libftdi: pass eeprom strings as const
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2017 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 SPDX-License-Identifier: LGPL-2.1-only
8 ***************************************************************************/
9
10/***************************************************************************
11 * *
12 * This program is free software; you can redistribute it and/or modify *
13 * it under the terms of the GNU Lesser General Public License *
14 * version 2.1 as published by the Free Software Foundation; *
15 * *
16 ***************************************************************************/
17
18/**
19 \mainpage libftdi API documentation
20
21 Library to talk to FTDI chips. You find the latest versions of libftdi at
22 https://www.intra2net.com/en/developer/libftdi/
23
24 The library is easy to use. Have a look at this short example:
25 \include simple.c
26
27 More examples can be found in the "examples" directory.
28*/
29/** \addtogroup libftdi */
30/* @{ */
31
32#include <libusb.h>
33#include <string.h>
34#include <errno.h>
35#include <stdio.h>
36#include <stdlib.h>
37
38#include "ftdi_i.h"
39/* Prevent deprecated messages when building library */
40#define _FTDI_DISABLE_DEPRECATED
41#include "ftdi.h"
42#include "ftdi_version_i.h"
43
44#define ftdi_error_return(code, str) do { \
45 if ( ftdi ) \
46 ftdi->error_str = str; \
47 else \
48 fprintf(stderr, str); \
49 return code; \
50 } while(0);
51
52#define ftdi_error_return_free_device_list(code, str, devs) do { \
53 libusb_free_device_list(devs,1); \
54 ftdi->error_str = str; \
55 return code; \
56 } while(0);
57
58
59/**
60 Internal function to close usb device pointer.
61 Sets ftdi->usb_dev to NULL.
62 \internal
63
64 \param ftdi pointer to ftdi_context
65
66 \retval none
67*/
68static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
69{
70 if (ftdi && ftdi->usb_dev)
71 {
72 libusb_close (ftdi->usb_dev);
73 ftdi->usb_dev = NULL;
74 if(ftdi->eeprom)
75 ftdi->eeprom->initialized_for_connected_device = 0;
76 }
77}
78
79/**
80 Initializes a ftdi_context.
81
82 \param ftdi pointer to ftdi_context
83
84 \retval 0: all fine
85 \retval -1: couldn't allocate read buffer
86 \retval -2: couldn't allocate struct buffer
87 \retval -3: libusb_init() failed
88
89 \remark This should be called before all functions
90*/
91int ftdi_init(struct ftdi_context *ftdi)
92{
93 struct ftdi_eeprom* eeprom;
94 ftdi->usb_ctx = NULL;
95 ftdi->usb_dev = NULL;
96 ftdi->usb_read_timeout = 5000;
97 ftdi->usb_write_timeout = 5000;
98
99 ftdi->type = TYPE_BM; /* chip type */
100 ftdi->baudrate = -1;
101 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
102
103 ftdi->readbuffer = NULL;
104 ftdi->readbuffer_offset = 0;
105 ftdi->readbuffer_remaining = 0;
106 ftdi->writebuffer_chunksize = 4096;
107 ftdi->max_packet_size = 0;
108 ftdi->error_str = NULL;
109 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
110
111 if (libusb_init(&ftdi->usb_ctx) < 0)
112 ftdi_error_return(-3, "libusb_init() failed");
113
114 ftdi_set_interface(ftdi, INTERFACE_ANY);
115 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
116
117 eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
118 if (eeprom == 0)
119 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
120 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
121 ftdi->eeprom = eeprom;
122
123 /* All fine. Now allocate the readbuffer */
124 return ftdi_read_data_set_chunksize(ftdi, 4096);
125}
126
127/**
128 Allocate and initialize a new ftdi_context
129
130 \return a pointer to a new ftdi_context, or NULL on failure
131*/
132struct ftdi_context *ftdi_new(void)
133{
134 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
135
136 if (ftdi == NULL)
137 {
138 return NULL;
139 }
140
141 if (ftdi_init(ftdi) != 0)
142 {
143 free(ftdi);
144 return NULL;
145 }
146
147 return ftdi;
148}
149
150/**
151 Open selected channels on a chip, otherwise use first channel.
152
153 \param ftdi pointer to ftdi_context
154 \param interface Interface to use for FT2232C/2232H/4232H chips.
155
156 \retval 0: all fine
157 \retval -1: unknown interface
158 \retval -2: USB device unavailable
159 \retval -3: Device already open, interface can't be set in that state
160*/
161int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
162{
163 if (ftdi == NULL)
164 ftdi_error_return(-2, "USB device unavailable");
165
166 if (ftdi->usb_dev != NULL)
167 {
168 int check_interface = interface;
169 if (check_interface == INTERFACE_ANY)
170 check_interface = INTERFACE_A;
171
172 if (ftdi->index != check_interface)
173 ftdi_error_return(-3, "Interface can not be changed on an already open device");
174 }
175
176 switch (interface)
177 {
178 case INTERFACE_ANY:
179 case INTERFACE_A:
180 ftdi->interface = 0;
181 ftdi->index = INTERFACE_A;
182 ftdi->in_ep = 0x02;
183 ftdi->out_ep = 0x81;
184 break;
185 case INTERFACE_B:
186 ftdi->interface = 1;
187 ftdi->index = INTERFACE_B;
188 ftdi->in_ep = 0x04;
189 ftdi->out_ep = 0x83;
190 break;
191 case INTERFACE_C:
192 ftdi->interface = 2;
193 ftdi->index = INTERFACE_C;
194 ftdi->in_ep = 0x06;
195 ftdi->out_ep = 0x85;
196 break;
197 case INTERFACE_D:
198 ftdi->interface = 3;
199 ftdi->index = INTERFACE_D;
200 ftdi->in_ep = 0x08;
201 ftdi->out_ep = 0x87;
202 break;
203 default:
204 ftdi_error_return(-1, "Unknown interface");
205 }
206 return 0;
207}
208
209/**
210 Deinitializes a ftdi_context.
211
212 \param ftdi pointer to ftdi_context
213*/
214void ftdi_deinit(struct ftdi_context *ftdi)
215{
216 if (ftdi == NULL)
217 return;
218
219 ftdi_usb_close_internal (ftdi);
220
221 if (ftdi->readbuffer != NULL)
222 {
223 free(ftdi->readbuffer);
224 ftdi->readbuffer = NULL;
225 }
226
227 if (ftdi->eeprom != NULL)
228 {
229 if (ftdi->eeprom->manufacturer != 0)
230 {
231 free(ftdi->eeprom->manufacturer);
232 ftdi->eeprom->manufacturer = 0;
233 }
234 if (ftdi->eeprom->product != 0)
235 {
236 free(ftdi->eeprom->product);
237 ftdi->eeprom->product = 0;
238 }
239 if (ftdi->eeprom->serial != 0)
240 {
241 free(ftdi->eeprom->serial);
242 ftdi->eeprom->serial = 0;
243 }
244 free(ftdi->eeprom);
245 ftdi->eeprom = NULL;
246 }
247
248 if (ftdi->usb_ctx)
249 {
250 libusb_exit(ftdi->usb_ctx);
251 ftdi->usb_ctx = NULL;
252 }
253}
254
255/**
256 Deinitialize and free an ftdi_context.
257
258 \param ftdi pointer to ftdi_context
259*/
260void ftdi_free(struct ftdi_context *ftdi)
261{
262 ftdi_deinit(ftdi);
263 free(ftdi);
264}
265
266/**
267 Use an already open libusb device.
268
269 \param ftdi pointer to ftdi_context
270 \param usb libusb libusb_device_handle to use
271*/
272void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
273{
274 if (ftdi == NULL)
275 return;
276
277 ftdi->usb_dev = usb;
278}
279
280/**
281 * @brief Get libftdi library version
282 *
283 * @return ftdi_version_info Library version information
284 **/
285struct ftdi_version_info ftdi_get_library_version(void)
286{
287 struct ftdi_version_info ver;
288
289 ver.major = FTDI_MAJOR_VERSION;
290 ver.minor = FTDI_MINOR_VERSION;
291 ver.micro = FTDI_MICRO_VERSION;
292 ver.version_str = FTDI_VERSION_STRING;
293 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
294
295 return ver;
296}
297
298/**
299 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
300 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
301 use. With VID:PID 0:0, search for the default devices
302 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014, 0x403:0x6015)
303
304 \param ftdi pointer to ftdi_context
305 \param devlist Pointer where to store list of found devices
306 \param vendor Vendor ID to search for
307 \param product Product ID to search for
308
309 \retval >0: number of devices found
310 \retval -3: out of memory
311 \retval -5: libusb_get_device_list() failed
312 \retval -6: libusb_get_device_descriptor() failed
313*/
314int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
315{
316 struct ftdi_device_list **curdev;
317 libusb_device *dev;
318 libusb_device **devs;
319 int count = 0;
320 int i = 0;
321
322 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
323 ftdi_error_return(-5, "libusb_get_device_list() failed");
324
325 curdev = devlist;
326 *curdev = NULL;
327
328 while ((dev = devs[i++]) != NULL)
329 {
330 struct libusb_device_descriptor desc;
331
332 if (libusb_get_device_descriptor(dev, &desc) < 0)
333 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
334
335 if (((vendor || product) &&
336 desc.idVendor == vendor && desc.idProduct == product) ||
337 (!(vendor || product) &&
338 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
339 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014
340 || desc.idProduct == 0x6015)))
341 {
342 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
343 if (!*curdev)
344 ftdi_error_return_free_device_list(-3, "out of memory", devs);
345
346 (*curdev)->next = NULL;
347 (*curdev)->dev = dev;
348 libusb_ref_device(dev);
349 curdev = &(*curdev)->next;
350 count++;
351 }
352 }
353 libusb_free_device_list(devs,1);
354 return count;
355}
356
357/**
358 Frees a usb device list.
359
360 \param devlist USB device list created by ftdi_usb_find_all()
361*/
362void ftdi_list_free(struct ftdi_device_list **devlist)
363{
364 struct ftdi_device_list *curdev, *next;
365
366 for (curdev = *devlist; curdev != NULL;)
367 {
368 next = curdev->next;
369 libusb_unref_device(curdev->dev);
370 free(curdev);
371 curdev = next;
372 }
373
374 *devlist = NULL;
375}
376
377/**
378 Frees a usb device list.
379
380 \param devlist USB device list created by ftdi_usb_find_all()
381*/
382void ftdi_list_free2(struct ftdi_device_list *devlist)
383{
384 ftdi_list_free(&devlist);
385}
386
387/**
388 Return device ID strings from the usb device.
389
390 The parameters manufacturer, description and serial may be NULL
391 or pointer to buffers to store the fetched strings.
392
393 \note Use this function only in combination with ftdi_usb_find_all()
394 as it closes the internal "usb_dev" after use.
395
396 \param ftdi pointer to ftdi_context
397 \param dev libusb usb_dev to use
398 \param manufacturer Store manufacturer string here if not NULL
399 \param mnf_len Buffer size of manufacturer string
400 \param description Store product description string here if not NULL
401 \param desc_len Buffer size of product description string
402 \param serial Store serial string here if not NULL
403 \param serial_len Buffer size of serial string
404
405 \retval 0: all fine
406 \retval -1: wrong arguments
407 \retval -4: unable to open device
408 \retval -7: get product manufacturer failed
409 \retval -8: get product description failed
410 \retval -9: get serial number failed
411 \retval -11: libusb_get_device_descriptor() failed
412*/
413int ftdi_usb_get_strings(struct ftdi_context *ftdi,
414 struct libusb_device *dev,
415 char *manufacturer, int mnf_len,
416 char *description, int desc_len,
417 char *serial, int serial_len)
418{
419 int ret;
420
421 if ((ftdi==NULL) || (dev==NULL))
422 return -1;
423
424 if (ftdi->usb_dev == NULL && libusb_open(dev, &ftdi->usb_dev) < 0)
425 ftdi_error_return(-4, "libusb_open() failed");
426
427 // ftdi->usb_dev will not be NULL when entering ftdi_usb_get_strings2(), so
428 // it won't be closed either. This allows us to close it whether we actually
429 // called libusb_open() up above or not. This matches the expected behavior
430 // (and note) for ftdi_usb_get_strings().
431 ret = ftdi_usb_get_strings2(ftdi, dev,
432 manufacturer, mnf_len,
433 description, desc_len,
434 serial, serial_len);
435
436 // only close it if it was successful, as all other return codes close
437 // before returning already.
438 if (ret == 0)
439 ftdi_usb_close_internal(ftdi);
440
441 return ret;
442}
443
444/**
445 Return device ID strings from the usb device.
446
447 The parameters manufacturer, description and serial may be NULL
448 or pointer to buffers to store the fetched strings.
449
450 \note The old function ftdi_usb_get_strings() always closes the device.
451 This version only closes the device if it was opened by it.
452
453 \param ftdi pointer to ftdi_context
454 \param dev libusb usb_dev to use
455 \param manufacturer Store manufacturer string here if not NULL
456 \param mnf_len Buffer size of manufacturer string
457 \param description Store product description string here if not NULL
458 \param desc_len Buffer size of product description string
459 \param serial Store serial string here if not NULL
460 \param serial_len Buffer size of serial string
461
462 \retval 0: all fine
463 \retval -1: wrong arguments
464 \retval -4: unable to open device
465 \retval -7: get product manufacturer failed
466 \retval -8: get product description failed
467 \retval -9: get serial number failed
468 \retval -11: libusb_get_device_descriptor() failed
469*/
470int ftdi_usb_get_strings2(struct ftdi_context *ftdi, struct libusb_device *dev,
471 char *manufacturer, int mnf_len,
472 char *description, int desc_len,
473 char *serial, int serial_len)
474{
475 struct libusb_device_descriptor desc;
476 char need_open;
477
478 if ((ftdi==NULL) || (dev==NULL))
479 return -1;
480
481 need_open = (ftdi->usb_dev == NULL);
482 if (need_open && libusb_open(dev, &ftdi->usb_dev) < 0)
483 ftdi_error_return(-4, "libusb_open() failed");
484
485 if (libusb_get_device_descriptor(dev, &desc) < 0)
486 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
487
488 if (manufacturer != NULL)
489 {
490 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
491 {
492 ftdi_usb_close_internal (ftdi);
493 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
494 }
495 }
496
497 if (description != NULL)
498 {
499 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
500 {
501 ftdi_usb_close_internal (ftdi);
502 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
503 }
504 }
505
506 if (serial != NULL)
507 {
508 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
509 {
510 ftdi_usb_close_internal (ftdi);
511 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
512 }
513 }
514
515 if (need_open)
516 ftdi_usb_close_internal (ftdi);
517
518 return 0;
519}
520
521/**
522 * Internal function to determine the maximum packet size.
523 * \param ftdi pointer to ftdi_context
524 * \param dev libusb usb_dev to use
525 * \retval Maximum packet size for this device
526 */
527static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
528{
529 struct libusb_device_descriptor desc;
530 struct libusb_config_descriptor *config0;
531 unsigned int packet_size;
532
533 // Sanity check
534 if (ftdi == NULL || dev == NULL)
535 return 64;
536
537 // Determine maximum packet size. Init with default value.
538 // New hi-speed devices from FTDI use a packet size of 512 bytes
539 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
540 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
541 packet_size = 512;
542 else
543 packet_size = 64;
544
545 if (libusb_get_device_descriptor(dev, &desc) < 0)
546 return packet_size;
547
548 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
549 return packet_size;
550
551 if (desc.bNumConfigurations > 0)
552 {
553 if (ftdi->interface < config0->bNumInterfaces)
554 {
555 struct libusb_interface interface = config0->interface[ftdi->interface];
556 if (interface.num_altsetting > 0)
557 {
558 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
559 if (descriptor.bNumEndpoints > 0)
560 {
561 packet_size = descriptor.endpoint[0].wMaxPacketSize;
562 }
563 }
564 }
565 }
566
567 libusb_free_config_descriptor (config0);
568 return packet_size;
569}
570
571/**
572 Opens a ftdi device given by an usb_device.
573
574 \param ftdi pointer to ftdi_context
575 \param dev libusb usb_dev to use
576
577 \retval 0: all fine
578 \retval -3: unable to config device
579 \retval -4: unable to open device
580 \retval -5: unable to claim device
581 \retval -6: reset failed
582 \retval -7: set baudrate failed
583 \retval -8: ftdi context invalid
584 \retval -9: libusb_get_device_descriptor() failed
585 \retval -10: libusb_get_config_descriptor() failed
586 \retval -11: libusb_detach_kernel_driver() failed
587 \retval -12: libusb_get_configuration() failed
588*/
589int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
590{
591 struct libusb_device_descriptor desc;
592 struct libusb_config_descriptor *config0;
593 int cfg, cfg0, detach_errno = 0;
594
595 if (ftdi == NULL)
596 ftdi_error_return(-8, "ftdi context invalid");
597
598 if (libusb_open(dev, &ftdi->usb_dev) < 0)
599 ftdi_error_return(-4, "libusb_open() failed");
600
601 if (libusb_get_device_descriptor(dev, &desc) < 0)
602 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
603
604 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
605 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
606 cfg0 = config0->bConfigurationValue;
607 libusb_free_config_descriptor (config0);
608
609 // Try to detach ftdi_sio kernel module.
610 //
611 // The return code is kept in a separate variable and only parsed
612 // if usb_set_configuration() or usb_claim_interface() fails as the
613 // detach operation might be denied and everything still works fine.
614 // Likely scenario is a static ftdi_sio kernel module.
