Beginning of FT232H support. Many EEPROM values still need to be deciphered!
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
8a987aa2 5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
1bfc403c 21 http://www.intra2net.com/en/developer/libftdi/
b5ec1820 22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
579b006f 31#include <libusb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
b56d5a64 34#include <stdio.h>
579b006f 35#include <stdlib.h>
0e302db6 36
98452d97 37#include "ftdi.h"
a3da1d95 38
21abaf2e 39#define ftdi_error_return(code, str) do { \
2f73e59f 40 ftdi->error_str = str; \
21abaf2e 41 return code; \
d2f10023 42 } while(0);
c3d95b87 43
99650502
UB
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
418aaa72 50
f3f81007
TJ
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
579b006f 58 \retval none
f3f81007 59*/
579b006f 60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 61{
22a1b5c1 62 if (ftdi && ftdi->usb_dev)
dff4fdb0 63 {
56ac0383
TJ
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
dff4fdb0 66 }
dff4fdb0 67}
c3d95b87 68
1941414d
TJ
69/**
70 Initializes a ftdi_context.
4837f98a 71
1941414d 72 \param ftdi pointer to ftdi_context
4837f98a 73
1941414d
TJ
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
a35aa9bd 76 \retval -2: couldn't allocate struct buffer
3a284749 77 \retval -3: libusb_init() failed
1941414d
TJ
78
79 \remark This should be called before all functions
948f9ada 80*/
a8f46ddc
TJ
81int ftdi_init(struct ftdi_context *ftdi)
82{
a35aa9bd 83 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
02212d8e 84 ftdi->usb_ctx = NULL;
98452d97 85 ftdi->usb_dev = NULL;
545820ce
TJ
86 ftdi->usb_read_timeout = 5000;
87 ftdi->usb_write_timeout = 5000;
a3da1d95 88
53ad271d 89 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 90 ftdi->baudrate = -1;
418aaa72 91 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 92
948f9ada
TJ
93 ftdi->readbuffer = NULL;
94 ftdi->readbuffer_offset = 0;
95 ftdi->readbuffer_remaining = 0;
96 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 97 ftdi->max_packet_size = 0;
3a284749
TJ
98 ftdi->error_str = NULL;
99 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
100
101 if (libusb_init(&ftdi->usb_ctx) < 0)
102 ftdi_error_return(-3, "libusb_init() failed");
948f9ada 103
ac0af8ec 104 ftdi_set_interface(ftdi, INTERFACE_ANY);
418aaa72 105 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 106
a35aa9bd
UB
107 if (eeprom == 0)
108 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
b4d19dea 109 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
a35aa9bd 110 ftdi->eeprom = eeprom;
c201f80f 111
1c733d33
TJ
112 /* All fine. Now allocate the readbuffer */
113 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 114}
4837f98a 115
1941414d 116/**
cef378aa
TJ
117 Allocate and initialize a new ftdi_context
118
119 \return a pointer to a new ftdi_context, or NULL on failure
120*/
672ac008 121struct ftdi_context *ftdi_new(void)
cef378aa
TJ
122{
123 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
124
22d12cda
TJ
125 if (ftdi == NULL)
126 {
cef378aa
TJ
127 return NULL;
128 }
129
22d12cda
TJ
130 if (ftdi_init(ftdi) != 0)
131 {
cef378aa 132 free(ftdi);
cdf448f6 133 return NULL;
cef378aa
TJ
134 }
135
136 return ftdi;
137}
138
139/**
1941414d
TJ
140 Open selected channels on a chip, otherwise use first channel.
141
142 \param ftdi pointer to ftdi_context
f9d69895 143 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
144
145 \retval 0: all fine
146 \retval -1: unknown interface
22a1b5c1 147 \retval -2: USB device unavailable
c4446c36 148*/
0ce2f5fa 149int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 150{
1971c26d 151 if (ftdi == NULL)
22a1b5c1
TJ
152 ftdi_error_return(-2, "USB device unavailable");
153
22d12cda
TJ
154 switch (interface)
155 {
156 case INTERFACE_ANY:
157 case INTERFACE_A:
ac0af8ec
VY
158 ftdi->interface = 0;
159 ftdi->index = INTERFACE_A;
160 ftdi->in_ep = 0x02;
161 ftdi->out_ep = 0x81;
22d12cda
TJ
162 break;
163 case INTERFACE_B:
164 ftdi->interface = 1;
165 ftdi->index = INTERFACE_B;
166 ftdi->in_ep = 0x04;
167 ftdi->out_ep = 0x83;
168 break;
f9d69895
AH
169 case INTERFACE_C:
170 ftdi->interface = 2;
171 ftdi->index = INTERFACE_C;
172 ftdi->in_ep = 0x06;
173 ftdi->out_ep = 0x85;
174 break;
175 case INTERFACE_D:
176 ftdi->interface = 3;
177 ftdi->index = INTERFACE_D;
178 ftdi->in_ep = 0x08;
179 ftdi->out_ep = 0x87;
180 break;
22d12cda
TJ
181 default:
182 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
183 }
184 return 0;
185}
948f9ada 186
1941414d
TJ
187/**
188 Deinitializes a ftdi_context.
4837f98a 189
1941414d 190 \param ftdi pointer to ftdi_context
4837f98a 191*/
a8f46ddc
TJ
192void ftdi_deinit(struct ftdi_context *ftdi)
193{
22a1b5c1
TJ
194 if (ftdi == NULL)
195 return;
196
f3f81007 197 ftdi_usb_close_internal (ftdi);
dff4fdb0 198
22d12cda
TJ
199 if (ftdi->readbuffer != NULL)
200 {
d9f0cce7
TJ
201 free(ftdi->readbuffer);
202 ftdi->readbuffer = NULL;
948f9ada 203 }
a35aa9bd
UB
204
205 if (ftdi->eeprom != NULL)
206 {
74e8e79d
UB
207 if (ftdi->eeprom->manufacturer != 0)
208 {
209 free(ftdi->eeprom->manufacturer);
210 ftdi->eeprom->manufacturer = 0;
211 }
212 if (ftdi->eeprom->product != 0)
213 {
214 free(ftdi->eeprom->product);
215 ftdi->eeprom->product = 0;
216 }
217 if (ftdi->eeprom->serial != 0)
218 {
219 free(ftdi->eeprom->serial);
220 ftdi->eeprom->serial = 0;
221 }
a35aa9bd
UB
222 free(ftdi->eeprom);
223 ftdi->eeprom = NULL;
224 }
3a284749
TJ
225
226 if (ftdi->usb_ctx)
227 {
228 libusb_exit(ftdi->usb_ctx);
229 ftdi->usb_ctx = NULL;
230 }
a3da1d95
GE
231}
232
1941414d 233/**
cef378aa
TJ
234 Deinitialize and free an ftdi_context.
235
236 \param ftdi pointer to ftdi_context
237*/
238void ftdi_free(struct ftdi_context *ftdi)
239{
240 ftdi_deinit(ftdi);
241 free(ftdi);
242}
243
244/**
1941414d
TJ
245 Use an already open libusb device.
246
247 \param ftdi pointer to ftdi_context
579b006f 248 \param usb libusb libusb_device_handle to use
4837f98a 249*/
579b006f 250void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 251{
22a1b5c1
TJ
252 if (ftdi == NULL)
253 return;
254
98452d97
TJ
255 ftdi->usb_dev = usb;
256}
257
258
1941414d
TJ
259/**
260 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
261 needs to be deallocated by ftdi_list_free() after use.
262
263 \param ftdi pointer to ftdi_context
264 \param devlist Pointer where to store list of found devices
265 \param vendor Vendor ID to search for
266 \param product Product ID to search for
edb82cbf 267
1941414d 268 \retval >0: number of devices found
1941414d 269 \retval -3: out of memory
579b006f
JZ
270 \retval -5: libusb_get_device_list() failed
271 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 272*/
d2f10023 273int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
274{
275 struct ftdi_device_list **curdev;
579b006f
JZ
276 libusb_device *dev;
277 libusb_device **devs;
edb82cbf 278 int count = 0;
579b006f
JZ
279 int i = 0;
280
02212d8e 281 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 282 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
283
284 curdev = devlist;
6db32169 285 *curdev = NULL;
579b006f
JZ
286
287 while ((dev = devs[i++]) != NULL)
22d12cda 288 {
579b006f 289 struct libusb_device_descriptor desc;
d2f10023 290
579b006f 291 if (libusb_get_device_descriptor(dev, &desc) < 0)
77377af7 292 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
edb82cbf 293
579b006f
JZ
294 if (desc.idVendor == vendor && desc.idProduct == product)
295 {
296 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
297 if (!*curdev)
77377af7 298 ftdi_error_return_free_device_list(-3, "out of memory", devs);
56ac0383 299
579b006f
JZ
300 (*curdev)->next = NULL;
301 (*curdev)->dev = dev;
302
303 curdev = &(*curdev)->next;
304 count++;
edb82cbf
TJ
305 }
306 }
77377af7 307 libusb_free_device_list(devs,1);
edb82cbf
TJ
308 return count;
309}
310
1941414d
TJ
311/**
312 Frees a usb device list.
edb82cbf 313
1941414d 314 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 315*/
d2f10023 316void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 317{
6db32169
TJ
318 struct ftdi_device_list *curdev, *next;
319
22d12cda
TJ
320 for (curdev = *devlist; curdev != NULL;)
321 {
6db32169
TJ
322 next = curdev->next;
323 free(curdev);
324 curdev = next;
edb82cbf
TJ
325 }
326
6db32169 327 *devlist = NULL;
edb82cbf
TJ
328}
329
1941414d 330/**
cef378aa
TJ
331 Frees a usb device list.
332
333 \param devlist USB device list created by ftdi_usb_find_all()
334*/
335void ftdi_list_free2(struct ftdi_device_list *devlist)
336{
337 ftdi_list_free(&devlist);
338}
339
340/**
474786c0
TJ
341 Return device ID strings from the usb device.
342
343 The parameters manufacturer, description and serial may be NULL
344 or pointer to buffers to store the fetched strings.
345
898c34dd
TJ
346 \note Use this function only in combination with ftdi_usb_find_all()
347 as it closes the internal "usb_dev" after use.
348
474786c0
TJ
349 \param ftdi pointer to ftdi_context
350 \param dev libusb usb_dev to use
351 \param manufacturer Store manufacturer string here if not NULL
352 \param mnf_len Buffer size of manufacturer string
353 \param description Store product description string here if not NULL
354 \param desc_len Buffer size of product description string
355 \param serial Store serial string here if not NULL
356 \param serial_len Buffer size of serial string
357
358 \retval 0: all fine
359 \retval -1: wrong arguments
360 \retval -4: unable to open device
361 \retval -7: get product manufacturer failed
362 \retval -8: get product description failed
363 \retval -9: get serial number failed
579b006f 364 \retval -11: libusb_get_device_descriptor() failed
474786c0 365*/
579b006f 366int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
22d12cda 367 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
474786c0 368{
579b006f
JZ
369 struct libusb_device_descriptor desc;
370
474786c0
TJ
371 if ((ftdi==NULL) || (dev==NULL))
372 return -1;
373
579b006f
JZ
374 if (libusb_open(dev, &ftdi->usb_dev) < 0)
375 ftdi_error_return(-4, "libusb_open() failed");
376
377 if (libusb_get_device_descriptor(dev, &desc) < 0)
378 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 379
22d12cda
TJ
380 if (manufacturer != NULL)
381 {
579b006f 382 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 383 {
f3f81007 384 ftdi_usb_close_internal (ftdi);
579b006f 385 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
386 }
387 }
388
22d12cda
TJ
389 if (description != NULL)
390 {
579b006f 391 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 392 {
f3f81007 393 ftdi_usb_close_internal (ftdi);
579b006f 394 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
395 }
396 }
397
22d12cda
TJ
398 if (serial != NULL)
399 {
579b006f 400 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 401 {
f3f81007 402 ftdi_usb_close_internal (ftdi);
579b006f 403 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
404 }
405 }
406
579b006f 407 ftdi_usb_close_internal (ftdi);
474786c0
TJ
408
409 return 0;
410}
411
412/**
e2f12a4f
TJ
413 * Internal function to determine the maximum packet size.
414 * \param ftdi pointer to ftdi_context
415 * \param dev libusb usb_dev to use
416 * \retval Maximum packet size for this device
417 */
579b006f 418static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 419{
579b006f
JZ
420 struct libusb_device_descriptor desc;
421 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
422 unsigned int packet_size;
423
22a1b5c1
TJ
424 // Sanity check
425 if (ftdi == NULL || dev == NULL)
426 return 64;
427
e2f12a4f
TJ
428 // Determine maximum packet size. Init with default value.
429 // New hi-speed devices from FTDI use a packet size of 512 bytes
430 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
c7e4c09e 431 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
e2f12a4f
TJ
432 packet_size = 512;
433 else
434 packet_size = 64;
435
579b006f
JZ
436 if (libusb_get_device_descriptor(dev, &desc) < 0)
437 return packet_size;
438
439 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
440 return packet_size;
e2f12a4f 441
579b006f
JZ
442 if (desc.bNumConfigurations > 0)
443 {
444 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 445 {
579b006f 446 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
447 if (interface.num_altsetting > 0)
448 {
579b006f 449 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
450 if (descriptor.bNumEndpoints > 0)
451 {
452 packet_size = descriptor.endpoint[0].wMaxPacketSize;
453 }
454 }
455 }
456 }
457
579b006f 458 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
459 return packet_size;
460}
461
462/**
418aaa72 463 Opens a ftdi device given by an usb_device.
7b18bef6 464
1941414d
TJ
465 \param ftdi pointer to ftdi_context
466 \param dev libusb usb_dev to use
467
468 \retval 0: all fine
23b1798d 469 \retval -3: unable to config device
1941414d
TJ
470 \retval -4: unable to open device
471 \retval -5: unable to claim device
472 \retval -6: reset failed
473 \retval -7: set baudrate failed
22a1b5c1 474 \retval -8: ftdi context invalid
579b006f
JZ
475 \retval -9: libusb_get_device_descriptor() failed
476 \retval -10: libusb_get_config_descriptor() failed
e375e6cb 477 \retval -11: libusb_detach_kernel_driver() failed
579b006f 478 \retval -12: libusb_get_configuration() failed
7b18bef6 479*/
579b006f 480int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 481{
579b006f
JZ
482 struct libusb_device_descriptor desc;
483 struct libusb_config_descriptor *config0;
43aee24f 484 int cfg, cfg0, detach_errno = 0;
579b006f 485
22a1b5c1
TJ
486 if (ftdi == NULL)
487 ftdi_error_return(-8, "ftdi context invalid");
488
579b006f
JZ
489 if (libusb_open(dev, &ftdi->usb_dev) < 0)
490 ftdi_error_return(-4, "libusb_open() failed");
491
492 if (libusb_get_device_descriptor(dev, &desc) < 0)
493 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
494
495 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
496 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
497 cfg0 = config0->bConfigurationValue;
498 libusb_free_config_descriptor (config0);
d2f10023 499
22592e17 500 // Try to detach ftdi_sio kernel module.
22592e17
TJ
501 //
502 // The return code is kept in a separate variable and only parsed
503 // if usb_set_configuration() or usb_claim_interface() fails as the
504 // detach operation might be denied and everything still works fine.
