Document the magic 0x02 0x03 0x01 value after the serial string
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
22a1b5c1 5 copyright : (C) 2003-2010 by Intra2net AG
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
1bfc403c 21 http://www.intra2net.com/en/developer/libftdi/
b5ec1820 22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
579b006f 31#include <libusb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
b56d5a64 34#include <stdio.h>
579b006f 35#include <stdlib.h>
0e302db6 36
98452d97 37#include "ftdi.h"
a3da1d95 38
21abaf2e 39#define ftdi_error_return(code, str) do { \
2f73e59f 40 ftdi->error_str = str; \
21abaf2e 41 return code; \
d2f10023 42 } while(0);
c3d95b87 43
99650502
UB
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
418aaa72 50
f3f81007
TJ
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
579b006f 58 \retval none
f3f81007 59*/
579b006f 60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 61{
22a1b5c1 62 if (ftdi && ftdi->usb_dev)
dff4fdb0 63 {
579b006f 64 libusb_close (ftdi->usb_dev);
dff4fdb0
NF
65 ftdi->usb_dev = NULL;
66 }
dff4fdb0 67}
c3d95b87 68
1941414d
TJ
69/**
70 Initializes a ftdi_context.
4837f98a 71
1941414d 72 \param ftdi pointer to ftdi_context
4837f98a 73
1941414d
TJ
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
a35aa9bd 76 \retval -2: couldn't allocate struct buffer
1941414d
TJ
77
78 \remark This should be called before all functions
948f9ada 79*/
a8f46ddc
TJ
80int ftdi_init(struct ftdi_context *ftdi)
81{
a35aa9bd 82 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
02212d8e 83 ftdi->usb_ctx = NULL;
98452d97 84 ftdi->usb_dev = NULL;
545820ce
TJ
85 ftdi->usb_read_timeout = 5000;
86 ftdi->usb_write_timeout = 5000;
a3da1d95 87
53ad271d 88 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 89 ftdi->baudrate = -1;
418aaa72 90 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 91
948f9ada
TJ
92 ftdi->readbuffer = NULL;
93 ftdi->readbuffer_offset = 0;
94 ftdi->readbuffer_remaining = 0;
95 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 96 ftdi->max_packet_size = 0;
948f9ada 97
545820ce
TJ
98 ftdi->interface = 0;
99 ftdi->index = 0;
100 ftdi->in_ep = 0x02;
101 ftdi->out_ep = 0x81;
418aaa72 102 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 103
a3da1d95
GE
104 ftdi->error_str = NULL;
105
a35aa9bd
UB
106 if (eeprom == 0)
107 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
b4d19dea 108 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
a35aa9bd 109 ftdi->eeprom = eeprom;
c201f80f 110
1c733d33
TJ
111 /* All fine. Now allocate the readbuffer */
112 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 113}
4837f98a 114
1941414d 115/**
cef378aa
TJ
116 Allocate and initialize a new ftdi_context
117
118 \return a pointer to a new ftdi_context, or NULL on failure
119*/
672ac008 120struct ftdi_context *ftdi_new(void)
cef378aa
TJ
121{
122 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
123
22d12cda
TJ
124 if (ftdi == NULL)
125 {
cef378aa
TJ
126 return NULL;
127 }
128
22d12cda
TJ
129 if (ftdi_init(ftdi) != 0)
130 {
cef378aa 131 free(ftdi);
cdf448f6 132 return NULL;
cef378aa
TJ
133 }
134
135 return ftdi;
136}
137
138/**
1941414d
TJ
139 Open selected channels on a chip, otherwise use first channel.
140
141 \param ftdi pointer to ftdi_context
f9d69895 142 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
143
144 \retval 0: all fine
145 \retval -1: unknown interface
22a1b5c1 146 \retval -2: USB device unavailable
c4446c36 147*/
0ce2f5fa 148int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 149{
1971c26d 150 if (ftdi == NULL)
22a1b5c1
TJ
151 ftdi_error_return(-2, "USB device unavailable");
152
22d12cda
TJ
153 switch (interface)
154 {
155 case INTERFACE_ANY:
156 case INTERFACE_A:
157 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
158 break;
159 case INTERFACE_B:
160 ftdi->interface = 1;
161 ftdi->index = INTERFACE_B;
162 ftdi->in_ep = 0x04;
163 ftdi->out_ep = 0x83;
164 break;
f9d69895
AH
165 case INTERFACE_C:
166 ftdi->interface = 2;
167 ftdi->index = INTERFACE_C;
168 ftdi->in_ep = 0x06;
169 ftdi->out_ep = 0x85;
170 break;
171 case INTERFACE_D:
172 ftdi->interface = 3;
173 ftdi->index = INTERFACE_D;
174 ftdi->in_ep = 0x08;
175 ftdi->out_ep = 0x87;
176 break;
22d12cda
TJ
177 default:
178 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
179 }
180 return 0;
181}
948f9ada 182
1941414d
TJ
183/**
184 Deinitializes a ftdi_context.
4837f98a 185
1941414d 186 \param ftdi pointer to ftdi_context
4837f98a 187*/
a8f46ddc
TJ
188void ftdi_deinit(struct ftdi_context *ftdi)
189{
22a1b5c1
TJ
190 if (ftdi == NULL)
191 return;
192
f3f81007 193 ftdi_usb_close_internal (ftdi);
dff4fdb0 194
22d12cda
TJ
195 if (ftdi->readbuffer != NULL)
196 {
d9f0cce7
TJ
197 free(ftdi->readbuffer);
198 ftdi->readbuffer = NULL;
948f9ada 199 }
a35aa9bd
UB
200
201 if (ftdi->eeprom != NULL)
202 {
74e8e79d
UB
203 if (ftdi->eeprom->manufacturer != 0)
204 {
205 free(ftdi->eeprom->manufacturer);
206 ftdi->eeprom->manufacturer = 0;
207 }
208 if (ftdi->eeprom->product != 0)
209 {
210 free(ftdi->eeprom->product);
211 ftdi->eeprom->product = 0;
212 }
213 if (ftdi->eeprom->serial != 0)
214 {
215 free(ftdi->eeprom->serial);
216 ftdi->eeprom->serial = 0;
217 }
a35aa9bd
UB
218 free(ftdi->eeprom);
219 ftdi->eeprom = NULL;
220 }
02212d8e 221 libusb_exit(ftdi->usb_ctx);
a3da1d95
GE
222}
223
1941414d 224/**
cef378aa
TJ
225 Deinitialize and free an ftdi_context.
226
227 \param ftdi pointer to ftdi_context
228*/
229void ftdi_free(struct ftdi_context *ftdi)
230{
231 ftdi_deinit(ftdi);
232 free(ftdi);
233}
234
235/**
1941414d
TJ
236 Use an already open libusb device.
237
238 \param ftdi pointer to ftdi_context
579b006f 239 \param usb libusb libusb_device_handle to use
4837f98a 240*/
579b006f 241void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 242{
22a1b5c1
TJ
243 if (ftdi == NULL)
244 return;
245
98452d97
TJ
246 ftdi->usb_dev = usb;
247}
248
249
1941414d
TJ
250/**
251 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
252 needs to be deallocated by ftdi_list_free() after use.
253
254 \param ftdi pointer to ftdi_context
255 \param devlist Pointer where to store list of found devices
256 \param vendor Vendor ID to search for
257 \param product Product ID to search for
edb82cbf 258
1941414d 259 \retval >0: number of devices found
1941414d 260 \retval -3: out of memory
579b006f
JZ
261 \retval -4: libusb_init() failed
262 \retval -5: libusb_get_device_list() failed
263 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 264*/
d2f10023 265int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
266{
267 struct ftdi_device_list **curdev;
579b006f
JZ
268 libusb_device *dev;
269 libusb_device **devs;
edb82cbf 270 int count = 0;
579b006f
JZ
271 int i = 0;
272
02212d8e 273 if (libusb_init(&ftdi->usb_ctx) < 0)
579b006f 274 ftdi_error_return(-4, "libusb_init() failed");
d2f10023 275
02212d8e 276 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 277 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
278
279 curdev = devlist;
6db32169 280 *curdev = NULL;
579b006f
JZ
281
282 while ((dev = devs[i++]) != NULL)
22d12cda 283 {
579b006f 284 struct libusb_device_descriptor desc;
d2f10023 285
579b006f
JZ
286 if (libusb_get_device_descriptor(dev, &desc) < 0)
287 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
edb82cbf 288
579b006f
JZ
289 if (desc.idVendor == vendor && desc.idProduct == product)
290 {
291 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
292 if (!*curdev)
293 ftdi_error_return(-3, "out of memory");
294
295 (*curdev)->next = NULL;
296 (*curdev)->dev = dev;
297
298 curdev = &(*curdev)->next;
299 count++;
edb82cbf
TJ
300 }
301 }
d2f10023 302
edb82cbf
TJ
303 return count;
304}
305
1941414d
TJ
306/**
307 Frees a usb device list.
edb82cbf 308
1941414d 309 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 310*/
d2f10023 311void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 312{
6db32169
TJ
313 struct ftdi_device_list *curdev, *next;
314
22d12cda
TJ
315 for (curdev = *devlist; curdev != NULL;)
316 {
6db32169
TJ
317 next = curdev->next;
318 free(curdev);
319 curdev = next;
edb82cbf
TJ
320 }
321
6db32169 322 *devlist = NULL;
edb82cbf
TJ
323}
324
1941414d 325/**
cef378aa
TJ
326 Frees a usb device list.
327
328 \param devlist USB device list created by ftdi_usb_find_all()
329*/
330void ftdi_list_free2(struct ftdi_device_list *devlist)
331{
332 ftdi_list_free(&devlist);
333}
334
335/**
474786c0
TJ
336 Return device ID strings from the usb device.
337
338 The parameters manufacturer, description and serial may be NULL
339 or pointer to buffers to store the fetched strings.
340
898c34dd
TJ
341 \note Use this function only in combination with ftdi_usb_find_all()
342 as it closes the internal "usb_dev" after use.
343
474786c0
TJ
344 \param ftdi pointer to ftdi_context
345 \param dev libusb usb_dev to use
346 \param manufacturer Store manufacturer string here if not NULL
347 \param mnf_len Buffer size of manufacturer string
348 \param description Store product description string here if not NULL
349 \param desc_len Buffer size of product description string
350 \param serial Store serial string here if not NULL
351 \param serial_len Buffer size of serial string
352
353 \retval 0: all fine
354 \retval -1: wrong arguments
355 \retval -4: unable to open device
356 \retval -7: get product manufacturer failed
357 \retval -8: get product description failed
358 \retval -9: get serial number failed
579b006f 359 \retval -11: libusb_get_device_descriptor() failed
474786c0 360*/
579b006f 361int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
22d12cda 362 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
474786c0 363{
579b006f
JZ
364 struct libusb_device_descriptor desc;
365
474786c0
TJ
366 if ((ftdi==NULL) || (dev==NULL))
367 return -1;
368
579b006f
JZ
369 if (libusb_open(dev, &ftdi->usb_dev) < 0)
370 ftdi_error_return(-4, "libusb_open() failed");
371
372 if (libusb_get_device_descriptor(dev, &desc) < 0)
373 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 374
22d12cda
TJ
375 if (manufacturer != NULL)
376 {
579b006f 377 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 378 {
f3f81007 379 ftdi_usb_close_internal (ftdi);
579b006f 380 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
381 }
382 }
383
22d12cda
TJ
384 if (description != NULL)
385 {
579b006f 386 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 387 {
f3f81007 388 ftdi_usb_close_internal (ftdi);
579b006f 389 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
390 }
391 }
392
22d12cda
TJ
393 if (serial != NULL)
394 {
579b006f 395 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 396 {
f3f81007 397 ftdi_usb_close_internal (ftdi);
579b006f 398 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
399 }
400 }
401
579b006f 402 ftdi_usb_close_internal (ftdi);
474786c0
TJ
403
404 return 0;
405}
406
407/**
e2f12a4f
TJ
408 * Internal function to determine the maximum packet size.
409 * \param ftdi pointer to ftdi_context
410 * \param dev libusb usb_dev to use
411 * \retval Maximum packet size for this device
412 */
579b006f 413static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 414{
579b006f
JZ
415 struct libusb_device_descriptor desc;
416 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
417 unsigned int packet_size;
418
22a1b5c1
TJ
419 // Sanity check
420 if (ftdi == NULL || dev == NULL)
421 return 64;
422
e2f12a4f
TJ
423 // Determine maximum packet size. Init with default value.
424 // New hi-speed devices from FTDI use a packet size of 512 bytes
425 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
426 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
427 packet_size = 512;
428 else
429 packet_size = 64;
430
579b006f
JZ
431 if (libusb_get_device_descriptor(dev, &desc) < 0)
432 return packet_size;
433
434 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
435 return packet_size;
e2f12a4f 436
579b006f
JZ
437 if (desc.bNumConfigurations > 0)
438 {
439 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 440 {
579b006f 441 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
442 if (interface.num_altsetting > 0)
443 {
579b006f 444 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
445 if (descriptor.bNumEndpoints > 0)
446 {
447 packet_size = descriptor.endpoint[0].wMaxPacketSize;
448 }
449 }
450 }
451 }
452
579b006f 453 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
454 return packet_size;
455}
456
457/**
418aaa72 458 Opens a ftdi device given by an usb_device.
7b18bef6 459
1941414d
TJ
460 \param ftdi pointer to ftdi_context
461 \param dev libusb usb_dev to use
462
463 \retval 0: all fine
23b1798d 464 \retval -3: unable to config device
1941414d
TJ
465 \retval -4: unable to open device
466 \retval -5: unable to claim device
467 \retval -6: reset failed
468 \retval -7: set baudrate failed
22a1b5c1 469 \retval -8: ftdi context invalid
579b006f
JZ
470 \retval -9: libusb_get_device_descriptor() failed
471 \retval -10: libusb_get_config_descriptor() failed
472 \retval -11: libusb_etach_kernel_driver() failed
473 \retval -12: libusb_get_configuration() failed
7b18bef6 474*/
579b006f 475int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 476{
579b006f
JZ
477 struct libusb_device_descriptor desc;
478 struct libusb_config_descriptor *config0;
43aee24f 479 int cfg, cfg0, detach_errno = 0;
579b006f 480
22a1b5c1
TJ
481 if (ftdi == NULL)
482 ftdi_error_return(-8, "ftdi context invalid");
483
579b006f
JZ
484 if (libusb_open(dev, &ftdi->usb_dev) < 0)
485 ftdi_error_return(-4, "libusb_open() failed");
486
487 if (libusb_get_device_descriptor(dev, &desc) < 0)
488 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
489
490 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
491 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
492 cfg0 = config0->bConfigurationValue;
493 libusb_free_config_descriptor (config0);
d2f10023 494
22592e17 495 // Try to detach ftdi_sio kernel module.
