ
2648 output[eeprom->size-2] = checksum;
2649 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 2650
516ebfb1 2651 return user_area_size;
b8aa7b35
TJ
2652}
2653
4af1d1bb
MK
2654/**
2655 Decode binary EEPROM image into an ftdi_eeprom structure.
2656
a35aa9bd
UB
2657 \param ftdi pointer to ftdi_context
2658 \param verbose Decode EEPROM on stdout
56ac0383 2659
4af1d1bb
MK
2660 \retval 0: all fine
2661 \retval -1: something went wrong
2662
2663 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2664 FIXME: Strings are malloc'ed here and should be freed somewhere
2665*/
a35aa9bd 2666int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
b56d5a64
MK
2667{
2668 unsigned char i, j;
2669 unsigned short checksum, eeprom_checksum, value;
2670 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
f2cd9fd5 2671 int eeprom_size;
c0a96aed 2672 struct ftdi_eeprom *eeprom;
a35aa9bd 2673 unsigned char *buf = ftdi->eeprom->buf;
38801bf8 2674 int release;
22a1b5c1 2675
c0a96aed 2676 if (ftdi == NULL)
cc9c9d58 2677 ftdi_error_return(-1,"No context");
c0a96aed 2678 if (ftdi->eeprom == NULL)
6cd4f922 2679 ftdi_error_return(-1,"No eeprom structure");
56ac0383 2680
c0a96aed 2681 eeprom = ftdi->eeprom;
a35aa9bd 2682 eeprom_size = eeprom->size;
b56d5a64 2683
b56d5a64
MK
2684 // Addr 02: Vendor ID
2685 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2686
2687 // Addr 04: Product ID
2688 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
22d12cda 2689
38801bf8 2690 release = buf[0x06] + (buf[0x07]<<8);
b56d5a64
MK
2691
2692 // Addr 08: Config descriptor
2693 // Bit 7: always 1
2694 // Bit 6: 1 if this device is self powered, 0 if bus powered
2695 // Bit 5: 1 if this device uses remote wakeup
f6ef2983 2696 eeprom->self_powered = buf[0x08] & 0x40;
814710ba 2697 eeprom->remote_wakeup = buf[0x08] & 0x20;
b56d5a64
MK
2698
2699 // Addr 09: Max power consumption: max power = value * 2 mA
2700 eeprom->max_power = buf[0x09];
2701
2702 // Addr 0A: Chip configuration
2703 // Bit 7: 0 - reserved
2704 // Bit 6: 0 - reserved
2705 // Bit 5: 0 - reserved
caec1294 2706 // Bit 4: 1 - Change USB version on BM and 2232C
b56d5a64
MK
2707 // Bit 3: 1 - Use the serial number string
2708 // Bit 2: 1 - Enable suspend pull downs for lower power
2709 // Bit 1: 1 - Out EndPoint is Isochronous
2710 // Bit 0: 1 - In EndPoint is Isochronous
2711 //
8d3fe5c9
UB
2712 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2713 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2714 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
a02587d5 2715 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
caec1294 2716 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
b56d5a64 2717
b1859923 2718 // Addr 0C: USB version low byte when 0x0A
56ac0383 2719 // Addr 0D: USB version high byte when 0x0A
b1859923 2720 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
b56d5a64
MK
2721
2722 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2723 // Addr 0F: Length of manufacturer string
2724 manufacturer_size = buf[0x0F]/2;
56ac0383 2725 if (eeprom->manufacturer)
74e8e79d 2726 free(eeprom->manufacturer);
56ac0383 2727 if (manufacturer_size > 0)
acc1fa05
UB
2728 {
2729 eeprom->manufacturer = malloc(manufacturer_size);
2730 if (eeprom->manufacturer)
2731 {
2732 // Decode manufacturer
84ec032f 2733 i = buf[0x0E] & (eeprom_size -1); // offset
acc1fa05
UB
2734 for (j=0;j<manufacturer_size-1;j++)
2735 {
2736 eeprom->manufacturer[j] = buf[2*j+i+2];
2737 }
2738 eeprom->manufacturer[j] = '\0';
2739 }
2740 }
b56d5a64
MK
2741 else eeprom->manufacturer = NULL;
2742
2743 // Addr 10: Offset of the product string + 0x80, calculated later
2744 // Addr 11: Length of product string
56ac0383 2745 if (eeprom->product)
74e8e79d 2746 free(eeprom->product);
b56d5a64 2747 product_size = buf[0x11]/2;
acc1fa05
UB
2748 if (product_size > 0)
2749 {
2750 eeprom->product = malloc(product_size);
56ac0383 2751 if (eeprom->product)
acc1fa05
UB
2752 {
2753 // Decode product name
84ec032f 2754 i = buf[0x10] & (eeprom_size -1); // offset
acc1fa05
UB
2755 for (j=0;j<product_size-1;j++)
2756 {
2757 eeprom->product[j] = buf[2*j+i+2];
2758 }
2759 eeprom->product[j] = '\0';
2760 }
2761 }
b56d5a64
MK
