Add 'Anders Larsen' to AUTHORS
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
8a987aa2 5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
1bfc403c 21 http://www.intra2net.com/en/developer/libftdi/
b5ec1820 22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
579b006f 31#include <libusb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
b56d5a64 34#include <stdio.h>
579b006f 35#include <stdlib.h>
0e302db6 36
b790d38e 37#include "ftdi_i.h"
98452d97 38#include "ftdi.h"
0220adfa 39#include "ftdi_version_i.h"
a3da1d95 40
21abaf2e 41#define ftdi_error_return(code, str) do { \
2f73e59f 42 ftdi->error_str = str; \
21abaf2e 43 return code; \
d2f10023 44 } while(0);
c3d95b87 45
99650502
UB
46#define ftdi_error_return_free_device_list(code, str, devs) do { \
47 libusb_free_device_list(devs,1); \
48 ftdi->error_str = str; \
49 return code; \
50 } while(0);
51
418aaa72 52
f3f81007
TJ
53/**
54 Internal function to close usb device pointer.
55 Sets ftdi->usb_dev to NULL.
56 \internal
57
58 \param ftdi pointer to ftdi_context
59
579b006f 60 \retval none
f3f81007 61*/
579b006f 62static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 63{
22a1b5c1 64 if (ftdi && ftdi->usb_dev)
dff4fdb0 65 {
56ac0383
TJ
66 libusb_close (ftdi->usb_dev);
67 ftdi->usb_dev = NULL;
44f41f11
UB
68 if(ftdi->eeprom)
69 ftdi->eeprom->initialized_for_connected_device = 0;
dff4fdb0 70 }
dff4fdb0 71}
c3d95b87 72
1941414d
TJ
73/**
74 Initializes a ftdi_context.
4837f98a 75
1941414d 76 \param ftdi pointer to ftdi_context
4837f98a 77
1941414d
TJ
78 \retval 0: all fine
79 \retval -1: couldn't allocate read buffer
a35aa9bd 80 \retval -2: couldn't allocate struct buffer
3a284749 81 \retval -3: libusb_init() failed
1941414d
TJ
82
83 \remark This should be called before all functions
948f9ada 84*/
a8f46ddc
TJ
85int ftdi_init(struct ftdi_context *ftdi)
86{
a35aa9bd 87 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
02212d8e 88 ftdi->usb_ctx = NULL;
98452d97 89 ftdi->usb_dev = NULL;
545820ce
TJ
90 ftdi->usb_read_timeout = 5000;
91 ftdi->usb_write_timeout = 5000;
a3da1d95 92
53ad271d 93 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 94 ftdi->baudrate = -1;
418aaa72 95 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 96
948f9ada
TJ
97 ftdi->readbuffer = NULL;
98 ftdi->readbuffer_offset = 0;
99 ftdi->readbuffer_remaining = 0;
100 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 101 ftdi->max_packet_size = 0;
3a284749
TJ
102 ftdi->error_str = NULL;
103 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
104
105 if (libusb_init(&ftdi->usb_ctx) < 0)
106 ftdi_error_return(-3, "libusb_init() failed");
948f9ada 107
ac0af8ec 108 ftdi_set_interface(ftdi, INTERFACE_ANY);
418aaa72 109 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 110
a35aa9bd
UB
111 if (eeprom == 0)
112 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
b4d19dea 113 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
a35aa9bd 114 ftdi->eeprom = eeprom;
c201f80f 115
1c733d33
TJ
116 /* All fine. Now allocate the readbuffer */
117 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 118}
4837f98a 119
1941414d 120/**
cef378aa
TJ
121 Allocate and initialize a new ftdi_context
122
123 \return a pointer to a new ftdi_context, or NULL on failure
124*/
672ac008 125struct ftdi_context *ftdi_new(void)
cef378aa
TJ
126{
127 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
128
22d12cda
TJ
129 if (ftdi == NULL)
130 {
cef378aa
TJ
131 return NULL;
132 }
133
22d12cda
TJ
134 if (ftdi_init(ftdi) != 0)
135 {
cef378aa 136 free(ftdi);
cdf448f6 137 return NULL;
cef378aa
TJ
138 }
139
140 return ftdi;
