Check ftdi pointer before accessing it
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
8a987aa2 5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
1bfc403c 21 http://www.intra2net.com/en/developer/libftdi/
b5ec1820 22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
579b006f 31#include <libusb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
b56d5a64 34#include <stdio.h>
579b006f 35#include <stdlib.h>
0e302db6 36
98452d97 37#include "ftdi.h"
a3da1d95 38
21abaf2e 39#define ftdi_error_return(code, str) do { \
2f73e59f 40 ftdi->error_str = str; \
21abaf2e 41 return code; \
d2f10023 42 } while(0);
c3d95b87 43
99650502
UB
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
418aaa72 50
f3f81007
TJ
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
579b006f 58 \retval none
f3f81007 59*/
579b006f 60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 61{
22a1b5c1 62 if (ftdi && ftdi->usb_dev)
dff4fdb0 63 {
56ac0383
TJ
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
dff4fdb0 66 }
dff4fdb0 67}
c3d95b87 68
1941414d
TJ
69/**
70 Initializes a ftdi_context.
4837f98a 71
1941414d 72 \param ftdi pointer to ftdi_context
4837f98a 73
1941414d
TJ
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
a35aa9bd 76 \retval -2: couldn't allocate struct buffer
1941414d
TJ
77
78 \remark This should be called before all functions
948f9ada 79*/
a8f46ddc
TJ
80int ftdi_init(struct ftdi_context *ftdi)
81{
a35aa9bd 82 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
02212d8e 83 ftdi->usb_ctx = NULL;
98452d97 84 ftdi->usb_dev = NULL;
545820ce
TJ
85 ftdi->usb_read_timeout = 5000;
86 ftdi->usb_write_timeout = 5000;
a3da1d95 87
53ad271d 88 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 89 ftdi->baudrate = -1;
418aaa72 90 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 91
948f9ada
TJ
92 ftdi->readbuffer = NULL;
93 ftdi->readbuffer_offset = 0;
94 ftdi->readbuffer_remaining = 0;
95 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 96 ftdi->max_packet_size = 0;
948f9ada 97
ac0af8ec 98 ftdi_set_interface(ftdi, INTERFACE_ANY);
418aaa72 99 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 100
a3da1d95
GE
101 ftdi->error_str = NULL;
102
a35aa9bd
UB
103 if (eeprom == 0)
104 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
b4d19dea 105 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
a35aa9bd 106 ftdi->eeprom = eeprom;
c201f80f 107
1c733d33
TJ
108 /* All fine. Now allocate the readbuffer */
109 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 110}
4837f98a 111
1941414d 112/**
cef378aa
TJ
113 Allocate and initialize a new ftdi_context
114
115 \return a pointer to a new ftdi_context, or NULL on failure
116*/
672ac008 117struct ftdi_context *ftdi_new(void)
cef378aa
TJ
118{
119 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
120
22d12cda
TJ
121 if (ftdi == NULL)
122 {
cef378aa
TJ
123 return NULL;
124 }
125
22d12cda
TJ
126 if (ftdi_init(ftdi) != 0)
127 {
cef378aa 128 free(ftdi);
cdf448f6 129 return NULL;
cef378aa
TJ
130 }
131
132 return ftdi;
133}
134
135/**
1941414d
TJ
136 Open selected channels on a chip, otherwise use first channel.
137
138 \param ftdi pointer to ftdi_context
f9d69895 139 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
140
141 \retval 0: all fine
142 \retval -1: unknown interface
22a1b5c1 143 \retval -2: USB device unavailable
c4446c36 144*/
0ce2f5fa 145int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 146{
1971c26d 147 if (ftdi == NULL)
22a1b5c1
TJ
148 ftdi_error_return(-2, "USB device unavailable");
149
22d12cda
TJ
150 switch (interface)
151 {
152 case INTERFACE_ANY:
153 case INTERFACE_A:
ac0af8ec
VY
154 ftdi->interface = 0;
155 ftdi->index = INTERFACE_A;
156 ftdi->in_ep = 0x02;
157 ftdi->out_ep = 0x81;
22d12cda
TJ
158 break;
159 case INTERFACE_B:
160 ftdi->interface = 1;
161 ftdi->index = INTERFACE_B;
162 ftdi->in_ep = 0x04;
163 ftdi->out_ep = 0x83;
164 break;
f9d69895
AH
165 case INTERFACE_C:
166 ftdi->interface = 2;
167 ftdi->index = INTERFACE_C;
168 ftdi->in_ep = 0x06;
169 ftdi->out_ep = 0x85;
170 break;
171 case INTERFACE_D:
172 ftdi->interface = 3;
173 ftdi->index = INTERFACE_D;
174 ftdi->in_ep = 0x08;
175 ftdi->out_ep = 0x87;
176 break;
22d12cda
TJ
177 default:
178 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
179 }
180 return 0;
181}
948f9ada 182
1941414d
TJ
183/**
184 Deinitializes a ftdi_context.
4837f98a 185
1941414d 186 \param ftdi pointer to ftdi_context
4837f98a 187*/
a8f46ddc
TJ
188void ftdi_deinit(struct ftdi_context *ftdi)
189{
22a1b5c1
TJ
190 if (ftdi == NULL)
191 return;
192
f3f81007 193 ftdi_usb_close_internal (ftdi);
dff4fdb0 194
22d12cda
TJ
195 if (ftdi->readbuffer != NULL)
196 {
d9f0cce7
TJ
197 free(ftdi->readbuffer);
198 ftdi->readbuffer = NULL;
948f9ada 199 }
a35aa9bd
UB
200
201 if (ftdi->eeprom != NULL)
202 {
74e8e79d
UB
203 if (ftdi->eeprom->manufacturer != 0)
204 {
205 free(ftdi->eeprom->manufacturer);
206 ftdi->eeprom->manufacturer = 0;
207 }
208 if (ftdi->eeprom->product != 0)
209 {
210 free(ftdi->eeprom->product);
211 ftdi->eeprom->product = 0;
212 }
213 if (ftdi->eeprom->serial != 0)
214 {
215 free(ftdi->eeprom->serial);
216 ftdi->eeprom->serial = 0;
217 }
a35aa9bd
UB
218 free(ftdi->eeprom);
219 ftdi->eeprom = NULL;
220 }
02212d8e 221 libusb_exit(ftdi->usb_ctx);
a3da1d95
GE
222}
223
1941414d 224/**
cef378aa
TJ
225 Deinitialize and free an ftdi_context.
226
227 \param ftdi pointer to ftdi_context
228*/
229void ftdi_free(struct ftdi_context *ftdi)
230{
231 ftdi_deinit(ftdi);
232 free(ftdi);
233}
234
235/**
1941414d
TJ
236 Use an already open libusb device.
237
238 \param ftdi pointer to ftdi_context
579b006f 239 \param usb libusb libusb_device_handle to use
4837f98a 240*/
579b006f 241void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 242{
22a1b5c1
TJ
243 if (ftdi == NULL)
244 return;
245
98452d97
TJ
246 ftdi->usb_dev = usb;
247}
248
249
1941414d
TJ
250/**
251 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
252 needs to be deallocated by ftdi_list_free() after use.
253
254 \param ftdi pointer to ftdi_context
255 \param devlist Pointer where to store list of found devices
256 \param vendor Vendor ID to search for
257 \param product Product ID to search for
edb82cbf 258
1941414d 259 \retval >0: number of devices found
1941414d 260 \retval -3: out of memory
579b006f
JZ
261 \retval -4: libusb_init() failed
262 \retval -5: libusb_get_device_list() failed
263 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 264*/
d2f10023 265int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
266{
267 struct ftdi_device_list **curdev;
579b006f
JZ
268 libusb_device *dev;
269 libusb_device **devs;
edb82cbf 270 int count = 0;
579b006f
JZ
271 int i = 0;
272
02212d8e 273 if (libusb_init(&ftdi->usb_ctx) < 0)
579b006f 274 ftdi_error_return(-4, "libusb_init() failed");
d2f10023 275
02212d8e 276 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 277 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
278
279 curdev = devlist;
6db32169 280 *curdev = NULL;
579b006f
JZ
281
282 while ((dev = devs[i++]) != NULL)
22d12cda 283 {
579b006f 284 struct libusb_device_descriptor desc;
d2f10023 285
579b006f
JZ
286 if (libusb_get_device_descriptor(dev, &desc) < 0)
287 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
edb82cbf 288
579b006f
JZ
289 if (desc.idVendor == vendor && desc.idProduct == product)
290 {
291 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
292 if (!*curdev)
293 ftdi_error_return(-3, "out of memory");
56ac0383 294
579b006f
JZ
295 (*curdev)->next = NULL;
296 (*curdev)->dev = dev;
297
298 curdev = &(*curdev)->next;
299 count++;
edb82cbf
TJ
300 }
301 }
d2f10023 302
edb82cbf
TJ
303 return count;
304}
305
1941414d
TJ
306/**
307 Frees a usb device list.
edb82cbf 308
1941414d 309 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 310*/
d2f10023 311void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 312{
6db32169
TJ
313 struct ftdi_device_list *curdev, *next;
314
22d12cda
TJ
315 for (curdev = *devlist; curdev != NULL;)
316 {
6db32169
TJ
317 next = curdev->next;
318 free(curdev);
319 curdev = next;
edb82cbf
TJ
320 }
321
6db32169 322 *devlist = NULL;
edb82cbf
TJ
323}
324
1941414d 325/**
cef378aa
TJ
326 Frees a usb device list.
327
328 \param devlist USB device list created by ftdi_usb_find_all()
329*/
330void ftdi_list_free2(struct ftdi_device_list *devlist)
331{
332 ftdi_list_free(&devlist);
333}
334
335/**
474786c0
TJ
336 Return device ID strings from the usb device.
337
338 The parameters manufacturer, description and serial may be NULL
339 or pointer to buffers to store the fetched strings.
340
898c34dd
TJ
341 \note Use this function only in combination with ftdi_usb_find_all()
342 as it closes the internal "usb_dev" after use.
343
474786c0
TJ
344 \param ftdi pointer to ftdi_context
345 \param dev libusb usb_dev to use
346 \param manufacturer Store manufacturer string here if not NULL
347 \param mnf_len Buffer size of manufacturer string
348 \param description Store product description string here if not NULL
349 \param desc_len Buffer size of product description string
350 \param serial Store serial string here if not NULL
351 \param serial_len Buffer size of serial string
352
353 \retval 0: all fine
354 \retval -1: wrong arguments
355 \retval -4: unable to open device
356 \retval -7: get product manufacturer failed
357 \retval -8: get product description failed
358 \retval -9: get serial number failed
579b006f 359 \retval -11: libusb_get_device_descriptor() failed
474786c0 360*/
579b006f 361int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
22d12cda 362 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
474786c0 363{
579b006f
JZ
364 struct libusb_device_descriptor desc;
365
474786c0
TJ
366 if ((ftdi==NULL) || (dev==NULL))
367 return -1;
368
579b006f
JZ
369 if (libusb_open(dev, &ftdi->usb_dev) < 0)
370 ftdi_error_return(-4, "libusb_open() failed");
371
372 if (libusb_get_device_descriptor(dev, &desc) < 0)
373 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 374
22d12cda
TJ
375 if (manufacturer != NULL)
376 {
579b006f 377 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 378 {
f3f81007 379 ftdi_usb_close_internal (ftdi);
579b006f 380 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
381 }
382 }
383
22d12cda
TJ
384 if (description != NULL)
385 {
579b006f 386 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 387 {
f3f81007 388 ftdi_usb_close_internal (ftdi);
579b006f 389 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
390 }
391 }
392
22d12cda
TJ
393 if (serial != NULL)
394 {
579b006f 395 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 396 {
f3f81007 397 ftdi_usb_close_internal (ftdi);
579b006f 398 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
399 }
400 }
401
579b006f 402 ftdi_usb_close_internal (ftdi);
474786c0
TJ
403
404 return 0;
405}
406
407/**
e2f12a4f
TJ
408 * Internal function to determine the maximum packet size.
409 * \param ftdi pointer to ftdi_context
410 * \param dev libusb usb_dev to use
411 * \retval Maximum packet size for this device
412 */
579b006f 413static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 414{
579b006f
JZ
415 struct libusb_device_descriptor desc;
416 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
417 unsigned int packet_size;
418
22a1b5c1
TJ
419 // Sanity check
420 if (ftdi == NULL || dev == NULL)
421 return 64;
422
e2f12a4f
TJ
423 // Determine maximum packet size. Init with default value.
424 // New hi-speed devices from FTDI use a packet size of 512 bytes
425 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
426 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
427 packet_size = 512;
428 else
429 packet_size = 64;
430
579b006f
JZ
431 if (libusb_get_device_descriptor(dev, &desc) < 0)
432 return packet_size;
433
434 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
435 return packet_size;
e2f12a4f 436
579b006f
JZ
437 if (desc.bNumConfigurations > 0)
438 {
439 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 440 {
579b006f 441 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
442 if (interface.num_altsetting > 0)
443 {
579b006f 444 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
445 if (descriptor.bNumEndpoints > 0)
446 {
447 packet_size = descriptor.endpoint[0].wMaxPacketSize;
448 }
449 }
450 }
451 }
452
579b006f 453 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
454 return packet_size;
455}
456
457/**
418aaa72 458 Opens a ftdi device given by an usb_device.
7b18bef6 459
1941414d
TJ
460 \param ftdi pointer to ftdi_context
461 \param dev libusb usb_dev to use
462
463 \retval 0: all fine
23b1798d 464 \retval -3: unable to config device
1941414d
TJ
465 \retval -4: unable to open device
466 \retval -5: unable to claim device
467 \retval -6: reset failed
468 \retval -7: set baudrate failed
22a1b5c1 469 \retval -8: ftdi context invalid
579b006f
JZ
470 \retval -9: libusb_get_device_descriptor() failed
471 \retval -10: libusb_get_config_descriptor() failed
472 \retval -11: libusb_etach_kernel_driver() failed
473 \retval -12: libusb_get_configuration() failed
7b18bef6 474*/
579b006f 475int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 476{
579b006f
JZ
477 struct libusb_device_descriptor desc;
478 struct libusb_config_descriptor *config0;
43aee24f 479 int cfg, cfg0, detach_errno = 0;
579b006f 480
22a1b5c1
TJ
481 if (ftdi == NULL)
482 ftdi_error_return(-8, "ftdi context invalid");
483
579b006f
JZ
484 if (libusb_open(dev, &ftdi->usb_dev) < 0)
485 ftdi_error_return(-4, "libusb_open() failed");
486
487 if (libusb_get_device_descriptor(dev, &desc) < 0)
488 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
489
490 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
491 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
492 cfg0 = config0->bConfigurationValue;
493 libusb_free_config_descriptor (config0);
d2f10023 494
22592e17 495 // Try to detach ftdi_sio kernel module.
22592e17
TJ
496 //
497 // The return code is kept in a separate variable and only parsed
498 // if usb_set_configuration() or usb_claim_interface() fails as the
499 // detach operation might be denied and everything still works fine.
500 // Likely scenario is a static ftdi_sio kernel module.