615 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
616 {
617 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
618 detach_errno = errno;
619 }
620 else if (ftdi->module_detach_mode == AUTO_DETACH_REATACH_SIO_MODULE)
621 {
622 if (libusb_set_auto_detach_kernel_driver(ftdi->usb_dev, 1) != LIBUSB_SUCCESS)
623 detach_errno = errno;
624 }
625
626 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
627 ftdi_error_return(-12, "libusb_get_configuration () failed");
628 // set configuration (needed especially for windows)
629 // tolerate EBUSY: one device with one configuration, but two interfaces
630 // and libftdi sessions to both interfaces (e.g. FT2232)
631 if (desc.bNumConfigurations > 0 && cfg != cfg0)
632 {
633 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
634 {
635 ftdi_usb_close_internal (ftdi);
636 if (detach_errno == EPERM)
637 {
638 ftdi_error_return(-8, "inappropriate permissions on device!");
639 }
640 else
641 {
642 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
643 }
644 }
645 }
646
647 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
648 {
649 ftdi_usb_close_internal (ftdi);
650 if (detach_errno == EPERM)
651 {
652 ftdi_error_return(-8, "inappropriate permissions on device!");
653 }
654 else
655 {
656 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
657 }
658 }
659
660 if (ftdi_usb_reset (ftdi) != 0)
661 {
662 ftdi_usb_close_internal (ftdi);
663 ftdi_error_return(-6, "ftdi_usb_reset failed");
664 }
665
666 // Try to guess chip type
667 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
668 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
669 && desc.iSerialNumber == 0))
670 ftdi->type = TYPE_BM;
671 else if (desc.bcdDevice == 0x200)
672 ftdi->type = TYPE_AM;
673 else if (desc.bcdDevice == 0x500)
674 ftdi->type = TYPE_2232C;
675 else if (desc.bcdDevice == 0x600)
676 ftdi->type = TYPE_R;
677 else if (desc.bcdDevice == 0x700)
678 ftdi->type = TYPE_2232H;
679 else if (desc.bcdDevice == 0x800)
680 ftdi->type = TYPE_4232H;
681 else if (desc.bcdDevice == 0x900)
682 ftdi->type = TYPE_232H;
683 else if (desc.bcdDevice == 0x1000)
684 ftdi->type = TYPE_230X;
685
686 // Determine maximum packet size
687 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
688
689 if (ftdi_set_baudrate (ftdi, 9600) != 0)
690 {
691 ftdi_usb_close_internal (ftdi);
692 ftdi_error_return(-7, "set baudrate failed");
693 }
694
695 ftdi_error_return(0, "all fine");
696}
697
698/**
699 Opens the first device with a given vendor and product ids.
700
701 \param ftdi pointer to ftdi_context
702 \param vendor Vendor ID
703 \param product Product ID
704
705 \retval same as ftdi_usb_open_desc()
706*/
707int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
708{
709 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
710}
711
712/**
713 Opens the first device with a given, vendor id, product id,
714 description and serial.
715
716 \param ftdi pointer to ftdi_context
717 \param vendor Vendor ID
718 \param product Product ID
719 \param description Description to search for. Use NULL if not needed.
720 \param serial Serial to search for. Use NULL if not needed.
721
722 \retval 0: all fine
723 \retval -3: usb device not found
724 \retval -4: unable to open device
725 \retval -5: unable to claim device
726 \retval -6: reset failed
727 \retval -7: set baudrate failed
728 \retval -8: get product description failed
729 \retval -9: get serial number failed
730 \retval -12: libusb_get_device_list() failed
731 \retval -13: libusb_get_device_descriptor() failed
732*/
733int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
734 const char* description, const char* serial)
735{
736 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
737}
738
739/**
740 Opens the index-th device with a given, vendor id, product id,
741 description and serial.
742
743 \param ftdi pointer to ftdi_context
744 \param vendor Vendor ID
745 \param product Product ID
746 \param description Description to search for. Use NULL if not needed.
747 \param serial Serial to search for. Use NULL if not needed.
748 \param index Number of matching device to open if there are more than one, starts with 0.
749
750 \retval 0: all fine
751 \retval -1: usb_find_busses() failed
752 \retval -2: usb_find_devices() failed
753 \retval -3: usb device not found
754 \retval -4: unable to open device
755 \retval -5: unable to claim device
756 \retval -6: reset failed
757 \retval -7: set baudrate failed
758 \retval -8: get product description failed
759 \retval -9: get serial number failed
760 \retval -10: unable to close device
761 \retval -11: ftdi context invalid
762 \retval -12: libusb_get_device_list() failed
763*/
764int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
765 const char* description, const char* serial, unsigned int index)
766{
767 libusb_device *dev;
768 libusb_device **devs;
769 char string[256];
770 int i = 0;
771
772 if (ftdi == NULL)
773 ftdi_error_return(-11, "ftdi context invalid");
774
775 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
776 ftdi_error_return(-12, "libusb_get_device_list() failed");
777
778 while ((dev = devs[i++]) != NULL)
779 {
780 struct libusb_device_descriptor desc;
781 int res;
782
783 if (libusb_get_device_descriptor(dev, &desc) < 0)
784 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
785
786 if (desc.idVendor == vendor && desc.idProduct == product)
787 {
788 if (libusb_open(dev, &ftdi->usb_dev) < 0)
789 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
790
791 if (description != NULL)
792 {
793 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
794 {
795 ftdi_usb_close_internal (ftdi);
796 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
797 }
798 if (strncmp(string, description, sizeof(string)) != 0)
799 {
800 ftdi_usb_close_internal (ftdi);
801 continue;
802 }
803 }
804 if (serial != NULL)
805 {
806 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
807 {
808 ftdi_usb_close_internal (ftdi);
809 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
810 }
811 if (strncmp(string, serial, sizeof(string)) != 0)
812 {
813 ftdi_usb_close_internal (ftdi);
814 continue;
815 }
816 }
817
818 ftdi_usb_close_internal (ftdi);
819
820 if (index > 0)
821 {
822 index--;
823 continue;
824 }
825
826 res = ftdi_usb_open_dev(ftdi, dev);
827 libusb_free_device_list(devs,1);
828 return res;
829 }
830 }
831
832 // device not found
833 ftdi_error_return_free_device_list(-3, "device not found", devs);
834}
835
836/**
837 Opens the device at a given USB bus and device address.
838
839 \param ftdi pointer to ftdi_context
840 \param bus Bus number
841 \param addr Device address
842
843 \retval 0: all fine
844 \retval -1: usb_find_busses() failed
845 \retval -2: usb_find_devices() failed
846 \retval -3: usb device not found
847 \retval -4: unable to open device
848 \retval -5: unable to claim device
849 \retval -6: reset failed
850 \retval -7: set baudrate failed
851 \retval -8: get product description failed
852 \retval -9: get serial number failed
853 \retval -10: unable to close device
854 \retval -11: ftdi context invalid
855 \retval -12: libusb_get_device_list() failed
856*/
857int ftdi_usb_open_bus_addr(struct ftdi_context *ftdi, uint8_t bus, uint8_t addr)
858{
859 libusb_device *dev;
860 libusb_device **devs;
861 int i = 0;
862
863 if (ftdi == NULL)
864 ftdi_error_return(-11, "ftdi context invalid");
865
866 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
867 ftdi_error_return(-12, "libusb_get_device_list() failed");
868
869 while ((dev = devs[i++]) != NULL)
870 {
871 if (libusb_get_bus_number(dev) == bus && libusb_get_device_address(dev) == addr)
872 {
873 int res;
874 res = ftdi_usb_open_dev(ftdi, dev);
875 libusb_free_device_list(devs,1);
876 return res;
877 }
878 }
879
880 // device not found
881 ftdi_error_return_free_device_list(-3, "device not found", devs);
882}
883
884/**
885 Opens the ftdi-device described by a description-string.
886 Intended to be used for parsing a device-description given as commandline argument.
887
888 \param ftdi pointer to ftdi_context
889 \param description NULL-terminated description-string, using this format:
890 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
891 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
892 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
893 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
894
895 \note The description format may be extended in later versions.
896
897 \retval 0: all fine
898 \retval -2: libusb_get_device_list() failed
899 \retval -3: usb device not found
900 \retval -4: unable to open device
901 \retval -5: unable to claim device
902 \retval -6: reset failed
903 \retval -7: set baudrate failed
904 \retval -8: get product description failed
905 \retval -9: get serial number failed
906 \retval -10: unable to close device
907 \retval -11: illegal description format
908 \retval -12: ftdi context invalid
909*/
910int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
911{
912 if (ftdi == NULL)
913 ftdi_error_return(-12, "ftdi context invalid");
914
915 if (description[0] == 0 || description[1] != ':')
916 ftdi_error_return(-11, "illegal description format");
917
918 if (description[0] == 'd')
919 {
920 libusb_device *dev;
921 libusb_device **devs;
922 unsigned int bus_number, device_address;
923 int i = 0;
924
925 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
926 ftdi_error_return(-2, "libusb_get_device_list() failed");
927
928 /* XXX: This doesn't handle symlinks/odd paths/etc... */
929 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
930 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
931
932 while ((dev = devs[i++]) != NULL)
933 {
934 int ret;
935 if (bus_number == libusb_get_bus_number (dev)
936 && device_address == libusb_get_device_address (dev))
937 {
938 ret = ftdi_usb_open_dev(ftdi, dev);
939 libusb_free_device_list(devs,1);
940 return ret;
941 }
942 }
943
944 // device not found
945 ftdi_error_return_free_device_list(-3, "device not found", devs);
946 }
947 else if (description[0] == 'i' || description[0] == 's')
948 {
949 unsigned int vendor;
950 unsigned int product;
951 unsigned int index=0;
952 const char *serial=NULL;
953 const char *startp, *endp;
954
955 errno=0;
956 startp=description+2;
957 vendor=strtoul((char*)startp,(char**)&endp,0);
958 if (*endp != ':' || endp == startp || errno != 0)
959 ftdi_error_return(-11, "illegal description format");
960
961 startp=endp+1;
962 product=strtoul((char*)startp,(char**)&endp,0);
963 if (endp == startp || errno != 0)
964 ftdi_error_return(-11, "illegal description format");
965
966 if (description[0] == 'i' && *endp != 0)
967 {
968 /* optional index field in i-mode */
969 if (*endp != ':')
970 ftdi_error_return(-11, "illegal description format");
971
972 startp=endp+1;
973 index=strtoul((char*)startp,(char**)&endp,0);
974 if (*endp != 0 || endp == startp || errno != 0)
975 ftdi_error_return(-11, "illegal description format");
976 }
977 if (description[0] == 's')
978 {
979 if (*endp != ':')
980 ftdi_error_return(-11, "illegal description format");
981
982 /* rest of the description is the serial */
983 serial=endp+1;
984 }
985
986 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
987 }
988 else
989 {
990 ftdi_error_return(-11, "illegal description format");
991 }
992}
993
994/**
995 Resets the ftdi device.
996
997 \param ftdi pointer to ftdi_context
998
999 \retval 0: all fine
1000 \retval -1: FTDI reset failed
1001 \retval -2: USB device unavailable
1002*/
1003int ftdi_usb_reset(struct ftdi_context *ftdi)
1004{
1005 if (ftdi == NULL || ftdi->usb_dev == NULL)
1006 ftdi_error_return(-2, "USB device unavailable");
1007
1008 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1009 SIO_RESET_REQUEST, SIO_RESET_SIO,
1010 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1011 ftdi_error_return(-1,"FTDI reset failed");
1012
1013 // Invalidate data in the readbuffer
1014 ftdi->readbuffer_offset = 0;
1015 ftdi->readbuffer_remaining = 0;
1016
1017 return 0;
1018}
1019
1020/**
1021 Clears the read buffer on the chip and the internal read buffer.
1022 This is the correct behavior for an RX flush.
1023
1024 \param ftdi pointer to ftdi_context
1025
1026 \retval 0: all fine
1027 \retval -1: read buffer purge failed
1028 \retval -2: USB device unavailable
1029*/
1030int ftdi_tciflush(struct ftdi_context *ftdi)
1031{
1032 if (ftdi == NULL || ftdi->usb_dev == NULL)
1033 ftdi_error_return(-2, "USB device unavailable");
1034
1035 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1036 SIO_RESET_REQUEST, SIO_TCIFLUSH,
1037 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1038 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
1039
1040 // Invalidate data in the readbuffer
1041 ftdi->readbuffer_offset = 0;
1042 ftdi->readbuffer_remaining = 0;
1043
1044 return 0;
1045}
1046
1047
1048/**
1049 Clears the write buffer on the chip and the internal read buffer.
1050 This is incorrect behavior for an RX flush.
1051
1052 \param ftdi pointer to ftdi_context
1053
1054 \retval 0: all fine
1055 \retval -1: write buffer purge failed
1056 \retval -2: USB device unavailable
1057
1058 \deprecated Use \ref ftdi_tciflush(struct ftdi_context *ftdi)
1059*/
1060int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
1061{
1062 if (ftdi == NULL || ftdi->usb_dev == NULL)
1063 ftdi_error_return(-2, "USB device unavailable");
1064
1065 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1066 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
1067 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1068 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
1069
1070 // Invalidate data in the readbuffer
1071 ftdi->readbuffer_offset = 0;
1072 ftdi->readbuffer_remaining = 0;
1073
1074 return 0;
1075}
1076
1077/**
1078 Clears the write buffer on the chip.
1079 This is correct behavior for a TX flush.
1080
1081 \param ftdi pointer to ftdi_context
1082
1083 \retval 0: all fine
1084 \retval -1: write buffer purge failed
1085 \retval -2: USB device unavailable
1086*/
1087int ftdi_tcoflush(struct ftdi_context *ftdi)
1088{
1089 if (ftdi == NULL || ftdi->usb_dev == NULL)
1090 ftdi_error_return(-2, "USB device unavailable");
1091
1092 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1093 SIO_RESET_REQUEST, SIO_TCOFLUSH,
1094 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1095 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
1096
1097 return 0;
1098}
1099
1100
1101/**
1102 Clears the read buffer on the chip.
1103 This is incorrect behavior for a TX flush.
1104
1105 \param ftdi pointer to ftdi_context
1106
1107 \retval 0: all fine
1108 \retval -1: read buffer purge failed
1109 \retval -2: USB device unavailable
1110
1111 \deprecated Use \ref ftdi_tcoflush(struct ftdi_context *ftdi)
1112*/
1113int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
1114{
1115 if (ftdi == NULL || ftdi->usb_dev == NULL)
1116 ftdi_error_return(-2, "USB device unavailable");
1117
1118 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1119 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
1120 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1121 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
1122
1123 return 0;
1124}
1125
1126/**
1127 Clears the RX and TX FIFOs on the chip and the internal read buffer.
1128 This is correct behavior for both RX and TX flush.
1129
1130 \param ftdi pointer to ftdi_context
1131
1132 \retval 0: all fine
1133 \retval -1: read buffer purge failed
1134 \retval -2: write buffer purge failed
1135 \retval -3: USB device unavailable
1136*/
1137int ftdi_tcioflush(struct ftdi_context *ftdi)
1138{
1139 int result;
1140
1141 if (ftdi == NULL || ftdi->usb_dev == NULL)
1142 ftdi_error_return(-3, "USB device unavailable");
1143
1144 result = ftdi_tcoflush(ftdi);
1145 if (result < 0)
1146 return -1;
1147
1148 result = ftdi_tciflush(ftdi);
1149 if (result < 0)
1150 return -2;
1151
1152 return 0;
1153}
1154
1155/**
1156 Clears the buffers on the chip and the internal read buffer.
1157 While coded incorrectly, the result is satisfactory.
1158
1159 \param ftdi pointer to ftdi_context
1160
1161 \retval 0: all fine
1162 \retval -1: read buffer purge failed
1163 \retval -2: write buffer purge failed
1164 \retval -3: USB device unavailable
1165
1166 \deprecated Use \ref ftdi_tcioflush(struct ftdi_context *ftdi)
1167*/
1168int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
1169{
1170 int result;
1171
1172 if (ftdi == NULL || ftdi->usb_dev == NULL)
1173 ftdi_error_return(-3, "USB device unavailable");
1174
1175 result = ftdi_usb_purge_rx_buffer(ftdi);
1176 if (result < 0)
1177 return -1;
1178
1179 result = ftdi_usb_purge_tx_buffer(ftdi);
1180 if (result < 0)
1181 return -2;
1182
1183 return 0;
1184}
1185
1186
1187
1188/**
1189 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
1190
1191 \param ftdi pointer to ftdi_context
1192
1193 \retval 0: all fine
1194 \retval -1: usb_release failed
1195 \retval -3: ftdi context invalid
1196*/
1197int ftdi_usb_close(struct ftdi_context *ftdi)
1198{
1199 int rtn = 0;
1200
1201 if (ftdi == NULL)
1202 ftdi_error_return(-3, "ftdi context invalid");
1203
1204 if (ftdi->usb_dev != NULL)
1205 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
1206 rtn = -1;
1207
1208 ftdi_usb_close_internal (ftdi);
1209
1210 return rtn;
1211}
1212
1213/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
1214 to encoded divisor and the achievable baudrate
1215 Function is only used internally
1216 \internal
1217
1218 See AN120
1219 clk/1 -> 0
1220 clk/1.5 -> 1
1221 clk/2 -> 2
1222 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1223 The fractional part has frac_code encoding
1224*/
1225static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1226
1227{
1228 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1229 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1230 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
1231 int divisor, best_divisor, best_baud, best_baud_diff;
1232 int i;
1233 divisor = 24000000 / baudrate;
1234
1235 // Round down to supported fraction (AM only)
1236 divisor -= am_adjust_dn[divisor & 7];
1237
1238 // Try this divisor and the one above it (because division rounds down)
1239 best_divisor = 0;
1240 best_baud = 0;
1241 best_baud_diff = 0;
1242 for (i = 0; i < 2; i++)
1243 {
1244 int try_divisor = divisor + i;
1245 int baud_estimate;
1246 int baud_diff;
1247
1248 // Round up to supported divisor value
1249 if (try_divisor <= 8)
1250 {
1251 // Round up to minimum supported divisor
1252 try_divisor = 8;
1253 }
1254 else if (divisor < 16)
1255 {
1256 // AM doesn't support divisors 9 through 15 inclusive
1257 try_divisor = 16;
1258 }
1259 else
1260 {
1261 // Round up to supported fraction (AM only)
1262 try_divisor += am_adjust_up[try_divisor & 7];
1263 if (try_divisor > 0x1FFF8)
1264 {
1265 // Round down to maximum supported divisor value (for AM)
1266 try_divisor = 0x1FFF8;
1267 }
1268 }
1269 // Get estimated baud rate (to nearest integer)
1270 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1271 // Get absolute difference from requested baud rate
1272 if (baud_estimate < baudrate)
1273 {
1274 baud_diff = baudrate - baud_estimate;
1275 }
1276 else
1277 {
1278 baud_diff = baud_estimate - baudrate;
1279 }
1280 if (i == 0 || baud_diff < best_baud_diff)
1281 {
1282 // Closest to requested baud rate so far
1283 best_divisor = try_divisor;
1284 best_baud = baud_estimate;
1285 best_baud_diff = baud_diff;
1286 if (baud_diff == 0)
1287 {
1288 // Spot on! No point trying
1289 break;
1290 }
1291 }
1292 }
1293 // Encode the best divisor value
1294 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1295 // Deal with special cases for encoded value
1296 if (*encoded_divisor == 1)
1297 {
1298 *encoded_divisor = 0; // 3000000 baud
1299 }
1300 else if (*encoded_divisor == 0x4001)
1301 {
1302 *encoded_divisor = 1; // 2000000 baud (BM only)
1303 }
1304 return best_baud;
1305}
1306
1307/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1308 to encoded divisor and the achievable baudrate
