Use max_packet_size
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
c201f80f 5 copyright : (C) 2003-2008 by Intra2net AG
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
1bfc403c 21 http://www.intra2net.com/en/developer/libftdi/
b5ec1820 22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
579b006f 31#include <libusb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
b56d5a64 34#include <stdio.h>
579b006f 35#include <stdlib.h>
0e302db6 36
98452d97 37#include "ftdi.h"
a3da1d95 38
21abaf2e 39#define ftdi_error_return(code, str) do { \
2f73e59f 40 ftdi->error_str = str; \
21abaf2e 41 return code; \
d2f10023 42 } while(0);
c3d95b87 43
418aaa72 44
f3f81007
TJ
45/**
46 Internal function to close usb device pointer.
47 Sets ftdi->usb_dev to NULL.
48 \internal
49
50 \param ftdi pointer to ftdi_context
51
579b006f 52 \retval none
f3f81007 53*/
579b006f 54static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 55{
f3f81007 56 if (ftdi->usb_dev)
dff4fdb0 57 {
579b006f 58 libusb_close (ftdi->usb_dev);
dff4fdb0
NF
59 ftdi->usb_dev = NULL;
60 }
dff4fdb0 61}
c3d95b87 62
1941414d
TJ
63/**
64 Initializes a ftdi_context.
4837f98a 65
1941414d 66 \param ftdi pointer to ftdi_context
4837f98a 67
1941414d
TJ
68 \retval 0: all fine
69 \retval -1: couldn't allocate read buffer
70
71 \remark This should be called before all functions
948f9ada 72*/
a8f46ddc
TJ
73int ftdi_init(struct ftdi_context *ftdi)
74{
98452d97 75 ftdi->usb_dev = NULL;
545820ce
TJ
76 ftdi->usb_read_timeout = 5000;
77 ftdi->usb_write_timeout = 5000;
a3da1d95 78
53ad271d 79 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 80 ftdi->baudrate = -1;
418aaa72 81 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 82
948f9ada
TJ
83 ftdi->readbuffer = NULL;
84 ftdi->readbuffer_offset = 0;
85 ftdi->readbuffer_remaining = 0;
86 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 87 ftdi->max_packet_size = 0;
948f9ada 88
545820ce
TJ
89 ftdi->interface = 0;
90 ftdi->index = 0;
91 ftdi->in_ep = 0x02;
92 ftdi->out_ep = 0x81;
418aaa72 93 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 94
a3da1d95
GE
95 ftdi->error_str = NULL;
96
c201f80f
TJ
97 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
98
1c733d33
TJ
99 /* All fine. Now allocate the readbuffer */
100 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 101}
4837f98a 102
1941414d 103/**
cef378aa
TJ
104 Allocate and initialize a new ftdi_context
105
106 \return a pointer to a new ftdi_context, or NULL on failure
107*/
672ac008 108struct ftdi_context *ftdi_new(void)
cef378aa
TJ
109{
110 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
111
22d12cda
TJ
112 if (ftdi == NULL)
113 {
cef378aa
TJ
114 return NULL;
115 }
116
22d12cda
TJ
117 if (ftdi_init(ftdi) != 0)
118 {
cef378aa 119 free(ftdi);
cdf448f6 120 return NULL;
cef378aa
TJ
121 }
122
123 return ftdi;
124}
125
126/**
1941414d
TJ
127 Open selected channels on a chip, otherwise use first channel.
128
129 \param ftdi pointer to ftdi_context
f9d69895 130 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
131
132 \retval 0: all fine
133 \retval -1: unknown interface
c4446c36 134*/
0ce2f5fa 135int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 136{
22d12cda
TJ
137 switch (interface)
138 {
139 case INTERFACE_ANY:
140 case INTERFACE_A:
141 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
142 break;
143 case INTERFACE_B:
144 ftdi->interface = 1;
145 ftdi->index = INTERFACE_B;
146 ftdi->in_ep = 0x04;
147 ftdi->out_ep = 0x83;
148 break;
f9d69895
AH
149 case INTERFACE_C:
150 ftdi->interface = 2;
151 ftdi->index = INTERFACE_C;
152 ftdi->in_ep = 0x06;
153 ftdi->out_ep = 0x85;
154 break;
155 case INTERFACE_D:
156 ftdi->interface = 3;
157 ftdi->index = INTERFACE_D;
158 ftdi->in_ep = 0x08;
159 ftdi->out_ep = 0x87;
160 break;
22d12cda
TJ
161 default:
162 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
163 }
164 return 0;
165}
948f9ada 166
1941414d
TJ
167/**
168 Deinitializes a ftdi_context.
4837f98a 169
1941414d 170 \param ftdi pointer to ftdi_context
4837f98a 171*/
a8f46ddc
TJ
172void ftdi_deinit(struct ftdi_context *ftdi)
173{
f3f81007 174 ftdi_usb_close_internal (ftdi);
dff4fdb0 175
22d12cda
TJ
176 if (ftdi->readbuffer != NULL)
177 {
d9f0cce7
TJ
178 free(ftdi->readbuffer);
179 ftdi->readbuffer = NULL;
948f9ada 180 }
a3da1d95
GE
181}
182
1941414d 183/**
cef378aa
TJ
184 Deinitialize and free an ftdi_context.
185
186 \param ftdi pointer to ftdi_context
187*/
188void ftdi_free(struct ftdi_context *ftdi)
189{
190 ftdi_deinit(ftdi);
191 free(ftdi);
192}
193
194/**
1941414d
TJ
195 Use an already open libusb device.
196
197 \param ftdi pointer to ftdi_context
579b006f 198 \param usb libusb libusb_device_handle to use
4837f98a 199*/
579b006f 200void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 201{
98452d97
TJ
202 ftdi->usb_dev = usb;
203}
204
205
1941414d
TJ
206/**
207 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
208 needs to be deallocated by ftdi_list_free() after use.
209
210 \param ftdi pointer to ftdi_context
211 \param devlist Pointer where to store list of found devices
212 \param vendor Vendor ID to search for
213 \param product Product ID to search for
edb82cbf 214
1941414d 215 \retval >0: number of devices found
1941414d 216 \retval -3: out of memory
579b006f
JZ
217 \retval -4: libusb_init() failed
218 \retval -5: libusb_get_device_list() failed
219 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 220*/
d2f10023 221int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
222{
223 struct ftdi_device_list **curdev;
579b006f
JZ
224 libusb_device *dev;
225 libusb_device **devs;
edb82cbf 226 int count = 0;
579b006f
JZ
227 int i = 0;
228
229 if (libusb_init(NULL) < 0)
230 ftdi_error_return(-4, "libusb_init() failed");
d2f10023 231
579b006f
JZ
232 if (libusb_get_device_list(NULL, &devs) < 0)
233 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
234
235 curdev = devlist;
6db32169 236 *curdev = NULL;
579b006f
JZ
237
238 while ((dev = devs[i++]) != NULL)
22d12cda 239 {
579b006f 240 struct libusb_device_descriptor desc;
d2f10023 241
579b006f
JZ
242 if (libusb_get_device_descriptor(dev, &desc) < 0)
243 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
edb82cbf 244
579b006f
JZ
245 if (desc.idVendor == vendor && desc.idProduct == product)
246 {
247 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
248 if (!*curdev)
249 ftdi_error_return(-3, "out of memory");
250
251 (*curdev)->next = NULL;
252 (*curdev)->dev = dev;
253
254 curdev = &(*curdev)->next;
255 count++;
edb82cbf
TJ
256 }
257 }
d2f10023 258
edb82cbf
TJ
259 return count;
260}
261
1941414d
TJ
262/**
263 Frees a usb device list.
edb82cbf 264
1941414d 265 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 266*/
d2f10023 267void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 268{
6db32169
TJ
269 struct ftdi_device_list *curdev, *next;
270
22d12cda
TJ
271 for (curdev = *devlist; curdev != NULL;)
272 {
6db32169
TJ
273 next = curdev->next;
274 free(curdev);
275 curdev = next;
edb82cbf
TJ
276 }
277
6db32169 278 *devlist = NULL;
edb82cbf
TJ
279}
280
1941414d 281/**
cef378aa
TJ
282 Frees a usb device list.
283
284 \param devlist USB device list created by ftdi_usb_find_all()
285*/
286void ftdi_list_free2(struct ftdi_device_list *devlist)
287{
288 ftdi_list_free(&devlist);
289}
290
291/**
474786c0
TJ
292 Return device ID strings from the usb device.
293
294 The parameters manufacturer, description and serial may be NULL
295 or pointer to buffers to store the fetched strings.
296
898c34dd
TJ
297 \note Use this function only in combination with ftdi_usb_find_all()
298 as it closes the internal "usb_dev" after use.
299
474786c0
TJ
300 \param ftdi pointer to ftdi_context
301 \param dev libusb usb_dev to use
302 \param manufacturer Store manufacturer string here if not NULL
303 \param mnf_len Buffer size of manufacturer string
304 \param description Store product description string here if not NULL
305 \param desc_len Buffer size of product description string
306 \param serial Store serial string here if not NULL
307 \param serial_len Buffer size of serial string
308
309 \retval 0: all fine
310 \retval -1: wrong arguments
311 \retval -4: unable to open device
312 \retval -7: get product manufacturer failed
313 \retval -8: get product description failed
314 \retval -9: get serial number failed
579b006f 315 \retval -11: libusb_get_device_descriptor() failed
474786c0 316*/
579b006f 317int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
22d12cda 318 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
474786c0 319{
579b006f
JZ
320 struct libusb_device_descriptor desc;
321
474786c0
TJ
322 if ((ftdi==NULL) || (dev==NULL))
323 return -1;
324
579b006f
JZ
325 if (libusb_open(dev, &ftdi->usb_dev) < 0)
326 ftdi_error_return(-4, "libusb_open() failed");
327
328 if (libusb_get_device_descriptor(dev, &desc) < 0)
329 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 330
22d12cda
TJ
331 if (manufacturer != NULL)
332 {
579b006f 333 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 334 {
f3f81007 335 ftdi_usb_close_internal (ftdi);
579b006f 336 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
337 }
338 }
339
22d12cda
TJ
340 if (description != NULL)
341 {
579b006f 342 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 343 {
f3f81007 344 ftdi_usb_close_internal (ftdi);
579b006f 345 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
346 }
347 }
348
22d12cda
TJ
349 if (serial != NULL)
350 {
579b006f 351 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 352 {
f3f81007 353 ftdi_usb_close_internal (ftdi);
579b006f 354 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
355 }
356 }
357
579b006f 358 ftdi_usb_close_internal (ftdi);
474786c0
TJ
359
360 return 0;
361}
362
363/**
e2f12a4f
TJ
364 * Internal function to determine the maximum packet size.