2762 else eeprom->product = NULL;
2763
2764 // Addr 12: Offset of the serial string + 0x80, calculated later
2765 // Addr 13: Length of serial string
56ac0383 2766 if (eeprom->serial)
74e8e79d 2767 free(eeprom->serial);
b56d5a64 2768 serial_size = buf[0x13]/2;
acc1fa05
UB
2769 if (serial_size > 0)
2770 {
2771 eeprom->serial = malloc(serial_size);
56ac0383 2772 if (eeprom->serial)
acc1fa05
UB
2773 {
2774 // Decode serial
84ec032f 2775 i = buf[0x12] & (eeprom_size -1); // offset
acc1fa05
UB
2776 for (j=0;j<serial_size-1;j++)
2777 {
2778 eeprom->serial[j] = buf[2*j+i+2];
2779 }
2780 eeprom->serial[j] = '\0';
2781 }
2782 }
b56d5a64
MK
2783 else eeprom->serial = NULL;
2784
b56d5a64
MK
2785 // verify checksum
2786 checksum = 0xAAAA;
2787
22d12cda
TJ
2788 for (i = 0; i < eeprom_size/2-1; i++)
2789 {
b56d5a64
MK
2790 value = buf[i*2];
2791 value += buf[(i*2)+1] << 8;
2792
2793 checksum = value^checksum;
2794 checksum = (checksum << 1) | (checksum >> 15);
2795 }
2796
2797 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2798
22d12cda
TJ
2799 if (eeprom_checksum != checksum)
2800 {
2801 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
cc9c9d58 2802 ftdi_error_return(-1,"EEPROM checksum error");
4af1d1bb
MK
2803 }
2804
eb498cff 2805 eeprom->channel_a_type = 0;
aa099f46 2806 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
f6ef2983 2807 {
6cd4f922 2808 eeprom->chip = -1;
f6ef2983 2809 }
56ac0383 2810 else if (ftdi->type == TYPE_2232C)
f6ef2983 2811 {
2cde7c52
UB
2812 eeprom->channel_a_type = buf[0x00] & 0x7;
2813 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2814 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2815 eeprom->channel_b_type = buf[0x01] & 0x7;
2816 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2817 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
6cd4f922 2818 eeprom->chip = buf[0x14];
065edc58 2819 }
56ac0383 2820 else if (ftdi->type == TYPE_R)
564b2716 2821 {
2cde7c52
UB
2822 /* TYPE_R flags D2XX, not VCP as all others*/
2823 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2824 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
56ac0383
TJ
2825 if ( (buf[0x01]&0x40) != 0x40)
2826 fprintf(stderr,
2827 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2828 " If this happened with the\n"
2829 " EEPROM programmed by FTDI tools, please report "
2830 "to libftdi@developer.intra2net.com\n");
2cde7c52 2831
6cd4f922 2832 eeprom->chip = buf[0x16];
cecb9cb2
UB
2833 // Addr 0B: Invert data lines
2834 // Works only on FT232R, not FT245R, but no way to distinguish
07851949
UB
2835 eeprom->invert = buf[0x0B];
2836 // Addr 14: CBUS function: CBUS0, CBUS1
2837 // Addr 15: CBUS function: CBUS2, CBUS3
2838 // Addr 16: CBUS function: CBUS5
2839 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2840 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2841 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2842 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2843 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
564b2716 2844 }
56ac0383 2845 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
db099ec5 2846 {
c6b94478 2847 eeprom->channel_a_type = buf[0x00] & 0x7;
2cde7c52
UB
2848 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2849 eeprom->channel_b_type = buf[0x01] & 0x7;
2850 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2851
56ac0383 2852 if (ftdi->type == TYPE_2232H)
ec0dcd3f 2853 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
2cde7c52 2854
6cd4f922 2855 eeprom->chip = buf[0x18];
db099ec5
UB
2856 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2857 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2858 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2859 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2860 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2861 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2862 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2863 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2864 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2865 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2866 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2867 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
