libftdi: (tomj) 64 bit build support in the RPM spec file
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
c201f80f 5 copyright : (C) 2003-2008 by Intra2net AG
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
b5ec1820
TJ
21 http://www.intra2net.com/de/produkte/opensource/ftdi/
22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
98452d97 31#include <usb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
0e302db6 34
98452d97 35#include "ftdi.h"
a3da1d95 36
7cc9950e 37/* stuff needed for async write */
f01d7ca6
TJ
38#ifdef LIBFTDI_LINUX_ASYNC_MODE
39 #include <sys/ioctl.h>
40 #include <sys/time.h>
41 #include <sys/select.h>
42 #include <sys/types.h>
43 #include <unistd.h>
44 #include <linux/usbdevice_fs.h>
45#endif
7cc9950e 46
21abaf2e 47#define ftdi_error_return(code, str) do { \
2f73e59f 48 ftdi->error_str = str; \
21abaf2e 49 return code; \
d2f10023 50 } while(0);
c3d95b87
TJ
51
52
1941414d
TJ
53/**
54 Initializes a ftdi_context.
4837f98a 55
1941414d 56 \param ftdi pointer to ftdi_context
4837f98a 57
1941414d
TJ
58 \retval 0: all fine
59 \retval -1: couldn't allocate read buffer
60
61 \remark This should be called before all functions
948f9ada 62*/
a8f46ddc
TJ
63int ftdi_init(struct ftdi_context *ftdi)
64{
7cc9950e
GE
65 int i;
66
98452d97 67 ftdi->usb_dev = NULL;
545820ce
TJ
68 ftdi->usb_read_timeout = 5000;
69 ftdi->usb_write_timeout = 5000;
a3da1d95 70
53ad271d 71 ftdi->type = TYPE_BM; /* chip type */
a3da1d95
GE
72 ftdi->baudrate = -1;
73 ftdi->bitbang_enabled = 0;
74
948f9ada
TJ
75 ftdi->readbuffer = NULL;
76 ftdi->readbuffer_offset = 0;
77 ftdi->readbuffer_remaining = 0;
78 ftdi->writebuffer_chunksize = 4096;
79
545820ce
TJ
80 ftdi->interface = 0;
81 ftdi->index = 0;
82 ftdi->in_ep = 0x02;
83 ftdi->out_ep = 0x81;
3119537f 84 ftdi->bitbang_mode = 1; /* 1: Normal bitbang mode, 2: SPI bitbang mode */
53ad271d 85
a3da1d95
GE
86 ftdi->error_str = NULL;
87
f01d7ca6 88#ifdef LIBFTDI_LINUX_ASYNC_MODE
7cc9950e
GE
89 ftdi->async_usb_buffer_size=10;
90 if ((ftdi->async_usb_buffer=malloc(sizeof(struct usbdevfs_urb)*ftdi->async_usb_buffer_size)) == NULL)
91 ftdi_error_return(-1, "out of memory for async usb buffer");
92
93 /* initialize async usb buffer with unused-marker */
94 for (i=0; i < ftdi->async_usb_buffer_size; i++)
95 ((struct usbdevfs_urb*)ftdi->async_usb_buffer)[i].usercontext = FTDI_URB_USERCONTEXT_COOKIE;
f01d7ca6
TJ
96#else
97 ftdi->async_usb_buffer_size=0;
98 ftdi->async_usb_buffer = NULL;
99#endif
7cc9950e 100
c201f80f
TJ
101 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
102
1c733d33
TJ
103 /* All fine. Now allocate the readbuffer */
104 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 105}
4837f98a 106
1941414d 107/**
cef378aa
TJ
108 Allocate and initialize a new ftdi_context
109
110 \return a pointer to a new ftdi_context, or NULL on failure
111*/
112struct ftdi_context *ftdi_new()
113{
114 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
115
116 if (ftdi == NULL) {
117 return NULL;
118 }
119
120 if (ftdi_init(ftdi) != 0) {
121 free(ftdi);
122 return NULL;
123 }
124
125 return ftdi;
126}
127
128/**
1941414d
TJ
129 Open selected channels on a chip, otherwise use first channel.
130
131 \param ftdi pointer to ftdi_context
132 \param interface Interface to use for FT2232C chips.
133
134 \retval 0: all fine
135 \retval -1: unknown interface
c4446c36 136*/
0ce2f5fa 137int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36
TJ
138{
139 switch (interface) {
140 case INTERFACE_ANY:
141 case INTERFACE_A:
0ce2f5fa 142 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
c4446c36
TJ
143 break;
144 case INTERFACE_B:
145 ftdi->interface = 1;
146 ftdi->index = INTERFACE_B;
147 ftdi->in_ep = 0x04;
148 ftdi->out_ep = 0x83;
149 break;
150 default:
151 ftdi_error_return(-1, "Unknown interface");
152 }
153 return 0;
154}
948f9ada 155
1941414d
TJ
156/**
157 Deinitializes a ftdi_context.
4837f98a 158
1941414d 159 \param ftdi pointer to ftdi_context
4837f98a 160*/
a8f46ddc
TJ
161void ftdi_deinit(struct ftdi_context *ftdi)
162{
7cc9950e
GE
163 if (ftdi->async_usb_buffer != NULL) {
164 free(ftdi->async_usb_buffer);
165 ftdi->async_usb_buffer = NULL;
166 }
167
948f9ada 168 if (ftdi->readbuffer != NULL) {
d9f0cce7
TJ
169 free(ftdi->readbuffer);
170 ftdi->readbuffer = NULL;
948f9ada 171 }
a3da1d95
GE
172}
173
1941414d 174/**
cef378aa
TJ
175 Deinitialize and free an ftdi_context.
176
177 \param ftdi pointer to ftdi_context
178*/
179void ftdi_free(struct ftdi_context *ftdi)
180{
181 ftdi_deinit(ftdi);
182 free(ftdi);
183}
184
185/**
1941414d
TJ
186 Use an already open libusb device.
187
188 \param ftdi pointer to ftdi_context
189 \param usb libusb usb_dev_handle to use
4837f98a 190*/
a8f46ddc
TJ
191void ftdi_set_usbdev (struct ftdi_context *ftdi, usb_dev_handle *usb)
192{
98452d97
TJ
193 ftdi->usb_dev = usb;
194}
195
196
1941414d
TJ
197/**
198 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
199 needs to be deallocated by ftdi_list_free() after use.
200
201 \param ftdi pointer to ftdi_context
202 \param devlist Pointer where to store list of found devices
203 \param vendor Vendor ID to search for
204 \param product Product ID to search for
edb82cbf 205
1941414d
TJ
206 \retval >0: number of devices found
207 \retval -1: usb_find_busses() failed
208 \retval -2: usb_find_devices() failed
209 \retval -3: out of memory
edb82cbf 210*/
d2f10023 211int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
212{
213 struct ftdi_device_list **curdev;
214 struct usb_bus *bus;
215 struct usb_device *dev;
216 int count = 0;
d2f10023 217
edb82cbf
TJ
218 usb_init();
219 if (usb_find_busses() < 0)
220 ftdi_error_return(-1, "usb_find_busses() failed");
221 if (usb_find_devices() < 0)
222 ftdi_error_return(-2, "usb_find_devices() failed");
223
224 curdev = devlist;
6db32169 225 *curdev = NULL;
c3034a16 226 for (bus = usb_get_busses(); bus; bus = bus->next) {
edb82cbf
TJ
227 for (dev = bus->devices; dev; dev = dev->next) {
228 if (dev->descriptor.idVendor == vendor
229 && dev->descriptor.idProduct == product)
230 {
231 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
232 if (!*curdev)
233 ftdi_error_return(-3, "out of memory");
d2f10023 234
edb82cbf
TJ
235 (*curdev)->next = NULL;
236 (*curdev)->dev = dev;
237
238 curdev = &(*curdev)->next;
239 count++;
240 }
241 }
242 }
d2f10023 243
edb82cbf
TJ
244 return count;
245}
246
1941414d
TJ
247/**
248 Frees a usb device list.
edb82cbf 249
1941414d 250 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 251*/
d2f10023 252void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 253{
6db32169
TJ
254 struct ftdi_device_list *curdev, *next;
255
256 for (curdev = *devlist; curdev != NULL;) {
257 next = curdev->next;
258 free(curdev);
259 curdev = next;
edb82cbf
TJ
260 }
261
6db32169 262 *devlist = NULL;
edb82cbf
TJ
263}
264
1941414d 265/**
cef378aa
TJ
266 Frees a usb device list.
267
268 \param devlist USB device list created by ftdi_usb_find_all()
269*/
270void ftdi_list_free2(struct ftdi_device_list *devlist)
271{
272 ftdi_list_free(&devlist);
273}
274
275/**
474786c0
TJ
276 Return device ID strings from the usb device.
277
278 The parameters manufacturer, description and serial may be NULL
279 or pointer to buffers to store the fetched strings.