1309 Function is only used internally
1310 \internal
1311
1312 See AN120
1313 clk/1 -> 0
1314 clk/1.5 -> 1
1315 clk/2 -> 2
1316 From /2, 0.125 steps may be taken.
1317 The fractional part has frac_code encoding
1318
1319 value[13:0] of value is the divisor
1320 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1321
1322 H Type have all features above with
1323 {index[8],value[15:14]} is the encoded subdivisor
1324
1325 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
1326 {index[0],value[15:14]} is the encoded subdivisor
1327
1328 AM Type chips have only four fractional subdivisors at value[15:14]
1329 for subdivisors 0, 0.5, 0.25, 0.125
1330*/
1331static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor)
1332{
1333 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1334 int best_baud = 0;
1335 int divisor, best_divisor;
1336 if (baudrate >= clk/clk_div)
1337 {
1338 *encoded_divisor = 0;
1339 best_baud = clk/clk_div;
1340 }
1341 else if (baudrate >= clk/(clk_div + clk_div/2))
1342 {
1343 *encoded_divisor = 1;
1344 best_baud = clk/(clk_div + clk_div/2);
1345 }
1346 else if (baudrate >= clk/(2*clk_div))
1347 {
1348 *encoded_divisor = 2;
1349 best_baud = clk/(2*clk_div);
1350 }
1351 else
1352 {
1353 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1354 divisor = clk*16/clk_div / baudrate;
1355 if (divisor & 1) /* Decide if to round up or down*/
1356 best_divisor = divisor /2 +1;
1357 else
1358 best_divisor = divisor/2;
1359 if(best_divisor > 0x20000)
1360 best_divisor = 0x1ffff;
1361 best_baud = clk*16/clk_div/best_divisor;
1362 if (best_baud & 1) /* Decide if to round up or down*/
1363 best_baud = best_baud /2 +1;
1364 else
1365 best_baud = best_baud /2;
1366 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1367 }
1368 return best_baud;
1369}
1370/**
1371 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1372 Function is only used internally
1373 \internal
1374*/
1375static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1376 unsigned short *value, unsigned short *index)
1377{
1378 int best_baud;
1379 unsigned long encoded_divisor;
1380
1381 if (baudrate <= 0)
1382 {
1383 // Return error
1384 return -1;
1385 }
1386
1387#define H_CLK 120000000
1388#define C_CLK 48000000
1389 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H))
1390 {
1391 if(baudrate*10 > H_CLK /0x3fff)
1392 {
1393 /* On H Devices, use 12 000 000 Baudrate when possible
1394 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
1395 three fractional bits and a 120 MHz clock
1396 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1397 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1398 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1399 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1400 }
1401 else
1402 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1403 }
1404 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R) || (ftdi->type == TYPE_230X))
1405 {
1406 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1407 }
1408 else
1409 {
1410 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
1411 }
1412 // Split into "value" and "index" values
1413 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1414 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
1415 {
1416 *index = (unsigned short)(encoded_divisor >> 8);
1417 *index &= 0xFF00;
1418 *index |= ftdi->index;
1419 }
1420 else
1421 *index = (unsigned short)(encoded_divisor >> 16);
1422
1423 // Return the nearest baud rate
1424 return best_baud;
1425}
1426
1427/**
1428 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1429 * Do not use, it's only for the unit test framework
1430 **/
1431int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1432 unsigned short *value, unsigned short *index)
1433{
1434 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1435}
1436
1437/**
1438 Sets the chip baud rate
1439
1440 \param ftdi pointer to ftdi_context
1441 \param baudrate baud rate to set
1442
1443 \retval 0: all fine
1444 \retval -1: invalid baudrate
1445 \retval -2: setting baudrate failed
1446 \retval -3: USB device unavailable
1447*/
1448int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1449{
1450 unsigned short value, index;
1451 int actual_baudrate;
1452
1453 if (ftdi == NULL || ftdi->usb_dev == NULL)
1454 ftdi_error_return(-3, "USB device unavailable");
1455
1456 if (ftdi->bitbang_enabled)
1457 {
1458 baudrate = baudrate*4;
1459 }
1460
1461 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1462 if (actual_baudrate <= 0)
1463 ftdi_error_return (-1, "Silly baudrate <= 0.");
1464
1465 // Check within tolerance (about 5%)
1466 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1467 || ((actual_baudrate < baudrate)
1468 ? (actual_baudrate * 21 < baudrate * 20)
1469 : (baudrate * 21 < actual_baudrate * 20)))
1470 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1471
1472 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1473 SIO_SET_BAUDRATE_REQUEST, value,
1474 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1475 ftdi_error_return (-2, "Setting new baudrate failed");
1476
1477 ftdi->baudrate = baudrate;
1478 return 0;
1479}
1480
1481/**
1482 Set (RS232) line characteristics.
1483 The break type can only be set via ftdi_set_line_property2()
1484 and defaults to "off".
1485
1486 \param ftdi pointer to ftdi_context
1487 \param bits Number of bits
1488 \param sbit Number of stop bits
1489 \param parity Parity mode
1490
1491 \retval 0: all fine
1492 \retval -1: Setting line property failed
1493*/
1494int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1495 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1496{
1497 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1498}
1499
1500/**
1501 Set (RS232) line characteristics
1502
1503 \param ftdi pointer to ftdi_context
1504 \param bits Number of bits
1505 \param sbit Number of stop bits
1506 \param parity Parity mode
1507 \param break_type Break type
1508
1509 \retval 0: all fine
1510 \retval -1: Setting line property failed
1511 \retval -2: USB device unavailable
1512*/
1513int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1514 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1515 enum ftdi_break_type break_type)
1516{
1517 unsigned short value = bits;
1518
1519 if (ftdi == NULL || ftdi->usb_dev == NULL)
1520 ftdi_error_return(-2, "USB device unavailable");
1521
1522 switch (parity)
1523 {
1524 case NONE:
1525 value |= (0x00 << 8);
1526 break;
1527 case ODD:
1528 value |= (0x01 << 8);
1529 break;
1530 case EVEN:
1531 value |= (0x02 << 8);
1532 break;
1533 case MARK:
1534 value |= (0x03 << 8);
1535 break;
1536 case SPACE:
1537 value |= (0x04 << 8);
1538 break;
1539 }
1540
1541 switch (sbit)
1542 {
1543 case STOP_BIT_1:
1544 value |= (0x00 << 11);
1545 break;
1546 case STOP_BIT_15:
1547 value |= (0x01 << 11);
1548 break;
1549 case STOP_BIT_2:
1550 value |= (0x02 << 11);
1551 break;
1552 }
1553
1554 switch (break_type)
1555 {
1556 case BREAK_OFF:
1557 value |= (0x00 << 14);
1558 break;
1559 case BREAK_ON:
1560 value |= (0x01 << 14);
1561 break;
1562 }
1563
1564 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1565 SIO_SET_DATA_REQUEST, value,
1566 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1567 ftdi_error_return (-1, "Setting new line property failed");
1568
1569 return 0;
1570}
1571
1572/**
1573 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1574
1575 \param ftdi pointer to ftdi_context
1576 \param buf Buffer with the data
1577 \param size Size of the buffer
1578
1579 \retval -666: USB device unavailable
1580 \retval <0: error code from usb_bulk_write()
1581 \retval >0: number of bytes written
1582*/
1583int ftdi_write_data(struct ftdi_context *ftdi, const unsigned char *buf, int size)
1584{
1585 int offset = 0;
1586 int actual_length;
1587
1588 if (ftdi == NULL || ftdi->usb_dev == NULL)
1589 ftdi_error_return(-666, "USB device unavailable");
1590
1591 while (offset < size)
1592 {
1593 int write_size = ftdi->writebuffer_chunksize;
1594
1595 if (offset+write_size > size)
1596 write_size = size-offset;
1597
1598 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, (unsigned char *)buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1599 ftdi_error_return(-1, "usb bulk write failed");
1600
1601 offset += actual_length;
1602 }
1603
1604 return offset;
1605}
1606
1607static void LIBUSB_CALL ftdi_read_data_cb(struct libusb_transfer *transfer)
1608{
1609 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1610 struct ftdi_context *ftdi = tc->ftdi;
1611 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1612
1613 packet_size = ftdi->max_packet_size;
1614
1615 actual_length = transfer->actual_length;
1616
1617 if (actual_length > 2)
1618 {
1619 // skip FTDI status bytes.
1620 // Maybe stored in the future to enable modem use
1621 num_of_chunks = actual_length / packet_size;
1622 chunk_remains = actual_length % packet_size;
1623 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1624
1625 ftdi->readbuffer_offset += 2;
1626 actual_length -= 2;
1627
1628 if (actual_length > packet_size - 2)
1629 {
1630 for (i = 1; i < num_of_chunks; i++)
1631 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1632 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1633 packet_size - 2);
1634 if (chunk_remains > 2)
1635 {
1636 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1637 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1638 chunk_remains-2);
1639 actual_length -= 2*num_of_chunks;
1640 }
1641 else
1642 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1643 }
1644
1645 if (actual_length > 0)
1646 {
1647 // data still fits in buf?
1648 if (tc->offset + actual_length <= tc->size)
1649 {
1650 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1651 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1652 tc->offset += actual_length;
1653
1654 ftdi->readbuffer_offset = 0;
1655 ftdi->readbuffer_remaining = 0;
1656
1657 /* Did we read exactly the right amount of bytes? */
1658 if (tc->offset == tc->size)
1659 {
1660 //printf("read_data exact rem %d offset %d\n",
1661 //ftdi->readbuffer_remaining, offset);
1662 tc->completed = 1;
1663 return;
1664 }
1665 }
1666 else
1667 {
1668 // only copy part of the data or size <= readbuffer_chunksize
1669 int part_size = tc->size - tc->offset;
1670 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1671 tc->offset += part_size;
1672
1673 ftdi->readbuffer_offset += part_size;
1674 ftdi->readbuffer_remaining = actual_length - part_size;
1675
1676 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1677 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1678 tc->completed = 1;
1679 return;
1680 }
1681 }
1682 }
1683
1684 if (transfer->status == LIBUSB_TRANSFER_CANCELLED)
1685 tc->completed = LIBUSB_TRANSFER_CANCELLED;
1686 else
1687 {
1688 ret = libusb_submit_transfer (transfer);
1689 if (ret < 0)
1690 tc->completed = 1;
1691 }
1692}
1693
1694
1695static void LIBUSB_CALL ftdi_write_data_cb(struct libusb_transfer *transfer)
1696{
1697 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1698 struct ftdi_context *ftdi = tc->ftdi;
1699
1700 tc->offset += transfer->actual_length;
1701
1702 if (tc->offset == tc->size)
1703 {
1704 tc->completed = 1;
1705 }
1706 else
1707 {
1708 int write_size = ftdi->writebuffer_chunksize;
1709 int ret;
1710
1711 if (tc->offset + write_size > tc->size)
1712 write_size = tc->size - tc->offset;
1713
1714 transfer->length = write_size;
1715 transfer->buffer = tc->buf + tc->offset;
1716
1717 if (transfer->status == LIBUSB_TRANSFER_CANCELLED)
1718 tc->completed = LIBUSB_TRANSFER_CANCELLED;
1719 else
1720 {
1721 ret = libusb_submit_transfer (transfer);
1722 if (ret < 0)
1723 tc->completed = 1;
1724 }
1725 }
1726}
1727
1728
1729/**
1730 Writes data to the chip. Does not wait for completion of the transfer
1731 nor does it make sure that the transfer was successful.
1732
1733 Use libusb 1.0 asynchronous API.
1734
1735 \param ftdi pointer to ftdi_context
1736 \param buf Buffer with the data
1737 \param size Size of the buffer
1738
1739 \retval NULL: Some error happens when submit transfer
1740 \retval !NULL: Pointer to a ftdi_transfer_control
1741*/
1742
1743struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1744{
1745 struct ftdi_transfer_control *tc;
1746 struct libusb_transfer *transfer;
1747 int write_size, ret;
1748
1749 if (ftdi == NULL || ftdi->usb_dev == NULL)
1750 return NULL;
1751
1752 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1753 if (!tc)
1754 return NULL;
1755
1756 transfer = libusb_alloc_transfer(0);
1757 if (!transfer)
1758 {
1759 free(tc);
1760 return NULL;
1761 }
1762
1763 tc->ftdi = ftdi;
1764 tc->completed = 0;
1765 tc->buf = buf;
1766 tc->size = size;
1767 tc->offset = 0;
1768
1769 if (size < (int)ftdi->writebuffer_chunksize)
1770 write_size = size;
1771 else
1772 write_size = ftdi->writebuffer_chunksize;
1773
1774 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1775 write_size, ftdi_write_data_cb, tc,
1776 ftdi->usb_write_timeout);
1777 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1778
1779 ret = libusb_submit_transfer(transfer);
1780 if (ret < 0)
1781 {
1782 libusb_free_transfer(transfer);
1783 free(tc);
1784 return NULL;
1785 }
1786 tc->transfer = transfer;
1787
1788 return tc;
1789}
1790
1791/**
1792 Reads data from the chip. Does not wait for completion of the transfer
1793 nor does it make sure that the transfer was successful.
1794
1795 Use libusb 1.0 asynchronous API.
1796
1797 \param ftdi pointer to ftdi_context
1798 \param buf Buffer with the data
1799 \param size Size of the buffer
1800
1801 \retval NULL: Some error happens when submit transfer
1802 \retval !NULL: Pointer to a ftdi_transfer_control
1803*/
1804
1805struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1806{
1807 struct ftdi_transfer_control *tc;
1808 struct libusb_transfer *transfer;
1809 int ret;
1810
1811 if (ftdi == NULL || ftdi->usb_dev == NULL)
1812 return NULL;
1813
1814 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1815 if (!tc)
1816 return NULL;
1817
1818 tc->ftdi = ftdi;
1819 tc->buf = buf;
1820 tc->size = size;
1821
1822 if (size <= (int)ftdi->readbuffer_remaining)
1823 {
1824 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1825
1826 // Fix offsets
1827 ftdi->readbuffer_remaining -= size;
1828 ftdi->readbuffer_offset += size;
1829
1830 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1831
1832 tc->completed = 1;
1833 tc->offset = size;
1834 tc->transfer = NULL;
1835 return tc;
1836 }
1837
1838 tc->completed = 0;
1839 if (ftdi->readbuffer_remaining != 0)
1840 {
1841 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1842
1843 tc->offset = ftdi->readbuffer_remaining;
1844 }
1845 else
1846 tc->offset = 0;
1847
1848 transfer = libusb_alloc_transfer(0);
1849 if (!transfer)
1850 {
1851 free (tc);
1852 return NULL;
1853 }
1854
1855 ftdi->readbuffer_remaining = 0;
1856 ftdi->readbuffer_offset = 0;
1857
1858 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1859 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1860
1861 ret = libusb_submit_transfer(transfer);
1862 if (ret < 0)
1863 {
1864 libusb_free_transfer(transfer);
1865 free (tc);
1866 return NULL;
1867 }
1868 tc->transfer = transfer;
1869
1870 return tc;
1871}
1872
1873/**
1874 Wait for completion of the transfer.
1875
1876 Use libusb 1.0 asynchronous API.
1877
1878 \param tc pointer to ftdi_transfer_control
1879
1880 \retval < 0: Some error happens
1881 \retval >= 0: Data size transferred
1882*/
1883
1884int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1885{
1886 int ret;
1887 struct timeval to = { 0, 0 };
1888 while (!tc->completed)
1889 {
1890 ret = libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx,
1891 &to, &tc->completed);
1892 if (ret < 0)
1893 {
1894 if (ret == LIBUSB_ERROR_INTERRUPTED)
1895 continue;
1896 libusb_cancel_transfer(tc->transfer);
1897 while (!tc->completed)
1898 if (libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx,
1899 &to, &tc->completed) < 0)
1900 break;
1901 libusb_free_transfer(tc->transfer);
1902 free (tc);
1903 return ret;
1904 }
1905 }
1906
1907 ret = tc->offset;
1908 /**
1909 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1910 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1911 **/
1912 if (tc->transfer)
1913 {
1914 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1915 ret = -1;
1916 libusb_free_transfer(tc->transfer);
1917 }
1918 free(tc);
1919 return ret;
1920}
1921
1922/**
1923 Cancel transfer and wait for completion.
1924
1925 Use libusb 1.0 asynchronous API.
1926
1927 \param tc pointer to ftdi_transfer_control
1928 \param to pointer to timeout value or NULL for infinite
1929*/
1930
1931void ftdi_transfer_data_cancel(struct ftdi_transfer_control *tc,
1932 struct timeval * to)
1933{
1934 struct timeval tv = { 0, 0 };
1935
1936 if (!tc->completed && tc->transfer != NULL)
1937 {
1938 if (to == NULL)
1939 to = &tv;
1940
1941 libusb_cancel_transfer(tc->transfer);
1942 while (!tc->completed)
1943 {
1944 if (libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx, to, &tc->completed) < 0)
1945 break;
1946 }
1947 }
1948
1949 if (tc->transfer)
1950 libusb_free_transfer(tc->transfer);
1951
1952 free (tc);
1953}
1954
1955/**
1956 Configure write buffer chunk size.
1957 Default is 4096.
1958
1959 \param ftdi pointer to ftdi_context
1960 \param chunksize Chunk size
1961
1962 \retval 0: all fine
1963 \retval -1: ftdi context invalid
1964*/
1965int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1966{
1967 if (ftdi == NULL)
1968 ftdi_error_return(-1, "ftdi context invalid");
1969
1970 ftdi->writebuffer_chunksize = chunksize;
1971 return 0;
1972}
1973
1974/**
1975 Get write buffer chunk size.
1976
1977 \param ftdi pointer to ftdi_context
1978 \param chunksize Pointer to store chunk size in
1979
1980 \retval 0: all fine
1981 \retval -1: ftdi context invalid
1982*/
1983int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1984{
1985 if (ftdi == NULL)
1986 ftdi_error_return(-1, "ftdi context invalid");
1987
1988 *chunksize = ftdi->writebuffer_chunksize;
1989 return 0;
1990}
1991
1992/**
1993 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1994
1995 Automatically strips the two modem status bytes transfered during every read.
1996
1997 \param ftdi pointer to ftdi_context
1998 \param buf Buffer to store data in
1999 \param size Size of the buffer
2000
2001 \retval -666: USB device unavailable
2002 \retval <0: error code from libusb_bulk_transfer()
2003 \retval 0: no data was available
2004 \retval >0: number of bytes read
2005
2006*/
2007int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
2008{
2009 int offset = 0, ret, i, num_of_chunks, chunk_remains;
2010 int packet_size;
2011 int actual_length = 1;
2012
2013 if (ftdi == NULL || ftdi->usb_dev == NULL)
2014 ftdi_error_return(-666, "USB device unavailable");
2015
2016 // Packet size sanity check (avoid division by zero)
2017 packet_size = ftdi->max_packet_size;
2018 if (packet_size == 0)
2019 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
2020
2021 // everything we want is still in the readbuffer?