947d9552 2868 }
56ac0383
TJ
2869
2870 if (verbose)
f6ef2983 2871 {
e107f509 2872 char *channel_mode[] = {"UART","245","CPU", "unknown", "OPTO"};
f6ef2983
UB
2873 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
2874 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
38801bf8 2875 fprintf(stdout, "Release: 0x%04x\n",release);
f6ef2983 2876
56ac0383 2877 if (eeprom->self_powered)
f6ef2983
UB
2878 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
2879 else
1cd815ad 2880 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
f6ef2983 2881 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
56ac0383 2882 if (eeprom->manufacturer)
f6ef2983 2883 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
56ac0383 2884 if (eeprom->product)
f6ef2983 2885 fprintf(stdout, "Product: %s\n",eeprom->product);
56ac0383 2886 if (eeprom->serial)
f6ef2983 2887 fprintf(stdout, "Serial: %s\n",eeprom->serial);
e107f509 2888 fprintf(stdout, "Checksum : %04x\n", checksum);
6cd4f922
UB
2889 if (ftdi->type == TYPE_R)
2890 fprintf(stdout, "Internal EEPROM\n");
2891 else if (eeprom->chip >= 0x46)
2892 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
56ac0383
TJ
2893 if (eeprom->suspend_dbus7)
2894 fprintf(stdout, "Suspend on DBUS7\n");
2895 if (eeprom->suspend_pull_downs)
fb9bfdd1 2896 fprintf(stdout, "Pull IO pins low during suspend\n");
56ac0383 2897 if (eeprom->remote_wakeup)
fb9bfdd1 2898 fprintf(stdout, "Enable Remote Wake Up\n");
802a949e 2899 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
db099ec5 2900 if (ftdi->type >= TYPE_2232C)
56ac0383 2901 fprintf(stdout,"Channel A has Mode %s%s%s\n",
e107f509 2902 channel_mode[eeprom->channel_a_type],
2cde7c52
UB
2903 (eeprom->channel_a_driver)?" VCP":"",
2904 (eeprom->high_current_a)?" High Current IO":"");
56ac0383
TJ
2905 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R))
2906 fprintf(stdout,"Channel B has Mode %s%s%s\n",
e107f509 2907 channel_mode[eeprom->channel_b_type],
2cde7c52
UB
2908 (eeprom->channel_b_driver)?" VCP":"",
2909 (eeprom->high_current_b)?" High Current IO":"");
caec1294 2910 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
56ac0383 2911 eeprom->use_usb_version == USE_USB_VERSION_BIT)
caec1294
UB
2912 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
2913
56ac0383 2914 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
db099ec5
UB
2915 {
2916 fprintf(stdout,"%s has %d mA drive%s%s\n",
2917 (ftdi->type == TYPE_2232H)?"AL":"A",
2918 (eeprom->group0_drive+1) *4,
2919 (eeprom->group0_schmitt)?" Schmitt Input":"",
2920 (eeprom->group0_slew)?" Slow Slew":"");
2921 fprintf(stdout,"%s has %d mA drive%s%s\n",
2922 (ftdi->type == TYPE_2232H)?"AH":"B",
2923 (eeprom->group1_drive+1) *4,
2924 (eeprom->group1_schmitt)?" Schmitt Input":"",
2925 (eeprom->group1_slew)?" Slow Slew":"");
2926 fprintf(stdout,"%s has %d mA drive%s%s\n",
2927 (ftdi->type == TYPE_2232H)?"BL":"C",
2928 (eeprom->group2_drive+1) *4,
2929 (eeprom->group2_schmitt)?" Schmitt Input":"",
2930 (eeprom->group2_slew)?" Slow Slew":"");
2931 fprintf(stdout,"%s has %d mA drive%s%s\n",
2932 (ftdi->type == TYPE_2232H)?"BH":"D",
2933 (eeprom->group3_drive+1) *4,
2934 (eeprom->group3_schmitt)?" Schmitt Input":"",
2935 (eeprom->group3_slew)?" Slow Slew":"");
2936 }
a4980043
UB
2937 if (ftdi->type == TYPE_R)
2938 {
2939 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
13f00d3c 2940 "SLEEP","CLK48","CLK24","CLK12","CLK6",
56ac0383
TJ
2941 "IOMODE","BB_WR","BB_RD"
2942 };
13f00d3c 2943 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
a4980043 2944 int i;
56ac0383
TJ
2945
2946 if (eeprom->invert)
2947 {
a4980043
UB
2948 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
2949 fprintf(stdout,"Inverted bits:");
2950 for (i=0; i<8; i++)
56ac0383 2951 if ((eeprom->invert & (1<<i)) == (1<<i))
a4980043
UB
2952 fprintf(stdout," %s",r_bits[i]);
2953 fprintf(stdout,"\n");
2954 }
56ac0383 2955 for (i=0; i<5; i++)
a4980043 2956 {
56ac0383 2957 if (eeprom->cbus_function[i]<CBUS_BB)
a4980043
UB
2958 fprintf(stdout,"C%d Function: %s\n", i,
2959 cbus_mux[eeprom->cbus_function[i]]);
2960 else
17431287
TJ
2961 {
2962 /* FIXME for Uwe: This results in an access above array bounds.