43aee24f
UB
501 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
502 detach_errno = errno;
d2f10023 503
579b006f
JZ
504 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
505 ftdi_error_return(-12, "libusb_get_configuration () failed");
b57aedfd
GE
506 // set configuration (needed especially for windows)
507 // tolerate EBUSY: one device with one configuration, but two interfaces
508 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 509 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 510 {
579b006f 511 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 512 {
a56ba2bd 513 ftdi_usb_close_internal (ftdi);
56ac0383 514 if (detach_errno == EPERM)
43aee24f
UB
515 {
516 ftdi_error_return(-8, "inappropriate permissions on device!");
517 }
518 else
519 {
c16b162d 520 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
43aee24f 521 }
23b1798d
TJ
522 }
523 }
524
579b006f 525 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 526 {
f3f81007 527 ftdi_usb_close_internal (ftdi);
56ac0383 528 if (detach_errno == EPERM)
43aee24f
UB
529 {
530 ftdi_error_return(-8, "inappropriate permissions on device!");
531 }
532 else
533 {
c16b162d 534 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
43aee24f 535 }
7b18bef6
TJ
536 }
537
22d12cda
TJ
538 if (ftdi_usb_reset (ftdi) != 0)
539 {
f3f81007 540 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
541 ftdi_error_return(-6, "ftdi_usb_reset failed");
542 }
543
7b18bef6
TJ
544 // Try to guess chip type
545 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f 546 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
56ac0383 547 && desc.iSerialNumber == 0))
7b18bef6 548 ftdi->type = TYPE_BM;
579b006f 549 else if (desc.bcdDevice == 0x200)
7b18bef6 550 ftdi->type = TYPE_AM;
579b006f 551 else if (desc.bcdDevice == 0x500)
7b18bef6 552 ftdi->type = TYPE_2232C;
579b006f 553 else if (desc.bcdDevice == 0x600)
cb6250fa 554 ftdi->type = TYPE_R;
579b006f 555 else if (desc.bcdDevice == 0x700)
0beb9686 556 ftdi->type = TYPE_2232H;
579b006f 557 else if (desc.bcdDevice == 0x800)
0beb9686 558 ftdi->type = TYPE_4232H;
7b18bef6 559
e2f12a4f
TJ
560 // Determine maximum packet size
561 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
562
ef6f4838
TE
563 if (ftdi_set_baudrate (ftdi, 9600) != 0)
564 {
565 ftdi_usb_close_internal (ftdi);
566 ftdi_error_return(-7, "set baudrate failed");
567 }
568
7b18bef6
TJ
569 ftdi_error_return(0, "all fine");
570}
571
1941414d
TJ
572/**
573 Opens the first device with a given vendor and product ids.
574
575 \param ftdi pointer to ftdi_context
576 \param vendor Vendor ID
577 \param product Product ID
578
9bec2387 579 \retval same as ftdi_usb_open_desc()
1941414d 580*/
edb82cbf
TJ
581int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
582{
583 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
584}
585
1941414d
TJ
586/**
587 Opens the first device with a given, vendor id, product id,
588 description and serial.
589
590 \param ftdi pointer to ftdi_context
591 \param vendor Vendor ID
592 \param product Product ID
593 \param description Description to search for. Use NULL if not needed.
594 \param serial Serial to search for. Use NULL if not needed.
595
596 \retval 0: all fine
1941414d
TJ
597 \retval -3: usb device not found
598 \retval -4: unable to open device
599 \retval -5: unable to claim device
600 \retval -6: reset failed
601 \retval -7: set baudrate failed
602 \retval -8: get product description failed
603 \retval -9: get serial number failed
579b006f
JZ
604 \retval -11: libusb_init() failed
605 \retval -12: libusb_get_device_list() failed
606 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 607*/
04e1ea0a 608int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
609 const char* description, const char* serial)
610{
5ebbdab9
GE
611 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
612}
613
614/**
615 Opens the index-th device with a given, vendor id, product id,
616 description and serial.
617
618 \param ftdi pointer to ftdi_context
619 \param vendor Vendor ID
620 \param product Product ID
621 \param description Description to search for. Use NULL if not needed.
622 \param serial Serial to search for. Use NULL if not needed.
623 \param index Number of matching device to open if there are more than one, starts with 0.
624
625 \retval 0: all fine
626 \retval -1: usb_find_busses() failed
627 \retval -2: usb_find_devices() failed
628 \retval -3: usb device not found
629 \retval -4: unable to open device
630 \retval -5: unable to claim device
631 \retval -6: reset failed
632 \retval -7: set baudrate failed
633 \retval -8: get product description failed
634 \retval -9: get serial number failed
635 \retval -10: unable to close device
22a1b5c1 636 \retval -11: ftdi context invalid
5ebbdab9
GE
637*/
638int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
56ac0383 639 const char* description, const char* serial, unsigned int index)
5ebbdab9 640{
579b006f
JZ
641 libusb_device *dev;
642 libusb_device **devs;
c3d95b87 643 char string[256];
579b006f 644 int i = 0;
98452d97 645
22a1b5c1
TJ
646 if (ftdi == NULL)
647 ftdi_error_return(-11, "ftdi context invalid");
648
6ab07768
UB
649 if (libusb_init(&ftdi->usb_ctx) < 0)
650 ftdi_error_return(-11, "libusb_init() failed");
651
02212d8e 652 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
99650502
UB
653 ftdi_error_return(-12, "libusb_get_device_list() failed");
654
579b006f 655 while ((dev = devs[i++]) != NULL)
22d12cda 656 {
579b006f 657 struct libusb_device_descriptor desc;
99650502 658 int res;
579b006f
JZ
659
660 if (libusb_get_device_descriptor(dev, &desc) < 0)
99650502 661 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
579b006f
JZ
662
663 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 664 {
579b006f 665 if (libusb_open(dev, &ftdi->usb_dev) < 0)
99650502 666 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
c3d95b87 667
579b006f
JZ
668 if (description != NULL)
669 {
670 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 671 {
579b006f 672 libusb_close (ftdi->usb_dev);
99650502 673 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
a8f46ddc 674 }
579b006f 675 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 676 {
579b006f
JZ
677 libusb_close (ftdi->usb_dev);
678 continue;
a8f46ddc 679 }
579b006f
JZ
680 }
681 if (serial != NULL)
682 {
683 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
684 {
685 ftdi_usb_close_internal (ftdi);
99650502 686 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
579b006f
JZ
687 }
688 if (strncmp(string, serial, sizeof(string)) != 0)
689 {
690 ftdi_usb_close_internal (ftdi);
691 continue;
692 }
693 }
98452d97 694
579b006f 695 ftdi_usb_close_internal (ftdi);
d2f10023 696
56ac0383
TJ
697 if (index > 0)
698 {
699 index--;
700 continue;
701 }
5ebbdab9 702
99650502
UB
703 res = ftdi_usb_open_dev(ftdi, dev);
704 libusb_free_device_list(devs,1);
705 return res;
98452d97 706 }
98452d97 707 }
a3da1d95 708
98452d97 709 // device not found
99650502 710 ftdi_error_return_free_device_list(-3, "device not found", devs);
a3da1d95
GE
711}
712
1941414d 713/**
5ebbdab9
GE
714 Opens the ftdi-device described by a description-string.
715 Intended to be used for parsing a device-description given as commandline argument.
716
717 \param ftdi pointer to ftdi_context
718 \param description NULL-terminated description-string, using this format:
719 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
720 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
721 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
722 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
723
724 \note The description format may be extended in later versions.
725
726 \retval 0: all fine
579b006f
JZ
727 \retval -1: libusb_init() failed
728 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
729 \retval -3: usb device not found
730 \retval -4: unable to open device
731 \retval -5: unable to claim device
732 \retval -6: reset failed
733 \retval -7: set baudrate failed
734 \retval -8: get product description failed
735 \retval -9: get serial number failed
736 \retval -10: unable to close device
737 \retval -11: illegal description format
22a1b5c1 738 \retval -12: ftdi context invalid
5ebbdab9
GE
739*/
740int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
741{
22a1b5c1
TJ
742 if (ftdi == NULL)
743 ftdi_error_return(-12, "ftdi context invalid");
744
5ebbdab9
GE
745 if (description[0] == 0 || description[1] != ':')
746 ftdi_error_return(-11, "illegal description format");
747
748 if (description[0] == 'd')
749 {
579b006f
JZ
750 libusb_device *dev;
751 libusb_device **devs;
56ac0383
TJ
752 unsigned int bus_number, device_address;
753 int i = 0;
579b006f 754
02212d8e 755 if (libusb_init (&ftdi->usb_ctx) < 0)
56ac0383 756 ftdi_error_return(-1, "libusb_init() failed");
5ebbdab9 757
56ac0383
TJ
758 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
759 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 760
579b006f
JZ
761 /* XXX: This doesn't handle symlinks/odd paths/etc... */
762 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
56ac0383 763 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
5ebbdab9 764
56ac0383 765 while ((dev = devs[i++]) != NULL)
5ebbdab9 766 {
99650502 767 int ret;
56ac0383
TJ
768 if (bus_number == libusb_get_bus_number (dev)
769 && device_address == libusb_get_device_address (dev))
99650502
UB
770 {
771 ret = ftdi_usb_open_dev(ftdi, dev);
772 libusb_free_device_list(devs,1);
773 return ret;
774 }
5ebbdab9
GE
775 }
776
777 // device not found
99650502 778 ftdi_error_return_free_device_list(-3, "device not found", devs);
5ebbdab9
GE
779 }
780 else if (description[0] == 'i' || description[0] == 's')
781 {
782 unsigned int vendor;
783 unsigned int product;
784 unsigned int index=0;
0e6cf62b 785 const char *serial=NULL;
5ebbdab9
GE
786 const char *startp, *endp;
787
788 errno=0;
789 startp=description+2;
790 vendor=strtoul((char*)startp,(char**)&endp,0);
791 if (*endp != ':' || endp == startp || errno != 0)
792 ftdi_error_return(-11, "illegal description format");
793
794 startp=endp+1;
795 product=strtoul((char*)startp,(char**)&endp,0);
796 if (endp == startp || errno != 0)
797 ftdi_error_return(-11, "illegal description format");
798
799 if (description[0] == 'i' && *endp != 0)
800 {
801 /* optional index field in i-mode */
802 if (*endp != ':')
803 ftdi_error_return(-11, "illegal description format");
804
805 startp=endp+1;
806 index=strtoul((char*)startp,(char**)&endp,0);
807 if (*endp != 0 || endp == startp || errno != 0)
808 ftdi_error_return(-11, "illegal description format");
809 }
810 if (description[0] == 's')
811 {
812 if (*endp != ':')
813 ftdi_error_return(-11, "illegal description format");
814
815 /* rest of the description is the serial */
816 serial=endp+1;
817 }
818
819 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
820 }
821 else
822 {
823 ftdi_error_return(-11, "illegal description format");
824 }
825}
826
827/**
1941414d 828 Resets the ftdi device.
a3da1d95 829
1941414d
TJ
830 \param ftdi pointer to ftdi_context
831
832 \retval 0: all fine
833 \retval -1: FTDI reset failed
22a1b5c1 834 \retval -2: USB device unavailable
4837f98a 835*/
edb82cbf 836int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 837{
22a1b5c1
TJ
838 if (ftdi == NULL || ftdi->usb_dev == NULL)
839 ftdi_error_return(-2, "USB device unavailable");
840
579b006f
JZ
841 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
842 SIO_RESET_REQUEST, SIO_RESET_SIO,
843 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 844 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 845
545820ce 846 // Invalidate data in the readbuffer
bfcee05b
TJ
847 ftdi->readbuffer_offset = 0;
848 ftdi->readbuffer_remaining = 0;
849
a3da1d95
GE
850 return 0;
851}
852
1941414d 853/**
1189b11a 854 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
855
856 \param ftdi pointer to ftdi_context
4837f98a 857
1941414d 858 \retval 0: all fine
1189b11a 859 \retval -1: read buffer purge failed
22a1b5c1 860 \retval -2: USB device unavailable
4837f98a 861*/
1189b11a 862int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 863{
22a1b5c1
TJ
864 if (ftdi == NULL || ftdi->usb_dev == NULL)
865 ftdi_error_return(-2, "USB device unavailable");
866
579b006f
JZ
867 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
868 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
869 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
870 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
871
545820ce 872 // Invalidate data in the readbuffer
bfcee05b
TJ
873 ftdi->readbuffer_offset = 0;
874 ftdi->readbuffer_remaining = 0;
a60be878 875
1189b11a
TJ
876 return 0;
877}
878
879/**
880 Clears the write buffer on the chip.
881
882 \param ftdi pointer to ftdi_context
883
884 \retval 0: all fine
885 \retval -1: write buffer purge failed
22a1b5c1 886 \retval -2: USB device unavailable
1189b11a
TJ
887*/
888int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
889{
22a1b5c1
TJ
890 if (ftdi == NULL || ftdi->usb_dev == NULL)
891 ftdi_error_return(-2, "USB device unavailable");
892
579b006f
JZ
893 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
894 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
895 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
896 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
897
898 return 0;