280
898c34dd
TJ
281 \note Use this function only in combination with ftdi_usb_find_all()
282 as it closes the internal "usb_dev" after use.
283
474786c0
TJ
284 \param ftdi pointer to ftdi_context
285 \param dev libusb usb_dev to use
286 \param manufacturer Store manufacturer string here if not NULL
287 \param mnf_len Buffer size of manufacturer string
288 \param description Store product description string here if not NULL
289 \param desc_len Buffer size of product description string
290 \param serial Store serial string here if not NULL
291 \param serial_len Buffer size of serial string
292
293 \retval 0: all fine
294 \retval -1: wrong arguments
295 \retval -4: unable to open device
296 \retval -7: get product manufacturer failed
297 \retval -8: get product description failed
298 \retval -9: get serial number failed
299 \retval -10: unable to close device
300*/
301int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct usb_device * dev,
302 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
303{
304 if ((ftdi==NULL) || (dev==NULL))
305 return -1;
306
307 if (!(ftdi->usb_dev = usb_open(dev)))
308 ftdi_error_return(-4, usb_strerror());
309
310 if (manufacturer != NULL) {
311 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iManufacturer, manufacturer, mnf_len) <= 0) {
312 usb_close (ftdi->usb_dev);
313 ftdi_error_return(-7, usb_strerror());
314 }
315 }
316
317 if (description != NULL) {
318 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, description, desc_len) <= 0) {
319 usb_close (ftdi->usb_dev);
320 ftdi_error_return(-8, usb_strerror());
321 }
322 }
323
324 if (serial != NULL) {
325 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, serial, serial_len) <= 0) {
326 usb_close (ftdi->usb_dev);
327 ftdi_error_return(-9, usb_strerror());
328 }
329 }
330
331 if (usb_close (ftdi->usb_dev) != 0)
332 ftdi_error_return(-10, usb_strerror());
333
334 return 0;
335}
336
337/**
1941414d 338 Opens a ftdi device given by a usb_device.
7b18bef6 339
1941414d
TJ
340 \param ftdi pointer to ftdi_context
341 \param dev libusb usb_dev to use
342
343 \retval 0: all fine
23b1798d 344 \retval -3: unable to config device
1941414d
TJ
345 \retval -4: unable to open device
346 \retval -5: unable to claim device
347 \retval -6: reset failed
348 \retval -7: set baudrate failed
7b18bef6
TJ
349*/
350int ftdi_usb_open_dev(struct ftdi_context *ftdi, struct usb_device *dev)
351{
d2f10023 352 int detach_errno = 0;
7b18bef6
TJ
353 if (!(ftdi->usb_dev = usb_open(dev)))
354 ftdi_error_return(-4, "usb_open() failed");
d2f10023
TJ
355
356#ifdef LIBUSB_HAS_GET_DRIVER_NP
22592e17
TJ
357 // Try to detach ftdi_sio kernel module.
358 // Returns ENODATA if driver is not loaded.
359 //
360 // The return code is kept in a separate variable and only parsed
361 // if usb_set_configuration() or usb_claim_interface() fails as the
362 // detach operation might be denied and everything still works fine.
363 // Likely scenario is a static ftdi_sio kernel module.
d2f10023
TJ
364 if (usb_detach_kernel_driver_np(ftdi->usb_dev, ftdi->interface) != 0 && errno != ENODATA)
365 detach_errno = errno;
366#endif
367
b57aedfd
GE
368 // set configuration (needed especially for windows)
369 // tolerate EBUSY: one device with one configuration, but two interfaces
370 // and libftdi sessions to both interfaces (e.g. FT2232)
371 if (dev->descriptor.bNumConfigurations > 0 &&
372 usb_set_configuration(ftdi->usb_dev, dev->config[0].bConfigurationValue) &&
373 errno != EBUSY)
374 {
23b1798d
TJ
375 usb_close (ftdi->usb_dev);
376 if (detach_errno == EPERM) {
377 ftdi_error_return(-8, "inappropriate permissions on device!");
378 } else {
379 ftdi_error_return(-3, "unable to set usb configuration. Make sure ftdi_sio is unloaded!");
380 }
381 }
382
7b18bef6
TJ
383 if (usb_claim_interface(ftdi->usb_dev, ftdi->interface) != 0) {
384 usb_close (ftdi->usb_dev);
d2f10023
TJ
385 if (detach_errno == EPERM) {
386 ftdi_error_return(-8, "inappropriate permissions on device!");
387 } else {
388 ftdi_error_return(-5, "unable to claim usb device. Make sure ftdi_sio is unloaded!");
389 }
7b18bef6
TJ
390 }
391
392 if (ftdi_usb_reset (ftdi) != 0) {
393 usb_close (ftdi->usb_dev);
394 ftdi_error_return(-6, "ftdi_usb_reset failed");
395 }
396
397 if (ftdi_set_baudrate (ftdi, 9600) != 0) {
398 usb_close (ftdi->usb_dev);
399 ftdi_error_return(-7, "set baudrate failed");
400 }
401
402 // Try to guess chip type
403 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
404 if (dev->descriptor.bcdDevice == 0x400 || (dev->descriptor.bcdDevice == 0x200
405 && dev->descriptor.iSerialNumber == 0))
406 ftdi->type = TYPE_BM;
407 else if (dev->descriptor.bcdDevice == 0x200)
408 ftdi->type = TYPE_AM;
409 else if (dev->descriptor.bcdDevice == 0x500) {
410 ftdi->type = TYPE_2232C;
411 if (!ftdi->index)
412 ftdi->index = INTERFACE_A;
cb6250fa
TJ
413 } else if (dev->descriptor.bcdDevice == 0x600)
414 ftdi->type = TYPE_R;
7b18bef6
TJ
415
416 ftdi_error_return(0, "all fine");
417}
418
1941414d
TJ
419/**
420 Opens the first device with a given vendor and product ids.
421
422 \param ftdi pointer to ftdi_context
423 \param vendor Vendor ID
424 \param product Product ID
425
9bec2387 426 \retval same as ftdi_usb_open_desc()
1941414d 427*/
edb82cbf
TJ
428int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
429{
430 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
431}
432
1941414d
TJ
433/**
434 Opens the first device with a given, vendor id, product id,
435 description and serial.
436
437 \param ftdi pointer to ftdi_context
438 \param vendor Vendor ID
439 \param product Product ID
440 \param description Description to search for. Use NULL if not needed.
441 \param serial Serial to search for. Use NULL if not needed.