2963 Also I couldn't find documentation about this mode.
a4980043
UB
2964 fprintf(stdout,"C%d BB Function: %s\n", i,
2965 cbus_BB[i]);
17431287
TJ
2966 */
2967 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
2968 (void)cbus_BB;
2969 }
a4980043
UB
2970 }
2971 }
f6ef2983 2972 }
4af1d1bb 2973 return 0;
b56d5a64
MK
2974}
2975
1941414d 2976/**
44ef02bd
UB
2977 Get a value from the decoded EEPROM structure
2978
735e81ea
TJ
2979 \param ftdi pointer to ftdi_context
2980 \param value_name Enum of the value to query
2981 \param value Pointer to store read value
44ef02bd 2982
735e81ea
TJ
2983 \retval 0: all fine
2984 \retval -1: Value doesn't exist
44ef02bd
UB
2985*/
2986int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
2987{
2988 switch (value_name)
2989 {
56ac0383
TJ
2990 case VENDOR_ID:
2991 *value = ftdi->eeprom->vendor_id;
2992 break;
2993 case PRODUCT_ID:
2994 *value = ftdi->eeprom->product_id;
2995 break;
2996 case SELF_POWERED:
2997 *value = ftdi->eeprom->self_powered;
2998 break;
2999 case REMOTE_WAKEUP:
3000 *value = ftdi->eeprom->remote_wakeup;
3001 break;
3002 case IS_NOT_PNP:
3003 *value = ftdi->eeprom->is_not_pnp;
3004 break;
3005 case SUSPEND_DBUS7:
3006 *value = ftdi->eeprom->suspend_dbus7;
3007 break;
3008 case IN_IS_ISOCHRONOUS:
3009 *value = ftdi->eeprom->in_is_isochronous;
3010 break;
3011 case SUSPEND_PULL_DOWNS:
3012 *value = ftdi->eeprom->suspend_pull_downs;
3013 break;
3014 case USE_SERIAL:
3015 *value = ftdi->eeprom->use_serial;
3016 break;
3017 case USB_VERSION:
3018 *value = ftdi->eeprom->usb_version;
3019 break;
3020 case MAX_POWER:
3021 *value = ftdi->eeprom->max_power;
3022 break;
3023 case CHANNEL_A_TYPE:
3024 *value = ftdi->eeprom->channel_a_type;
3025 break;
3026 case CHANNEL_B_TYPE:
3027 *value = ftdi->eeprom->channel_b_type;
3028 break;
3029 case CHANNEL_A_DRIVER:
3030 *value = ftdi->eeprom->channel_a_driver;
3031 break;
3032 case CHANNEL_B_DRIVER:
3033 *value = ftdi->eeprom->channel_b_driver;
3034 break;
3035 case CBUS_FUNCTION_0:
3036 *value = ftdi->eeprom->cbus_function[0];
3037 break;
3038 case CBUS_FUNCTION_1:
3039 *value = ftdi->eeprom->cbus_function[1];
3040 break;
3041 case CBUS_FUNCTION_2:
3042 *value = ftdi->eeprom->cbus_function[2];
3043 break;
3044 case CBUS_FUNCTION_3:
3045 *value = ftdi->eeprom->cbus_function[3];
3046 break;
3047 case CBUS_FUNCTION_4:
3048 *value = ftdi->eeprom->cbus_function[4];
3049 break;
3050 case HIGH_CURRENT:
3051 *value = ftdi->eeprom->high_current;
3052 break;
3053 case HIGH_CURRENT_A:
3054 *value = ftdi->eeprom->high_current_a;
3055 break;
3056 case HIGH_CURRENT_B:
3057 *value = ftdi->eeprom->high_current_b;
3058 break;
3059 case INVERT:
3060 *value = ftdi->eeprom->invert;
3061 break;
3062 case GROUP0_DRIVE:
3063 *value = ftdi->eeprom->group0_drive;
3064 break;
3065 case GROUP0_SCHMITT:
3066 *value = ftdi->eeprom->group0_schmitt;
3067 break;
3068 case GROUP0_SLEW:
3069 *value = ftdi->eeprom->group0_slew;
3070 break;
3071 case GROUP1_DRIVE:
3072 *value = ftdi->eeprom->group1_drive;
3073 break;
3074 case GROUP1_SCHMITT:
3075 *value = ftdi->eeprom->group1_schmitt;
3076 break;
3077 case GROUP1_SLEW:
3078 *value = ftdi->eeprom->group1_slew;
3079 break;
3080 case GROUP2_DRIVE:
3081 *value = ftdi->eeprom->group2_drive;
3082 break;
3083 case GROUP2_SCHMITT:
3084 *value = ftdi->eeprom->group2_schmitt;
3085 break;
3086 case GROUP2_SLEW:
3087 *value = ftdi->eeprom->group2_slew;
3088 break;
3089 case GROUP3_DRIVE:
3090 *value = ftdi->eeprom->group3_drive;
3091 break;
3092 case GROUP3_SCHMITT:
3093 *value = ftdi->eeprom->group3_schmitt;
3094 break;
3095 case GROUP3_SLEW:
3096 *value = ftdi->eeprom->group3_slew;
3097 break;
3098 case CHIP_TYPE:
3099 *value = ftdi->eeprom->chip;
3100 break;
3101 case CHIP_SIZE:
3102 *value = ftdi->eeprom->size;
3103 break;
3104 default:
3105 ftdi_error_return(-1, "Request for unknown EEPROM value");
44ef02bd
UB
3106 }
3107 return 0;
3108}
3109
3110/**
3111 Set a value in the decoded EEPROM Structure
3112 No parameter checking is performed
3113
735e81ea
TJ
3114 \param ftdi pointer to ftdi_context
3115 \param value_name Enum of the value to query
3116 \param value to set
44ef02bd 3117
735e81ea
TJ
3118 \retval 0: all fine
3119 \retval -1: Value doesn't exist
3120 \retval -2: Value not user settable
44ef02bd
UB
3121*/
3122int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3123{
3124 switch (value_name)
3125 {
56ac0383
TJ
3126 case VENDOR_ID:
3127 ftdi->eeprom->vendor_id = value;
3128 break;
3129 case PRODUCT_ID:
3130 ftdi->eeprom->product_id = value;
3131 break;
3132 case SELF_POWERED:
3133 ftdi->eeprom->self_powered = value;
3134 break;
3135 case REMOTE_WAKEUP:
3136 ftdi->eeprom->remote_wakeup = value;
3137 break;
3138 case IS_NOT_PNP:
3139 ftdi->eeprom->is_not_pnp = value;
3140 break;
3141 case SUSPEND_DBUS7:
3142 ftdi->eeprom->suspend_dbus7 = value;
3143 break;
3144 case IN_IS_ISOCHRONOUS:
3145 ftdi->eeprom->in_is_isochronous = value;
3146 break;
3147 case SUSPEND_PULL_DOWNS:
3148 ftdi->eeprom->suspend_pull_downs = value;
3149 break;
3150 case USE_SERIAL:
3151 ftdi->eeprom->use_serial = value;
3152 break;
3153 case USB_VERSION:
3154 ftdi->eeprom->usb_version = value;
3155 break;
3156 case MAX_POWER:
3157 ftdi->eeprom->max_power = value;
3158 break;
3159 case CHANNEL_A_TYPE:
3160 ftdi->eeprom->channel_a_type = value;
3161 break;
3162 case CHANNEL_B_TYPE:
3163 ftdi->eeprom->channel_b_type = value;
3164 break;
3165 case CHANNEL_A_DRIVER:
3166 ftdi->eeprom->channel_a_driver = value;
3167 break;
3168 case CHANNEL_B_DRIVER:
3169 ftdi->eeprom->channel_b_driver = value;
3170 break;
3171 case CBUS_FUNCTION_0:
3172 ftdi->eeprom->cbus_function[0] = value;
3173 break;
3174 case CBUS_FUNCTION_1:
3175 ftdi->eeprom->cbus_function[1] = value;
3176 break;
3177 case CBUS_FUNCTION_2:
3178 ftdi->eeprom->cbus_function[2] = value;
3179 break;
3180 case CBUS_FUNCTION_3:
3181 ftdi->eeprom->cbus_function[3] = value;
3182 break;
3183 case CBUS_FUNCTION_4:
3184 ftdi->eeprom->cbus_function[4] = value;
3185 break;
3186 case HIGH_CURRENT:
3187 ftdi->eeprom->high_current = value;
3188 break;
3189 case HIGH_CURRENT_A:
3190 ftdi->eeprom->high_current_a = value;
3191 break;
3192 case HIGH_CURRENT_B:
3193 ftdi->eeprom->high_current_b = value;
3194 break;
3195 case INVERT:
3196 ftdi->eeprom->invert = value;
3197 break;
3198 case GROUP0_DRIVE:
3199 ftdi->eeprom->group0_drive = value;
3200 break;
3201 case GROUP0_SCHMITT:
3202 ftdi->eeprom->group0_schmitt = value;
3203 break;
3204 case GROUP0_SLEW:
3205 ftdi->eeprom->group0_slew = value;
3206 break;
3207 case GROUP1_DRIVE:
3208 ftdi->eeprom->group1_drive = value;
3209 break;
3210 case GROUP1_SCHMITT:
3211 ftdi->eeprom->group1_schmitt = value;
3212 break;
3213 case GROUP1_SLEW:
3214 ftdi->eeprom->group1_slew = value;
3215 break;
3216 case GROUP2_DRIVE:
3217 ftdi->eeprom->group2_drive = value;
3218 break;
3219 case GROUP2_SCHMITT:
3220 ftdi->eeprom->group2_schmitt = value;
3221 break;
3222 case GROUP2_SLEW:
3223 ftdi->eeprom->group2_slew = value;
3224 break;
3225 case GROUP3_DRIVE:
3226 ftdi->eeprom->group3_drive = value;
3227 break;
3228 case GROUP3_SCHMITT:
3229 ftdi->eeprom->group3_schmitt = value;
3230 break;
3231 case GROUP3_SLEW:
3232 ftdi->eeprom->group3_slew = value;
3233 break;
3234 case CHIP_TYPE:
3235 ftdi->eeprom->chip = value;
3236 break;
3237 case CHIP_SIZE:
3238 ftdi_error_return(-2, "EEPROM Value can't be changed");
3239 default :
3240 ftdi_error_return(-1, "Request to unknown EEPROM value");
44ef02bd
UB
3241 }
3242 return 0;
3243}
3244
3245/** Get the read-only buffer to the binary EEPROM content
3246
3247 \param ftdi pointer to ftdi_context
735e81ea 3248 \param buf buffer to receive EEPROM content
44ef02bd
UB
3249 \param size Size of receiving buffer
3250
3251 \retval 0: All fine
3252 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3253*/
56ac0383
TJ
3254int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3255{
3256 if (!ftdi || !(ftdi->eeprom))
3257 ftdi_error_return(-1, "No appropriate structure");
3258 memcpy(buf, ftdi->eeprom->buf, size);
3259 return 0;
3260}
44ef02bd
UB
3261
3262/**
c1c70e13
OS
3263 Read eeprom location
3264
3265 \param ftdi pointer to ftdi_context
3266 \param eeprom_addr Address of eeprom location to be read
3267 \param eeprom_val Pointer to store read eeprom location
3268
3269 \retval 0: all fine
3270 \retval -1: read failed
22a1b5c1 3271 \retval -2: USB device unavailable
c1c70e13
OS
3272*/
3273int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3274{
22a1b5c1
TJ
3275 if (ftdi == NULL || ftdi->usb_dev == NULL)
3276 ftdi_error_return(-2, "USB device unavailable");
3277
97c6b5f6 3278 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
c1c70e13
OS
3279 ftdi_error_return(-1, "reading eeprom failed");
3280
3281 return 0;
3282}
3283
3284/**
1941414d
TJ
3285 Read eeprom
3286
3287 \param ftdi pointer to ftdi_context
b8aa7b35 3288
1941414d
TJ
3289 \retval 0: all fine
3290 \retval -1: read failed
22a1b5c1 3291 \retval -2: USB device unavailable
1941414d 3292*/
a35aa9bd 3293int ftdi_read_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3294{
a3da1d95 3295 int i;
a35aa9bd 3296 unsigned char *buf;
a3da1d95 3297
22a1b5c1
TJ
3298 if (ftdi == NULL || ftdi->usb_dev == NULL)
3299 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 3300 buf = ftdi->eeprom->buf;
22a1b5c1 3301
2d543486 3302 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
22d12cda 3303 {
a35aa9bd 3304 if (libusb_control_transfer(
56ac0383
TJ
3305 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3306 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
c3d95b87 3307 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
3308 }
3309
2d543486 3310 if (ftdi->type == TYPE_R)
a35aa9bd 3311 ftdi->eeprom->size = 0x80;
56ac0383 3312 /* Guesses size of eeprom by comparing halves
2d543486 3313 - will not work with blank eeprom */
a35aa9bd 3314 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
2d543486 3315 ftdi->eeprom->size = -1;
56ac0383 3316 else if (memcmp(buf,&buf[0x80],0x80) == 0)
2d543486 3317 ftdi->eeprom->size = 0x80;
56ac0383 3318 else if (memcmp(buf,&buf[0x40],0x40) == 0)
2d543486
UB
3319 ftdi->eeprom->size = 0x40;
3320 else
3321 ftdi->eeprom->size = 0x100;
a3da1d95
GE
3322 return 0;
3323}
3324
cb6250fa
TJ
3325/*
3326 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3327 Function is only used internally
3328 \internal
3329*/
3330static unsigned char ftdi_read_chipid_shift(unsigned char value)
3331{
3332 return ((value & 1) << 1) |
22d12cda
TJ
3333 ((value & 2) << 5) |
3334 ((value & 4) >> 2) |
3335 ((value & 8) << 4) |
3336 ((value & 16) >> 1) |
3337 ((value & 32) >> 1) |
3338 ((value & 64) >> 4) |
3339 ((value & 128) >> 2);
cb6250fa
TJ
3340}
3341
3342/**
3343 Read the FTDIChip-ID from R-type devices
3344
3345 \param ftdi pointer to ftdi_context