22592e17
TJ
496 //
497 // The return code is kept in a separate variable and only parsed
498 // if usb_set_configuration() or usb_claim_interface() fails as the
499 // detach operation might be denied and everything still works fine.
500 // Likely scenario is a static ftdi_sio kernel module.
43aee24f
UB
501 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
502 detach_errno = errno;
d2f10023 503
579b006f
JZ
504 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
505 ftdi_error_return(-12, "libusb_get_configuration () failed");
b57aedfd
GE
506 // set configuration (needed especially for windows)
507 // tolerate EBUSY: one device with one configuration, but two interfaces
508 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 509 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 510 {
579b006f 511 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 512 {
a56ba2bd 513 ftdi_usb_close_internal (ftdi);
43aee24f
UB
514 if(detach_errno == EPERM)
515 {
516 ftdi_error_return(-8, "inappropriate permissions on device!");
517 }
518 else
519 {
c16b162d 520 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
43aee24f 521 }
23b1798d
TJ
522 }
523 }
524
579b006f 525 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 526 {
f3f81007 527 ftdi_usb_close_internal (ftdi);
43aee24f
UB
528 if(detach_errno == EPERM)
529 {
530 ftdi_error_return(-8, "inappropriate permissions on device!");
531 }
532 else
533 {
c16b162d 534 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
43aee24f 535 }
7b18bef6
TJ
536 }
537
22d12cda
TJ
538 if (ftdi_usb_reset (ftdi) != 0)
539 {
f3f81007 540 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
541 ftdi_error_return(-6, "ftdi_usb_reset failed");
542 }
543
7b18bef6
TJ
544 // Try to guess chip type
545 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f
JZ
546 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
547 && desc.iSerialNumber == 0))
7b18bef6 548 ftdi->type = TYPE_BM;
579b006f 549 else if (desc.bcdDevice == 0x200)
7b18bef6 550 ftdi->type = TYPE_AM;
579b006f 551 else if (desc.bcdDevice == 0x500)
7b18bef6 552 ftdi->type = TYPE_2232C;
579b006f 553 else if (desc.bcdDevice == 0x600)
cb6250fa 554 ftdi->type = TYPE_R;
579b006f 555 else if (desc.bcdDevice == 0x700)
0beb9686 556 ftdi->type = TYPE_2232H;
579b006f 557 else if (desc.bcdDevice == 0x800)
0beb9686 558 ftdi->type = TYPE_4232H;
7b18bef6 559
f9d69895
AH
560 // Set default interface on dual/quad type chips
561 switch(ftdi->type)
562 {
563 case TYPE_2232C:
564 case TYPE_2232H:
565 case TYPE_4232H:
566 if (!ftdi->index)
567 ftdi->index = INTERFACE_A;
568 break;
569 default:
570 break;
571 }
572
e2f12a4f
TJ
573 // Determine maximum packet size
574 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
575
ef6f4838
TE
576 if (ftdi_set_baudrate (ftdi, 9600) != 0)
577 {
578 ftdi_usb_close_internal (ftdi);
579 ftdi_error_return(-7, "set baudrate failed");
580 }
581
7b18bef6
TJ
582 ftdi_error_return(0, "all fine");
583}
584
1941414d
TJ
585/**
586 Opens the first device with a given vendor and product ids.
587
588 \param ftdi pointer to ftdi_context
589 \param vendor Vendor ID
590 \param product Product ID
591
9bec2387 592 \retval same as ftdi_usb_open_desc()
1941414d 593*/
edb82cbf
TJ
594int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
595{
596 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
597}
598
1941414d
TJ
599/**
600 Opens the first device with a given, vendor id, product id,
601 description and serial.
602
603 \param ftdi pointer to ftdi_context
604 \param vendor Vendor ID
605 \param product Product ID
606 \param description Description to search for. Use NULL if not needed.
607 \param serial Serial to search for. Use NULL if not needed.
608
609 \retval 0: all fine
1941414d
TJ
610 \retval -3: usb device not found
611 \retval -4: unable to open device
612 \retval -5: unable to claim device
613 \retval -6: reset failed
614 \retval -7: set baudrate failed
615 \retval -8: get product description failed
616 \retval -9: get serial number failed
579b006f
JZ
617 \retval -11: libusb_init() failed
618 \retval -12: libusb_get_device_list() failed
619 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 620*/
04e1ea0a 621int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
622 const char* description, const char* serial)
623{
5ebbdab9
GE
624 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
625}
626
627/**
628 Opens the index-th device with a given, vendor id, product id,
629 description and serial.
630
631 \param ftdi pointer to ftdi_context
632 \param vendor Vendor ID
633 \param product Product ID
634 \param description Description to search for. Use NULL if not needed.
635 \param serial Serial to search for. Use NULL if not needed.
636 \param index Number of matching device to open if there are more than one, starts with 0.
637
638 \retval 0: all fine
639 \retval -1: usb_find_busses() failed
640 \retval -2: usb_find_devices() failed
641 \retval -3: usb device not found
642 \retval -4: unable to open device
643 \retval -5: unable to claim device
644 \retval -6: reset failed
645 \retval -7: set baudrate failed
646 \retval -8: get product description failed
647 \retval -9: get serial number failed
648 \retval -10: unable to close device
22a1b5c1 649 \retval -11: ftdi context invalid
5ebbdab9
GE
650*/
651int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
652 const char* description, const char* serial, unsigned int index)
653{
579b006f
JZ
654 libusb_device *dev;
655 libusb_device **devs;
c3d95b87 656 char string[256];
579b006f 657 int i = 0;
98452d97 658
02212d8e 659 if (libusb_init(&ftdi->usb_ctx) < 0)
579b006f 660 ftdi_error_return(-11, "libusb_init() failed");
98452d97 661
22a1b5c1
TJ
662 if (ftdi == NULL)
663 ftdi_error_return(-11, "ftdi context invalid");
664
02212d8e 665 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
99650502
UB
666 ftdi_error_return(-12, "libusb_get_device_list() failed");
667
579b006f 668 while ((dev = devs[i++]) != NULL)
22d12cda 669 {
579b006f 670 struct libusb_device_descriptor desc;
99650502 671 int res;
579b006f
JZ
672
673 if (libusb_get_device_descriptor(dev, &desc) < 0)
99650502 674 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
579b006f
JZ
675
676 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 677 {
579b006f 678 if (libusb_open(dev, &ftdi->usb_dev) < 0)
99650502 679 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
c3d95b87 680
579b006f
JZ
681 if (description != NULL)
682 {
683 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 684 {
579b006f 685 libusb_close (ftdi->usb_dev);
99650502 686 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
a8f46ddc 687 }
579b006f 688 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 689 {
579b006f
JZ
690 libusb_close (ftdi->usb_dev);
691 continue;
a8f46ddc 692 }
579b006f
JZ
693 }
694 if (serial != NULL)
695 {
696 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
697 {
698 ftdi_usb_close_internal (ftdi);
99650502 699 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
579b006f
JZ
700 }
701 if (strncmp(string, serial, sizeof(string)) != 0)
702 {
703 ftdi_usb_close_internal (ftdi);
704 continue;
705 }
706 }
98452d97 707
579b006f 708 ftdi_usb_close_internal (ftdi);
d2f10023 709
5ebbdab9
GE
710 if (index > 0)
711 {
712 index--;
713 continue;
714 }
715
99650502
UB
716 res = ftdi_usb_open_dev(ftdi, dev);
717 libusb_free_device_list(devs,1);
718 return res;
98452d97 719 }
98452d97 720 }
a3da1d95 721
98452d97 722 // device not found
99650502 723 ftdi_error_return_free_device_list(-3, "device not found", devs);
a3da1d95
GE
724}
725
1941414d 726/**
5ebbdab9
GE
727 Opens the ftdi-device described by a description-string.
728 Intended to be used for parsing a device-description given as commandline argument.
729
730 \param ftdi pointer to ftdi_context
731 \param description NULL-terminated description-string, using this format:
732 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
733 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
734 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
735 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
736
737 \note The description format may be extended in later versions.
738
739 \retval 0: all fine
579b006f
JZ
740 \retval -1: libusb_init() failed
741 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
742 \retval -3: usb device not found
743 \retval -4: unable to open device
744 \retval -5: unable to claim device
745 \retval -6: reset failed
746 \retval -7: set baudrate failed
747 \retval -8: get product description failed
748 \retval -9: get serial number failed
749 \retval -10: unable to close device
750 \retval -11: illegal description format
22a1b5c1 751 \retval -12: ftdi context invalid
5ebbdab9
GE
752*/
753int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
754{
22a1b5c1
TJ
755 if (ftdi == NULL)
756 ftdi_error_return(-12, "ftdi context invalid");
757
5ebbdab9
GE
758 if (description[0] == 0 || description[1] != ':')
759 ftdi_error_return(-11, "illegal description format");
760
761 if (description[0] == 'd')
762 {
579b006f
JZ
763 libusb_device *dev;
764 libusb_device **devs;
765 unsigned int bus_number, device_address;
766 int i = 0;
767
02212d8e 768 if (libusb_init (&ftdi->usb_ctx) < 0)
579b006f 769 ftdi_error_return(-1, "libusb_init() failed");
5ebbdab9 770
02212d8e 771 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 772 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 773
579b006f
JZ
774 /* XXX: This doesn't handle symlinks/odd paths/etc... */
775 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
99650502 776 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
5ebbdab9 777
579b006f 778 while ((dev = devs[i++]) != NULL)
5ebbdab9 779 {
99650502 780 int ret;
579b006f
JZ
781 if (bus_number == libusb_get_bus_number (dev)
782 && device_address == libusb_get_device_address (dev))
99650502
UB
783 {
784 ret = ftdi_usb_open_dev(ftdi, dev);
785 libusb_free_device_list(devs,1);
786 return ret;
787 }
5ebbdab9
GE
788 }
789
790 // device not found
99650502 791 ftdi_error_return_free_device_list(-3, "device not found", devs);
5ebbdab9
GE
792 }
793 else if (description[0] == 'i' || description[0] == 's')
794 {
795 unsigned int vendor;
796 unsigned int product;
797 unsigned int index=0;
0e6cf62b 798 const char *serial=NULL;
5ebbdab9
GE
799 const char *startp, *endp;
800
801 errno=0;
802 startp=description+2;
803 vendor=strtoul((char*)startp,(char**)&endp,0);
804 if (*endp != ':' || endp == startp || errno != 0)
805 ftdi_error_return(-11, "illegal description format");
806
807 startp=endp+1;
808 product=strtoul((char*)startp,(char**)&endp,0);
809 if (endp == startp || errno != 0)
810 ftdi_error_return(-11, "illegal description format");
811
812 if (description[0] == 'i' && *endp != 0)
813 {
814 /* optional index field in i-mode */
815 if (*endp != ':')
816 ftdi_error_return(-11, "illegal description format");
817
818 startp=endp+1;
819 index=strtoul((char*)startp,(char**)&endp,0);
820 if (*endp != 0 || endp == startp || errno != 0)
821 ftdi_error_return(-11, "illegal description format");
822 }
823 if (description[0] == 's')
824 {
825 if (*endp != ':')
826 ftdi_error_return(-11, "illegal description format");
827
828 /* rest of the description is the serial */
829 serial=endp+1;
830 }
831
832 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
833 }
834 else
835 {
836 ftdi_error_return(-11, "illegal description format");
837 }
838}
839
840/**
1941414d 841 Resets the ftdi device.