141}
142
143/**
1941414d
TJ
144 Open selected channels on a chip, otherwise use first channel.
145
146 \param ftdi pointer to ftdi_context
f9d69895 147 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
148
149 \retval 0: all fine
150 \retval -1: unknown interface
22a1b5c1 151 \retval -2: USB device unavailable
1c5fa36b 152 \retval -3: Device already open, interface can't be set in that state
c4446c36 153*/
0ce2f5fa 154int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 155{
1971c26d 156 if (ftdi == NULL)
22a1b5c1
TJ
157 ftdi_error_return(-2, "USB device unavailable");
158
1c5fa36b
TJ
159 if (ftdi->usb_dev != NULL)
160 {
161 int check_interface = interface;
162 if (check_interface == INTERFACE_ANY)
163 check_interface = INTERFACE_A;
164
165 if (ftdi->index != check_interface)
166 ftdi_error_return(-3, "Interface can not be changed on an already open device");
167 }
168
22d12cda
TJ
169 switch (interface)
170 {
171 case INTERFACE_ANY:
172 case INTERFACE_A:
ac0af8ec
VY
173 ftdi->interface = 0;
174 ftdi->index = INTERFACE_A;
175 ftdi->in_ep = 0x02;
176 ftdi->out_ep = 0x81;
22d12cda
TJ
177 break;
178 case INTERFACE_B:
179 ftdi->interface = 1;
180 ftdi->index = INTERFACE_B;
181 ftdi->in_ep = 0x04;
182 ftdi->out_ep = 0x83;
183 break;
f9d69895
AH
184 case INTERFACE_C:
185 ftdi->interface = 2;
186 ftdi->index = INTERFACE_C;
187 ftdi->in_ep = 0x06;
188 ftdi->out_ep = 0x85;
189 break;
190 case INTERFACE_D:
191 ftdi->interface = 3;
192 ftdi->index = INTERFACE_D;
193 ftdi->in_ep = 0x08;
194 ftdi->out_ep = 0x87;
195 break;
22d12cda
TJ
196 default:
197 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
198 }
199 return 0;
200}
948f9ada 201
1941414d
TJ
202/**
203 Deinitializes a ftdi_context.
4837f98a 204
1941414d 205 \param ftdi pointer to ftdi_context
4837f98a 206*/
a8f46ddc
TJ
207void ftdi_deinit(struct ftdi_context *ftdi)
208{
22a1b5c1
TJ
209 if (ftdi == NULL)
210 return;
211
f3f81007 212 ftdi_usb_close_internal (ftdi);
dff4fdb0 213
22d12cda
TJ
214 if (ftdi->readbuffer != NULL)
215 {
d9f0cce7
TJ
216 free(ftdi->readbuffer);
217 ftdi->readbuffer = NULL;
948f9ada 218 }
a35aa9bd
UB
219
220 if (ftdi->eeprom != NULL)
221 {
74e8e79d
UB
222 if (ftdi->eeprom->manufacturer != 0)
223 {
224 free(ftdi->eeprom->manufacturer);
225 ftdi->eeprom->manufacturer = 0;
226 }
227 if (ftdi->eeprom->product != 0)
228 {
229 free(ftdi->eeprom->product);
230 ftdi->eeprom->product = 0;
231 }
232 if (ftdi->eeprom->serial != 0)
233 {
234 free(ftdi->eeprom->serial);
235 ftdi->eeprom->serial = 0;
236 }
a35aa9bd
UB
237 free(ftdi->eeprom);
238 ftdi->eeprom = NULL;
239 }
3a284749
TJ
240
241 if (ftdi->usb_ctx)
242 {
243 libusb_exit(ftdi->usb_ctx);
244 ftdi->usb_ctx = NULL;
245 }
a3da1d95
GE
246}
247
1941414d 248/**
cef378aa
TJ
249 Deinitialize and free an ftdi_context.
250
251 \param ftdi pointer to ftdi_context
252*/
253void ftdi_free(struct ftdi_context *ftdi)
254{
255 ftdi_deinit(ftdi);
256 free(ftdi);