899}
900
901/**
902 Clears the buffers on the chip and the internal read buffer.
903
904 \param ftdi pointer to ftdi_context
905
906 \retval 0: all fine
907 \retval -1: read buffer purge failed
908 \retval -2: write buffer purge failed
22a1b5c1 909 \retval -3: USB device unavailable
1189b11a
TJ
910*/
911int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
912{
913 int result;
914
22a1b5c1
TJ
915 if (ftdi == NULL || ftdi->usb_dev == NULL)
916 ftdi_error_return(-3, "USB device unavailable");
917
1189b11a 918 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 919 if (result < 0)
1189b11a
TJ
920 return -1;
921
922 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 923 if (result < 0)
1189b11a 924 return -2;
545820ce 925
a60be878
TJ
926 return 0;
927}
a3da1d95 928
f3f81007
TJ
929
930
1941414d
TJ
931/**
932 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
933
934 \param ftdi pointer to ftdi_context
935
936 \retval 0: all fine
937 \retval -1: usb_release failed
22a1b5c1 938 \retval -3: ftdi context invalid
a3da1d95 939*/
a8f46ddc
TJ
940int ftdi_usb_close(struct ftdi_context *ftdi)
941{
a3da1d95
GE
942 int rtn = 0;
943
22a1b5c1
TJ
944 if (ftdi == NULL)
945 ftdi_error_return(-3, "ftdi context invalid");
946
dff4fdb0 947 if (ftdi->usb_dev != NULL)
579b006f 948 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 949 rtn = -1;
98452d97 950
579b006f 951 ftdi_usb_close_internal (ftdi);
98452d97 952
a3da1d95
GE
953 return rtn;
954}
955
418aaa72 956/**
53ad271d
TJ
957 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
958 Function is only used internally
b5ec1820 959 \internal
53ad271d 960*/
0126d22e 961static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
a8f46ddc
TJ
962 unsigned short *value, unsigned short *index)
963{
53ad271d
TJ
964 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
965 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
966 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
967 int divisor, best_divisor, best_baud, best_baud_diff;
968 unsigned long encoded_divisor;
969 int i;
970
22d12cda
TJ
971 if (baudrate <= 0)
972 {
53ad271d
TJ
973 // Return error
974 return -1;
975 }
976
977 divisor = 24000000 / baudrate;
978
22d12cda
TJ
979 if (ftdi->type == TYPE_AM)
980 {
53ad271d
TJ
981 // Round down to supported fraction (AM only)
982 divisor -= am_adjust_dn[divisor & 7];
983 }
984
985 // Try this divisor and the one above it (because division rounds down)
986 best_divisor = 0;
987 best_baud = 0;
988 best_baud_diff = 0;
22d12cda
TJ
989 for (i = 0; i < 2; i++)
990 {
53ad271d
TJ
991 int try_divisor = divisor + i;
992 int baud_estimate;
993 int baud_diff;
994
995 // Round up to supported divisor value
22d12cda
TJ
996 if (try_divisor <= 8)
997 {
53ad271d
TJ
998 // Round up to minimum supported divisor
999 try_divisor = 8;
22d12cda
TJ
1000 }
1001 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1002 {
53ad271d
TJ
1003 // BM doesn't support divisors 9 through 11 inclusive
1004 try_divisor = 12;
22d12cda
TJ
1005 }
1006 else if (divisor < 16)
1007 {
53ad271d
TJ
1008 // AM doesn't support divisors 9 through 15 inclusive
1009 try_divisor = 16;
22d12cda
TJ
1010 }
1011 else
1012 {
1013 if (ftdi->type == TYPE_AM)
1014 {
53ad271d
TJ
1015 // Round up to supported fraction (AM only)
1016 try_divisor += am_adjust_up[try_divisor & 7];
22d12cda
TJ
1017 if (try_divisor > 0x1FFF8)
1018 {
53ad271d
TJ
1019 // Round down to maximum supported divisor value (for AM)
1020 try_divisor = 0x1FFF8;
1021 }
22d12cda
TJ
1022 }
1023 else
1024 {
1025 if (try_divisor > 0x1FFFF)
1026 {
53ad271d
TJ
1027 // Round down to maximum supported divisor value (for BM)
1028 try_divisor = 0x1FFFF;
1029 }
1030 }
1031 }
1032 // Get estimated baud rate (to nearest integer)
1033 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1034 // Get absolute difference from requested baud rate
22d12cda
TJ
1035 if (baud_estimate < baudrate)
1036 {
53ad271d 1037 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
1038 }
1039 else
1040 {
53ad271d
TJ
1041 baud_diff = baud_estimate - baudrate;
1042 }
22d12cda
TJ
1043 if (i == 0 || baud_diff < best_baud_diff)
1044 {
53ad271d
TJ
1045 // Closest to requested baud rate so far
1046 best_divisor = try_divisor;
1047 best_baud = baud_estimate;
1048 best_baud_diff = baud_diff;
22d12cda
TJ
1049 if (baud_diff == 0)
1050 {
53ad271d
TJ
1051 // Spot on! No point trying
1052 break;
1053 }
1054 }
1055 }
1056 // Encode the best divisor value
1057 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1058 // Deal with special cases for encoded value
22d12cda
TJ
1059 if (encoded_divisor == 1)
1060 {
4837f98a 1061 encoded_divisor = 0; // 3000000 baud
22d12cda
TJ
1062 }
1063 else if (encoded_divisor == 0x4001)
1064 {
4837f98a 1065 encoded_divisor = 1; // 2000000 baud (BM only)
53ad271d
TJ
1066 }
1067 // Split into "value" and "index" values
1068 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1416eb14 1069 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
22d12cda 1070 {
0126d22e
TJ
1071 *index = (unsigned short)(encoded_divisor >> 8);
1072 *index &= 0xFF00;
a9c57c05 1073 *index |= ftdi->index;
0126d22e
TJ
1074 }
1075 else
1076 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 1077
53ad271d
TJ
1078 // Return the nearest baud rate
1079 return best_baud;
1080}
1081
1941414d 1082/**
9bec2387 1083 Sets the chip baud rate
1941414d
TJ
1084
1085 \param ftdi pointer to ftdi_context
9bec2387 1086 \param baudrate baud rate to set
1941414d
TJ
1087
1088 \retval 0: all fine
1089 \retval -1: invalid baudrate
1090 \retval -2: setting baudrate failed
22a1b5c1 1091 \retval -3: USB device unavailable
a3da1d95 1092*/
a8f46ddc
TJ
1093int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1094{
53ad271d
TJ
1095 unsigned short value, index;
1096 int actual_baudrate;
a3da1d95 1097
22a1b5c1
TJ
1098 if (ftdi == NULL || ftdi->usb_dev == NULL)
1099 ftdi_error_return(-3, "USB device unavailable");
1100
22d12cda
TJ
1101 if (ftdi->bitbang_enabled)
1102 {
a3da1d95
GE
1103 baudrate = baudrate*4;
1104 }
1105
25707904 1106 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1107 if (actual_baudrate <= 0)
1108 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1109
53ad271d
TJ
1110 // Check within tolerance (about 5%)
1111 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1112 || ((actual_baudrate < baudrate)
1113 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1114 : (baudrate * 21 < actual_baudrate * 20)))
1115 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1116
579b006f
JZ
1117 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1118 SIO_SET_BAUDRATE_REQUEST, value,
1119 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1120 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1121
1122 ftdi->baudrate = baudrate;
1123 return 0;
1124}
1125
1941414d 1126/**
6c32e222
TJ
1127 Set (RS232) line characteristics.
1128 The break type can only be set via ftdi_set_line_property2()
1129 and defaults to "off".
4837f98a 1130
1941414d
TJ
1131 \param ftdi pointer to ftdi_context
1132 \param bits Number of bits
1133 \param sbit Number of stop bits
1134 \param parity Parity mode
1135
1136 \retval 0: all fine
1137 \retval -1: Setting line property failed
2f73e59f
TJ
1138*/
1139int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1140 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1141{
6c32e222
TJ
1142 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1143}
1144
1145/**
1146 Set (RS232) line characteristics
1147
1148 \param ftdi pointer to ftdi_context
1149 \param bits Number of bits
1150 \param sbit Number of stop bits
1151 \param parity Parity mode
1152 \param break_type Break type
1153
1154 \retval 0: all fine
1155 \retval -1: Setting line property failed
22a1b5c1 1156 \retval -2: USB device unavailable
6c32e222
TJ
1157*/
1158int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1159 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1160 enum ftdi_break_type break_type)
6c32e222 1161{
2f73e59f
TJ
1162 unsigned short value = bits;
1163
22a1b5c1
TJ
1164 if (ftdi == NULL || ftdi->usb_dev == NULL)
1165 ftdi_error_return(-2, "USB device unavailable");
1166
22d12cda
TJ
1167 switch (parity)
1168 {
1169 case NONE:
1170 value |= (0x00 << 8);
1171 break;
1172 case ODD:
1173 value |= (0x01 << 8);
1174 break;
1175 case EVEN:
1176 value |= (0x02 << 8);
1177 break;
1178 case MARK:
1179 value |= (0x03 << 8);
1180 break;
1181 case SPACE:
1182 value |= (0x04 << 8);
1183 break;
2f73e59f 1184 }
d2f10023 1185
22d12cda
TJ
1186 switch (sbit)
1187 {
1188 case STOP_BIT_1:
1189 value |= (0x00 << 11);
1190 break;
1191 case STOP_BIT_15:
1192 value |= (0x01 << 11);
1193 break;
1194 case STOP_BIT_2:
1195 value |= (0x02 << 11);
1196 break;
2f73e59f 1197 }
d2f10023 1198
22d12cda
TJ
1199 switch (break_type)
1200 {
1201 case BREAK_OFF:
1202 value |= (0x00 << 14);
1203 break;
1204 case BREAK_ON:
1205 value |= (0x01 << 14);
1206 break;
6c32e222
TJ
1207 }
1208
579b006f
JZ
1209 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1210 SIO_SET_DATA_REQUEST, value,
1211 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1212 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1213
2f73e59f
TJ
1214 return 0;
1215}
a3da1d95 1216
1941414d
TJ
1217/**
1218 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1219
1220 \param ftdi pointer to ftdi_context
1221 \param buf Buffer with the data
1222 \param size Size of the buffer
1223
22a1b5c1 1224 \retval -666: USB device unavailable
1941414d
TJ
1225 \retval <0: error code from usb_bulk_write()
1226 \retval >0: number of bytes written
1227*/
a8f46ddc
TJ
1228int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1229{
a3da1d95 1230 int offset = 0;
579b006f 1231 int actual_length;
c3d95b87 1232
22a1b5c1
TJ
1233 if (ftdi == NULL || ftdi->usb_dev == NULL)
1234 ftdi_error_return(-666, "USB device unavailable");
1235
22d12cda
TJ
1236 while (offset < size)
1237 {
948f9ada 1238 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1239
1240 if (offset+write_size > size)
1241 write_size = size-offset;
1242
579b006f
JZ
1243 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1244 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1245
579b006f 1246 offset += actual_length;
a3da1d95
GE
1247 }
1248
579b006f 1249 return offset;
a3da1d95
GE
1250}
1251
579b006f 1252static void ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1253{
579b006f
JZ
1254 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1255 struct ftdi_context *ftdi = tc->ftdi;
1256 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1257
b1139150 1258 packet_size = ftdi->max_packet_size;
579b006f
JZ
1259
1260 actual_length = transfer->actual_length;
1261
1262 if (actual_length > 2)
1263 {
1264 // skip FTDI status bytes.
1265 // Maybe stored in the future to enable modem use
1266 num_of_chunks = actual_length / packet_size;
1267 chunk_remains = actual_length % packet_size;
1268 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1269
1270 ftdi->readbuffer_offset += 2;
1271 actual_length -= 2;
1272
1273 if (actual_length > packet_size - 2)
1274 {
1275 for (i = 1; i < num_of_chunks; i++)
56ac0383
TJ
1276 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1277 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1278 packet_size - 2);
579b006f
JZ
1279 if (chunk_remains > 2)
1280 {
1281 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1282 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1283 chunk_remains-2);
1284 actual_length -= 2*num_of_chunks;
1285 }
1286 else
56ac0383 1287 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
579b006f
JZ
1288 }
1289
1290 if (actual_length > 0)
1291 {
1292 // data still fits in buf?
1293 if (tc->offset + actual_length <= tc->size)
1294 {
1295 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1296 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1297 tc->offset += actual_length;
1298
1299 ftdi->readbuffer_offset = 0;
1300 ftdi->readbuffer_remaining = 0;
1301
1302 /* Did we read exactly the right amount of bytes? */
1303 if (tc->offset == tc->size)
1304 {
1305 //printf("read_data exact rem %d offset %d\n",
1306 //ftdi->readbuffer_remaining, offset);
1307 tc->completed = 1;
1308 return;
1309 }
1310 }
1311 else
1312 {
1313 // only copy part of the data or size <= readbuffer_chunksize
1314 int part_size = tc->size - tc->offset;
1315 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1316 tc->offset += part_size;
1317
1318 ftdi->readbuffer_offset += part_size;
1319 ftdi->readbuffer_remaining = actual_length - part_size;
1320
1321 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1322 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1323 tc->completed = 1;
1324 return;
1325 }
1326 }
1327 }
1328 ret = libusb_submit_transfer (transfer);
1329 if (ret < 0)
1330 tc->completed = 1;
1331}
1332
1333
1334static void ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1335{
579b006f
JZ
1336 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1337 struct ftdi_context *ftdi = tc->ftdi;
56ac0383 1338
90ef163e 1339 tc->offset += transfer->actual_length;
56ac0383 1340
579b006f 1341 if (tc->offset == tc->size)
22d12cda 1342 {
579b006f 1343 tc->completed = 1;
7cc9950e 1344 }
579b006f
JZ
1345 else
1346 {
1347 int write_size = ftdi->writebuffer_chunksize;
1348 int ret;
7cc9950e 1349
579b006f
JZ
1350 if (tc->offset + write_size > tc->size)
1351 write_size = tc->size - tc->offset;
1352
1353 transfer->length = write_size;
1354 transfer->buffer = tc->buf + tc->offset;
1355 ret = libusb_submit_transfer (transfer);
1356 if (ret < 0)
1357 tc->completed = 1;
1358 }
7cc9950e
GE
1359}
1360
579b006f 1361
84f85aaa 1362/**
579b006f
JZ
1363 Writes data to the chip. Does not wait for completion of the transfer
1364 nor does it make sure that the transfer was successful.
1365
249888c8 1366 Use libusb 1.0 asynchronous API.
84f85aaa
GE
1367
1368 \param ftdi pointer to ftdi_context
579b006f
JZ
1369 \param buf Buffer with the data
1370 \param size Size of the buffer
84f85aaa 1371
579b006f
JZ
1372 \retval NULL: Some error happens when submit transfer
1373 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1374*/
579b006f
JZ
1375
1376struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1377{
579b006f 1378 struct ftdi_transfer_control *tc;
5e77e870 1379 struct libusb_transfer *transfer;
579b006f 1380 int write_size, ret;
22d12cda 1381
22a1b5c1 1382 if (ftdi == NULL || ftdi->usb_dev == NULL)
22a1b5c1 1383 return NULL;
22a1b5c1 1384
579b006f 1385 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
5e77e870
TJ
1386 if (!tc)
1387 return NULL;
22d12cda 1388
5e77e870
TJ
1389 transfer = libusb_alloc_transfer(0);
1390 if (!transfer)
1391 {
1392 free(tc);
579b006f 1393 return NULL;
5e77e870 1394 }
22d12cda 1395
579b006f
JZ
1396 tc->ftdi = ftdi;
1397 tc->completed = 0;
1398 tc->buf = buf;
1399 tc->size = size;
1400 tc->offset = 0;
7cc9950e 1401
579b006f 1402 if (size < ftdi->writebuffer_chunksize)
56ac0383 1403 write_size = size;
579b006f 1404 else
56ac0383 1405 write_size = ftdi->writebuffer_chunksize;
22d12cda 1406
90ef163e
YSL
1407 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1408 write_size, ftdi_write_data_cb, tc,
1409 ftdi->usb_write_timeout);
579b006f 1410 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1411
579b006f
JZ
1412 ret = libusb_submit_transfer(transfer);
1413 if (ret < 0)
1414 {
1415 libusb_free_transfer(transfer);
5e77e870 1416 free(tc);
579b006f 1417 return NULL;
7cc9950e 1418 }
579b006f
JZ
1419 tc->transfer = transfer;
1420
1421 return tc;
7cc9950e
GE
1422}
1423
1424/**
579b006f
JZ
1425 Reads data from the chip. Does not wait for completion of the transfer
1426 nor does it make sure that the transfer was successful.
1427
249888c8 1428 Use libusb 1.0 asynchronous API.
7cc9950e
GE
1429
1430 \param ftdi pointer to ftdi_context
579b006f
JZ
1431 \param buf Buffer with the data
1432 \param size Size of the buffer
4c9e3812 1433
579b006f
JZ
1434 \retval NULL: Some error happens when submit transfer
1435 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1436*/
579b006f
JZ
1437
1438struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1439{
579b006f
JZ
1440 struct ftdi_transfer_control *tc;
1441 struct libusb_transfer *transfer;
1442 int ret;
22d12cda 1443
22a1b5c1
TJ
1444 if (ftdi == NULL || ftdi->usb_dev == NULL)
1445 return NULL;
1446
579b006f
JZ
1447 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1448 if (!tc)
1449 return NULL;
1450
1451 tc->ftdi = ftdi;
1452 tc->buf = buf;
1453 tc->size = size;
1454
1455 if (size <= ftdi->readbuffer_remaining)
7cc9950e 1456 {
579b006f 1457 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1458
579b006f
JZ
1459 // Fix offsets
1460 ftdi->readbuffer_remaining -= size;
1461 ftdi->readbuffer_offset += size;
7cc9950e 1462
579b006f 1463 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1464
579b006f
JZ
1465 tc->completed = 1;
1466 tc->offset = size;
1467 tc->transfer = NULL;
1468 return tc;
1469 }
4c9e3812 1470
579b006f
JZ
1471 tc->completed = 0;
1472 if (ftdi->readbuffer_remaining != 0)
1473 {
1474 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1475
579b006f
JZ
1476 tc->offset = ftdi->readbuffer_remaining;
1477 }
1478 else
1479 tc->offset = 0;
22d12cda 1480
579b006f
JZ
1481 transfer = libusb_alloc_transfer(0);
1482 if (!transfer)
1483 {
1484 free (tc);
1485 return NULL;
1486 }
22d12cda 1487
579b006f
JZ
1488 ftdi->readbuffer_remaining = 0;
1489 ftdi->readbuffer_offset = 0;
1490
1491 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1492 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1493
1494 ret = libusb_submit_transfer(transfer);
1495 if (ret < 0)
1496 {
1497 libusb_free_transfer(transfer);
1498 free (tc);
1499 return NULL;
22d12cda 1500 }
579b006f
JZ
1501 tc->transfer = transfer;
1502
1503 return tc;
4c9e3812
GE
1504}
1505
1506/**
579b006f 1507 Wait for completion of the transfer.