a3da1d95 842
1941414d
TJ
843 \param ftdi pointer to ftdi_context
844
845 \retval 0: all fine
846 \retval -1: FTDI reset failed
22a1b5c1 847 \retval -2: USB device unavailable
4837f98a 848*/
edb82cbf 849int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 850{
22a1b5c1
TJ
851 if (ftdi == NULL || ftdi->usb_dev == NULL)
852 ftdi_error_return(-2, "USB device unavailable");
853
579b006f
JZ
854 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
855 SIO_RESET_REQUEST, SIO_RESET_SIO,
856 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 857 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 858
545820ce 859 // Invalidate data in the readbuffer
bfcee05b
TJ
860 ftdi->readbuffer_offset = 0;
861 ftdi->readbuffer_remaining = 0;
862
a3da1d95
GE
863 return 0;
864}
865
1941414d 866/**
1189b11a 867 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
868
869 \param ftdi pointer to ftdi_context
4837f98a 870
1941414d 871 \retval 0: all fine
1189b11a 872 \retval -1: read buffer purge failed
22a1b5c1 873 \retval -2: USB device unavailable
4837f98a 874*/
1189b11a 875int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 876{
22a1b5c1
TJ
877 if (ftdi == NULL || ftdi->usb_dev == NULL)
878 ftdi_error_return(-2, "USB device unavailable");
879
579b006f
JZ
880 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
881 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
882 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
883 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
884
545820ce 885 // Invalidate data in the readbuffer
bfcee05b
TJ
886 ftdi->readbuffer_offset = 0;
887 ftdi->readbuffer_remaining = 0;
a60be878 888
1189b11a
TJ
889 return 0;
890}
891
892/**
893 Clears the write buffer on the chip.
894
895 \param ftdi pointer to ftdi_context
896
897 \retval 0: all fine
898 \retval -1: write buffer purge failed
22a1b5c1 899 \retval -2: USB device unavailable
1189b11a
TJ
900*/
901int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
902{
22a1b5c1
TJ
903 if (ftdi == NULL || ftdi->usb_dev == NULL)
904 ftdi_error_return(-2, "USB device unavailable");
905
579b006f
JZ
906 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
907 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
908 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
909 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
910
911 return 0;
912}
913
914/**
915 Clears the buffers on the chip and the internal read buffer.
916
917 \param ftdi pointer to ftdi_context
918
919 \retval 0: all fine
920 \retval -1: read buffer purge failed
921 \retval -2: write buffer purge failed
22a1b5c1 922 \retval -3: USB device unavailable
1189b11a
TJ
923*/
924int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
925{
926 int result;
927
22a1b5c1
TJ
928 if (ftdi == NULL || ftdi->usb_dev == NULL)
929 ftdi_error_return(-3, "USB device unavailable");
930
1189b11a 931 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 932 if (result < 0)
1189b11a
TJ
933 return -1;
934
935 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 936 if (result < 0)
1189b11a 937 return -2;
545820ce 938
a60be878
TJ
939 return 0;
940}
a3da1d95 941
f3f81007
TJ
942
943
1941414d
TJ
944/**
945 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
946
947 \param ftdi pointer to ftdi_context
948
949 \retval 0: all fine
950 \retval -1: usb_release failed
22a1b5c1 951 \retval -3: ftdi context invalid
a3da1d95 952*/
a8f46ddc
TJ
953int ftdi_usb_close(struct ftdi_context *ftdi)
954{
a3da1d95
GE
955 int rtn = 0;
956
22a1b5c1
TJ
957 if (ftdi == NULL)
958 ftdi_error_return(-3, "ftdi context invalid");
959
dff4fdb0 960 if (ftdi->usb_dev != NULL)
579b006f 961 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 962 rtn = -1;
98452d97 963
579b006f 964 ftdi_usb_close_internal (ftdi);
98452d97 965
a3da1d95
GE
966 return rtn;
967}
968
418aaa72 969/**
53ad271d
TJ
970 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
971 Function is only used internally
b5ec1820 972 \internal
53ad271d 973*/
0126d22e 974static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
a8f46ddc
TJ
975 unsigned short *value, unsigned short *index)
976{
53ad271d
TJ
977 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
978 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
979 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
980 int divisor, best_divisor, best_baud, best_baud_diff;
981 unsigned long encoded_divisor;
982 int i;
983
22d12cda
TJ
984 if (baudrate <= 0)
985 {
53ad271d
TJ
986 // Return error
987 return -1;
988 }
989
990 divisor = 24000000 / baudrate;
991
22d12cda
TJ
992 if (ftdi->type == TYPE_AM)
993 {
53ad271d
TJ
994 // Round down to supported fraction (AM only)
995 divisor -= am_adjust_dn[divisor & 7];
996 }
997
998 // Try this divisor and the one above it (because division rounds down)
999 best_divisor = 0;
1000 best_baud = 0;
1001 best_baud_diff = 0;
22d12cda
TJ
1002 for (i = 0; i < 2; i++)
1003 {
53ad271d
TJ
1004 int try_divisor = divisor + i;
1005 int baud_estimate;
1006 int baud_diff;
1007
1008 // Round up to supported divisor value
22d12cda
TJ
1009 if (try_divisor <= 8)
1010 {
53ad271d
TJ
1011 // Round up to minimum supported divisor
1012 try_divisor = 8;
22d12cda
TJ
1013 }
1014 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1015 {
53ad271d
TJ
1016 // BM doesn't support divisors 9 through 11 inclusive
1017 try_divisor = 12;
22d12cda
TJ
1018 }
1019 else if (divisor < 16)
1020 {
53ad271d
TJ
1021 // AM doesn't support divisors 9 through 15 inclusive
1022 try_divisor = 16;
22d12cda
TJ
1023 }
1024 else
1025 {
1026 if (ftdi->type == TYPE_AM)
1027 {
53ad271d
TJ
1028 // Round up to supported fraction (AM only)
1029 try_divisor += am_adjust_up[try_divisor & 7];
22d12cda
TJ
1030 if (try_divisor > 0x1FFF8)
1031 {
53ad271d
TJ
1032 // Round down to maximum supported divisor value (for AM)
1033 try_divisor = 0x1FFF8;
1034 }
22d12cda
TJ
1035 }
1036 else
1037 {
1038 if (try_divisor > 0x1FFFF)
1039 {
53ad271d
TJ
1040 // Round down to maximum supported divisor value (for BM)
1041 try_divisor = 0x1FFFF;
1042 }
1043 }
1044 }
1045 // Get estimated baud rate (to nearest integer)
1046 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1047 // Get absolute difference from requested baud rate
22d12cda
TJ
1048 if (baud_estimate < baudrate)
1049 {
53ad271d 1050 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
1051 }
1052 else
1053 {
53ad271d
TJ
1054 baud_diff = baud_estimate - baudrate;
1055 }
22d12cda
TJ
1056 if (i == 0 || baud_diff < best_baud_diff)
1057 {
53ad271d
TJ
1058 // Closest to requested baud rate so far
1059 best_divisor = try_divisor;
1060 best_baud = baud_estimate;
1061 best_baud_diff = baud_diff;
22d12cda
TJ
1062 if (baud_diff == 0)
1063 {
53ad271d
TJ
1064 // Spot on! No point trying
1065 break;
1066 }
1067 }
1068 }
1069 // Encode the best divisor value
1070 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1071 // Deal with special cases for encoded value
22d12cda
TJ
1072 if (encoded_divisor == 1)
1073 {
4837f98a 1074 encoded_divisor = 0; // 3000000 baud
22d12cda
TJ
1075 }
1076 else if (encoded_divisor == 0x4001)
1077 {
4837f98a 1078 encoded_divisor = 1; // 2000000 baud (BM only)
53ad271d
TJ
1079 }
1080 // Split into "value" and "index" values
1081 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1416eb14 1082 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
22d12cda 1083 {
0126d22e
TJ
1084 *index = (unsigned short)(encoded_divisor >> 8);
1085 *index &= 0xFF00;
a9c57c05 1086 *index |= ftdi->index;
0126d22e
TJ
1087 }
1088 else
1089 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 1090
53ad271d
TJ
1091 // Return the nearest baud rate
1092 return best_baud;
1093}
1094
1941414d 1095/**
9bec2387 1096 Sets the chip baud rate
1941414d
TJ
1097
1098 \param ftdi pointer to ftdi_context
9bec2387 1099 \param baudrate baud rate to set
1941414d
TJ
1100
1101 \retval 0: all fine
1102 \retval -1: invalid baudrate
1103 \retval -2: setting baudrate failed
22a1b5c1 1104 \retval -3: USB device unavailable
a3da1d95 1105*/
a8f46ddc
TJ
1106int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1107{
53ad271d
TJ
1108 unsigned short value, index;
1109 int actual_baudrate;
a3da1d95 1110
22a1b5c1
TJ
1111 if (ftdi == NULL || ftdi->usb_dev == NULL)
1112 ftdi_error_return(-3, "USB device unavailable");
1113
22d12cda
TJ
1114 if (ftdi->bitbang_enabled)
1115 {
a3da1d95
GE
1116 baudrate = baudrate*4;
1117 }
1118
25707904 1119 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1120 if (actual_baudrate <= 0)
1121 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1122
53ad271d
TJ
1123 // Check within tolerance (about 5%)
1124 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1125 || ((actual_baudrate < baudrate)
1126 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1127 : (baudrate * 21 < actual_baudrate * 20)))
1128 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1129
579b006f
JZ
1130 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1131 SIO_SET_BAUDRATE_REQUEST, value,
1132 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1133 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1134
1135 ftdi->baudrate = baudrate;
1136 return 0;
1137}
1138
1941414d 1139/**
6c32e222
TJ
1140 Set (RS232) line characteristics.
1141 The break type can only be set via ftdi_set_line_property2()
1142 and defaults to "off".
4837f98a 1143
1941414d
TJ
1144 \param ftdi pointer to ftdi_context
1145 \param bits Number of bits
1146 \param sbit Number of stop bits
1147 \param parity Parity mode
1148
1149 \retval 0: all fine
1150 \retval -1: Setting line property failed
2f73e59f
TJ
1151*/
1152int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1153 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1154{
6c32e222
TJ
1155 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1156}
1157
1158/**
1159 Set (RS232) line characteristics
1160
1161 \param ftdi pointer to ftdi_context
1162 \param bits Number of bits
1163 \param sbit Number of stop bits
1164 \param parity Parity mode
1165 \param break_type Break type
1166
1167 \retval 0: all fine
1168 \retval -1: Setting line property failed
22a1b5c1 1169 \retval -2: USB device unavailable
6c32e222
TJ
1170*/
1171int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1172 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1173 enum ftdi_break_type break_type)
6c32e222 1174{
2f73e59f
TJ
1175 unsigned short value = bits;
1176
22a1b5c1
TJ
1177 if (ftdi == NULL || ftdi->usb_dev == NULL)
1178 ftdi_error_return(-2, "USB device unavailable");
1179
22d12cda
TJ
1180 switch (parity)
1181 {
1182 case NONE:
1183 value |= (0x00 << 8);
1184 break;
1185 case ODD:
1186 value |= (0x01 << 8);
1187 break;
1188 case EVEN:
1189 value |= (0x02 << 8);
1190 break;
1191 case MARK:
1192 value |= (0x03 << 8);
1193 break;
1194 case SPACE:
1195 value |= (0x04 << 8);
1196 break;
2f73e59f 1197 }
d2f10023 1198
22d12cda
TJ
1199 switch (sbit)
1200 {
1201 case STOP_BIT_1:
1202 value |= (0x00 << 11);
1203 break;
1204 case STOP_BIT_15:
1205 value |= (0x01 << 11);
1206 break;
1207 case STOP_BIT_2:
1208 value |= (0x02 << 11);
1209 break;
2f73e59f 1210 }
d2f10023 1211
22d12cda
TJ
1212 switch (break_type)
1213 {
1214 case BREAK_OFF:
1215 value |= (0x00 << 14);
1216 break;
1217 case BREAK_ON:
1218 value |= (0x01 << 14);
1219 break;
6c32e222
TJ
1220 }
1221
579b006f
JZ
1222 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1223 SIO_SET_DATA_REQUEST, value,
1224 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1225 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1226
2f73e59f
TJ
1227 return 0;
1228}
a3da1d95 1229
1941414d
TJ
1230/**
1231 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1232
1233 \param ftdi pointer to ftdi_context
1234 \param buf Buffer with the data
1235 \param size Size of the buffer
1236
22a1b5c1 1237 \retval -666: USB device unavailable
1941414d
TJ
1238 \retval <0: error code from usb_bulk_write()
1239 \retval >0: number of bytes written
1240*/
a8f46ddc
TJ
1241int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1242{
a3da1d95 1243 int offset = 0;
579b006f 1244 int actual_length;
c3d95b87 1245
22a1b5c1
TJ
1246 if (ftdi == NULL || ftdi->usb_dev == NULL)
1247 ftdi_error_return(-666, "USB device unavailable");
1248
22d12cda
TJ
1249 while (offset < size)
1250 {
948f9ada 1251 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1252
1253 if (offset+write_size > size)
1254 write_size = size-offset;
1255
579b006f
JZ
1256 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1257 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1258
579b006f 1259 offset += actual_length;
a3da1d95
GE
1260 }
1261
579b006f 1262 return offset;
a3da1d95
GE
1263}
1264
579b006f 1265static void ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1266{
579b006f
JZ
1267 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1268 struct ftdi_context *ftdi = tc->ftdi;
1269 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1270
b1139150 1271 packet_size = ftdi->max_packet_size;
579b006f
JZ
1272
1273 actual_length = transfer->actual_length;
1274
1275 if (actual_length > 2)
1276 {
1277 // skip FTDI status bytes.
1278 // Maybe stored in the future to enable modem use
1279 num_of_chunks = actual_length / packet_size;
1280 chunk_remains = actual_length % packet_size;
1281 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1282
1283 ftdi->readbuffer_offset += 2;
1284 actual_length -= 2;
1285
1286 if (actual_length > packet_size - 2)
1287 {
1288 for (i = 1; i < num_of_chunks; i++)
1289 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1290 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1291 packet_size - 2);
1292 if (chunk_remains > 2)
1293 {
1294 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1295 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1296 chunk_remains-2);
1297 actual_length -= 2*num_of_chunks;
1298 }
1299 else
1300 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1301 }
1302
1303 if (actual_length > 0)
1304 {
1305 // data still fits in buf?
1306 if (tc->offset + actual_length <= tc->size)
1307 {
1308 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1309 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1310 tc->offset += actual_length;
1311
1312 ftdi->readbuffer_offset = 0;
1313 ftdi->readbuffer_remaining = 0;
1314
1315 /* Did we read exactly the right amount of bytes? */
1316 if (tc->offset == tc->size)
1317 {
1318 //printf("read_data exact rem %d offset %d\n",
1319 //ftdi->readbuffer_remaining, offset);
1320 tc->completed = 1;
1321 return;
1322 }
1323 }
1324 else
1325 {
1326 // only copy part of the data or size <= readbuffer_chunksize
1327 int part_size = tc->size - tc->offset;
1328 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1329 tc->offset += part_size;
1330
1331 ftdi->readbuffer_offset += part_size;
1332 ftdi->readbuffer_remaining = actual_length - part_size;
1333
1334 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1335 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1336 tc->completed = 1;
1337 return;
1338 }
1339 }
1340 }
1341 ret = libusb_submit_transfer (transfer);
1342 if (ret < 0)
1343 tc->completed = 1;
1344}
1345
1346
1347static void ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1348{
579b006f
JZ
1349 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1350 struct ftdi_context *ftdi = tc->ftdi;
90ef163e
YSL
1351
1352 tc->offset += transfer->actual_length;
1353
579b006f 1354 if (tc->offset == tc->size)
22d12cda 1355 {
579b006f 1356 tc->completed = 1;
7cc9950e 1357 }
579b006f
JZ
1358 else
1359 {
1360 int write_size = ftdi->writebuffer_chunksize;
1361 int ret;
7cc9950e 1362
579b006f
JZ
1363 if (tc->offset + write_size > tc->size)
1364 write_size = tc->size - tc->offset;
1365
1366 transfer->length = write_size;
1367 transfer->buffer = tc->buf + tc->offset;
1368 ret = libusb_submit_transfer (transfer);
1369 if (ret < 0)
1370 tc->completed = 1;
1371 }
7cc9950e
GE
1372}
1373
579b006f 1374
84f85aaa 1375/**
579b006f
JZ
1376 Writes data to the chip. Does not wait for completion of the transfer
1377 nor does it make sure that the transfer was successful.