442
443 \retval 0: all fine
444 \retval -1: usb_find_busses() failed
445 \retval -2: usb_find_devices() failed
446 \retval -3: usb device not found
447 \retval -4: unable to open device
448 \retval -5: unable to claim device
449 \retval -6: reset failed
450 \retval -7: set baudrate failed
451 \retval -8: get product description failed
452 \retval -9: get serial number failed
453 \retval -10: unable to close device
a3da1d95 454*/
04e1ea0a 455int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
456 const char* description, const char* serial)
457{
98452d97
TJ
458 struct usb_bus *bus;
459 struct usb_device *dev;
c3d95b87 460 char string[256];
98452d97
TJ
461
462 usb_init();
463
c3d95b87
TJ
464 if (usb_find_busses() < 0)
465 ftdi_error_return(-1, "usb_find_busses() failed");
c3d95b87 466 if (usb_find_devices() < 0)
edb82cbf 467 ftdi_error_return(-2, "usb_find_devices() failed");
a3da1d95 468
c3034a16 469 for (bus = usb_get_busses(); bus; bus = bus->next) {
98452d97 470 for (dev = bus->devices; dev; dev = dev->next) {
a8f46ddc 471 if (dev->descriptor.idVendor == vendor
c3d95b87
TJ
472 && dev->descriptor.idProduct == product) {
473 if (!(ftdi->usb_dev = usb_open(dev)))
474 ftdi_error_return(-4, "usb_open() failed");
475
a8f46ddc
TJ
476 if (description != NULL) {
477 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, string, sizeof(string)) <= 0) {
c3d95b87
TJ
478 usb_close (ftdi->usb_dev);
479 ftdi_error_return(-8, "unable to fetch product description");
98452d97 480 }
a8f46ddc 481 if (strncmp(string, description, sizeof(string)) != 0) {
edb82cbf
TJ
482 if (usb_close (ftdi->usb_dev) != 0)
483 ftdi_error_return(-10, "unable to close device");
a8f46ddc
TJ
484 continue;
485 }
486 }
487 if (serial != NULL) {
488 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, string, sizeof(string)) <= 0) {
c3d95b87
TJ
489 usb_close (ftdi->usb_dev);
490 ftdi_error_return(-9, "unable to fetch serial number");
a8f46ddc
TJ
491 }
492 if (strncmp(string, serial, sizeof(string)) != 0) {
a8f46ddc 493 if (usb_close (ftdi->usb_dev) != 0)
edb82cbf 494 ftdi_error_return(-10, "unable to close device");
a8f46ddc
TJ
495 continue;
496 }
497 }
98452d97 498
edb82cbf
TJ
499 if (usb_close (ftdi->usb_dev) != 0)
500 ftdi_error_return(-10, "unable to close device");
d2f10023 501
edb82cbf 502 return ftdi_usb_open_dev(ftdi, dev);
98452d97
TJ
503 }
504 }
98452d97 505 }
a3da1d95 506
98452d97 507 // device not found
c3d95b87 508 ftdi_error_return(-3, "device not found");
a3da1d95
GE
509}
510
1941414d
TJ
511/**
512 Resets the ftdi device.
a3da1d95 513
1941414d
TJ
514 \param ftdi pointer to ftdi_context
515
516 \retval 0: all fine
517 \retval -1: FTDI reset failed
4837f98a 518*/
edb82cbf 519int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 520{
c3d95b87
TJ
521 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
522 ftdi_error_return(-1,"FTDI reset failed");
523
545820ce 524 // Invalidate data in the readbuffer
bfcee05b
TJ
525 ftdi->readbuffer_offset = 0;
526 ftdi->readbuffer_remaining = 0;
527
a3da1d95
GE
528 return 0;
529}
530
1941414d 531/**
1189b11a 532 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
533
534 \param ftdi pointer to ftdi_context
4837f98a 535
1941414d 536 \retval 0: all fine
1189b11a 537 \retval -1: read buffer purge failed
4837f98a 538*/
1189b11a 539int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 540{
c3d95b87
TJ
541 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 1, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
542 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
543
545820ce 544 // Invalidate data in the readbuffer
bfcee05b
TJ
545 ftdi->readbuffer_offset = 0;
546 ftdi->readbuffer_remaining = 0;
a60be878 547
1189b11a
TJ
548 return 0;
549}
550
551/**
552 Clears the write buffer on the chip.
553
554 \param ftdi pointer to ftdi_context
555
556 \retval 0: all fine
557 \retval -1: write buffer purge failed
558*/
559int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
560{
c3d95b87 561 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 2, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1189b11a
TJ
562 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
563
564 return 0;
565}
566
567/**
568 Clears the buffers on the chip and the internal read buffer.
569
570 \param ftdi pointer to ftdi_context
571
572 \retval 0: all fine
573 \retval -1: read buffer purge failed
574 \retval -2: write buffer purge failed
575*/
576int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
577{
578 int result;
579
580 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 581 if (result < 0)
1189b11a
TJ
582 return -1;
583
584 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 585 if (result < 0)
1189b11a 586 return -2;
545820ce 587
a60be878
TJ
588 return 0;
589}
a3da1d95 590
1941414d
TJ
591/**
592 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
593
594 \param ftdi pointer to ftdi_context
595
596 \retval 0: all fine
597 \retval -1: usb_release failed
598 \retval -2: usb_close failed
a3da1d95 599*/
a8f46ddc
TJ
600int ftdi_usb_close(struct ftdi_context *ftdi)
601{
a3da1d95
GE
602 int rtn = 0;
603
f01d7ca6 604#ifdef LIBFTDI_LINUX_ASYNC_MODE
7cc9950e
GE
605 /* try to release some kernel resources */
606 ftdi_async_complete(ftdi,1);
f01d7ca6 607#endif
7cc9950e 608
98452d97 609 if (usb_release_interface(ftdi->usb_dev, ftdi->interface) != 0)
a3da1d95 610 rtn = -1;
98452d97
TJ
611
612 if (usb_close (ftdi->usb_dev) != 0)
a3da1d95 613 rtn = -2;
98452d97 614
a3da1d95
GE
615 return rtn;
616}
617
a3da1d95 618/*
53ad271d
TJ
619 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
620 Function is only used internally
b5ec1820 621 \internal
53ad271d 622*/
0126d22e 623static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
a8f46ddc
TJ
624 unsigned short *value, unsigned short *index)
625{
53ad271d
TJ
626 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
627 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
628 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
629 int divisor, best_divisor, best_baud, best_baud_diff;
630 unsigned long encoded_divisor;
631 int i;
632
633 if (baudrate <= 0) {
634 // Return error
635 return -1;
636 }
637
638 divisor = 24000000 / baudrate;
639
0126d22e 640 if (ftdi->type == TYPE_AM) {
53ad271d
TJ
641 // Round down to supported fraction (AM only)
642 divisor -= am_adjust_dn[divisor & 7];
643 }
644
645 // Try this divisor and the one above it (because division rounds down)
646 best_divisor = 0;
647 best_baud = 0;
648 best_baud_diff = 0;
649 for (i = 0; i < 2; i++) {
650 int try_divisor = divisor + i;
651 int baud_estimate;
652 int baud_diff;
653
654 // Round up to supported divisor value
df612d35 655 if (try_divisor <= 8) {
53ad271d
TJ
656 // Round up to minimum supported divisor
657 try_divisor = 8;
0126d22e 658 } else if (ftdi->type != TYPE_AM && try_divisor < 12) {
53ad271d
TJ
659 // BM doesn't support divisors 9 through 11 inclusive
660 try_divisor = 12;
661 } else if (divisor < 16) {
662 // AM doesn't support divisors 9 through 15 inclusive
663 try_divisor = 16;
664 } else {
0126d22e 665 if (ftdi->type == TYPE_AM) {
53ad271d
TJ
666 // Round up to supported fraction (AM only)
667 try_divisor += am_adjust_up[try_divisor & 7];
668 if (try_divisor > 0x1FFF8) {
669 // Round down to maximum supported divisor value (for AM)
670 try_divisor = 0x1FFF8;
671 }
672 } else {
673 if (try_divisor > 0x1FFFF) {
674 // Round down to maximum supported divisor value (for BM)
675 try_divisor = 0x1FFFF;
676 }
677 }
678 }
679 // Get estimated baud rate (to nearest integer)
680 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
681 // Get absolute difference from requested baud rate
682 if (baud_estimate < baudrate) {
683 baud_diff = baudrate - baud_estimate;
684 } else {
685 baud_diff = baud_estimate - baudrate;
686 }
687 if (i == 0 || baud_diff < best_baud_diff) {
688 // Closest to requested baud rate so far
689 best_divisor = try_divisor;
690 best_baud = baud_estimate;
691 best_baud_diff = baud_diff;
692 if (baud_diff == 0) {
693 // Spot on! No point trying
694 break;
695 }
696 }
697 }
698 // Encode the best divisor value
699 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
700 // Deal with special cases for encoded value
701 if (encoded_divisor == 1) {
4837f98a 702 encoded_divisor = 0; // 3000000 baud
53ad271d 703 } else if (encoded_divisor == 0x4001) {
4837f98a 704 encoded_divisor = 1; // 2000000 baud (BM only)
53ad271d
TJ
705 }
706 // Split into "value" and "index" values
707 *value = (unsigned short)(encoded_divisor & 0xFFFF);