365 * \param ftdi pointer to ftdi_context
366 * \param dev libusb usb_dev to use
367 * \retval Maximum packet size for this device
368 */
579b006f 369static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 370{
579b006f
JZ
371 struct libusb_device_descriptor desc;
372 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
373 unsigned int packet_size;
374
375 // Determine maximum packet size. Init with default value.
376 // New hi-speed devices from FTDI use a packet size of 512 bytes
377 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
378 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
379 packet_size = 512;
380 else
381 packet_size = 64;
382
579b006f
JZ
383 if (libusb_get_device_descriptor(dev, &desc) < 0)
384 return packet_size;
385
386 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
387 return packet_size;
e2f12a4f 388
579b006f
JZ
389 if (desc.bNumConfigurations > 0)
390 {
391 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 392 {
579b006f 393 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
394 if (interface.num_altsetting > 0)
395 {
579b006f 396 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
397 if (descriptor.bNumEndpoints > 0)
398 {
399 packet_size = descriptor.endpoint[0].wMaxPacketSize;
400 }
401 }
402 }
403 }
404
579b006f 405 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
406 return packet_size;
407}
408
409/**
418aaa72 410 Opens a ftdi device given by an usb_device.
7b18bef6 411
1941414d
TJ
412 \param ftdi pointer to ftdi_context
413 \param dev libusb usb_dev to use
414
415 \retval 0: all fine
23b1798d 416 \retval -3: unable to config device
1941414d
TJ
417 \retval -4: unable to open device
418 \retval -5: unable to claim device
419 \retval -6: reset failed
420 \retval -7: set baudrate failed
579b006f
JZ
421 \retval -9: libusb_get_device_descriptor() failed
422 \retval -10: libusb_get_config_descriptor() failed
423 \retval -11: libusb_etach_kernel_driver() failed
424 \retval -12: libusb_get_configuration() failed
7b18bef6 425*/
579b006f 426int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 427{
579b006f
JZ
428 struct libusb_device_descriptor desc;
429 struct libusb_config_descriptor *config0;
430 int cfg, cfg0;
431
432 if (libusb_open(dev, &ftdi->usb_dev) < 0)
433 ftdi_error_return(-4, "libusb_open() failed");
434
435 if (libusb_get_device_descriptor(dev, &desc) < 0)
436 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
437
438 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
439 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
440 cfg0 = config0->bConfigurationValue;
441 libusb_free_config_descriptor (config0);
d2f10023
TJ
442
443#ifdef LIBUSB_HAS_GET_DRIVER_NP
22592e17
TJ
444 // Try to detach ftdi_sio kernel module.
445 // Returns ENODATA if driver is not loaded.
446 //
447 // The return code is kept in a separate variable and only parsed
448 // if usb_set_configuration() or usb_claim_interface() fails as the
449 // detach operation might be denied and everything still works fine.
450 // Likely scenario is a static ftdi_sio kernel module.
579b006f
JZ
451 ret = libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface);
452 if (ret < 0 && ret != LIBUSB_ERROR_NOT_FOUND)
453 ftdi_error_return(-11, "libusb_detach_kernel_driver () failed");
d2f10023
TJ
454#endif
455
579b006f
JZ
456 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
457 ftdi_error_return(-12, "libusb_get_configuration () failed");
458
b57aedfd
GE
459 // set configuration (needed especially for windows)
460 // tolerate EBUSY: one device with one configuration, but two interfaces
461 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 462 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 463 {
579b006f 464 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 465 {
a56ba2bd 466 ftdi_usb_close_internal (ftdi);
579b006f 467 ftdi_error_return(-3, "unable to set usb configuration. Make sure ftdi_sio is unloaded!");
23b1798d
TJ
468 }
469 }
470
579b006f 471 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 472 {
f3f81007 473 ftdi_usb_close_internal (ftdi);
579b006f 474 ftdi_error_return(-5, "unable to claim usb device. Make sure ftdi_sio is unloaded!");
7b18bef6
TJ
475 }
476
22d12cda
TJ
477 if (ftdi_usb_reset (ftdi) != 0)
478 {
f3f81007 479 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
480 ftdi_error_return(-6, "ftdi_usb_reset failed");
481 }
482
7b18bef6
TJ
483 // Try to guess chip type
484 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f
JZ
485 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
486 && desc.iSerialNumber == 0))
7b18bef6 487 ftdi->type = TYPE_BM;
579b006f 488 else if (desc.bcdDevice == 0x200)
7b18bef6 489 ftdi->type = TYPE_AM;
579b006f 490 else if (desc.bcdDevice == 0x500)
7b18bef6 491 ftdi->type = TYPE_2232C;
579b006f 492 else if (desc.bcdDevice == 0x600)
cb6250fa 493 ftdi->type = TYPE_R;
579b006f 494 else if (desc.bcdDevice == 0x700)
0beb9686 495 ftdi->type = TYPE_2232H;
579b006f 496 else if (desc.bcdDevice == 0x800)
0beb9686 497 ftdi->type = TYPE_4232H;
7b18bef6 498
f9d69895
AH
499 // Set default interface on dual/quad type chips
500 switch(ftdi->type)
501 {
502 case TYPE_2232C:
503 case TYPE_2232H:
504 case TYPE_4232H:
505 if (!ftdi->index)
506 ftdi->index = INTERFACE_A;
507 break;
508 default:
509 break;
510 }
511
e2f12a4f
TJ
512 // Determine maximum packet size
513 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
514
ef6f4838
TE
515 if (ftdi_set_baudrate (ftdi, 9600) != 0)
516 {
517 ftdi_usb_close_internal (ftdi);
518 ftdi_error_return(-7, "set baudrate failed");
519 }
520
7b18bef6
TJ
521 ftdi_error_return(0, "all fine");
522}
523
1941414d
TJ
524/**
525 Opens the first device with a given vendor and product ids.
526
527 \param ftdi pointer to ftdi_context
528 \param vendor Vendor ID
529 \param product Product ID
530
9bec2387 531 \retval same as ftdi_usb_open_desc()
1941414d 532*/
edb82cbf
TJ
533int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
534{
535 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
536}
537
1941414d
TJ
538/**
539 Opens the first device with a given, vendor id, product id,
540 description and serial.
541
542 \param ftdi pointer to ftdi_context
543 \param vendor Vendor ID
544 \param product Product ID
545 \param description Description to search for. Use NULL if not needed.
546 \param serial Serial to search for. Use NULL if not needed.
547
548 \retval 0: all fine
1941414d
TJ
549 \retval -3: usb device not found
550 \retval -4: unable to open device
551 \retval -5: unable to claim device
552 \retval -6: reset failed
553 \retval -7: set baudrate failed
554 \retval -8: get product description failed
555 \retval -9: get serial number failed
579b006f
JZ
556 \retval -11: libusb_init() failed
557 \retval -12: libusb_get_device_list() failed
558 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 559*/
04e1ea0a 560int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
561 const char* description, const char* serial)
562{
5ebbdab9
GE
563 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
564}
565
566/**
567 Opens the index-th device with a given, vendor id, product id,
568 description and serial.
569
570 \param ftdi pointer to ftdi_context
571 \param vendor Vendor ID
572 \param product Product ID
573 \param description Description to search for. Use NULL if not needed.
574 \param serial Serial to search for. Use NULL if not needed.
575 \param index Number of matching device to open if there are more than one, starts with 0.
576
577 \retval 0: all fine
578 \retval -1: usb_find_busses() failed
579 \retval -2: usb_find_devices() failed
580 \retval -3: usb device not found
581 \retval -4: unable to open device
582 \retval -5: unable to claim device
583 \retval -6: reset failed
584 \retval -7: set baudrate failed
585 \retval -8: get product description failed
586 \retval -9: get serial number failed
587 \retval -10: unable to close device
588*/
589int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
590 const char* description, const char* serial, unsigned int index)
591{
579b006f
JZ
592 libusb_device *dev;
593 libusb_device **devs;
c3d95b87 594 char string[256];
579b006f 595 int i = 0;
98452d97 596
579b006f
JZ
597 if (libusb_init(NULL) < 0)
598 ftdi_error_return(-11, "libusb_init() failed");
98452d97 599
579b006f
JZ
600 if (libusb_get_device_list(NULL, &devs) < 0)
601 ftdi_error_return(-12, "libusb_get_device_list() failed");
a3da1d95 602
579b006f 603 while ((dev = devs[i++]) != NULL)
22d12cda 604 {
579b006f
JZ
605 struct libusb_device_descriptor desc;
606
607 if (libusb_get_device_descriptor(dev, &desc) < 0)
608 ftdi_error_return(-13, "libusb_get_device_descriptor() failed");
609
610 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 611 {
579b006f
JZ
612 if (libusb_open(dev, &ftdi->usb_dev) < 0)
613 ftdi_error_return(-4, "usb_open() failed");
c3d95b87 614
579b006f
JZ
615 if (description != NULL)
616 {
617 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 618 {
579b006f
JZ
619 libusb_close (ftdi->usb_dev);
620 ftdi_error_return(-8, "unable to fetch product description");
a8f46ddc 621 }
579b006f 622 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 623 {
579b006f
JZ
624 libusb_close (ftdi->usb_dev);
625 continue;
a8f46ddc 626 }
579b006f
JZ
627 }
628 if (serial != NULL)
629 {
630 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
631 {
632 ftdi_usb_close_internal (ftdi);
633 ftdi_error_return(-9, "unable to fetch serial number");
634 }
635 if (strncmp(string, serial, sizeof(string)) != 0)
636 {
637 ftdi_usb_close_internal (ftdi);
638 continue;
639 }
640 }
98452d97 641
579b006f 642 ftdi_usb_close_internal (ftdi);
d2f10023 643
5ebbdab9
GE
644 if (index > 0)
645 {
646 index--;
647 continue;
648 }
649
579b006f 650 return ftdi_usb_open_dev(ftdi, dev);
98452d97 651 }
98452d97 652 }
a3da1d95 653
98452d97 654 // device not found
c3d95b87 655 ftdi_error_return(-3, "device not found");
a3da1d95
GE
656}
657
1941414d 658/**
5ebbdab9
GE
659 Opens the ftdi-device described by a description-string.
660 Intended to be used for parsing a device-description given as commandline argument.
661
662 \param ftdi pointer to ftdi_context
663 \param description NULL-terminated description-string, using this format:
664 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
665 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
666 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
667 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
668
669 \note The description format may be extended in later versions.