1378
249888c8 1379 Use libusb 1.0 asynchronous API.
84f85aaa
GE
1380
1381 \param ftdi pointer to ftdi_context
579b006f
JZ
1382 \param buf Buffer with the data
1383 \param size Size of the buffer
84f85aaa 1384
579b006f
JZ
1385 \retval NULL: Some error happens when submit transfer
1386 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1387*/
579b006f
JZ
1388
1389struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1390{
579b006f
JZ
1391 struct ftdi_transfer_control *tc;
1392 struct libusb_transfer *transfer = libusb_alloc_transfer(0);
1393 int write_size, ret;
22d12cda 1394
22a1b5c1
TJ
1395 if (ftdi == NULL || ftdi->usb_dev == NULL)
1396 {
1397 libusb_free_transfer(transfer);
1398 return NULL;
1399 }
1400
579b006f 1401 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
22d12cda 1402
579b006f
JZ
1403 if (!tc || !transfer)
1404 return NULL;
22d12cda 1405
579b006f
JZ
1406 tc->ftdi = ftdi;
1407 tc->completed = 0;
1408 tc->buf = buf;
1409 tc->size = size;
1410 tc->offset = 0;
7cc9950e 1411
579b006f
JZ
1412 if (size < ftdi->writebuffer_chunksize)
1413 write_size = size;
1414 else
1415 write_size = ftdi->writebuffer_chunksize;
22d12cda 1416
90ef163e
YSL
1417 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1418 write_size, ftdi_write_data_cb, tc,
1419 ftdi->usb_write_timeout);
579b006f 1420 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1421
579b006f
JZ
1422 ret = libusb_submit_transfer(transfer);
1423 if (ret < 0)
1424 {
1425 libusb_free_transfer(transfer);
1426 tc->completed = 1;
1427 tc->transfer = NULL;
1428 return NULL;
7cc9950e 1429 }
579b006f
JZ
1430 tc->transfer = transfer;
1431
1432 return tc;
7cc9950e
GE
1433}
1434
1435/**
579b006f
JZ
1436 Reads data from the chip. Does not wait for completion of the transfer
1437 nor does it make sure that the transfer was successful.
1438
249888c8 1439 Use libusb 1.0 asynchronous API.
7cc9950e
GE
1440
1441 \param ftdi pointer to ftdi_context
579b006f
JZ
1442 \param buf Buffer with the data
1443 \param size Size of the buffer
4c9e3812 1444
579b006f
JZ
1445 \retval NULL: Some error happens when submit transfer
1446 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1447*/
579b006f
JZ
1448
1449struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1450{
579b006f
JZ
1451 struct ftdi_transfer_control *tc;
1452 struct libusb_transfer *transfer;
1453 int ret;
22d12cda 1454
22a1b5c1
TJ
1455 if (ftdi == NULL || ftdi->usb_dev == NULL)
1456 return NULL;
1457
579b006f
JZ
1458 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1459 if (!tc)
1460 return NULL;
1461
1462 tc->ftdi = ftdi;
1463 tc->buf = buf;
1464 tc->size = size;
1465
1466 if (size <= ftdi->readbuffer_remaining)
7cc9950e 1467 {
579b006f 1468 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1469
579b006f
JZ
1470 // Fix offsets
1471 ftdi->readbuffer_remaining -= size;
1472 ftdi->readbuffer_offset += size;
7cc9950e 1473
579b006f 1474 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1475
579b006f
JZ
1476 tc->completed = 1;
1477 tc->offset = size;
1478 tc->transfer = NULL;
1479 return tc;
1480 }
4c9e3812 1481
579b006f
JZ
1482 tc->completed = 0;
1483 if (ftdi->readbuffer_remaining != 0)
1484 {
1485 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1486
579b006f
JZ
1487 tc->offset = ftdi->readbuffer_remaining;
1488 }
1489 else
1490 tc->offset = 0;
22d12cda 1491
579b006f
JZ
1492 transfer = libusb_alloc_transfer(0);
1493 if (!transfer)
1494 {
1495 free (tc);
1496 return NULL;
1497 }
22d12cda 1498
579b006f
JZ
1499 ftdi->readbuffer_remaining = 0;
1500 ftdi->readbuffer_offset = 0;
1501
1502 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1503 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1504
1505 ret = libusb_submit_transfer(transfer);
1506 if (ret < 0)
1507 {
1508 libusb_free_transfer(transfer);
1509 free (tc);
1510 return NULL;
22d12cda 1511 }
579b006f
JZ
1512 tc->transfer = transfer;
1513
1514 return tc;
4c9e3812
GE
1515}
1516
1517/**
579b006f 1518 Wait for completion of the transfer.
4c9e3812 1519
249888c8 1520 Use libusb 1.0 asynchronous API.
4c9e3812 1521
579b006f 1522 \param tc pointer to ftdi_transfer_control
4c9e3812 1523
579b006f
JZ
1524 \retval < 0: Some error happens
1525 \retval >= 0: Data size transferred
4c9e3812 1526*/
579b006f
JZ
1527
1528int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1529{
1530 int ret;
4c9e3812 1531
579b006f 1532 while (!tc->completed)
22d12cda 1533 {
29b1dfd9 1534 ret = libusb_handle_events(tc->ftdi->usb_ctx);
4c9e3812 1535 if (ret < 0)
579b006f
JZ
1536 {
1537 if (ret == LIBUSB_ERROR_INTERRUPTED)
1538 continue;
1539 libusb_cancel_transfer(tc->transfer);
1540 while (!tc->completed)
29b1dfd9 1541 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
579b006f
JZ
1542 break;
1543 libusb_free_transfer(tc->transfer);
1544 free (tc);
579b006f
JZ
1545 return ret;
1546 }
4c9e3812
GE
1547 }
1548
90ef163e
YSL
1549 ret = tc->offset;
1550 /**
1551 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
ef15fab5 1552 * at ftdi_read_data_submit(). Therefore, we need to check it here.
90ef163e 1553 **/
ef15fab5
TJ
1554 if (tc->transfer)
1555 {
1556 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1557 ret = -1;
1558 libusb_free_transfer(tc->transfer);
90ef163e 1559 }
579b006f
JZ
1560 free(tc);
1561 return ret;
4c9e3812 1562}
579b006f 1563
1941414d
TJ
1564/**
1565 Configure write buffer chunk size.
1566 Default is 4096.
1567
1568 \param ftdi pointer to ftdi_context
1569 \param chunksize Chunk size
a3da1d95 1570
1941414d 1571 \retval 0: all fine
22a1b5c1 1572 \retval -1: ftdi context invalid
1941414d 1573*/
a8f46ddc
TJ
1574int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1575{
22a1b5c1
TJ
1576 if (ftdi == NULL)
1577 ftdi_error_return(-1, "ftdi context invalid");
1578
948f9ada
TJ
1579 ftdi->writebuffer_chunksize = chunksize;
1580 return 0;
1581}
1582
1941414d
TJ
1583/**
1584 Get write buffer chunk size.
1585
1586 \param ftdi pointer to ftdi_context
1587 \param chunksize Pointer to store chunk size in
948f9ada 1588
1941414d 1589 \retval 0: all fine
22a1b5c1 1590 \retval -1: ftdi context invalid
1941414d 1591*/
a8f46ddc
TJ
1592int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1593{
22a1b5c1
TJ
1594 if (ftdi == NULL)
1595 ftdi_error_return(-1, "ftdi context invalid");
1596
948f9ada
TJ
1597 *chunksize = ftdi->writebuffer_chunksize;
1598 return 0;
1599}
cbabb7d3 1600
1941414d
TJ
1601/**
1602 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1603
1604 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1605
1941414d
TJ
1606 \param ftdi pointer to ftdi_context
1607 \param buf Buffer to store data in
1608 \param size Size of the buffer
1609
22a1b5c1 1610 \retval -666: USB device unavailable
579b006f 1611 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 1612 \retval 0: no data was available
1941414d
TJ
1613 \retval >0: number of bytes read
1614
1941414d 1615*/
a8f46ddc
TJ
1616int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1617{
579b006f 1618 int offset = 0, ret, i, num_of_chunks, chunk_remains;
e2f12a4f 1619 int packet_size = ftdi->max_packet_size;
579b006f 1620 int actual_length = 1;
f2f00cb5 1621
22a1b5c1
TJ
1622 if (ftdi == NULL || ftdi->usb_dev == NULL)
1623 ftdi_error_return(-666, "USB device unavailable");
1624
e2f12a4f
TJ
1625 // Packet size sanity check (avoid division by zero)
1626 if (packet_size == 0)
1627 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 1628
948f9ada 1629 // everything we want is still in the readbuffer?
22d12cda
TJ
1630 if (size <= ftdi->readbuffer_remaining)
1631 {
d9f0cce7
TJ
1632 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1633
1634 // Fix offsets
1635 ftdi->readbuffer_remaining -= size;
1636 ftdi->readbuffer_offset += size;
1637
545820ce 1638 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1639
1640 return size;
979a145c 1641 }
948f9ada 1642 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
1643 if (ftdi->readbuffer_remaining != 0)
1644 {
d9f0cce7 1645 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1646
d9f0cce7
TJ
1647 // Fix offset
1648 offset += ftdi->readbuffer_remaining;
948f9ada 1649 }
948f9ada 1650 // do the actual USB read
579b006f 1651 while (offset < size && actual_length > 0)
22d12cda 1652 {
d9f0cce7
TJ
1653 ftdi->readbuffer_remaining = 0;
1654 ftdi->readbuffer_offset = 0;
98452d97 1655 /* returns how much received */
579b006f 1656 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
1657 if (ret < 0)
1658 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1659
579b006f 1660 if (actual_length > 2)
22d12cda 1661 {
d9f0cce7
TJ
1662 // skip FTDI status bytes.
1663 // Maybe stored in the future to enable modem use
579b006f
JZ
1664 num_of_chunks = actual_length / packet_size;
1665 chunk_remains = actual_length % packet_size;
1666 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 1667
d9f0cce7 1668 ftdi->readbuffer_offset += 2;
579b006f 1669 actual_length -= 2;
1c733d33 1670
579b006f 1671 if (actual_length > packet_size - 2)
22d12cda 1672 {
1c733d33 1673 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
1674 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1675 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1676 packet_size - 2);
22d12cda
TJ
1677 if (chunk_remains > 2)
1678 {
f2f00cb5
DC
1679 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1680 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 1681 chunk_remains-2);
579b006f 1682 actual_length -= 2*num_of_chunks;
22d12cda
TJ
1683 }
1684 else
579b006f 1685 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 1686 }
22d12cda 1687 }
579b006f 1688 else if (actual_length <= 2)
22d12cda 1689 {
d9f0cce7
TJ
1690 // no more data to read?
1691 return offset;
1692 }
579b006f 1693 if (actual_length > 0)
22d12cda 1694 {
d9f0cce7 1695 // data still fits in buf?
579b006f 1696 if (offset+actual_length <= size)
22d12cda 1697 {
579b006f 1698 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 1699 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 1700 offset += actual_length;
d9f0cce7 1701
53ad271d 1702 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1703 if (offset == size)
c4446c36
TJ
1704 //printf("read_data exact rem %d offset %d\n",
1705 //ftdi->readbuffer_remaining, offset);
d9f0cce7 1706 return offset;
22d12cda
TJ
1707 }
1708 else
1709 {
d9f0cce7
TJ
1710 // only copy part of the data or size <= readbuffer_chunksize
1711 int part_size = size-offset;
1712 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1713
d9f0cce7 1714 ftdi->readbuffer_offset += part_size;
579b006f 1715 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
1716 offset += part_size;
1717
579b006f
JZ
1718 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1719 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1720
1721 return offset;
1722 }
1723 }
cbabb7d3 1724 }
948f9ada 1725 // never reached
29c4af7f 1726 return -127;
a3da1d95
GE
1727}
1728
1941414d
TJ
1729/**
1730 Configure read buffer chunk size.
1731 Default is 4096.
1732
1733 Automatically reallocates the buffer.
a3da1d95 1734
1941414d
TJ
1735 \param ftdi pointer to ftdi_context
1736 \param chunksize Chunk size
1737
1738 \retval 0: all fine
22a1b5c1 1739 \retval -1: ftdi context invalid
1941414d 1740*/
a8f46ddc
TJ
1741int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1742{
29c4af7f
TJ
1743 unsigned char *new_buf;
1744
22a1b5c1
TJ
1745 if (ftdi == NULL)
1746 ftdi_error_return(-1, "ftdi context invalid");
1747
948f9ada
TJ
1748 // Invalidate all remaining data
1749 ftdi->readbuffer_offset = 0;
1750 ftdi->readbuffer_remaining = 0;
8de6eea4
JZ
1751#ifdef __linux__
1752 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1753 which is defined in libusb-1.0. Otherwise, each USB read request will
2e685a1f 1754 be divided into multiple URBs. This will cause issues on Linux kernel
8de6eea4
JZ
1755 older than 2.6.32. */
1756 if (chunksize > 16384)
1757 chunksize = 16384;
1758#endif
948f9ada 1759
c3d95b87
TJ
1760 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1761 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1762
948f9ada
TJ
1763 ftdi->readbuffer = new_buf;
1764 ftdi->readbuffer_chunksize = chunksize;
1765
1766 return 0;
1767}
1768
1941414d
TJ
1769/**
1770 Get read buffer chunk size.
948f9ada 1771
1941414d
TJ
1772 \param ftdi pointer to ftdi_context
1773 \param chunksize Pointer to store chunk size in
1774
1775 \retval 0: all fine
22a1b5c1 1776 \retval -1: FTDI context invalid
1941414d 1777*/
a8f46ddc
TJ
1778int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1779{
22a1b5c1
TJ
1780 if (ftdi == NULL)
1781 ftdi_error_return(-1, "FTDI context invalid");
1782
948f9ada
TJ
1783 *chunksize = ftdi->readbuffer_chunksize;
1784 return 0;
1785}
1786
1787
1941414d
TJ
1788/**
1789 Enable bitbang mode.
948f9ada 1790
fd282db3 1791 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1941414d
TJ
1792
1793 \param ftdi pointer to ftdi_context
1794 \param bitmask Bitmask to configure lines.