de22df10 708 if(ftdi->type == TYPE_2232C) {
0126d22e
TJ
709 *index = (unsigned short)(encoded_divisor >> 8);
710 *index &= 0xFF00;
a9c57c05 711 *index |= ftdi->index;
0126d22e
TJ
712 }
713 else
714 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 715
53ad271d
TJ
716 // Return the nearest baud rate
717 return best_baud;
718}
719
1941414d 720/**
9bec2387 721 Sets the chip baud rate
1941414d
TJ
722
723 \param ftdi pointer to ftdi_context
9bec2387 724 \param baudrate baud rate to set
1941414d
TJ
725
726 \retval 0: all fine
727 \retval -1: invalid baudrate
728 \retval -2: setting baudrate failed
a3da1d95 729*/
a8f46ddc
TJ
730int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
731{
53ad271d
TJ
732 unsigned short value, index;
733 int actual_baudrate;
a3da1d95
GE
734
735 if (ftdi->bitbang_enabled) {
736 baudrate = baudrate*4;
737 }
738
25707904 739 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
740 if (actual_baudrate <= 0)
741 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 742
53ad271d
TJ
743 // Check within tolerance (about 5%)
744 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
745 || ((actual_baudrate < baudrate)
746 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
747 : (baudrate * 21 < actual_baudrate * 20)))
748 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 749
c3d95b87
TJ
750 if (usb_control_msg(ftdi->usb_dev, 0x40, 3, value, index, NULL, 0, ftdi->usb_write_timeout) != 0)
751 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
752
753 ftdi->baudrate = baudrate;
754 return 0;
755}
756
1941414d
TJ
757/**
758 Set (RS232) line characteristics by Alain Abbas
4837f98a 759
1941414d
TJ
760 \param ftdi pointer to ftdi_context
761 \param bits Number of bits
762 \param sbit Number of stop bits
763 \param parity Parity mode
764
765 \retval 0: all fine
766 \retval -1: Setting line property failed
2f73e59f
TJ
767*/
768int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 769 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f
TJ
770{
771 unsigned short value = bits;
772
773 switch(parity) {
774 case NONE:
775 value |= (0x00 << 8);
776 break;
777 case ODD:
778 value |= (0x01 << 8);
779 break;
780 case EVEN:
781 value |= (0x02 << 8);
782 break;
783 case MARK:
784 value |= (0x03 << 8);
785 break;
786 case SPACE:
787 value |= (0x04 << 8);
788 break;
789 }
d2f10023 790
2f73e59f
TJ
791 switch(sbit) {
792 case STOP_BIT_1:
793 value |= (0x00 << 11);
794 break;
795 case STOP_BIT_15:
796 value |= (0x01 << 11);
797 break;
798 case STOP_BIT_2:
799 value |= (0x02 << 11);
800 break;
801 }
d2f10023 802
2f73e59f
TJ
803 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x04, value, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
804 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 805
2f73e59f
TJ
806 return 0;
807}
a3da1d95 808
1941414d
TJ
809/**
810 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
811
812 \param ftdi pointer to ftdi_context
813 \param buf Buffer with the data
814 \param size Size of the buffer
815
816 \retval <0: error code from usb_bulk_write()
817 \retval >0: number of bytes written
818*/
a8f46ddc
TJ
819int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
820{
a3da1d95
GE
821 int ret;
822 int offset = 0;
545820ce 823 int total_written = 0;
c3d95b87 824
a3da1d95 825 while (offset < size) {
948f9ada 826 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
827
828 if (offset+write_size > size)
829 write_size = size-offset;
830
98452d97 831 ret = usb_bulk_write(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, ftdi->usb_write_timeout);
c3d95b87
TJ
832 if (ret < 0)
833 ftdi_error_return(ret, "usb bulk write failed");
a3da1d95 834
c3d95b87 835 total_written += ret;
a3da1d95
GE
836 offset += write_size;
837 }
838
545820ce 839 return total_written;
a3da1d95
GE
840}
841
f01d7ca6 842#ifdef LIBFTDI_LINUX_ASYNC_MODE
4c9e3812
GE
843/* this is strongly dependent on libusb using the same struct layout. If libusb
844 changes in some later version this may break horribly (this is for libusb 0.1.12) */
845struct usb_dev_handle {
846 int fd;
847 // some other stuff coming here we don't need
848};
849
84f85aaa 850/**
c201f80f
TJ
851 Check for pending async urbs
852 \internal
853*/
854static int _usb_get_async_urbs_pending(struct ftdi_context *ftdi)
7cc9950e
GE
855{
856 struct usbdevfs_urb *urb;
857 int pending=0;
858 int i;
859
860 for (i=0; i < ftdi->async_usb_buffer_size; i++) {
861 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
862 if (urb->usercontext != FTDI_URB_USERCONTEXT_COOKIE)
863 pending++;
864 }
865
866 return pending;
867}
868
84f85aaa
GE
869/**
870 Wait until one or more async URBs are completed by the kernel and mark their
871 positions in the async-buffer as unused
872
873 \param ftdi pointer to ftdi_context
874 \param wait_for_more if != 0 wait for more than one write to complete
875 \param timeout_msec max milliseconds to wait
876
c201f80f
TJ
877 \internal
878*/
879static void _usb_async_cleanup(struct ftdi_context *ftdi, int wait_for_more, int timeout_msec)
7cc9950e
GE
880{
881 struct timeval tv;
882 struct usbdevfs_urb *urb=NULL;
883 int ret;
884 fd_set writefds;
885 int keep_going=0;
886
887 FD_ZERO(&writefds);
888 FD_SET(ftdi->usb_dev->fd, &writefds);
889
890 /* init timeout only once, select writes time left after call */
891 tv.tv_sec = timeout_msec / 1000;
892 tv.tv_usec = (timeout_msec % 1000) * 1000;
893
894 do {
c201f80f 895 while (_usb_get_async_urbs_pending(ftdi)
7cc9950e
GE
896 && (ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_REAPURBNDELAY, &urb)) == -1
897 && errno == EAGAIN)
898 {
899 if (keep_going && !wait_for_more) {
900 /* don't wait if repeating only for keep_going */
901 keep_going=0;
902 break;
903 }
904
905 /* wait for timeout msec or something written ready */
906 select(ftdi->usb_dev->fd+1, NULL, &writefds, NULL, &tv);
907 }
908
909 if (ret == 0 && urb != NULL) {
910 /* got a free urb, mark it */
911 urb->usercontext = FTDI_URB_USERCONTEXT_COOKIE;
912
913 /* try to get more urbs that are ready now, but don't wait anymore */
914 urb=NULL;
915 keep_going=1;
916 } else {
917 /* no more urbs waiting */
918 keep_going=0;
919 }
920 } while (keep_going);
921}
922
923/**
84f85aaa
GE
924 Wait until one or more async URBs are completed by the kernel and mark their
925 positions in the async-buffer as unused.
7cc9950e
GE
926
927 \param ftdi pointer to ftdi_context
928 \param wait_for_more if != 0 wait for more than one write to complete (until write timeout)
929*/
930void ftdi_async_complete(struct ftdi_context *ftdi, int wait_for_more)
931{
c201f80f 932 _usb_async_cleanup(ftdi,wait_for_more,ftdi->usb_write_timeout);
7cc9950e 933}
4c9e3812
GE
934
935/**
936 Stupid libusb does not offer async writes nor does it allow
937 access to its fd - so we need some hacks here.
c201f80f 938 \internal
4c9e3812 939*/
c201f80f 940static int _usb_bulk_write_async(struct ftdi_context *ftdi, int ep, char *bytes, int size)
4c9e3812 941{
7cc9950e 942 struct usbdevfs_urb *urb;
4c9e3812 943 int bytesdone = 0, requested;
7cc9950e
GE
944 int ret, i;
945 int cleanup_count;
4c9e3812
GE
946
947 do {
7cc9950e
GE
948 /* find a free urb buffer we can use */
949 urb=NULL;
950 for (cleanup_count=0; urb==NULL && cleanup_count <= 1; cleanup_count++)
951 {
952 if (i==ftdi->async_usb_buffer_size) {
953 /* wait until some buffers are free */
c201f80f 954 _usb_async_cleanup(ftdi,0,ftdi->usb_write_timeout);
7cc9950e
GE
955 }
956
957 for (i=0; i < ftdi->async_usb_buffer_size; i++) {
958 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
959 if (urb->usercontext == FTDI_URB_USERCONTEXT_COOKIE)
960 break; /* found a free urb position */
961 urb=NULL;
962 }
963 }
964
965 /* no free urb position found */
966 if (urb==NULL)
967 return -1;
4c9e3812
GE
968
969 requested = size - bytesdone;
7cc9950e
GE
970 if (requested > 4096)
971 requested = 4096;
972
973 memset(urb,0,sizeof(urb));
974
975 urb->type = USBDEVFS_URB_TYPE_BULK;
976 urb->endpoint = ep;
977 urb->flags = 0;
978 urb->buffer = bytes + bytesdone;
979 urb->buffer_length = requested;
980 urb->signr = 0;
981 urb->actual_length = 0;
982 urb->number_of_packets = 0;
983 urb->usercontext = 0;
984
985 do {
986 ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_SUBMITURB, urb);
987 } while (ret < 0 && errno == EINTR);
4c9e3812
GE
988 if (ret < 0)
989 return ret; /* the caller can read errno to get more info */
990
991 bytesdone += requested;
992 } while (bytesdone < size);
993 return bytesdone;
994}
995
996/**
997 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip.