670
671 \retval 0: all fine
579b006f
JZ
672 \retval -1: libusb_init() failed
673 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
674 \retval -3: usb device not found
675 \retval -4: unable to open device
676 \retval -5: unable to claim device
677 \retval -6: reset failed
678 \retval -7: set baudrate failed
679 \retval -8: get product description failed
680 \retval -9: get serial number failed
681 \retval -10: unable to close device
682 \retval -11: illegal description format
683*/
684int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
685{
686 if (description[0] == 0 || description[1] != ':')
687 ftdi_error_return(-11, "illegal description format");
688
689 if (description[0] == 'd')
690 {
579b006f
JZ
691 libusb_device *dev;
692 libusb_device **devs;
693 unsigned int bus_number, device_address;
694 int i = 0;
695
696 if (libusb_init (NULL) < 0)
697 ftdi_error_return(-1, "libusb_init() failed");
5ebbdab9 698
579b006f
JZ
699 if (libusb_get_device_list(NULL, &devs) < 0)
700 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 701
579b006f
JZ
702 /* XXX: This doesn't handle symlinks/odd paths/etc... */
703 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
704 ftdi_error_return(-11, "illegal description format");
5ebbdab9 705
579b006f 706 while ((dev = devs[i++]) != NULL)
5ebbdab9 707 {
579b006f
JZ
708 if (bus_number == libusb_get_bus_number (dev)
709 && device_address == libusb_get_device_address (dev))
3d0099ee 710 return ftdi_usb_open_dev(ftdi, dev);
5ebbdab9
GE
711 }
712
713 // device not found
714 ftdi_error_return(-3, "device not found");
715 }
716 else if (description[0] == 'i' || description[0] == 's')
717 {
718 unsigned int vendor;
719 unsigned int product;
720 unsigned int index=0;
0e6cf62b 721 const char *serial=NULL;
5ebbdab9
GE
722 const char *startp, *endp;
723
724 errno=0;
725 startp=description+2;
726 vendor=strtoul((char*)startp,(char**)&endp,0);
727 if (*endp != ':' || endp == startp || errno != 0)
728 ftdi_error_return(-11, "illegal description format");
729
730 startp=endp+1;
731 product=strtoul((char*)startp,(char**)&endp,0);
732 if (endp == startp || errno != 0)
733 ftdi_error_return(-11, "illegal description format");
734
735 if (description[0] == 'i' && *endp != 0)
736 {
737 /* optional index field in i-mode */
738 if (*endp != ':')
739 ftdi_error_return(-11, "illegal description format");
740
741 startp=endp+1;
742 index=strtoul((char*)startp,(char**)&endp,0);
743 if (*endp != 0 || endp == startp || errno != 0)
744 ftdi_error_return(-11, "illegal description format");
745 }
746 if (description[0] == 's')
747 {
748 if (*endp != ':')
749 ftdi_error_return(-11, "illegal description format");
750
751 /* rest of the description is the serial */
752 serial=endp+1;
753 }
754
755 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
756 }
757 else
758 {
759 ftdi_error_return(-11, "illegal description format");
760 }
761}
762
763/**
1941414d 764 Resets the ftdi device.
a3da1d95 765
1941414d
TJ
766 \param ftdi pointer to ftdi_context
767
768 \retval 0: all fine
769 \retval -1: FTDI reset failed
4837f98a 770*/
edb82cbf 771int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 772{
579b006f
JZ
773 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
774 SIO_RESET_REQUEST, SIO_RESET_SIO,
775 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 776 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 777
545820ce 778 // Invalidate data in the readbuffer
bfcee05b
TJ
779 ftdi->readbuffer_offset = 0;
780 ftdi->readbuffer_remaining = 0;
781
a3da1d95
GE
782 return 0;
783}
784
1941414d 785/**
1189b11a 786 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
787
788 \param ftdi pointer to ftdi_context
4837f98a 789
1941414d 790 \retval 0: all fine
1189b11a 791 \retval -1: read buffer purge failed
4837f98a 792*/
1189b11a 793int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 794{
579b006f
JZ
795 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
796 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
797 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
798 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
799
545820ce 800 // Invalidate data in the readbuffer
bfcee05b
TJ
801 ftdi->readbuffer_offset = 0;
802 ftdi->readbuffer_remaining = 0;
a60be878 803
1189b11a
TJ
804 return 0;
805}
806
807/**
808 Clears the write buffer on the chip.
809
810 \param ftdi pointer to ftdi_context
811
812 \retval 0: all fine
813 \retval -1: write buffer purge failed
814*/
815int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
816{
579b006f
JZ
817 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
818 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
819 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
820 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
821
822 return 0;
823}
824
825/**
826 Clears the buffers on the chip and the internal read buffer.
827
828 \param ftdi pointer to ftdi_context
829
830 \retval 0: all fine
831 \retval -1: read buffer purge failed
832 \retval -2: write buffer purge failed
833*/
834int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
835{
836 int result;
837
838 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 839 if (result < 0)
1189b11a
TJ
840 return -1;
841
842 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 843 if (result < 0)
1189b11a 844 return -2;
545820ce 845
a60be878
TJ
846 return 0;
847}
a3da1d95 848
f3f81007
TJ
849
850
1941414d
TJ
851/**
852 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
853
854 \param ftdi pointer to ftdi_context
855
856 \retval 0: all fine
857 \retval -1: usb_release failed
a3da1d95 858*/
a8f46ddc
TJ
859int ftdi_usb_close(struct ftdi_context *ftdi)
860{
a3da1d95
GE
861 int rtn = 0;
862
dff4fdb0 863 if (ftdi->usb_dev != NULL)
579b006f 864 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 865 rtn = -1;
98452d97 866
579b006f 867 ftdi_usb_close_internal (ftdi);
98452d97 868
a3da1d95
GE
869 return rtn;
870}
871
418aaa72 872/**
53ad271d
TJ
873 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
874 Function is only used internally
b5ec1820 875 \internal
53ad271d 876*/
0126d22e 877static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
a8f46ddc
TJ
878 unsigned short *value, unsigned short *index)
879{
53ad271d
TJ
880 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
881 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
882 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
883 int divisor, best_divisor, best_baud, best_baud_diff;
884 unsigned long encoded_divisor;
885 int i;
886
22d12cda
TJ
887 if (baudrate <= 0)
888 {
53ad271d
TJ
889 // Return error
890 return -1;
891 }
892
893 divisor = 24000000 / baudrate;
894
22d12cda
TJ
895 if (ftdi->type == TYPE_AM)
896 {
53ad271d
TJ
897 // Round down to supported fraction (AM only)
898 divisor -= am_adjust_dn[divisor & 7];
899 }
900
901 // Try this divisor and the one above it (because division rounds down)
902 best_divisor = 0;
903 best_baud = 0;
904 best_baud_diff = 0;
22d12cda
TJ
905 for (i = 0; i < 2; i++)
906 {
53ad271d
TJ
907 int try_divisor = divisor + i;
908 int baud_estimate;
909 int baud_diff;
910
911 // Round up to supported divisor value
22d12cda
TJ
912 if (try_divisor <= 8)
913 {
53ad271d
TJ
914 // Round up to minimum supported divisor
915 try_divisor = 8;
22d12cda
TJ
916 }
917 else if (ftdi->type != TYPE_AM && try_divisor < 12)
918 {
53ad271d
TJ
919 // BM doesn't support divisors 9 through 11 inclusive
920 try_divisor = 12;
22d12cda
TJ
921 }
922 else if (divisor < 16)
923 {
53ad271d
TJ
924 // AM doesn't support divisors 9 through 15 inclusive
925 try_divisor = 16;
22d12cda
TJ
926 }
927 else
928 {
929 if (ftdi->type == TYPE_AM)
930 {
53ad271d
TJ
931 // Round up to supported fraction (AM only)
932 try_divisor += am_adjust_up[try_divisor & 7];
22d12cda
TJ
933 if (try_divisor > 0x1FFF8)
934 {
53ad271d
TJ
935 // Round down to maximum supported divisor value (for AM)
936 try_divisor = 0x1FFF8;
937 }
22d12cda
TJ
938 }
939 else
940 {
941 if (try_divisor > 0x1FFFF)
942 {
53ad271d
TJ
943 // Round down to maximum supported divisor value (for BM)
944 try_divisor = 0x1FFFF;
945 }
946 }
947 }
948 // Get estimated baud rate (to nearest integer)
949 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
950 // Get absolute difference from requested baud rate
22d12cda
TJ
951 if (baud_estimate < baudrate)
952 {
53ad271d 953 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
954 }
955 else
956 {
53ad271d
TJ
957 baud_diff = baud_estimate - baudrate;
958 }
22d12cda
TJ
959 if (i == 0 || baud_diff < best_baud_diff)
960 {
53ad271d
TJ
961 // Closest to requested baud rate so far
962 best_divisor = try_divisor;
963 best_baud = baud_estimate;
964 best_baud_diff = baud_diff;
22d12cda
TJ
965 if (baud_diff == 0)
966 {
53ad271d
TJ
967 // Spot on! No point trying
968 break;
969 }
970 }
971 }
972 // Encode the best divisor value
973 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
974 // Deal with special cases for encoded value
22d12cda
TJ
975 if (encoded_divisor == 1)
976 {
4837f98a 977 encoded_divisor = 0; // 3000000 baud
22d12cda
TJ
978 }
979 else if (encoded_divisor == 0x4001)
980 {
4837f98a 981 encoded_divisor = 1; // 2000000 baud (BM only)
53ad271d
TJ
982 }
983 // Split into "value" and "index" values
984 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1416eb14 985 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
22d12cda 986 {
0126d22e
TJ
987 *index = (unsigned short)(encoded_divisor >> 8);
988 *index &= 0xFF00;
a9c57c05 989 *index |= ftdi->index;
0126d22e
TJ
990 }
991 else
992 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 993
53ad271d
TJ
994 // Return the nearest baud rate
995 return best_baud;
996}
997
1941414d 998/**
9bec2387 999 Sets the chip baud rate
1941414d
TJ
1000
1001 \param ftdi pointer to ftdi_context
9bec2387 1002 \param baudrate baud rate to set
1941414d
TJ
1003
1004 \retval 0: all fine
1005 \retval -1: invalid baudrate
1006 \retval -2: setting baudrate failed
a3da1d95 1007*/
a8f46ddc
TJ
1008int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1009{
53ad271d
TJ
1010 unsigned short value, index;
1011 int actual_baudrate;
a3da1d95 1012
22d12cda
TJ
1013 if (ftdi->bitbang_enabled)
1014 {
a3da1d95
GE
1015 baudrate = baudrate*4;
1016 }
1017
25707904 1018 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1019 if (actual_baudrate <= 0)
1020 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1021
53ad271d
TJ
1022 // Check within tolerance (about 5%)
1023 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1024 || ((actual_baudrate < baudrate)
1025 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1026 : (baudrate * 21 < actual_baudrate * 20)))
1027 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1028
579b006f
JZ
1029 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1030 SIO_SET_BAUDRATE_REQUEST, value,
1031 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1032 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1033
1034 ftdi->baudrate = baudrate;
1035 return 0;
1036}
1037
1941414d 1038/**
6c32e222
TJ
1039 Set (RS232) line characteristics.
1040 The break type can only be set via ftdi_set_line_property2()
1041 and defaults to "off".