505 // Likely scenario is a static ftdi_sio kernel module.
a3d86bdb
TJ
506 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
507 {
508 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
509 detach_errno = errno;
510 }
d2f10023 511
579b006f
JZ
512 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
513 ftdi_error_return(-12, "libusb_get_configuration () failed");
b57aedfd
GE
514 // set configuration (needed especially for windows)
515 // tolerate EBUSY: one device with one configuration, but two interfaces
516 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 517 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 518 {
579b006f 519 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 520 {
a56ba2bd 521 ftdi_usb_close_internal (ftdi);
56ac0383 522 if (detach_errno == EPERM)
43aee24f
UB
523 {
524 ftdi_error_return(-8, "inappropriate permissions on device!");
525 }
526 else
527 {
c16b162d 528 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
43aee24f 529 }
23b1798d
TJ
530 }
531 }
532
579b006f 533 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 534 {
f3f81007 535 ftdi_usb_close_internal (ftdi);
56ac0383 536 if (detach_errno == EPERM)
43aee24f
UB
537 {
538 ftdi_error_return(-8, "inappropriate permissions on device!");
539 }
540 else
541 {
c16b162d 542 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
43aee24f 543 }
7b18bef6
TJ
544 }
545
22d12cda
TJ
546 if (ftdi_usb_reset (ftdi) != 0)
547 {
f3f81007 548 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
549 ftdi_error_return(-6, "ftdi_usb_reset failed");
550 }
551
7b18bef6
TJ
552 // Try to guess chip type
553 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f 554 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
56ac0383 555 && desc.iSerialNumber == 0))
7b18bef6 556 ftdi->type = TYPE_BM;
579b006f 557 else if (desc.bcdDevice == 0x200)
7b18bef6 558 ftdi->type = TYPE_AM;
579b006f 559 else if (desc.bcdDevice == 0x500)
7b18bef6 560 ftdi->type = TYPE_2232C;
579b006f 561 else if (desc.bcdDevice == 0x600)
cb6250fa 562 ftdi->type = TYPE_R;
579b006f 563 else if (desc.bcdDevice == 0x700)
0beb9686 564 ftdi->type = TYPE_2232H;
579b006f 565 else if (desc.bcdDevice == 0x800)
0beb9686 566 ftdi->type = TYPE_4232H;
c7e4c09e
UB
567 else if (desc.bcdDevice == 0x900)
568 ftdi->type = TYPE_232H;
7b18bef6 569
e2f12a4f
TJ
570 // Determine maximum packet size
571 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
572
ef6f4838
TE
573 if (ftdi_set_baudrate (ftdi, 9600) != 0)
574 {
575 ftdi_usb_close_internal (ftdi);
576 ftdi_error_return(-7, "set baudrate failed");
577 }
578
7b18bef6
TJ
579 ftdi_error_return(0, "all fine");
580}
581
1941414d
TJ
582/**
583 Opens the first device with a given vendor and product ids.
584
585 \param ftdi pointer to ftdi_context
586 \param vendor Vendor ID
587 \param product Product ID
588
9bec2387 589 \retval same as ftdi_usb_open_desc()
1941414d 590*/
edb82cbf
TJ
591int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
592{
593 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
594}
595
1941414d
TJ
596/**
597 Opens the first device with a given, vendor id, product id,
598 description and serial.
599
600 \param ftdi pointer to ftdi_context
601 \param vendor Vendor ID
602 \param product Product ID
603 \param description Description to search for. Use NULL if not needed.
604 \param serial Serial to search for. Use NULL if not needed.
605
606 \retval 0: all fine
1941414d
TJ
607 \retval -3: usb device not found
608 \retval -4: unable to open device
609 \retval -5: unable to claim device
610 \retval -6: reset failed
611 \retval -7: set baudrate failed
612 \retval -8: get product description failed
613 \retval -9: get serial number failed
579b006f
JZ
614 \retval -11: libusb_init() failed
615 \retval -12: libusb_get_device_list() failed
616 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 617*/
04e1ea0a 618int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
619 const char* description, const char* serial)
620{
5ebbdab9
GE
621 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
622}
623
624/**
625 Opens the index-th device with a given, vendor id, product id,
626 description and serial.
627
628 \param ftdi pointer to ftdi_context
629 \param vendor Vendor ID
630 \param product Product ID
631 \param description Description to search for. Use NULL if not needed.
632 \param serial Serial to search for. Use NULL if not needed.
633 \param index Number of matching device to open if there are more than one, starts with 0.
634
635 \retval 0: all fine
636 \retval -1: usb_find_busses() failed
637 \retval -2: usb_find_devices() failed
638 \retval -3: usb device not found
639 \retval -4: unable to open device
640 \retval -5: unable to claim device
641 \retval -6: reset failed
642 \retval -7: set baudrate failed
643 \retval -8: get product description failed
644 \retval -9: get serial number failed
645 \retval -10: unable to close device
22a1b5c1 646 \retval -11: ftdi context invalid
5ebbdab9
GE
647*/
648int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
56ac0383 649 const char* description, const char* serial, unsigned int index)
5ebbdab9 650{
579b006f
JZ
651 libusb_device *dev;
652 libusb_device **devs;
c3d95b87 653 char string[256];
579b006f 654 int i = 0;
98452d97 655
22a1b5c1
TJ
656 if (ftdi == NULL)
657 ftdi_error_return(-11, "ftdi context invalid");
658
6ab07768
UB
659 if (libusb_init(&ftdi->usb_ctx) < 0)
660 ftdi_error_return(-11, "libusb_init() failed");
661
02212d8e 662 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
99650502
UB
663 ftdi_error_return(-12, "libusb_get_device_list() failed");
664
579b006f 665 while ((dev = devs[i++]) != NULL)
22d12cda 666 {
579b006f 667 struct libusb_device_descriptor desc;
99650502 668 int res;
579b006f
JZ
669
670 if (libusb_get_device_descriptor(dev, &desc) < 0)
99650502 671 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
579b006f
JZ
672
673 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 674 {
579b006f 675 if (libusb_open(dev, &ftdi->usb_dev) < 0)
99650502 676 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
c3d95b87 677
579b006f
JZ
678 if (description != NULL)
679 {
680 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 681 {
d4afae5f 682 ftdi_usb_close_internal (ftdi);
99650502 683 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
a8f46ddc 684 }
579b006f 685 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 686 {
d4afae5f 687 ftdi_usb_close_internal (ftdi);
579b006f 688 continue;
a8f46ddc 689 }
579b006f
JZ
690 }
691 if (serial != NULL)
692 {
693 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
694 {
695 ftdi_usb_close_internal (ftdi);
99650502 696 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
579b006f
JZ
697 }
698 if (strncmp(string, serial, sizeof(string)) != 0)
699 {
700 ftdi_usb_close_internal (ftdi);
701 continue;
702 }
703 }
98452d97 704
579b006f 705 ftdi_usb_close_internal (ftdi);
d2f10023 706
56ac0383
TJ
707 if (index > 0)
708 {
709 index--;
710 continue;
711 }
5ebbdab9 712
99650502
UB
713 res = ftdi_usb_open_dev(ftdi, dev);
714 libusb_free_device_list(devs,1);
715 return res;
98452d97 716 }
98452d97 717 }
a3da1d95 718
98452d97 719 // device not found
99650502 720 ftdi_error_return_free_device_list(-3, "device not found", devs);
a3da1d95
GE
721}
722
1941414d 723/**
5ebbdab9
GE
724 Opens the ftdi-device described by a description-string.
725 Intended to be used for parsing a device-description given as commandline argument.
726
727 \param ftdi pointer to ftdi_context
728 \param description NULL-terminated description-string, using this format:
729 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
730 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
731 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
732 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
733
734 \note The description format may be extended in later versions.
735
736 \retval 0: all fine
579b006f
JZ
737 \retval -1: libusb_init() failed
738 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
739 \retval -3: usb device not found
740 \retval -4: unable to open device
741 \retval -5: unable to claim device
742 \retval -6: reset failed
743 \retval -7: set baudrate failed
744 \retval -8: get product description failed
745 \retval -9: get serial number failed
746 \retval -10: unable to close device
747 \retval -11: illegal description format
22a1b5c1 748 \retval -12: ftdi context invalid
5ebbdab9
GE
749*/
750int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
751{
22a1b5c1
TJ
752 if (ftdi == NULL)
753 ftdi_error_return(-12, "ftdi context invalid");
754
5ebbdab9
GE
755 if (description[0] == 0 || description[1] != ':')
756 ftdi_error_return(-11, "illegal description format");
757
758 if (description[0] == 'd')
759 {
579b006f
JZ
760 libusb_device *dev;
761 libusb_device **devs;
56ac0383
TJ
762 unsigned int bus_number, device_address;
763 int i = 0;
579b006f 764
02212d8e 765 if (libusb_init (&ftdi->usb_ctx) < 0)
56ac0383 766 ftdi_error_return(-1, "libusb_init() failed");
5ebbdab9 767
56ac0383
TJ
768 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
769 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 770
579b006f
JZ
771 /* XXX: This doesn't handle symlinks/odd paths/etc... */
772 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
56ac0383 773 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
5ebbdab9 774
56ac0383 775 while ((dev = devs[i++]) != NULL)
5ebbdab9 776 {
99650502 777 int ret;
56ac0383
TJ
778 if (bus_number == libusb_get_bus_number (dev)
779 && device_address == libusb_get_device_address (dev))
99650502
UB
780 {
781 ret = ftdi_usb_open_dev(ftdi, dev);
782 libusb_free_device_list(devs,1);
783 return ret;
784 }
5ebbdab9
GE
785 }
786
787 // device not found
99650502 788 ftdi_error_return_free_device_list(-3, "device not found", devs);
5ebbdab9
GE
789 }
790 else if (description[0] == 'i' || description[0] == 's')
791 {
792 unsigned int vendor;
793 unsigned int product;
794 unsigned int index=0;
0e6cf62b 795 const char *serial=NULL;
5ebbdab9
GE
796 const char *startp, *endp;
797
798 errno=0;
799 startp=description+2;
800 vendor=strtoul((char*)startp,(char**)&endp,0);
801 if (*endp != ':' || endp == startp || errno != 0)
802 ftdi_error_return(-11, "illegal description format");
803
804 startp=endp+1;
805 product=strtoul((char*)startp,(char**)&endp,0);
806 if (endp == startp || errno != 0)
807 ftdi_error_return(-11, "illegal description format");
808
809 if (description[0] == 'i' && *endp != 0)
810 {
811 /* optional index field in i-mode */
812 if (*endp != ':')
813 ftdi_error_return(-11, "illegal description format");
814
815 startp=endp+1;
816 index=strtoul((char*)startp,(char**)&endp,0);
817 if (*endp != 0 || endp == startp || errno != 0)
818 ftdi_error_return(-11, "illegal description format");
819 }
820 if (description[0] == 's')
821 {
822 if (*endp != ':')
823 ftdi_error_return(-11, "illegal description format");
824
825 /* rest of the description is the serial */
826 serial=endp+1;
827 }
828
829 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
830 }
831 else
832 {
833 ftdi_error_return(-11, "illegal description format");
834 }
835}
836
837/**
1941414d 838 Resets the ftdi device.
a3da1d95 839
1941414d
TJ
840 \param ftdi pointer to ftdi_context
841
842 \retval 0: all fine
843 \retval -1: FTDI reset failed
22a1b5c1 844 \retval -2: USB device unavailable
4837f98a 845*/
edb82cbf 846int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 847{
22a1b5c1
TJ
848 if (ftdi == NULL || ftdi->usb_dev == NULL)
849 ftdi_error_return(-2, "USB device unavailable");
850
579b006f
JZ
851 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
852 SIO_RESET_REQUEST, SIO_RESET_SIO,
853 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 854 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 855
545820ce 856 // Invalidate data in the readbuffer
bfcee05b
TJ
857 ftdi->readbuffer_offset = 0;
858 ftdi->readbuffer_remaining = 0;
859
a3da1d95
GE
860 return 0;
861}
862
1941414d 863/**
1189b11a 864 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
865
866 \param ftdi pointer to ftdi_context
4837f98a 867
1941414d 868 \retval 0: all fine
1189b11a 869 \retval -1: read buffer purge failed
22a1b5c1 870 \retval -2: USB device unavailable
4837f98a 871*/
1189b11a 872int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 873{
22a1b5c1
TJ
874 if (ftdi == NULL || ftdi->usb_dev == NULL)
875 ftdi_error_return(-2, "USB device unavailable");
876
579b006f
JZ
877 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
878 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
879 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
880 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
881
545820ce 882 // Invalidate data in the readbuffer
bfcee05b
TJ
883 ftdi->readbuffer_offset = 0;
884 ftdi->readbuffer_remaining = 0;
a60be878 885
1189b11a
TJ
886 return 0;
887}
888
889/**
890 Clears the write buffer on the chip.
891
892 \param ftdi pointer to ftdi_context
893
894 \retval 0: all fine
895 \retval -1: write buffer purge failed
22a1b5c1 896 \retval -2: USB device unavailable
1189b11a
TJ
897*/
898int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
899{
22a1b5c1
TJ
900 if (ftdi == NULL || ftdi->usb_dev == NULL)
901 ftdi_error_return(-2, "USB device unavailable");
902
579b006f
JZ
903 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
904 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
905 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
906 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
907
908 return 0;