998 Does not wait for completion of the transfer nor does it make sure that
999 the transfer was successful.
1000
1001 This function could be extended to use signals and callbacks to inform the
1002 caller of completion or error - but this is not done yet, volunteers welcome.
1003
1004 Works around libusb and directly accesses functions only available on Linux.
cef378aa 1005 Only available if compiled with --with-async-mode.
4c9e3812
GE
1006
1007 \param ftdi pointer to ftdi_context
1008 \param buf Buffer with the data
1009 \param size Size of the buffer
1010
1011 \retval <0: error code from usb_bulk_write()
1012 \retval >0: number of bytes written
1013*/
1014int ftdi_write_data_async(struct ftdi_context *ftdi, unsigned char *buf, int size)
1015{
1016 int ret;
1017 int offset = 0;
1018 int total_written = 0;
1019
1020 while (offset < size) {
1021 int write_size = ftdi->writebuffer_chunksize;
1022
1023 if (offset+write_size > size)
1024 write_size = size-offset;
1025
c201f80f 1026 ret = _usb_bulk_write_async(ftdi, ftdi->in_ep, buf+offset, write_size);
4c9e3812
GE
1027 if (ret < 0)
1028 ftdi_error_return(ret, "usb bulk write async failed");
1029
1030 total_written += ret;
1031 offset += write_size;
1032 }
1033
1034 return total_written;
1035}
f01d7ca6 1036#endif // LIBFTDI_LINUX_ASYNC_MODE
4c9e3812 1037
1941414d
TJ
1038/**
1039 Configure write buffer chunk size.
1040 Default is 4096.
1041
1042 \param ftdi pointer to ftdi_context
1043 \param chunksize Chunk size
a3da1d95 1044
1941414d
TJ
1045 \retval 0: all fine
1046*/
a8f46ddc
TJ
1047int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1048{
948f9ada
TJ
1049 ftdi->writebuffer_chunksize = chunksize;
1050 return 0;
1051}
1052
1941414d
TJ
1053/**
1054 Get write buffer chunk size.
1055
1056 \param ftdi pointer to ftdi_context
1057 \param chunksize Pointer to store chunk size in
948f9ada 1058
1941414d
TJ
1059 \retval 0: all fine
1060*/
a8f46ddc
TJ
1061int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1062{
948f9ada
TJ
1063 *chunksize = ftdi->writebuffer_chunksize;
1064 return 0;
1065}
cbabb7d3 1066
1941414d
TJ
1067/**
1068 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1069
1070 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1071
1941414d
TJ
1072 \param ftdi pointer to ftdi_context
1073 \param buf Buffer to store data in
1074 \param size Size of the buffer
1075
1076 \retval <0: error code from usb_bulk_read()
d77b0e94 1077 \retval 0: no data was available
1941414d
TJ
1078 \retval >0: number of bytes read
1079
1080 \remark This function is not useful in bitbang mode.
1081 Use ftdi_read_pins() to get the current state of the pins.
1082*/
a8f46ddc
TJ
1083int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1084{
1c733d33 1085 int offset = 0, ret = 1, i, num_of_chunks, chunk_remains;
d9f0cce7 1086
948f9ada
TJ
1087 // everything we want is still in the readbuffer?
1088 if (size <= ftdi->readbuffer_remaining) {
d9f0cce7
TJ
1089 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1090
1091 // Fix offsets
1092 ftdi->readbuffer_remaining -= size;
1093 ftdi->readbuffer_offset += size;
1094
545820ce 1095 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1096
1097 return size;
979a145c 1098 }
948f9ada
TJ
1099 // something still in the readbuffer, but not enough to satisfy 'size'?
1100 if (ftdi->readbuffer_remaining != 0) {
d9f0cce7 1101 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1102
d9f0cce7
TJ
1103 // Fix offset
1104 offset += ftdi->readbuffer_remaining;
948f9ada 1105 }
948f9ada 1106 // do the actual USB read
cbabb7d3 1107 while (offset < size && ret > 0) {
d9f0cce7
TJ
1108 ftdi->readbuffer_remaining = 0;
1109 ftdi->readbuffer_offset = 0;
98452d97
TJ
1110 /* returns how much received */
1111 ret = usb_bulk_read (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi->usb_read_timeout);
c3d95b87
TJ
1112 if (ret < 0)
1113 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1114
d9f0cce7
TJ
1115 if (ret > 2) {
1116 // skip FTDI status bytes.
1117 // Maybe stored in the future to enable modem use
1c733d33
TJ
1118 num_of_chunks = ret / 64;
1119 chunk_remains = ret % 64;
1120 //printf("ret = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", ret, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1121
d9f0cce7
TJ
1122 ftdi->readbuffer_offset += 2;
1123 ret -= 2;
1c733d33 1124
fde0a89e 1125 if (ret > 62) {
1c733d33
TJ
1126 for (i = 1; i < num_of_chunks; i++)
1127 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
1128 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
1129 62);
1130 if (chunk_remains > 2) {
1131 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
1132 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
1133 chunk_remains-2);
1134 ret -= 2*num_of_chunks;
1135 } else
1136 ret -= 2*(num_of_chunks-1)+chunk_remains;
1137 }
d9f0cce7
TJ
1138 } else if (ret <= 2) {
1139 // no more data to read?
1140 return offset;
1141 }
d9f0cce7
TJ
1142 if (ret > 0) {
1143 // data still fits in buf?
1144 if (offset+ret <= size) {
1145 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, ret);
545820ce 1146 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
d9f0cce7
TJ
1147 offset += ret;
1148
53ad271d 1149 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1150 if (offset == size)
c4446c36
TJ
1151 //printf("read_data exact rem %d offset %d\n",
1152 //ftdi->readbuffer_remaining, offset);
d9f0cce7
TJ
1153 return offset;
1154 } else {
1155 // only copy part of the data or size <= readbuffer_chunksize
1156 int part_size = size-offset;
1157 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1158
d9f0cce7
TJ
1159 ftdi->readbuffer_offset += part_size;
1160 ftdi->readbuffer_remaining = ret-part_size;
1161 offset += part_size;
1162
53ad271d
TJ
1163 /* printf("Returning part: %d - size: %d - offset: %d - ret: %d - remaining: %d\n",
1164 part_size, size, offset, ret, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1165
1166 return offset;
1167 }
1168 }
cbabb7d3 1169 }
948f9ada 1170 // never reached
29c4af7f 1171 return -127;
a3da1d95
GE
1172}
1173
1941414d
TJ
1174/**
1175 Configure read buffer chunk size.
1176 Default is 4096.
1177
1178 Automatically reallocates the buffer.
a3da1d95 1179
1941414d
TJ
1180 \param ftdi pointer to ftdi_context
1181 \param chunksize Chunk size
1182
1183 \retval 0: all fine
1184*/
a8f46ddc
TJ
1185int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1186{
29c4af7f
TJ
1187 unsigned char *new_buf;
1188
948f9ada
TJ
1189 // Invalidate all remaining data
1190 ftdi->readbuffer_offset = 0;
1191 ftdi->readbuffer_remaining = 0;
1192
c3d95b87
TJ
1193 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1194 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1195
948f9ada
TJ
1196 ftdi->readbuffer = new_buf;
1197 ftdi->readbuffer_chunksize = chunksize;
1198
1199 return 0;
1200}
1201
1941414d
TJ
1202/**
1203 Get read buffer chunk size.
948f9ada 1204
1941414d
TJ
1205 \param ftdi pointer to ftdi_context
1206 \param chunksize Pointer to store chunk size in
1207
1208 \retval 0: all fine
1209*/
a8f46ddc
TJ
1210int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1211{
948f9ada
TJ
1212 *chunksize = ftdi->readbuffer_chunksize;
1213 return 0;
1214}
1215
1216
1941414d
TJ
1217/**
1218 Enable bitbang mode.
948f9ada 1219
1941414d
TJ
1220 For advanced bitbang modes of the FT2232C chip use ftdi_set_bitmode().
1221
1222 \param ftdi pointer to ftdi_context
1223 \param bitmask Bitmask to configure lines.