4c9e3812 1508
249888c8 1509 Use libusb 1.0 asynchronous API.
4c9e3812 1510
579b006f 1511 \param tc pointer to ftdi_transfer_control
4c9e3812 1512
579b006f
JZ
1513 \retval < 0: Some error happens
1514 \retval >= 0: Data size transferred
4c9e3812 1515*/
579b006f
JZ
1516
1517int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1518{
1519 int ret;
4c9e3812 1520
579b006f 1521 while (!tc->completed)
22d12cda 1522 {
29b1dfd9 1523 ret = libusb_handle_events(tc->ftdi->usb_ctx);
4c9e3812 1524 if (ret < 0)
579b006f
JZ
1525 {
1526 if (ret == LIBUSB_ERROR_INTERRUPTED)
1527 continue;
1528 libusb_cancel_transfer(tc->transfer);
1529 while (!tc->completed)
29b1dfd9 1530 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
579b006f
JZ
1531 break;
1532 libusb_free_transfer(tc->transfer);
1533 free (tc);
579b006f
JZ
1534 return ret;
1535 }
4c9e3812
GE
1536 }
1537
90ef163e
YSL
1538 ret = tc->offset;
1539 /**
1540 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
ef15fab5 1541 * at ftdi_read_data_submit(). Therefore, we need to check it here.
90ef163e 1542 **/
ef15fab5
TJ
1543 if (tc->transfer)
1544 {
1545 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1546 ret = -1;
1547 libusb_free_transfer(tc->transfer);
90ef163e 1548 }
579b006f
JZ
1549 free(tc);
1550 return ret;
4c9e3812 1551}
579b006f 1552
1941414d
TJ
1553/**
1554 Configure write buffer chunk size.
1555 Default is 4096.
1556
1557 \param ftdi pointer to ftdi_context
1558 \param chunksize Chunk size
a3da1d95 1559
1941414d 1560 \retval 0: all fine
22a1b5c1 1561 \retval -1: ftdi context invalid
1941414d 1562*/
a8f46ddc
TJ
1563int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1564{
22a1b5c1
TJ
1565 if (ftdi == NULL)
1566 ftdi_error_return(-1, "ftdi context invalid");
1567
948f9ada
TJ
1568 ftdi->writebuffer_chunksize = chunksize;
1569 return 0;
1570}
1571
1941414d
TJ
1572/**
1573 Get write buffer chunk size.
1574
1575 \param ftdi pointer to ftdi_context
1576 \param chunksize Pointer to store chunk size in
948f9ada 1577
1941414d 1578 \retval 0: all fine
22a1b5c1 1579 \retval -1: ftdi context invalid
1941414d 1580*/
a8f46ddc
TJ
1581int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1582{
22a1b5c1
TJ
1583 if (ftdi == NULL)
1584 ftdi_error_return(-1, "ftdi context invalid");
1585
948f9ada
TJ
1586 *chunksize = ftdi->writebuffer_chunksize;
1587 return 0;
1588}
cbabb7d3 1589
1941414d
TJ
1590/**
1591 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1592
1593 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1594
1941414d
TJ
1595 \param ftdi pointer to ftdi_context
1596 \param buf Buffer to store data in
1597 \param size Size of the buffer
1598
22a1b5c1 1599 \retval -666: USB device unavailable
579b006f 1600 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 1601 \retval 0: no data was available
1941414d
TJ
1602 \retval >0: number of bytes read
1603
1941414d 1604*/
a8f46ddc
TJ
1605int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1606{
579b006f 1607 int offset = 0, ret, i, num_of_chunks, chunk_remains;
e2f12a4f 1608 int packet_size = ftdi->max_packet_size;
579b006f 1609 int actual_length = 1;
f2f00cb5 1610
22a1b5c1
TJ
1611 if (ftdi == NULL || ftdi->usb_dev == NULL)
1612 ftdi_error_return(-666, "USB device unavailable");
1613
e2f12a4f
TJ
1614 // Packet size sanity check (avoid division by zero)
1615 if (packet_size == 0)
1616 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 1617
948f9ada 1618 // everything we want is still in the readbuffer?
22d12cda
TJ
1619 if (size <= ftdi->readbuffer_remaining)
1620 {
d9f0cce7
TJ
1621 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1622
1623 // Fix offsets
1624 ftdi->readbuffer_remaining -= size;
1625 ftdi->readbuffer_offset += size;
1626
545820ce 1627 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1628
1629 return size;
979a145c 1630 }
948f9ada 1631 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
1632 if (ftdi->readbuffer_remaining != 0)
1633 {
d9f0cce7 1634 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1635
d9f0cce7
TJ
1636 // Fix offset
1637 offset += ftdi->readbuffer_remaining;
948f9ada 1638 }
948f9ada 1639 // do the actual USB read
579b006f 1640 while (offset < size && actual_length > 0)
22d12cda 1641 {
d9f0cce7
TJ
1642 ftdi->readbuffer_remaining = 0;
1643 ftdi->readbuffer_offset = 0;
98452d97 1644 /* returns how much received */
579b006f 1645 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
1646 if (ret < 0)
1647 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1648
579b006f 1649 if (actual_length > 2)
22d12cda 1650 {
d9f0cce7
TJ
1651 // skip FTDI status bytes.
1652 // Maybe stored in the future to enable modem use
579b006f
JZ
1653 num_of_chunks = actual_length / packet_size;
1654 chunk_remains = actual_length % packet_size;
1655 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 1656
d9f0cce7 1657 ftdi->readbuffer_offset += 2;
579b006f 1658 actual_length -= 2;
1c733d33 1659
579b006f 1660 if (actual_length > packet_size - 2)
22d12cda 1661 {
1c733d33 1662 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
1663 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1664 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1665 packet_size - 2);
22d12cda
TJ
1666 if (chunk_remains > 2)
1667 {
f2f00cb5
DC
1668 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1669 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 1670 chunk_remains-2);
579b006f 1671 actual_length -= 2*num_of_chunks;
22d12cda
TJ
1672 }
1673 else
579b006f 1674 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 1675 }
22d12cda 1676 }
579b006f 1677 else if (actual_length <= 2)
22d12cda 1678 {
d9f0cce7
TJ
1679 // no more data to read?
1680 return offset;
1681 }
579b006f 1682 if (actual_length > 0)
22d12cda 1683 {
d9f0cce7 1684 // data still fits in buf?
579b006f 1685 if (offset+actual_length <= size)
22d12cda 1686 {
579b006f 1687 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 1688 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 1689 offset += actual_length;
d9f0cce7 1690
53ad271d 1691 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1692 if (offset == size)
c4446c36
TJ
1693 //printf("read_data exact rem %d offset %d\n",
1694 //ftdi->readbuffer_remaining, offset);
d9f0cce7 1695 return offset;
22d12cda
TJ
1696 }
1697 else
1698 {
d9f0cce7
TJ
1699 // only copy part of the data or size <= readbuffer_chunksize
1700 int part_size = size-offset;
1701 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1702
d9f0cce7 1703 ftdi->readbuffer_offset += part_size;
579b006f 1704 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
1705 offset += part_size;
1706
579b006f
JZ
1707 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1708 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1709
1710 return offset;
1711 }
1712 }
cbabb7d3 1713 }
948f9ada 1714 // never reached
29c4af7f 1715 return -127;
a3da1d95
GE
1716}
1717
1941414d
TJ
1718/**
1719 Configure read buffer chunk size.
1720 Default is 4096.
1721
1722 Automatically reallocates the buffer.
a3da1d95 1723
1941414d
TJ
1724 \param ftdi pointer to ftdi_context
1725 \param chunksize Chunk size
1726
1727 \retval 0: all fine
22a1b5c1 1728 \retval -1: ftdi context invalid
1941414d 1729*/
a8f46ddc
TJ
1730int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1731{
29c4af7f
TJ
1732 unsigned char *new_buf;
1733
22a1b5c1
TJ
1734 if (ftdi == NULL)
1735 ftdi_error_return(-1, "ftdi context invalid");
1736
948f9ada
TJ
1737 // Invalidate all remaining data
1738 ftdi->readbuffer_offset = 0;
1739 ftdi->readbuffer_remaining = 0;
8de6eea4
JZ
1740#ifdef __linux__
1741 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1742 which is defined in libusb-1.0. Otherwise, each USB read request will
2e685a1f 1743 be divided into multiple URBs. This will cause issues on Linux kernel
8de6eea4
JZ
1744 older than 2.6.32. */
1745 if (chunksize > 16384)
1746 chunksize = 16384;
1747#endif
948f9ada 1748
c3d95b87
TJ
1749 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1750 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1751
948f9ada
TJ
1752 ftdi->readbuffer = new_buf;
1753 ftdi->readbuffer_chunksize = chunksize;
1754
1755 return 0;
1756}
1757
1941414d
TJ
1758/**
1759 Get read buffer chunk size.
948f9ada 1760
1941414d
TJ
1761 \param ftdi pointer to ftdi_context
1762 \param chunksize Pointer to store chunk size in
1763
1764 \retval 0: all fine
22a1b5c1 1765 \retval -1: FTDI context invalid
1941414d 1766*/
a8f46ddc
TJ
1767int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1768{
22a1b5c1
TJ
1769 if (ftdi == NULL)
1770 ftdi_error_return(-1, "FTDI context invalid");
1771
948f9ada
TJ
1772 *chunksize = ftdi->readbuffer_chunksize;
1773 return 0;
1774}
1775
1776
1941414d
TJ
1777/**
1778 Enable bitbang mode.
948f9ada 1779
fd282db3 1780 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1941414d
TJ
1781
1782 \param ftdi pointer to ftdi_context
1783 \param bitmask Bitmask to configure lines.
1784 HIGH/ON value configures a line as output.
1785
1786 \retval 0: all fine
1787 \retval -1: can't enable bitbang mode
22a1b5c1 1788 \retval -2: USB device unavailable
1941414d 1789*/
a8f46ddc
TJ
1790int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1791{
a3da1d95
GE
1792 unsigned short usb_val;
1793
22a1b5c1
TJ
1794 if (ftdi == NULL || ftdi->usb_dev == NULL)
1795 ftdi_error_return(-2, "USB device unavailable");
1796
d9f0cce7 1797 usb_val = bitmask; // low byte: bitmask
3119537f
TJ
1798 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1799 usb_val |= (ftdi->bitbang_mode << 8);
1800
579b006f
JZ
1801 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1802 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1803 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1804 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1805
a3da1d95
GE
1806 ftdi->bitbang_enabled = 1;
1807 return 0;
1808}
1809
1941414d
TJ
1810/**
1811 Disable bitbang mode.
a3da1d95 1812
1941414d
TJ
1813 \param ftdi pointer to ftdi_context
1814
1815 \retval 0: all fine
1816 \retval -1: can't disable bitbang mode
22a1b5c1 1817 \retval -2: USB device unavailable
1941414d 1818*/
a8f46ddc
TJ
1819int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1820{
22a1b5c1
TJ
1821 if (ftdi == NULL || ftdi->usb_dev == NULL)
1822 ftdi_error_return(-2, "USB device unavailable");
1823
579b006f 1824 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1825 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1826
1827 ftdi->bitbang_enabled = 0;
1828 return 0;
1829}
1830
1941414d 1831/**
418aaa72 1832 Enable/disable bitbang modes.
a3da1d95 1833
1941414d
TJ
1834 \param ftdi pointer to ftdi_context
1835 \param bitmask Bitmask to configure lines.
1836 HIGH/ON value configures a line as output.
fd282db3 1837 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
1838
1839 \retval 0: all fine
1840 \retval -1: can't enable bitbang mode
22a1b5c1 1841 \retval -2: USB device unavailable
1941414d 1842*/
c4446c36
TJ
1843int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1844{
1845 unsigned short usb_val;
1846
22a1b5c1
TJ
1847 if (ftdi == NULL || ftdi->usb_dev == NULL)
1848 ftdi_error_return(-2, "USB device unavailable");
1849
c4446c36
TJ
1850 usb_val = bitmask; // low byte: bitmask
1851 usb_val |= (mode << 8);
579b006f
JZ
1852 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1853 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
c4446c36
TJ
1854
1855 ftdi->bitbang_mode = mode;
418aaa72 1856 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
c4446c36
TJ
1857 return 0;
1858}
1859
1941414d 1860/**
418aaa72 1861 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
1862
1863 \param ftdi pointer to ftdi_context
1864 \param pins Pointer to store pins into
1865
1866 \retval 0: all fine
1867 \retval -1: read pins failed
22a1b5c1 1868 \retval -2: USB device unavailable
1941414d 1869*/
a8f46ddc
TJ
1870int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1871{
22a1b5c1
TJ
1872 if (ftdi == NULL || ftdi->usb_dev == NULL)
1873 ftdi_error_return(-2, "USB device unavailable");
1874
579b006f 1875 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1876 ftdi_error_return(-1, "read pins failed");
a3da1d95 1877
a3da1d95
GE
1878 return 0;
1879}
1880
1941414d
TJ
1881/**
1882 Set latency timer
1883
1884 The FTDI chip keeps data in the internal buffer for a specific
1885 amount of time if the buffer is not full yet to decrease
1886 load on the usb bus.
a3da1d95 1887
1941414d
TJ
1888 \param ftdi pointer to ftdi_context
1889 \param latency Value between 1 and 255
1890
1891 \retval 0: all fine
1892 \retval -1: latency out of range
1893 \retval -2: unable to set latency timer
22a1b5c1 1894 \retval -3: USB device unavailable
1941414d 1895*/
a8f46ddc
TJ
1896int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1897{
a3da1d95
GE
1898 unsigned short usb_val;
1899
c3d95b87
TJ
1900 if (latency < 1)
1901 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 1902
22a1b5c1
TJ
1903 if (ftdi == NULL || ftdi->usb_dev == NULL)
1904 ftdi_error_return(-3, "USB device unavailable");
1905
d79d2e68 1906 usb_val = latency;
579b006f 1907 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1908 ftdi_error_return(-2, "unable to set latency timer");
1909
a3da1d95
GE
1910 return 0;
1911}
1912
1941414d
TJ
1913/**
1914 Get latency timer
a3da1d95 1915
1941414d
TJ
1916 \param ftdi pointer to ftdi_context
1917 \param latency Pointer to store latency value in
1918
1919 \retval 0: all fine
1920 \retval -1: unable to get latency timer
22a1b5c1 1921 \retval -2: USB device unavailable
1941414d 1922*/
a8f46ddc
TJ
1923int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1924{
a3da1d95 1925 unsigned short usb_val;
22a1b5c1
TJ
1926
1927 if (ftdi == NULL || ftdi->usb_dev == NULL)
1928 ftdi_error_return(-2, "USB device unavailable");
1929
579b006f 1930 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1931 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
1932
1933 *latency = (unsigned char)usb_val;
1934 return 0;
1935}
1936
1941414d 1937/**
1189b11a
TJ
1938 Poll modem status information
1939
1940 This function allows the retrieve the two status bytes of the device.
1941 The device sends these bytes also as a header for each read access
1942 where they are discarded by ftdi_read_data(). The chip generates
1943 the two stripped status bytes in the absence of data every 40 ms.