257}
258
259/**
1941414d
TJ
260 Use an already open libusb device.
261
262 \param ftdi pointer to ftdi_context
579b006f 263 \param usb libusb libusb_device_handle to use
4837f98a 264*/
579b006f 265void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 266{
22a1b5c1
TJ
267 if (ftdi == NULL)
268 return;
269
98452d97
TJ
270 ftdi->usb_dev = usb;
271}
272
0220adfa
TJ
273/**
274 * @brief Get libftdi library version
275 *
276 * @return ftdi_version_info Library version information
277 **/
278struct ftdi_version_info ftdi_get_library_version()
279{
280 struct ftdi_version_info ver;
281
282 ver.major = FTDI_MAJOR_VERSION;
283 ver.minor = FTDI_MINOR_VERSION;
284 ver.micro = FTDI_MICRO_VERSION;
285 ver.version_str = FTDI_VERSION_STRING;
286 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
287
288 return ver;
289}
98452d97 290
1941414d 291/**
7879216a
UB
292 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
293 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
294 use. With VID:PID 0:0, search for the default devices
295 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014)
1941414d
TJ
296
297 \param ftdi pointer to ftdi_context
298 \param devlist Pointer where to store list of found devices
299 \param vendor Vendor ID to search for
300 \param product Product ID to search for
edb82cbf 301
1941414d 302 \retval >0: number of devices found
1941414d 303 \retval -3: out of memory
579b006f
JZ
304 \retval -5: libusb_get_device_list() failed
305 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 306*/
d2f10023 307int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
308{
309 struct ftdi_device_list **curdev;
579b006f
JZ
310 libusb_device *dev;
311 libusb_device **devs;
edb82cbf 312 int count = 0;
579b006f
JZ
313 int i = 0;
314
02212d8e 315 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 316 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
317
318 curdev = devlist;
6db32169 319 *curdev = NULL;
579b006f
JZ
320
321 while ((dev = devs[i++]) != NULL)
22d12cda 322 {
579b006f 323 struct libusb_device_descriptor desc;
d2f10023 324
579b006f 325 if (libusb_get_device_descriptor(dev, &desc) < 0)
77377af7 326 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
edb82cbf 327
56631bed
UB
328 if (((vendor != 0 && product != 0) &&
329 desc.idVendor == vendor && desc.idProduct == product) ||
330 ((vendor == 0 && product == 0) &&
331 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
7879216a 332 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014)))
579b006f
JZ
333 {
334 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
335 if (!*curdev)
77377af7 336 ftdi_error_return_free_device_list(-3, "out of memory", devs);
56ac0383 337
579b006f
JZ
338 (*curdev)->next = NULL;
339 (*curdev)->dev = dev;
0c33162c 340 libusb_ref_device(dev);
579b006f
JZ
341 curdev = &(*curdev)->next;
342 count++;
edb82cbf
TJ
343 }
344 }
77377af7 345 libusb_free_device_list(devs,1);
edb82cbf
TJ
346 return count;
347}
348
1941414d
TJ
349/**
350 Frees a usb device list.
edb82cbf 351
1941414d 352 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 353*/
d2f10023 354void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 355{
6db32169
TJ
356 struct ftdi_device_list *curdev, *next;
357
22d12cda
TJ
358 for (curdev = *devlist; curdev != NULL;)
359 {
6db32169 360 next = curdev->next;
0c33162c 361 libusb_unref_device(curdev->dev);
6db32169
TJ
362 free(curdev);
363 curdev = next;
edb82cbf
TJ
364 }
365
6db32169 366 *devlist = NULL;
edb82cbf
TJ
367}
368
1941414d 369/**
cef378aa
TJ
370 Frees a usb device list.
371
372 \param devlist USB device list created by ftdi_usb_find_all()
373*/
374void ftdi_list_free2(struct ftdi_device_list *devlist)
375{
376 ftdi_list_free(&devlist);
377}
378
379/**
474786c0
TJ
380 Return device ID strings from the usb device.
381
382 The parameters manufacturer, description and serial may be NULL
383 or pointer to buffers to store the fetched strings.
384
898c34dd
TJ
385 \note Use this function only in combination with ftdi_usb_find_all()
386 as it closes the internal "usb_dev" after use.