1224 HIGH/ON value configures a line as output.
1225
1226 \retval 0: all fine
1227 \retval -1: can't enable bitbang mode
1228*/
a8f46ddc
TJ
1229int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1230{
a3da1d95
GE
1231 unsigned short usb_val;
1232
d9f0cce7 1233 usb_val = bitmask; // low byte: bitmask
3119537f
TJ
1234 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1235 usb_val |= (ftdi->bitbang_mode << 8);
1236
c3d95b87
TJ
1237 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1238 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1239
a3da1d95
GE
1240 ftdi->bitbang_enabled = 1;
1241 return 0;
1242}
1243
1941414d
TJ
1244/**
1245 Disable bitbang mode.
a3da1d95 1246
1941414d
TJ
1247 \param ftdi pointer to ftdi_context
1248
1249 \retval 0: all fine
1250 \retval -1: can't disable bitbang mode
1251*/
a8f46ddc
TJ
1252int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1253{
c3d95b87
TJ
1254 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1255 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1256
1257 ftdi->bitbang_enabled = 0;
1258 return 0;
1259}
1260
1941414d
TJ
1261/**
1262 Enable advanced bitbang mode for FT2232C chips.
a3da1d95 1263
1941414d
TJ
1264 \param ftdi pointer to ftdi_context
1265 \param bitmask Bitmask to configure lines.
1266 HIGH/ON value configures a line as output.
1267 \param mode Bitbang mode: 1 for normal mode, 2 for SPI mode
1268
1269 \retval 0: all fine
1270 \retval -1: can't enable bitbang mode
1271*/
c4446c36
TJ
1272int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1273{
1274 unsigned short usb_val;
1275
1276 usb_val = bitmask; // low byte: bitmask
1277 usb_val |= (mode << 8);
1278 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1279 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1280
1281 ftdi->bitbang_mode = mode;
1282 ftdi->bitbang_enabled = (mode == BITMODE_BITBANG || mode == BITMODE_SYNCBB)?1:0;
1283 return 0;
1284}
1285
1941414d
TJ
1286/**
1287 Directly read pin state. Useful for bitbang mode.
1288
1289 \param ftdi pointer to ftdi_context
1290 \param pins Pointer to store pins into
1291
1292 \retval 0: all fine
1293 \retval -1: read pins failed
1294*/
a8f46ddc
TJ
1295int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1296{
85f3c596 1297 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0C, 0, ftdi->index, (char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1298 ftdi_error_return(-1, "read pins failed");
a3da1d95 1299
a3da1d95
GE
1300 return 0;
1301}
1302
1941414d
TJ
1303/**
1304 Set latency timer
1305
1306 The FTDI chip keeps data in the internal buffer for a specific
1307 amount of time if the buffer is not full yet to decrease
1308 load on the usb bus.
a3da1d95 1309
1941414d
TJ
1310 \param ftdi pointer to ftdi_context
1311 \param latency Value between 1 and 255
1312
1313 \retval 0: all fine
1314 \retval -1: latency out of range
1315 \retval -2: unable to set latency timer
1316*/
a8f46ddc
TJ
1317int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1318{
a3da1d95
GE
1319 unsigned short usb_val;
1320
c3d95b87
TJ
1321 if (latency < 1)
1322 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 1323
d79d2e68 1324 usb_val = latency;
c3d95b87
TJ
1325 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x09, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1326 ftdi_error_return(-2, "unable to set latency timer");
1327
a3da1d95
GE
1328 return 0;
1329}
1330
1941414d
TJ
1331/**
1332 Get latency timer
a3da1d95 1333
1941414d
TJ
1334 \param ftdi pointer to ftdi_context
1335 \param latency Pointer to store latency value in
1336
1337 \retval 0: all fine
1338 \retval -1: unable to get latency timer
1339*/
a8f46ddc
TJ
1340int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1341{
a3da1d95 1342 unsigned short usb_val;
c3d95b87
TJ
1343 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0A, 0, ftdi->index, (char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1344 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
1345
1346 *latency = (unsigned char)usb_val;
1347 return 0;
1348}
1349
1941414d 1350/**
1189b11a
TJ
1351 Poll modem status information
1352
1353 This function allows the retrieve the two status bytes of the device.
1354 The device sends these bytes also as a header for each read access
1355 where they are discarded by ftdi_read_data(). The chip generates
1356 the two stripped status bytes in the absence of data every 40 ms.
1357
1358 Layout of the first byte:
1359 - B0..B3 - must be 0
1360 - B4 Clear to send (CTS)
1361 0 = inactive
1362 1 = active
1363 - B5 Data set ready (DTS)
1364 0 = inactive
1365 1 = active
1366 - B6 Ring indicator (RI)
1367 0 = inactive
1368 1 = active
1369 - B7 Receive line signal detect (RLSD)
1370 0 = inactive
1371 1 = active
1372
1373 Layout of the second byte:
1374 - B0 Data ready (DR)
1375 - B1 Overrun error (OE)
1376 - B2 Parity error (PE)
1377 - B3 Framing error (FE)
1378 - B4 Break interrupt (BI)
1379 - B5 Transmitter holding register (THRE)
1380 - B6 Transmitter empty (TEMT)
1381 - B7 Error in RCVR FIFO
1382
1383 \param ftdi pointer to ftdi_context
1384 \param status Pointer to store status information in. Must be two bytes.