1795 HIGH/ON value configures a line as output.
1796
1797 \retval 0: all fine
1798 \retval -1: can't enable bitbang mode
22a1b5c1 1799 \retval -2: USB device unavailable
1941414d 1800*/
a8f46ddc
TJ
1801int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1802{
a3da1d95
GE
1803 unsigned short usb_val;
1804
22a1b5c1
TJ
1805 if (ftdi == NULL || ftdi->usb_dev == NULL)
1806 ftdi_error_return(-2, "USB device unavailable");
1807
d9f0cce7 1808 usb_val = bitmask; // low byte: bitmask
3119537f
TJ
1809 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1810 usb_val |= (ftdi->bitbang_mode << 8);
1811
579b006f
JZ
1812 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1813 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1814 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1815 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1816
a3da1d95
GE
1817 ftdi->bitbang_enabled = 1;
1818 return 0;
1819}
1820
1941414d
TJ
1821/**
1822 Disable bitbang mode.
a3da1d95 1823
1941414d
TJ
1824 \param ftdi pointer to ftdi_context
1825
1826 \retval 0: all fine
1827 \retval -1: can't disable bitbang mode
22a1b5c1 1828 \retval -2: USB device unavailable
1941414d 1829*/
a8f46ddc
TJ
1830int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1831{
22a1b5c1
TJ
1832 if (ftdi == NULL || ftdi->usb_dev == NULL)
1833 ftdi_error_return(-2, "USB device unavailable");
1834
579b006f 1835 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1836 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1837
1838 ftdi->bitbang_enabled = 0;
1839 return 0;
1840}
1841
1941414d 1842/**
418aaa72 1843 Enable/disable bitbang modes.
a3da1d95 1844
1941414d
TJ
1845 \param ftdi pointer to ftdi_context
1846 \param bitmask Bitmask to configure lines.
1847 HIGH/ON value configures a line as output.
fd282db3 1848 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
1849
1850 \retval 0: all fine
1851 \retval -1: can't enable bitbang mode
22a1b5c1 1852 \retval -2: USB device unavailable
1941414d 1853*/
c4446c36
TJ
1854int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1855{
1856 unsigned short usb_val;
1857
22a1b5c1
TJ
1858 if (ftdi == NULL || ftdi->usb_dev == NULL)
1859 ftdi_error_return(-2, "USB device unavailable");
1860
c4446c36
TJ
1861 usb_val = bitmask; // low byte: bitmask
1862 usb_val |= (mode << 8);
579b006f
JZ
1863 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1864 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
c4446c36
TJ
1865
1866 ftdi->bitbang_mode = mode;
418aaa72 1867 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
c4446c36
TJ
1868 return 0;
1869}
1870
1941414d 1871/**
418aaa72 1872 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
1873
1874 \param ftdi pointer to ftdi_context
1875 \param pins Pointer to store pins into
1876
1877 \retval 0: all fine
1878 \retval -1: read pins failed
22a1b5c1 1879 \retval -2: USB device unavailable
1941414d 1880*/
a8f46ddc
TJ
1881int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1882{
22a1b5c1
TJ
1883 if (ftdi == NULL || ftdi->usb_dev == NULL)
1884 ftdi_error_return(-2, "USB device unavailable");
1885
579b006f 1886 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1887 ftdi_error_return(-1, "read pins failed");
a3da1d95 1888
a3da1d95
GE
1889 return 0;
1890}
1891
1941414d
TJ
1892/**
1893 Set latency timer
1894
1895 The FTDI chip keeps data in the internal buffer for a specific
1896 amount of time if the buffer is not full yet to decrease
1897 load on the usb bus.
a3da1d95 1898
1941414d
TJ
1899 \param ftdi pointer to ftdi_context
1900 \param latency Value between 1 and 255
1901
1902 \retval 0: all fine
1903 \retval -1: latency out of range
1904 \retval -2: unable to set latency timer
22a1b5c1 1905 \retval -3: USB device unavailable
1941414d 1906*/
a8f46ddc
TJ
1907int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1908{
a3da1d95
GE
1909 unsigned short usb_val;
1910
c3d95b87
TJ
1911 if (latency < 1)
1912 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 1913
22a1b5c1
TJ
1914 if (ftdi == NULL || ftdi->usb_dev == NULL)
1915 ftdi_error_return(-3, "USB device unavailable");
1916
d79d2e68 1917 usb_val = latency;
579b006f 1918 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1919 ftdi_error_return(-2, "unable to set latency timer");
1920
a3da1d95
GE
1921 return 0;
1922}
1923
1941414d
TJ
1924/**
1925 Get latency timer
a3da1d95 1926
1941414d
TJ
1927 \param ftdi pointer to ftdi_context
1928 \param latency Pointer to store latency value in
1929
1930 \retval 0: all fine
1931 \retval -1: unable to get latency timer
22a1b5c1 1932 \retval -2: USB device unavailable
1941414d 1933*/
a8f46ddc
TJ
1934int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1935{
a3da1d95 1936 unsigned short usb_val;
22a1b5c1
TJ
1937
1938 if (ftdi == NULL || ftdi->usb_dev == NULL)
1939 ftdi_error_return(-2, "USB device unavailable");
1940
579b006f 1941 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1942 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
1943
1944 *latency = (unsigned char)usb_val;
1945 return 0;
1946}
1947
1941414d 1948/**
1189b11a
TJ
1949 Poll modem status information
1950
1951 This function allows the retrieve the two status bytes of the device.
1952 The device sends these bytes also as a header for each read access
1953 where they are discarded by ftdi_read_data(). The chip generates
1954 the two stripped status bytes in the absence of data every 40 ms.
1955
1956 Layout of the first byte:
1957 - B0..B3 - must be 0
1958 - B4 Clear to send (CTS)
1959 0 = inactive
1960 1 = active
1961 - B5 Data set ready (DTS)
1962 0 = inactive
1963 1 = active
1964 - B6 Ring indicator (RI)
1965 0 = inactive
1966 1 = active
1967 - B7 Receive line signal detect (RLSD)
1968 0 = inactive
1969 1 = active
1970
1971 Layout of the second byte:
1972 - B0 Data ready (DR)
1973 - B1 Overrun error (OE)
1974 - B2 Parity error (PE)
1975 - B3 Framing error (FE)
1976 - B4 Break interrupt (BI)
1977 - B5 Transmitter holding register (THRE)
1978 - B6 Transmitter empty (TEMT)
1979 - B7 Error in RCVR FIFO
1980
1981 \param ftdi pointer to ftdi_context
1982 \param status Pointer to store status information in. Must be two bytes.
1983
1984 \retval 0: all fine
1985 \retval -1: unable to retrieve status information
22a1b5c1 1986 \retval -2: USB device unavailable
1189b11a
TJ
1987*/
1988int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1989{
1990 char usb_val[2];
1991
22a1b5c1
TJ
1992 if (ftdi == NULL || ftdi->usb_dev == NULL)
1993 ftdi_error_return(-2, "USB device unavailable");
1994
579b006f 1995 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
1996 ftdi_error_return(-1, "getting modem status failed");
1997
1998 *status = (usb_val[1] << 8) | usb_val[0];
1999
2000 return 0;
2001}
2002
a7fb8440
TJ
2003/**
2004 Set flowcontrol for ftdi chip
2005
2006 \param ftdi pointer to ftdi_context
22d12cda
TJ
2007 \param flowctrl flow control to use. should be
2008 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
a7fb8440
TJ
2009
2010 \retval 0: all fine
2011 \retval -1: set flow control failed
22a1b5c1 2012 \retval -2: USB device unavailable
a7fb8440
TJ
2013*/
2014int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2015{
22a1b5c1
TJ
2016 if (ftdi == NULL || ftdi->usb_dev == NULL)
2017 ftdi_error_return(-2, "USB device unavailable");
2018
579b006f
JZ
2019 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2020 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2021 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2022 ftdi_error_return(-1, "set flow control failed");
2023
2024 return 0;
2025}
2026
2027/**
2028 Set dtr line
2029
2030 \param ftdi pointer to ftdi_context
2031 \param state state to set line to (1 or 0)
2032
2033 \retval 0: all fine
2034 \retval -1: set dtr failed
22a1b5c1 2035 \retval -2: USB device unavailable
a7fb8440
TJ
2036*/
2037int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2038{
2039 unsigned short usb_val;
2040
22a1b5c1
TJ
2041 if (ftdi == NULL || ftdi->usb_dev == NULL)
2042 ftdi_error_return(-2, "USB device unavailable");
2043
a7fb8440
TJ
2044 if (state)
2045 usb_val = SIO_SET_DTR_HIGH;
2046 else
2047 usb_val = SIO_SET_DTR_LOW;
2048
579b006f
JZ
2049 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2050 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2051 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2052 ftdi_error_return(-1, "set dtr failed");
2053
2054 return 0;
2055}
2056
2057/**
2058 Set rts line
2059
2060 \param ftdi pointer to ftdi_context
2061 \param state state to set line to (1 or 0)
2062
2063 \retval 0: all fine
22a1b5c1
TJ
2064 \retval -1: set rts failed
2065 \retval -2: USB device unavailable
a7fb8440
TJ
2066*/
2067int ftdi_setrts(struct ftdi_context *ftdi, int state)
2068{
2069 unsigned short usb_val;
2070
22a1b5c1
TJ
2071 if (ftdi == NULL || ftdi->usb_dev == NULL)
2072 ftdi_error_return(-2, "USB device unavailable");
2073
a7fb8440
TJ
2074 if (state)
2075 usb_val = SIO_SET_RTS_HIGH;
2076 else
2077 usb_val = SIO_SET_RTS_LOW;
2078
579b006f
JZ
2079 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2080 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2081 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2082 ftdi_error_return(-1, "set of rts failed");
2083
2084 return 0;
2085}
2086
1189b11a 2087/**
22a1b5c1 2088 Set dtr and rts line in one pass
9ecfef2a 2089
22a1b5c1
TJ
2090 \param ftdi pointer to ftdi_context
2091 \param dtr DTR state to set line to (1 or 0)
2092 \param rts RTS state to set line to (1 or 0)
9ecfef2a 2093
22a1b5c1
TJ
2094 \retval 0: all fine
2095 \retval -1: set dtr/rts failed
2096 \retval -2: USB device unavailable
9ecfef2a
TJ
2097 */
2098int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2099{
2100 unsigned short usb_val;
2101
22a1b5c1
TJ
2102 if (ftdi == NULL || ftdi->usb_dev == NULL)
2103 ftdi_error_return(-2, "USB device unavailable");
2104
9ecfef2a 2105 if (dtr)
22d12cda 2106 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 2107 else
22d12cda 2108 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
2109
2110 if (rts)
22d12cda 2111 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 2112 else
22d12cda 2113 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 2114
579b006f
JZ
2115 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2116 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2117 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 2118 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
2119
2120 return 0;
2121}
2122
2123/**
1189b11a
TJ
2124 Set the special event character
2125
2126 \param ftdi pointer to ftdi_context
2127 \param eventch Event character
2128 \param enable 0 to disable the event character, non-zero otherwise
2129
2130 \retval 0: all fine
2131 \retval -1: unable to set event character
22a1b5c1 2132 \retval -2: USB device unavailable
1189b11a
TJ
2133*/
2134int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 2135 unsigned char eventch, unsigned char enable)
1189b11a
TJ
2136{
2137 unsigned short usb_val;
2138
22a1b5c1
TJ
2139 if (ftdi == NULL || ftdi->usb_dev == NULL)
2140 ftdi_error_return(-2, "USB device unavailable");
2141
1189b11a
TJ
2142 usb_val = eventch;
2143 if (enable)
2144 usb_val |= 1 << 8;
2145
579b006f 2146 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2147 ftdi_error_return(-1, "setting event character failed");
2148
2149 return 0;
2150}
2151
2152/**
2153 Set error character
2154
2155 \param ftdi pointer to ftdi_context
2156 \param errorch Error character
2157 \param enable 0 to disable the error character, non-zero otherwise
2158
2159 \retval 0: all fine
2160 \retval -1: unable to set error character
22a1b5c1 2161 \retval -2: USB device unavailable
1189b11a
TJ
2162*/
2163int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 2164 unsigned char errorch, unsigned char enable)
1189b11a
TJ
2165{
2166 unsigned short usb_val;
2167
22a1b5c1
TJ
2168 if (ftdi == NULL || ftdi->usb_dev == NULL)
2169 ftdi_error_return(-2, "USB device unavailable");
2170
1189b11a
TJ
2171 usb_val = errorch;
2172 if (enable)
2173 usb_val |= 1 << 8;
2174
579b006f 2175 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2176 ftdi_error_return(-1, "setting error character failed");
2177
2178 return 0;
2179}
2180
2181/**
1941414d 2182 Init eeprom with default values.