909}
910
911/**
912 Clears the buffers on the chip and the internal read buffer.
913
914 \param ftdi pointer to ftdi_context
915
916 \retval 0: all fine
917 \retval -1: read buffer purge failed
918 \retval -2: write buffer purge failed
22a1b5c1 919 \retval -3: USB device unavailable
1189b11a
TJ
920*/
921int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
922{
923 int result;
924
22a1b5c1
TJ
925 if (ftdi == NULL || ftdi->usb_dev == NULL)
926 ftdi_error_return(-3, "USB device unavailable");
927
1189b11a 928 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 929 if (result < 0)
1189b11a
TJ
930 return -1;
931
932 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 933 if (result < 0)
1189b11a 934 return -2;
545820ce 935
a60be878
TJ
936 return 0;
937}
a3da1d95 938
f3f81007
TJ
939
940
1941414d
TJ
941/**
942 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
943
944 \param ftdi pointer to ftdi_context
945
946 \retval 0: all fine
947 \retval -1: usb_release failed
22a1b5c1 948 \retval -3: ftdi context invalid
a3da1d95 949*/
a8f46ddc
TJ
950int ftdi_usb_close(struct ftdi_context *ftdi)
951{
a3da1d95
GE
952 int rtn = 0;
953
22a1b5c1
TJ
954 if (ftdi == NULL)
955 ftdi_error_return(-3, "ftdi context invalid");
956
dff4fdb0 957 if (ftdi->usb_dev != NULL)
579b006f 958 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 959 rtn = -1;
98452d97 960
579b006f 961 ftdi_usb_close_internal (ftdi);
98452d97 962
a3da1d95
GE
963 return rtn;
964}
965
418aaa72 966/**
53ad271d
TJ
967 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
968 Function is only used internally
b5ec1820 969 \internal
53ad271d 970*/
0126d22e 971static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
a8f46ddc
TJ
972 unsigned short *value, unsigned short *index)
973{
53ad271d
TJ
974 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
975 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
976 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
977 int divisor, best_divisor, best_baud, best_baud_diff;
978 unsigned long encoded_divisor;
979 int i;
980
22d12cda
TJ
981 if (baudrate <= 0)
982 {
53ad271d
TJ
983 // Return error
984 return -1;
985 }
986
987 divisor = 24000000 / baudrate;
988
22d12cda
TJ
989 if (ftdi->type == TYPE_AM)
990 {
53ad271d
TJ
991 // Round down to supported fraction (AM only)
992 divisor -= am_adjust_dn[divisor & 7];
993 }
994
995 // Try this divisor and the one above it (because division rounds down)
996 best_divisor = 0;
997 best_baud = 0;
998 best_baud_diff = 0;
22d12cda
TJ
999 for (i = 0; i < 2; i++)
1000 {
53ad271d
TJ
1001 int try_divisor = divisor + i;
1002 int baud_estimate;
1003 int baud_diff;
1004
1005 // Round up to supported divisor value
22d12cda
TJ
1006 if (try_divisor <= 8)
1007 {
53ad271d
TJ
1008 // Round up to minimum supported divisor
1009 try_divisor = 8;
22d12cda
TJ
1010 }
1011 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1012 {
53ad271d
TJ
1013 // BM doesn't support divisors 9 through 11 inclusive
1014 try_divisor = 12;
22d12cda
TJ
1015 }
1016 else if (divisor < 16)
1017 {
53ad271d
TJ
1018 // AM doesn't support divisors 9 through 15 inclusive
1019 try_divisor = 16;
22d12cda
TJ
1020 }
1021 else
1022 {
1023 if (ftdi->type == TYPE_AM)
1024 {
53ad271d
TJ
1025 // Round up to supported fraction (AM only)
1026 try_divisor += am_adjust_up[try_divisor & 7];
22d12cda
TJ
1027 if (try_divisor > 0x1FFF8)
1028 {
53ad271d
TJ
1029 // Round down to maximum supported divisor value (for AM)
1030 try_divisor = 0x1FFF8;
1031 }
22d12cda
TJ
1032 }
1033 else
1034 {
1035 if (try_divisor > 0x1FFFF)
1036 {
53ad271d
TJ
1037 // Round down to maximum supported divisor value (for BM)
1038 try_divisor = 0x1FFFF;
1039 }
1040 }
1041 }
1042 // Get estimated baud rate (to nearest integer)
1043 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1044 // Get absolute difference from requested baud rate
22d12cda
TJ
1045 if (baud_estimate < baudrate)
1046 {
53ad271d 1047 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
1048 }
1049 else
1050 {
53ad271d
TJ
1051 baud_diff = baud_estimate - baudrate;
1052 }
22d12cda
TJ
1053 if (i == 0 || baud_diff < best_baud_diff)
1054 {
53ad271d
TJ
1055 // Closest to requested baud rate so far
1056 best_divisor = try_divisor;
1057 best_baud = baud_estimate;
1058 best_baud_diff = baud_diff;
22d12cda
TJ
1059 if (baud_diff == 0)
1060 {
53ad271d
TJ
1061 // Spot on! No point trying
1062 break;
1063 }
1064 }
1065 }
1066 // Encode the best divisor value
1067 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1068 // Deal with special cases for encoded value
22d12cda
TJ
1069 if (encoded_divisor == 1)
1070 {
4837f98a 1071 encoded_divisor = 0; // 3000000 baud
22d12cda
TJ
1072 }
1073 else if (encoded_divisor == 0x4001)
1074 {
4837f98a 1075 encoded_divisor = 1; // 2000000 baud (BM only)
53ad271d
TJ
1076 }
1077 // Split into "value" and "index" values
1078 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1416eb14 1079 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
22d12cda 1080 {
0126d22e
TJ
1081 *index = (unsigned short)(encoded_divisor >> 8);
1082 *index &= 0xFF00;
a9c57c05 1083 *index |= ftdi->index;
0126d22e
TJ
1084 }
1085 else
1086 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 1087
53ad271d
TJ
1088 // Return the nearest baud rate
1089 return best_baud;
1090}
1091
1941414d 1092/**
9bec2387 1093 Sets the chip baud rate
1941414d
TJ
1094
1095 \param ftdi pointer to ftdi_context
9bec2387 1096 \param baudrate baud rate to set
1941414d
TJ
1097
1098 \retval 0: all fine
1099 \retval -1: invalid baudrate
1100 \retval -2: setting baudrate failed
22a1b5c1 1101 \retval -3: USB device unavailable
a3da1d95 1102*/
a8f46ddc
TJ
1103int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1104{
53ad271d
TJ
1105 unsigned short value, index;
1106 int actual_baudrate;
a3da1d95 1107
22a1b5c1
TJ
1108 if (ftdi == NULL || ftdi->usb_dev == NULL)
1109 ftdi_error_return(-3, "USB device unavailable");
1110
22d12cda
TJ
1111 if (ftdi->bitbang_enabled)
1112 {
a3da1d95
GE
1113 baudrate = baudrate*4;
1114 }
1115
25707904 1116 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1117 if (actual_baudrate <= 0)
1118 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1119
53ad271d
TJ
1120 // Check within tolerance (about 5%)
1121 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1122 || ((actual_baudrate < baudrate)
1123 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1124 : (baudrate * 21 < actual_baudrate * 20)))
1125 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1126
579b006f
JZ
1127 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1128 SIO_SET_BAUDRATE_REQUEST, value,
1129 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1130 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1131
1132 ftdi->baudrate = baudrate;
1133 return 0;
1134}
1135
1941414d 1136/**
6c32e222
TJ
1137 Set (RS232) line characteristics.
1138 The break type can only be set via ftdi_set_line_property2()
1139 and defaults to "off".
4837f98a 1140
1941414d
TJ
1141 \param ftdi pointer to ftdi_context
1142 \param bits Number of bits
1143 \param sbit Number of stop bits
1144 \param parity Parity mode
1145
1146 \retval 0: all fine
1147 \retval -1: Setting line property failed
2f73e59f
TJ
1148*/
1149int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1150 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1151{
6c32e222
TJ
1152 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1153}
1154
1155/**
1156 Set (RS232) line characteristics
1157
1158 \param ftdi pointer to ftdi_context
1159 \param bits Number of bits
1160 \param sbit Number of stop bits
1161 \param parity Parity mode
1162 \param break_type Break type
1163
1164 \retval 0: all fine
1165 \retval -1: Setting line property failed
22a1b5c1 1166 \retval -2: USB device unavailable
6c32e222
TJ
1167*/
1168int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1169 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1170 enum ftdi_break_type break_type)
6c32e222 1171{
2f73e59f
TJ
1172 unsigned short value = bits;
1173
22a1b5c1
TJ
1174 if (ftdi == NULL || ftdi->usb_dev == NULL)
1175 ftdi_error_return(-2, "USB device unavailable");
1176
22d12cda
TJ
1177 switch (parity)
1178 {
1179 case NONE:
1180 value |= (0x00 << 8);
1181 break;
1182 case ODD:
1183 value |= (0x01 << 8);
1184 break;
1185 case EVEN:
1186 value |= (0x02 << 8);
1187 break;
1188 case MARK:
1189 value |= (0x03 << 8);
1190 break;
1191 case SPACE:
1192 value |= (0x04 << 8);
1193 break;
2f73e59f 1194 }
d2f10023 1195
22d12cda
TJ
1196 switch (sbit)
1197 {
1198 case STOP_BIT_1:
1199 value |= (0x00 << 11);
1200 break;
1201 case STOP_BIT_15:
1202 value |= (0x01 << 11);
1203 break;
1204 case STOP_BIT_2:
1205 value |= (0x02 << 11);
1206 break;
2f73e59f 1207 }
d2f10023 1208
22d12cda
TJ
1209 switch (break_type)
1210 {
1211 case BREAK_OFF:
1212 value |= (0x00 << 14);
1213 break;
1214 case BREAK_ON:
1215 value |= (0x01 << 14);
1216 break;
6c32e222
TJ
1217 }
1218
579b006f
JZ
1219 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1220 SIO_SET_DATA_REQUEST, value,
1221 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1222 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1223
2f73e59f
TJ
1224 return 0;
1225}
a3da1d95 1226
1941414d
TJ
1227/**
1228 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1229
1230 \param ftdi pointer to ftdi_context
1231 \param buf Buffer with the data
1232 \param size Size of the buffer
1233
22a1b5c1 1234 \retval -666: USB device unavailable
1941414d
TJ
1235 \retval <0: error code from usb_bulk_write()
1236 \retval >0: number of bytes written
1237*/
a8f46ddc
TJ
1238int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1239{
a3da1d95 1240 int offset = 0;
579b006f 1241 int actual_length;
c3d95b87 1242
22a1b5c1
TJ
1243 if (ftdi == NULL || ftdi->usb_dev == NULL)
1244 ftdi_error_return(-666, "USB device unavailable");
1245
22d12cda
TJ
1246 while (offset < size)
1247 {
948f9ada 1248 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1249
1250 if (offset+write_size > size)
1251 write_size = size-offset;
1252
579b006f
JZ
1253 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1254 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1255
579b006f 1256 offset += actual_length;
a3da1d95
GE
1257 }
1258
579b006f 1259 return offset;
a3da1d95
GE
1260}
1261
579b006f 1262static void ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1263{
579b006f
JZ
1264 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1265 struct ftdi_context *ftdi = tc->ftdi;
1266 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1267
b1139150 1268 packet_size = ftdi->max_packet_size;
579b006f
JZ
1269
1270 actual_length = transfer->actual_length;
1271
1272 if (actual_length > 2)
1273 {
1274 // skip FTDI status bytes.
1275 // Maybe stored in the future to enable modem use
1276 num_of_chunks = actual_length / packet_size;
1277 chunk_remains = actual_length % packet_size;
1278 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1279
1280 ftdi->readbuffer_offset += 2;
1281 actual_length -= 2;
1282
1283 if (actual_length > packet_size - 2)
1284 {
1285 for (i = 1; i < num_of_chunks; i++)
56ac0383
TJ
1286 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1287 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1288 packet_size - 2);
579b006f
JZ
1289 if (chunk_remains > 2)
1290 {
1291 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1292 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1293 chunk_remains-2);
1294 actual_length -= 2*num_of_chunks;
1295 }
1296 else
56ac0383 1297 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
579b006f
JZ
1298 }
1299
1300 if (actual_length > 0)
1301 {
1302 // data still fits in buf?
1303 if (tc->offset + actual_length <= tc->size)
1304 {
1305 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1306 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1307 tc->offset += actual_length;
1308
1309 ftdi->readbuffer_offset = 0;
1310 ftdi->readbuffer_remaining = 0;
1311
1312 /* Did we read exactly the right amount of bytes? */
1313 if (tc->offset == tc->size)
1314 {
1315 //printf("read_data exact rem %d offset %d\n",
1316 //ftdi->readbuffer_remaining, offset);
1317 tc->completed = 1;
1318 return;
1319 }
1320 }
1321 else
1322 {
1323 // only copy part of the data or size <= readbuffer_chunksize
1324 int part_size = tc->size - tc->offset;
1325 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1326 tc->offset += part_size;
1327
1328 ftdi->readbuffer_offset += part_size;
1329 ftdi->readbuffer_remaining = actual_length - part_size;
1330
1331 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1332 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1333 tc->completed = 1;
1334 return;
1335 }
1336 }
1337 }
1338 ret = libusb_submit_transfer (transfer);
1339 if (ret < 0)
1340 tc->completed = 1;
1341}
1342
1343
1344static void ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1345{
579b006f
JZ
1346 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1347 struct ftdi_context *ftdi = tc->ftdi;
56ac0383 1348
90ef163e 1349 tc->offset += transfer->actual_length;
56ac0383 1350
579b006f 1351 if (tc->offset == tc->size)
22d12cda 1352 {
579b006f 1353 tc->completed = 1;
7cc9950e 1354 }
579b006f
JZ
1355 else
1356 {
1357 int write_size = ftdi->writebuffer_chunksize;
1358 int ret;
7cc9950e 1359
579b006f
JZ
1360 if (tc->offset + write_size > tc->size)
1361 write_size = tc->size - tc->offset;
1362
1363 transfer->length = write_size;
1364 transfer->buffer = tc->buf + tc->offset;
1365 ret = libusb_submit_transfer (transfer);
1366 if (ret < 0)
1367 tc->completed = 1;
1368 }
7cc9950e
GE
1369}
1370
579b006f 1371
84f85aaa 1372/**
579b006f
JZ
1373 Writes data to the chip. Does not wait for completion of the transfer
1374 nor does it make sure that the transfer was successful.
1375
249888c8 1376 Use libusb 1.0 asynchronous API.
84f85aaa
GE
1377
1378 \param ftdi pointer to ftdi_context
579b006f
JZ
1379 \param buf Buffer with the data
1380 \param size Size of the buffer
84f85aaa 1381
579b006f
JZ
1382 \retval NULL: Some error happens when submit transfer
1383 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1384*/
579b006f
JZ
1385
1386struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1387{
579b006f 1388 struct ftdi_transfer_control *tc;
5e77e870 1389 struct libusb_transfer *transfer;
579b006f 1390 int write_size, ret;
22d12cda 1391
22a1b5c1 1392 if (ftdi == NULL || ftdi->usb_dev == NULL)
22a1b5c1 1393 return NULL;
22a1b5c1 1394
579b006f 1395 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
5e77e870
TJ
1396 if (!tc)
1397 return NULL;
22d12cda 1398
5e77e870
TJ
1399 transfer = libusb_alloc_transfer(0);
1400 if (!transfer)
1401 {
1402 free(tc);
579b006f 1403 return NULL;
5e77e870 1404 }
22d12cda 1405
579b006f
JZ
1406 tc->ftdi = ftdi;
1407 tc->completed = 0;
1408 tc->buf = buf;
1409 tc->size = size;
1410 tc->offset = 0;
7cc9950e 1411
579b006f 1412 if (size < ftdi->writebuffer_chunksize)
56ac0383 1413 write_size = size;
579b006f 1414 else
56ac0383 1415 write_size = ftdi->writebuffer_chunksize;
22d12cda 1416
90ef163e
YSL
1417 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1418 write_size, ftdi_write_data_cb, tc,
1419 ftdi->usb_write_timeout);
579b006f 1420 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1421
579b006f
JZ
1422 ret = libusb_submit_transfer(transfer);
1423 if (ret < 0)
1424 {
1425 libusb_free_transfer(transfer);
5e77e870 1426 free(tc);
579b006f 1427 return NULL;
7cc9950e 1428 }
579b006f
JZ
1429 tc->transfer = transfer;
1430
1431 return tc;
7cc9950e
GE
1432}
1433
1434/**
579b006f
JZ
1435 Reads data from the chip. Does not wait for completion of the transfer
1436 nor does it make sure that the transfer was successful.
1437
249888c8 1438 Use libusb 1.0 asynchronous API.
7cc9950e
GE
1439
1440 \param ftdi pointer to ftdi_context
579b006f
JZ
1441 \param buf Buffer with the data
1442 \param size Size of the buffer
4c9e3812 1443
579b006f
JZ
1444 \retval NULL: Some error happens when submit transfer
1445 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1446*/
579b006f
JZ
1447
1448struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1449{
579b006f
JZ
1450 struct ftdi_transfer_control *tc;
1451 struct libusb_transfer *transfer;
1452 int ret;
22d12cda 1453
22a1b5c1
TJ
1454 if (ftdi == NULL || ftdi->usb_dev == NULL)
1455 return NULL;
1456
579b006f
JZ
1457 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1458 if (!tc)
1459 return NULL;
1460
1461 tc->ftdi = ftdi;
1462 tc->buf = buf;
1463 tc->size = size;
1464
1465 if (size <= ftdi->readbuffer_remaining)
7cc9950e 1466 {
579b006f 1467 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1468
579b006f
JZ
1469 // Fix offsets
1470 ftdi->readbuffer_remaining -= size;
1471 ftdi->readbuffer_offset += size;
7cc9950e 1472
579b006f 1473 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1474
579b006f
JZ
1475 tc->completed = 1;
1476 tc->offset = size;
1477 tc->transfer = NULL;
1478 return tc;
1479 }
4c9e3812 1480
579b006f
JZ
1481 tc->completed = 0;
1482 if (ftdi->readbuffer_remaining != 0)
1483 {
1484 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1485
579b006f
JZ
1486 tc->offset = ftdi->readbuffer_remaining;
1487 }
1488 else
1489 tc->offset = 0;
22d12cda 1490
579b006f
JZ
1491 transfer = libusb_alloc_transfer(0);
1492 if (!transfer)
1493 {
1494 free (tc);
1495 return NULL;
1496 }
22d12cda 1497
579b006f
JZ
1498 ftdi->readbuffer_remaining = 0;
1499 ftdi->readbuffer_offset = 0;
1500
1501 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1502 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1503
1504 ret = libusb_submit_transfer(transfer);
1505 if (ret < 0)
1506 {
1507 libusb_free_transfer(transfer);
1508 free (tc);
1509 return NULL;
22d12cda 1510 }
579b006f
JZ
1511 tc->transfer = transfer;
1512
1513 return tc;
4c9e3812
GE
1514}
1515
1516/**
579b006f 1517 Wait for completion of the transfer.