2022 if (size <= (int)ftdi->readbuffer_remaining)
2023 {
2024 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
2025
2026 // Fix offsets
2027 ftdi->readbuffer_remaining -= size;
2028 ftdi->readbuffer_offset += size;
2029
2030 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
2031
2032 return size;
2033 }
2034 // something still in the readbuffer, but not enough to satisfy 'size'?
2035 if (ftdi->readbuffer_remaining != 0)
2036 {
2037 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
2038
2039 // Fix offset
2040 offset += ftdi->readbuffer_remaining;
2041 }
2042 // do the actual USB read
2043 while (offset < size && actual_length > 0)
2044 {
2045 ftdi->readbuffer_remaining = 0;
2046 ftdi->readbuffer_offset = 0;
2047 /* returns how much received */
2048 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
2049 if (ret < 0)
2050 ftdi_error_return(ret, "usb bulk read failed");
2051
2052 if (actual_length > 2)
2053 {
2054 // skip FTDI status bytes.
2055 // Maybe stored in the future to enable modem use
2056 num_of_chunks = actual_length / packet_size;
2057 chunk_remains = actual_length % packet_size;
2058 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
2059
2060 ftdi->readbuffer_offset += 2;
2061 actual_length -= 2;
2062
2063 if (actual_length > packet_size - 2)
2064 {
2065 for (i = 1; i < num_of_chunks; i++)
2066 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
2067 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
2068 packet_size - 2);
2069 if (chunk_remains > 2)
2070 {
2071 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
2072 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
2073 chunk_remains-2);
2074 actual_length -= 2*num_of_chunks;
2075 }
2076 else
2077 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
2078 }
2079 }
2080 else if (actual_length <= 2)
2081 {
2082 // no more data to read?
2083 return offset;
2084 }
2085 if (actual_length > 0)
2086 {
2087 // data still fits in buf?
2088 if (offset+actual_length <= size)
2089 {
2090 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
2091 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
2092 offset += actual_length;
2093
2094 /* Did we read exactly the right amount of bytes? */
2095 if (offset == size)
2096 //printf("read_data exact rem %d offset %d\n",
2097 //ftdi->readbuffer_remaining, offset);
2098 return offset;
2099 }
2100 else
2101 {
2102 // only copy part of the data or size <= readbuffer_chunksize
2103 int part_size = size-offset;
2104 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
2105
2106 ftdi->readbuffer_offset += part_size;
2107 ftdi->readbuffer_remaining = actual_length-part_size;
2108 offset += part_size;
2109
2110 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
2111 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
2112
2113 return offset;
2114 }
2115 }
2116 }
2117 // never reached
2118 return -127;
2119}
2120
2121/**
2122 Configure read buffer chunk size.
2123 Default is 4096.
2124
2125 Automatically reallocates the buffer.
2126
2127 \param ftdi pointer to ftdi_context
2128 \param chunksize Chunk size
2129
2130 \retval 0: all fine
2131 \retval -1: ftdi context invalid
2132*/
2133int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
2134{
2135 unsigned char *new_buf;
2136
2137 if (ftdi == NULL)
2138 ftdi_error_return(-1, "ftdi context invalid");
2139
2140 // Invalidate all remaining data
2141 ftdi->readbuffer_offset = 0;
2142 ftdi->readbuffer_remaining = 0;
2143#ifdef __linux__
2144 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
2145 which is defined in libusb-1.0. Otherwise, each USB read request will
2146 be divided into multiple URBs. This will cause issues on Linux kernel
2147 older than 2.6.32. */
2148 if (chunksize > 16384)
2149 chunksize = 16384;
2150#endif
2151
2152 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
2153 ftdi_error_return(-1, "out of memory for readbuffer");
2154
2155 ftdi->readbuffer = new_buf;
2156 ftdi->readbuffer_chunksize = chunksize;
2157
2158 return 0;
2159}
2160
2161/**
2162 Get read buffer chunk size.
2163
2164 \param ftdi pointer to ftdi_context
2165 \param chunksize Pointer to store chunk size in
2166
2167 \retval 0: all fine
2168 \retval -1: FTDI context invalid
2169*/
2170int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
2171{
2172 if (ftdi == NULL)
2173 ftdi_error_return(-1, "FTDI context invalid");
2174
2175 *chunksize = ftdi->readbuffer_chunksize;
2176 return 0;
2177}
2178
2179/**
2180 Enable/disable bitbang modes.
2181
2182 \param ftdi pointer to ftdi_context
2183 \param bitmask Bitmask to configure lines.
2184 HIGH/ON value configures a line as output.
2185 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
2186
2187 \retval 0: all fine
2188 \retval -1: can't enable bitbang mode
2189 \retval -2: USB device unavailable
2190*/
2191int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
2192{
2193 unsigned short usb_val;
2194
2195 if (ftdi == NULL || ftdi->usb_dev == NULL)
2196 ftdi_error_return(-2, "USB device unavailable");
2197
2198 usb_val = bitmask; // low byte: bitmask
2199 usb_val |= (mode << 8);
2200 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2201 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
2202
2203 ftdi->bitbang_mode = mode;
2204 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
2205 return 0;
2206}
2207
2208/**
2209 Disable bitbang mode.
2210
2211 \param ftdi pointer to ftdi_context
2212
2213 \retval 0: all fine
2214 \retval -1: can't disable bitbang mode
2215 \retval -2: USB device unavailable
2216*/
2217int ftdi_disable_bitbang(struct ftdi_context *ftdi)
2218{
2219 if (ftdi == NULL || ftdi->usb_dev == NULL)
2220 ftdi_error_return(-2, "USB device unavailable");
2221
2222 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2223 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
2224
2225 ftdi->bitbang_enabled = 0;
2226 return 0;
2227}
2228
2229
2230/**
2231 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
2232
2233 \param ftdi pointer to ftdi_context
2234 \param pins Pointer to store pins into
2235
2236 \retval 0: all fine
2237 \retval -1: read pins failed
2238 \retval -2: USB device unavailable
2239*/
2240int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
2241{
2242 if (ftdi == NULL || ftdi->usb_dev == NULL)
2243 ftdi_error_return(-2, "USB device unavailable");
2244
2245 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
2246 ftdi_error_return(-1, "read pins failed");
2247
2248 return 0;
2249}
2250
2251/**
2252 Set latency timer
2253
2254 The FTDI chip keeps data in the internal buffer for a specific
2255 amount of time if the buffer is not full yet to decrease
2256 load on the usb bus.
2257
2258 \param ftdi pointer to ftdi_context
2259 \param latency Value between 1 and 255
2260
2261 \retval 0: all fine
2262 \retval -1: latency out of range
2263 \retval -2: unable to set latency timer
2264 \retval -3: USB device unavailable
2265*/
2266int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2267{
2268 unsigned short usb_val;
2269
2270 if (latency < 1)
2271 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
2272
2273 if (ftdi == NULL || ftdi->usb_dev == NULL)
2274 ftdi_error_return(-3, "USB device unavailable");
2275
2276 usb_val = latency;
2277 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2278 ftdi_error_return(-2, "unable to set latency timer");
2279
2280 return 0;
2281}
2282
2283/**
2284 Get latency timer
2285
2286 \param ftdi pointer to ftdi_context
2287 \param latency Pointer to store latency value in
2288
2289 \retval 0: all fine
2290 \retval -1: unable to get latency timer
2291 \retval -2: USB device unavailable
2292*/
2293int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2294{
2295 unsigned short usb_val;
2296
2297 if (ftdi == NULL || ftdi->usb_dev == NULL)
2298 ftdi_error_return(-2, "USB device unavailable");
2299
2300 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
2301 ftdi_error_return(-1, "reading latency timer failed");
2302
2303 *latency = (unsigned char)usb_val;
2304 return 0;
2305}
2306
2307/**
2308 Poll modem status information
2309
2310 This function allows the retrieve the two status bytes of the device.
2311 The device sends these bytes also as a header for each read access
2312 where they are discarded by ftdi_read_data(). The chip generates
2313 the two stripped status bytes in the absence of data every 40 ms.
2314
2315 Layout of the first byte:
2316 - B0..B3 - must be 0
2317 - B4 Clear to send (CTS)
2318 0 = inactive
2319 1 = active
2320 - B5 Data set ready (DTS)
2321 0 = inactive
2322 1 = active
2323 - B6 Ring indicator (RI)
2324 0 = inactive
2325 1 = active
2326 - B7 Receive line signal detect (RLSD)
2327 0 = inactive
2328 1 = active
2329
2330 Layout of the second byte:
2331 - B0 Data ready (DR)
2332 - B1 Overrun error (OE)
2333 - B2 Parity error (PE)
2334 - B3 Framing error (FE)
2335 - B4 Break interrupt (BI)
2336 - B5 Transmitter holding register (THRE)
2337 - B6 Transmitter empty (TEMT)
2338 - B7 Error in RCVR FIFO
2339
2340 \param ftdi pointer to ftdi_context
2341 \param status Pointer to store status information in. Must be two bytes.
2342
2343 \retval 0: all fine
2344 \retval -1: unable to retrieve status information
2345 \retval -2: USB device unavailable
2346*/
2347int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2348{
2349 char usb_val[2];
2350
2351 if (ftdi == NULL || ftdi->usb_dev == NULL)
2352 ftdi_error_return(-2, "USB device unavailable");
2353
2354 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
2355 ftdi_error_return(-1, "getting modem status failed");
2356
2357 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
2358
2359 return 0;
2360}
2361
2362/**
2363 Set flowcontrol for ftdi chip
2364
2365 Note: Do not use this function to enable XON/XOFF mode, use ftdi_setflowctrl_xonxoff() instead.
2366
2367 \param ftdi pointer to ftdi_context
2368 \param flowctrl flow control to use. should be
2369 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS
2370
2371 \retval 0: all fine
2372 \retval -1: set flow control failed
2373 \retval -2: USB device unavailable
2374*/
2375int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2376{
2377 if (ftdi == NULL || ftdi->usb_dev == NULL)
2378 ftdi_error_return(-2, "USB device unavailable");
2379
2380 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2381 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2382 NULL, 0, ftdi->usb_write_timeout) < 0)
2383 ftdi_error_return(-1, "set flow control failed");
2384
2385 return 0;
2386}
2387
2388/**
2389 Set XON/XOFF flowcontrol for ftdi chip
2390
2391 \param ftdi pointer to ftdi_context
2392 \param xon character code used to resume transmission
2393 \param xoff character code used to pause transmission
2394
2395 \retval 0: all fine
2396 \retval -1: set flow control failed
2397 \retval -2: USB device unavailable
2398*/
2399int ftdi_setflowctrl_xonxoff(struct ftdi_context *ftdi, unsigned char xon, unsigned char xoff)
2400{
2401 if (ftdi == NULL || ftdi->usb_dev == NULL)
2402 ftdi_error_return(-2, "USB device unavailable");
2403
2404 uint16_t xonxoff = xon | (xoff << 8);
2405 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2406 SIO_SET_FLOW_CTRL_REQUEST, xonxoff, (SIO_XON_XOFF_HS | ftdi->index),
2407 NULL, 0, ftdi->usb_write_timeout) < 0)
2408 ftdi_error_return(-1, "set flow control failed");
2409
2410 return 0;
2411}
2412
2413/**
2414 Set dtr line
2415
2416 \param ftdi pointer to ftdi_context
2417 \param state state to set line to (1 or 0)
2418
2419 \retval 0: all fine
2420 \retval -1: set dtr failed
2421 \retval -2: USB device unavailable
2422*/
2423int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2424{
2425 unsigned short usb_val;
2426
2427 if (ftdi == NULL || ftdi->usb_dev == NULL)
2428 ftdi_error_return(-2, "USB device unavailable");
2429
2430 if (state)
2431 usb_val = SIO_SET_DTR_HIGH;
2432 else
2433 usb_val = SIO_SET_DTR_LOW;
2434
2435 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2436 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2437 NULL, 0, ftdi->usb_write_timeout) < 0)
2438 ftdi_error_return(-1, "set dtr failed");
2439
2440 return 0;
2441}
2442
2443/**
2444 Set rts line
2445
2446 \param ftdi pointer to ftdi_context
2447 \param state state to set line to (1 or 0)
2448
2449 \retval 0: all fine
2450 \retval -1: set rts failed
2451 \retval -2: USB device unavailable
2452*/
2453int ftdi_setrts(struct ftdi_context *ftdi, int state)
2454{
2455 unsigned short usb_val;
2456
2457 if (ftdi == NULL || ftdi->usb_dev == NULL)
2458 ftdi_error_return(-2, "USB device unavailable");
2459
2460 if (state)
2461 usb_val = SIO_SET_RTS_HIGH;
2462 else
2463 usb_val = SIO_SET_RTS_LOW;
2464
2465 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2466 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2467 NULL, 0, ftdi->usb_write_timeout) < 0)
2468 ftdi_error_return(-1, "set of rts failed");
2469
2470 return 0;
2471}
2472
2473/**
2474 Set dtr and rts line in one pass
2475
2476 \param ftdi pointer to ftdi_context
2477 \param dtr DTR state to set line to (1 or 0)
2478 \param rts RTS state to set line to (1 or 0)
2479
2480 \retval 0: all fine
2481 \retval -1: set dtr/rts failed
2482 \retval -2: USB device unavailable
2483 */
2484int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2485{
2486 unsigned short usb_val;
2487
2488 if (ftdi == NULL || ftdi->usb_dev == NULL)
2489 ftdi_error_return(-2, "USB device unavailable");
2490
2491 if (dtr)
2492 usb_val = SIO_SET_DTR_HIGH;
2493 else
2494 usb_val = SIO_SET_DTR_LOW;
2495
2496 if (rts)
2497 usb_val |= SIO_SET_RTS_HIGH;
2498 else
2499 usb_val |= SIO_SET_RTS_LOW;
2500
2501 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2502 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2503 NULL, 0, ftdi->usb_write_timeout) < 0)
2504 ftdi_error_return(-1, "set of rts/dtr failed");
2505
2506 return 0;
2507}
2508
2509/**
2510 Set the special event character
2511
2512 \param ftdi pointer to ftdi_context
2513 \param eventch Event character
2514 \param enable 0 to disable the event character, non-zero otherwise
2515
2516 \retval 0: all fine
2517 \retval -1: unable to set event character
2518 \retval -2: USB device unavailable
2519*/
2520int ftdi_set_event_char(struct ftdi_context *ftdi,
2521 unsigned char eventch, unsigned char enable)
2522{
2523 unsigned short usb_val;
2524
2525 if (ftdi == NULL || ftdi->usb_dev == NULL)
2526 ftdi_error_return(-2, "USB device unavailable");
2527
2528 usb_val = eventch;
2529 if (enable)
2530 usb_val |= 1 << 8;
2531
2532 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2533 ftdi_error_return(-1, "setting event character failed");
2534
2535 return 0;
2536}
2537
2538/**
2539 Set error character
2540
2541 \param ftdi pointer to ftdi_context
2542 \param errorch Error character
2543 \param enable 0 to disable the error character, non-zero otherwise
2544
2545 \retval 0: all fine
2546 \retval -1: unable to set error character
2547 \retval -2: USB device unavailable
2548*/
2549int ftdi_set_error_char(struct ftdi_context *ftdi,
2550 unsigned char errorch, unsigned char enable)
2551{
2552 unsigned short usb_val;
2553
2554 if (ftdi == NULL || ftdi->usb_dev == NULL)
2555 ftdi_error_return(-2, "USB device unavailable");
2556
2557 usb_val = errorch;
2558 if (enable)
2559 usb_val |= 1 << 8;
2560
2561 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2562 ftdi_error_return(-1, "setting error character failed");
2563
2564 return 0;
2565}
2566
2567/**
2568 Init eeprom with default values for the connected device
2569 \param ftdi pointer to ftdi_context
2570 \param manufacturer String to use as Manufacturer
2571 \param product String to use as Product description
2572 \param serial String to use as Serial number description
2573
2574 \retval 0: all fine
2575 \retval -1: No struct ftdi_context
2576 \retval -2: No struct ftdi_eeprom
2577 \retval -3: No connected device or device not yet opened
2578*/
2579int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2580 char * product, char * serial)
2581{
2582 struct ftdi_eeprom *eeprom;
2583
2584 if (ftdi == NULL)
2585 ftdi_error_return(-1, "No struct ftdi_context");
2586
2587 if (ftdi->eeprom == NULL)
2588 ftdi_error_return(-2,"No struct ftdi_eeprom");
2589
2590 eeprom = ftdi->eeprom;
2591 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2592
2593 if (ftdi->usb_dev == NULL)
2594 ftdi_error_return(-3, "No connected device or device not yet opened");
2595
2596 eeprom->vendor_id = 0x0403;
2597 eeprom->use_serial = 1;
2598 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2599 (ftdi->type == TYPE_R))
2600 eeprom->product_id = 0x6001;
2601 else if (ftdi->type == TYPE_4232H)
2602 eeprom->product_id = 0x6011;
2603 else if (ftdi->type == TYPE_232H)
2604 eeprom->product_id = 0x6014;
2605 else if (ftdi->type == TYPE_230X)
2606 eeprom->product_id = 0x6015;
2607 else
2608 eeprom->product_id = 0x6010;
2609
2610 if (ftdi->type == TYPE_AM)
2611 eeprom->usb_version = 0x0101;
2612 else
2613 eeprom->usb_version = 0x0200;
2614 eeprom->max_power = 100;
2615
2616 if (eeprom->manufacturer)
2617 free (eeprom->manufacturer);
2618 eeprom->manufacturer = NULL;
2619 if (manufacturer)
2620 {
2621 eeprom->manufacturer = (char *)malloc(strlen(manufacturer)+1);
2622 if (eeprom->manufacturer)
2623 strcpy(eeprom->manufacturer, manufacturer);
2624 }
2625
2626 if (eeprom->product)
2627 free (eeprom->product);
2628 eeprom->product = NULL;
2629 if(product)
2630 {
2631 eeprom->product = (char *)malloc(strlen(product)+1);
2632 if (eeprom->product)
2633 strcpy(eeprom->product, product);
2634 }
2635 else
2636 {
2637 const char* default_product;
2638 switch(ftdi->type)
2639 {
2640 case TYPE_AM: default_product = "AM"; break;
2641 case TYPE_BM: default_product = "BM"; break;
2642 case TYPE_2232C: default_product = "Dual RS232"; break;
2643 case TYPE_R: default_product = "FT232R USB UART"; break;
2644 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2645 case TYPE_4232H: default_product = "FT4232H"; break;
2646 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2647 case TYPE_230X: default_product = "FT230X Basic UART"; break;
2648 default:
2649 ftdi_error_return(-3, "Unknown chip type");
2650 }
2651 eeprom->product = (char *)malloc(strlen(default_product) +1);
2652 if (eeprom->product)
2653 strcpy(eeprom->product, default_product);
2654 }
2655
2656 if (eeprom->serial)
2657 free (eeprom->serial);
2658 eeprom->serial = NULL;
2659 if (serial)
2660 {
2661 eeprom->serial = (char *)malloc(strlen(serial)+1);
2662 if (eeprom->serial)
2663 strcpy(eeprom->serial, serial);
2664 }
2665
2666 if (ftdi->type == TYPE_R)
2667 {
2668 eeprom->max_power = 90;
2669 eeprom->size = 0x80;
2670 eeprom->cbus_function[0] = CBUS_TXLED;
2671 eeprom->cbus_function[1] = CBUS_RXLED;
2672 eeprom->cbus_function[2] = CBUS_TXDEN;
2673 eeprom->cbus_function[3] = CBUS_PWREN;
2674 eeprom->cbus_function[4] = CBUS_SLEEP;
2675 }
2676 else if (ftdi->type == TYPE_230X)
2677 {
2678 eeprom->max_power = 90;
2679 eeprom->size = 0x100;
2680 eeprom->cbus_function[0] = CBUSX_TXDEN;
2681 eeprom->cbus_function[1] = CBUSX_RXLED;
2682 eeprom->cbus_function[2] = CBUSX_TXLED;
2683 eeprom->cbus_function[3] = CBUSX_SLEEP;
2684 }
2685 else
2686 {
2687 if(ftdi->type == TYPE_232H)
2688 {
2689 int i;
2690 for (i=0; i<10; i++)
2691 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2692 }
2693 eeprom->size = -1;
2694 }
2695 switch (ftdi->type)
2696 {
2697 case TYPE_AM:
2698 eeprom->release_number = 0x0200;
2699 break;
2700 case TYPE_BM:
2701 eeprom->release_number = 0x0400;
2702 break;
2703 case TYPE_2232C:
2704 eeprom->release_number = 0x0500;
2705 break;
2706 case TYPE_R:
2707 eeprom->release_number = 0x0600;
2708 break;
2709 case TYPE_2232H:
2710 eeprom->release_number = 0x0700;
2711 break;
2712 case TYPE_4232H:
2713 eeprom->release_number = 0x0800;
2714 break;
2715 case TYPE_232H:
2716 eeprom->release_number = 0x0900;
2717 break;
2718 case TYPE_230X:
2719 eeprom->release_number = 0x1000;
2720 break;
2721 default:
2722 eeprom->release_number = 0x00;
2723 }
2724 return 0;
2725}
2726
2727int ftdi_eeprom_set_strings(struct ftdi_context *ftdi, const char * manufacturer,
2728 const char * product, const char * serial)
2729{
2730 struct ftdi_eeprom *eeprom;
2731
2732 if (ftdi == NULL)
2733 ftdi_error_return(-1, "No struct ftdi_context");
2734
2735 if (ftdi->eeprom == NULL)
2736 ftdi_error_return(-2,"No struct ftdi_eeprom");
2737
2738 eeprom = ftdi->eeprom;
2739
2740 if (ftdi->usb_dev == NULL)
2741 ftdi_error_return(-3, "No connected device or device not yet opened");
2742
2743 if (manufacturer)
2744 {
2745 if (eeprom->manufacturer)
2746 free (eeprom->manufacturer);
2747 eeprom->manufacturer = (char *)malloc(strlen(manufacturer)+1);
2748 if (eeprom->manufacturer)
2749 strcpy(eeprom->manufacturer, manufacturer);
2750 }
2751
2752 if(product)
2753 {
2754 if (eeprom->product)
2755 free (eeprom->product);
2756 eeprom->product = (char *)malloc(strlen(product)+1);
2757 if (eeprom->product)
2758 strcpy(eeprom->product, product);
2759 }
2760
2761 if (serial)
2762 {
2763 if (eeprom->serial)
2764 free (eeprom->serial);
2765 eeprom->serial = (char *)malloc(strlen(serial)+1);
2766 if (eeprom->serial)
2767 {
2768 strcpy(eeprom->serial, serial);
2769 eeprom->use_serial = 1;
2770 }
2771 }
2772 return 0;