a35aa9bd 2183 \param ftdi pointer to ftdi_context
f14f84d3
UB
2184 \param manufacturer String to use as Manufacturer
2185 \param product String to use as Product description
2186 \param serial String to use as Serial number description
4e74064b 2187
f14f84d3
UB
2188 \retval 0: all fine
2189 \retval -1: No struct ftdi_context
2190 \retval -2: No struct ftdi_eeprom
1941414d 2191*/
f14f84d3 2192int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
74e8e79d 2193 char * product, char * serial)
a8f46ddc 2194{
c0a96aed 2195 struct ftdi_eeprom *eeprom;
f505134f 2196
c0a96aed 2197 if (ftdi == NULL)
f14f84d3 2198 ftdi_error_return(-1, "No struct ftdi_context");
c0a96aed
UB
2199
2200 if (ftdi->eeprom == NULL)
f14f84d3 2201 ftdi_error_return(-2,"No struct ftdi_eeprom");
22a1b5c1 2202
c0a96aed 2203 eeprom = ftdi->eeprom;
a02587d5 2204 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
c0a96aed 2205
f396dbad 2206 eeprom->vendor_id = 0x0403;
a02587d5 2207 eeprom->use_serial = USE_SERIAL_NUM;
6855afda
UB
2208 if((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2209 (ftdi->type == TYPE_R))
a02587d5
UB
2210 eeprom->product_id = 0x6001;
2211 else
2212 eeprom->product_id = 0x6010;
b1859923
UB
2213 if (ftdi->type == TYPE_AM)
2214 eeprom->usb_version = 0x0101;
2215 else
2216 eeprom->usb_version = 0x0200;
a886436a 2217 eeprom->max_power = 100;
d9f0cce7 2218
74e8e79d
UB
2219 if (eeprom->manufacturer)
2220 free (eeprom->manufacturer);
b8aa7b35 2221 eeprom->manufacturer = NULL;
74e8e79d
UB
2222 if (manufacturer)
2223 {
2224 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2225 if (eeprom->manufacturer)
2226 strcpy(eeprom->manufacturer, manufacturer);
2227 }
2228
2229 if (eeprom->product)
2230 free (eeprom->product);
b8aa7b35 2231 eeprom->product = NULL;
74e8e79d
UB
2232 {
2233 eeprom->product = malloc(strlen(product)+1);
2234 if (eeprom->product)
2235 strcpy(eeprom->product, product);
2236 }
2237
2238 if (eeprom->serial)
2239 free (eeprom->serial);
b8aa7b35 2240 eeprom->serial = NULL;
74e8e79d
UB
2241 if (serial)
2242 {
2243 eeprom->serial = malloc(strlen(serial)+1);
2244 if (eeprom->serial)
2245 strcpy(eeprom->serial, serial);
2246 }
2247
c201f80f 2248
a02587d5 2249 if(ftdi->type == TYPE_R)
a4980043 2250 {
a886436a 2251 eeprom->max_power = 90;
a02587d5 2252 eeprom->size = 0x80;
a4980043
UB
2253 eeprom->cbus_function[0] = CBUS_TXLED;
2254 eeprom->cbus_function[1] = CBUS_RXLED;
2255 eeprom->cbus_function[2] = CBUS_TXDEN;
2256 eeprom->cbus_function[3] = CBUS_PWREN;
2257 eeprom->cbus_function[4] = CBUS_SLEEP;
2258 }
a02587d5
UB
2259 else
2260 eeprom->size = -1;
f14f84d3 2261 return 0;
b8aa7b35
TJ
2262}
2263
1941414d 2264/**
a35aa9bd 2265 Build binary buffer from ftdi_eeprom structure.
22a1b5c1 2266 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2267
a35aa9bd 2268 \param ftdi pointer to ftdi_context
1941414d 2269
516ebfb1 2270 \retval >=0: size of eeprom user area in bytes
22a1b5c1
TJ
2271 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2272 \retval -2: Invalid eeprom pointer
f505134f
HK
2273 \retval -3: Invalid cbus function setting
2274 \retval -4: Chip doesn't support invert
2275 \retval -5: Chip doesn't support high current drive
2b9a3c82 2276 \retval -6: No connected EEPROM or EEPROM Type unknown
b8aa7b35 2277*/
a35aa9bd 2278int ftdi_eeprom_build(struct ftdi_context *ftdi)
a8f46ddc 2279{
e2bbd9af 2280 unsigned char i, j, eeprom_size_mask;
b8aa7b35
TJ
2281 unsigned short checksum, value;
2282 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
516ebfb1 2283 int user_area_size;
c0a96aed 2284 struct ftdi_eeprom *eeprom;
a35aa9bd 2285 unsigned char * output;
b8aa7b35 2286
c0a96aed 2287 if (ftdi == NULL)
cc9c9d58 2288 ftdi_error_return(-2,"No context");
c0a96aed 2289 if (ftdi->eeprom == NULL)
cc9c9d58 2290 ftdi_error_return(-2,"No eeprom structure");
c0a96aed
UB
2291
2292 eeprom= ftdi->eeprom;
a35aa9bd 2293 output = eeprom->buf;
22a1b5c1 2294
2b9a3c82 2295 if(eeprom->chip == -1)
4e74064b 2296 ftdi_error_return(-5,"No connected EEPROM or EEPROM type unknown");
2b9a3c82 2297
f75bf139
UB
2298 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2299 eeprom->size = 0x100;
2300 else
2301 eeprom->size = 0x80;
2302
b8aa7b35 2303 if (eeprom->manufacturer != NULL)
d9f0cce7 2304 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2305 if (eeprom->product != NULL)
d9f0cce7 2306 product_size = strlen(eeprom->product);
b8aa7b35 2307 if (eeprom->serial != NULL)
d9f0cce7 2308 serial_size = strlen(eeprom->serial);
b8aa7b35 2309
b8aa7b35 2310 // eeprom size exceeded?
516ebfb1
TJ
2311 user_area_size = (48 - (manufacturer_size + product_size + serial_size)) * 2;
2312 if (user_area_size < 0)
2313 ftdi_error_return(-1,"eeprom size exceeded");
b8aa7b35
TJ
2314
2315 // empty eeprom
a35aa9bd 2316 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
b8aa7b35 2317
93738c79
UB
2318 // Bytes and Bits set for all Types
2319
b8aa7b35
TJ
2320 // Addr 02: Vendor ID
2321 output[0x02] = eeprom->vendor_id;
2322 output[0x03] = eeprom->vendor_id >> 8;
2323
2324 // Addr 04: Product ID
2325 output[0x04] = eeprom->product_id;
2326 output[0x05] = eeprom->product_id >> 8;
2327
2328 // Addr 06: Device release number (0400h for BM features)
2329 output[0x06] = 0x00;
6123f7ab 2330 switch (ftdi->type) {
f505134f
HK
2331 case TYPE_AM:
2332 output[0x07] = 0x02;
2333 break;
2334 case TYPE_BM:
2335 output[0x07] = 0x04;
2336 break;
2337 case TYPE_2232C:
2338 output[0x07] = 0x05;
2339 break;
2340 case TYPE_R:
2341 output[0x07] = 0x06;
2342 break;
6123f7ab
UB
2343 case TYPE_2232H:
2344 output[0x07] = 0x07;
2345 break;
2346 case TYPE_4232H:
2347 output[0x07] = 0x08;
2348 break;
f505134f
HK
2349 default:
2350 output[0x07] = 0x00;
2351 }
b8aa7b35
TJ
2352
2353 // Addr 08: Config descriptor
8fae3e8e
TJ
2354 // Bit 7: always 1
2355 // Bit 6: 1 if this device is self powered, 0 if bus powered
2356 // Bit 5: 1 if this device uses remote wakeup
37186e34 2357 // Bit 4-0: reserved - 0
5a1dcd55 2358 j = 0x80;
b8aa7b35 2359 if (eeprom->self_powered == 1)
5a1dcd55 2360 j |= 0x40;
b8aa7b35 2361 if (eeprom->remote_wakeup == 1)
5a1dcd55 2362 j |= 0x20;
b8aa7b35
TJ
2363 output[0x08] = j;
2364
2365 // Addr 09: Max power consumption: max power = value * 2 mA
bb5ec68a 2366 output[0x09] = eeprom->max_power>>1;
d9f0cce7 2367
93738c79
UB
2368 if(ftdi->type != TYPE_AM)
2369 {
2370 // Addr 0A: Chip configuration
2371 // Bit 7: 0 - reserved
2372 // Bit 6: 0 - reserved
2373 // Bit 5: 0 - reserved
2374 // Bit 4: 1 - Change USB version
2375 // Bit 3: 1 - Use the serial number string
2376 // Bit 2: 1 - Enable suspend pull downs for lower power
2377 // Bit 1: 1 - Out EndPoint is Isochronous
2378 // Bit 0: 1 - In EndPoint is Isochronous
2379 //
2380 j = 0;
2381 if (eeprom->in_is_isochronous == 1)
2382 j = j | 1;
2383 if (eeprom->out_is_isochronous == 1)
2384 j = j | 2;
2385 output[0x0A] = j;
2386 }
f505134f 2387
b8aa7b35 2388 // Dynamic content
93738c79
UB
2389 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2390 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2391 i = 0;
2392 switch(ftdi->type)
2393 {
2394 case TYPE_2232H:
2395 case TYPE_4232H:
2396 i += 2;
2397 case TYPE_R:
2398 i += 2;
2399 case TYPE_2232C:
2400 i += 2;
2401 case TYPE_AM:
2402 case TYPE_BM:
2403 i += 0x94;
f505134f 2404 }
93738c79 2405 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
e2bbd9af 2406 eeprom_size_mask = eeprom->size -1;
c201f80f 2407
93738c79
UB
2408 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2409 // Addr 0F: Length of manufacturer string
22d12cda 2410 // Output manufacturer
93738c79 2411 output[0x0E] = i; // calculate offset
e2bbd9af
TJ
2412 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2413 output[i & eeprom_size_mask] = 0x03, i++; // type: string
22d12cda
TJ
2414 for (j = 0; j < manufacturer_size; j++)
2415 {
e2bbd9af
TJ
2416 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2417 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2418 }
93738c79 2419 output[0x0F] = manufacturer_size*2 + 2;
b8aa7b35 2420
93738c79
UB
2421 // Addr 10: Offset of the product string + 0x80, calculated later
2422 // Addr 11: Length of product string
c201f80f 2423 output[0x10] = i | 0x80; // calculate offset
e2bbd9af
TJ
2424 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2425 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2426 for (j = 0; j < product_size; j++)
2427 {
e2bbd9af
TJ
2428 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2429 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2430 }
93738c79 2431 output[0x11] = product_size*2 + 2;
37186e34 2432
93738c79
UB
2433 // Addr 12: Offset of the serial string + 0x80, calculated later
2434 // Addr 13: Length of serial string
c201f80f 2435 output[0x12] = i | 0x80; // calculate offset
e2bbd9af
TJ
2436 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2437 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2438 for (j = 0; j < serial_size; j++)
2439 {
e2bbd9af
TJ
2440 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2441 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2442 }
e2bbd9af 2443 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
802a949e 2444 i++;
e2bbd9af 2445 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
802a949e 2446 i++;
e2bbd9af 2447 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
802a949e
UB
2448 i++;
2449
93738c79 2450 output[0x13] = serial_size*2 + 2;
b8aa7b35 2451
bf2f6ef7
UB
2452 if(ftdi->type > TYPE_AM) /*use_serial not used in AM devices*/
2453 {
2454 if (eeprom->use_serial == USE_SERIAL_NUM )
2455 output[0x0A] |= USE_SERIAL_NUM;
2456 else
2457 output[0x0A] &= ~USE_SERIAL_NUM;
2458 }
93738c79 2459 /* Fixme: ftd2xx seems to append 0x02, 0x03 and 0x01 for PnP = 0 or 0x00 else */
b8aa7b35 2460 // calculate checksum
3802140c
UB
2461
2462 /* Bytes and Bits specific to (some) types
2463 Write linear, as this allows easier fixing*/
2464 switch(ftdi->type)
2465 {
2466 case TYPE_AM:
2467 break;
2468 case TYPE_BM:
2469 output[0x0C] = eeprom->usb_version & 0xff;
2470 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3802140c
UB
2471 break;
2472 case TYPE_2232C:
2473
2474 output[0x00] = (eeprom->channel_a_type);
2475 if ( eeprom->channel_a_driver == DRIVER_VCP)
2476 output[0x00] |= DRIVER_VCP;
2477 else
2478 output[0x00] &= ~DRIVER_VCP;
4e74064b 2479
3802140c
UB
2480 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2481 output[0x00] |= HIGH_CURRENT_DRIVE;
2482 else
2483 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2484
2485 output[0x01] = (eeprom->channel_b_type);
2486 if ( eeprom->channel_b_driver == DRIVER_VCP)
2487 output[0x01] |= DRIVER_VCP;
2488 else
2489 output[0x01] &= ~DRIVER_VCP;
4e74064b 2490
3802140c
UB
2491 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2492 output[0x01] |= HIGH_CURRENT_DRIVE;
2493 else
2494 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2495
2496 if (eeprom->in_is_isochronous == 1)
2497 output[0x0A] |= 0x1;
2498 else
2499 output[0x0A] &= ~0x1;
2500 if (eeprom->out_is_isochronous == 1)
2501 output[0x0A] |= 0x2;
2502 else
2503 output[0x0A] &= ~0x2;
2504 if (eeprom->suspend_pull_downs == 1)
2505 output[0x0A] |= 0x4;
2506 else
2507 output[0x0A] &= ~0x4;
3802140c
UB
2508 output[0x0C] = eeprom->usb_version & 0xff;
2509 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2510 output[0x14] = eeprom->chip;
2511 break;
2512 case TYPE_R:
2513 if(eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2514 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2515 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
4e74064b 2516
3802140c
UB
2517 if (eeprom->suspend_pull_downs == 1)
2518 output[0x0A] |= 0x4;
2519 else
2520 output[0x0A] &= ~0x4;
3802140c
UB
2521 output[0x0B] = eeprom->invert;
2522 output[0x0C] = eeprom->usb_version & 0xff;
2523 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
4e74064b 2524
3802140c 2525 if(eeprom->cbus_function[0] > CBUS_BB)
a4980043 2526 output[0x14] = CBUS_TXLED;
3802140c
UB
2527 else
2528 output[0x14] = eeprom->cbus_function[0];
4e74064b 2529
3802140c 2530 if(eeprom->cbus_function[1] > CBUS_BB)
a4980043 2531 output[0x14] |= CBUS_RXLED<<4;
3802140c 2532 else
a4980043 2533 output[0x14] |= eeprom->cbus_function[1]<<4;
4e74064b 2534
3802140c 2535 if(eeprom->cbus_function[2] > CBUS_BB)
a4980043 2536 output[0x15] = CBUS_TXDEN;
3802140c 2537 else
a4980043 2538 output[0x15] = eeprom->cbus_function[2];