4c9e3812 1518
249888c8 1519 Use libusb 1.0 asynchronous API.
4c9e3812 1520
579b006f 1521 \param tc pointer to ftdi_transfer_control
4c9e3812 1522
579b006f
JZ
1523 \retval < 0: Some error happens
1524 \retval >= 0: Data size transferred
4c9e3812 1525*/
579b006f
JZ
1526
1527int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1528{
1529 int ret;
4c9e3812 1530
579b006f 1531 while (!tc->completed)
22d12cda 1532 {
29b1dfd9 1533 ret = libusb_handle_events(tc->ftdi->usb_ctx);
4c9e3812 1534 if (ret < 0)
579b006f
JZ
1535 {
1536 if (ret == LIBUSB_ERROR_INTERRUPTED)
1537 continue;
1538 libusb_cancel_transfer(tc->transfer);
1539 while (!tc->completed)
29b1dfd9 1540 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
579b006f
JZ
1541 break;
1542 libusb_free_transfer(tc->transfer);
1543 free (tc);
579b006f
JZ
1544 return ret;
1545 }
4c9e3812
GE
1546 }
1547
90ef163e
YSL
1548 ret = tc->offset;
1549 /**
1550 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
ef15fab5 1551 * at ftdi_read_data_submit(). Therefore, we need to check it here.
90ef163e 1552 **/
ef15fab5
TJ
1553 if (tc->transfer)
1554 {
1555 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1556 ret = -1;
1557 libusb_free_transfer(tc->transfer);
90ef163e 1558 }
579b006f
JZ
1559 free(tc);
1560 return ret;
4c9e3812 1561}
579b006f 1562
1941414d
TJ
1563/**
1564 Configure write buffer chunk size.
1565 Default is 4096.
1566
1567 \param ftdi pointer to ftdi_context
1568 \param chunksize Chunk size
a3da1d95 1569
1941414d 1570 \retval 0: all fine
22a1b5c1 1571 \retval -1: ftdi context invalid
1941414d 1572*/
a8f46ddc
TJ
1573int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1574{
22a1b5c1
TJ
1575 if (ftdi == NULL)
1576 ftdi_error_return(-1, "ftdi context invalid");
1577
948f9ada
TJ
1578 ftdi->writebuffer_chunksize = chunksize;
1579 return 0;
1580}
1581
1941414d
TJ
1582/**
1583 Get write buffer chunk size.
1584
1585 \param ftdi pointer to ftdi_context
1586 \param chunksize Pointer to store chunk size in
948f9ada 1587
1941414d 1588 \retval 0: all fine
22a1b5c1 1589 \retval -1: ftdi context invalid
1941414d 1590*/
a8f46ddc
TJ
1591int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1592{
22a1b5c1
TJ
1593 if (ftdi == NULL)
1594 ftdi_error_return(-1, "ftdi context invalid");
1595
948f9ada
TJ
1596 *chunksize = ftdi->writebuffer_chunksize;
1597 return 0;
1598}
cbabb7d3 1599
1941414d
TJ
1600/**
1601 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1602
1603 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1604
1941414d
TJ
1605 \param ftdi pointer to ftdi_context
1606 \param buf Buffer to store data in
1607 \param size Size of the buffer
1608
22a1b5c1 1609 \retval -666: USB device unavailable
579b006f 1610 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 1611 \retval 0: no data was available
1941414d
TJ
1612 \retval >0: number of bytes read
1613
1941414d 1614*/
a8f46ddc
TJ
1615int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1616{
579b006f 1617 int offset = 0, ret, i, num_of_chunks, chunk_remains;
e2f12a4f 1618 int packet_size = ftdi->max_packet_size;
579b006f 1619 int actual_length = 1;
f2f00cb5 1620
22a1b5c1
TJ
1621 if (ftdi == NULL || ftdi->usb_dev == NULL)
1622 ftdi_error_return(-666, "USB device unavailable");
1623
e2f12a4f
TJ
1624 // Packet size sanity check (avoid division by zero)
1625 if (packet_size == 0)
1626 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 1627
948f9ada 1628 // everything we want is still in the readbuffer?
22d12cda
TJ
1629 if (size <= ftdi->readbuffer_remaining)
1630 {
d9f0cce7
TJ
1631 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1632
1633 // Fix offsets
1634 ftdi->readbuffer_remaining -= size;
1635 ftdi->readbuffer_offset += size;
1636
545820ce 1637 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1638
1639 return size;
979a145c 1640 }
948f9ada 1641 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
1642 if (ftdi->readbuffer_remaining != 0)
1643 {
d9f0cce7 1644 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1645
d9f0cce7
TJ
1646 // Fix offset
1647 offset += ftdi->readbuffer_remaining;
948f9ada 1648 }
948f9ada 1649 // do the actual USB read
579b006f 1650 while (offset < size && actual_length > 0)
22d12cda 1651 {
d9f0cce7
TJ
1652 ftdi->readbuffer_remaining = 0;
1653 ftdi->readbuffer_offset = 0;
98452d97 1654 /* returns how much received */
579b006f 1655 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
1656 if (ret < 0)
1657 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1658
579b006f 1659 if (actual_length > 2)
22d12cda 1660 {
d9f0cce7
TJ
1661 // skip FTDI status bytes.
1662 // Maybe stored in the future to enable modem use
579b006f
JZ
1663 num_of_chunks = actual_length / packet_size;
1664 chunk_remains = actual_length % packet_size;
1665 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 1666
d9f0cce7 1667 ftdi->readbuffer_offset += 2;
579b006f 1668 actual_length -= 2;
1c733d33 1669
579b006f 1670 if (actual_length > packet_size - 2)
22d12cda 1671 {
1c733d33 1672 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
1673 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1674 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1675 packet_size - 2);
22d12cda
TJ
1676 if (chunk_remains > 2)
1677 {
f2f00cb5
DC
1678 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1679 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 1680 chunk_remains-2);
579b006f 1681 actual_length -= 2*num_of_chunks;
22d12cda
TJ
1682 }
1683 else
579b006f 1684 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 1685 }
22d12cda 1686 }
579b006f 1687 else if (actual_length <= 2)
22d12cda 1688 {
d9f0cce7
TJ
1689 // no more data to read?
1690 return offset;
1691 }
579b006f 1692 if (actual_length > 0)
22d12cda 1693 {
d9f0cce7 1694 // data still fits in buf?
579b006f 1695 if (offset+actual_length <= size)
22d12cda 1696 {
579b006f 1697 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 1698 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 1699 offset += actual_length;
d9f0cce7 1700
53ad271d 1701 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1702 if (offset == size)
c4446c36
TJ
1703 //printf("read_data exact rem %d offset %d\n",
1704 //ftdi->readbuffer_remaining, offset);
d9f0cce7 1705 return offset;
22d12cda
TJ
1706 }
1707 else
1708 {
d9f0cce7
TJ
1709 // only copy part of the data or size <= readbuffer_chunksize
1710 int part_size = size-offset;
1711 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1712
d9f0cce7 1713 ftdi->readbuffer_offset += part_size;
579b006f 1714 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
1715 offset += part_size;
1716
579b006f
JZ
1717 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1718 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1719
1720 return offset;
1721 }
1722 }
cbabb7d3 1723 }
948f9ada 1724 // never reached
29c4af7f 1725 return -127;
a3da1d95
GE
1726}
1727
1941414d
TJ
1728/**
1729 Configure read buffer chunk size.
1730 Default is 4096.
1731
1732 Automatically reallocates the buffer.
a3da1d95 1733
1941414d
TJ
1734 \param ftdi pointer to ftdi_context
1735 \param chunksize Chunk size
1736
1737 \retval 0: all fine
22a1b5c1 1738 \retval -1: ftdi context invalid
1941414d 1739*/
a8f46ddc
TJ
1740int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1741{
29c4af7f
TJ
1742 unsigned char *new_buf;
1743
22a1b5c1
TJ
1744 if (ftdi == NULL)
1745 ftdi_error_return(-1, "ftdi context invalid");
1746
948f9ada
TJ
1747 // Invalidate all remaining data
1748 ftdi->readbuffer_offset = 0;
1749 ftdi->readbuffer_remaining = 0;
8de6eea4
JZ
1750#ifdef __linux__
1751 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1752 which is defined in libusb-1.0. Otherwise, each USB read request will
2e685a1f 1753 be divided into multiple URBs. This will cause issues on Linux kernel
8de6eea4
JZ
1754 older than 2.6.32. */
1755 if (chunksize > 16384)
1756 chunksize = 16384;
1757#endif
948f9ada 1758
c3d95b87
TJ
1759 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1760 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1761
948f9ada
TJ
1762 ftdi->readbuffer = new_buf;
1763 ftdi->readbuffer_chunksize = chunksize;
1764
1765 return 0;
1766}
1767
1941414d
TJ
1768/**
1769 Get read buffer chunk size.
948f9ada 1770
1941414d
TJ
1771 \param ftdi pointer to ftdi_context
1772 \param chunksize Pointer to store chunk size in
1773
1774 \retval 0: all fine
22a1b5c1 1775 \retval -1: FTDI context invalid
1941414d 1776*/
a8f46ddc
TJ
1777int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1778{
22a1b5c1
TJ
1779 if (ftdi == NULL)
1780 ftdi_error_return(-1, "FTDI context invalid");
1781
948f9ada
TJ
1782 *chunksize = ftdi->readbuffer_chunksize;
1783 return 0;
1784}
1785
1786
1941414d
TJ
1787/**
1788 Enable bitbang mode.
948f9ada 1789
fd282db3 1790 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1941414d
TJ
1791
1792 \param ftdi pointer to ftdi_context
1793 \param bitmask Bitmask to configure lines.
1794 HIGH/ON value configures a line as output.
1795
1796 \retval 0: all fine
1797 \retval -1: can't enable bitbang mode
22a1b5c1 1798 \retval -2: USB device unavailable
1941414d 1799*/
a8f46ddc
TJ
1800int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1801{
a3da1d95
GE
1802 unsigned short usb_val;
1803
22a1b5c1
TJ
1804 if (ftdi == NULL || ftdi->usb_dev == NULL)
1805 ftdi_error_return(-2, "USB device unavailable");
1806
d9f0cce7 1807 usb_val = bitmask; // low byte: bitmask
3119537f
TJ
1808 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1809 usb_val |= (ftdi->bitbang_mode << 8);
1810
579b006f
JZ
1811 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1812 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1813 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1814 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1815
a3da1d95
GE
1816 ftdi->bitbang_enabled = 1;
1817 return 0;
1818}
1819
1941414d
TJ
1820/**
1821 Disable bitbang mode.
a3da1d95 1822
1941414d
TJ
1823 \param ftdi pointer to ftdi_context
1824
1825 \retval 0: all fine
1826 \retval -1: can't disable bitbang mode
22a1b5c1 1827 \retval -2: USB device unavailable
1941414d 1828*/
a8f46ddc
TJ
1829int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1830{
22a1b5c1
TJ
1831 if (ftdi == NULL || ftdi->usb_dev == NULL)
1832 ftdi_error_return(-2, "USB device unavailable");
1833
579b006f 1834 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1835 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1836
1837 ftdi->bitbang_enabled = 0;
1838 return 0;
1839}
1840
1941414d 1841/**
418aaa72 1842 Enable/disable bitbang modes.
a3da1d95 1843
1941414d
TJ
1844 \param ftdi pointer to ftdi_context
1845 \param bitmask Bitmask to configure lines.
1846 HIGH/ON value configures a line as output.
fd282db3 1847 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
1848
1849 \retval 0: all fine
1850 \retval -1: can't enable bitbang mode
22a1b5c1 1851 \retval -2: USB device unavailable
1941414d 1852*/
c4446c36
TJ
1853int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1854{
1855 unsigned short usb_val;
1856
22a1b5c1
TJ
1857 if (ftdi == NULL || ftdi->usb_dev == NULL)
1858 ftdi_error_return(-2, "USB device unavailable");
1859
c4446c36
TJ
1860 usb_val = bitmask; // low byte: bitmask
1861 usb_val |= (mode << 8);
579b006f
JZ
1862 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1863 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
c4446c36
TJ
1864
1865 ftdi->bitbang_mode = mode;
418aaa72 1866 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
c4446c36
TJ
1867 return 0;
1868}
1869
1941414d 1870/**
418aaa72 1871 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
1872
1873 \param ftdi pointer to ftdi_context
1874 \param pins Pointer to store pins into
1875
1876 \retval 0: all fine
1877 \retval -1: read pins failed
22a1b5c1 1878 \retval -2: USB device unavailable
1941414d 1879*/
a8f46ddc
TJ
1880int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1881{
22a1b5c1
TJ
1882 if (ftdi == NULL || ftdi->usb_dev == NULL)
1883 ftdi_error_return(-2, "USB device unavailable");
1884
579b006f 1885 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1886 ftdi_error_return(-1, "read pins failed");
a3da1d95 1887
a3da1d95
GE
1888 return 0;
1889}
1890
1941414d
TJ
1891/**
1892 Set latency timer
1893
1894 The FTDI chip keeps data in the internal buffer for a specific
1895 amount of time if the buffer is not full yet to decrease
1896 load on the usb bus.
a3da1d95 1897
1941414d
TJ
1898 \param ftdi pointer to ftdi_context
1899 \param latency Value between 1 and 255
1900
1901 \retval 0: all fine
1902 \retval -1: latency out of range
1903 \retval -2: unable to set latency timer
22a1b5c1 1904 \retval -3: USB device unavailable
1941414d 1905*/
a8f46ddc
TJ
1906int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1907{
a3da1d95
GE
1908 unsigned short usb_val;
1909
c3d95b87
TJ
1910 if (latency < 1)
1911 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 1912
22a1b5c1
TJ
1913 if (ftdi == NULL || ftdi->usb_dev == NULL)
1914 ftdi_error_return(-3, "USB device unavailable");
1915
d79d2e68 1916 usb_val = latency;
579b006f 1917 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1918 ftdi_error_return(-2, "unable to set latency timer");
1919
a3da1d95
GE
1920 return 0;
1921}
1922
1941414d
TJ
1923/**
1924 Get latency timer
a3da1d95 1925
1941414d
TJ
1926 \param ftdi pointer to ftdi_context
1927 \param latency Pointer to store latency value in
1928
1929 \retval 0: all fine
1930 \retval -1: unable to get latency timer
22a1b5c1 1931 \retval -2: USB device unavailable
1941414d 1932*/
a8f46ddc
TJ
1933int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1934{
a3da1d95 1935 unsigned short usb_val;
22a1b5c1
TJ
1936
1937 if (ftdi == NULL || ftdi->usb_dev == NULL)
1938 ftdi_error_return(-2, "USB device unavailable");
1939
579b006f 1940 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1941 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
1942
1943 *latency = (unsigned char)usb_val;
1944 return 0;
1945}
1946
1941414d 1947/**
1189b11a
TJ
1948 Poll modem status information
1949
1950 This function allows the retrieve the two status bytes of the device.
1951 The device sends these bytes also as a header for each read access
1952 where they are discarded by ftdi_read_data(). The chip generates
1953 the two stripped status bytes in the absence of data every 40 ms.