3346 \param chipid Pointer to store FTDIChip-ID
3347
3348 \retval 0: all fine
3349 \retval -1: read failed
22a1b5c1 3350 \retval -2: USB device unavailable
cb6250fa
TJ
3351*/
3352int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3353{
c7eb3112 3354 unsigned int a = 0, b = 0;
cb6250fa 3355
22a1b5c1
TJ
3356 if (ftdi == NULL || ftdi->usb_dev == NULL)
3357 ftdi_error_return(-2, "USB device unavailable");
3358
579b006f 3359 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3360 {
3361 a = a << 8 | a >> 8;
579b006f 3362 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3363 {
3364 b = b << 8 | b >> 8;
5230676f 3365 a = (a << 16) | (b & 0xFFFF);
912d50ca
TJ
3366 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3367 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 3368 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 3369 return 0;
cb6250fa
TJ
3370 }
3371 }
3372
c7eb3112 3373 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
3374}
3375
1941414d 3376/**
c1c70e13
OS
3377 Write eeprom location
3378
3379 \param ftdi pointer to ftdi_context
3380 \param eeprom_addr Address of eeprom location to be written
3381 \param eeprom_val Value to be written
3382
3383 \retval 0: all fine
a661e3e4 3384 \retval -1: write failed
22a1b5c1 3385 \retval -2: USB device unavailable
a661e3e4
UB
3386 \retval -3: Invalid access to checksum protected area below 0x80
3387 \retval -4: Device can't access unprotected area
3388 \retval -5: Reading chip type failed
c1c70e13 3389*/
56ac0383 3390int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
a661e3e4 3391 unsigned short eeprom_val)
c1c70e13 3392{
a661e3e4
UB
3393 int chip_type_location;
3394 unsigned short chip_type;
3395
22a1b5c1
TJ
3396 if (ftdi == NULL || ftdi->usb_dev == NULL)
3397 ftdi_error_return(-2, "USB device unavailable");
3398
56ac0383 3399 if (eeprom_addr <0x80)
a661e3e4
UB
3400 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3401
3402
3403 switch (ftdi->type)
3404 {
56ac0383
TJ
3405 case TYPE_BM:
3406 case TYPE_2232C:
3407 chip_type_location = 0x14;
3408 break;
3409 case TYPE_2232H:
3410 case TYPE_4232H:
3411 chip_type_location = 0x18;
3412 break;
3413 default:
3414 ftdi_error_return(-4, "Device can't access unprotected area");
a661e3e4
UB
3415 }
3416
56ac0383 3417 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
a661e3e4 3418 ftdi_error_return(-5, "Reading failed failed");
56ac0383
TJ
3419 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3420 if ((chip_type & 0xff) != 0x66)
a661e3e4
UB
3421 {
3422 ftdi_error_return(-6, "EEPROM is not of 93x66");
3423 }
3424
579b006f 3425 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
3426 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3427 NULL, 0, ftdi->usb_write_timeout) != 0)
c1c70e13
OS
3428 ftdi_error_return(-1, "unable to write eeprom");
3429
3430 return 0;
3431}
3432
3433/**
1941414d 3434 Write eeprom
a3da1d95 3435
1941414d 3436 \param ftdi pointer to ftdi_context
56ac0383 3437
1941414d
TJ
3438 \retval 0: all fine
3439 \retval -1: read failed
22a1b5c1 3440 \retval -2: USB device unavailable
1941414d 3441*/
a35aa9bd 3442int ftdi_write_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3443{
ba5329be 3444 unsigned short usb_val, status;
e30da501 3445 int i, ret;
a35aa9bd 3446 unsigned char *eeprom;
a3da1d95 3447
22a1b5c1
TJ
3448 if (ftdi == NULL || ftdi->usb_dev == NULL)
3449 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 3450 eeprom = ftdi->eeprom->buf;
22a1b5c1 3451
ba5329be 3452 /* These commands were traced while running MProg */
e30da501
TJ