1944
1945 Layout of the first byte:
1946 - B0..B3 - must be 0
1947 - B4 Clear to send (CTS)
1948 0 = inactive
1949 1 = active
1950 - B5 Data set ready (DTS)
1951 0 = inactive
1952 1 = active
1953 - B6 Ring indicator (RI)
1954 0 = inactive
1955 1 = active
1956 - B7 Receive line signal detect (RLSD)
1957 0 = inactive
1958 1 = active
1959
1960 Layout of the second byte:
1961 - B0 Data ready (DR)
1962 - B1 Overrun error (OE)
1963 - B2 Parity error (PE)
1964 - B3 Framing error (FE)
1965 - B4 Break interrupt (BI)
1966 - B5 Transmitter holding register (THRE)
1967 - B6 Transmitter empty (TEMT)
1968 - B7 Error in RCVR FIFO
1969
1970 \param ftdi pointer to ftdi_context
1971 \param status Pointer to store status information in. Must be two bytes.
1972
1973 \retval 0: all fine
1974 \retval -1: unable to retrieve status information
22a1b5c1 1975 \retval -2: USB device unavailable
1189b11a
TJ
1976*/
1977int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1978{
1979 char usb_val[2];
1980
22a1b5c1
TJ
1981 if (ftdi == NULL || ftdi->usb_dev == NULL)
1982 ftdi_error_return(-2, "USB device unavailable");
1983
579b006f 1984 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
1985 ftdi_error_return(-1, "getting modem status failed");
1986
1987 *status = (usb_val[1] << 8) | usb_val[0];
1988
1989 return 0;
1990}
1991
a7fb8440
TJ
1992/**
1993 Set flowcontrol for ftdi chip
1994
1995 \param ftdi pointer to ftdi_context
22d12cda
TJ
1996 \param flowctrl flow control to use. should be
1997 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
a7fb8440
TJ
1998
1999 \retval 0: all fine
2000 \retval -1: set flow control failed
22a1b5c1 2001 \retval -2: USB device unavailable
a7fb8440
TJ
2002*/
2003int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2004{
22a1b5c1
TJ
2005 if (ftdi == NULL || ftdi->usb_dev == NULL)
2006 ftdi_error_return(-2, "USB device unavailable");
2007
579b006f
JZ
2008 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2009 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2010 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2011 ftdi_error_return(-1, "set flow control failed");
2012
2013 return 0;
2014}
2015
2016/**
2017 Set dtr line
2018
2019 \param ftdi pointer to ftdi_context
2020 \param state state to set line to (1 or 0)
2021
2022 \retval 0: all fine
2023 \retval -1: set dtr failed
22a1b5c1 2024 \retval -2: USB device unavailable
a7fb8440
TJ
2025*/
2026int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2027{
2028 unsigned short usb_val;
2029
22a1b5c1
TJ
2030 if (ftdi == NULL || ftdi->usb_dev == NULL)
2031 ftdi_error_return(-2, "USB device unavailable");
2032
a7fb8440
TJ
2033 if (state)
2034 usb_val = SIO_SET_DTR_HIGH;
2035 else
2036 usb_val = SIO_SET_DTR_LOW;
2037
579b006f
JZ
2038 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2039 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2040 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2041 ftdi_error_return(-1, "set dtr failed");
2042
2043 return 0;
2044}
2045
2046/**
2047 Set rts line
2048
2049 \param ftdi pointer to ftdi_context
2050 \param state state to set line to (1 or 0)
2051
2052 \retval 0: all fine
22a1b5c1
TJ
2053 \retval -1: set rts failed
2054 \retval -2: USB device unavailable
a7fb8440
TJ
2055*/
2056int ftdi_setrts(struct ftdi_context *ftdi, int state)
2057{
2058 unsigned short usb_val;
2059
22a1b5c1
TJ
2060 if (ftdi == NULL || ftdi->usb_dev == NULL)
2061 ftdi_error_return(-2, "USB device unavailable");
2062
a7fb8440
TJ
2063 if (state)
2064 usb_val = SIO_SET_RTS_HIGH;
2065 else
2066 usb_val = SIO_SET_RTS_LOW;
2067
579b006f
JZ
2068 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2069 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2070 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2071 ftdi_error_return(-1, "set of rts failed");
2072
2073 return 0;
2074}
2075
1189b11a 2076/**
22a1b5c1 2077 Set dtr and rts line in one pass
9ecfef2a 2078
22a1b5c1
TJ
2079 \param ftdi pointer to ftdi_context
2080 \param dtr DTR state to set line to (1 or 0)
2081 \param rts RTS state to set line to (1 or 0)
9ecfef2a 2082
22a1b5c1
TJ
2083 \retval 0: all fine
2084 \retval -1: set dtr/rts failed
2085 \retval -2: USB device unavailable
9ecfef2a
TJ
2086 */
2087int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2088{
2089 unsigned short usb_val;
2090
22a1b5c1
TJ
2091 if (ftdi == NULL || ftdi->usb_dev == NULL)
2092 ftdi_error_return(-2, "USB device unavailable");
2093
9ecfef2a 2094 if (dtr)
22d12cda 2095 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 2096 else
22d12cda 2097 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
2098
2099 if (rts)
22d12cda 2100 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 2101 else
22d12cda 2102 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 2103
579b006f
JZ
2104 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2105 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2106 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 2107 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
2108
2109 return 0;
2110}
2111
2112/**
1189b11a
TJ
2113 Set the special event character
2114
2115 \param ftdi pointer to ftdi_context
2116 \param eventch Event character
2117 \param enable 0 to disable the event character, non-zero otherwise
2118
2119 \retval 0: all fine
2120 \retval -1: unable to set event character
22a1b5c1 2121 \retval -2: USB device unavailable
1189b11a
TJ
2122*/
2123int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 2124 unsigned char eventch, unsigned char enable)
1189b11a
TJ
2125{
2126 unsigned short usb_val;
2127
22a1b5c1
TJ
2128 if (ftdi == NULL || ftdi->usb_dev == NULL)
2129 ftdi_error_return(-2, "USB device unavailable");
2130
1189b11a
TJ
2131 usb_val = eventch;
2132 if (enable)
2133 usb_val |= 1 << 8;
2134
579b006f 2135 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2136 ftdi_error_return(-1, "setting event character failed");
2137
2138 return 0;
2139}
2140
2141/**
2142 Set error character
2143
2144 \param ftdi pointer to ftdi_context
2145 \param errorch Error character
2146 \param enable 0 to disable the error character, non-zero otherwise
2147
2148 \retval 0: all fine
2149 \retval -1: unable to set error character
22a1b5c1 2150 \retval -2: USB device unavailable
1189b11a
TJ
2151*/
2152int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 2153 unsigned char errorch, unsigned char enable)
1189b11a
TJ
2154{
2155 unsigned short usb_val;
2156
22a1b5c1
TJ
2157 if (ftdi == NULL || ftdi->usb_dev == NULL)
2158 ftdi_error_return(-2, "USB device unavailable");
2159
1189b11a
TJ
2160 usb_val = errorch;
2161 if (enable)
2162 usb_val |= 1 << 8;
2163
579b006f 2164 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2165 ftdi_error_return(-1, "setting error character failed");
2166
2167 return 0;
2168}
2169
2170/**
1941414d 2171 Init eeprom with default values.
a35aa9bd 2172 \param ftdi pointer to ftdi_context
f14f84d3
UB
2173 \param manufacturer String to use as Manufacturer
2174 \param product String to use as Product description
2175 \param serial String to use as Serial number description
4e74064b 2176
f14f84d3
UB
2177 \retval 0: all fine
2178 \retval -1: No struct ftdi_context
2179 \retval -2: No struct ftdi_eeprom
1941414d 2180*/
f14f84d3 2181int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
56ac0383 2182 char * product, char * serial)
a8f46ddc 2183{
c0a96aed 2184 struct ftdi_eeprom *eeprom;
f505134f 2185
c0a96aed 2186 if (ftdi == NULL)
f14f84d3 2187 ftdi_error_return(-1, "No struct ftdi_context");
c0a96aed
UB
2188
2189 if (ftdi->eeprom == NULL)
56ac0383 2190 ftdi_error_return(-2,"No struct ftdi_eeprom");
22a1b5c1 2191
c0a96aed 2192 eeprom = ftdi->eeprom;
a02587d5 2193 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
c0a96aed 2194
f396dbad 2195 eeprom->vendor_id = 0x0403;
a02587d5 2196 eeprom->use_serial = USE_SERIAL_NUM;
56ac0383
TJ
2197 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2198 (ftdi->type == TYPE_R))
a02587d5
UB
2199 eeprom->product_id = 0x6001;
2200 else
2201 eeprom->product_id = 0x6010;
b1859923
UB
2202 if (ftdi->type == TYPE_AM)
2203 eeprom->usb_version = 0x0101;
2204 else
2205 eeprom->usb_version = 0x0200;
a886436a 2206 eeprom->max_power = 100;
d9f0cce7 2207
74e8e79d
UB
2208 if (eeprom->manufacturer)
2209 free (eeprom->manufacturer);
b8aa7b35 2210 eeprom->manufacturer = NULL;
74e8e79d
UB
2211 if (manufacturer)
2212 {
2213 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2214 if (eeprom->manufacturer)
2215 strcpy(eeprom->manufacturer, manufacturer);
2216 }
2217
2218 if (eeprom->product)
2219 free (eeprom->product);
b8aa7b35 2220 eeprom->product = NULL;
74e8e79d
UB
2221 {
2222 eeprom->product = malloc(strlen(product)+1);
2223 if (eeprom->product)
2224 strcpy(eeprom->product, product);
2225 }
2226
2227 if (eeprom->serial)
2228 free (eeprom->serial);
b8aa7b35 2229 eeprom->serial = NULL;
74e8e79d
UB
2230 if (serial)
2231 {
2232 eeprom->serial = malloc(strlen(serial)+1);
2233 if (eeprom->serial)
2234 strcpy(eeprom->serial, serial);
2235 }
2236
c201f80f 2237
56ac0383 2238 if (ftdi->type == TYPE_R)
a4980043 2239 {
a886436a 2240 eeprom->max_power = 90;
a02587d5 2241 eeprom->size = 0x80;
a4980043
UB
2242 eeprom->cbus_function[0] = CBUS_TXLED;
2243 eeprom->cbus_function[1] = CBUS_RXLED;
2244 eeprom->cbus_function[2] = CBUS_TXDEN;
2245 eeprom->cbus_function[3] = CBUS_PWREN;
2246 eeprom->cbus_function[4] = CBUS_SLEEP;
2247 }
a02587d5
UB
2248 else
2249 eeprom->size = -1;
f14f84d3 2250 return 0;
b8aa7b35
TJ
2251}
2252
1941414d 2253/**
a35aa9bd 2254 Build binary buffer from ftdi_eeprom structure.
22a1b5c1 2255 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2256
a35aa9bd 2257 \param ftdi pointer to ftdi_context
1941414d 2258
516ebfb1 2259 \retval >=0: size of eeprom user area in bytes
22a1b5c1 2260 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2c1e2bde
TJ
2261 \retval -2: Invalid eeprom or ftdi pointer
2262 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2263 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2264 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2b9a3c82 2265 \retval -6: No connected EEPROM or EEPROM Type unknown
b8aa7b35 2266*/
a35aa9bd 2267int ftdi_eeprom_build(struct ftdi_context *ftdi)
a8f46ddc 2268{
e2bbd9af 2269 unsigned char i, j, eeprom_size_mask;
b8aa7b35
TJ
2270 unsigned short checksum, value;
2271 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
516ebfb1 2272 int user_area_size;
c0a96aed 2273 struct ftdi_eeprom *eeprom;
a35aa9bd 2274 unsigned char * output;
b8aa7b35 2275
c0a96aed 2276 if (ftdi == NULL)
cc9c9d58 2277 ftdi_error_return(-2,"No context");
c0a96aed 2278 if (ftdi->eeprom == NULL)
cc9c9d58 2279 ftdi_error_return(-2,"No eeprom structure");
c0a96aed
UB
2280
2281 eeprom= ftdi->eeprom;
a35aa9bd 2282 output = eeprom->buf;
22a1b5c1 2283
56ac0383 2284 if (eeprom->chip == -1)
2c1e2bde 2285 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2b9a3c82 2286
f75bf139
UB
2287 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2288 eeprom->size = 0x100;
2289 else
2290 eeprom->size = 0x80;
2291
b8aa7b35 2292 if (eeprom->manufacturer != NULL)
d9f0cce7 2293 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2294 if (eeprom->product != NULL)
d9f0cce7 2295 product_size = strlen(eeprom->product);
b8aa7b35 2296 if (eeprom->serial != NULL)
d9f0cce7 2297 serial_size = strlen(eeprom->serial);
b8aa7b35 2298
814710ba
TJ
2299 // eeprom size check
2300 switch (ftdi->type)
2301 {
2302 case TYPE_AM:
2303 case TYPE_BM:
2304 user_area_size = 96; // base size for strings (total of 48 characters)