4837f98a 1042
1941414d
TJ
1043 \param ftdi pointer to ftdi_context
1044 \param bits Number of bits
1045 \param sbit Number of stop bits
1046 \param parity Parity mode
1047
1048 \retval 0: all fine
1049 \retval -1: Setting line property failed
2f73e59f
TJ
1050*/
1051int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1052 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1053{
6c32e222
TJ
1054 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1055}
1056
1057/**
1058 Set (RS232) line characteristics
1059
1060 \param ftdi pointer to ftdi_context
1061 \param bits Number of bits
1062 \param sbit Number of stop bits
1063 \param parity Parity mode
1064 \param break_type Break type
1065
1066 \retval 0: all fine
1067 \retval -1: Setting line property failed
1068*/
1069int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1070 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1071 enum ftdi_break_type break_type)
6c32e222 1072{
2f73e59f
TJ
1073 unsigned short value = bits;
1074
22d12cda
TJ
1075 switch (parity)
1076 {
1077 case NONE:
1078 value |= (0x00 << 8);
1079 break;
1080 case ODD:
1081 value |= (0x01 << 8);
1082 break;
1083 case EVEN:
1084 value |= (0x02 << 8);
1085 break;
1086 case MARK:
1087 value |= (0x03 << 8);
1088 break;
1089 case SPACE:
1090 value |= (0x04 << 8);
1091 break;
2f73e59f 1092 }
d2f10023 1093
22d12cda
TJ
1094 switch (sbit)
1095 {
1096 case STOP_BIT_1:
1097 value |= (0x00 << 11);
1098 break;
1099 case STOP_BIT_15:
1100 value |= (0x01 << 11);
1101 break;
1102 case STOP_BIT_2:
1103 value |= (0x02 << 11);
1104 break;
2f73e59f 1105 }
d2f10023 1106
22d12cda
TJ
1107 switch (break_type)
1108 {
1109 case BREAK_OFF:
1110 value |= (0x00 << 14);
1111 break;
1112 case BREAK_ON:
1113 value |= (0x01 << 14);
1114 break;
6c32e222
TJ
1115 }
1116
579b006f
JZ
1117 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1118 SIO_SET_DATA_REQUEST, value,
1119 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1120 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1121
2f73e59f
TJ
1122 return 0;
1123}
a3da1d95 1124
1941414d
TJ
1125/**
1126 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1127
1128 \param ftdi pointer to ftdi_context
1129 \param buf Buffer with the data
1130 \param size Size of the buffer
1131
1132 \retval <0: error code from usb_bulk_write()
1133 \retval >0: number of bytes written
1134*/
a8f46ddc
TJ
1135int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1136{
a3da1d95 1137 int offset = 0;
579b006f 1138 int actual_length;
c3d95b87 1139
22d12cda
TJ
1140 while (offset < size)
1141 {
948f9ada 1142 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1143
1144 if (offset+write_size > size)
1145 write_size = size-offset;
1146
579b006f
JZ
1147 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1148 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1149
579b006f 1150 offset += actual_length;
a3da1d95
GE
1151 }
1152
579b006f 1153 return offset;
a3da1d95
GE
1154}
1155
f01d7ca6 1156#ifdef LIBFTDI_LINUX_ASYNC_MODE
e59bc450
CW
1157#ifdef USB_CLASS_PTP
1158#error LIBFTDI_LINUX_ASYNC_MODE is not compatible with libusb-compat-0.1!
1159#endif
579b006f 1160static void ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1161{
579b006f
JZ
1162 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1163 struct ftdi_context *ftdi = tc->ftdi;
1164 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1165
b1139150 1166 packet_size = ftdi->max_packet_size;
579b006f
JZ
1167
1168 actual_length = transfer->actual_length;
1169
1170 if (actual_length > 2)
1171 {
1172 // skip FTDI status bytes.
1173 // Maybe stored in the future to enable modem use
1174 num_of_chunks = actual_length / packet_size;
1175 chunk_remains = actual_length % packet_size;
1176 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1177
1178 ftdi->readbuffer_offset += 2;
1179 actual_length -= 2;
1180
1181 if (actual_length > packet_size - 2)
1182 {
1183 for (i = 1; i < num_of_chunks; i++)
1184 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1185 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1186 packet_size - 2);
1187 if (chunk_remains > 2)
1188 {
1189 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1190 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1191 chunk_remains-2);
1192 actual_length -= 2*num_of_chunks;
1193 }
1194 else
1195 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1196 }
1197
1198 if (actual_length > 0)
1199 {
1200 // data still fits in buf?
1201 if (tc->offset + actual_length <= tc->size)
1202 {
1203 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1204 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1205 tc->offset += actual_length;
1206
1207 ftdi->readbuffer_offset = 0;
1208 ftdi->readbuffer_remaining = 0;
1209
1210 /* Did we read exactly the right amount of bytes? */
1211 if (tc->offset == tc->size)
1212 {
1213 //printf("read_data exact rem %d offset %d\n",
1214 //ftdi->readbuffer_remaining, offset);
1215 tc->completed = 1;
1216 return;
1217 }
1218 }
1219 else
1220 {
1221 // only copy part of the data or size <= readbuffer_chunksize
1222 int part_size = tc->size - tc->offset;
1223 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1224 tc->offset += part_size;
1225
1226 ftdi->readbuffer_offset += part_size;
1227 ftdi->readbuffer_remaining = actual_length - part_size;
1228
1229 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1230 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1231 tc->completed = 1;
1232 return;
1233 }
1234 }
1235 }
1236 ret = libusb_submit_transfer (transfer);
1237 if (ret < 0)
1238 tc->completed = 1;
1239}
1240
1241
1242static void ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1243{
579b006f
JZ
1244 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1245 struct ftdi_context *ftdi = tc->ftdi;
1246
1247 tc->offset = transfer->actual_length;
7cc9950e 1248
579b006f 1249 if (tc->offset == tc->size)
22d12cda 1250 {
579b006f 1251 tc->completed = 1;
7cc9950e 1252 }
579b006f
JZ
1253 else
1254 {
1255 int write_size = ftdi->writebuffer_chunksize;
1256 int ret;
7cc9950e 1257
579b006f
JZ
1258 if (tc->offset + write_size > tc->size)
1259 write_size = tc->size - tc->offset;
1260
1261 transfer->length = write_size;
1262 transfer->buffer = tc->buf + tc->offset;
1263 ret = libusb_submit_transfer (transfer);
1264 if (ret < 0)
1265 tc->completed = 1;
1266 }
7cc9950e
GE
1267}
1268
579b006f 1269
84f85aaa 1270/**
579b006f
JZ
1271 Writes data to the chip. Does not wait for completion of the transfer
1272 nor does it make sure that the transfer was successful.
1273
1274 Use libusb 1.0 Asynchronous API.
1275 Only available if compiled with --with-async-mode.
84f85aaa
GE
1276
1277 \param ftdi pointer to ftdi_context
579b006f
JZ
1278 \param buf Buffer with the data
1279 \param size Size of the buffer
84f85aaa 1280
579b006f
JZ
1281 \retval NULL: Some error happens when submit transfer
1282 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1283*/
579b006f
JZ
1284
1285struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1286{
579b006f
JZ
1287 struct ftdi_transfer_control *tc;
1288 struct libusb_transfer *transfer = libusb_alloc_transfer(0);
1289 int write_size, ret;
22d12cda 1290
579b006f 1291 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
22d12cda 1292
579b006f
JZ
1293 if (!tc || !transfer)
1294 return NULL;
22d12cda 1295
579b006f
JZ
1296 tc->ftdi = ftdi;
1297 tc->completed = 0;
1298 tc->buf = buf;
1299 tc->size = size;
1300 tc->offset = 0;
7cc9950e 1301
579b006f
JZ
1302 if (size < ftdi->writebuffer_chunksize)
1303 write_size = size;
1304 else
1305 write_size = ftdi->writebuffer_chunksize;
22d12cda 1306
579b006f
JZ
1307 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf, write_size, ftdi_write_data_cb, tc, ftdi->usb_write_timeout);
1308 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1309
579b006f
JZ
1310 ret = libusb_submit_transfer(transfer);
1311 if (ret < 0)
1312 {
1313 libusb_free_transfer(transfer);
1314 tc->completed = 1;
1315 tc->transfer = NULL;
1316 return NULL;
7cc9950e 1317 }
579b006f
JZ
1318 tc->transfer = transfer;
1319
1320 return tc;
7cc9950e
GE
1321}
1322
1323/**
579b006f
JZ
1324 Reads data from the chip. Does not wait for completion of the transfer
1325 nor does it make sure that the transfer was successful.