387
474786c0
TJ
388 \param ftdi pointer to ftdi_context
389 \param dev libusb usb_dev to use
390 \param manufacturer Store manufacturer string here if not NULL
391 \param mnf_len Buffer size of manufacturer string
392 \param description Store product description string here if not NULL
393 \param desc_len Buffer size of product description string
394 \param serial Store serial string here if not NULL
395 \param serial_len Buffer size of serial string
396
397 \retval 0: all fine
398 \retval -1: wrong arguments
399 \retval -4: unable to open device
400 \retval -7: get product manufacturer failed
401 \retval -8: get product description failed
402 \retval -9: get serial number failed
579b006f 403 \retval -11: libusb_get_device_descriptor() failed
474786c0 404*/
579b006f 405int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
22d12cda 406 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
474786c0 407{
579b006f
JZ
408 struct libusb_device_descriptor desc;
409
474786c0
TJ
410 if ((ftdi==NULL) || (dev==NULL))
411 return -1;
412
579b006f
JZ
413 if (libusb_open(dev, &ftdi->usb_dev) < 0)
414 ftdi_error_return(-4, "libusb_open() failed");
415
416 if (libusb_get_device_descriptor(dev, &desc) < 0)
417 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 418
22d12cda
TJ
419 if (manufacturer != NULL)
420 {
579b006f 421 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 422 {
f3f81007 423 ftdi_usb_close_internal (ftdi);
579b006f 424 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
425 }
426 }
427
22d12cda
TJ
428 if (description != NULL)
429 {
579b006f 430 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 431 {
f3f81007 432 ftdi_usb_close_internal (ftdi);
579b006f 433 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
434 }
435 }
436
22d12cda
TJ
437 if (serial != NULL)
438 {
579b006f 439 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 440 {
f3f81007 441 ftdi_usb_close_internal (ftdi);
579b006f 442 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
443 }
444 }
445
579b006f 446 ftdi_usb_close_internal (ftdi);
474786c0
TJ
447
448 return 0;
449}
450
451/**
e2f12a4f
TJ
452 * Internal function to determine the maximum packet size.
453 * \param ftdi pointer to ftdi_context
454 * \param dev libusb usb_dev to use
455 * \retval Maximum packet size for this device
456 */
579b006f 457static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 458{
579b006f
JZ
459 struct libusb_device_descriptor desc;
460 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
461 unsigned int packet_size;
462
22a1b5c1
TJ
463 // Sanity check
464 if (ftdi == NULL || dev == NULL)
465 return 64;
466
e2f12a4f
TJ
467 // Determine maximum packet size. Init with default value.
468 // New hi-speed devices from FTDI use a packet size of 512 bytes
469 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
c7e4c09e 470 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
e2f12a4f
TJ
471 packet_size = 512;
472 else
473 packet_size = 64;
474
579b006f
JZ
475 if (libusb_get_device_descriptor(dev, &desc) < 0)
476 return packet_size;
477
478 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
479 return packet_size;
e2f12a4f 480
579b006f
JZ
481 if (desc.bNumConfigurations > 0)
482 {
483 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 484 {
579b006f 485 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
486 if (interface.num_altsetting > 0)
487 {
579b006f 488 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
489 if (descriptor.bNumEndpoints > 0)
490 {
491 packet_size = descriptor.endpoint[0].wMaxPacketSize;
492 }
493 }
494 }
495 }
496
579b006f 497 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
498 return packet_size;
499}
500
501/**
418aaa72 502 Opens a ftdi device given by an usb_device.
7b18bef6 503
1941414d
TJ
504 \param ftdi pointer to ftdi_context
505 \param dev libusb usb_dev to use
506
507 \retval 0: all fine
23b1798d 508 \retval -3: unable to config device
1941414d
TJ
509 \retval -4: unable to open device
510 \retval -5: unable to claim device
511 \retval -6: reset failed
512 \retval -7: set baudrate failed
22a1b5c1 513 \retval -8: ftdi context invalid
579b006f
JZ
514 \retval -9: libusb_get_device_descriptor() failed
515 \retval -10: libusb_get_config_descriptor() failed
e375e6cb 516 \retval -11: libusb_detach_kernel_driver() failed
579b006f 517 \retval -12: libusb_get_configuration() failed
7b18bef6 518*/
579b006f 519int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 520{
579b006f
JZ
521 struct libusb_device_descriptor desc;
522 struct libusb_config_descriptor *config0;
43aee24f 523 int cfg, cfg0, detach_errno = 0;
579b006f 524
22a1b5c1
TJ
525 if (ftdi == NULL)
526 ftdi_error_return(-8, "ftdi context invalid");
527
579b006f
JZ
528 if (libusb_open(dev, &ftdi->usb_dev) < 0)
529 ftdi_error_return(-4, "libusb_open() failed");
530
531 if (libusb_get_device_descriptor(dev, &desc) < 0)
532 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
533
534 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
535 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
536 cfg0 = config0->bConfigurationValue;
537 libusb_free_config_descriptor (config0);
d2f10023 538
22592e17 539 // Try to detach ftdi_sio kernel module.