2773}
2774
2775/**
2776 Return device ID strings from the eeprom. Device needs to be connected.
2777
2778 The parameters manufacturer, description and serial may be NULL
2779 or pointer to buffers to store the fetched strings.
2780
2781 \param ftdi pointer to ftdi_context
2782 \param manufacturer Store manufacturer string here if not NULL
2783 \param mnf_len Buffer size of manufacturer string
2784 \param product Store product description string here if not NULL
2785 \param prod_len Buffer size of product description string
2786 \param serial Store serial string here if not NULL
2787 \param serial_len Buffer size of serial string
2788
2789 \retval 0: all fine
2790 \retval -1: ftdi context invalid
2791 \retval -2: ftdi eeprom buffer invalid
2792*/
2793int ftdi_eeprom_get_strings(struct ftdi_context *ftdi,
2794 char *manufacturer, int mnf_len,
2795 char *product, int prod_len,
2796 char *serial, int serial_len)
2797{
2798 struct ftdi_eeprom *eeprom;
2799
2800 if (ftdi == NULL)
2801 ftdi_error_return(-1, "No struct ftdi_context");
2802 if (ftdi->eeprom == NULL)
2803 ftdi_error_return(-2, "No struct ftdi_eeprom");
2804
2805 eeprom = ftdi->eeprom;
2806
2807 if (manufacturer)
2808 {
2809 strncpy(manufacturer, eeprom->manufacturer, mnf_len);
2810 if (mnf_len > 0)
2811 manufacturer[mnf_len - 1] = '\0';
2812 }
2813
2814 if (product)
2815 {
2816 strncpy(product, eeprom->product, prod_len);
2817 if (prod_len > 0)
2818 product[prod_len - 1] = '\0';
2819 }
2820
2821 if (serial)
2822 {
2823 strncpy(serial, eeprom->serial, serial_len);
2824 if (serial_len > 0)
2825 serial[serial_len - 1] = '\0';
2826 }
2827
2828 return 0;
2829}
2830
2831/*FTD2XX doesn't check for values not fitting in the ACBUS Signal options*/
2832void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2833{
2834 int i;
2835 for(i=0; i<5; i++)
2836 {
2837 int mode_low, mode_high;
2838 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2839 mode_low = CBUSH_TRISTATE;
2840 else
2841 mode_low = eeprom->cbus_function[2*i];
2842 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2843 mode_high = CBUSH_TRISTATE;
2844 else
2845 mode_high = eeprom->cbus_function[2*i+1];
2846
2847 output[0x18+i] = (mode_high <<4) | mode_low;
2848 }
2849}
2850/* Return the bits for the encoded EEPROM Structure of a requested Mode
2851 *
2852 */
2853static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2854{
2855 switch (chip)
2856 {
2857 case TYPE_2232H:
2858 case TYPE_2232C:
2859 {
2860 switch (type)
2861 {
2862 case CHANNEL_IS_UART: return 0;
2863 case CHANNEL_IS_FIFO: return 0x01;
2864 case CHANNEL_IS_OPTO: return 0x02;
2865 case CHANNEL_IS_CPU : return 0x04;
2866 default: return 0;
2867 }
2868 }
2869 case TYPE_232H:
2870 {
2871 switch (type)
2872 {
2873 case CHANNEL_IS_UART : return 0;
2874 case CHANNEL_IS_FIFO : return 0x01;
2875 case CHANNEL_IS_OPTO : return 0x02;
2876 case CHANNEL_IS_CPU : return 0x04;
2877 case CHANNEL_IS_FT1284 : return 0x08;
2878 default: return 0;
2879 }
2880 }
2881 case TYPE_R:
2882 {
2883 switch (type)
2884 {
2885 case CHANNEL_IS_UART : return 0;
2886 case CHANNEL_IS_FIFO : return 0x01;
2887 default: return 0;
2888 }
2889 }
2890 case TYPE_230X: /* FT230X is only UART */
2891 default: return 0;
2892 }
2893 return 0;
2894}
2895
2896/**
2897 Build binary buffer from ftdi_eeprom structure.
2898 Output is suitable for ftdi_write_eeprom().
2899
2900 \param ftdi pointer to ftdi_context
2901
2902 \retval >=0: size of eeprom user area in bytes
2903 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2904 \retval -2: Invalid eeprom or ftdi pointer
2905 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2906 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2907 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2908 \retval -6: No connected EEPROM or EEPROM Type unknown
2909*/
2910int ftdi_eeprom_build(struct ftdi_context *ftdi)
2911{
2912 unsigned char i, j, eeprom_size_mask;
2913 unsigned short checksum, value;
2914 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2915 int user_area_size, free_start, free_end;
2916 struct ftdi_eeprom *eeprom;
2917 unsigned char * output;
2918
2919 if (ftdi == NULL)
2920 ftdi_error_return(-2,"No context");
2921 if (ftdi->eeprom == NULL)
2922 ftdi_error_return(-2,"No eeprom structure");
2923
2924 eeprom= ftdi->eeprom;
2925 output = eeprom->buf;
2926
2927 if (eeprom->chip == -1)
2928 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2929
2930 if (eeprom->size == -1)
2931 {
2932 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2933 eeprom->size = 0x100;
2934 else
2935 eeprom->size = 0x80;
2936 }
2937
2938 if (eeprom->manufacturer != NULL)
2939 manufacturer_size = strlen(eeprom->manufacturer);
2940 if (eeprom->product != NULL)
2941 product_size = strlen(eeprom->product);
2942 if (eeprom->serial != NULL)
2943 serial_size = strlen(eeprom->serial);
2944
2945 // eeprom size check
2946 switch (ftdi->type)
2947 {
2948 case TYPE_AM:
2949 case TYPE_BM:
2950 case TYPE_R:
2951 user_area_size = 96; // base size for strings (total of 48 characters)
2952 break;
2953 case TYPE_2232C:
2954 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2955 break;
2956 case TYPE_230X:
2957 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2958 break;
2959 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2960 case TYPE_4232H:
2961 user_area_size = 86;
2962 break;
2963 case TYPE_232H:
2964 user_area_size = 80;
2965 break;
2966 default:
2967 user_area_size = 0;
2968 break;
2969 }
2970 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2971
2972 if (user_area_size < 0)
2973 ftdi_error_return(-1,"eeprom size exceeded");
2974
2975 // empty eeprom
2976 if (ftdi->type == TYPE_230X)
2977 {
2978 /* FT230X have a reserved section in the middle of the MTP,
2979 which cannot be written to, but must be included in the checksum */
2980 memset(ftdi->eeprom->buf, 0, 0x80);
2981 memset((ftdi->eeprom->buf + 0xa0), 0, (FTDI_MAX_EEPROM_SIZE - 0xa0));
2982 }
2983 else
2984 {
2985 memset(ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2986 }
2987
2988 // Bytes and Bits set for all Types
2989
2990 // Addr 02: Vendor ID
2991 output[0x02] = eeprom->vendor_id;
2992 output[0x03] = eeprom->vendor_id >> 8;
2993
2994 // Addr 04: Product ID
2995 output[0x04] = eeprom->product_id;
2996 output[0x05] = eeprom->product_id >> 8;
2997
2998 // Addr 06: Device release number (0400h for BM features)
2999 output[0x06] = eeprom->release_number;
3000 output[0x07] = eeprom->release_number >> 8;
3001
3002 // Addr 08: Config descriptor
3003 // Bit 7: always 1
3004 // Bit 6: 1 if this device is self powered, 0 if bus powered
3005 // Bit 5: 1 if this device uses remote wakeup
3006 // Bit 4-0: reserved - 0
3007 j = 0x80;
3008 if (eeprom->self_powered)
3009 j |= 0x40;
3010 if (eeprom->remote_wakeup)
3011 j |= 0x20;
3012 output[0x08] = j;
3013
3014 // Addr 09: Max power consumption: max power = value * 2 mA
3015 output[0x09] = eeprom->max_power / MAX_POWER_MILLIAMP_PER_UNIT;
3016
3017 if ((ftdi->type != TYPE_AM) && (ftdi->type != TYPE_230X))
3018 {
3019 // Addr 0A: Chip configuration
3020 // Bit 7: 0 - reserved
3021 // Bit 6: 0 - reserved
3022 // Bit 5: 0 - reserved
3023 // Bit 4: 1 - Change USB version
3024 // Bit 3: 1 - Use the serial number string
3025 // Bit 2: 1 - Enable suspend pull downs for lower power
3026 // Bit 1: 1 - Out EndPoint is Isochronous
3027 // Bit 0: 1 - In EndPoint is Isochronous
3028 //
3029 j = 0;
3030 if (eeprom->in_is_isochronous)
3031 j = j | 1;
3032 if (eeprom->out_is_isochronous)
3033 j = j | 2;
3034 output[0x0A] = j;
3035 }
3036
3037 // Dynamic content
3038 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
3039 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
3040 // 0xa0 (TYPE_232H)
3041 i = 0;
3042 switch (ftdi->type)
3043 {
3044 case TYPE_2232H:
3045 case TYPE_4232H:
3046 i += 2;
3047 case TYPE_R:
3048 i += 2;
3049 case TYPE_2232C:
3050 i += 2;
3051 case TYPE_AM:
3052 case TYPE_BM:
3053 i += 0x94;
3054 break;
3055 case TYPE_232H:
3056 case TYPE_230X:
3057 i = 0xa0;
3058 break;
3059 }
3060 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
3061 eeprom_size_mask = eeprom->size -1;
3062 free_end = i & eeprom_size_mask;
3063
3064 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3065 // Addr 0F: Length of manufacturer string
3066 // Output manufacturer
3067 output[0x0E] = i; // calculate offset
3068 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
3069 output[i & eeprom_size_mask] = 0x03, i++; // type: string
3070 for (j = 0; j < manufacturer_size; j++)
3071 {
3072 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
3073 output[i & eeprom_size_mask] = 0x00, i++;
3074 }
3075 output[0x0F] = manufacturer_size*2 + 2;
3076
3077 // Addr 10: Offset of the product string + 0x80, calculated later
3078 // Addr 11: Length of product string
3079 output[0x10] = i | 0x80; // calculate offset
3080 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
3081 output[i & eeprom_size_mask] = 0x03, i++;
3082 for (j = 0; j < product_size; j++)
3083 {
3084 output[i & eeprom_size_mask] = eeprom->product[j], i++;
3085 output[i & eeprom_size_mask] = 0x00, i++;
3086 }
3087 output[0x11] = product_size*2 + 2;
3088
3089 // Addr 12: Offset of the serial string + 0x80, calculated later
3090 // Addr 13: Length of serial string
3091 output[0x12] = i | 0x80; // calculate offset
3092 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
3093 output[i & eeprom_size_mask] = 0x03, i++;
3094 for (j = 0; j < serial_size; j++)
3095 {
3096 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
3097 output[i & eeprom_size_mask] = 0x00, i++;
3098 }
3099
3100 // Legacy port name and PnP fields for FT2232 and newer chips
3101 if (ftdi->type > TYPE_BM)
3102 {
3103 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
3104 i++;
3105 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
3106 i++;
3107 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
3108 i++;
3109 }
3110
3111 output[0x13] = serial_size*2 + 2;
3112
3113 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
3114 {
3115 if (eeprom->use_serial)
3116 output[0x0A] |= USE_SERIAL_NUM;
3117 else
3118 output[0x0A] &= ~USE_SERIAL_NUM;
3119 }
3120
3121 /* Bytes and Bits specific to (some) types
3122 Write linear, as this allows easier fixing*/
3123 switch (ftdi->type)
3124 {
3125 case TYPE_AM:
3126 break;
3127 case TYPE_BM:
3128 output[0x0C] = eeprom->usb_version & 0xff;
3129 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3130 if (eeprom->use_usb_version)
3131 output[0x0A] |= USE_USB_VERSION_BIT;
3132 else
3133 output[0x0A] &= ~USE_USB_VERSION_BIT;
3134
3135 break;
3136 case TYPE_2232C:
3137
3138 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
3139 if ( eeprom->channel_a_driver == DRIVER_VCP)
3140 output[0x00] |= DRIVER_VCP;
3141 else
3142 output[0x00] &= ~DRIVER_VCP;
3143
3144 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
3145 output[0x00] |= HIGH_CURRENT_DRIVE;
3146 else
3147 output[0x00] &= ~HIGH_CURRENT_DRIVE;
3148
3149 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
3150 if ( eeprom->channel_b_driver == DRIVER_VCP)
3151 output[0x01] |= DRIVER_VCP;
3152 else
3153 output[0x01] &= ~DRIVER_VCP;
3154