4e74064b 2539
3802140c 2540 if(eeprom->cbus_function[3] > CBUS_BB)
a4980043 2541 output[0x15] |= CBUS_PWREN<<4;
3802140c 2542 else
a4980043 2543 output[0x15] |= eeprom->cbus_function[3]<<4;
4e74064b 2544
a4980043
UB
2545 if(eeprom->cbus_function[4] > CBUS_CLK6)
2546 output[0x16] = CBUS_SLEEP;
3802140c 2547 else
a4980043 2548 output[0x16] = eeprom->cbus_function[4];
3802140c
UB
2549 break;
2550 case TYPE_2232H:
2551 output[0x00] = (eeprom->channel_a_type);
2552 if ( eeprom->channel_a_driver == DRIVER_VCP)
2553 output[0x00] |= DRIVER_VCP;
2554 else
2555 output[0x00] &= ~DRIVER_VCP;
4e74064b 2556
3802140c
UB
2557 output[0x01] = (eeprom->channel_b_type);
2558 if ( eeprom->channel_b_driver == DRIVER_VCP)
2559 output[0x01] |= DRIVER_VCP;
2560 else
2561 output[0x01] &= ~DRIVER_VCP;
2562 if(eeprom->suspend_dbus7 == SUSPEND_DBUS7)
2563 output[0x01] |= SUSPEND_DBUS7;
2564 else
2565 output[0x01] &= ~SUSPEND_DBUS7;
4e74064b 2566
6e6a1c3f
UB
2567 if (eeprom->suspend_pull_downs == 1)
2568 output[0x0A] |= 0x4;
2569 else
2570 output[0x0A] &= ~0x4;
2571
3802140c
UB
2572 if(eeprom->group0_drive > DRIVE_16MA)
2573 output[0x0c] |= DRIVE_16MA;
2574 else
2575 output[0x0c] |= eeprom->group0_drive;
2576 if (eeprom->group0_schmitt == IS_SCHMITT)
2577 output[0x0c] |= IS_SCHMITT;
2578 if (eeprom->group0_slew == SLOW_SLEW)
2579 output[0x0c] |= SLOW_SLEW;
2580
2581 if(eeprom->group1_drive > DRIVE_16MA)
2582 output[0x0c] |= DRIVE_16MA<<4;
2583 else
2584 output[0x0c] |= eeprom->group1_drive<<4;
2585 if (eeprom->group1_schmitt == IS_SCHMITT)
2586 output[0x0c] |= IS_SCHMITT<<4;
2587 if (eeprom->group1_slew == SLOW_SLEW)
2588 output[0x0c] |= SLOW_SLEW<<4;
4e74064b 2589
3802140c
UB
2590 if(eeprom->group2_drive > DRIVE_16MA)
2591 output[0x0d] |= DRIVE_16MA;
2592 else
2593 output[0x0d] |= eeprom->group2_drive;
2594 if (eeprom->group2_schmitt == IS_SCHMITT)
2595 output[0x0d] |= IS_SCHMITT;
2596 if (eeprom->group2_slew == SLOW_SLEW)
2597 output[0x0d] |= SLOW_SLEW;
2598
2599 if(eeprom->group3_drive > DRIVE_16MA)
2600 output[0x0d] |= DRIVE_16MA<<4;
2601 else
2602 output[0x0d] |= eeprom->group3_drive<<4;
2603 if (eeprom->group3_schmitt == IS_SCHMITT)
2604 output[0x0d] |= IS_SCHMITT<<4;
2605 if (eeprom->group3_slew == SLOW_SLEW)
2606 output[0x0d] |= SLOW_SLEW<<4;
2607
2608 output[0x18] = eeprom->chip;
2609
2610 break;
e27531f4
UB
2611 case TYPE_4232H:
2612 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
3802140c
UB
2613 }
2614
cbf65673 2615 // calculate checksum
b8aa7b35 2616 checksum = 0xAAAA;
d9f0cce7 2617
22d12cda
TJ
2618 for (i = 0; i < eeprom->size/2-1; i++)
2619 {
d9f0cce7
TJ
2620 value = output[i*2];
2621 value += output[(i*2)+1] << 8;
b8aa7b35 2622
d9f0cce7
TJ
2623 checksum = value^checksum;
2624 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
2625 }
2626
c201f80f
TJ
2627 output[eeprom->size-2] = checksum;
2628 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 2629
516ebfb1 2630 return user_area_size;
b8aa7b35
TJ
2631}
2632
4af1d1bb
MK
2633/**
2634 Decode binary EEPROM image into an ftdi_eeprom structure.
2635
a35aa9bd
UB
2636 \param ftdi pointer to ftdi_context
2637 \param verbose Decode EEPROM on stdout
2638
4af1d1bb
MK
2639 \retval 0: all fine
2640 \retval -1: something went wrong
2641
2642 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2643 FIXME: Strings are malloc'ed here and should be freed somewhere
2644*/
a35aa9bd 2645int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
b56d5a64
MK
2646{
2647 unsigned char i, j;
2648 unsigned short checksum, eeprom_checksum, value;
2649 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
f2cd9fd5 2650 int eeprom_size;
c0a96aed 2651 struct ftdi_eeprom *eeprom;
a35aa9bd 2652 unsigned char *buf = ftdi->eeprom->buf;
38801bf8 2653 int release;
22a1b5c1 2654
c0a96aed 2655 if (ftdi == NULL)
cc9c9d58 2656 ftdi_error_return(-1,"No context");
c0a96aed 2657 if (ftdi->eeprom == NULL)
6cd4f922 2658 ftdi_error_return(-1,"No eeprom structure");
f2cd9fd5 2659
c0a96aed 2660 eeprom = ftdi->eeprom;
a35aa9bd 2661 eeprom_size = eeprom->size;
b56d5a64 2662
b56d5a64
MK
2663 // Addr 02: Vendor ID
2664 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2665
2666 // Addr 04: Product ID
2667 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
22d12cda 2668
38801bf8 2669 release = buf[0x06] + (buf[0x07]<<8);
b56d5a64
MK
2670
2671 // Addr 08: Config descriptor
2672 // Bit 7: always 1
2673 // Bit 6: 1 if this device is self powered, 0 if bus powered
2674 // Bit 5: 1 if this device uses remote wakeup
f6ef2983
UB
2675 eeprom->self_powered = buf[0x08] & 0x40;
2676 eeprom->remote_wakeup = buf[0x08] & 0x20;;
b56d5a64
MK
2677
2678 // Addr 09: Max power consumption: max power = value * 2 mA
2679 eeprom->max_power = buf[0x09];
2680
2681 // Addr 0A: Chip configuration
2682 // Bit 7: 0 - reserved
2683 // Bit 6: 0 - reserved
2684 // Bit 5: 0 - reserved
2685 // Bit 4: 1 - Change USB version
49a6bc10 2686 // Not seen on FT2232(D)
b56d5a64
MK
2687 // Bit 3: 1 - Use the serial number string
2688 // Bit 2: 1 - Enable suspend pull downs for lower power
2689 // Bit 1: 1 - Out EndPoint is Isochronous
2690 // Bit 0: 1 - In EndPoint is Isochronous
2691 //
8d3fe5c9
UB
2692 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2693 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2694 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
a02587d5 2695 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
75388926 2696 if(buf[0x0A]&0x10)
b1859923
UB
2697 fprintf(stderr,
2698 "EEPROM byte[0x0a] Bit 4 unexpected set. If this happened with the EEPROM\n"
2699 "programmed by FTDI tools, please report to libftdi@developer.intra2net.com\n");
b56d5a64 2700
b56d5a64 2701
b1859923
UB
2702 // Addr 0C: USB version low byte when 0x0A
2703 // Addr 0D: USB version high byte when 0x0A
2704 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
b56d5a64
MK
2705
2706 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2707 // Addr 0F: Length of manufacturer string
2708 manufacturer_size = buf[0x0F]/2;
74e8e79d
UB
2709 if(eeprom->manufacturer)
2710 free(eeprom->manufacturer);
acc1fa05
UB
2711 if (manufacturer_size > 0)
2712 {
2713 eeprom->manufacturer = malloc(manufacturer_size);
2714 if (eeprom->manufacturer)
2715 {
2716 // Decode manufacturer
84ec032f 2717 i = buf[0x0E] & (eeprom_size -1); // offset
acc1fa05
UB
2718 for (j=0;j<manufacturer_size-1;j++)
2719 {
2720 eeprom->manufacturer[j] = buf[2*j+i+2];
2721 }
2722 eeprom->manufacturer[j] = '\0';
2723 }
2724 }
b56d5a64
MK
2725 else eeprom->manufacturer = NULL;
2726
2727 // Addr 10: Offset of the product string + 0x80, calculated later
2728 // Addr 11: Length of product string
74e8e79d
UB
2729 if(eeprom->product)
2730 free(eeprom->product);
b56d5a64 2731 product_size = buf[0x11]/2;
acc1fa05
UB
2732 if (product_size > 0)
2733 {
2734 eeprom->product = malloc(product_size);
2735 if(eeprom->product)
2736 {
2737 // Decode product name
84ec032f 2738 i = buf[0x10] & (eeprom_size -1); // offset
acc1fa05
UB
2739 for (j=0;j<product_size-1;j++)
2740 {
2741 eeprom->product[j] = buf[2*j+i+2];
2742 }
2743 eeprom->product[j] = '\0';
2744 }
2745 }
b56d5a64
MK
2746 else eeprom->product = NULL;
2747
2748 // Addr 12: Offset of the serial string + 0x80, calculated later
2749 // Addr 13: Length of serial string
74e8e79d
UB
2750 if(eeprom->serial)
2751 free(eeprom->serial);
b56d5a64 2752 serial_size = buf[0x13]/2;
acc1fa05
UB
2753 if (serial_size > 0)
2754 {
2755 eeprom->serial = malloc(serial_size);
2756 if(eeprom->serial)
2757 {
2758 // Decode serial
84ec032f 2759 i = buf[0x12] & (eeprom_size -1); // offset
acc1fa05
UB
2760 for (j=0;j<serial_size-1;j++)
2761 {
2762 eeprom->serial[j] = buf[2*j+i+2];
2763 }
2764 eeprom->serial[j] = '\0';
2765 }
2766 }
b56d5a64
MK
2767 else eeprom->serial = NULL;
2768
b56d5a64
MK
2769 // verify checksum
2770 checksum = 0xAAAA;
2771
22d12cda
TJ
2772 for (i = 0; i < eeprom_size/2-1; i++)
2773 {
b56d5a64
MK
2774 value = buf[i*2];
2775 value += buf[(i*2)+1] << 8;
2776
2777 checksum = value^checksum;
2778 checksum = (checksum << 1) | (checksum >> 15);
2779 }
2780
2781 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2782
22d12cda
TJ
2783 if (eeprom_checksum != checksum)
2784 {
2785 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
cc9c9d58 2786 ftdi_error_return(-1,"EEPROM checksum error");
4af1d1bb
MK
2787 }
2788
eb498cff 2789 eeprom->channel_a_type = 0;
aa099f46 2790 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
f6ef2983 2791 {
6cd4f922 2792 eeprom->chip = -1;
f6ef2983 2793 }
947d9552 2794 else if(ftdi->type == TYPE_2232C)
f6ef2983 2795 {
2cde7c52
UB
2796 eeprom->channel_a_type = buf[0x00] & 0x7;
2797 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2798 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2799 eeprom->channel_b_type = buf[0x01] & 0x7;
2800 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2801 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
6cd4f922 2802 eeprom->chip = buf[0x14];
065edc58 2803 }
947d9552 2804 else if(ftdi->type == TYPE_R)
564b2716 2805 {
2cde7c52
UB
2806 /* TYPE_R flags D2XX, not VCP as all others*/
2807 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2808 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2809 if( (buf[0x01]&0x40) != 0x40)
2810 fprintf(stderr,
2811 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2812 " If this happened with the\n"
2813 " EEPROM programmed by FTDI tools, please report "
2814 "to libftdi@developer.intra2net.com\n");
2815
6cd4f922 2816 eeprom->chip = buf[0x16];
cecb9cb2
UB
2817 // Addr 0B: Invert data lines
2818 // Works only on FT232R, not FT245R, but no way to distinguish
07851949
UB
2819 eeprom->invert = buf[0x0B];
2820 // Addr 14: CBUS function: CBUS0, CBUS1
2821 // Addr 15: CBUS function: CBUS2, CBUS3
2822 // Addr 16: CBUS function: CBUS5
2823 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2824 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2825 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2826 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2827 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
564b2716 2828 }
db099ec5
UB
2829 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
2830 {
c6b94478 2831 eeprom->channel_a_type = buf[0x00] & 0x7;
2cde7c52
UB
2832 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2833 eeprom->channel_b_type = buf[0x01] & 0x7;
2834 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2835
2836 if(ftdi->type == TYPE_2232H)
2837 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7;
2838
6cd4f922 2839 eeprom->chip = buf[0x18];
db099ec5
UB
2840 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2841 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2842 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2843 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2844 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2845 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2846 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2847 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2848 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2849 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2850 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2851 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
947d9552
UB
2852 }
2853
f6ef2983
UB
2854 if(verbose)
2855 {
e107f509 2856 char *channel_mode[] = {"UART","245","CPU", "unknown", "OPTO"};
f6ef2983
UB
2857 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
2858 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
38801bf8 2859 fprintf(stdout, "Release: 0x%04x\n",release);
f6ef2983
UB
2860
2861 if(eeprom->self_powered)
2862 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
2863 else
1cd815ad 2864 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
f6ef2983
UB
2865 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
2866 if(eeprom->manufacturer)
2867 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
2868 if(eeprom->product)
2869 fprintf(stdout, "Product: %s\n",eeprom->product);
2870 if(eeprom->serial)
2871 fprintf(stdout, "Serial: %s\n",eeprom->serial);
e107f509 2872 fprintf(stdout, "Checksum : %04x\n", checksum);
6cd4f922
UB
2873 if (ftdi->type == TYPE_R)
2874 fprintf(stdout, "Internal EEPROM\n");
2875 else if (eeprom->chip >= 0x46)
2876 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