22592e17
TJ
540 //
541 // The return code is kept in a separate variable and only parsed
542 // if usb_set_configuration() or usb_claim_interface() fails as the
543 // detach operation might be denied and everything still works fine.
544 // Likely scenario is a static ftdi_sio kernel module.
a3d86bdb
TJ
545 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
546 {
547 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
548 detach_errno = errno;
549 }
d2f10023 550
579b006f
JZ
551 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
552 ftdi_error_return(-12, "libusb_get_configuration () failed");
b57aedfd
GE
553 // set configuration (needed especially for windows)
554 // tolerate EBUSY: one device with one configuration, but two interfaces
555 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 556 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 557 {
579b006f 558 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 559 {
a56ba2bd 560 ftdi_usb_close_internal (ftdi);
56ac0383 561 if (detach_errno == EPERM)
43aee24f
UB
562 {
563 ftdi_error_return(-8, "inappropriate permissions on device!");
564 }
565 else
566 {
c16b162d 567 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
43aee24f 568 }
23b1798d
TJ
569 }
570 }
571
579b006f 572 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 573 {
f3f81007 574 ftdi_usb_close_internal (ftdi);
56ac0383 575 if (detach_errno == EPERM)
43aee24f
UB
576 {
577 ftdi_error_return(-8, "inappropriate permissions on device!");
578 }
579 else
580 {
c16b162d 581 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
43aee24f 582 }
7b18bef6
TJ
583 }
584
22d12cda
TJ
585 if (ftdi_usb_reset (ftdi) != 0)
586 {
f3f81007 587 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
588 ftdi_error_return(-6, "ftdi_usb_reset failed");
589 }
590
7b18bef6
TJ
591 // Try to guess chip type
592 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f 593 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
56ac0383 594 && desc.iSerialNumber == 0))
7b18bef6 595 ftdi->type = TYPE_BM;
579b006f 596 else if (desc.bcdDevice == 0x200)
7b18bef6 597 ftdi->type = TYPE_AM;
579b006f 598 else if (desc.bcdDevice == 0x500)
7b18bef6 599 ftdi->type = TYPE_2232C;
579b006f 600 else if (desc.bcdDevice == 0x600)
cb6250fa 601 ftdi->type = TYPE_R;
579b006f 602 else if (desc.bcdDevice == 0x700)
0beb9686 603 ftdi->type = TYPE_2232H;
579b006f 604 else if (desc.bcdDevice == 0x800)
0beb9686 605 ftdi->type = TYPE_4232H;
c7e4c09e
UB
606 else if (desc.bcdDevice == 0x900)
607 ftdi->type = TYPE_232H;
7b18bef6 608
e2f12a4f
TJ
609 // Determine maximum packet size
610 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
611
ef6f4838
TE
612 if (ftdi_set_baudrate (ftdi, 9600) != 0)
613 {
614 ftdi_usb_close_internal (ftdi);
615 ftdi_error_return(-7, "set baudrate failed");
616 }
617
7b18bef6
TJ
618 ftdi_error_return(0, "all fine");
619}
620
1941414d
TJ
621/**
622 Opens the first device with a given vendor and product ids.
623
624 \param ftdi pointer to ftdi_context
625 \param vendor Vendor ID
626 \param product Product ID
627
9bec2387 628 \retval same as ftdi_usb_open_desc()
1941414d 629*/
edb82cbf
TJ
630int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
631{
632 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
633}
634
1941414d
TJ
635/**
636 Opens the first device with a given, vendor id, product id,
637 description and serial.
638
639 \param ftdi pointer to ftdi_context
640 \param vendor Vendor ID
641 \param product Product ID
642 \param description Description to search for. Use NULL if not needed.
643 \param serial Serial to search for. Use NULL if not needed.