3155 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
3156 output[0x01] |= HIGH_CURRENT_DRIVE;
3157 else
3158 output[0x01] &= ~HIGH_CURRENT_DRIVE;
3159
3160 if (eeprom->in_is_isochronous)
3161 output[0x0A] |= 0x1;
3162 else
3163 output[0x0A] &= ~0x1;
3164 if (eeprom->out_is_isochronous)
3165 output[0x0A] |= 0x2;
3166 else
3167 output[0x0A] &= ~0x2;
3168 if (eeprom->suspend_pull_downs)
3169 output[0x0A] |= 0x4;
3170 else
3171 output[0x0A] &= ~0x4;
3172 if (eeprom->use_usb_version)
3173 output[0x0A] |= USE_USB_VERSION_BIT;
3174 else
3175 output[0x0A] &= ~USE_USB_VERSION_BIT;
3176
3177 output[0x0C] = eeprom->usb_version & 0xff;
3178 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3179 output[0x14] = eeprom->chip;
3180 break;
3181 case TYPE_R:
3182 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_R);
3183 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
3184 output[0x00] |= HIGH_CURRENT_DRIVE_R;
3185 if (eeprom->external_oscillator)
3186 output[0x00] |= 0x02;
3187 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
3188
3189 if (eeprom->suspend_pull_downs)
3190 output[0x0A] |= 0x4;
3191 else
3192 output[0x0A] &= ~0x4;
3193 output[0x0B] = eeprom->invert;
3194 output[0x0C] = eeprom->usb_version & 0xff;
3195 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3196
3197 if (eeprom->cbus_function[0] > CBUS_BB_RD)
3198 output[0x14] = CBUS_TXLED;
3199 else
3200 output[0x14] = eeprom->cbus_function[0];
3201
3202 if (eeprom->cbus_function[1] > CBUS_BB_RD)
3203 output[0x14] |= CBUS_RXLED<<4;
3204 else
3205 output[0x14] |= eeprom->cbus_function[1]<<4;
3206
3207 if (eeprom->cbus_function[2] > CBUS_BB_RD)
3208 output[0x15] = CBUS_TXDEN;
3209 else
3210 output[0x15] = eeprom->cbus_function[2];
3211
3212 if (eeprom->cbus_function[3] > CBUS_BB_RD)
3213 output[0x15] |= CBUS_PWREN<<4;
3214 else
3215 output[0x15] |= eeprom->cbus_function[3]<<4;
3216
3217 if (eeprom->cbus_function[4] > CBUS_CLK6)
3218 output[0x16] = CBUS_SLEEP;
3219 else
3220 output[0x16] = eeprom->cbus_function[4];
3221 break;
3222 case TYPE_2232H:
3223 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
3224 if ( eeprom->channel_a_driver == DRIVER_VCP)
3225 output[0x00] |= DRIVER_VCP;
3226 else
3227 output[0x00] &= ~DRIVER_VCP;
3228
3229 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
3230 if ( eeprom->channel_b_driver == DRIVER_VCP)
3231 output[0x01] |= DRIVER_VCP;
3232 else
3233 output[0x01] &= ~DRIVER_VCP;
3234 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
3235 output[0x01] |= SUSPEND_DBUS7_BIT;
3236 else
3237 output[0x01] &= ~SUSPEND_DBUS7_BIT;
3238
3239 if (eeprom->suspend_pull_downs)
3240 output[0x0A] |= 0x4;
3241 else
3242 output[0x0A] &= ~0x4;
3243
3244 if (eeprom->group0_drive > DRIVE_16MA)
3245 output[0x0c] |= DRIVE_16MA;
3246 else
3247 output[0x0c] |= eeprom->group0_drive;
3248 if (eeprom->group0_schmitt == IS_SCHMITT)
3249 output[0x0c] |= IS_SCHMITT;
3250 if (eeprom->group0_slew == SLOW_SLEW)
3251 output[0x0c] |= SLOW_SLEW;
3252
3253 if (eeprom->group1_drive > DRIVE_16MA)
3254 output[0x0c] |= DRIVE_16MA<<4;
3255 else
3256 output[0x0c] |= eeprom->group1_drive<<4;
3257 if (eeprom->group1_schmitt == IS_SCHMITT)
3258 output[0x0c] |= IS_SCHMITT<<4;
3259 if (eeprom->group1_slew == SLOW_SLEW)
3260 output[0x0c] |= SLOW_SLEW<<4;
3261
3262 if (eeprom->group2_drive > DRIVE_16MA)
3263 output[0x0d] |= DRIVE_16MA;
3264 else
3265 output[0x0d] |= eeprom->group2_drive;
3266 if (eeprom->group2_schmitt == IS_SCHMITT)
3267 output[0x0d] |= IS_SCHMITT;
3268 if (eeprom->group2_slew == SLOW_SLEW)
3269 output[0x0d] |= SLOW_SLEW;
3270
3271 if (eeprom->group3_drive > DRIVE_16MA)
3272 output[0x0d] |= DRIVE_16MA<<4;
3273 else
3274 output[0x0d] |= eeprom->group3_drive<<4;
3275 if (eeprom->group3_schmitt == IS_SCHMITT)
3276 output[0x0d] |= IS_SCHMITT<<4;
3277 if (eeprom->group3_slew == SLOW_SLEW)
3278 output[0x0d] |= SLOW_SLEW<<4;
3279
3280 output[0x18] = eeprom->chip;
3281
3282 break;
3283 case TYPE_4232H:
3284 if (eeprom->channel_a_driver == DRIVER_VCP)
3285 output[0x00] |= DRIVER_VCP;
3286 else
3287 output[0x00] &= ~DRIVER_VCP;
3288 if (eeprom->channel_b_driver == DRIVER_VCP)
3289 output[0x01] |= DRIVER_VCP;
3290 else
3291 output[0x01] &= ~DRIVER_VCP;
3292 if (eeprom->channel_c_driver == DRIVER_VCP)
3293 output[0x00] |= (DRIVER_VCP << 4);
3294 else
3295 output[0x00] &= ~(DRIVER_VCP << 4);
3296 if (eeprom->channel_d_driver == DRIVER_VCP)
3297 output[0x01] |= (DRIVER_VCP << 4);
3298 else
3299 output[0x01] &= ~(DRIVER_VCP << 4);
3300
3301 if (eeprom->suspend_pull_downs)
3302 output[0x0a] |= 0x4;
3303 else
3304 output[0x0a] &= ~0x4;
3305
3306 if (eeprom->channel_a_rs485enable)
3307 output[0x0b] |= CHANNEL_IS_RS485 << 0;
3308 else
3309 output[0x0b] &= ~(CHANNEL_IS_RS485 << 0);
3310 if (eeprom->channel_b_rs485enable)
3311 output[0x0b] |= CHANNEL_IS_RS485 << 1;
3312 else
3313 output[0x0b] &= ~(CHANNEL_IS_RS485 << 1);
3314 if (eeprom->channel_c_rs485enable)
3315 output[0x0b] |= CHANNEL_IS_RS485 << 2;
3316 else
3317 output[0x0b] &= ~(CHANNEL_IS_RS485 << 2);
3318 if (eeprom->channel_d_rs485enable)
3319 output[0x0b] |= CHANNEL_IS_RS485 << 3;
3320 else
3321 output[0x0b] &= ~(CHANNEL_IS_RS485 << 3);
3322
3323 if (eeprom->group0_drive > DRIVE_16MA)
3324 output[0x0c] |= DRIVE_16MA;
3325 else
3326 output[0x0c] |= eeprom->group0_drive;
3327 if (eeprom->group0_schmitt == IS_SCHMITT)
3328 output[0x0c] |= IS_SCHMITT;
3329 if (eeprom->group0_slew == SLOW_SLEW)
3330 output[0x0c] |= SLOW_SLEW;
3331
3332 if (eeprom->group1_drive > DRIVE_16MA)
3333 output[0x0c] |= DRIVE_16MA<<4;
3334 else
3335 output[0x0c] |= eeprom->group1_drive<<4;
3336 if (eeprom->group1_schmitt == IS_SCHMITT)
3337 output[0x0c] |= IS_SCHMITT<<4;
3338 if (eeprom->group1_slew == SLOW_SLEW)
3339 output[0x0c] |= SLOW_SLEW<<4;
3340
3341 if (eeprom->group2_drive > DRIVE_16MA)
3342 output[0x0d] |= DRIVE_16MA;
3343 else
3344 output[0x0d] |= eeprom->group2_drive;
3345 if (eeprom->group2_schmitt == IS_SCHMITT)
3346 output[0x0d] |= IS_SCHMITT;
3347 if (eeprom->group2_slew == SLOW_SLEW)
3348 output[0x0d] |= SLOW_SLEW;
3349
3350 if (eeprom->group3_drive > DRIVE_16MA)
3351 output[0x0d] |= DRIVE_16MA<<4;
3352 else
3353 output[0x0d] |= eeprom->group3_drive<<4;
3354 if (eeprom->group3_schmitt == IS_SCHMITT)
3355 output[0x0d] |= IS_SCHMITT<<4;
3356 if (eeprom->group3_slew == SLOW_SLEW)
3357 output[0x0d] |= SLOW_SLEW<<4;
3358
3359 output[0x18] = eeprom->chip;
3360
3361 break;
3362 case TYPE_232H:
3363 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
3364 if ( eeprom->channel_a_driver == DRIVER_VCP)
3365 output[0x00] |= DRIVER_VCPH;
3366 else
3367 output[0x00] &= ~DRIVER_VCPH;
3368 if (eeprom->powersave)
3369 output[0x01] |= POWER_SAVE_DISABLE_H;
3370 else
3371 output[0x01] &= ~POWER_SAVE_DISABLE_H;
3372
3373 if (eeprom->suspend_pull_downs)
3374 output[0x0a] |= 0x4;
3375 else
3376 output[0x0a] &= ~0x4;
3377
3378 if (eeprom->clock_polarity)
3379 output[0x01] |= FT1284_CLK_IDLE_STATE;
3380 else
3381 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
3382 if (eeprom->data_order)
3383 output[0x01] |= FT1284_DATA_LSB;
3384 else
3385 output[0x01] &= ~FT1284_DATA_LSB;
3386 if (eeprom->flow_control)
3387 output[0x01] |= FT1284_FLOW_CONTROL;
3388 else
3389 output[0x01] &= ~FT1284_FLOW_CONTROL;
3390 if (eeprom->group0_drive > DRIVE_16MA)
3391 output[0x0c] |= DRIVE_16MA;
3392 else
3393 output[0x0c] |= eeprom->group0_drive;
3394 if (eeprom->group0_schmitt == IS_SCHMITT)
3395 output[0x0c] |= IS_SCHMITT;
3396 if (eeprom->group0_slew == SLOW_SLEW)
3397 output[0x0c] |= SLOW_SLEW;
3398
3399 if (eeprom->group1_drive > DRIVE_16MA)
3400 output[0x0d] |= DRIVE_16MA;
3401 else
3402 output[0x0d] |= eeprom->group1_drive;
3403 if (eeprom->group1_schmitt == IS_SCHMITT)
3404 output[0x0d] |= IS_SCHMITT;
3405 if (eeprom->group1_slew == SLOW_SLEW)
3406 output[0x0d] |= SLOW_SLEW;
3407
3408 set_ft232h_cbus(eeprom, output);
3409
3410 output[0x1e] = eeprom->chip;
3411 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
3412 break;
3413 case TYPE_230X:
3414 output[0x00] = 0x80; /* Actually, leave the default value */
3415 /*FIXME: Make DBUS & CBUS Control configurable*/
3416 output[0x0c] = 0; /* DBUS drive 4mA, CBUS drive 4 mA like factory default */
3417 for (j = 0; j <= 6; j++)
3418 {
3419 output[0x1a + j] = eeprom->cbus_function[j];
3420 }
3421 output[0x0b] = eeprom->invert;
3422 break;
3423 }
3424
3425 /* First address without use */
3426 free_start = 0;
3427 switch (ftdi->type)
3428 {
3429 case TYPE_230X:
3430 free_start += 2;
3431 case TYPE_232H:
3432 free_start += 6;
3433 case TYPE_2232H:
3434 case TYPE_4232H:
3435 free_start += 2;
3436 case TYPE_R:
3437 free_start += 2;
3438 case TYPE_2232C:
3439 free_start++;
3440 case TYPE_AM:
3441 case TYPE_BM:
3442 free_start += 0x14;
3443 }
3444
3445 /* Arbitrary user data */
3446 if (eeprom->user_data && eeprom->user_data_size >= 0)
3447 {
3448 if (eeprom->user_data_addr < free_start)
3449 fprintf(stderr,"Warning, user data starts inside the generated data!\n");
3450 if (eeprom->user_data_addr + eeprom->user_data_size >= free_end)
3451 fprintf(stderr,"Warning, user data overlaps the strings area!\n");
3452 if (eeprom->user_data_addr + eeprom->user_data_size > eeprom->size)
3453 ftdi_error_return(-1,"eeprom size exceeded");
3454 memcpy(output + eeprom->user_data_addr, eeprom->user_data, eeprom->user_data_size);
3455 }
3456
3457 // calculate checksum
3458 checksum = 0xAAAA;
3459
3460 for (i = 0; i < eeprom->size/2-1; i++)
3461 {
3462 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3463 {
3464 /* FT230X has a user section in the MTP which is not part of the checksum */
3465 i = 0x40;
3466 }
3467 if ((ftdi->type == TYPE_230X) && (i >= 0x40) && (i < 0x50)) {
3468 uint16_t data;
3469 if (ftdi_read_eeprom_location(ftdi, i, &data)) {
3470 fprintf(stderr, "Reading Factory Configuration Data failed\n");
3471 i = 0x50;
3472 }
3473 value = data;
3474 }
3475 else {
3476 value = output[i*2];
3477 value += output[(i*2)+1] << 8;
3478 }
3479 checksum = value^checksum;
3480 checksum = (checksum << 1) | (checksum >> 15);
3481 }
3482
3483 output[eeprom->size-2] = checksum;
3484 output[eeprom->size-1] = checksum >> 8;
3485
3486 eeprom->initialized_for_connected_device = 1;
3487 return user_area_size;
3488}
3489/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
3490 * EEPROM structure
3491 *
3492 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
3493 */
3494static unsigned char bit2type(unsigned char bits)
3495{
3496 switch (bits)
3497 {
3498 case 0: return CHANNEL_IS_UART;
3499 case 1: return CHANNEL_IS_FIFO;
3500 case 2: return CHANNEL_IS_OPTO;
3501 case 4: return CHANNEL_IS_CPU;
3502 case 8: return CHANNEL_IS_FT1284;
3503 default:
3504 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
3505 bits);
3506 }
3507 return 0;
3508}
3509/* Decode 230X / 232R type chips invert bits
3510 * Prints directly to stdout.
3511*/
3512static void print_inverted_bits(int invert)
3513{
3514 const char *r_bits[] = {"TXD","RXD","RTS","CTS","DTR","DSR","DCD","RI"};
3515 int i;
3516
3517 fprintf(stdout,"Inverted bits:");
3518 for (i=0; i<8; i++)
3519 if ((invert & (1<<i)) == (1<<i))
3520 fprintf(stdout," %s",r_bits[i]);
3521
3522 fprintf(stdout,"\n");