1954
1955 Layout of the first byte:
1956 - B0..B3 - must be 0
1957 - B4 Clear to send (CTS)
1958 0 = inactive
1959 1 = active
1960 - B5 Data set ready (DTS)
1961 0 = inactive
1962 1 = active
1963 - B6 Ring indicator (RI)
1964 0 = inactive
1965 1 = active
1966 - B7 Receive line signal detect (RLSD)
1967 0 = inactive
1968 1 = active
1969
1970 Layout of the second byte:
1971 - B0 Data ready (DR)
1972 - B1 Overrun error (OE)
1973 - B2 Parity error (PE)
1974 - B3 Framing error (FE)
1975 - B4 Break interrupt (BI)
1976 - B5 Transmitter holding register (THRE)
1977 - B6 Transmitter empty (TEMT)
1978 - B7 Error in RCVR FIFO
1979
1980 \param ftdi pointer to ftdi_context
1981 \param status Pointer to store status information in. Must be two bytes.
1982
1983 \retval 0: all fine
1984 \retval -1: unable to retrieve status information
22a1b5c1 1985 \retval -2: USB device unavailable
1189b11a
TJ
1986*/
1987int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1988{
1989 char usb_val[2];
1990
22a1b5c1
TJ
1991 if (ftdi == NULL || ftdi->usb_dev == NULL)
1992 ftdi_error_return(-2, "USB device unavailable");
1993
579b006f 1994 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
1995 ftdi_error_return(-1, "getting modem status failed");
1996
dc09eaa8 1997 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
1189b11a
TJ
1998
1999 return 0;
2000}
2001
a7fb8440
TJ
2002/**
2003 Set flowcontrol for ftdi chip
2004
2005 \param ftdi pointer to ftdi_context
22d12cda
TJ
2006 \param flowctrl flow control to use. should be
2007 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
a7fb8440
TJ
2008
2009 \retval 0: all fine
2010 \retval -1: set flow control failed
22a1b5c1 2011 \retval -2: USB device unavailable
a7fb8440
TJ
2012*/
2013int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2014{
22a1b5c1
TJ
2015 if (ftdi == NULL || ftdi->usb_dev == NULL)
2016 ftdi_error_return(-2, "USB device unavailable");
2017
579b006f
JZ
2018 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2019 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2020 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2021 ftdi_error_return(-1, "set flow control failed");
2022
2023 return 0;
2024}
2025
2026/**
2027 Set dtr line
2028
2029 \param ftdi pointer to ftdi_context
2030 \param state state to set line to (1 or 0)
2031
2032 \retval 0: all fine
2033 \retval -1: set dtr failed
22a1b5c1 2034 \retval -2: USB device unavailable
a7fb8440
TJ
2035*/
2036int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2037{
2038 unsigned short usb_val;
2039
22a1b5c1
TJ
2040 if (ftdi == NULL || ftdi->usb_dev == NULL)
2041 ftdi_error_return(-2, "USB device unavailable");
2042
a7fb8440
TJ
2043 if (state)
2044 usb_val = SIO_SET_DTR_HIGH;
2045 else
2046 usb_val = SIO_SET_DTR_LOW;
2047
579b006f
JZ
2048 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2049 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2050 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2051 ftdi_error_return(-1, "set dtr failed");
2052
2053 return 0;
2054}
2055
2056/**
2057 Set rts line
2058
2059 \param ftdi pointer to ftdi_context
2060 \param state state to set line to (1 or 0)
2061
2062 \retval 0: all fine
22a1b5c1
TJ
2063 \retval -1: set rts failed
2064 \retval -2: USB device unavailable
a7fb8440
TJ
2065*/
2066int ftdi_setrts(struct ftdi_context *ftdi, int state)
2067{
2068 unsigned short usb_val;
2069
22a1b5c1
TJ
2070 if (ftdi == NULL || ftdi->usb_dev == NULL)
2071 ftdi_error_return(-2, "USB device unavailable");
2072
a7fb8440
TJ
2073 if (state)
2074 usb_val = SIO_SET_RTS_HIGH;
2075 else
2076 usb_val = SIO_SET_RTS_LOW;
2077
579b006f
JZ
2078 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2079 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2080 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2081 ftdi_error_return(-1, "set of rts failed");
2082
2083 return 0;
2084}
2085
1189b11a 2086/**
22a1b5c1 2087 Set dtr and rts line in one pass
9ecfef2a 2088
22a1b5c1
TJ
2089 \param ftdi pointer to ftdi_context
2090 \param dtr DTR state to set line to (1 or 0)
2091 \param rts RTS state to set line to (1 or 0)
9ecfef2a 2092
22a1b5c1
TJ
2093 \retval 0: all fine
2094 \retval -1: set dtr/rts failed
2095 \retval -2: USB device unavailable
9ecfef2a
TJ
2096 */
2097int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2098{
2099 unsigned short usb_val;
2100
22a1b5c1
TJ
2101 if (ftdi == NULL || ftdi->usb_dev == NULL)
2102 ftdi_error_return(-2, "USB device unavailable");
2103
9ecfef2a 2104 if (dtr)
22d12cda 2105 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 2106 else
22d12cda 2107 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
2108
2109 if (rts)
22d12cda 2110 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 2111 else
22d12cda 2112 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 2113
579b006f
JZ
2114 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2115 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2116 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 2117 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
2118
2119 return 0;
2120}
2121
2122/**
1189b11a
TJ
2123 Set the special event character
2124
2125 \param ftdi pointer to ftdi_context
2126 \param eventch Event character
2127 \param enable 0 to disable the event character, non-zero otherwise
2128
2129 \retval 0: all fine
2130 \retval -1: unable to set event character
22a1b5c1 2131 \retval -2: USB device unavailable
1189b11a
TJ
2132*/
2133int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 2134 unsigned char eventch, unsigned char enable)
1189b11a
TJ
2135{
2136 unsigned short usb_val;
2137
22a1b5c1
TJ
2138 if (ftdi == NULL || ftdi->usb_dev == NULL)
2139 ftdi_error_return(-2, "USB device unavailable");
2140
1189b11a
TJ
2141 usb_val = eventch;
2142 if (enable)
2143 usb_val |= 1 << 8;
2144
579b006f 2145 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2146 ftdi_error_return(-1, "setting event character failed");
2147
2148 return 0;
2149}
2150
2151/**
2152 Set error character
2153
2154 \param ftdi pointer to ftdi_context
2155 \param errorch Error character
2156 \param enable 0 to disable the error character, non-zero otherwise
2157
2158 \retval 0: all fine
2159 \retval -1: unable to set error character
22a1b5c1 2160 \retval -2: USB device unavailable
1189b11a
TJ
2161*/
2162int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 2163 unsigned char errorch, unsigned char enable)
1189b11a
TJ
2164{
2165 unsigned short usb_val;
2166
22a1b5c1
TJ
2167 if (ftdi == NULL || ftdi->usb_dev == NULL)
2168 ftdi_error_return(-2, "USB device unavailable");
2169
1189b11a
TJ
2170 usb_val = errorch;
2171 if (enable)
2172 usb_val |= 1 << 8;
2173
579b006f 2174 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2175 ftdi_error_return(-1, "setting error character failed");
2176
2177 return 0;
2178}
2179
2180/**
1941414d 2181 Init eeprom with default values.
a35aa9bd 2182 \param ftdi pointer to ftdi_context
f14f84d3
UB
2183 \param manufacturer String to use as Manufacturer
2184 \param product String to use as Product description
2185 \param serial String to use as Serial number description
4e74064b 2186
f14f84d3
UB
2187 \retval 0: all fine
2188 \retval -1: No struct ftdi_context
2189 \retval -2: No struct ftdi_eeprom
1941414d 2190*/
f14f84d3 2191int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
56ac0383 2192 char * product, char * serial)
a8f46ddc 2193{
c0a96aed 2194 struct ftdi_eeprom *eeprom;
f505134f 2195
c0a96aed 2196 if (ftdi == NULL)
f14f84d3 2197 ftdi_error_return(-1, "No struct ftdi_context");
c0a96aed
UB
2198
2199 if (ftdi->eeprom == NULL)
56ac0383 2200 ftdi_error_return(-2,"No struct ftdi_eeprom");
22a1b5c1 2201
c0a96aed 2202 eeprom = ftdi->eeprom;
a02587d5 2203 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
c0a96aed 2204
f396dbad 2205 eeprom->vendor_id = 0x0403;
a02587d5 2206 eeprom->use_serial = USE_SERIAL_NUM;
56ac0383
TJ
2207 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2208 (ftdi->type == TYPE_R))
a02587d5 2209 eeprom->product_id = 0x6001;
c7e4c09e
UB
2210 else if (ftdi->type == TYPE_4232H)
2211 eeprom->product_id = 0x6011;
2212 else if (ftdi->type == TYPE_232H)
2213 eeprom->product_id = 0x6014;
a02587d5
UB
2214 else
2215 eeprom->product_id = 0x6010;
b1859923
UB
2216 if (ftdi->type == TYPE_AM)
2217 eeprom->usb_version = 0x0101;
2218 else
2219 eeprom->usb_version = 0x0200;
a886436a 2220 eeprom->max_power = 100;
d9f0cce7 2221
74e8e79d
UB
2222 if (eeprom->manufacturer)
2223 free (eeprom->manufacturer);
b8aa7b35 2224 eeprom->manufacturer = NULL;
74e8e79d
UB
2225 if (manufacturer)
2226 {
2227 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2228 if (eeprom->manufacturer)
2229 strcpy(eeprom->manufacturer, manufacturer);
2230 }
2231
2232 if (eeprom->product)
2233 free (eeprom->product);
b8aa7b35 2234 eeprom->product = NULL;
10771971 2235 if(product)
74e8e79d
UB
2236 {
2237 eeprom->product = malloc(strlen(product)+1);
2238 if (eeprom->product)
2239 strcpy(eeprom->product, product);
2240 }
2241
2242 if (eeprom->serial)
2243 free (eeprom->serial);
b8aa7b35 2244 eeprom->serial = NULL;
74e8e79d
UB
2245 if (serial)
2246 {
2247 eeprom->serial = malloc(strlen(serial)+1);
2248 if (eeprom->serial)
2249 strcpy(eeprom->serial, serial);
2250 }
2251
c201f80f 2252
56ac0383 2253 if (ftdi->type == TYPE_R)
a4980043 2254 {
a886436a 2255 eeprom->max_power = 90;
a02587d5 2256 eeprom->size = 0x80;
a4980043
UB
2257 eeprom->cbus_function[0] = CBUS_TXLED;
2258 eeprom->cbus_function[1] = CBUS_RXLED;
2259 eeprom->cbus_function[2] = CBUS_TXDEN;
2260 eeprom->cbus_function[3] = CBUS_PWREN;
2261 eeprom->cbus_function[4] = CBUS_SLEEP;
2262 }
a02587d5
UB
2263 else
2264 eeprom->size = -1;
f14f84d3 2265 return 0;
b8aa7b35
TJ
2266}
2267
1941414d 2268/**
a35aa9bd 2269 Build binary buffer from ftdi_eeprom structure.
22a1b5c1 2270 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2271
a35aa9bd 2272 \param ftdi pointer to ftdi_context
1941414d 2273
516ebfb1 2274 \retval >=0: size of eeprom user area in bytes
22a1b5c1 2275 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2c1e2bde
TJ
2276 \retval -2: Invalid eeprom or ftdi pointer
2277 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2278 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2279 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2b9a3c82 2280 \retval -6: No connected EEPROM or EEPROM Type unknown
b8aa7b35 2281*/
a35aa9bd 2282int ftdi_eeprom_build(struct ftdi_context *ftdi)
a8f46ddc 2283{
e2bbd9af 2284 unsigned char i, j, eeprom_size_mask;
b8aa7b35
TJ
2285 unsigned short checksum, value;
2286 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
516ebfb1 2287 int user_area_size;
c0a96aed 2288 struct ftdi_eeprom *eeprom;
a35aa9bd 2289 unsigned char * output;
b8aa7b35 2290
c0a96aed 2291 if (ftdi == NULL)
cc9c9d58 2292 ftdi_error_return(-2,"No context");
c0a96aed 2293 if (ftdi->eeprom == NULL)
cc9c9d58 2294 ftdi_error_return(-2,"No eeprom structure");
c0a96aed
UB
2295
2296 eeprom= ftdi->eeprom;
a35aa9bd 2297 output = eeprom->buf;
22a1b5c1 2298
56ac0383 2299 if (eeprom->chip == -1)
2c1e2bde 2300 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2b9a3c82 2301
f75bf139
UB
2302 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2303 eeprom->size = 0x100;
2304 else
2305 eeprom->size = 0x80;
2306
b8aa7b35 2307 if (eeprom->manufacturer != NULL)
d9f0cce7 2308 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2309 if (eeprom->product != NULL)
d9f0cce7 2310 product_size = strlen(eeprom->product);
b8aa7b35 2311 if (eeprom->serial != NULL)
d9f0cce7 2312 serial_size = strlen(eeprom->serial);
b8aa7b35 2313
814710ba
TJ
2314 // eeprom size check
2315 switch (ftdi->type)
2316 {
2317 case TYPE_AM:
2318 case TYPE_BM:
2319 user_area_size = 96; // base size for strings (total of 48 characters)
2320 break;
2321 case TYPE_2232C:
56ac0383
TJ