1385
1386 \retval 0: all fine
1387 \retval -1: unable to retrieve status information
1388*/
1389int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1390{
1391 char usb_val[2];
1392
1393 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x05, 0, ftdi->index, usb_val, 2, ftdi->usb_read_timeout) != 2)
1394 ftdi_error_return(-1, "getting modem status failed");
1395
1396 *status = (usb_val[1] << 8) | usb_val[0];
1397
1398 return 0;
1399}
1400
a7fb8440
TJ
1401
1402/*
1403 Flow control code by Lorenz Moesenlechner (lorenz@hcilab.org)
1404 and Matthias Kranz (matthias@hcilab.org)
1405*/
1406/**
1407 Set flowcontrol for ftdi chip
1408
1409 \param ftdi pointer to ftdi_context
1410 \param flowctrl flow control to use. should be
1411 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
1412
1413 \retval 0: all fine
1414 \retval -1: set flow control failed
1415*/
1416int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1417{
1418 if (usb_control_msg(ftdi->usb_dev, SIO_SET_FLOW_CTRL_REQUEST_TYPE,
1419 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->interface),
1420 NULL, 0, ftdi->usb_write_timeout) != 0)
1421 ftdi_error_return(-1, "set flow control failed");
1422
1423 return 0;
1424}
1425
1426/**
1427 Set dtr line
1428
1429 \param ftdi pointer to ftdi_context
1430 \param state state to set line to (1 or 0)
1431
1432 \retval 0: all fine
1433 \retval -1: set dtr failed
1434*/
1435int ftdi_setdtr(struct ftdi_context *ftdi, int state)
1436{
1437 unsigned short usb_val;
1438
1439 if (state)
1440 usb_val = SIO_SET_DTR_HIGH;
1441 else
1442 usb_val = SIO_SET_DTR_LOW;
1443
1444 if (usb_control_msg(ftdi->usb_dev, SIO_SET_MODEM_CTRL_REQUEST_TYPE,
1445 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->interface,
1446 NULL, 0, ftdi->usb_write_timeout) != 0)
1447 ftdi_error_return(-1, "set dtr failed");
1448
1449 return 0;
1450}
1451
1452/**
1453 Set rts line
1454
1455 \param ftdi pointer to ftdi_context
1456 \param state state to set line to (1 or 0)
1457
1458 \retval 0: all fine
1459 \retval -1 set rts failed
1460*/
1461int ftdi_setrts(struct ftdi_context *ftdi, int state)
1462{
1463 unsigned short usb_val;
1464
1465 if (state)
1466 usb_val = SIO_SET_RTS_HIGH;
1467 else
1468 usb_val = SIO_SET_RTS_LOW;
1469
1470 if (usb_control_msg(ftdi->usb_dev, SIO_SET_MODEM_CTRL_REQUEST_TYPE,
1471 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->interface,
1472 NULL, 0, ftdi->usb_write_timeout) != 0)
1473 ftdi_error_return(-1, "set of rts failed");
1474
1475 return 0;
1476}
1477
1189b11a
TJ
1478/**
1479 Set the special event character
1480
1481 \param ftdi pointer to ftdi_context
1482 \param eventch Event character
1483 \param enable 0 to disable the event character, non-zero otherwise
1484
1485 \retval 0: all fine
1486 \retval -1: unable to set event character
1487*/
1488int ftdi_set_event_char(struct ftdi_context *ftdi,
1489 unsigned char eventch, unsigned char enable)
1490{
1491 unsigned short usb_val;
1492
1493 usb_val = eventch;
1494 if (enable)
1495 usb_val |= 1 << 8;
1496
1497 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x06, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1498 ftdi_error_return(-1, "setting event character failed");
1499
1500 return 0;
1501}
1502
1503/**
1504 Set error character
1505
1506 \param ftdi pointer to ftdi_context
1507 \param errorch Error character
1508 \param enable 0 to disable the error character, non-zero otherwise
1509
1510 \retval 0: all fine
1511 \retval -1: unable to set error character
1512*/
1513int ftdi_set_error_char(struct ftdi_context *ftdi,
1514 unsigned char errorch, unsigned char enable)
1515{
1516 unsigned short usb_val;
1517
1518 usb_val = errorch;
1519 if (enable)
1520 usb_val |= 1 << 8;
1521
1522 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x07, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1523 ftdi_error_return(-1, "setting error character failed");
1524
1525 return 0;
1526}
1527
1528/**
c201f80f
TJ
1529 Set the eeprom size
1530
1531 \param ftdi pointer to ftdi_context
1532 \param eeprom Pointer to ftdi_eeprom
1533 \param size
1534
1535*/
1536void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
1537{
1538 ftdi->eeprom_size=size;
1539 eeprom->size=size;
1540}
1541
1542/**
1941414d 1543 Init eeprom with default values.
a3da1d95 1544
1941414d
TJ
1545 \param eeprom Pointer to ftdi_eeprom
1546*/
a8f46ddc
TJ
1547void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
1548{
f396dbad
TJ
1549 eeprom->vendor_id = 0x0403;
1550 eeprom->product_id = 0x6001;
d9f0cce7 1551
b8aa7b35
TJ
1552 eeprom->self_powered = 1;
1553 eeprom->remote_wakeup = 1;
1554 eeprom->BM_type_chip = 1;
d9f0cce7 1555
b8aa7b35
TJ
1556 eeprom->in_is_isochronous = 0;
1557 eeprom->out_is_isochronous = 0;
1558 eeprom->suspend_pull_downs = 0;
d9f0cce7 1559
b8aa7b35
TJ
1560 eeprom->use_serial = 0;
1561 eeprom->change_usb_version = 0;
f396dbad 1562 eeprom->usb_version = 0x0200;
b8aa7b35 1563 eeprom->max_power = 0;
d9f0cce7 1564
b8aa7b35
TJ
1565 eeprom->manufacturer = NULL;
1566 eeprom->product = NULL;
1567 eeprom->serial = NULL;
c201f80f
TJ
1568
1569 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
b8aa7b35
TJ
1570}
1571
1941414d
TJ
1572/**
1573 Build binary output from ftdi_eeprom structure.
1574 Output is suitable for ftdi_write_eeprom().
b8aa7b35 1575
1941414d
TJ
1576 \param eeprom Pointer to ftdi_eeprom
1577 \param output Buffer of 128 bytes to store eeprom image to
1578
1579 \retval >0: used eeprom size
1580 \retval -1: eeprom size (128 bytes) exceeded by custom strings
b8aa7b35 1581*/
a8f46ddc
TJ
1582int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
1583{
b8aa7b35
TJ
1584 unsigned char i, j;
1585 unsigned short checksum, value;
1586 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
1587 int size_check;
1588
1589 if (eeprom->manufacturer != NULL)
d9f0cce7 1590 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 1591 if (eeprom->product != NULL)
d9f0cce7 1592 product_size = strlen(eeprom->product);
b8aa7b35 1593 if (eeprom->serial != NULL)
d9f0cce7 1594 serial_size = strlen(eeprom->serial);
b8aa7b35 1595
c201f80f 1596 size_check = eeprom->size;
d9f0cce7 1597 size_check -= 28; // 28 are always in use (fixed)
c201f80f
TJ
1598
1599 // Top half of a 256byte eeprom is used just for strings and checksum
1600 // it seems that the FTDI chip will not read these strings from the lower half
1601 // Each string starts with two bytes; offset and type (0x03 for string)
1602 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
1603 if(eeprom->size>=256)size_check = 120;
b8aa7b35
TJ
1604 size_check -= manufacturer_size*2;
1605 size_check -= product_size*2;
1606 size_check -= serial_size*2;
1607
1608 // eeprom size exceeded?
1609 if (size_check < 0)
d9f0cce7 1610 return (-1);
b8aa7b35
TJ
1611
1612 // empty eeprom
c201f80f 1613 memset (output, 0, eeprom->size);
b8aa7b35
TJ
1614
1615 // Addr 00: Stay 00 00
1616 // Addr 02: Vendor ID
1617 output[0x02] = eeprom->vendor_id;
1618 output[0x03] = eeprom->vendor_id >> 8;
1619
1620 // Addr 04: Product ID
1621 output[0x04] = eeprom->product_id;
1622 output[0x05] = eeprom->product_id >> 8;
1623
1624 // Addr 06: Device release number (0400h for BM features)
1625 output[0x06] = 0x00;
d9f0cce7 1626
b8aa7b35 1627 if (eeprom->BM_type_chip == 1)
d9f0cce7 1628 output[0x07] = 0x04;
b8aa7b35 1629 else
d9f0cce7 1630 output[0x07] = 0x02;
b8aa7b35
TJ
1631
1632 // Addr 08: Config descriptor
8fae3e8e
TJ
1633 // Bit 7: always 1
1634 // Bit 6: 1 if this device is self powered, 0 if bus powered
1635 // Bit 5: 1 if this device uses remote wakeup
1636 // Bit 4: 1 if this device is battery powered
5a1dcd55 1637 j = 0x80;
b8aa7b35 1638 if (eeprom->self_powered == 1)
5a1dcd55 1639 j |= 0x40;
b8aa7b35 1640 if (eeprom->remote_wakeup == 1)