3523}
3524/**
3525 Decode binary EEPROM image into an ftdi_eeprom structure.
3526
3527 For FT-X devices use AN_201 FT-X MTP memory Configuration to decode.
3528
3529 \param ftdi pointer to ftdi_context
3530 \param verbose Decode EEPROM on stdout
3531
3532 \retval 0: all fine
3533 \retval -1: something went wrong
3534
3535 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
3536 FIXME: Strings are malloc'ed here and should be freed somewhere
3537*/
3538int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
3539{
3540 int i, j;
3541 unsigned short checksum, eeprom_checksum, value;
3542 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
3543 int eeprom_size;
3544 struct ftdi_eeprom *eeprom;
3545 unsigned char *buf = NULL;
3546
3547 if (ftdi == NULL)
3548 ftdi_error_return(-1,"No context");
3549 if (ftdi->eeprom == NULL)
3550 ftdi_error_return(-1,"No eeprom structure");
3551
3552 eeprom = ftdi->eeprom;
3553 eeprom_size = eeprom->size;
3554 buf = ftdi->eeprom->buf;
3555
3556 // Addr 02: Vendor ID
3557 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
3558
3559 // Addr 04: Product ID
3560 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
3561
3562 // Addr 06: Device release number
3563 eeprom->release_number = buf[0x06] + (buf[0x07]<<8);
3564
3565 // Addr 08: Config descriptor
3566 // Bit 7: always 1
3567 // Bit 6: 1 if this device is self powered, 0 if bus powered
3568 // Bit 5: 1 if this device uses remote wakeup
3569 eeprom->self_powered = buf[0x08] & 0x40;
3570 eeprom->remote_wakeup = buf[0x08] & 0x20;
3571
3572 // Addr 09: Max power consumption: max power = value * 2 mA
3573 eeprom->max_power = MAX_POWER_MILLIAMP_PER_UNIT * buf[0x09];
3574
3575 // Addr 0A: Chip configuration
3576 // Bit 7: 0 - reserved
3577 // Bit 6: 0 - reserved
3578 // Bit 5: 0 - reserved
3579 // Bit 4: 1 - Change USB version on BM and 2232C
3580 // Bit 3: 1 - Use the serial number string
3581 // Bit 2: 1 - Enable suspend pull downs for lower power
3582 // Bit 1: 1 - Out EndPoint is Isochronous
3583 // Bit 0: 1 - In EndPoint is Isochronous
3584 //
3585 eeprom->in_is_isochronous = buf[0x0A]&0x01;
3586 eeprom->out_is_isochronous = buf[0x0A]&0x02;
3587 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
3588 eeprom->use_serial = !!(buf[0x0A] & USE_SERIAL_NUM);
3589 eeprom->use_usb_version = !!(buf[0x0A] & USE_USB_VERSION_BIT);
3590
3591 // Addr 0C: USB version low byte when 0x0A
3592 // Addr 0D: USB version high byte when 0x0A
3593 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
3594
3595 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3596 // Addr 0F: Length of manufacturer string
3597 manufacturer_size = buf[0x0F]/2;
3598 if (eeprom->manufacturer)
3599 free(eeprom->manufacturer);
3600 if (manufacturer_size > 0)
3601 {
3602 eeprom->manufacturer = (char *)malloc(manufacturer_size);
3603 if (eeprom->manufacturer)
3604 {
3605 // Decode manufacturer
3606 i = buf[0x0E] & (eeprom_size -1); // offset
3607 for (j=0; j<manufacturer_size-1; j++)
3608 {
3609 eeprom->manufacturer[j] = buf[2*j+i+2];
3610 }
3611 eeprom->manufacturer[j] = '\0';
3612 }
3613 }
3614 else eeprom->manufacturer = NULL;
3615
3616 // Addr 10: Offset of the product string + 0x80, calculated later
3617 // Addr 11: Length of product string
3618 if (eeprom->product)
3619 free(eeprom->product);
3620 product_size = buf[0x11]/2;
3621 if (product_size > 0)
3622 {
3623 eeprom->product = (char *)malloc(product_size);
3624 if (eeprom->product)
3625 {
3626 // Decode product name
3627 i = buf[0x10] & (eeprom_size -1); // offset
3628 for (j=0; j<product_size-1; j++)
3629 {
3630 eeprom->product[j] = buf[2*j+i+2];
3631 }
3632 eeprom->product[j] = '\0';
3633 }
3634 }
3635 else eeprom->product = NULL;
3636
3637 // Addr 12: Offset of the serial string + 0x80, calculated later
3638 // Addr 13: Length of serial string
3639 if (eeprom->serial)
3640 free(eeprom->serial);
3641 serial_size = buf[0x13]/2;
3642 if (serial_size > 0)
3643 {
3644 eeprom->serial = (char *)malloc(serial_size);
3645 if (eeprom->serial)
3646 {
3647 // Decode serial
3648 i = buf[0x12] & (eeprom_size -1); // offset
3649 for (j=0; j<serial_size-1; j++)
3650 {
3651 eeprom->serial[j] = buf[2*j+i+2];
3652 }
3653 eeprom->serial[j] = '\0';
3654 }
3655 }
3656 else eeprom->serial = NULL;
3657
3658 // verify checksum
3659 checksum = 0xAAAA;
3660
3661 for (i = 0; i < eeprom_size/2-1; i++)
3662 {
3663 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3664 {
3665 /* FT230X has a user section in the MTP which is not part of the checksum */
3666 i = 0x40;
3667 }
3668 value = buf[i*2];
3669 value += buf[(i*2)+1] << 8;
3670
3671 checksum = value^checksum;
3672 checksum = (checksum << 1) | (checksum >> 15);
3673 }
3674
3675 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3676
3677 if (eeprom_checksum != checksum)
3678 {
3679 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
3680 ftdi_error_return(-1,"EEPROM checksum error");
3681 }
3682
3683 eeprom->channel_a_type = 0;
3684 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
3685 {
3686 eeprom->chip = -1;
3687 }
3688 else if (ftdi->type == TYPE_2232C)
3689 {
3690 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3691 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3692 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
3693 eeprom->channel_b_type = buf[0x01] & 0x7;
3694 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3695 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
3696 eeprom->chip = buf[0x14];
3697 }
3698 else if (ftdi->type == TYPE_R)
3699 {
3700 /* TYPE_R flags D2XX, not VCP as all others*/
3701 eeprom->channel_a_driver = ~buf[0x00] & DRIVER_VCP;
3702 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
3703 eeprom->external_oscillator = buf[0x00] & 0x02;
3704 if ( (buf[0x01]&0x40) != 0x40)
3705 fprintf(stderr,
3706 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3707 " If this happened with the\n"
3708 " EEPROM programmed by FTDI tools, please report "
3709 "to libftdi@developer.intra2net.com\n");
3710
3711 eeprom->chip = buf[0x16];
3712 // Addr 0B: Invert data lines
3713 // Works only on FT232R, not FT245R, but no way to distinguish
3714 eeprom->invert = buf[0x0B];
3715 // Addr 14: CBUS function: CBUS0, CBUS1
3716 // Addr 15: CBUS function: CBUS2, CBUS3
3717 // Addr 16: CBUS function: CBUS5
3718 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3719 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3720 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3721 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3722 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
3723 }
3724 else if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3725 {
3726 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3727 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3728
3729 if (ftdi->type == TYPE_2232H)
3730 {
3731 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3732 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3733 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
3734 }
3735 else
3736 {
3737 eeprom->channel_c_driver = (buf[0x00] >> 4) & DRIVER_VCP;
3738 eeprom->channel_d_driver = (buf[0x01] >> 4) & DRIVER_VCP;
3739 eeprom->channel_a_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 0);
3740 eeprom->channel_b_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 1);
3741 eeprom->channel_c_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 2);
3742 eeprom->channel_d_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 3);
3743 }
3744
3745 eeprom->chip = buf[0x18];
3746 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3747 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3748 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3749 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3750 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3751 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3752 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3753 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3754 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3755 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3756 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3757 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
3758 }
3759 else if (ftdi->type == TYPE_232H)
3760 {
3761 eeprom->channel_a_type = buf[0x00] & 0xf;
3762 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
3763 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3764 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3765 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
3766 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
3767 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3768 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3769 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3770 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3771 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3772 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3773
3774 for(i=0; i<5; i++)
3775 {
3776 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3777 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3778 }
3779 eeprom->chip = buf[0x1e];
3780 /*FIXME: Decipher more values*/
3781 }
3782 else if (ftdi->type == TYPE_230X)
3783 {
3784 for(i=0; i<4; i++)
3785 {
3786 eeprom->cbus_function[i] = buf[0x1a + i] & 0xFF;
3787 }
3788 eeprom->group0_drive = buf[0x0c] & 0x03;
3789 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3790 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3791 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x03;
3792 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3793 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3794
3795 eeprom->invert = buf[0xb];
3796 }
3797
3798 if (verbose)
3799 {
3800 const char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3801 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3802 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3803 fprintf(stdout, "Release: 0x%04x\n",eeprom->release_number);
3804
3805 if (eeprom->self_powered)
3806 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3807 else
3808 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power,
3809 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3810 if (eeprom->manufacturer)
3811 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3812 if (eeprom->product)
3813 fprintf(stdout, "Product: %s\n",eeprom->product);
3814 if (eeprom->serial)
3815 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3816 fprintf(stdout, "Checksum : %04x\n", checksum);
3817 if (ftdi->type == TYPE_R) {
3818 fprintf(stdout, "Internal EEPROM\n");
3819 fprintf(stdout,"Oscillator: %s\n", eeprom->external_oscillator?"External":"Internal");
3820 }
3821 else if (eeprom->chip >= 0x46)
3822 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3823 if (eeprom->suspend_dbus7)
3824 fprintf(stdout, "Suspend on DBUS7\n");
3825 if (eeprom->suspend_pull_downs)
3826 fprintf(stdout, "Pull IO pins low during suspend\n");
3827 if(eeprom->powersave)
3828 {
3829 if(ftdi->type >= TYPE_232H)
3830 fprintf(stdout,"Enter low power state on ACBUS7\n");
3831 }
3832 if (eeprom->remote_wakeup)
3833 fprintf(stdout, "Enable Remote Wake Up\n");
3834 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3835 if (ftdi->type >= TYPE_2232C)
3836 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3837 channel_mode[eeprom->channel_a_type],
3838 (eeprom->channel_a_driver)?" VCP":"",
3839 (eeprom->high_current_a)?" High Current IO":"");
3840 if (ftdi->type == TYPE_232H)
3841 {
3842 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3843 (eeprom->clock_polarity)?"HIGH":"LOW",
3844 (eeprom->data_order)?"LSB":"MSB",
3845 (eeprom->flow_control)?"":"No ");
3846 }
3847 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3848 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3849 channel_mode[eeprom->channel_b_type],
3850 (eeprom->channel_b_driver)?" VCP":"",
3851 (eeprom->high_current_b)?" High Current IO":"");
3852 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3853 eeprom->use_usb_version)
3854 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3855
3856 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3857 {
3858 fprintf(stdout,"%s has %d mA drive%s%s\n",
3859 (ftdi->type == TYPE_2232H)?"AL":"A",
3860 (eeprom->group0_drive+1) *4,
3861 (eeprom->group0_schmitt)?" Schmitt Input":"",
3862 (eeprom->group0_slew)?" Slow Slew":"");
3863 fprintf(stdout,"%s has %d mA drive%s%s\n",
3864 (ftdi->type == TYPE_2232H)?"AH":"B",
3865 (eeprom->group1_drive+1) *4,
3866 (eeprom->group1_schmitt)?" Schmitt Input":"",
3867 (eeprom->group1_slew)?" Slow Slew":"");
3868 fprintf(stdout,"%s has %d mA drive%s%s\n",
3869 (ftdi->type == TYPE_2232H)?"BL":"C",
3870 (eeprom->group2_drive+1) *4,
3871 (eeprom->group2_schmitt)?" Schmitt Input":"",
3872 (eeprom->group2_slew)?" Slow Slew":"");
3873 fprintf(stdout,"%s has %d mA drive%s%s\n",
3874 (ftdi->type == TYPE_2232H)?"BH":"D",
3875 (eeprom->group3_drive+1) *4,
3876 (eeprom->group3_schmitt)?" Schmitt Input":"",
3877 (eeprom->group3_slew)?" Slow Slew":"");
3878 }
3879 else if (ftdi->type == TYPE_232H)
3880 {
3881 const char *cbush_mux[] = {"TRISTATE","TXLED","RXLED", "TXRXLED","PWREN",
3882 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3883 "CLK30","CLK15","CLK7_5"
3884 };
3885 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3886 (eeprom->group0_drive+1) *4,
3887 (eeprom->group0_schmitt)?" Schmitt Input":"",
3888 (eeprom->group0_slew)?" Slow Slew":"");
3889 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3890 (eeprom->group1_drive+1) *4,
3891 (eeprom->group1_schmitt)?" Schmitt Input":"",
3892 (eeprom->group1_slew)?" Slow Slew":"");
3893 for (i=0; i<10; i++)
3894 {
3895 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3896 fprintf(stdout,"C%d Function: %s\n", i,
3897 cbush_mux[eeprom->cbus_function[i]]);
3898 }
3899 }
3900 else if (ftdi->type == TYPE_230X)
3901 {
3902 const char *cbusx_mux[] = {"TRISTATE","TXLED","RXLED", "TXRXLED","PWREN",
3903 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3904 "CLK24","CLK12","CLK6","BAT_DETECT","BAT_DETECT#",
3905 "I2C_TXE#", "I2C_RXF#", "VBUS_SENSE", "BB_WR#",
3906 "BBRD#", "TIME_STAMP", "AWAKE#",
3907 };
3908 fprintf(stdout,"DBUS has %d mA drive%s%s\n",
3909 (eeprom->group0_drive+1) *4,
3910 (eeprom->group0_schmitt)?" Schmitt Input":"",
3911 (eeprom->group0_slew)?" Slow Slew":"");
3912 fprintf(stdout,"CBUS has %d mA drive%s%s\n",
3913 (eeprom->group1_drive+1) *4,
3914 (eeprom->group1_schmitt)?" Schmitt Input":"",
3915 (eeprom->group1_slew)?" Slow Slew":"");
3916 for (i=0; i<4; i++)
3917 {
3918 if (eeprom->cbus_function[i]<= CBUSX_AWAKE)
3919 fprintf(stdout,"CBUS%d Function: %s\n", i, cbusx_mux[eeprom->cbus_function[i]]);
3920 }
3921
3922 if (eeprom->invert)
3923 print_inverted_bits(eeprom->invert);
3924 }
3925
3926 if (ftdi->type == TYPE_R)
3927 {
3928 const char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3929 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3930 "IOMODE","BB_WR","BB_RD"
3931 };
3932 const char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3933
3934 if (eeprom->invert)
3935 print_inverted_bits(eeprom->invert);
3936
3937 for (i=0; i<5; i++)
3938 {
3939 if (eeprom->cbus_function[i]<=CBUS_BB_RD)
3940 fprintf(stdout,"C%d Function: %s\n", i,
3941 cbus_mux[eeprom->cbus_function[i]]);
3942 else
3943 {
3944 if (i < 4)
3945 /* Running MPROG show that C0..3 have fixed function Synchronous
3946 Bit Bang mode */
3947 fprintf(stdout,"C%d BB Function: %s\n", i,
3948 cbus_BB[i]);
3949 else
3950 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3951 }
3952 }
3953 }
3954 }
3955 return 0;
3956}
3957
3958/**
3959 Get a value from the decoded EEPROM structure
3960
3961 \param ftdi pointer to ftdi_context
3962 \param value_name Enum of the value to query
3963 \param value Pointer to store read value
3964
3965 \retval 0: all fine
3966 \retval -1: Value doesn't exist
3967*/
3968int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3969{
3970 switch (value_name)
3971 {
3972 case VENDOR_ID:
3973 *value = ftdi->eeprom->vendor_id;
3974 break;
3975 case PRODUCT_ID:
3976 *value = ftdi->eeprom->product_id;
3977 break;
3978 case RELEASE_NUMBER:
3979 *value = ftdi->eeprom->release_number;
3980 break;
3981 case SELF_POWERED:
3982 *value = ftdi->eeprom->self_powered;
3983 break;
3984 case REMOTE_WAKEUP:
3985 *value = ftdi->eeprom->remote_wakeup;
3986 break;
3987 case IS_NOT_PNP:
3988 *value = ftdi->eeprom->is_not_pnp;
3989 break;
3990 case SUSPEND_DBUS7:
3991 *value = ftdi->eeprom->suspend_dbus7;
3992 break;
3993 case IN_IS_ISOCHRONOUS:
3994 *value = ftdi->eeprom->in_is_isochronous;
3995 break;
3996 case OUT_IS_ISOCHRONOUS:
3997 *value = ftdi->eeprom->out_is_isochronous;
3998 break;
3999 case SUSPEND_PULL_DOWNS:
4000 *value = ftdi->eeprom->suspend_pull_downs;
4001 break;
4002 case USE_SERIAL:
4003 *value = ftdi->eeprom->use_serial;
4004 break;
4005 case USB_VERSION:
4006 *value = ftdi->eeprom->usb_version;
4007 break;
4008 case USE_USB_VERSION:
4009 *value = ftdi->eeprom->use_usb_version;
4010 break;
4011 case MAX_POWER:
4012 *value = ftdi->eeprom->max_power;
4013 break;
4014 case CHANNEL_A_TYPE:
4015 *value = ftdi->eeprom->channel_a_type;
4016 break;
4017 case CHANNEL_B_TYPE:
4018 *value = ftdi->eeprom->channel_b_type;
4019 break;
4020 case CHANNEL_A_DRIVER:
4021 *value = ftdi->eeprom->channel_a_driver;
4022 break;
4023 case CHANNEL_B_DRIVER:
4024 *value = ftdi->eeprom->channel_b_driver;
4025 break;
4026 case CHANNEL_C_DRIVER:
4027 *value = ftdi->eeprom->channel_c_driver;
4028 break;
4029 case CHANNEL_D_DRIVER:
4030 *value = ftdi->eeprom->channel_d_driver;
4031 break;
4032 case CHANNEL_A_RS485:
4033 *value = ftdi->eeprom->channel_a_rs485enable;
4034 break;
4035 case CHANNEL_B_RS485:
4036 *value = ftdi->eeprom->channel_b_rs485enable;
4037 break;
4038 case CHANNEL_C_RS485:
4039 *value = ftdi->eeprom->channel_c_rs485enable;
4040 break;
4041 case CHANNEL_D_RS485:
4042 *value = ftdi->eeprom->channel_d_rs485enable;
4043 break;
4044 case CBUS_FUNCTION_0:
4045 *value = ftdi->eeprom->cbus_function[0];
4046 break;
4047 case CBUS_FUNCTION_1:
4048 *value = ftdi->eeprom->cbus_function[1];
4049 break;
4050 case CBUS_FUNCTION_2:
4051 *value = ftdi->eeprom->cbus_function[2];
4052 break;
4053 case CBUS_FUNCTION_3:
4054 *value = ftdi->eeprom->cbus_function[3];
4055 break;
4056 case CBUS_FUNCTION_4:
4057 *value = ftdi->eeprom->cbus_function[4];
4058 break;
4059 case CBUS_FUNCTION_5:
4060 *value = ftdi->eeprom->cbus_function[5];
4061 break;
4062 case CBUS_FUNCTION_6:
4063 *value = ftdi->eeprom->cbus_function[6];