2322 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2323 break;
814710ba 2324 case TYPE_R:
56ac0383
TJ
2325 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2326 break;
814710ba
TJ
2327 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2328 case TYPE_4232H:
56ac0383 2329 user_area_size = 86;
118c4561 2330 break;
2c1e2bde
TJ
2331 default:
2332 user_area_size = 0;
56ac0383 2333 break;
665cda04
UB
2334 }
2335 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
814710ba 2336
516ebfb1
TJ
2337 if (user_area_size < 0)
2338 ftdi_error_return(-1,"eeprom size exceeded");
b8aa7b35
TJ
2339
2340 // empty eeprom
a35aa9bd 2341 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
b8aa7b35 2342
93738c79
UB
2343 // Bytes and Bits set for all Types
2344
b8aa7b35
TJ
2345 // Addr 02: Vendor ID
2346 output[0x02] = eeprom->vendor_id;
2347 output[0x03] = eeprom->vendor_id >> 8;
2348
2349 // Addr 04: Product ID
2350 output[0x04] = eeprom->product_id;
2351 output[0x05] = eeprom->product_id >> 8;
2352
2353 // Addr 06: Device release number (0400h for BM features)
2354 output[0x06] = 0x00;
814710ba
TJ
2355 switch (ftdi->type)
2356 {
f505134f
HK
2357 case TYPE_AM:
2358 output[0x07] = 0x02;
2359 break;
2360 case TYPE_BM:
2361 output[0x07] = 0x04;
2362 break;
2363 case TYPE_2232C:
2364 output[0x07] = 0x05;
2365 break;
2366 case TYPE_R:
2367 output[0x07] = 0x06;
2368 break;
56ac0383 2369 case TYPE_2232H:
6123f7ab
UB
2370 output[0x07] = 0x07;
2371 break;
56ac0383 2372 case TYPE_4232H:
6123f7ab
UB
2373 output[0x07] = 0x08;
2374 break;
c7e4c09e
UB
2375 case TYPE_232H:
2376 output[0x07] = 0x09;
2377 break;
f505134f
HK
2378 default:
2379 output[0x07] = 0x00;
2380 }
b8aa7b35
TJ
2381
2382 // Addr 08: Config descriptor
8fae3e8e
TJ
2383 // Bit 7: always 1
2384 // Bit 6: 1 if this device is self powered, 0 if bus powered
2385 // Bit 5: 1 if this device uses remote wakeup
37186e34 2386 // Bit 4-0: reserved - 0
5a1dcd55 2387 j = 0x80;
b8aa7b35 2388 if (eeprom->self_powered == 1)
5a1dcd55 2389 j |= 0x40;
b8aa7b35 2390 if (eeprom->remote_wakeup == 1)
5a1dcd55 2391 j |= 0x20;
b8aa7b35
TJ
2392 output[0x08] = j;
2393
2394 // Addr 09: Max power consumption: max power = value * 2 mA
bb5ec68a 2395 output[0x09] = eeprom->max_power>>1;
d9f0cce7 2396
56ac0383 2397 if (ftdi->type != TYPE_AM)
93738c79
UB
2398 {
2399 // Addr 0A: Chip configuration
2400 // Bit 7: 0 - reserved
2401 // Bit 6: 0 - reserved
2402 // Bit 5: 0 - reserved
56ac0383 2403 // Bit 4: 1 - Change USB version
93738c79
UB
2404 // Bit 3: 1 - Use the serial number string
2405 // Bit 2: 1 - Enable suspend pull downs for lower power
2406 // Bit 1: 1 - Out EndPoint is Isochronous
2407 // Bit 0: 1 - In EndPoint is Isochronous
2408 //
2409 j = 0;
2410 if (eeprom->in_is_isochronous == 1)
2411 j = j | 1;
2412 if (eeprom->out_is_isochronous == 1)
2413 j = j | 2;
2414 output[0x0A] = j;
2415 }
f505134f 2416
b8aa7b35 2417 // Dynamic content
93738c79
UB
2418 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2419 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
c7e4c09e 2420 // 0xa0 (TYPE_232H)
93738c79 2421 i = 0;
56ac0383
TJ
2422 switch (ftdi->type)
2423 {
c7e4c09e
UB
2424 case TYPE_232H:
2425 i += 2;
56ac0383
TJ
2426 case TYPE_2232H:
2427 case TYPE_4232H:
2428 i += 2;
2429 case TYPE_R:
2430 i += 2;
2431 case TYPE_2232C:
2432 i += 2;
2433 case TYPE_AM:
2434 case TYPE_BM:
2435 i += 0x94;
f505134f 2436 }
93738c79 2437 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
e2bbd9af 2438 eeprom_size_mask = eeprom->size -1;
c201f80f 2439
93738c79
UB
2440 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2441 // Addr 0F: Length of manufacturer string
22d12cda 2442 // Output manufacturer
93738c79 2443 output[0x0E] = i; // calculate offset
e2bbd9af
TJ
2444 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2445 output[i & eeprom_size_mask] = 0x03, i++; // type: string
22d12cda
TJ
2446 for (j = 0; j < manufacturer_size; j++)
2447 {
e2bbd9af
TJ
2448 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2449 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2450 }
93738c79 2451 output[0x0F] = manufacturer_size*2 + 2;
b8aa7b35 2452
93738c79
UB
2453 // Addr 10: Offset of the product string + 0x80, calculated later
2454 // Addr 11: Length of product string
c201f80f 2455 output[0x10] = i | 0x80; // calculate offset
e2bbd9af
TJ
2456 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2457 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2458 for (j = 0; j < product_size; j++)
2459 {
e2bbd9af
TJ
2460 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2461 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2462 }
93738c79 2463 output[0x11] = product_size*2 + 2;
37186e34 2464
93738c79
UB
2465 // Addr 12: Offset of the serial string + 0x80, calculated later
2466 // Addr 13: Length of serial string
c201f80f 2467 output[0x12] = i | 0x80; // calculate offset
e2bbd9af
TJ
2468 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2469 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2470 for (j = 0; j < serial_size; j++)
2471 {
e2bbd9af
TJ
2472 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2473 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2474 }
c2700d6d
TJ
2475
2476 // Legacy port name and PnP fields for FT2232 and newer chips
2477 if (ftdi->type > TYPE_BM)
2478 {
2479 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2480 i++;
2481 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2482 i++;
2483 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2484 i++;
2485 }
802a949e 2486
93738c79 2487 output[0x13] = serial_size*2 + 2;
b8aa7b35 2488
56ac0383 2489 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
bf2f6ef7
UB
2490 {
2491 if (eeprom->use_serial == USE_SERIAL_NUM )
2492 output[0x0A] |= USE_SERIAL_NUM;
2493 else
2494 output[0x0A] &= ~USE_SERIAL_NUM;
2495 }
3802140c
UB
2496
2497 /* Bytes and Bits specific to (some) types
2498 Write linear, as this allows easier fixing*/
56ac0383
TJ
2499 switch (ftdi->type)
2500 {
2501 case TYPE_AM:
2502 break;
2503 case TYPE_BM:
2504 output[0x0C] = eeprom->usb_version & 0xff;
2505 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2506 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2507 output[0x0A] |= USE_USB_VERSION_BIT;
2508 else
2509 output[0x0A] &= ~USE_USB_VERSION_BIT;
caec1294 2510
56ac0383
TJ
2511 break;
2512 case TYPE_2232C:
3802140c 2513
56ac0383
TJ
2514 output[0x00] = (eeprom->channel_a_type);
2515 if ( eeprom->channel_a_driver == DRIVER_VCP)
2516 output[0x00] |= DRIVER_VCP;
2517 else
2518 output[0x00] &= ~DRIVER_VCP;
4e74064b 2519
56ac0383
TJ
2520 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2521 output[0x00] |= HIGH_CURRENT_DRIVE;
2522 else
2523 output[0x00] &= ~HIGH_CURRENT_DRIVE;
3802140c 2524
56ac0383
TJ
2525 output[0x01] = (eeprom->channel_b_type);
2526 if ( eeprom->channel_b_driver == DRIVER_VCP)
2527 output[0x01] |= DRIVER_VCP;
2528 else
2529 output[0x01] &= ~DRIVER_VCP;
4e74064b 2530
56ac0383
TJ
2531 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2532 output[0x01] |= HIGH_CURRENT_DRIVE;
2533 else
2534 output[0x01] &= ~HIGH_CURRENT_DRIVE;
3802140c 2535
56ac0383
TJ
2536 if (eeprom->in_is_isochronous == 1)
2537 output[0x0A] |= 0x1;
2538 else
2539 output[0x0A] &= ~0x1;
2540 if (eeprom->out_is_isochronous == 1)
2541 output[0x0A] |= 0x2;
2542 else
2543 output[0x0A] &= ~0x2;
2544 if (eeprom->suspend_pull_downs == 1)
2545 output[0x0A] |= 0x4;
2546 else
2547 output[0x0A] &= ~0x4;
2548 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2549 output[0x0A] |= USE_USB_VERSION_BIT;
2550 else
2551 output[0x0A] &= ~USE_USB_VERSION_BIT;
4e74064b 2552
56ac0383
TJ
2553 output[0x0C] = eeprom->usb_version & 0xff;
2554 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2555 output[0x14] = eeprom->chip;
2556 break;
2557 case TYPE_R:
2558 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2559 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2560 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
4e74064b 2561
56ac0383
TJ
2562 if (eeprom->suspend_pull_downs == 1)
2563 output[0x0A] |= 0x4;
2564 else
2565 output[0x0A] &= ~0x4;
2566 output[0x0B] = eeprom->invert;
2567 output[0x0C] = eeprom->usb_version & 0xff;
2568 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
4e74064b 2569
56ac0383
TJ
2570 if (eeprom->cbus_function[0] > CBUS_BB)
2571 output[0x14] = CBUS_TXLED;
2572 else
2573 output[0x14] = eeprom->cbus_function[0];
4e74064b 2574
56ac0383
TJ
2575 if (eeprom->cbus_function[1] > CBUS_BB)
2576 output[0x14] |= CBUS_RXLED<<4;
2577 else
2578 output[0x14] |= eeprom->cbus_function[1]<<4;
4e74064b 2579
56ac0383
TJ
2580 if (eeprom->cbus_function[2] > CBUS_BB)
2581 output[0x15] = CBUS_TXDEN;
2582 else
2583 output[0x15] = eeprom->cbus_function[2];
4e74064b 2584
56ac0383
TJ
2585 if (eeprom->cbus_function[3] > CBUS_BB)
2586 output[0x15] |= CBUS_PWREN<<4;
2587 else
2588 output[0x15] |= eeprom->cbus_function[3]<<4;
4e74064b 2589
56ac0383
TJ
2590 if (eeprom->cbus_function[4] > CBUS_CLK6)
2591 output[0x16] = CBUS_SLEEP;
2592 else
2593 output[0x16] = eeprom->cbus_function[4];
2594 break;
2595 case TYPE_2232H:
2596 output[0x00] = (eeprom->channel_a_type);
2597 if ( eeprom->channel_a_driver == DRIVER_VCP)
2598 output[0x00] |= DRIVER_VCP;
2599 else
2600 output[0x00] &= ~DRIVER_VCP;
6e6a1c3f 2601
56ac0383
TJ
2602 output[0x01] = (eeprom->channel_b_type);
2603 if ( eeprom->channel_b_driver == DRIVER_VCP)
2604 output[0x01] |= DRIVER_VCP;
2605 else
2606 output[0x01] &= ~DRIVER_VCP;
2607 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2608 output[0x01] |= SUSPEND_DBUS7_BIT;
2609 else
2610 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2611
2612 if (eeprom->suspend_pull_downs == 1)
2613 output[0x0A] |= 0x4;
2614 else
2615 output[0x0A] &= ~0x4;
2616
2617 if (eeprom->group0_drive > DRIVE_16MA)
2618 output[0x0c] |= DRIVE_16MA;
2619 else
2620 output[0x0c] |= eeprom->group0_drive;
2621 if (eeprom->group0_schmitt == IS_SCHMITT)
2622 output[0x0c] |= IS_SCHMITT;
2623 if (eeprom->group0_slew == SLOW_SLEW)
2624 output[0x0c] |= SLOW_SLEW;
2625
2626 if (eeprom->group1_drive > DRIVE_16MA)
2627 output[0x0c] |= DRIVE_16MA<<4;
2628 else
2629 output[0x0c] |= eeprom->group1_drive<<4;
2630 if (eeprom->group1_schmitt == IS_SCHMITT)
2631 output[0x0c] |= IS_SCHMITT<<4;
2632 if (eeprom->group1_slew == SLOW_SLEW)
2633 output[0x0c] |= SLOW_SLEW<<4;
2634
2635 if (eeprom->group2_drive > DRIVE_16MA)
2636 output[0x0d] |= DRIVE_16MA;
2637 else
2638 output[0x0d] |= eeprom->group2_drive;
2639 if (eeprom->group2_schmitt == IS_SCHMITT)
2640 output[0x0d] |= IS_SCHMITT;
2641 if (eeprom->group2_slew == SLOW_SLEW)
2642 output[0x0d] |= SLOW_SLEW;
2643
2644 if (eeprom->group3_drive > DRIVE_16MA)
2645 output[0x0d] |= DRIVE_16MA<<4;
2646 else
2647 output[0x0d] |= eeprom->group3_drive<<4;
2648 if (eeprom->group3_schmitt == IS_SCHMITT)
2649 output[0x0d] |= IS_SCHMITT<<4;
2650 if (eeprom->group3_slew == SLOW_SLEW)
2651 output[0x0d] |= SLOW_SLEW<<4;
3802140c 2652
56ac0383 2653 output[0x18] = eeprom->chip;
3802140c 2654
56ac0383
TJ
2655 break;
2656 case TYPE_4232H:
c7e4c09e 2657 output[0x18] = eeprom->chip;
56ac0383 2658 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
c7e4c09e
UB
2659 break;
2660 case TYPE_232H:
2661 output[0x1e] = eeprom->chip;
2662 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
2663 break;
2664
3802140c
UB
2665 }
2666
cbf65673 2667 // calculate checksum
b8aa7b35 2668 checksum = 0xAAAA;
d9f0cce7 2669
22d12cda
TJ
2670 for (i = 0; i < eeprom->size/2-1; i++)
2671 {
d9f0cce7
TJ
2672 value = output[i*2];
2673 value += output[(i*2)+1] << 8;
b8aa7b35 2674
d9f0cce7
TJ
2675 checksum = value^checksum;
2676 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
2677 }
2678
c201f80f
TJ
2679 output[eeprom->size-2] = checksum;
2680 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 2681
516ebfb1 2682 return user_area_size;