3453 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3454 return ret;
3455 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3456 return ret;
3457 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3458 return ret;
ba5329be 3459
c0a96aed 3460 for (i = 0; i < ftdi->eeprom->size/2; i++)
22d12cda 3461 {
d9f0cce7
TJ
3462 usb_val = eeprom[i*2];
3463 usb_val += eeprom[(i*2)+1] << 8;
579b006f
JZ
3464 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3465 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3466 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3467 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
3468 }
3469
3470 return 0;
3471}
3472
1941414d
TJ
3473/**
3474 Erase eeprom
a3da1d95 3475
a5e1bd8c
MK
3476 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3477
1941414d
TJ
3478 \param ftdi pointer to ftdi_context
3479
3480 \retval 0: all fine
3481 \retval -1: erase failed
22a1b5c1 3482 \retval -2: USB device unavailable
99404ad5
UB
3483 \retval -3: Writing magic failed
3484 \retval -4: Read EEPROM failed
3485 \retval -5: Unexpected EEPROM value
1941414d 3486*/
99404ad5 3487#define MAGIC 0x55aa
a8f46ddc
TJ
3488int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3489{
99404ad5 3490 unsigned short eeprom_value;
22a1b5c1
TJ
3491 if (ftdi == NULL || ftdi->usb_dev == NULL)
3492 ftdi_error_return(-2, "USB device unavailable");
3493
56ac0383 3494 if (ftdi->type == TYPE_R)
99404ad5
UB
3495 {
3496 ftdi->eeprom->chip = 0;
3497 return 0;
3498 }
3499
56ac0383 3500 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5 3501 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3502 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95 3503
56ac0383 3504
99404ad5
UB
3505 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3506 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3507 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3508 Chip is 93x66 if magic is only read at word position 0xc0*/
10186c1f 3509 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
3510 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3511 NULL, 0, ftdi->usb_write_timeout) != 0)
99404ad5 3512 ftdi_error_return(-3, "Writing magic failed");
56ac0383 3513 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
99404ad5 3514 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3515 if (eeprom_value == MAGIC)
99404ad5
UB
3516 {
3517 ftdi->eeprom->chip = 0x46;
3518 }
56ac0383 3519 else
99404ad5 3520 {
56ac0383 3521 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
99404ad5 3522 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3523 if (eeprom_value == MAGIC)
99404ad5 3524 ftdi->eeprom->chip = 0x56;
56ac0383 3525 else
99404ad5 3526 {
56ac0383 3527 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
99404ad5 3528 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3529 if (eeprom_value == MAGIC)
99404ad5
UB
3530 ftdi->eeprom->chip = 0x66;
3531 else
3532 {
3533 ftdi->eeprom->chip = -1;
3534 }
3535 }
3536 }
56ac0383 3537 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5
UB
3538 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3539 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
3540 return 0;
3541}
c3d95b87 3542
1941414d
TJ
3543/**
3544 Get string representation for last error code
c3d95b87 3545
1941414d
TJ
3546 \param ftdi pointer to ftdi_context
3547
3548 \retval Pointer to error string
3549*/
c3d95b87
TJ
3550char *ftdi_get_error_string (struct ftdi_context *ftdi)
3551{
22a1b5c1
TJ
3552 if (ftdi == NULL)
3553 return "";
3554
c3d95b87
TJ
3555 return ftdi->error_str;
3556}
a01d31e2 3557
b5ec1820 3558/* @} end of doxygen libftdi group */