1326
1327 Use libusb 1.0 Asynchronous API.
1328 Only available if compiled with --with-async-mode.
7cc9950e
GE
1329
1330 \param ftdi pointer to ftdi_context
579b006f
JZ
1331 \param buf Buffer with the data
1332 \param size Size of the buffer
4c9e3812 1333
579b006f
JZ
1334 \retval NULL: Some error happens when submit transfer
1335 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1336*/
579b006f
JZ
1337
1338struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1339{
579b006f
JZ
1340 struct ftdi_transfer_control *tc;
1341 struct libusb_transfer *transfer;
1342 int ret;
22d12cda 1343
579b006f
JZ
1344 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1345 if (!tc)
1346 return NULL;
1347
1348 tc->ftdi = ftdi;
1349 tc->buf = buf;
1350 tc->size = size;
1351
1352 if (size <= ftdi->readbuffer_remaining)
7cc9950e 1353 {
579b006f 1354 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1355
579b006f
JZ
1356 // Fix offsets
1357 ftdi->readbuffer_remaining -= size;
1358 ftdi->readbuffer_offset += size;
7cc9950e 1359
579b006f 1360 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1361
579b006f
JZ
1362 tc->completed = 1;
1363 tc->offset = size;
1364 tc->transfer = NULL;
1365 return tc;
1366 }
4c9e3812 1367
579b006f
JZ
1368 tc->completed = 0;
1369 if (ftdi->readbuffer_remaining != 0)
1370 {
1371 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1372
579b006f
JZ
1373 tc->offset = ftdi->readbuffer_remaining;
1374 }
1375 else
1376 tc->offset = 0;
22d12cda 1377
579b006f
JZ
1378 transfer = libusb_alloc_transfer(0);
1379 if (!transfer)
1380 {
1381 free (tc);
1382 return NULL;
1383 }
22d12cda 1384
579b006f
JZ
1385 ftdi->readbuffer_remaining = 0;
1386 ftdi->readbuffer_offset = 0;
1387
1388 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1389 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1390
1391 ret = libusb_submit_transfer(transfer);
1392 if (ret < 0)
1393 {
1394 libusb_free_transfer(transfer);
1395 free (tc);
1396 return NULL;
22d12cda 1397 }
579b006f
JZ
1398 tc->transfer = transfer;
1399
1400 return tc;
4c9e3812
GE
1401}
1402
1403/**
579b006f 1404 Wait for completion of the transfer.
4c9e3812 1405
579b006f 1406 Use libusb 1.0 Asynchronous API.
cef378aa 1407 Only available if compiled with --with-async-mode.
4c9e3812 1408
579b006f 1409 \param tc pointer to ftdi_transfer_control
4c9e3812 1410
579b006f
JZ
1411 \retval < 0: Some error happens
1412 \retval >= 0: Data size transferred
4c9e3812 1413*/
579b006f
JZ
1414
1415int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1416{
1417 int ret;
4c9e3812 1418
579b006f 1419 while (!tc->completed)
22d12cda 1420 {
579b006f 1421 ret = libusb_handle_events(NULL);
4c9e3812 1422 if (ret < 0)
579b006f
JZ
1423 {
1424 if (ret == LIBUSB_ERROR_INTERRUPTED)
1425 continue;
1426 libusb_cancel_transfer(tc->transfer);
1427 while (!tc->completed)
1428 if (libusb_handle_events(NULL) < 0)
1429 break;
1430 libusb_free_transfer(tc->transfer);
1431 free (tc);
1432 tc = NULL;
1433 return ret;
1434 }
4c9e3812
GE
1435 }
1436
579b006f
JZ
1437 if (tc->transfer->status == LIBUSB_TRANSFER_COMPLETED)
1438 ret = tc->offset;
1439 else
1440 ret = -1;
1441
1442 libusb_free_transfer(tc->transfer);
1443 free(tc);
1444 return ret;
4c9e3812 1445}
579b006f 1446
f01d7ca6 1447#endif // LIBFTDI_LINUX_ASYNC_MODE
4c9e3812 1448
1941414d
TJ
1449/**
1450 Configure write buffer chunk size.
1451 Default is 4096.
1452
1453 \param ftdi pointer to ftdi_context
1454 \param chunksize Chunk size
a3da1d95 1455
1941414d
TJ
1456 \retval 0: all fine
1457*/
a8f46ddc
TJ
1458int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1459{
948f9ada
TJ
1460 ftdi->writebuffer_chunksize = chunksize;
1461 return 0;
1462}
1463
1941414d
TJ
1464/**
1465 Get write buffer chunk size.
1466
1467 \param ftdi pointer to ftdi_context
1468 \param chunksize Pointer to store chunk size in
948f9ada 1469
1941414d
TJ
1470 \retval 0: all fine
1471*/
a8f46ddc
TJ
1472int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1473{
948f9ada
TJ
1474 *chunksize = ftdi->writebuffer_chunksize;
1475 return 0;
1476}
cbabb7d3 1477
1941414d
TJ
1478/**
1479 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1480
1481 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1482
1941414d
TJ
1483 \param ftdi pointer to ftdi_context
1484 \param buf Buffer to store data in
1485 \param size Size of the buffer
1486
579b006f 1487 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 1488 \retval 0: no data was available
1941414d
TJ
1489 \retval >0: number of bytes read
1490
1941414d 1491*/
a8f46ddc
TJ
1492int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1493{
579b006f 1494 int offset = 0, ret, i, num_of_chunks, chunk_remains;
e2f12a4f 1495 int packet_size = ftdi->max_packet_size;
579b006f 1496 int actual_length = 1;
f2f00cb5 1497
e2f12a4f
TJ
1498 // Packet size sanity check (avoid division by zero)
1499 if (packet_size == 0)
1500 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 1501
948f9ada 1502 // everything we want is still in the readbuffer?
22d12cda
TJ
1503 if (size <= ftdi->readbuffer_remaining)
1504 {
d9f0cce7
TJ
1505 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1506
1507 // Fix offsets
1508 ftdi->readbuffer_remaining -= size;
1509 ftdi->readbuffer_offset += size;
1510
545820ce 1511 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1512
1513 return size;
979a145c 1514 }
948f9ada 1515 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
1516 if (ftdi->readbuffer_remaining != 0)
1517 {
d9f0cce7 1518 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1519
d9f0cce7
TJ
1520 // Fix offset
1521 offset += ftdi->readbuffer_remaining;
948f9ada 1522 }
948f9ada 1523 // do the actual USB read
579b006f 1524 while (offset < size && actual_length > 0)
22d12cda 1525 {
d9f0cce7
TJ
1526 ftdi->readbuffer_remaining = 0;
1527 ftdi->readbuffer_offset = 0;
98452d97 1528 /* returns how much received */
579b006f 1529 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
1530 if (ret < 0)
1531 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1532
579b006f 1533 if (actual_length > 2)
22d12cda 1534 {
d9f0cce7
TJ
1535 // skip FTDI status bytes.
1536 // Maybe stored in the future to enable modem use
579b006f
JZ
1537 num_of_chunks = actual_length / packet_size;
1538 chunk_remains = actual_length % packet_size;
1539 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 1540
d9f0cce7 1541 ftdi->readbuffer_offset += 2;
579b006f 1542 actual_length -= 2;
1c733d33 1543
579b006f 1544 if (actual_length > packet_size - 2)
22d12cda 1545 {
1c733d33 1546 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
1547 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1548 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1549 packet_size - 2);
22d12cda
TJ
1550 if (chunk_remains > 2)
1551 {
f2f00cb5
DC
1552 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1553 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 1554 chunk_remains-2);
579b006f 1555 actual_length -= 2*num_of_chunks;
22d12cda
TJ
1556 }
1557 else
579b006f 1558 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 1559 }
22d12cda 1560 }
579b006f 1561 else if (actual_length <= 2)
22d12cda 1562 {
d9f0cce7
TJ
1563 // no more data to read?
1564 return offset;
1565 }
579b006f 1566 if (actual_length > 0)
22d12cda 1567 {
d9f0cce7 1568 // data still fits in buf?
579b006f 1569 if (offset+actual_length <= size)
22d12cda 1570 {
579b006f 1571 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 1572 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 1573 offset += actual_length;
d9f0cce7 1574
53ad271d 1575 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1576 if (offset == size)
c4446c36
TJ
1577 //printf("read_data exact rem %d offset %d\n",
1578 //ftdi->readbuffer_remaining, offset);
d9f0cce7 1579 return offset;
22d12cda
TJ
1580 }
1581 else
1582 {
d9f0cce7
TJ
1583 // only copy part of the data or size <= readbuffer_chunksize
1584 int part_size = size-offset;
1585 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1586
d9f0cce7 1587 ftdi->readbuffer_offset += part_size;
579b006f 1588 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
1589 offset += part_size;
1590
579b006f
JZ
1591 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1592 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1593
1594 return offset;
1595 }
1596 }
cbabb7d3 1597 }
948f9ada 1598 // never reached
29c4af7f 1599 return -127;
a3da1d95
GE
1600}
1601
1941414d
TJ
1602/**
1603 Configure read buffer chunk size.
1604 Default is 4096.
1605
1606 Automatically reallocates the buffer.
a3da1d95 1607
1941414d
TJ
1608 \param ftdi pointer to ftdi_context
1609 \param chunksize Chunk size
1610
1611 \retval 0: all fine
1612*/
a8f46ddc
TJ
1613int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1614{
29c4af7f
TJ
1615 unsigned char *new_buf;
1616
948f9ada
TJ
1617 // Invalidate all remaining data
1618 ftdi->readbuffer_offset = 0;
1619 ftdi->readbuffer_remaining = 0;
8de6eea4
JZ
1620#ifdef __linux__
1621 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1622 which is defined in libusb-1.0. Otherwise, each USB read request will
2e685a1f 1623 be divided into multiple URBs. This will cause issues on Linux kernel
8de6eea4
JZ
1624 older than 2.6.32. */
1625 if (chunksize > 16384)
1626 chunksize = 16384;
1627#endif
948f9ada 1628
c3d95b87
TJ
1629 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1630 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1631
948f9ada
TJ
1632 ftdi->readbuffer = new_buf;
1633 ftdi->readbuffer_chunksize = chunksize;
1634
1635 return 0;
1636}
1637
1941414d
TJ
1638/**
1639 Get read buffer chunk size.
948f9ada 1640
1941414d
TJ
1641 \param ftdi pointer to ftdi_context
1642 \param chunksize Pointer to store chunk size in
1643
1644 \retval 0: all fine
1645*/
a8f46ddc
TJ
1646int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1647{
948f9ada
TJ
1648 *chunksize = ftdi->readbuffer_chunksize;
1649 return 0;
1650}
1651
1652
1941414d
TJ
1653/**
1654 Enable bitbang mode.
948f9ada 1655
fd282db3 1656 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1941414d
TJ
1657
1658 \param ftdi pointer to ftdi_context
1659 \param bitmask Bitmask to configure lines.