b8aa7b35
TJ
2683}
2684
4af1d1bb
MK
2685/**
2686 Decode binary EEPROM image into an ftdi_eeprom structure.
2687
a35aa9bd
UB
2688 \param ftdi pointer to ftdi_context
2689 \param verbose Decode EEPROM on stdout
56ac0383 2690
4af1d1bb
MK
2691 \retval 0: all fine
2692 \retval -1: something went wrong
2693
2694 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2695 FIXME: Strings are malloc'ed here and should be freed somewhere
2696*/
a35aa9bd 2697int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
b56d5a64
MK
2698{
2699 unsigned char i, j;
2700 unsigned short checksum, eeprom_checksum, value;
2701 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
f2cd9fd5 2702 int eeprom_size;
c0a96aed 2703 struct ftdi_eeprom *eeprom;
a35aa9bd 2704 unsigned char *buf = ftdi->eeprom->buf;
38801bf8 2705 int release;
22a1b5c1 2706
c0a96aed 2707 if (ftdi == NULL)
cc9c9d58 2708 ftdi_error_return(-1,"No context");
c0a96aed 2709 if (ftdi->eeprom == NULL)
6cd4f922 2710 ftdi_error_return(-1,"No eeprom structure");
56ac0383 2711
c0a96aed 2712 eeprom = ftdi->eeprom;
a35aa9bd 2713 eeprom_size = eeprom->size;
b56d5a64 2714
b56d5a64
MK
2715 // Addr 02: Vendor ID
2716 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2717
2718 // Addr 04: Product ID
2719 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
22d12cda 2720
38801bf8 2721 release = buf[0x06] + (buf[0x07]<<8);
b56d5a64
MK
2722
2723 // Addr 08: Config descriptor
2724 // Bit 7: always 1
2725 // Bit 6: 1 if this device is self powered, 0 if bus powered
2726 // Bit 5: 1 if this device uses remote wakeup
f6ef2983 2727 eeprom->self_powered = buf[0x08] & 0x40;
814710ba 2728 eeprom->remote_wakeup = buf[0x08] & 0x20;
b56d5a64
MK
2729
2730 // Addr 09: Max power consumption: max power = value * 2 mA
2731 eeprom->max_power = buf[0x09];
2732
2733 // Addr 0A: Chip configuration
2734 // Bit 7: 0 - reserved
2735 // Bit 6: 0 - reserved
2736 // Bit 5: 0 - reserved
caec1294 2737 // Bit 4: 1 - Change USB version on BM and 2232C
b56d5a64
MK
2738 // Bit 3: 1 - Use the serial number string
2739 // Bit 2: 1 - Enable suspend pull downs for lower power
2740 // Bit 1: 1 - Out EndPoint is Isochronous
2741 // Bit 0: 1 - In EndPoint is Isochronous
2742 //
8d3fe5c9
UB
2743 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2744 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2745 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
a02587d5 2746 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
caec1294 2747 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
b56d5a64 2748
b1859923 2749 // Addr 0C: USB version low byte when 0x0A
56ac0383 2750 // Addr 0D: USB version high byte when 0x0A
b1859923 2751 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
b56d5a64
MK
2752
2753 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2754 // Addr 0F: Length of manufacturer string
2755 manufacturer_size = buf[0x0F]/2;
56ac0383 2756 if (eeprom->manufacturer)
74e8e79d 2757 free(eeprom->manufacturer);
56ac0383 2758 if (manufacturer_size > 0)
acc1fa05
UB
2759 {
2760 eeprom->manufacturer = malloc(manufacturer_size);
2761 if (eeprom->manufacturer)
2762 {
2763 // Decode manufacturer
84ec032f 2764 i = buf[0x0E] & (eeprom_size -1); // offset
acc1fa05
UB
2765 for (j=0;j<manufacturer_size-1;j++)
2766 {
2767 eeprom->manufacturer[j] = buf[2*j+i+2];
2768 }
2769 eeprom->manufacturer[j] = '\0';
2770 }
2771 }
b56d5a64
MK
2772 else eeprom->manufacturer = NULL;
2773
2774 // Addr 10: Offset of the product string + 0x80, calculated later
2775 // Addr 11: Length of product string
56ac0383 2776 if (eeprom->product)
74e8e79d 2777 free(eeprom->product);
b56d5a64 2778 product_size = buf[0x11]/2;
acc1fa05
UB
2779 if (product_size > 0)
2780 {
2781 eeprom->product = malloc(product_size);
56ac0383 2782 if (eeprom->product)
acc1fa05
UB
2783 {
2784 // Decode product name
84ec032f 2785 i = buf[0x10] & (eeprom_size -1); // offset
acc1fa05
UB
2786 for (j=0;j<product_size-1;j++)
2787 {
2788 eeprom->product[j] = buf[2*j+i+2];
2789 }
2790 eeprom->product[j] = '\0';
2791 }
2792 }
b56d5a64
MK
2793 else eeprom->product = NULL;
2794
2795 // Addr 12: Offset of the serial string + 0x80, calculated later
2796 // Addr 13: Length of serial string
56ac0383 2797 if (eeprom->serial)
74e8e79d 2798 free(eeprom->serial);
b56d5a64 2799 serial_size = buf[0x13]/2;
acc1fa05
UB
2800 if (serial_size > 0)
2801 {
2802 eeprom->serial = malloc(serial_size);
56ac0383 2803 if (eeprom->serial)
acc1fa05
UB
2804 {
2805 // Decode serial
84ec032f 2806 i = buf[0x12] & (eeprom_size -1); // offset
acc1fa05
UB
2807 for (j=0;j<serial_size-1;j++)
2808 {
2809 eeprom->serial[j] = buf[2*j+i+2];
2810 }
2811 eeprom->serial[j] = '\0';
2812 }
2813 }
b56d5a64
MK
2814 else eeprom->serial = NULL;
2815
b56d5a64
MK
2816 // verify checksum
2817 checksum = 0xAAAA;
2818
22d12cda
TJ
2819 for (i = 0; i < eeprom_size/2-1; i++)
2820 {
b56d5a64
MK
2821 value = buf[i*2];
2822 value += buf[(i*2)+1] << 8;
2823
2824 checksum = value^checksum;
2825 checksum = (checksum << 1) | (checksum >> 15);
2826 }
2827
2828 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2829
22d12cda
TJ
2830 if (eeprom_checksum != checksum)
2831 {
2832 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
cc9c9d58 2833 ftdi_error_return(-1,"EEPROM checksum error");
4af1d1bb
MK
2834 }
2835
eb498cff 2836 eeprom->channel_a_type = 0;
aa099f46 2837 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
f6ef2983 2838 {
6cd4f922 2839 eeprom->chip = -1;
f6ef2983 2840 }
56ac0383 2841 else if (ftdi->type == TYPE_2232C)
f6ef2983 2842 {
2cde7c52
UB
2843 eeprom->channel_a_type = buf[0x00] & 0x7;
2844 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2845 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2846 eeprom->channel_b_type = buf[0x01] & 0x7;
2847 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2848 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
6cd4f922 2849 eeprom->chip = buf[0x14];
065edc58 2850 }
56ac0383 2851 else if (ftdi->type == TYPE_R)
564b2716 2852 {
2cde7c52
UB
2853 /* TYPE_R flags D2XX, not VCP as all others*/
2854 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2855 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
56ac0383
TJ
2856 if ( (buf[0x01]&0x40) != 0x40)
2857 fprintf(stderr,
2858 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2859 " If this happened with the\n"
2860 " EEPROM programmed by FTDI tools, please report "
2861 "to libftdi@developer.intra2net.com\n");
2cde7c52 2862
6cd4f922 2863 eeprom->chip = buf[0x16];
cecb9cb2
UB
2864 // Addr 0B: Invert data lines
2865 // Works only on FT232R, not FT245R, but no way to distinguish
07851949
UB
2866 eeprom->invert = buf[0x0B];
2867 // Addr 14: CBUS function: CBUS0, CBUS1
2868 // Addr 15: CBUS function: CBUS2, CBUS3
2869 // Addr 16: CBUS function: CBUS5
2870 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2871 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2872 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2873 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2874 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
564b2716 2875 }
56ac0383 2876 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
db099ec5 2877 {
c6b94478 2878 eeprom->channel_a_type = buf[0x00] & 0x7;
2cde7c52
UB
2879 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2880 eeprom->channel_b_type = buf[0x01] & 0x7;
2881 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2882
56ac0383 2883 if (ftdi->type == TYPE_2232H)
ec0dcd3f 2884 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
2cde7c52 2885
6cd4f922 2886 eeprom->chip = buf[0x18];
db099ec5
UB
2887 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2888 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2889 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2890 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2891 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2892 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2893 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2894 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2895 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2896 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2897 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2898 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
947d9552 2899 }
c7e4c09e
UB
2900 else if (ftdi->type == TYPE_232H)
2901 {
2902 eeprom->chip = buf[0x1e];
2903 /*FIXME: Decipher more values*/
2904 }
56ac0383
TJ
2905
2906 if (verbose)
f6ef2983 2907 {
c7e4c09e 2908 char *channel_mode[] = {"UART","245","CPU", "unknown", "OPTO"/*, "FT1284"*/};
f6ef2983
UB
2909 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
2910 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
38801bf8 2911 fprintf(stdout, "Release: 0x%04x\n",release);
f6ef2983 2912
56ac0383 2913 if (eeprom->self_powered)
f6ef2983
UB
2914 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
2915 else
1cd815ad 2916 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
f6ef2983 2917 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
56ac0383 2918 if (eeprom->manufacturer)
f6ef2983 2919 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
56ac0383 2920 if (eeprom->product)
f6ef2983 2921 fprintf(stdout, "Product: %s\n",eeprom->product);
56ac0383 2922 if (eeprom->serial)
f6ef2983 2923 fprintf(stdout, "Serial: %s\n",eeprom->serial);
e107f509 2924 fprintf(stdout, "Checksum : %04x\n", checksum);
6cd4f922
UB
2925 if (ftdi->type == TYPE_R)
2926 fprintf(stdout, "Internal EEPROM\n");
2927 else if (eeprom->chip >= 0x46)
2928 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
56ac0383
TJ
2929 if (eeprom->suspend_dbus7)
2930 fprintf(stdout, "Suspend on DBUS7\n");
2931 if (eeprom->suspend_pull_downs)
fb9bfdd1 2932 fprintf(stdout, "Pull IO pins low during suspend\n");
56ac0383 2933 if (eeprom->remote_wakeup)
fb9bfdd1 2934 fprintf(stdout, "Enable Remote Wake Up\n");
802a949e 2935 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
db099ec5 2936 if (ftdi->type >= TYPE_2232C)
56ac0383 2937 fprintf(stdout,"Channel A has Mode %s%s%s\n",
e107f509 2938 channel_mode[eeprom->channel_a_type],
2cde7c52
UB
2939 (eeprom->channel_a_driver)?" VCP":"",
2940 (eeprom->high_current_a)?" High Current IO":"");
c7e4c09e 2941 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
56ac0383 2942 fprintf(stdout,"Channel B has Mode %s%s%s\n",
e107f509 2943 channel_mode[eeprom->channel_b_type],
2cde7c52
UB
2944 (eeprom->channel_b_driver)?" VCP":"",
2945 (eeprom->high_current_b)?" High Current IO":"");
caec1294 2946 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
56ac0383 2947 eeprom->use_usb_version == USE_USB_VERSION_BIT)
caec1294
UB
2948 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
2949
56ac0383 2950 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
db099ec5
UB
2951 {
2952 fprintf(stdout,"%s has %d mA drive%s%s\n",
2953 (ftdi->type == TYPE_2232H)?"AL":"A",
2954 (eeprom->group0_drive+1) *4,
2955 (eeprom->group0_schmitt)?" Schmitt Input":"",
2956 (eeprom->group0_slew)?" Slow Slew":"");
2957 fprintf(stdout,"%s has %d mA drive%s%s\n",
2958 (ftdi->type == TYPE_2232H)?"AH":"B",
2959 (eeprom->group1_drive+1) *4,
2960 (eeprom->group1_schmitt)?" Schmitt Input":"",
2961 (eeprom->group1_slew)?" Slow Slew":"");
2962 fprintf(stdout,"%s has %d mA drive%s%s\n",
2963 (ftdi->type == TYPE_2232H)?"BL":"C",
2964 (eeprom->group2_drive+1) *4,
2965 (eeprom->group2_schmitt)?" Schmitt Input":"",
2966 (eeprom->group2_slew)?" Slow Slew":"");
2967 fprintf(stdout,"%s has %d mA drive%s%s\n",
2968 (ftdi->type == TYPE_2232H)?"BH":"D",
2969 (eeprom->group3_drive+1) *4,
2970 (eeprom->group3_schmitt)?" Schmitt Input":"",
2971 (eeprom->group3_slew)?" Slow Slew":"");
2972 }
a4980043
UB
2973 if (ftdi->type == TYPE_R)
2974 {
2975 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
13f00d3c 2976 "SLEEP","CLK48","CLK24","CLK12","CLK6",
56ac0383
TJ
2977 "IOMODE","BB_WR","BB_RD"
2978 };
13f00d3c 2979 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
56ac0383
TJ
2980
2981 if (eeprom->invert)
2982 {
a4980043
UB
2983 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
2984 fprintf(stdout,"Inverted bits:");
2985 for (i=0; i<8; i++)
56ac0383 2986 if ((eeprom->invert & (1<<i)) == (1<<i))
a4980043
UB
2987 fprintf(stdout," %s",r_bits[i]);
2988 fprintf(stdout,"\n");
2989 }
56ac0383 2990 for (i=0; i<5; i++)
a4980043 2991 {
56ac0383 2992 if (eeprom->cbus_function[i]<CBUS_BB)
a4980043
UB
2993 fprintf(stdout,"C%d Function: %s\n", i,
2994 cbus_mux[eeprom->cbus_function[i]]);
2995 else
17431287 2996 {
598b2334
UB
2997 if (i < 4)
2998 /* Running MPROG show that C0..3 have fixed function Synchronous
2999 Bit Bang mode */
3000 fprintf(stdout,"C%d BB Function: %s\n", i,
3001 cbus_BB[i]);
3002 else
3003 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
17431287 3004 }
a4980043
UB
3005 }
3006 }
f6ef2983 3007 }
4af1d1bb 3008 return 0;
b56d5a64
MK
3009}
3010
1941414d 3011/**
44ef02bd
UB
3012 Get a value from the decoded EEPROM structure
3013
735e81ea
TJ
3014 \param ftdi pointer to ftdi_context
3015 \param value_name Enum of the value to query
3016 \param value Pointer to store read value
44ef02bd 3017
735e81ea
TJ
3018 \retval 0: all fine
3019 \retval -1: Value doesn't exist
44ef02bd
UB
3020*/
3021int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3022{
3023 switch (value_name)
3024 {
56ac0383
TJ
3025 case VENDOR_ID:
3026 *value = ftdi->eeprom->vendor_id;
3027 break;
3028 case PRODUCT_ID:
3029 *value = ftdi->eeprom->product_id;
3030 break;
3031 case SELF_POWERED:
3032 *value = ftdi->eeprom->self_powered;
3033 break;
3034 case REMOTE_WAKEUP:
3035 *value = ftdi->eeprom->remote_wakeup;
3036 break;
3037 case IS_NOT_PNP:
3038 *value = ftdi->eeprom->is_not_pnp;
3039 break;
3040 case SUSPEND_DBUS7:
3041 *value = ftdi->eeprom->suspend_dbus7;
3042 break;
3043 case IN_IS_ISOCHRONOUS:
3044 *value = ftdi->eeprom->in_is_isochronous;
3045 break;
3046 case SUSPEND_PULL_DOWNS:
3047 *value = ftdi->eeprom->suspend_pull_downs;
3048 break;
3049 case USE_SERIAL:
3050 *value = ftdi->eeprom->use_serial;
3051 break;
3052 case USB_VERSION:
3053 *value = ftdi->eeprom->usb_version;
3054 break;
3055 case MAX_POWER:
3056 *value = ftdi->eeprom->max_power;
3057 break;
3058 case CHANNEL_A_TYPE:
3059 *value = ftdi->eeprom->channel_a_type;
3060 break;
3061 case CHANNEL_B_TYPE:
3062 *value = ftdi->eeprom->channel_b_type;
3063 break;
3064 case CHANNEL_A_DRIVER:
3065 *value = ftdi->eeprom->channel_a_driver;
3066 break;
3067 case CHANNEL_B_DRIVER:
3068 *value = ftdi->eeprom->channel_b_driver;
3069 break;
3070 case CBUS_FUNCTION_0:
3071 *value = ftdi->eeprom->cbus_function[0];
3072 break;
3073 case CBUS_FUNCTION_1:
3074 *value = ftdi->eeprom->cbus_function[1];
3075 break;
3076 case CBUS_FUNCTION_2:
3077 *value = ftdi->eeprom->cbus_function[2];
3078 break;
3079 case CBUS_FUNCTION_3:
3080 *value = ftdi->eeprom->cbus_function[3];
3081 break;
3082 case CBUS_FUNCTION_4:
3083 *value = ftdi->eeprom->cbus_function[4];
3084 break;
3085 case HIGH_CURRENT:
3086 *value = ftdi->eeprom->high_current;
3087 break;
3088 case HIGH_CURRENT_A:
3089 *value = ftdi->eeprom->high_current_a;
3090 break;
3091 case HIGH_CURRENT_B:
3092 *value = ftdi->eeprom->high_current_b;
3093 break;
3094 case INVERT:
3095 *value = ftdi->eeprom->invert;
3096 break;
3097 case GROUP0_DRIVE:
3098 *value = ftdi->eeprom->group0_drive;
3099 break;
3100 case GROUP0_SCHMITT:
3101 *value = ftdi->eeprom->group0_schmitt;
3102 break;
3103 case GROUP0_SLEW:
3104 *value = ftdi->eeprom->group0_slew;
3105 break;
3106 case GROUP1_DRIVE:
3107 *value = ftdi->eeprom->group1_drive;
3108 break;
3109 case GROUP1_SCHMITT:
3110 *value = ftdi->eeprom->group1_schmitt;
3111 break;
3112 case GROUP1_SLEW:
3113 *value = ftdi->eeprom->group1_slew;
3114 break;
3115 case GROUP2_DRIVE:
3116 *value = ftdi->eeprom->group2_drive;
3117 break;
3118 case GROUP2_SCHMITT:
3119 *value = ftdi->eeprom->group2_schmitt;
3120 break;
3121 case GROUP2_SLEW:
3122 *value = ftdi->eeprom->group2_slew;
3123 break;
3124 case GROUP3_DRIVE:
3125 *value = ftdi->eeprom->group3_drive;
3126 break;
3127 case GROUP3_SCHMITT:
3128 *value = ftdi->eeprom->group3_schmitt;
3129 break;
3130 case GROUP3_SLEW:
3131 *value = ftdi->eeprom->group3_slew;
3132 break;
3133 case CHIP_TYPE:
3134 *value = ftdi->eeprom->chip;
3135 break;
3136 case CHIP_SIZE:
3137 *value = ftdi->eeprom->size;
3138 break;
3139 default:
3140 ftdi_error_return(-1, "Request for unknown EEPROM value");
44ef02bd
UB
3141 }
3142 return 0;
3143}
3144
3145/**
3146 Set a value in the decoded EEPROM Structure
3147 No parameter checking is performed
3148
735e81ea 3149 \param ftdi pointer to ftdi_context
545f9df9 3150 \param value_name Enum of the value to set
735e81ea 3151 \param value to set
44ef02bd 3152
735e81ea
TJ
3153 \retval 0: all fine
3154 \retval -1: Value doesn't exist
3155 \retval -2: Value not user settable
44ef02bd
UB
3156*/
3157int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3158{
3159 switch (value_name)
3160 {
56ac0383
TJ
3161 case VENDOR_ID:
3162 ftdi->eeprom->vendor_id = value;
3163 break;
3164 case PRODUCT_ID:
3165 ftdi->eeprom->product_id = value;
3166 break;
3167 case SELF_POWERED:
3168 ftdi->eeprom->self_powered = value;
3169 break;
3170 case REMOTE_WAKEUP:
3171 ftdi->eeprom->remote_wakeup = value;
3172 break;
3173 case IS_NOT_PNP:
3174 ftdi->eeprom->is_not_pnp = value;
3175 break;
3176 case SUSPEND_DBUS7:
3177 ftdi->eeprom->suspend_dbus7 = value;
3178 break;
3179 case IN_IS_ISOCHRONOUS:
3180 ftdi->eeprom->in_is_isochronous = value;
3181 break;
3182 case SUSPEND_PULL_DOWNS:
3183 ftdi->eeprom->suspend_pull_downs = value;
3184 break;
3185 case USE_SERIAL:
3186 ftdi->eeprom->use_serial = value;
3187 break;
3188 case USB_VERSION:
3189 ftdi->eeprom->usb_version = value;
3190 break;
3191 case MAX_POWER:
3192 ftdi->eeprom->max_power = value;
3193 break;
3194 case CHANNEL_A_TYPE:
3195 ftdi->eeprom->channel_a_type = value;
3196 break;
3197 case CHANNEL_B_TYPE:
3198 ftdi->eeprom->channel_b_type = value;
3199 break;
3200 case CHANNEL_A_DRIVER:
3201 ftdi->eeprom->channel_a_driver = value;
3202 break;
3203 case CHANNEL_B_DRIVER:
3204 ftdi->eeprom->channel_b_driver = value;
3205 break;
3206 case CBUS_FUNCTION_0:
3207 ftdi->eeprom->cbus_function[0] = value;
3208 break;
3209 case CBUS_FUNCTION_1:
3210 ftdi->eeprom->cbus_function[1] = value;
3211 break;
3212 case CBUS_FUNCTION_2:
3213 ftdi->eeprom->cbus_function[2] = value;
3214 break;
3215 case CBUS_FUNCTION_3:
3216 ftdi->eeprom->cbus_function[3] = value;
3217 break;
3218 case CBUS_FUNCTION_4:
3219 ftdi->eeprom->cbus_function[4] = value;
3220 break;
3221 case HIGH_CURRENT:
3222 ftdi->eeprom->high_current = value;
3223 break;
3224 case HIGH_CURRENT_A:
3225 ftdi->eeprom->high_current_a = value;
3226 break;
3227 case HIGH_CURRENT_B:
3228 ftdi->eeprom->high_current_b = value;
3229 break;
3230 case INVERT:
3231 ftdi->eeprom->invert = value;
3232 break;
3233 case GROUP0_DRIVE:
3234 ftdi->eeprom->group0_drive = value;
3235 break;
3236 case GROUP0_SCHMITT:
3237 ftdi->eeprom->group0_schmitt = value;
3238 break;
3239 case GROUP0_SLEW:
3240 ftdi->eeprom->group0_slew = value;
3241 break;
3242 case GROUP1_DRIVE:
3243 ftdi->eeprom->group1_drive = value;
3244 break;
3245 case GROUP1_SCHMITT:
3246 ftdi->eeprom->group1_schmitt = value;
3247 break;
3248 case GROUP1_SLEW:
3249 ftdi->eeprom->group1_slew = value;
3250 break;
3251 case GROUP2_DRIVE:
3252 ftdi->eeprom->group2_drive = value;
3253 break;
3254 case GROUP2_SCHMITT:
3255 ftdi->eeprom->group2_schmitt = value;
3256 break;
3257 case GROUP2_SLEW:
3258 ftdi->eeprom->group2_slew = value;
3259 break;
3260 case GROUP3_DRIVE:
3261 ftdi->eeprom->group3_drive = value;
3262 break;
3263 case GROUP3_SCHMITT:
3264 ftdi->eeprom->group3_schmitt = value;
3265 break;
3266 case GROUP3_SLEW:
3267 ftdi->eeprom->group3_slew = value;
3268 break;
3269 case CHIP_TYPE:
3270 ftdi->eeprom->chip = value;
3271 break;
3272 case CHIP_SIZE:
3273 ftdi_error_return(-2, "EEPROM Value can't be changed");
3274 default :
3275 ftdi_error_return(-1, "Request to unknown EEPROM value");
44ef02bd
UB
3276 }
3277 return 0;
3278}
3279
3280/** Get the read-only buffer to the binary EEPROM content
3281
3282 \param ftdi pointer to ftdi_context
735e81ea 3283 \param buf buffer to receive EEPROM content
44ef02bd
UB
3284 \param size Size of receiving buffer
3285
3286 \retval 0: All fine
3287 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
200bd3ed 3288 \retval -2: Not enough room to store eeprom
44ef02bd 3289*/
56ac0383
TJ
3290int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3291{
3292 if (!ftdi || !(ftdi->eeprom))
3293 ftdi_error_return(-1, "No appropriate structure");
b95e4654 3294
200bd3ed
TJ
3295 if (!buf || size < ftdi->eeprom->size)
3296 ftdi_error_return(-1, "Not enough room to store eeprom");
3297
b95e4654
TJ
3298 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3299 if (size > FTDI_MAX_EEPROM_SIZE)
3300 size = FTDI_MAX_EEPROM_SIZE;
3301
56ac0383 3302 memcpy(buf, ftdi->eeprom->buf, size);
b95e4654 3303
56ac0383
TJ
3304 return 0;
3305}
44ef02bd
UB
3306
3307/**
c1c70e13
OS
3308 Read eeprom location
3309
3310 \param ftdi pointer to ftdi_context
3311 \param eeprom_addr Address of eeprom location to be read
3312 \param eeprom_val Pointer to store read eeprom location
3313
3314 \retval 0: all fine
3315 \retval -1: read failed
22a1b5c1 3316 \retval -2: USB device unavailable
c1c70e13
OS
3317*/
3318int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3319{
22a1b5c1
TJ
3320 if (ftdi == NULL || ftdi->usb_dev == NULL)
3321 ftdi_error_return(-2, "USB device unavailable");
3322
97c6b5f6 3323 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
c1c70e13
OS
3324 ftdi_error_return(-1, "reading eeprom failed");
3325
3326 return 0;
3327}
3328
3329/**
1941414d
TJ
3330 Read eeprom
3331
3332 \param ftdi pointer to ftdi_context
b8aa7b35 3333
1941414d
TJ
3334 \retval 0: all fine
3335 \retval -1: read failed
22a1b5c1 3336 \retval -2: USB device unavailable
1941414d 3337*/
a35aa9bd 3338int ftdi_read_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3339{
a3da1d95 3340 int i;
a35aa9bd 3341 unsigned char *buf;
a3da1d95 3342
22a1b5c1
TJ
3343 if (ftdi == NULL || ftdi->usb_dev == NULL)
3344 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 3345 buf = ftdi->eeprom->buf;
22a1b5c1 3346
2d543486 3347 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
22d12cda 3348 {
a35aa9bd 3349 if (libusb_control_transfer(
56ac0383
TJ
3350 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3351 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
c3d95b87 3352 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
3353 }
3354
2d543486 3355 if (ftdi->type == TYPE_R)
a35aa9bd 3356 ftdi->eeprom->size = 0x80;
56ac0383 3357 /* Guesses size of eeprom by comparing halves
2d543486 3358 - will not work with blank eeprom */
a35aa9bd 3359 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
2d543486 3360 ftdi->eeprom->size = -1;
56ac0383 3361 else if (memcmp(buf,&buf[0x80],0x80) == 0)
2d543486 3362 ftdi->eeprom->size = 0x80;
56ac0383 3363 else if (memcmp(buf,&buf[0x40],0x40) == 0)
2d543486
UB
3364 ftdi->eeprom->size = 0x40;
3365 else
3366 ftdi->eeprom->size = 0x100;
a3da1d95
GE
3367 return 0;
3368}
3369
cb6250fa
TJ
3370/*
3371 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3372 Function is only used internally
3373 \internal
3374*/
3375static unsigned char ftdi_read_chipid_shift(unsigned char value)
3376{
3377 return ((value & 1) << 1) |
22d12cda
TJ
3378 ((value & 2) << 5) |
3379 ((value & 4) >> 2) |
3380 ((value & 8) << 4) |
3381 ((value & 16) >> 1) |
3382 ((value & 32) >> 1) |
3383 ((value & 64) >> 4) |
3384 ((value & 128) >> 2);
cb6250fa
TJ
3385}
3386
3387/**
3388 Read the FTDIChip-ID from R-type devices
3389
3390 \param ftdi pointer to ftdi_context
3391 \param chipid Pointer to store FTDIChip-ID
3392
3393 \retval 0: all fine
3394 \retval -1: read failed
22a1b5c1 3395 \retval -2: USB device unavailable
cb6250fa
TJ
3396*/
3397int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3398{
c7eb3112 3399 unsigned int a = 0, b = 0;
cb6250fa 3400
22a1b5c1
TJ
3401 if (ftdi == NULL || ftdi->usb_dev == NULL)
3402 ftdi_error_return(-2, "USB device unavailable");
3403
579b006f 3404 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3405 {
3406 a = a << 8 | a >> 8;
579b006f 3407 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3408 {
3409 b = b << 8 | b >> 8;
5230676f 3410 a = (a << 16) | (b & 0xFFFF);
912d50ca
TJ
3411 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3412 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 3413 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 3414 return 0;
cb6250fa
TJ
3415 }
3416 }
3417
c7eb3112 3418 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
3419}
3420
1941414d 3421/**
c1c70e13
OS
3422 Write eeprom location
3423
3424 \param ftdi pointer to ftdi_context
3425 \param eeprom_addr Address of eeprom location to be written
3426 \param eeprom_val Value to be written
3427
3428 \retval 0: all fine
a661e3e4 3429 \retval -1: write failed
22a1b5c1 3430 \retval -2: USB device unavailable
a661e3e4
UB
3431 \retval -3: Invalid access to checksum protected area below 0x80
3432 \retval -4: Device can't access unprotected area
3433 \retval -5: Reading chip type failed
c1c70e13 3434*/
56ac0383 3435int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
a661e3e4 3436 unsigned short eeprom_val)
c1c70e13 3437{
a661e3e4
UB
3438 int chip_type_location;
3439 unsigned short chip_type;
3440
22a1b5c1
TJ
3441 if (ftdi == NULL || ftdi->usb_dev == NULL)
3442 ftdi_error_return(-2, "USB device unavailable");
3443
56ac0383 3444 if (eeprom_addr <0x80)
a661e3e4
UB
3445 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3446
3447
3448 switch (ftdi->type)
3449 {
56ac0383
TJ
3450 case TYPE_BM:
3451 case TYPE_2232C:
3452 chip_type_location = 0x14;
3453 break;
3454 case TYPE_2232H:
3455 case TYPE_4232H:
3456 chip_type_location = 0x18;
3457 break;
c7e4c09e
UB
3458 case TYPE_232H:
3459 chip_type_location = 0x1e;
3460 break;
56ac0383
TJ
3461 default:
3462 ftdi_error_return(-4, "Device can't access unprotected area");
a661e3e4
UB
3463 }
3464
56ac0383 3465 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
a661e3e4 3466 ftdi_error_return(-5, "Reading failed failed");
56ac0383
TJ
3467 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3468 if ((chip_type & 0xff) != 0x66)
a661e3e4
UB
3469 {
3470 ftdi_error_return(-6, "EEPROM is not of 93x66");
3471 }
3472
579b006f 3473 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
3474 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3475 NULL, 0, ftdi->usb_write_timeout) != 0)
c1c70e13
OS
3476 ftdi_error_return(-1, "unable to write eeprom");
3477
3478 return 0;
3479}
3480
3481/**
1941414d 3482 Write eeprom
a3da1d95 3483
1941414d 3484 \param ftdi pointer to ftdi_context
56ac0383 3485
1941414d
TJ
3486 \retval 0: all fine
3487 \retval -1: read failed
22a1b5c1 3488 \retval -2: USB device unavailable
1941414d 3489*/
a35aa9bd 3490int ftdi_write_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3491{
ba5329be 3492 unsigned short usb_val, status;
e30da501 3493 int i, ret;
a35aa9bd 3494 unsigned char *eeprom;
a3da1d95 3495
22a1b5c1
TJ
3496 if (ftdi == NULL || ftdi->usb_dev == NULL)
3497 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 3498 eeprom = ftdi->eeprom->buf;
22a1b5c1 3499
ba5329be 3500 /* These commands were traced while running MProg */
e30da501
TJ
3501 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3502 return ret;
3503 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3504 return ret;
3505 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3506 return ret;
ba5329be 3507
c0a96aed 3508 for (i = 0; i < ftdi->eeprom->size/2; i++)
22d12cda 3509 {
d9f0cce7
TJ
3510 usb_val = eeprom[i*2];
3511 usb_val += eeprom[(i*2)+1] << 8;
579b006f
JZ
3512 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3513 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3514 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3515 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
3516 }
3517
3518 return 0;
3519}
3520
1941414d
TJ
3521/**
3522 Erase eeprom
a3da1d95 3523
a5e1bd8c
MK
3524 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3525
1941414d
TJ
3526 \param ftdi pointer to ftdi_context
3527
3528 \retval 0: all fine
3529 \retval -1: erase failed
22a1b5c1 3530 \retval -2: USB device unavailable
99404ad5
UB
3531 \retval -3: Writing magic failed
3532 \retval -4: Read EEPROM failed
3533 \retval -5: Unexpected EEPROM value
1941414d 3534*/
99404ad5 3535#define MAGIC 0x55aa
a8f46ddc
TJ
3536int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3537{
99404ad5 3538 unsigned short eeprom_value;
22a1b5c1
TJ
3539 if (ftdi == NULL || ftdi->usb_dev == NULL)
3540 ftdi_error_return(-2, "USB device unavailable");
3541
56ac0383 3542 if (ftdi->type == TYPE_R)
99404ad5
UB
3543 {
3544 ftdi->eeprom->chip = 0;
3545 return 0;
3546 }
3547
56ac0383 3548 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5 3549 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3550 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95 3551
56ac0383 3552
99404ad5
UB
3553 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3554 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3555 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3556 Chip is 93x66 if magic is only read at word position 0xc0*/
10186c1f 3557 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
3558 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3559 NULL, 0, ftdi->usb_write_timeout) != 0)
99404ad5 3560 ftdi_error_return(-3, "Writing magic failed");
56ac0383 3561 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
99404ad5 3562 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3563 if (eeprom_value == MAGIC)
99404ad5
UB
3564 {
3565 ftdi->eeprom->chip = 0x46;
3566 }
56ac0383 3567 else
99404ad5 3568 {
56ac0383 3569 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
99404ad5 3570 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3571 if (eeprom_value == MAGIC)
99404ad5 3572 ftdi->eeprom->chip = 0x56;
56ac0383 3573 else
99404ad5 3574 {
56ac0383 3575 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
99404ad5 3576 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3577 if (eeprom_value == MAGIC)
99404ad5
UB
3578 ftdi->eeprom->chip = 0x66;
3579 else
3580 {
3581 ftdi->eeprom->chip = -1;
3582 }
3583 }
3584 }
56ac0383 3585 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5
UB
3586 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3587 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
3588 return 0;
3589}
c3d95b87 3590
1941414d
TJ
3591/**
3592 Get string representation for last error code
c3d95b87 3593
1941414d
TJ
3594 \param ftdi pointer to ftdi_context
3595
3596 \retval Pointer to error string
3597*/
c3d95b87
TJ
3598char *ftdi_get_error_string (struct ftdi_context *ftdi)
3599{
22a1b5c1
TJ
3600 if (ftdi == NULL)
3601 return "";
3602
c3d95b87
TJ
3603 return ftdi->error_str;
3604}
a01d31e2 3605
b5ec1820 3606/* @} end of doxygen libftdi group */