2305 break;
2306 case TYPE_2232C:
56ac0383
TJ
2307 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2308 break;
814710ba 2309 case TYPE_R:
56ac0383
TJ
2310 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2311 break;
814710ba
TJ
2312 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2313 case TYPE_4232H:
56ac0383 2314 user_area_size = 86;
118c4561 2315 break;
2c1e2bde
TJ
2316 default:
2317 user_area_size = 0;
56ac0383 2318 break;
665cda04
UB
2319 }
2320 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
814710ba 2321
516ebfb1
TJ
2322 if (user_area_size < 0)
2323 ftdi_error_return(-1,"eeprom size exceeded");
b8aa7b35
TJ
2324
2325 // empty eeprom
a35aa9bd 2326 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
b8aa7b35 2327
93738c79
UB
2328 // Bytes and Bits set for all Types
2329
b8aa7b35
TJ
2330 // Addr 02: Vendor ID
2331 output[0x02] = eeprom->vendor_id;
2332 output[0x03] = eeprom->vendor_id >> 8;
2333
2334 // Addr 04: Product ID
2335 output[0x04] = eeprom->product_id;
2336 output[0x05] = eeprom->product_id >> 8;
2337
2338 // Addr 06: Device release number (0400h for BM features)
2339 output[0x06] = 0x00;
814710ba
TJ
2340 switch (ftdi->type)
2341 {
f505134f
HK
2342 case TYPE_AM:
2343 output[0x07] = 0x02;
2344 break;
2345 case TYPE_BM:
2346 output[0x07] = 0x04;
2347 break;
2348 case TYPE_2232C:
2349 output[0x07] = 0x05;
2350 break;
2351 case TYPE_R:
2352 output[0x07] = 0x06;
2353 break;
56ac0383 2354 case TYPE_2232H:
6123f7ab
UB
2355 output[0x07] = 0x07;
2356 break;
56ac0383 2357 case TYPE_4232H:
6123f7ab
UB
2358 output[0x07] = 0x08;
2359 break;
f505134f
HK
2360 default:
2361 output[0x07] = 0x00;
2362 }
b8aa7b35
TJ
2363
2364 // Addr 08: Config descriptor
8fae3e8e
TJ
2365 // Bit 7: always 1
2366 // Bit 6: 1 if this device is self powered, 0 if bus powered
2367 // Bit 5: 1 if this device uses remote wakeup
37186e34 2368 // Bit 4-0: reserved - 0
5a1dcd55 2369 j = 0x80;
b8aa7b35 2370 if (eeprom->self_powered == 1)
5a1dcd55 2371 j |= 0x40;
b8aa7b35 2372 if (eeprom->remote_wakeup == 1)
5a1dcd55 2373 j |= 0x20;
b8aa7b35
TJ
2374 output[0x08] = j;
2375
2376 // Addr 09: Max power consumption: max power = value * 2 mA
bb5ec68a 2377 output[0x09] = eeprom->max_power>>1;
d9f0cce7 2378
56ac0383 2379 if (ftdi->type != TYPE_AM)
93738c79
UB
2380 {
2381 // Addr 0A: Chip configuration
2382 // Bit 7: 0 - reserved
2383 // Bit 6: 0 - reserved
2384 // Bit 5: 0 - reserved
56ac0383 2385 // Bit 4: 1 - Change USB version
93738c79
UB
2386 // Bit 3: 1 - Use the serial number string
2387 // Bit 2: 1 - Enable suspend pull downs for lower power
2388 // Bit 1: 1 - Out EndPoint is Isochronous
2389 // Bit 0: 1 - In EndPoint is Isochronous
2390 //
2391 j = 0;
2392 if (eeprom->in_is_isochronous == 1)
2393 j = j | 1;
2394 if (eeprom->out_is_isochronous == 1)
2395 j = j | 2;
2396 output[0x0A] = j;
2397 }
f505134f 2398
b8aa7b35 2399 // Dynamic content
93738c79
UB
2400 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2401 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2402 i = 0;
56ac0383
TJ
2403 switch (ftdi->type)
2404 {
2405 case TYPE_2232H:
2406 case TYPE_4232H:
2407 i += 2;
2408 case TYPE_R:
2409 i += 2;
2410 case TYPE_2232C:
2411 i += 2;
2412 case TYPE_AM:
2413 case TYPE_BM:
2414 i += 0x94;
f505134f 2415 }
93738c79 2416 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
e2bbd9af 2417 eeprom_size_mask = eeprom->size -1;
c201f80f 2418
93738c79
UB
2419 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2420 // Addr 0F: Length of manufacturer string
22d12cda 2421 // Output manufacturer
93738c79 2422 output[0x0E] = i; // calculate offset
e2bbd9af
TJ
2423 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2424 output[i & eeprom_size_mask] = 0x03, i++; // type: string
22d12cda
TJ
2425 for (j = 0; j < manufacturer_size; j++)
2426 {
e2bbd9af
TJ
2427 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2428 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2429 }
93738c79 2430 output[0x0F] = manufacturer_size*2 + 2;
b8aa7b35 2431
93738c79
UB
2432 // Addr 10: Offset of the product string + 0x80, calculated later
2433 // Addr 11: Length of product string
c201f80f 2434 output[0x10] = i | 0x80; // calculate offset
e2bbd9af
TJ
2435 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2436 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2437 for (j = 0; j < product_size; j++)
2438 {
e2bbd9af
TJ
2439 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2440 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2441 }
93738c79 2442 output[0x11] = product_size*2 + 2;
37186e34 2443
93738c79
UB
2444 // Addr 12: Offset of the serial string + 0x80, calculated later
2445 // Addr 13: Length of serial string
c201f80f 2446 output[0x12] = i | 0x80; // calculate offset
e2bbd9af
TJ
2447 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2448 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2449 for (j = 0; j < serial_size; j++)
2450 {
e2bbd9af
TJ
2451 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2452 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2453 }
c2700d6d
TJ
2454
2455 // Legacy port name and PnP fields for FT2232 and newer chips
2456 if (ftdi->type > TYPE_BM)
2457 {
2458 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2459 i++;
2460 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2461 i++;
2462 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2463 i++;
2464 }
802a949e 2465
93738c79 2466 output[0x13] = serial_size*2 + 2;
b8aa7b35 2467
56ac0383 2468 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
bf2f6ef7
UB
2469 {
2470 if (eeprom->use_serial == USE_SERIAL_NUM )
2471 output[0x0A] |= USE_SERIAL_NUM;
2472 else
2473 output[0x0A] &= ~USE_SERIAL_NUM;
2474 }
3802140c
UB
2475
2476 /* Bytes and Bits specific to (some) types
2477 Write linear, as this allows easier fixing*/
56ac0383
TJ
2478 switch (ftdi->type)
2479 {
2480 case TYPE_AM:
2481 break;
2482 case TYPE_BM:
2483 output[0x0C] = eeprom->usb_version & 0xff;
2484 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2485 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2486 output[0x0A] |= USE_USB_VERSION_BIT;
2487 else
2488 output[0x0A] &= ~USE_USB_VERSION_BIT;
caec1294 2489
56ac0383
TJ
2490 break;
2491 case TYPE_2232C:
3802140c 2492
56ac0383
TJ
2493 output[0x00] = (eeprom->channel_a_type);
2494 if ( eeprom->channel_a_driver == DRIVER_VCP)
2495 output[0x00] |= DRIVER_VCP;
2496 else
2497 output[0x00] &= ~DRIVER_VCP;
4e74064b 2498
56ac0383
TJ
2499 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2500 output[0x00] |= HIGH_CURRENT_DRIVE;
2501 else
2502 output[0x00] &= ~HIGH_CURRENT_DRIVE;
3802140c 2503
56ac0383
TJ
2504 output[0x01] = (eeprom->channel_b_type);
2505 if ( eeprom->channel_b_driver == DRIVER_VCP)
2506 output[0x01] |= DRIVER_VCP;
2507 else
2508 output[0x01] &= ~DRIVER_VCP;
4e74064b 2509
56ac0383
TJ
2510 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2511 output[0x01] |= HIGH_CURRENT_DRIVE;
2512 else
2513 output[0x01] &= ~HIGH_CURRENT_DRIVE;
3802140c 2514
56ac0383
TJ
2515 if (eeprom->in_is_isochronous == 1)
2516 output[0x0A] |= 0x1;
2517 else
2518 output[0x0A] &= ~0x1;
2519 if (eeprom->out_is_isochronous == 1)
2520 output[0x0A] |= 0x2;
2521 else
2522 output[0x0A] &= ~0x2;
2523 if (eeprom->suspend_pull_downs == 1)
2524 output[0x0A] |= 0x4;
2525 else
2526 output[0x0A] &= ~0x4;
2527 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2528 output[0x0A] |= USE_USB_VERSION_BIT;
2529 else
2530 output[0x0A] &= ~USE_USB_VERSION_BIT;
4e74064b 2531
56ac0383
TJ
2532 output[0x0C] = eeprom->usb_version & 0xff;
2533 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2534 output[0x14] = eeprom->chip;
2535 break;
2536 case TYPE_R:
2537 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2538 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2539 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
4e74064b 2540
56ac0383
TJ
2541 if (eeprom->suspend_pull_downs == 1)
2542 output[0x0A] |= 0x4;
2543 else
2544 output[0x0A] &= ~0x4;
2545 output[0x0B] = eeprom->invert;
2546 output[0x0C] = eeprom->usb_version & 0xff;
2547 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
4e74064b 2548
56ac0383
TJ
2549 if (eeprom->cbus_function[0] > CBUS_BB)
2550 output[0x14] = CBUS_TXLED;
2551 else
2552 output[0x14] = eeprom->cbus_function[0];
4e74064b 2553
56ac0383
TJ
2554 if (eeprom->cbus_function[1] > CBUS_BB)
2555 output[0x14] |= CBUS_RXLED<<4;
2556 else
2557 output[0x14] |= eeprom->cbus_function[1]<<4;
4e74064b 2558
56ac0383
TJ
2559 if (eeprom->cbus_function[2] > CBUS_BB)
2560 output[0x15] = CBUS_TXDEN;
2561 else
2562 output[0x15] = eeprom->cbus_function[2];
4e74064b 2563
56ac0383
TJ
2564 if (eeprom->cbus_function[3] > CBUS_BB)
2565 output[0x15] |= CBUS_PWREN<<4;
2566 else
2567 output[0x15] |= eeprom->cbus_function[3]<<4;
4e74064b 2568
56ac0383
TJ
2569 if (eeprom->cbus_function[4] > CBUS_CLK6)
2570 output[0x16] = CBUS_SLEEP;
2571 else
2572 output[0x16] = eeprom->cbus_function[4];
2573 break;
2574 case TYPE_2232H:
2575 output[0x00] = (eeprom->channel_a_type);
2576 if ( eeprom->channel_a_driver == DRIVER_VCP)
2577 output[0x00] |= DRIVER_VCP;
2578 else
2579 output[0x00] &= ~DRIVER_VCP;
6e6a1c3f 2580
56ac0383
TJ
2581 output[0x01] = (eeprom->channel_b_type);
2582 if ( eeprom->channel_b_driver == DRIVER_VCP)
2583 output[0x01] |= DRIVER_VCP;
2584 else
2585 output[0x01] &= ~DRIVER_VCP;
2586 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2587 output[0x01] |= SUSPEND_DBUS7_BIT;
2588 else
2589 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2590
2591 if (eeprom->suspend_pull_downs == 1)
2592 output[0x0A] |= 0x4;
2593 else
2594 output[0x0A] &= ~0x4;
2595
2596 if (eeprom->group0_drive > DRIVE_16MA)
2597 output[0x0c] |= DRIVE_16MA;
2598 else
2599 output[0x0c] |= eeprom->group0_drive;
2600 if (eeprom->group0_schmitt == IS_SCHMITT)
2601 output[0x0c] |= IS_SCHMITT;
2602 if (eeprom->group0_slew == SLOW_SLEW)
2603 output[0x0c] |= SLOW_SLEW;
2604
2605 if (eeprom->group1_drive > DRIVE_16MA)
2606 output[0x0c] |= DRIVE_16MA<<4;
2607 else
2608 output[0x0c] |= eeprom->group1_drive<<4;
2609 if (eeprom->group1_schmitt == IS_SCHMITT)
2610 output[0x0c] |= IS_SCHMITT<<4;
2611 if (eeprom->group1_slew == SLOW_SLEW)
2612 output[0x0c] |= SLOW_SLEW<<4;
2613
2614 if (eeprom->group2_drive > DRIVE_16MA)
2615 output[0x0d] |= DRIVE_16MA;
2616 else
2617 output[0x0d] |= eeprom->group2_drive;
2618 if (eeprom->group2_schmitt == IS_SCHMITT)
2619 output[0x0d] |= IS_SCHMITT;
2620 if (eeprom->group2_slew == SLOW_SLEW)
2621 output[0x0d] |= SLOW_SLEW;
2622
2623 if (eeprom->group3_drive > DRIVE_16MA)
2624 output[0x0d] |= DRIVE_16MA<<4;
2625 else
2626 output[0x0d] |= eeprom->group3_drive<<4;
2627 if (eeprom->group3_schmitt == IS_SCHMITT)
2628 output[0x0d] |= IS_SCHMITT<<4;
2629 if (eeprom->group3_slew == SLOW_SLEW)
2630 output[0x0d] |= SLOW_SLEW<<4;
3802140c 2631
56ac0383 2632 output[0x18] = eeprom->chip;
3802140c 2633
56ac0383
TJ
2634 break;
2635 case TYPE_4232H:
2636 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
3802140c
UB
2637 }
2638
cbf65673 2639 // calculate checksum
b8aa7b35 2640 checksum = 0xAAAA;
d9f0cce7 2641
22d12cda
TJ
2642 for (i = 0; i < eeprom->size/2-1; i++)
2643 {
d9f0cce7
TJ
2644 value = output[i*2];
2645 value += output[(i*2)+1] << 8;
b8aa7b35 2646
d9f0cce7
TJ
2647 checksum = value^checksum;
2648 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
2649 }
2650
c201f80f
TJ
2651 output[eeprom->size-2] = checksum;
2652 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 2653
516ebfb1 2654 return user_area_size;