5a1dcd55 1641 j |= 0x20;
b8aa7b35
TJ
1642 output[0x08] = j;
1643
1644 // Addr 09: Max power consumption: max power = value * 2 mA
d9f0cce7 1645 output[0x09] = eeprom->max_power;
d9f0cce7 1646
b8aa7b35
TJ
1647 // Addr 0A: Chip configuration
1648 // Bit 7: 0 - reserved
1649 // Bit 6: 0 - reserved
1650 // Bit 5: 0 - reserved
1651 // Bit 4: 1 - Change USB version
1652 // Bit 3: 1 - Use the serial number string
1653 // Bit 2: 1 - Enable suspend pull downs for lower power
1654 // Bit 1: 1 - Out EndPoint is Isochronous
1655 // Bit 0: 1 - In EndPoint is Isochronous
1656 //
1657 j = 0;
1658 if (eeprom->in_is_isochronous == 1)
d9f0cce7 1659 j = j | 1;
b8aa7b35 1660 if (eeprom->out_is_isochronous == 1)
d9f0cce7 1661 j = j | 2;
b8aa7b35 1662 if (eeprom->suspend_pull_downs == 1)
d9f0cce7 1663 j = j | 4;
b8aa7b35 1664 if (eeprom->use_serial == 1)
d9f0cce7 1665 j = j | 8;
b8aa7b35 1666 if (eeprom->change_usb_version == 1)
d9f0cce7 1667 j = j | 16;
b8aa7b35 1668 output[0x0A] = j;
d9f0cce7 1669
b8aa7b35
TJ
1670 // Addr 0B: reserved
1671 output[0x0B] = 0x00;
d9f0cce7 1672
b8aa7b35
TJ
1673 // Addr 0C: USB version low byte when 0x0A bit 4 is set
1674 // Addr 0D: USB version high byte when 0x0A bit 4 is set
1675 if (eeprom->change_usb_version == 1) {
1676 output[0x0C] = eeprom->usb_version;
d9f0cce7 1677 output[0x0D] = eeprom->usb_version >> 8;
b8aa7b35
TJ
1678 }
1679
1680
c201f80f 1681 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
b8aa7b35
TJ
1682 // Addr 0F: Length of manufacturer string
1683 output[0x0F] = manufacturer_size*2 + 2;
1684
1685 // Addr 10: Offset of the product string + 0x80, calculated later
1686 // Addr 11: Length of product string
1687 output[0x11] = product_size*2 + 2;
1688
1689 // Addr 12: Offset of the serial string + 0x80, calculated later
1690 // Addr 13: Length of serial string
1691 output[0x13] = serial_size*2 + 2;
1692
1693 // Dynamic content
c201f80f
TJ
1694 i=0x14;
1695 if(eeprom->size>=256) i = 0x80;
f01d7ca6 1696
c201f80f
TJ
1697
1698 // Output manufacturer
1699 output[0x0E] = i | 0x80; // calculate offset
1700 output[i++] = manufacturer_size*2 + 2;
1701 output[i++] = 0x03; // type: string
b8aa7b35 1702 for (j = 0; j < manufacturer_size; j++) {
d9f0cce7
TJ
1703 output[i] = eeprom->manufacturer[j], i++;
1704 output[i] = 0x00, i++;
b8aa7b35
TJ
1705 }
1706
1707 // Output product name
c201f80f 1708 output[0x10] = i | 0x80; // calculate offset
b8aa7b35
TJ
1709 output[i] = product_size*2 + 2, i++;
1710 output[i] = 0x03, i++;
1711 for (j = 0; j < product_size; j++) {
d9f0cce7
TJ
1712 output[i] = eeprom->product[j], i++;
1713 output[i] = 0x00, i++;
b8aa7b35 1714 }
d9f0cce7 1715
b8aa7b35 1716 // Output serial
c201f80f 1717 output[0x12] = i | 0x80; // calculate offset
b8aa7b35
TJ
1718 output[i] = serial_size*2 + 2, i++;
1719 output[i] = 0x03, i++;
1720 for (j = 0; j < serial_size; j++) {
d9f0cce7
TJ
1721 output[i] = eeprom->serial[j], i++;
1722 output[i] = 0x00, i++;
b8aa7b35
TJ
1723 }
1724
1725 // calculate checksum
1726 checksum = 0xAAAA;
d9f0cce7 1727
c201f80f 1728 for (i = 0; i < eeprom->size/2-1; i++) {
d9f0cce7
TJ
1729 value = output[i*2];
1730 value += output[(i*2)+1] << 8;
b8aa7b35 1731
d9f0cce7
TJ
1732 checksum = value^checksum;
1733 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
1734 }
1735
c201f80f
TJ
1736 output[eeprom->size-2] = checksum;
1737 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 1738
8ed61121 1739 return size_check;
b8aa7b35
TJ
1740}
1741
1941414d
TJ
1742/**
1743 Read eeprom
1744
1745 \param ftdi pointer to ftdi_context
1746 \param eeprom Pointer to store eeprom into
b8aa7b35 1747
1941414d
TJ
1748 \retval 0: all fine
1749 \retval -1: read failed
1750*/
a8f46ddc
TJ
1751int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
1752{
a3da1d95
GE
1753 int i;
1754
c201f80f 1755 for (i = 0; i < ftdi->eeprom_size/2; i++) {
c3d95b87
TJ
1756 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
1757 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
1758 }
1759
1760 return 0;
1761}
1762
cb6250fa
TJ
1763/*
1764 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
1765 Function is only used internally
1766 \internal
1767*/
1768static unsigned char ftdi_read_chipid_shift(unsigned char value)
1769{
1770 return ((value & 1) << 1) |
1771 ((value & 2) << 5) |
1772 ((value & 4) >> 2) |
1773 ((value & 8) << 4) |
1774 ((value & 16) >> 1) |
1775 ((value & 32) >> 1) |
1776 ((value & 64) >> 4) |
1777 ((value & 128) >> 2);
1778}
1779
1780/**
1781 Read the FTDIChip-ID from R-type devices
1782
1783 \param ftdi pointer to ftdi_context
1784 \param chipid Pointer to store FTDIChip-ID
1785
1786 \retval 0: all fine
1787 \retval -1: read failed
1788*/
1789int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
1790{
c7eb3112 1791 unsigned int a = 0, b = 0;
cb6250fa
TJ
1792
1793 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, 0x43, (char *)&a, 2, ftdi->usb_read_timeout) == 2)
1794 {
1795 a = a << 8 | a >> 8;
1796 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, 0x44, (char *)&b, 2, ftdi->usb_read_timeout) == 2)
1797 {
1798 b = b << 8 | b >> 8;
1799 a = (a << 16) | b;
912d50ca
TJ
1800 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
1801 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 1802 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 1803 return 0;
cb6250fa
TJ
1804 }
1805 }
1806
c7eb3112 1807 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
1808}
1809
1941414d 1810/**
c201f80f
TJ
1811 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
1812 Call this function then do a write then call again to see if size changes, if so write again.
1813
1814 \param ftdi pointer to ftdi_context
1815 \param eeprom Pointer to store eeprom into
1816 \param maxsize the size of the buffer to read into
1817
1818 \retval size of eeprom
1819*/
1820int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
1821{
1822 int i=0,j,minsize=32;
1823 int size=minsize;
1824
1825 do{
1826 for (j = 0; i < maxsize/2 && j<size; j++) {
1827 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
1828 ftdi_error_return(-1, "reading eeprom failed");
1829 i++;
1830 }
1831 size*=2;
1832 }while(size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
1833
1834 return size/2;
1835}
1836
1837/**
1941414d 1838 Write eeprom
a3da1d95 1839
1941414d
TJ
1840 \param ftdi pointer to ftdi_context
1841 \param eeprom Pointer to read eeprom from
1842
1843 \retval 0: all fine
1844 \retval -1: read failed
1845*/
a8f46ddc
TJ
1846int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
1847{
a3da1d95
GE
1848 unsigned short usb_val;
1849 int i;
1850
c201f80f 1851 for (i = 0; i < ftdi->eeprom_size/2; i++) {
d9f0cce7
TJ
1852 usb_val = eeprom[i*2];
1853 usb_val += eeprom[(i*2)+1] << 8;
c3d95b87
TJ
1854 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x91, usb_val, i, NULL, 0, ftdi->usb_write_timeout) != 0)
1855 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
1856 }
1857
1858 return 0;
1859}
1860
1941414d
TJ
1861/**
1862 Erase eeprom
a3da1d95 1863
1941414d
TJ
1864 \param ftdi pointer to ftdi_context
1865
1866 \retval 0: all fine
1867 \retval -1: erase failed
1868*/
a8f46ddc
TJ
1869int ftdi_erase_eeprom(struct ftdi_context *ftdi)
1870{
c3d95b87
TJ
1871 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x92, 0, 0, NULL, 0, ftdi->usb_write_timeout) != 0)
1872 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
1873
1874 return 0;
1875}
c3d95b87 1876
1941414d
TJ
1877/**
1878 Get string representation for last error code
c3d95b87 1879
1941414d
TJ
1880 \param ftdi pointer to ftdi_context
1881
1882 \retval Pointer to error string
1883*/
c3d95b87
TJ
1884char *ftdi_get_error_string (struct ftdi_context *ftdi)
1885{
1886 return ftdi->error_str;
1887}
a01d31e2 1888
b5ec1820 1889/* @} end of doxygen libftdi group */