1660 HIGH/ON value configures a line as output.
1661
1662 \retval 0: all fine
1663 \retval -1: can't enable bitbang mode
1664*/
a8f46ddc
TJ
1665int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1666{
a3da1d95
GE
1667 unsigned short usb_val;
1668
d9f0cce7 1669 usb_val = bitmask; // low byte: bitmask
3119537f
TJ
1670 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1671 usb_val |= (ftdi->bitbang_mode << 8);
1672
579b006f
JZ
1673 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1674 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1675 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1676 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1677
a3da1d95
GE
1678 ftdi->bitbang_enabled = 1;
1679 return 0;
1680}
1681
1941414d
TJ
1682/**
1683 Disable bitbang mode.
a3da1d95 1684
1941414d
TJ
1685 \param ftdi pointer to ftdi_context
1686
1687 \retval 0: all fine
1688 \retval -1: can't disable bitbang mode
1689*/
a8f46ddc
TJ
1690int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1691{
579b006f 1692 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1693 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1694
1695 ftdi->bitbang_enabled = 0;
1696 return 0;
1697}
1698
1941414d 1699/**
418aaa72 1700 Enable/disable bitbang modes.
a3da1d95 1701
1941414d
TJ
1702 \param ftdi pointer to ftdi_context
1703 \param bitmask Bitmask to configure lines.
1704 HIGH/ON value configures a line as output.
fd282db3 1705 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
1706
1707 \retval 0: all fine
1708 \retval -1: can't enable bitbang mode
1709*/
c4446c36
TJ
1710int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1711{
1712 unsigned short usb_val;
1713
1714 usb_val = bitmask; // low byte: bitmask
1715 usb_val |= (mode << 8);
579b006f
JZ
1716 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1717 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
c4446c36
TJ
1718
1719 ftdi->bitbang_mode = mode;
418aaa72 1720 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
c4446c36
TJ
1721 return 0;
1722}
1723
1941414d 1724/**
418aaa72 1725 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
1726
1727 \param ftdi pointer to ftdi_context
1728 \param pins Pointer to store pins into
1729
1730 \retval 0: all fine
1731 \retval -1: read pins failed
1732*/
a8f46ddc
TJ
1733int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1734{
579b006f 1735 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1736 ftdi_error_return(-1, "read pins failed");
a3da1d95 1737
a3da1d95
GE
1738 return 0;
1739}
1740
1941414d
TJ
1741/**
1742 Set latency timer
1743
1744 The FTDI chip keeps data in the internal buffer for a specific
1745 amount of time if the buffer is not full yet to decrease
1746 load on the usb bus.
a3da1d95 1747
1941414d
TJ
1748 \param ftdi pointer to ftdi_context
1749 \param latency Value between 1 and 255
1750
1751 \retval 0: all fine
1752 \retval -1: latency out of range
1753 \retval -2: unable to set latency timer
1754*/
a8f46ddc
TJ
1755int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1756{
a3da1d95
GE
1757 unsigned short usb_val;
1758
c3d95b87
TJ
1759 if (latency < 1)
1760 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 1761
d79d2e68 1762 usb_val = latency;
579b006f 1763 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1764 ftdi_error_return(-2, "unable to set latency timer");
1765
a3da1d95
GE
1766 return 0;
1767}
1768
1941414d
TJ
1769/**
1770 Get latency timer
a3da1d95 1771
1941414d
TJ
1772 \param ftdi pointer to ftdi_context
1773 \param latency Pointer to store latency value in
1774
1775 \retval 0: all fine
1776 \retval -1: unable to get latency timer
1777*/
a8f46ddc
TJ
1778int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1779{
a3da1d95 1780 unsigned short usb_val;
579b006f 1781 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1782 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
1783
1784 *latency = (unsigned char)usb_val;
1785 return 0;
1786}
1787
1941414d 1788/**
1189b11a
TJ
1789 Poll modem status information
1790
1791 This function allows the retrieve the two status bytes of the device.
1792 The device sends these bytes also as a header for each read access
1793 where they are discarded by ftdi_read_data(). The chip generates
1794 the two stripped status bytes in the absence of data every 40 ms.
1795
1796 Layout of the first byte:
1797 - B0..B3 - must be 0
1798 - B4 Clear to send (CTS)
1799 0 = inactive
1800 1 = active
1801 - B5 Data set ready (DTS)
1802 0 = inactive
1803 1 = active
1804 - B6 Ring indicator (RI)
1805 0 = inactive
1806 1 = active
1807 - B7 Receive line signal detect (RLSD)
1808 0 = inactive
1809 1 = active
1810
1811 Layout of the second byte:
1812 - B0 Data ready (DR)
1813 - B1 Overrun error (OE)
1814 - B2 Parity error (PE)
1815 - B3 Framing error (FE)
1816 - B4 Break interrupt (BI)
1817 - B5 Transmitter holding register (THRE)
1818 - B6 Transmitter empty (TEMT)
1819 - B7 Error in RCVR FIFO
1820
1821 \param ftdi pointer to ftdi_context
1822 \param status Pointer to store status information in. Must be two bytes.
1823
1824 \retval 0: all fine
1825 \retval -1: unable to retrieve status information
1826*/
1827int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1828{
1829 char usb_val[2];
1830
579b006f 1831 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
1832 ftdi_error_return(-1, "getting modem status failed");
1833
1834 *status = (usb_val[1] << 8) | usb_val[0];
1835
1836 return 0;
1837}
1838
a7fb8440
TJ
1839/**
1840 Set flowcontrol for ftdi chip
1841
1842 \param ftdi pointer to ftdi_context
22d12cda
TJ
1843 \param flowctrl flow control to use. should be
1844 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
a7fb8440
TJ
1845
1846 \retval 0: all fine
1847 \retval -1: set flow control failed
1848*/
1849int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1850{
579b006f
JZ
1851 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1852 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
1853 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
1854 ftdi_error_return(-1, "set flow control failed");
1855
1856 return 0;
1857}
1858
1859/**
1860 Set dtr line
1861
1862 \param ftdi pointer to ftdi_context
1863 \param state state to set line to (1 or 0)
1864
1865 \retval 0: all fine
1866 \retval -1: set dtr failed
1867*/
1868int ftdi_setdtr(struct ftdi_context *ftdi, int state)
1869{
1870 unsigned short usb_val;
1871
1872 if (state)
1873 usb_val = SIO_SET_DTR_HIGH;
1874 else
1875 usb_val = SIO_SET_DTR_LOW;
1876
579b006f
JZ
1877 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1878 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1879 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
1880 ftdi_error_return(-1, "set dtr failed");
1881
1882 return 0;
1883}
1884
1885/**
1886 Set rts line
1887
1888 \param ftdi pointer to ftdi_context
1889 \param state state to set line to (1 or 0)
1890
1891 \retval 0: all fine
1892 \retval -1 set rts failed
1893*/
1894int ftdi_setrts(struct ftdi_context *ftdi, int state)
1895{
1896 unsigned short usb_val;
1897
1898 if (state)
1899 usb_val = SIO_SET_RTS_HIGH;
1900 else
1901 usb_val = SIO_SET_RTS_LOW;
1902
579b006f
JZ
1903 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1904 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1905 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
1906 ftdi_error_return(-1, "set of rts failed");
1907
1908 return 0;
1909}
1910
1189b11a 1911/**
9ecfef2a
TJ
1912 Set dtr and rts line in one pass
1913
1914 \param ftdi pointer to ftdi_context
1915 \param dtr DTR state to set line to (1 or 0)
1916 \param rts RTS state to set line to (1 or 0)
1917
1918 \retval 0: all fine
1919 \retval -1 set dtr/rts failed
1920 */
1921int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
1922{
1923 unsigned short usb_val;
1924
1925 if (dtr)
22d12cda 1926 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 1927 else
22d12cda 1928 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
1929
1930 if (rts)
22d12cda 1931 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 1932 else
22d12cda 1933 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 1934
579b006f
JZ
1935 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1936 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1937 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 1938 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
1939
1940 return 0;
1941}
1942
1943/**
1189b11a
TJ
1944 Set the special event character
1945
1946 \param ftdi pointer to ftdi_context
1947 \param eventch Event character
1948 \param enable 0 to disable the event character, non-zero otherwise
1949
1950 \retval 0: all fine
1951 \retval -1: unable to set event character
1952*/
1953int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 1954 unsigned char eventch, unsigned char enable)
1189b11a
TJ
1955{
1956 unsigned short usb_val;
1957
1958 usb_val = eventch;
1959 if (enable)
1960 usb_val |= 1 << 8;
1961
579b006f 1962 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
1963 ftdi_error_return(-1, "setting event character failed");
1964
1965 return 0;
1966}
1967
1968/**
1969 Set error character
1970
1971 \param ftdi pointer to ftdi_context
1972 \param errorch Error character
1973 \param enable 0 to disable the error character, non-zero otherwise
1974
1975 \retval 0: all fine
1976 \retval -1: unable to set error character
1977*/
1978int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 1979 unsigned char errorch, unsigned char enable)
1189b11a
TJ
1980{
1981 unsigned short usb_val;
1982
1983 usb_val = errorch;
1984 if (enable)
1985 usb_val |= 1 << 8;
1986
579b006f 1987 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
1988 ftdi_error_return(-1, "setting error character failed");
1989
1990 return 0;
1991}
1992
1993/**
c201f80f
TJ
1994 Set the eeprom size
1995
1996 \param ftdi pointer to ftdi_context
1997 \param eeprom Pointer to ftdi_eeprom
1998 \param size
1999
2000*/
2001void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
2002{
22d12cda
TJ
2003 ftdi->eeprom_size=size;
2004 eeprom->size=size;
c201f80f
TJ
2005}
2006
2007/**
1941414d 2008 Init eeprom with default values.