4064 break;
4065 case CBUS_FUNCTION_7:
4066 *value = ftdi->eeprom->cbus_function[7];
4067 break;
4068 case CBUS_FUNCTION_8:
4069 *value = ftdi->eeprom->cbus_function[8];
4070 break;
4071 case CBUS_FUNCTION_9:
4072 *value = ftdi->eeprom->cbus_function[9];
4073 break;
4074 case HIGH_CURRENT:
4075 *value = ftdi->eeprom->high_current;
4076 break;
4077 case HIGH_CURRENT_A:
4078 *value = ftdi->eeprom->high_current_a;
4079 break;
4080 case HIGH_CURRENT_B:
4081 *value = ftdi->eeprom->high_current_b;
4082 break;
4083 case INVERT:
4084 *value = ftdi->eeprom->invert;
4085 break;
4086 case GROUP0_DRIVE:
4087 *value = ftdi->eeprom->group0_drive;
4088 break;
4089 case GROUP0_SCHMITT:
4090 *value = ftdi->eeprom->group0_schmitt;
4091 break;
4092 case GROUP0_SLEW:
4093 *value = ftdi->eeprom->group0_slew;
4094 break;
4095 case GROUP1_DRIVE:
4096 *value = ftdi->eeprom->group1_drive;
4097 break;
4098 case GROUP1_SCHMITT:
4099 *value = ftdi->eeprom->group1_schmitt;
4100 break;
4101 case GROUP1_SLEW:
4102 *value = ftdi->eeprom->group1_slew;
4103 break;
4104 case GROUP2_DRIVE:
4105 *value = ftdi->eeprom->group2_drive;
4106 break;
4107 case GROUP2_SCHMITT:
4108 *value = ftdi->eeprom->group2_schmitt;
4109 break;
4110 case GROUP2_SLEW:
4111 *value = ftdi->eeprom->group2_slew;
4112 break;
4113 case GROUP3_DRIVE:
4114 *value = ftdi->eeprom->group3_drive;
4115 break;
4116 case GROUP3_SCHMITT:
4117 *value = ftdi->eeprom->group3_schmitt;
4118 break;
4119 case GROUP3_SLEW:
4120 *value = ftdi->eeprom->group3_slew;
4121 break;
4122 case POWER_SAVE:
4123 *value = ftdi->eeprom->powersave;
4124 break;
4125 case CLOCK_POLARITY:
4126 *value = ftdi->eeprom->clock_polarity;
4127 break;
4128 case DATA_ORDER:
4129 *value = ftdi->eeprom->data_order;
4130 break;
4131 case FLOW_CONTROL:
4132 *value = ftdi->eeprom->flow_control;
4133 break;
4134 case CHIP_TYPE:
4135 *value = ftdi->eeprom->chip;
4136 break;
4137 case CHIP_SIZE:
4138 *value = ftdi->eeprom->size;
4139 break;
4140 case EXTERNAL_OSCILLATOR:
4141 *value = ftdi->eeprom->external_oscillator;
4142 break;
4143 default:
4144 ftdi_error_return(-1, "Request for unknown EEPROM value");
4145 }
4146 return 0;
4147}
4148
4149/**
4150 Set a value in the decoded EEPROM Structure
4151 No parameter checking is performed
4152
4153 \param ftdi pointer to ftdi_context
4154 \param value_name Enum of the value to set
4155 \param value to set
4156
4157 \retval 0: all fine
4158 \retval -1: Value doesn't exist
4159 \retval -2: Value not user settable
4160*/
4161int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
4162{
4163 switch (value_name)
4164 {
4165 case VENDOR_ID:
4166 ftdi->eeprom->vendor_id = value;
4167 break;
4168 case PRODUCT_ID:
4169 ftdi->eeprom->product_id = value;
4170 break;
4171 case RELEASE_NUMBER:
4172 ftdi->eeprom->release_number = value;
4173 break;
4174 case SELF_POWERED:
4175 ftdi->eeprom->self_powered = value;
4176 break;
4177 case REMOTE_WAKEUP:
4178 ftdi->eeprom->remote_wakeup = value;
4179 break;
4180 case IS_NOT_PNP:
4181 ftdi->eeprom->is_not_pnp = value;
4182 break;
4183 case SUSPEND_DBUS7:
4184 ftdi->eeprom->suspend_dbus7 = value;
4185 break;
4186 case IN_IS_ISOCHRONOUS:
4187 ftdi->eeprom->in_is_isochronous = value;
4188 break;
4189 case OUT_IS_ISOCHRONOUS:
4190 ftdi->eeprom->out_is_isochronous = value;
4191 break;
4192 case SUSPEND_PULL_DOWNS:
4193 ftdi->eeprom->suspend_pull_downs = value;
4194 break;
4195 case USE_SERIAL:
4196 ftdi->eeprom->use_serial = value;
4197 break;
4198 case USB_VERSION:
4199 ftdi->eeprom->usb_version = value;
4200 break;
4201 case USE_USB_VERSION:
4202 ftdi->eeprom->use_usb_version = value;
4203 break;
4204 case MAX_POWER:
4205 ftdi->eeprom->max_power = value;
4206 break;
4207 case CHANNEL_A_TYPE:
4208 ftdi->eeprom->channel_a_type = value;
4209 break;
4210 case CHANNEL_B_TYPE:
4211 ftdi->eeprom->channel_b_type = value;
4212 break;
4213 case CHANNEL_A_DRIVER:
4214 ftdi->eeprom->channel_a_driver = value;
4215 break;
4216 case CHANNEL_B_DRIVER:
4217 ftdi->eeprom->channel_b_driver = value;
4218 break;
4219 case CHANNEL_C_DRIVER:
4220 ftdi->eeprom->channel_c_driver = value;
4221 break;
4222 case CHANNEL_D_DRIVER:
4223 ftdi->eeprom->channel_d_driver = value;
4224 break;
4225 case CHANNEL_A_RS485:
4226 ftdi->eeprom->channel_a_rs485enable = value;
4227 break;
4228 case CHANNEL_B_RS485:
4229 ftdi->eeprom->channel_b_rs485enable = value;
4230 break;
4231 case CHANNEL_C_RS485:
4232 ftdi->eeprom->channel_c_rs485enable = value;
4233 break;
4234 case CHANNEL_D_RS485:
4235 ftdi->eeprom->channel_d_rs485enable = value;
4236 break;
4237 case CBUS_FUNCTION_0:
4238 ftdi->eeprom->cbus_function[0] = value;
4239 break;
4240 case CBUS_FUNCTION_1:
4241 ftdi->eeprom->cbus_function[1] = value;
4242 break;
4243 case CBUS_FUNCTION_2:
4244 ftdi->eeprom->cbus_function[2] = value;
4245 break;
4246 case CBUS_FUNCTION_3:
4247 ftdi->eeprom->cbus_function[3] = value;
4248 break;
4249 case CBUS_FUNCTION_4:
4250 ftdi->eeprom->cbus_function[4] = value;
4251 break;
4252 case CBUS_FUNCTION_5:
4253 ftdi->eeprom->cbus_function[5] = value;
4254 break;
4255 case CBUS_FUNCTION_6:
4256 ftdi->eeprom->cbus_function[6] = value;
4257 break;
4258 case CBUS_FUNCTION_7:
4259 ftdi->eeprom->cbus_function[7] = value;
4260 break;
4261 case CBUS_FUNCTION_8:
4262 ftdi->eeprom->cbus_function[8] = value;
4263 break;
4264 case CBUS_FUNCTION_9:
4265 ftdi->eeprom->cbus_function[9] = value;
4266 break;
4267 case HIGH_CURRENT:
4268 ftdi->eeprom->high_current = value;
4269 break;
4270 case HIGH_CURRENT_A:
4271 ftdi->eeprom->high_current_a = value;
4272 break;
4273 case HIGH_CURRENT_B:
4274 ftdi->eeprom->high_current_b = value;
4275 break;
4276 case INVERT:
4277 ftdi->eeprom->invert = value;
4278 break;
4279 case GROUP0_DRIVE:
4280 ftdi->eeprom->group0_drive = value;
4281 break;
4282 case GROUP0_SCHMITT:
4283 ftdi->eeprom->group0_schmitt = value;
4284 break;
4285 case GROUP0_SLEW:
4286 ftdi->eeprom->group0_slew = value;
4287 break;
4288 case GROUP1_DRIVE:
4289 ftdi->eeprom->group1_drive = value;
4290 break;
4291 case GROUP1_SCHMITT:
4292 ftdi->eeprom->group1_schmitt = value;
4293 break;
4294 case GROUP1_SLEW:
4295 ftdi->eeprom->group1_slew = value;
4296 break;
4297 case GROUP2_DRIVE:
4298 ftdi->eeprom->group2_drive = value;
4299 break;
4300 case GROUP2_SCHMITT:
4301 ftdi->eeprom->group2_schmitt = value;
4302 break;
4303 case GROUP2_SLEW:
4304 ftdi->eeprom->group2_slew = value;
4305 break;
4306 case GROUP3_DRIVE:
4307 ftdi->eeprom->group3_drive = value;
4308 break;
4309 case GROUP3_SCHMITT:
4310 ftdi->eeprom->group3_schmitt = value;
4311 break;
4312 case GROUP3_SLEW:
4313 ftdi->eeprom->group3_slew = value;
4314 break;
4315 case CHIP_TYPE:
4316 ftdi->eeprom->chip = value;
4317 break;
4318 case POWER_SAVE:
4319 ftdi->eeprom->powersave = value;
4320 break;
4321 case CLOCK_POLARITY:
4322 ftdi->eeprom->clock_polarity = value;
4323 break;
4324 case DATA_ORDER:
4325 ftdi->eeprom->data_order = value;
4326 break;
4327 case FLOW_CONTROL:
4328 ftdi->eeprom->flow_control = value;
4329 break;
4330 case CHIP_SIZE:
4331 ftdi_error_return(-2, "EEPROM Value can't be changed");
4332 break;
4333 case EXTERNAL_OSCILLATOR:
4334 ftdi->eeprom->external_oscillator = value;
4335 break;
4336 case USER_DATA_ADDR:
4337 ftdi->eeprom->user_data_addr = value;
4338 break;
4339
4340 default :
4341 ftdi_error_return(-1, "Request to unknown EEPROM value");
4342 }
4343 ftdi->eeprom->initialized_for_connected_device = 0;
4344 return 0;
4345}
4346
4347/** Get the read-only buffer to the binary EEPROM content
4348
4349 \param ftdi pointer to ftdi_context
4350 \param buf buffer to receive EEPROM content
4351 \param size Size of receiving buffer
4352
4353 \retval 0: All fine
4354 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
4355 \retval -2: Not enough room to store eeprom
4356*/
4357int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
4358{
4359 if (!ftdi || !(ftdi->eeprom))
4360 ftdi_error_return(-1, "No appropriate structure");
4361
4362 if (!buf || size < ftdi->eeprom->size)
4363 ftdi_error_return(-1, "Not enough room to store eeprom");
4364
4365 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
4366 if (size > FTDI_MAX_EEPROM_SIZE)
4367 size = FTDI_MAX_EEPROM_SIZE;
4368
4369 memcpy(buf, ftdi->eeprom->buf, size);
4370
4371 return 0;
4372}
4373
4374/** Set the EEPROM content from the user-supplied prefilled buffer
4375
4376 \param ftdi pointer to ftdi_context
4377 \param buf buffer to read EEPROM content
4378 \param size Size of buffer
4379
4380 \retval 0: All fine
4381 \retval -1: struct ftdi_context or ftdi_eeprom or buf missing
4382*/
4383int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
4384{
4385 if (!ftdi || !(ftdi->eeprom) || !buf)
4386 ftdi_error_return(-1, "No appropriate structure");
4387
4388 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
4389 if (size > FTDI_MAX_EEPROM_SIZE)
4390 size = FTDI_MAX_EEPROM_SIZE;
4391
4392 memcpy(ftdi->eeprom->buf, buf, size);
4393
4394 return 0;
4395}
4396
4397/** Set the EEPROM user data content from the user-supplied prefilled buffer
4398
4399 \param ftdi pointer to ftdi_context
4400 \param buf buffer to read EEPROM user data content
4401 \param size Size of buffer
4402
4403 \retval 0: All fine
4404 \retval -1: struct ftdi_context or ftdi_eeprom or buf missing
4405*/
4406int ftdi_set_eeprom_user_data(struct ftdi_context *ftdi, const char * buf, int size)
4407{
4408 if (!ftdi || !(ftdi->eeprom) || !buf)
4409 ftdi_error_return(-1, "No appropriate structure");
4410
4411 ftdi->eeprom->user_data_size = size;
4412 ftdi->eeprom->user_data = buf;
4413 return 0;
4414}
4415
4416/**
4417 Read eeprom location
4418
4419 \param ftdi pointer to ftdi_context
4420 \param eeprom_addr Address of eeprom location to be read
4421 \param eeprom_val Pointer to store read eeprom location
4422
4423 \retval 0: all fine
4424 \retval -1: read failed
4425 \retval -2: USB device unavailable
4426*/
4427int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
4428{
4429 unsigned char buf[2];
4430
4431 if (ftdi == NULL || ftdi->usb_dev == NULL)
4432 ftdi_error_return(-2, "USB device unavailable");
4433
4434 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, buf, 2, ftdi->usb_read_timeout) != 2)
4435 ftdi_error_return(-1, "reading eeprom failed");
4436
4437 *eeprom_val = (0xff & buf[0]) | (buf[1] << 8);
4438
4439 return 0;
4440}
4441
4442/**
4443 Read eeprom
4444
4445 \param ftdi pointer to ftdi_context
4446
4447 \retval 0: all fine
4448 \retval -1: read failed
4449 \retval -2: USB device unavailable
4450*/
4451int ftdi_read_eeprom(struct ftdi_context *ftdi)
4452{
4453 int i;
4454 unsigned char *buf;
4455
4456 if (ftdi == NULL || ftdi->usb_dev == NULL)
4457 ftdi_error_return(-2, "USB device unavailable");
4458 buf = ftdi->eeprom->buf;
4459
4460 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
4461 {
4462 if (libusb_control_transfer(
4463 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
4464 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
4465 ftdi_error_return(-1, "reading eeprom failed");
4466 }
4467
4468 if (ftdi->type == TYPE_R)
4469 ftdi->eeprom->size = 0x80;
4470 /* Guesses size of eeprom by comparing halves
4471 - will not work with blank eeprom */
4472 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
4473 ftdi->eeprom->size = -1;
4474 else if (memcmp(buf,&buf[0x80],0x80) == 0)
4475 ftdi->eeprom->size = 0x80;
4476 else if (memcmp(buf,&buf[0x40],0x40) == 0)
4477 ftdi->eeprom->size = 0x40;
4478 else
4479 ftdi->eeprom->size = 0x100;
4480 return 0;
4481}
4482
4483/*
4484 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
4485 Function is only used internally
4486 \internal
4487*/
4488static unsigned char ftdi_read_chipid_shift(unsigned char value)
4489{
4490 return ((value & 1) << 1) |
4491 ((value & 2) << 5) |
4492 ((value & 4) >> 2) |
4493 ((value & 8) << 4) |
4494 ((value & 16) >> 1) |
4495 ((value & 32) >> 1) |
4496 ((value & 64) >> 4) |
4497 ((value & 128) >> 2);
4498}
4499
4500/**
4501 Read the FTDIChip-ID from R-type devices
4502
4503 \param ftdi pointer to ftdi_context
4504 \param chipid Pointer to store FTDIChip-ID
4505
4506 \retval 0: all fine
4507 \retval -1: read failed
4508 \retval -2: USB device unavailable
4509*/
4510int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
4511{
4512 unsigned int a = 0, b = 0;
4513
4514 if (ftdi == NULL || ftdi->usb_dev == NULL)
4515 ftdi_error_return(-2, "USB device unavailable");
4516
4517 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
4518 {
4519 a = a << 8 | a >> 8;
4520 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
4521 {
4522 b = b << 8 | b >> 8;
4523 a = (a << 16) | (b & 0xFFFF);
4524 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
4525 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
4526 *chipid = a ^ 0xa5f0f7d1;
4527 return 0;
4528 }
4529 }
4530
4531 ftdi_error_return(-1, "read of FTDIChip-ID failed");
4532}
4533
4534/**
4535 Write eeprom location
4536
4537 \param ftdi pointer to ftdi_context
4538 \param eeprom_addr Address of eeprom location to be written
4539 \param eeprom_val Value to be written
4540
4541 \retval 0: all fine
4542 \retval -1: write failed
4543 \retval -2: USB device unavailable
4544 \retval -3: Invalid access to checksum protected area below 0x80
4545 \retval -4: Device can't access unprotected area
4546 \retval -5: Reading chip type failed
4547*/
4548int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
4549 unsigned short eeprom_val)
4550{
4551 int chip_type_location;
4552 unsigned short chip_type;
4553
4554 if (ftdi == NULL || ftdi->usb_dev == NULL)
4555 ftdi_error_return(-2, "USB device unavailable");
4556
4557 if (eeprom_addr <0x80)
4558 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
4559
4560
4561 switch (ftdi->type)
4562 {
4563 case TYPE_BM:
4564 case TYPE_2232C:
4565 chip_type_location = 0x14;
4566 break;
4567 case TYPE_2232H:
4568 case TYPE_4232H:
4569 chip_type_location = 0x18;
4570 break;
4571 case TYPE_232H:
4572 chip_type_location = 0x1e;
4573 break;
4574 default:
4575 ftdi_error_return(-4, "Device can't access unprotected area");
4576 }
4577
4578 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
4579 ftdi_error_return(-5, "Reading failed");
4580 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
4581 if ((chip_type & 0xff) != 0x66)
4582 {
4583 ftdi_error_return(-6, "EEPROM is not of 93x66");
4584 }
4585
4586 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4587 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
4588 NULL, 0, ftdi->usb_write_timeout) != 0)
4589 ftdi_error_return(-1, "unable to write eeprom");
4590
4591 return 0;
4592}
4593
4594/**
4595 Write eeprom
4596
4597 \param ftdi pointer to ftdi_context
4598
4599 \retval 0: all fine
4600 \retval -1: read failed
4601 \retval -2: USB device unavailable
4602 \retval -3: EEPROM not initialized for the connected device;
4603*/
4604int ftdi_write_eeprom(struct ftdi_context *ftdi)
4605{
4606 unsigned short usb_val, status;
4607 int i, ret;
4608 unsigned char *eeprom;
4609
4610 if (ftdi == NULL || ftdi->usb_dev == NULL)
4611 ftdi_error_return(-2, "USB device unavailable");
4612
4613 if(ftdi->eeprom->initialized_for_connected_device == 0)
4614 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
4615
4616 eeprom = ftdi->eeprom->buf;
4617
4618 /* These commands were traced while running MProg */
4619 if ((ret = ftdi_usb_reset(ftdi)) != 0)
4620 return ret;
4621 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
4622 return ret;
4623 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
4624 return ret;
4625
4626 for (i = 0; i < ftdi->eeprom->size/2; i++)
4627 {
4628 /* Do not try to write to reserved area */
4629 if ((ftdi->type == TYPE_230X) && (i == 0x40))
4630 {
4631 i = 0x50;
4632 }
4633 usb_val = eeprom[i*2];
4634 usb_val += eeprom[(i*2)+1] << 8;
4635 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4636 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
4637 NULL, 0, ftdi->usb_write_timeout) < 0)
4638 ftdi_error_return(-1, "unable to write eeprom");
4639 }
4640
4641 return 0;
4642}
4643
4644/**
4645 Erase eeprom
4646
4647 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
4648
4649 \param ftdi pointer to ftdi_context
4650
4651 \retval 0: all fine
4652 \retval -1: erase failed
4653 \retval -2: USB device unavailable
4654 \retval -3: Writing magic failed
4655 \retval -4: Read EEPROM failed
4656 \retval -5: Unexpected EEPROM value
4657*/
4658#define MAGIC 0x55aa
4659int ftdi_erase_eeprom(struct ftdi_context *ftdi)
4660{
4661 unsigned short eeprom_value;
4662 if (ftdi == NULL || ftdi->usb_dev == NULL)
4663 ftdi_error_return(-2, "USB device unavailable");
4664
4665 if ((ftdi->type == TYPE_R) || (ftdi->type == TYPE_230X))
4666 {
4667 ftdi->eeprom->chip = 0;
4668 return 0;
4669 }
4670
4671 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4672 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4673 ftdi_error_return(-1, "unable to erase eeprom");
4674
4675
4676 /* detect chip type by writing 0x55AA as magic at word position 0xc0
4677 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
4678 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
4679 Chip is 93x66 if magic is only read at word position 0xc0*/
4680 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4681 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
4682 NULL, 0, ftdi->usb_write_timeout) != 0)
4683 ftdi_error_return(-3, "Writing magic failed");
4684 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
4685 ftdi_error_return(-4, "Reading failed");
4686 if (eeprom_value == MAGIC)
4687 {
4688 ftdi->eeprom->chip = 0x46;
4689 }
4690 else
4691 {
4692 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
4693 ftdi_error_return(-4, "Reading failed");
4694 if (eeprom_value == MAGIC)
4695 ftdi->eeprom->chip = 0x56;
4696 else
4697 {
4698 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
4699 ftdi_error_return(-4, "Reading failed");
4700 if (eeprom_value == MAGIC)
4701 ftdi->eeprom->chip = 0x66;
4702 else
4703 {
4704 ftdi->eeprom->chip = -1;
4705 }
4706 }
4707 }
4708 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4709 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4710 ftdi_error_return(-1, "unable to erase eeprom");
4711 return 0;
4712}
4713
4714/**
4715 Get string representation for last error code
4716
4717 \param ftdi pointer to ftdi_context
4718
4719 \retval Pointer to error string
4720*/
4721const char *ftdi_get_error_string (struct ftdi_context *ftdi)
4722{
4723 if (ftdi == NULL)
4724 return "";
4725
4726 return ftdi->error_str;
4727}
4728
4729/* @} end of doxygen libftdi group */