b8aa7b35
TJ
2655}
2656
4af1d1bb
MK
2657/**
2658 Decode binary EEPROM image into an ftdi_eeprom structure.
2659
a35aa9bd
UB
2660 \param ftdi pointer to ftdi_context
2661 \param verbose Decode EEPROM on stdout
56ac0383 2662
4af1d1bb
MK
2663 \retval 0: all fine
2664 \retval -1: something went wrong
2665
2666 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2667 FIXME: Strings are malloc'ed here and should be freed somewhere
2668*/
a35aa9bd 2669int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
b56d5a64
MK
2670{
2671 unsigned char i, j;
2672 unsigned short checksum, eeprom_checksum, value;
2673 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
f2cd9fd5 2674 int eeprom_size;
c0a96aed 2675 struct ftdi_eeprom *eeprom;
a35aa9bd 2676 unsigned char *buf = ftdi->eeprom->buf;
38801bf8 2677 int release;
22a1b5c1 2678
c0a96aed 2679 if (ftdi == NULL)
cc9c9d58 2680 ftdi_error_return(-1,"No context");
c0a96aed 2681 if (ftdi->eeprom == NULL)
6cd4f922 2682 ftdi_error_return(-1,"No eeprom structure");
56ac0383 2683
c0a96aed 2684 eeprom = ftdi->eeprom;
a35aa9bd 2685 eeprom_size = eeprom->size;
b56d5a64 2686
b56d5a64
MK
2687 // Addr 02: Vendor ID
2688 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2689
2690 // Addr 04: Product ID
2691 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
22d12cda 2692
38801bf8 2693 release = buf[0x06] + (buf[0x07]<<8);
b56d5a64
MK
2694
2695 // Addr 08: Config descriptor
2696 // Bit 7: always 1
2697 // Bit 6: 1 if this device is self powered, 0 if bus powered
2698 // Bit 5: 1 if this device uses remote wakeup
f6ef2983 2699 eeprom->self_powered = buf[0x08] & 0x40;
814710ba 2700 eeprom->remote_wakeup = buf[0x08] & 0x20;
b56d5a64
MK
2701
2702 // Addr 09: Max power consumption: max power = value * 2 mA
2703 eeprom->max_power = buf[0x09];
2704
2705 // Addr 0A: Chip configuration
2706 // Bit 7: 0 - reserved
2707 // Bit 6: 0 - reserved
2708 // Bit 5: 0 - reserved
caec1294 2709 // Bit 4: 1 - Change USB version on BM and 2232C
b56d5a64
MK
2710 // Bit 3: 1 - Use the serial number string
2711 // Bit 2: 1 - Enable suspend pull downs for lower power
2712 // Bit 1: 1 - Out EndPoint is Isochronous
2713 // Bit 0: 1 - In EndPoint is Isochronous
2714 //
8d3fe5c9
UB
2715 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2716 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2717 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
a02587d5 2718 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
caec1294 2719 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
b56d5a64 2720
b1859923 2721 // Addr 0C: USB version low byte when 0x0A
56ac0383 2722 // Addr 0D: USB version high byte when 0x0A
b1859923 2723 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
b56d5a64
MK
2724
2725 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2726 // Addr 0F: Length of manufacturer string
2727 manufacturer_size = buf[0x0F]/2;
56ac0383 2728 if (eeprom->manufacturer)
74e8e79d 2729 free(eeprom->manufacturer);
56ac0383 2730 if (manufacturer_size > 0)
acc1fa05
UB
2731 {
2732 eeprom->manufacturer = malloc(manufacturer_size);
2733 if (eeprom->manufacturer)
2734 {
2735 // Decode manufacturer
84ec032f 2736 i = buf[0x0E] & (eeprom_size -1); // offset
acc1fa05
UB
2737 for (j=0;j<manufacturer_size-1;j++)
2738 {
2739 eeprom->manufacturer[j] = buf[2*j+i+2];
2740 }
2741 eeprom->manufacturer[j] = '\0';
2742 }
2743 }
b56d5a64
MK
2744 else eeprom->manufacturer = NULL;
2745
2746 // Addr 10: Offset of the product string + 0x80, calculated later
2747 // Addr 11: Length of product string
56ac0383 2748 if (eeprom->product)
74e8e79d 2749 free(eeprom->product);
b56d5a64 2750 product_size = buf[0x11]/2;
acc1fa05
UB
2751 if (product_size > 0)
2752 {
2753 eeprom->product = malloc(product_size);
56ac0383 2754 if (eeprom->product)
acc1fa05
UB
2755 {
2756 // Decode product name
84ec032f 2757 i = buf[0x10] & (eeprom_size -1); // offset
acc1fa05
UB
2758 for (j=0;j<product_size-1;j++)
2759 {
2760 eeprom->product[j] = buf[2*j+i+2];
2761 }
2762 eeprom->product[j] = '\0';
2763 }
2764 }
b56d5a64
MK
2765 else eeprom->product = NULL;
2766
2767 // Addr 12: Offset of the serial string + 0x80, calculated later
2768 // Addr 13: Length of serial string
56ac0383 2769 if (eeprom->serial)
74e8e79d 2770 free(eeprom->serial);
b56d5a64 2771 serial_size = buf[0x13]/2;
acc1fa05
UB
2772 if (serial_size > 0)
2773 {
2774 eeprom->serial = malloc(serial_size);
56ac0383 2775 if (eeprom->serial)
acc1fa05
UB
2776 {
2777 // Decode serial
84ec032f 2778 i = buf[0x12] & (eeprom_size -1); // offset
acc1fa05
UB
2779 for (j=0;j<serial_size-1;j++)
2780 {
2781 eeprom->serial[j] = buf[2*j+i+2];
2782 }
2783 eeprom->serial[j] = '\0';
2784 }
2785 }
b56d5a64
MK
2786 else eeprom->serial = NULL;
2787
b56d5a64
MK
2788 // verify checksum
2789 checksum = 0xAAAA;
2790
22d12cda
TJ
2791 for (i = 0; i < eeprom_size/2-1; i++)
2792 {
b56d5a64
MK
2793 value = buf[i*2];
2794 value += buf[(i*2)+1] << 8;
2795
2796 checksum = value^checksum;
2797 checksum = (checksum << 1) | (checksum >> 15);
2798 }
2799
2800 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2801
22d12cda
TJ
2802 if (eeprom_checksum != checksum)
2803 {
2804 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
cc9c9d58 2805 ftdi_error_return(-1,"EEPROM checksum error");
4af1d1bb
MK
2806 }
2807
eb498cff 2808 eeprom->channel_a_type = 0;
aa099f46 2809 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
f6ef2983 2810 {
6cd4f922 2811 eeprom->chip = -1;
f6ef2983 2812 }
56ac0383 2813 else if (ftdi->type == TYPE_2232C)
f6ef2983 2814 {
2cde7c52
UB
2815 eeprom->channel_a_type = buf[0x00] & 0x7;
2816 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2817 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2818 eeprom->channel_b_type = buf[0x01] & 0x7;
2819 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2820 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
6cd4f922 2821 eeprom->chip = buf[0x14];
065edc58 2822 }
56ac0383 2823 else if (ftdi->type == TYPE_R)
564b2716 2824 {
2cde7c52
UB
2825 /* TYPE_R flags D2XX, not VCP as all others*/
2826 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2827 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
56ac0383
TJ
2828 if ( (buf[0x01]&0x40) != 0x40)
2829 fprintf(stderr,
2830 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2831 " If this happened with the\n"
2832 " EEPROM programmed by FTDI tools, please report "
2833 "to libftdi@developer.intra2net.com\n");
2cde7c52 2834
6cd4f922 2835 eeprom->chip = buf[0x16];
cecb9cb2
UB
2836 // Addr 0B: Invert data lines
2837 // Works only on FT232R, not FT245R, but no way to distinguish
07851949
UB
2838 eeprom->invert = buf[0x0B];
2839 // Addr 14: CBUS function: CBUS0, CBUS1
2840 // Addr 15: CBUS function: CBUS2, CBUS3
2841 // Addr 16: CBUS function: CBUS5
2842 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2843 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2844 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2845 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2846 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
564b2716 2847 }
56ac0383 2848 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
db099ec5 2849 {
c6b94478 2850 eeprom->channel_a_type = buf[0x00] & 0x7;
2cde7c52
UB
2851 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2852 eeprom->channel_b_type = buf[0x01] & 0x7;
2853 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2854
56ac0383 2855 if (ftdi->type == TYPE_2232H)
ec0dcd3f 2856 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
2cde7c52 2857
6cd4f922 2858 eeprom->chip = buf[0x18];
db099ec5
UB
2859 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2860 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2861 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2862 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2863 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2864 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2865 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2866 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2867 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2868 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2869 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2870 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
947d9552 2871 }
56ac0383
TJ
2872
2873 if (verbose)
f6ef2983 2874 {
e107f509 2875 char *channel_mode[] = {"UART","245","CPU", "unknown", "OPTO"};
f6ef2983
UB
2876 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
2877 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
38801bf8 2878 fprintf(stdout, "Release: 0x%04x\n",release);
f6ef2983 2879
56ac0383 2880 if (eeprom->self_powered)
f6ef2983
UB
2881 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
2882 else
1cd815ad 2883 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
f6ef2983 2884 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
56ac0383 2885 if (eeprom->manufacturer)
f6ef2983 2886 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
56ac0383 2887 if (eeprom->product)
f6ef2983 2888 fprintf(stdout, "Product: %s\n",eeprom->product);
56ac0383 2889 if (eeprom->serial)
f6ef2983 2890 fprintf(stdout, "Serial: %s\n",eeprom->serial);
e107f509 2891 fprintf(stdout, "Checksum : %04x\n", checksum);
6cd4f922
UB
2892 if (ftdi->type == TYPE_R)
2893 fprintf(stdout, "Internal EEPROM\n");
2894 else if (eeprom->chip >= 0x46)
2895 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
56ac0383
TJ
2896 if (eeprom->suspend_dbus7)
2897 fprintf(stdout, "Suspend on DBUS7\n");
2898 if (eeprom->suspend_pull_downs)
fb9bfdd1 2899 fprintf(stdout, "Pull IO pins low during suspend\n");
56ac0383 2900 if (eeprom->remote_wakeup)
fb9bfdd1 2901 fprintf(stdout, "Enable Remote Wake Up\n");
802a949e 2902 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
db099ec5 2903 if (ftdi->type >= TYPE_2232C)
56ac0383 2904 fprintf(stdout,"Channel A has Mode %s%s%s\n",
e107f509 2905 channel_mode[eeprom->channel_a_type],
2cde7c52
UB
2906 (eeprom->channel_a_driver)?" VCP":"",
2907 (eeprom->high_current_a)?" High Current IO":"");
56ac0383
TJ
2908 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R))
2909 fprintf(stdout,"Channel B has Mode %s%s%s\n",
e107f509 2910 channel_mode[eeprom->channel_b_type],
2cde7c52
UB
2911 (eeprom->channel_b_driver)?" VCP":"",
2912 (eeprom->high_current_b)?" High Current IO":"");
caec1294 2913 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
56ac0383 2914 eeprom->use_usb_version == USE_USB_VERSION_BIT)
caec1294
UB
2915 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
2916
56ac0383 2917 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
db099ec5
UB
2918 {
2919 fprintf(stdout,"%s has %d mA drive%s%s\n",
2920 (ftdi->type == TYPE_2232H)?"AL":"A",
2921 (eeprom->group0_drive+1) *4,
2922 (eeprom->group0_schmitt)?" Schmitt Input":"",
2923 (eeprom->group0_slew)?" Slow Slew":"");
2924 fprintf(stdout,"%s has %d mA drive%s%s\n",
2925 (ftdi->type == TYPE_2232H)?"AH":"B",
2926 (eeprom->group1_drive+1) *4,
2927 (eeprom->group1_schmitt)?" Schmitt Input":"",
2928 (eeprom->group1_slew)?" Slow Slew":"");
2929 fprintf(stdout,"%s has %d mA drive%s%s\n",
2930 (ftdi->type == TYPE_2232H)?"BL":"C",
2931 (eeprom->group2_drive+1) *4,
2932 (eeprom->group2_schmitt)?" Schmitt Input":"",
2933 (eeprom->group2_slew)?" Slow Slew":"");
2934 fprintf(stdout,"%s has %d mA drive%s%s\n",
2935 (ftdi->type == TYPE_2232H)?"BH":"D",
2936 (eeprom->group3_drive+1) *4,
2937 (eeprom->group3_schmitt)?" Schmitt Input":"",
2938 (eeprom->group3_slew)?" Slow Slew":"");
2939 }
a4980043
UB
2940 if (ftdi->type == TYPE_R)
2941 {
2942 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
13f00d3c 2943 "SLEEP","CLK48","CLK24","CLK12","CLK6",
56ac0383
TJ
2944 "IOMODE","BB_WR","BB_RD"
2945 };
13f00d3c 2946 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
56ac0383
TJ
2947
2948 if (eeprom->invert)
2949 {
a4980043
UB
2950 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
2951 fprintf(stdout,"Inverted bits:");
2952 for (i=0; i<8; i++)
56ac0383 2953 if ((eeprom->invert & (1<<i)) == (1<<i))
a4980043
UB
2954 fprintf(stdout," %s",r_bits[i]);
2955 fprintf(stdout,"\n");
2956 }
56ac0383 2957 for (i=0; i<5; i++)
a4980043 2958 {
56ac0383 2959 if (eeprom->cbus_function[i]<CBUS_BB)
a4980043
UB
2960 fprintf(stdout,"C%d Function: %s\n", i,
2961 cbus_mux[eeprom->cbus_function[i]]);
2962 else
17431287
TJ
2963 {
2964 /* FIXME for Uwe: This results in an access above array bounds.
2965 Also I couldn't find documentation about this mode.
a4980043
UB
2966 fprintf(stdout,"C%d BB Function: %s\n", i,
2967 cbus_BB[i]);
17431287
TJ
2968 */
2969 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
2970 (void)cbus_BB;
2971 }
a4980043
UB
2972 }
2973 }
f6ef2983 2974 }
4af1d1bb 2975 return 0;
b56d5a64
MK
2976}
2977
1941414d 2978/**
44ef02bd
UB
2979 Get a value from the decoded EEPROM structure
2980
735e81ea
TJ
2981 \param ftdi pointer to ftdi_context
2982 \param value_name Enum of the value to query
2983 \param value Pointer to store read value
44ef02bd 2984
735e81ea
TJ
2985 \retval 0: all fine
2986 \retval -1: Value doesn't exist
44ef02bd
UB
2987*/
2988int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
2989{
2990 switch (value_name)
2991 {
56ac0383
TJ
2992 case VENDOR_ID:
2993 *value = ftdi->eeprom->vendor_id;
2994 break;
2995 case PRODUCT_ID:
2996 *value = ftdi->eeprom->product_id;
2997 break;
2998 case SELF_POWERED:
2999 *value = ftdi->eeprom->self_powered;
3000 break;
3001 case REMOTE_WAKEUP:
3002 *value = ftdi->eeprom->remote_wakeup;
3003 break;
3004 case IS_NOT_PNP:
3005 *value = ftdi->eeprom->is_not_pnp;
3006 break;
3007 case SUSPEND_DBUS7:
3008 *value = ftdi->eeprom->suspend_dbus7;
3009 break;
3010 case IN_IS_ISOCHRONOUS:
3011 *value = ftdi->eeprom->in_is_isochronous;
3012 break;
3013 case SUSPEND_PULL_DOWNS:
3014 *value = ftdi->eeprom->suspend_pull_downs;
3015 break;
3016 case USE_SERIAL:
3017 *value = ftdi->eeprom->use_serial;
3018 break;
3019 case USB_VERSION:
3020 *value = ftdi->eeprom->usb_version;
3021 break;
3022 case MAX_POWER:
3023 *value = ftdi->eeprom->max_power;
3024 break;
3025 case CHANNEL_A_TYPE:
3026 *value = ftdi->eeprom->channel_a_type;
3027 break;
3028 case CHANNEL_B_TYPE:
3029 *value = ftdi->eeprom->channel_b_type;
3030 break;
3031 case CHANNEL_A_DRIVER:
3032 *value = ftdi->eeprom->channel_a_driver;
3033 break;
3034 case CHANNEL_B_DRIVER:
3035 *value = ftdi->eeprom->channel_b_driver;
3036 break;
3037 case CBUS_FUNCTION_0:
3038 *value = ftdi->eeprom->cbus_function[0];
3039 break;
3040 case CBUS_FUNCTION_1:
3041 *value = ftdi->eeprom->cbus_function[1];
3042 break;
3043 case CBUS_FUNCTION_2:
3044 *value = ftdi->eeprom->cbus_function[2];
3045 break;
3046 case CBUS_FUNCTION_3:
3047 *value = ftdi->eeprom->cbus_function[3];
3048 break;
3049 case CBUS_FUNCTION_4:
3050 *value = ftdi->eeprom->cbus_function[4];
3051 break;
3052 case HIGH_CURRENT:
3053 *value = ftdi->eeprom->high_current;
3054 break;
3055 case HIGH_CURRENT_A:
3056 *value = ftdi->eeprom->high_current_a;
3057 break;
3058 case HIGH_CURRENT_B:
3059 *value = ftdi->eeprom->high_current_b;
3060 break;
3061 case INVERT:
3062 *value = ftdi->eeprom->invert;
3063 break;
3064 case GROUP0_DRIVE:
3065 *value = ftdi->eeprom->group0_drive;
3066 break;
3067 case GROUP0_SCHMITT:
3068 *value = ftdi->eeprom->group0_schmitt;
3069 break;
3070 case GROUP0_SLEW:
3071 *value = ftdi->eeprom->group0_slew;
3072 break;
3073 case GROUP1_DRIVE:
3074 *value = ftdi->eeprom->group1_drive;
3075 break;
3076 case GROUP1_SCHMITT:
3077 *value = ftdi->eeprom->group1_schmitt;
3078 break;
3079 case GROUP1_SLEW:
3080 *value = ftdi->eeprom->group1_slew;
3081 break;
3082 case GROUP2_DRIVE:
3083 *value = ftdi->eeprom->group2_drive;
3084 break;
3085 case GROUP2_SCHMITT:
3086 *value = ftdi->eeprom->group2_schmitt;
3087 break;
3088 case GROUP2_SLEW:
3089 *value = ftdi->eeprom->group2_slew;
3090 break;
3091 case GROUP3_DRIVE:
3092 *value = ftdi->eeprom->group3_drive;
3093 break;
3094 case GROUP3_SCHMITT:
3095 *value = ftdi->eeprom->group3_schmitt;
3096 break;
3097 case GROUP3_SLEW:
3098 *value = ftdi->eeprom->group3_slew;
3099 break;
3100 case CHIP_TYPE:
3101 *value = ftdi->eeprom->chip;
3102 break;
3103 case CHIP_SIZE:
3104 *value = ftdi->eeprom->size;
3105 break;
3106 default:
3107 ftdi_error_return(-1, "Request for unknown EEPROM value");
44ef02bd
UB
3108 }
3109 return 0;
3110}
3111
3112/**
3113 Set a value in the decoded EEPROM Structure
3114 No parameter checking is performed
3115
735e81ea 3116 \param ftdi pointer to ftdi_context
545f9df9 3117 \param value_name Enum of the value to set
735e81ea 3118 \param value to set
44ef02bd 3119
735e81ea
TJ
3120 \retval 0: all fine
3121 \retval -1: Value doesn't exist
3122 \retval -2: Value not user settable
44ef02bd
UB
3123*/
3124int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3125{
3126 switch (value_name)
3127 {
56ac0383
TJ
3128 case VENDOR_ID:
3129 ftdi->eeprom->vendor_id = value;
3130 break;
3131 case PRODUCT_ID:
3132 ftdi->eeprom->product_id = value;
3133 break;
3134 case SELF_POWERED:
3135 ftdi->eeprom->self_powered = value;
3136 break;
3137 case REMOTE_WAKEUP:
3138 ftdi->eeprom->remote_wakeup = value;
3139 break;
3140 case IS_NOT_PNP:
3141 ftdi->eeprom->is_not_pnp = value;
3142 break;
3143 case SUSPEND_DBUS7:
3144 ftdi->eeprom->suspend_dbus7 = value;
3145 break;
3146 case IN_IS_ISOCHRONOUS:
3147 ftdi->eeprom->in_is_isochronous = value;
3148 break;
3149 case SUSPEND_PULL_DOWNS:
3150 ftdi->eeprom->suspend_pull_downs = value;
3151 break;
3152 case USE_SERIAL:
3153 ftdi->eeprom->use_serial = value;
3154 break;
3155 case USB_VERSION:
3156 ftdi->eeprom->usb_version = value;
3157 break;
3158 case MAX_POWER:
3159 ftdi->eeprom->max_power = value;
3160 break;
3161 case CHANNEL_A_TYPE:
3162 ftdi->eeprom->channel_a_type = value;
3163 break;
3164 case CHANNEL_B_TYPE:
3165 ftdi->eeprom->channel_b_type = value;
3166 break;
3167 case CHANNEL_A_DRIVER:
3168 ftdi->eeprom->channel_a_driver = value;
3169 break;
3170 case CHANNEL_B_DRIVER:
3171 ftdi->eeprom->channel_b_driver = value;
3172 break;
3173 case CBUS_FUNCTION_0:
3174 ftdi->eeprom->cbus_function[0] = value;
3175 break;
3176 case CBUS_FUNCTION_1:
3177 ftdi->eeprom->cbus_function[1] = value;
3178 break;
3179 case CBUS_FUNCTION_2:
3180 ftdi->eeprom->cbus_function[2] = value;
3181 break;
3182 case CBUS_FUNCTION_3:
3183 ftdi->eeprom->cbus_function[3] = value;
3184 break;
3185 case CBUS_FUNCTION_4:
3186 ftdi->eeprom->cbus_function[4] = value;
3187 break;
3188 case HIGH_CURRENT:
3189 ftdi->eeprom->high_current = value;
3190 break;
3191 case HIGH_CURRENT_A:
3192 ftdi->eeprom->high_current_a = value;
3193 break;
3194 case HIGH_CURRENT_B:
3195 ftdi->eeprom->high_current_b = value;
3196 break;
3197 case INVERT:
3198 ftdi->eeprom->invert = value;
3199 break;
3200 case GROUP0_DRIVE:
3201 ftdi->eeprom->group0_drive = value;
3202 break;
3203 case GROUP0_SCHMITT:
3204 ftdi->eeprom->group0_schmitt = value;
3205 break;
3206 case GROUP0_SLEW:
3207 ftdi->eeprom->group0_slew = value;
3208 break;
3209 case GROUP1_DRIVE:
3210 ftdi->eeprom->group1_drive = value;
3211 break;
3212 case GROUP1_SCHMITT:
3213 ftdi->eeprom->group1_schmitt = value;
3214 break;
3215 case GROUP1_SLEW:
3216 ftdi->eeprom->group1_slew = value;
3217 break;
3218 case GROUP2_DRIVE:
3219 ftdi->eeprom->group2_drive = value;
3220 break;
3221 case GROUP2_SCHMITT:
3222 ftdi->eeprom->group2_schmitt = value;
3223 break;
3224 case GROUP2_SLEW:
3225 ftdi->eeprom->group2_slew = value;
3226 break;
3227 case GROUP3_DRIVE:
3228 ftdi->eeprom->group3_drive = value;
3229 break;
3230 case GROUP3_SCHMITT:
3231 ftdi->eeprom->group3_schmitt = value;
3232 break;
3233 case GROUP3_SLEW:
3234 ftdi->eeprom->group3_slew = value;
3235 break;
3236 case CHIP_TYPE:
3237 ftdi->eeprom->chip = value;
3238 break;
3239 case CHIP_SIZE:
3240 ftdi_error_return(-2, "EEPROM Value can't be changed");
3241 default :
3242 ftdi_error_return(-1, "Request to unknown EEPROM value");
44ef02bd
UB
3243 }
3244 return 0;
3245}
3246
3247/** Get the read-only buffer to the binary EEPROM content
3248
3249 \param ftdi pointer to ftdi_context
735e81ea 3250 \param buf buffer to receive EEPROM content
44ef02bd
UB
3251 \param size Size of receiving buffer
3252
3253 \retval 0: All fine
3254 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
200bd3ed 3255 \retval -2: Not enough room to store eeprom
44ef02bd 3256*/
56ac0383
TJ
3257int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3258{
3259 if (!ftdi || !(ftdi->eeprom))
3260 ftdi_error_return(-1, "No appropriate structure");
b95e4654 3261
200bd3ed
TJ
3262 if (!buf || size < ftdi->eeprom->size)
3263 ftdi_error_return(-1, "Not enough room to store eeprom");
3264
b95e4654
TJ
3265 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3266 if (size > FTDI_MAX_EEPROM_SIZE)
3267 size = FTDI_MAX_EEPROM_SIZE;
3268
56ac0383 3269 memcpy(buf, ftdi->eeprom->buf, size);
b95e4654 3270
56ac0383
TJ
3271 return 0;
3272}
44ef02bd
UB
3273
3274/**
c1c70e13
OS
3275 Read eeprom location
3276
3277 \param ftdi pointer to ftdi_context
3278 \param eeprom_addr Address of eeprom location to be read
3279 \param eeprom_val Pointer to store read eeprom location
3280
3281 \retval 0: all fine
3282 \retval -1: read failed
22a1b5c1 3283 \retval -2: USB device unavailable
c1c70e13
OS
3284*/
3285int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3286{
22a1b5c1
TJ
3287 if (ftdi == NULL || ftdi->usb_dev == NULL)
3288 ftdi_error_return(-2, "USB device unavailable");
3289
97c6b5f6 3290 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
c1c70e13
OS
3291 ftdi_error_return(-1, "reading eeprom failed");
3292
3293 return 0;
3294}
3295
3296/**
1941414d
TJ
3297 Read eeprom
3298
3299 \param ftdi pointer to ftdi_context
b8aa7b35 3300
1941414d
TJ
3301 \retval 0: all fine
3302 \retval -1: read failed
22a1b5c1 3303 \retval -2: USB device unavailable
1941414d 3304*/
a35aa9bd 3305int ftdi_read_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3306{
a3da1d95 3307 int i;
a35aa9bd 3308 unsigned char *buf;
a3da1d95 3309
22a1b5c1
TJ
3310 if (ftdi == NULL || ftdi->usb_dev == NULL)
3311 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 3312 buf = ftdi->eeprom->buf;
22a1b5c1 3313
2d543486 3314 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
22d12cda 3315 {
a35aa9bd 3316 if (libusb_control_transfer(
56ac0383
TJ
3317 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3318 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
c3d95b87 3319 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
3320 }
3321
2d543486 3322 if (ftdi->type == TYPE_R)
a35aa9bd 3323 ftdi->eeprom->size = 0x80;
56ac0383 3324 /* Guesses size of eeprom by comparing halves
2d543486 3325 - will not work with blank eeprom */
a35aa9bd 3326 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
2d543486 3327 ftdi->eeprom->size = -1;
56ac0383 3328 else if (memcmp(buf,&buf[0x80],0x80) == 0)
2d543486 3329 ftdi->eeprom->size = 0x80;
56ac0383 3330 else if (memcmp(buf,&buf[0x40],0x40) == 0)
2d543486
UB
3331 ftdi->eeprom->size = 0x40;
3332 else
3333 ftdi->eeprom->size = 0x100;
a3da1d95
GE
3334 return 0;
3335}
3336
cb6250fa
TJ
3337/*
3338 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3339 Function is only used internally
3340 \internal
3341*/
3342static unsigned char ftdi_read_chipid_shift(unsigned char value)
3343{
3344 return ((value & 1) << 1) |
22d12cda
TJ
3345 ((value & 2) << 5) |
3346 ((value & 4) >> 2) |
3347 ((value & 8) << 4) |
3348 ((value & 16) >> 1) |
3349 ((value & 32) >> 1) |
3350 ((value & 64) >> 4) |
3351 ((value & 128) >> 2);
cb6250fa
TJ
3352}
3353
3354/**
3355 Read the FTDIChip-ID from R-type devices
3356
3357 \param ftdi pointer to ftdi_context
3358 \param chipid Pointer to store FTDIChip-ID
3359
3360 \retval 0: all fine
3361 \retval -1: read failed
22a1b5c1 3362 \retval -2: USB device unavailable
cb6250fa
TJ
3363*/
3364int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3365{
c7eb3112 3366 unsigned int a = 0, b = 0;
cb6250fa 3367
22a1b5c1
TJ
3368 if (ftdi == NULL || ftdi->usb_dev == NULL)
3369 ftdi_error_return(-2, "USB device unavailable");
3370
579b006f 3371 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3372 {
3373 a = a << 8 | a >> 8;
579b006f 3374 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3375 {
3376 b = b << 8 | b >> 8;
5230676f 3377 a = (a << 16) | (b & 0xFFFF);
912d50ca
TJ
3378 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3379 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 3380 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 3381 return 0;
cb6250fa
TJ
3382 }
3383 }
3384
c7eb3112 3385 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
3386}
3387
1941414d 3388/**
c1c70e13
OS
3389 Write eeprom location
3390
3391 \param ftdi pointer to ftdi_context
3392 \param eeprom_addr Address of eeprom location to be written
3393 \param eeprom_val Value to be written
3394
3395 \retval 0: all fine
a661e3e4 3396 \retval -1: write failed
22a1b5c1 3397 \retval -2: USB device unavailable
a661e3e4
UB
3398 \retval -3: Invalid access to checksum protected area below 0x80
3399 \retval -4: Device can't access unprotected area
3400 \retval -5: Reading chip type failed
c1c70e13 3401*/
56ac0383 3402int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
a661e3e4 3403 unsigned short eeprom_val)
c1c70e13 3404{
a661e3e4
UB
3405 int chip_type_location;
3406 unsigned short chip_type;
3407
22a1b5c1
TJ
3408 if (ftdi == NULL || ftdi->usb_dev == NULL)
3409 ftdi_error_return(-2, "USB device unavailable");
3410
56ac0383 3411 if (eeprom_addr <0x80)
a661e3e4
UB
3412 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3413
3414
3415 switch (ftdi->type)
3416 {
56ac0383
TJ
3417 case TYPE_BM:
3418 case TYPE_2232C:
3419 chip_type_location = 0x14;
3420 break;
3421 case TYPE_2232H:
3422 case TYPE_4232H:
3423 chip_type_location = 0x18;
3424 break;
3425 default:
3426 ftdi_error_return(-4, "Device can't access unprotected area");
a661e3e4
UB
3427 }
3428
56ac0383 3429 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
a661e3e4 3430 ftdi_error_return(-5, "Reading failed failed");
56ac0383
TJ
3431 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3432 if ((chip_type & 0xff) != 0x66)
a661e3e4
UB
3433 {
3434 ftdi_error_return(-6, "EEPROM is not of 93x66");
3435 }
3436
579b006f 3437 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
3438 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3439 NULL, 0, ftdi->usb_write_timeout) != 0)
c1c70e13
OS
3440 ftdi_error_return(-1, "unable to write eeprom");
3441
3442 return 0;
3443}
3444
3445/**
1941414d 3446 Write eeprom
a3da1d95 3447
1941414d 3448 \param ftdi pointer to ftdi_context
56ac0383 3449
1941414d
TJ
3450 \retval 0: all fine
3451 \retval -1: read failed
22a1b5c1 3452 \retval -2: USB device unavailable
1941414d 3453*/
a35aa9bd 3454int ftdi_write_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3455{
ba5329be 3456 unsigned short usb_val, status;
e30da501 3457 int i, ret;
a35aa9bd 3458 unsigned char *eeprom;
a3da1d95 3459
22a1b5c1
TJ
3460 if (ftdi == NULL || ftdi->usb_dev == NULL)
3461 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 3462 eeprom = ftdi->eeprom->buf;
22a1b5c1 3463
ba5329be 3464 /* These commands were traced while running MProg */
e30da501
TJ
3465 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3466 return ret;
3467 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3468 return ret;
3469 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3470 return ret;
ba5329be 3471
c0a96aed 3472 for (i = 0; i < ftdi->eeprom->size/2; i++)
22d12cda 3473 {
d9f0cce7
TJ
3474 usb_val = eeprom[i*2];
3475 usb_val += eeprom[(i*2)+1] << 8;
579b006f
JZ
3476 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3477 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3478 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3479 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
3480 }
3481
3482 return 0;
3483}
3484
1941414d
TJ
3485/**
3486 Erase eeprom
a3da1d95 3487
a5e1bd8c
MK
3488 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3489
1941414d
TJ
3490 \param ftdi pointer to ftdi_context
3491
3492 \retval 0: all fine
3493 \retval -1: erase failed
22a1b5c1 3494 \retval -2: USB device unavailable
99404ad5
UB
3495 \retval -3: Writing magic failed
3496 \retval -4: Read EEPROM failed
3497 \retval -5: Unexpected EEPROM value
1941414d 3498*/
99404ad5 3499#define MAGIC 0x55aa
a8f46ddc
TJ
3500int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3501{
99404ad5 3502 unsigned short eeprom_value;
22a1b5c1
TJ
3503 if (ftdi == NULL || ftdi->usb_dev == NULL)
3504 ftdi_error_return(-2, "USB device unavailable");
3505
56ac0383 3506 if (ftdi->type == TYPE_R)
99404ad5
UB
3507 {
3508 ftdi->eeprom->chip = 0;
3509 return 0;
3510 }
3511
56ac0383 3512 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5 3513 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3514 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95 3515
56ac0383 3516
99404ad5
UB
3517 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3518 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3519 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3520 Chip is 93x66 if magic is only read at word position 0xc0*/
10186c1f 3521 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
3522 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3523 NULL, 0, ftdi->usb_write_timeout) != 0)
99404ad5 3524 ftdi_error_return(-3, "Writing magic failed");
56ac0383 3525 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
99404ad5 3526 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3527 if (eeprom_value == MAGIC)
99404ad5
UB
3528 {
3529 ftdi->eeprom->chip = 0x46;
3530 }
56ac0383 3531 else
99404ad5 3532 {
56ac0383 3533 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
99404ad5 3534 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3535 if (eeprom_value == MAGIC)
99404ad5 3536 ftdi->eeprom->chip = 0x56;
56ac0383 3537 else
99404ad5 3538 {
56ac0383 3539 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
99404ad5 3540 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3541 if (eeprom_value == MAGIC)
99404ad5
UB
3542 ftdi->eeprom->chip = 0x66;
3543 else
3544 {
3545 ftdi->eeprom->chip = -1;
3546 }
3547 }
3548 }
56ac0383 3549 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5
UB
3550 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3551 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
3552 return 0;
3553}
c3d95b87 3554
1941414d
TJ
3555/**
3556 Get string representation for last error code
c3d95b87 3557
1941414d
TJ
3558 \param ftdi pointer to ftdi_context
3559
3560 \retval Pointer to error string
3561*/
c3d95b87
TJ
3562char *ftdi_get_error_string (struct ftdi_context *ftdi)
3563{
22a1b5c1
TJ
3564 if (ftdi == NULL)
3565 return "";
3566
c3d95b87
TJ
3567 return ftdi->error_str;
3568}
a01d31e2 3569
b5ec1820 3570/* @} end of doxygen libftdi group */