a3da1d95 2009
1941414d
TJ
2010 \param eeprom Pointer to ftdi_eeprom
2011*/
a8f46ddc
TJ
2012void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
2013{
f396dbad
TJ
2014 eeprom->vendor_id = 0x0403;
2015 eeprom->product_id = 0x6001;
d9f0cce7 2016
b8aa7b35
TJ
2017 eeprom->self_powered = 1;
2018 eeprom->remote_wakeup = 1;
2019 eeprom->BM_type_chip = 1;
d9f0cce7 2020
b8aa7b35
TJ
2021 eeprom->in_is_isochronous = 0;
2022 eeprom->out_is_isochronous = 0;
2023 eeprom->suspend_pull_downs = 0;
d9f0cce7 2024
b8aa7b35
TJ
2025 eeprom->use_serial = 0;
2026 eeprom->change_usb_version = 0;
f396dbad 2027 eeprom->usb_version = 0x0200;
b8aa7b35 2028 eeprom->max_power = 0;
d9f0cce7 2029
b8aa7b35
TJ
2030 eeprom->manufacturer = NULL;
2031 eeprom->product = NULL;
2032 eeprom->serial = NULL;
c201f80f
TJ
2033
2034 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
b8aa7b35
TJ
2035}
2036
1941414d
TJ
2037/**
2038 Build binary output from ftdi_eeprom structure.
2039 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2040
1941414d
TJ
2041 \param eeprom Pointer to ftdi_eeprom
2042 \param output Buffer of 128 bytes to store eeprom image to
2043
2044 \retval >0: used eeprom size
2045 \retval -1: eeprom size (128 bytes) exceeded by custom strings
b8aa7b35 2046*/
a8f46ddc
TJ
2047int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
2048{
b8aa7b35
TJ
2049 unsigned char i, j;
2050 unsigned short checksum, value;
2051 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2052 int size_check;
2053
2054 if (eeprom->manufacturer != NULL)
d9f0cce7 2055 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2056 if (eeprom->product != NULL)
d9f0cce7 2057 product_size = strlen(eeprom->product);
b8aa7b35 2058 if (eeprom->serial != NULL)
d9f0cce7 2059 serial_size = strlen(eeprom->serial);
b8aa7b35 2060
c201f80f 2061 size_check = eeprom->size;
d9f0cce7 2062 size_check -= 28; // 28 are always in use (fixed)
c201f80f 2063
22d12cda 2064 // Top half of a 256byte eeprom is used just for strings and checksum
c201f80f
TJ
2065 // it seems that the FTDI chip will not read these strings from the lower half
2066 // Each string starts with two bytes; offset and type (0x03 for string)
2067 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
22d12cda 2068 if (eeprom->size>=256)size_check = 120;
b8aa7b35
TJ
2069 size_check -= manufacturer_size*2;
2070 size_check -= product_size*2;
2071 size_check -= serial_size*2;
2072
2073 // eeprom size exceeded?
2074 if (size_check < 0)
d9f0cce7 2075 return (-1);
b8aa7b35
TJ
2076
2077 // empty eeprom
c201f80f 2078 memset (output, 0, eeprom->size);
b8aa7b35
TJ
2079
2080 // Addr 00: Stay 00 00
2081 // Addr 02: Vendor ID
2082 output[0x02] = eeprom->vendor_id;
2083 output[0x03] = eeprom->vendor_id >> 8;
2084
2085 // Addr 04: Product ID
2086 output[0x04] = eeprom->product_id;
2087 output[0x05] = eeprom->product_id >> 8;
2088
2089 // Addr 06: Device release number (0400h for BM features)
2090 output[0x06] = 0x00;
d9f0cce7 2091
b8aa7b35 2092 if (eeprom->BM_type_chip == 1)
d9f0cce7 2093 output[0x07] = 0x04;
b8aa7b35 2094 else
d9f0cce7 2095 output[0x07] = 0x02;
b8aa7b35
TJ
2096
2097 // Addr 08: Config descriptor
8fae3e8e
TJ
2098 // Bit 7: always 1
2099 // Bit 6: 1 if this device is self powered, 0 if bus powered
2100 // Bit 5: 1 if this device uses remote wakeup
2101 // Bit 4: 1 if this device is battery powered
5a1dcd55 2102 j = 0x80;
b8aa7b35 2103 if (eeprom->self_powered == 1)
5a1dcd55 2104 j |= 0x40;
b8aa7b35 2105 if (eeprom->remote_wakeup == 1)
5a1dcd55 2106 j |= 0x20;
b8aa7b35
TJ
2107 output[0x08] = j;
2108
2109 // Addr 09: Max power consumption: max power = value * 2 mA
d9f0cce7 2110 output[0x09] = eeprom->max_power;
d9f0cce7 2111
b8aa7b35
TJ
2112 // Addr 0A: Chip configuration
2113 // Bit 7: 0 - reserved
2114 // Bit 6: 0 - reserved
2115 // Bit 5: 0 - reserved
2116 // Bit 4: 1 - Change USB version
2117 // Bit 3: 1 - Use the serial number string
2118 // Bit 2: 1 - Enable suspend pull downs for lower power
2119 // Bit 1: 1 - Out EndPoint is Isochronous
2120 // Bit 0: 1 - In EndPoint is Isochronous
2121 //
2122 j = 0;
2123 if (eeprom->in_is_isochronous == 1)
d9f0cce7 2124 j = j | 1;
b8aa7b35 2125 if (eeprom->out_is_isochronous == 1)
d9f0cce7 2126 j = j | 2;
b8aa7b35 2127 if (eeprom->suspend_pull_downs == 1)
d9f0cce7 2128 j = j | 4;
b8aa7b35 2129 if (eeprom->use_serial == 1)
d9f0cce7 2130 j = j | 8;
b8aa7b35 2131 if (eeprom->change_usb_version == 1)
d9f0cce7 2132 j = j | 16;
b8aa7b35 2133 output[0x0A] = j;
d9f0cce7 2134
b8aa7b35
TJ
2135 // Addr 0B: reserved
2136 output[0x0B] = 0x00;
d9f0cce7 2137
b8aa7b35
TJ
2138 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2139 // Addr 0D: USB version high byte when 0x0A bit 4 is set
22d12cda
TJ
2140 if (eeprom->change_usb_version == 1)
2141 {
b8aa7b35 2142 output[0x0C] = eeprom->usb_version;
d9f0cce7 2143 output[0x0D] = eeprom->usb_version >> 8;
b8aa7b35
TJ
2144 }
2145
2146
c201f80f 2147 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
b8aa7b35
TJ
2148 // Addr 0F: Length of manufacturer string
2149 output[0x0F] = manufacturer_size*2 + 2;
2150
2151 // Addr 10: Offset of the product string + 0x80, calculated later
2152 // Addr 11: Length of product string
2153 output[0x11] = product_size*2 + 2;
2154
2155 // Addr 12: Offset of the serial string + 0x80, calculated later
2156 // Addr 13: Length of serial string
2157 output[0x13] = serial_size*2 + 2;
2158
2159 // Dynamic content
c201f80f 2160 i=0x14;
22d12cda 2161 if (eeprom->size>=256) i = 0x80;
f01d7ca6 2162
c201f80f 2163
22d12cda 2164 // Output manufacturer
c201f80f
TJ
2165 output[0x0E] = i | 0x80; // calculate offset
2166 output[i++] = manufacturer_size*2 + 2;
2167 output[i++] = 0x03; // type: string
22d12cda
TJ
2168 for (j = 0; j < manufacturer_size; j++)
2169 {
d9f0cce7
TJ
2170 output[i] = eeprom->manufacturer[j], i++;
2171 output[i] = 0x00, i++;
b8aa7b35
TJ
2172 }
2173
2174 // Output product name
c201f80f 2175 output[0x10] = i | 0x80; // calculate offset
b8aa7b35
TJ
2176 output[i] = product_size*2 + 2, i++;
2177 output[i] = 0x03, i++;
22d12cda
TJ
2178 for (j = 0; j < product_size; j++)
2179 {
d9f0cce7
TJ
2180 output[i] = eeprom->product[j], i++;
2181 output[i] = 0x00, i++;
b8aa7b35 2182 }
d9f0cce7 2183
b8aa7b35 2184 // Output serial
c201f80f 2185 output[0x12] = i | 0x80; // calculate offset
b8aa7b35
TJ
2186 output[i] = serial_size*2 + 2, i++;
2187 output[i] = 0x03, i++;
22d12cda
TJ
2188 for (j = 0; j < serial_size; j++)
2189 {
d9f0cce7
TJ
2190 output[i] = eeprom->serial[j], i++;
2191 output[i] = 0x00, i++;
b8aa7b35
TJ
2192 }
2193
2194 // calculate checksum
2195 checksum = 0xAAAA;
d9f0cce7 2196
22d12cda
TJ
2197 for (i = 0; i < eeprom->size/2-1; i++)
2198 {
d9f0cce7
TJ
2199 value = output[i*2];
2200 value += output[(i*2)+1] << 8;
b8aa7b35 2201
d9f0cce7
TJ
2202 checksum = value^checksum;
2203 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
2204 }
2205
c201f80f
TJ
2206 output[eeprom->size-2] = checksum;
2207 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 2208
8ed61121 2209 return size_check;
b8aa7b35
TJ
2210}
2211
4af1d1bb
MK
2212/**
2213 Decode binary EEPROM image into an ftdi_eeprom structure.
2214
2215 \param eeprom Pointer to ftdi_eeprom which will be filled in.
1bbaf1ce 2216 \param buf Buffer of \a size bytes of raw eeprom data
4af1d1bb
MK
2217 \param size size size of eeprom data in bytes
2218
2219 \retval 0: all fine
2220 \retval -1: something went wrong
2221
2222 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2223 FIXME: Strings are malloc'ed here and should be freed somewhere
2224*/
49c5ac72 2225int ftdi_eeprom_decode(struct ftdi_eeprom *eeprom, unsigned char *buf, int size)
b56d5a64
MK
2226{
2227 unsigned char i, j;
2228 unsigned short checksum, eeprom_checksum, value;
2229 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
b56d5a64
MK
2230 int eeprom_size = 128;
2231#if 0
2232 size_check = eeprom->size;
2233 size_check -= 28; // 28 are always in use (fixed)
2234
22d12cda 2235 // Top half of a 256byte eeprom is used just for strings and checksum
b56d5a64
MK
2236 // it seems that the FTDI chip will not read these strings from the lower half
2237 // Each string starts with two bytes; offset and type (0x03 for string)
2238 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
22d12cda 2239 if (eeprom->size>=256)size_check = 120;
b56d5a64
MK
2240 size_check -= manufacturer_size*2;
2241 size_check -= product_size*2;
2242 size_check -= serial_size*2;
2243
2244 // eeprom size exceeded?