fb9bfdd1
UB
2877 if(eeprom->suspend_dbus7)
2878 fprintf(stdout, "Suspend on DBUS7\n");
2879 if(eeprom->suspend_pull_downs)
2880 fprintf(stdout, "Pull IO pins low during suspend\n");
2881 if(eeprom->remote_wakeup)
2882 fprintf(stdout, "Enable Remote Wake Up\n");
802a949e 2883 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
db099ec5 2884 if (ftdi->type >= TYPE_2232C)
e107f509
UB
2885 fprintf(stdout,"Channel A has Mode %s%s%s\n",
2886 channel_mode[eeprom->channel_a_type],
2cde7c52
UB
2887 (eeprom->channel_a_driver)?" VCP":"",
2888 (eeprom->high_current_a)?" High Current IO":"");
2889 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R))
e107f509
UB
2890 fprintf(stdout,"Channel B has Mode %s%s%s\n",
2891 channel_mode[eeprom->channel_b_type],
2cde7c52
UB
2892 (eeprom->channel_b_driver)?" VCP":"",
2893 (eeprom->high_current_b)?" High Current IO":"");
db099ec5
UB
2894 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
2895 {
2896 fprintf(stdout,"%s has %d mA drive%s%s\n",
2897 (ftdi->type == TYPE_2232H)?"AL":"A",
2898 (eeprom->group0_drive+1) *4,
2899 (eeprom->group0_schmitt)?" Schmitt Input":"",
2900 (eeprom->group0_slew)?" Slow Slew":"");
2901 fprintf(stdout,"%s has %d mA drive%s%s\n",
2902 (ftdi->type == TYPE_2232H)?"AH":"B",
2903 (eeprom->group1_drive+1) *4,
2904 (eeprom->group1_schmitt)?" Schmitt Input":"",
2905 (eeprom->group1_slew)?" Slow Slew":"");
2906 fprintf(stdout,"%s has %d mA drive%s%s\n",
2907 (ftdi->type == TYPE_2232H)?"BL":"C",
2908 (eeprom->group2_drive+1) *4,
2909 (eeprom->group2_schmitt)?" Schmitt Input":"",
2910 (eeprom->group2_slew)?" Slow Slew":"");
2911 fprintf(stdout,"%s has %d mA drive%s%s\n",
2912 (ftdi->type == TYPE_2232H)?"BH":"D",
2913 (eeprom->group3_drive+1) *4,
2914 (eeprom->group3_schmitt)?" Schmitt Input":"",
2915 (eeprom->group3_slew)?" Slow Slew":"");
2916 }
a4980043
UB
2917 if (ftdi->type == TYPE_R)
2918 {
2919 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
13f00d3c 2920 "SLEEP","CLK48","CLK24","CLK12","CLK6",
a4980043 2921 "IOMODE","BB_WR","BB_RD"};
13f00d3c 2922 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
a4980043
UB
2923 int i;
2924
2925 if(eeprom->invert)
2926 {
2927 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
2928 fprintf(stdout,"Inverted bits:");
2929 for (i=0; i<8; i++)
2930 if((eeprom->invert & (1<<i)) == (1<<i))
2931 fprintf(stdout," %s",r_bits[i]);
2932 fprintf(stdout,"\n");
2933 }
2934 for(i=0; i<5; i++)
2935 {
2936 if(eeprom->cbus_function[i]<CBUS_BB)
2937 fprintf(stdout,"C%d Function: %s\n", i,
2938 cbus_mux[eeprom->cbus_function[i]]);
2939 else
2940 fprintf(stdout,"C%d BB Function: %s\n", i,
2941 cbus_BB[i]);
2942 }
2943 }
f6ef2983 2944 }
4af1d1bb 2945 return 0;
b56d5a64
MK
2946}
2947
1941414d 2948/**
c1c70e13
OS
2949 Read eeprom location
2950
2951 \param ftdi pointer to ftdi_context
2952 \param eeprom_addr Address of eeprom location to be read
2953 \param eeprom_val Pointer to store read eeprom location
2954
2955 \retval 0: all fine
2956 \retval -1: read failed
22a1b5c1 2957 \retval -2: USB device unavailable
c1c70e13
OS
2958*/
2959int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
2960{
22a1b5c1
TJ
2961 if (ftdi == NULL || ftdi->usb_dev == NULL)
2962 ftdi_error_return(-2, "USB device unavailable");
2963
97c6b5f6 2964 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
c1c70e13
OS
2965 ftdi_error_return(-1, "reading eeprom failed");
2966
2967 return 0;
2968}
2969
2970/**
1941414d
TJ
2971 Read eeprom
2972
2973 \param ftdi pointer to ftdi_context
b8aa7b35 2974
1941414d
TJ
2975 \retval 0: all fine
2976 \retval -1: read failed
22a1b5c1 2977 \retval -2: USB device unavailable
1941414d 2978*/
a35aa9bd 2979int ftdi_read_eeprom(struct ftdi_context *ftdi)
a8f46ddc 2980{
a3da1d95 2981 int i;
a35aa9bd 2982 unsigned char *buf;
a3da1d95 2983
22a1b5c1
TJ
2984 if (ftdi == NULL || ftdi->usb_dev == NULL)
2985 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 2986 buf = ftdi->eeprom->buf;
22a1b5c1 2987
2d543486 2988 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
22d12cda 2989 {
a35aa9bd
UB
2990 if (libusb_control_transfer(
2991 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
2992 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
c3d95b87 2993 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
2994 }
2995
2d543486 2996 if (ftdi->type == TYPE_R)
a35aa9bd 2997 ftdi->eeprom->size = 0x80;
2d543486
UB
2998 /* Guesses size of eeprom by comparing halves
2999 - will not work with blank eeprom */
a35aa9bd 3000 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
2d543486 3001 ftdi->eeprom->size = -1;
a35aa9bd 3002 else if(memcmp(buf,&buf[0x80],0x80) == 0)
2d543486 3003 ftdi->eeprom->size = 0x80;
a35aa9bd 3004 else if(memcmp(buf,&buf[0x40],0x40) == 0)
2d543486
UB
3005 ftdi->eeprom->size = 0x40;
3006 else
3007 ftdi->eeprom->size = 0x100;
a3da1d95
GE
3008 return 0;
3009}
3010
cb6250fa
TJ
3011/*
3012 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3013 Function is only used internally
3014 \internal
3015*/
3016static unsigned char ftdi_read_chipid_shift(unsigned char value)
3017{
3018 return ((value & 1) << 1) |
22d12cda
TJ
3019 ((value & 2) << 5) |
3020 ((value & 4) >> 2) |
3021 ((value & 8) << 4) |
3022 ((value & 16) >> 1) |
3023 ((value & 32) >> 1) |
3024 ((value & 64) >> 4) |
3025 ((value & 128) >> 2);
cb6250fa
TJ
3026}
3027
3028/**
3029 Read the FTDIChip-ID from R-type devices
3030
3031 \param ftdi pointer to ftdi_context
3032 \param chipid Pointer to store FTDIChip-ID
3033
3034 \retval 0: all fine
3035 \retval -1: read failed
22a1b5c1 3036 \retval -2: USB device unavailable
cb6250fa
TJ
3037*/
3038int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3039{
c7eb3112 3040 unsigned int a = 0, b = 0;
cb6250fa 3041
22a1b5c1
TJ
3042 if (ftdi == NULL || ftdi->usb_dev == NULL)
3043 ftdi_error_return(-2, "USB device unavailable");
3044
579b006f 3045 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3046 {
3047 a = a << 8 | a >> 8;
579b006f 3048 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3049 {
3050 b = b << 8 | b >> 8;
5230676f 3051 a = (a << 16) | (b & 0xFFFF);
912d50ca
TJ
3052 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3053 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 3054 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 3055 return 0;
cb6250fa
TJ
3056 }
3057 }
3058
c7eb3112 3059 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
3060}
3061
1941414d 3062/**
c1c70e13
OS
3063 Write eeprom location
3064
3065 \param ftdi pointer to ftdi_context
3066 \param eeprom_addr Address of eeprom location to be written
3067 \param eeprom_val Value to be written
3068
3069 \retval 0: all fine
a661e3e4 3070 \retval -1: write failed
22a1b5c1 3071 \retval -2: USB device unavailable
a661e3e4
UB
3072 \retval -3: Invalid access to checksum protected area below 0x80
3073 \retval -4: Device can't access unprotected area
3074 \retval -5: Reading chip type failed
c1c70e13 3075*/
a661e3e4
UB
3076int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3077 unsigned short eeprom_val)
c1c70e13 3078{
a661e3e4
UB
3079 int chip_type_location;
3080 unsigned short chip_type;
3081
22a1b5c1
TJ
3082 if (ftdi == NULL || ftdi->usb_dev == NULL)
3083 ftdi_error_return(-2, "USB device unavailable");
3084
a661e3e4
UB
3085 if(eeprom_addr <0x80)
3086 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3087
3088
3089 switch (ftdi->type)
3090 {
3091 case TYPE_BM:
3092 case TYPE_2232C:
3093 chip_type_location = 0x14;
3094 break;
3095 case TYPE_2232H:
3096 case TYPE_4232H:
3097 chip_type_location = 0x18;
3098 break;
3099 default:
3100 ftdi_error_return(-4, "Device can't access unprotected area");
3101 }
3102
3103 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3104 ftdi_error_return(-5, "Reading failed failed");
3105 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3106 if((chip_type & 0xff) != 0x66)
3107 {
3108 ftdi_error_return(-6, "EEPROM is not of 93x66");
3109 }
3110
579b006f 3111 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
c1c70e13
OS
3112 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3113 NULL, 0, ftdi->usb_write_timeout) != 0)
3114 ftdi_error_return(-1, "unable to write eeprom");
3115
3116 return 0;
3117}
3118
3119/**
1941414d 3120 Write eeprom
a3da1d95 3121
1941414d 3122 \param ftdi pointer to ftdi_context
a35aa9bd 3123
1941414d
TJ
3124 \retval 0: all fine
3125 \retval -1: read failed
22a1b5c1 3126 \retval -2: USB device unavailable
1941414d 3127*/
a35aa9bd 3128int ftdi_write_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3129{
ba5329be 3130 unsigned short usb_val, status;
e30da501 3131 int i, ret;
a35aa9bd 3132 unsigned char *eeprom;
a3da1d95 3133
22a1b5c1
TJ
3134 if (ftdi == NULL || ftdi->usb_dev == NULL)
3135 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 3136 eeprom = ftdi->eeprom->buf;
22a1b5c1 3137
ba5329be 3138 /* These commands were traced while running MProg */
e30da501
TJ
3139 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3140 return ret;
3141 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3142 return ret;
3143 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3144 return ret;
ba5329be 3145
c0a96aed 3146 for (i = 0; i < ftdi->eeprom->size/2; i++)
22d12cda 3147 {
d9f0cce7
TJ
3148 usb_val = eeprom[i*2];
3149 usb_val += eeprom[(i*2)+1] << 8;
579b006f
JZ
3150 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3151 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3152 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3153 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
3154 }
3155
3156 return 0;
3157}
3158
1941414d
TJ
3159/**
3160 Erase eeprom
a3da1d95 3161
a5e1bd8c
MK
3162 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3163
1941414d
TJ
3164 \param ftdi pointer to ftdi_context
3165
3166 \retval 0: all fine
3167 \retval -1: erase failed
22a1b5c1 3168 \retval -2: USB device unavailable
99404ad5
UB
3169 \retval -3: Writing magic failed
3170 \retval -4: Read EEPROM failed
3171 \retval -5: Unexpected EEPROM value
1941414d 3172*/
99404ad5 3173#define MAGIC 0x55aa
a8f46ddc
TJ
3174int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3175{
99404ad5 3176 unsigned short eeprom_value;
22a1b5c1
TJ
3177 if (ftdi == NULL || ftdi->usb_dev == NULL)
3178 ftdi_error_return(-2, "USB device unavailable");
3179
99404ad5
UB
3180 if(ftdi->type == TYPE_R)
3181 {
3182 ftdi->eeprom->chip = 0;
3183 return 0;
3184 }
3185
3186 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3187 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3188 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95 3189
99404ad5
UB
3190
3191 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3192 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3193 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3194 Chip is 93x66 if magic is only read at word position 0xc0*/
10186c1f
UB
3195 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3196 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3197 NULL, 0, ftdi->usb_write_timeout) != 0)
99404ad5
UB
3198 ftdi_error_return(-3, "Writing magic failed");
3199 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3200 ftdi_error_return(-4, "Reading failed failed");
3201 if(eeprom_value == MAGIC)
3202 {
3203 ftdi->eeprom->chip = 0x46;
3204 }
3205 else
3206 {
3207 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3208 ftdi_error_return(-4, "Reading failed failed");
3209 if(eeprom_value == MAGIC)
3210 ftdi->eeprom->chip = 0x56;
3211 else
3212 {
3213 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3214 ftdi_error_return(-4, "Reading failed failed");
3215 if(eeprom_value == MAGIC)
3216 ftdi->eeprom->chip = 0x66;
3217 else
3218 {
3219 ftdi->eeprom->chip = -1;
3220 }
3221 }
3222 }
3223 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3224 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3225 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
3226 return 0;
3227}
c3d95b87 3228
1941414d
TJ
3229/**
3230 Get string representation for last error code
c3d95b87 3231
1941414d
TJ
3232 \param ftdi pointer to ftdi_context
3233
3234 \retval Pointer to error string
3235*/
c3d95b87
TJ
3236char *ftdi_get_error_string (struct ftdi_context *ftdi)
3237{
22a1b5c1
TJ
3238 if (ftdi == NULL)
3239 return "";
3240
c3d95b87
TJ
3241 return ftdi->error_str;
3242}
a01d31e2 3243
b5ec1820 3244/* @} end of doxygen libftdi group */