2245 if (size_check < 0)
2246 return (-1);
2247#endif
2248
2249 // empty eeprom struct
4af1d1bb 2250 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
b56d5a64
MK
2251
2252 // Addr 00: Stay 00 00
2253
2254 // Addr 02: Vendor ID
2255 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2256
2257 // Addr 04: Product ID
2258 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
22d12cda 2259
6335545d
TJ
2260 value = buf[0x06] + (buf[0x07]<<8);
2261 switch (value)
22d12cda
TJ
2262 {
2263 case 0x0400:
2264 eeprom->BM_type_chip = 1;
2265 break;
2266 case 0x0200:
2267 eeprom->BM_type_chip = 0;
2268 break;
2269 default: // Unknown device
2270 eeprom->BM_type_chip = 0;
2271 break;
4af1d1bb 2272 }
b56d5a64
MK
2273
2274 // Addr 08: Config descriptor
2275 // Bit 7: always 1
2276 // Bit 6: 1 if this device is self powered, 0 if bus powered
2277 // Bit 5: 1 if this device uses remote wakeup
2278 // Bit 4: 1 if this device is battery powered
2279 j = buf[0x08];
b56d5a64
MK
2280 if (j&0x40) eeprom->self_powered = 1;
2281 if (j&0x20) eeprom->remote_wakeup = 1;
2282
2283 // Addr 09: Max power consumption: max power = value * 2 mA
2284 eeprom->max_power = buf[0x09];
2285
2286 // Addr 0A: Chip configuration
2287 // Bit 7: 0 - reserved
2288 // Bit 6: 0 - reserved
2289 // Bit 5: 0 - reserved
2290 // Bit 4: 1 - Change USB version
2291 // Bit 3: 1 - Use the serial number string
2292 // Bit 2: 1 - Enable suspend pull downs for lower power
2293 // Bit 1: 1 - Out EndPoint is Isochronous
2294 // Bit 0: 1 - In EndPoint is Isochronous
2295 //
2296 j = buf[0x0A];
4af1d1bb
MK
2297 if (j&0x01) eeprom->in_is_isochronous = 1;
2298 if (j&0x02) eeprom->out_is_isochronous = 1;
2299 if (j&0x04) eeprom->suspend_pull_downs = 1;
2300 if (j&0x08) eeprom->use_serial = 1;
2301 if (j&0x10) eeprom->change_usb_version = 1;
b56d5a64 2302
4af1d1bb 2303 // Addr 0B: reserved
b56d5a64
MK
2304
2305 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2306 // Addr 0D: USB version high byte when 0x0A bit 4 is set
22d12cda
TJ
2307 if (eeprom->change_usb_version == 1)
2308 {
2309 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
b56d5a64
MK
2310 }
2311
2312 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2313 // Addr 0F: Length of manufacturer string
2314 manufacturer_size = buf[0x0F]/2;
2315 if (manufacturer_size > 0) eeprom->manufacturer = malloc(manufacturer_size);
2316 else eeprom->manufacturer = NULL;
2317
2318 // Addr 10: Offset of the product string + 0x80, calculated later
2319 // Addr 11: Length of product string
2320 product_size = buf[0x11]/2;
2321 if (product_size > 0) eeprom->product = malloc(product_size);
2322 else eeprom->product = NULL;
2323
2324 // Addr 12: Offset of the serial string + 0x80, calculated later
2325 // Addr 13: Length of serial string
2326 serial_size = buf[0x13]/2;
2327 if (serial_size > 0) eeprom->serial = malloc(serial_size);
2328 else eeprom->serial = NULL;
2329
22d12cda 2330 // Decode manufacturer
b56d5a64 2331 i = buf[0x0E] & 0x7f; // offset
22d12cda
TJ
2332 for (j=0;j<manufacturer_size-1;j++)
2333 {
2334 eeprom->manufacturer[j] = buf[2*j+i+2];
b56d5a64
MK
2335 }
2336 eeprom->manufacturer[j] = '\0';
2337
2338 // Decode product name
2339 i = buf[0x10] & 0x7f; // offset
22d12cda
TJ
2340 for (j=0;j<product_size-1;j++)
2341 {
2342 eeprom->product[j] = buf[2*j+i+2];
b56d5a64
MK
2343 }
2344 eeprom->product[j] = '\0';
2345
2346 // Decode serial
2347 i = buf[0x12] & 0x7f; // offset
22d12cda
TJ
2348 for (j=0;j<serial_size-1;j++)
2349 {
2350 eeprom->serial[j] = buf[2*j+i+2];
b56d5a64
MK
2351 }
2352 eeprom->serial[j] = '\0';
2353
2354 // verify checksum
2355 checksum = 0xAAAA;
2356
22d12cda
TJ
2357 for (i = 0; i < eeprom_size/2-1; i++)
2358 {
b56d5a64
MK
2359 value = buf[i*2];
2360 value += buf[(i*2)+1] << 8;
2361
2362 checksum = value^checksum;
2363 checksum = (checksum << 1) | (checksum >> 15);
2364 }
2365
2366 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2367
22d12cda
TJ
2368 if (eeprom_checksum != checksum)
2369 {
2370 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2371 return -1;
4af1d1bb
MK
2372 }
2373
2374 return 0;
b56d5a64
MK
2375}
2376
1941414d 2377/**
c1c70e13
OS
2378 Read eeprom location
2379
2380 \param ftdi pointer to ftdi_context
2381 \param eeprom_addr Address of eeprom location to be read
2382 \param eeprom_val Pointer to store read eeprom location
2383
2384 \retval 0: all fine
2385 \retval -1: read failed
2386*/
2387int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
2388{
579b006f 2389 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
c1c70e13
OS
2390 ftdi_error_return(-1, "reading eeprom failed");
2391
2392 return 0;
2393}
2394
2395/**
1941414d
TJ
2396 Read eeprom
2397
2398 \param ftdi pointer to ftdi_context
2399 \param eeprom Pointer to store eeprom into
b8aa7b35 2400
1941414d
TJ
2401 \retval 0: all fine
2402 \retval -1: read failed
2403*/
a8f46ddc
TJ
2404int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2405{
a3da1d95
GE
2406 int i;
2407
22d12cda
TJ
2408 for (i = 0; i < ftdi->eeprom_size/2; i++)
2409 {
579b006f 2410 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
c3d95b87 2411 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
2412 }
2413
2414 return 0;
2415}
2416
cb6250fa
TJ
2417/*
2418 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
2419 Function is only used internally
2420 \internal
2421*/
2422static unsigned char ftdi_read_chipid_shift(unsigned char value)
2423{
2424 return ((value & 1) << 1) |
22d12cda
TJ
2425 ((value & 2) << 5) |
2426 ((value & 4) >> 2) |
2427 ((value & 8) << 4) |
2428 ((value & 16) >> 1) |
2429 ((value & 32) >> 1) |
2430 ((value & 64) >> 4) |
2431 ((value & 128) >> 2);
cb6250fa
TJ
2432}
2433
2434/**
2435 Read the FTDIChip-ID from R-type devices
2436
2437 \param ftdi pointer to ftdi_context
2438 \param chipid Pointer to store FTDIChip-ID
2439
2440 \retval 0: all fine
2441 \retval -1: read failed
2442*/
2443int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
2444{
c7eb3112 2445 unsigned int a = 0, b = 0;
cb6250fa 2446
579b006f 2447 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
2448 {
2449 a = a << 8 | a >> 8;
579b006f 2450 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
2451 {
2452 b = b << 8 | b >> 8;
5230676f 2453 a = (a << 16) | (b & 0xFFFF);
912d50ca
TJ
2454 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
2455 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 2456 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 2457 return 0;
cb6250fa
TJ
2458 }
2459 }
2460
c7eb3112 2461 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
2462}
2463
1941414d 2464/**
c201f80f
TJ
2465 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
2466 Call this function then do a write then call again to see if size changes, if so write again.
2467
2468 \param ftdi pointer to ftdi_context
2469 \param eeprom Pointer to store eeprom into
2470 \param maxsize the size of the buffer to read into
2471
2472 \retval size of eeprom
2473*/
2474int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
2475{
2476 int i=0,j,minsize=32;
2477 int size=minsize;
2478
22d12cda
TJ
2479 do
2480 {
2481 for (j = 0; i < maxsize/2 && j<size; j++)
2482 {
579b006f
JZ
2483 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,
2484 SIO_READ_EEPROM_REQUEST, 0, i,
2485 eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
22d12cda
TJ
2486 ftdi_error_return(-1, "reading eeprom failed");
2487 i++;
2488 }
2489 size*=2;
2490 }
2491 while (size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
c201f80f
TJ
2492
2493 return size/2;
2494}
2495
2496/**
c1c70e13
OS
2497 Write eeprom location
2498
2499 \param ftdi pointer to ftdi_context
2500 \param eeprom_addr Address of eeprom location to be written
2501 \param eeprom_val Value to be written
2502
2503 \retval 0: all fine
2504 \retval -1: read failed
2505*/
2506int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr, unsigned short eeprom_val)
2507{
579b006f 2508 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
c1c70e13
OS
2509 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
2510 NULL, 0, ftdi->usb_write_timeout) != 0)
2511 ftdi_error_return(-1, "unable to write eeprom");
2512
2513 return 0;
2514}
2515
2516/**
1941414d 2517 Write eeprom
a3da1d95 2518
1941414d
TJ
2519 \param ftdi pointer to ftdi_context
2520 \param eeprom Pointer to read eeprom from
2521
2522 \retval 0: all fine
2523 \retval -1: read failed
2524*/
a8f46ddc
TJ
2525int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2526{
ba5329be 2527 unsigned short usb_val, status;
e30da501 2528 int i, ret;
a3da1d95 2529
ba5329be 2530 /* These commands were traced while running MProg */
e30da501
TJ
2531 if ((ret = ftdi_usb_reset(ftdi)) != 0)
2532 return ret;
2533 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
2534 return ret;
2535 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
2536 return ret;
ba5329be 2537
22d12cda
TJ
2538 for (i = 0; i < ftdi->eeprom_size/2; i++)
2539 {
d9f0cce7
TJ
2540 usb_val = eeprom[i*2];
2541 usb_val += eeprom[(i*2)+1] << 8;
579b006f
JZ
2542 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2543 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
2544 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 2545 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
2546 }
2547
2548 return 0;
2549}
2550
1941414d
TJ
2551/**
2552 Erase eeprom
a3da1d95 2553
a5e1bd8c
MK
2554 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
2555
1941414d
TJ
2556 \param ftdi pointer to ftdi_context
2557
2558 \retval 0: all fine
2559 \retval -1: erase failed
2560*/
a8f46ddc
TJ
2561int ftdi_erase_eeprom(struct ftdi_context *ftdi)
2562{
579b006f 2563 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST, 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 2564 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
2565
2566 return 0;
2567}
c3d95b87 2568
1941414d
TJ
2569/**
2570 Get string representation for last error code
c3d95b87 2571
1941414d
TJ
2572 \param ftdi pointer to ftdi_context
2573
2574 \retval Pointer to error string
2575*/
c3d95b87
TJ
2576char *ftdi_get_error_string (struct ftdi_context *ftdi)
2577{
2578 return ftdi->error_str;
2579}
a01d31e2 2580
b5ec1820 2581/* @} end of doxygen libftdi group */