644
645 \retval 0: all fine
1941414d
TJ
646 \retval -3: usb device not found
647 \retval -4: unable to open device
648 \retval -5: unable to claim device
649 \retval -6: reset failed
650 \retval -7: set baudrate failed
651 \retval -8: get product description failed
652 \retval -9: get serial number failed
579b006f
JZ
653 \retval -12: libusb_get_device_list() failed
654 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 655*/
04e1ea0a 656int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
657 const char* description, const char* serial)
658{
5ebbdab9
GE
659 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
660}
661
662/**
663 Opens the index-th device with a given, vendor id, product id,
664 description and serial.
665
666 \param ftdi pointer to ftdi_context
667 \param vendor Vendor ID
668 \param product Product ID
669 \param description Description to search for. Use NULL if not needed.
670 \param serial Serial to search for. Use NULL if not needed.
671 \param index Number of matching device to open if there are more than one, starts with 0.
672
673 \retval 0: all fine
674 \retval -1: usb_find_busses() failed
675 \retval -2: usb_find_devices() failed
676 \retval -3: usb device not found
677 \retval -4: unable to open device
678 \retval -5: unable to claim device
679 \retval -6: reset failed
680 \retval -7: set baudrate failed
681 \retval -8: get product description failed
682 \retval -9: get serial number failed
683 \retval -10: unable to close device
22a1b5c1 684 \retval -11: ftdi context invalid
5ebbdab9
GE
685*/
686int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
56ac0383 687 const char* description, const char* serial, unsigned int index)
5ebbdab9 688{
579b006f
JZ
689 libusb_device *dev;
690 libusb_device **devs;
c3d95b87 691 char string[256];
579b006f 692 int i = 0;
98452d97 693
22a1b5c1
TJ
694 if (ftdi == NULL)
695 ftdi_error_return(-11, "ftdi context invalid");
696
02212d8e 697 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
99650502
UB
698 ftdi_error_return(-12, "libusb_get_device_list() failed");
699
579b006f 700 while ((dev = devs[i++]) != NULL)
22d12cda 701 {
579b006f 702 struct libusb_device_descriptor desc;
99650502 703 int res;
579b006f
JZ
704
705 if (libusb_get_device_descriptor(dev, &desc) < 0)
99650502 706 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
579b006f
JZ
707
708 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 709 {
579b006f 710 if (libusb_open(dev, &ftdi->usb_dev) < 0)
99650502 711 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
c3d95b87 712
579b006f
JZ
713 if (description != NULL)
714 {
715 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 716 {
d4afae5f 717 ftdi_usb_close_internal (ftdi);
99650502 718 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
a8f46ddc 719 }
579b006f 720 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 721 {
d4afae5f 722 ftdi_usb_close_internal (ftdi);
579b006f 723 continue;
a8f46ddc 724 }
579b006f
JZ
725 }
726 if (serial != NULL)
727 {
728 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
729 {
730 ftdi_usb_close_internal (ftdi);
99650502 731 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
579b006f
JZ
732 }
733 if (strncmp(string, serial, sizeof(string)) != 0)
734 {
735 ftdi_usb_close_internal (ftdi);
736 continue;
737 }
738 }
98452d97 739
579b006f 740 ftdi_usb_close_internal (ftdi);
d2f10023 741
56ac0383
TJ
742 if (index > 0)
743 {
744 index--;
745 continue;
746 }
5ebbdab9 747
99650502
UB
748 res = ftdi_usb_open_dev(ftdi, dev);
749 libusb_free_device_list(devs,1);
750 return res;
98452d97 751 }
98452d97 752 }
a3da1d95 753
98452d97 754 // device not found
99650502 755 ftdi_error_return_free_device_list(-3, "device not found", devs);
a3da1d95
GE
756}
757
1941414d 758/**
5ebbdab9
GE
759 Opens the ftdi-device described by a description-string.
760 Intended to be used for parsing a device-description given as commandline argument.
761
762 \param ftdi pointer to ftdi_context
763 \param description NULL-terminated description-string, using this format:
764 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
765 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
766 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
767 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
768
769 \note The description format may be extended in later versions.
770
771 \retval 0: all fine
579b006f 772 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
773 \retval -3: usb device not found
774 \retval -4: unable to open device
775 \retval -5: unable to claim device
776 \retval -6: reset failed
777 \retval -7: set baudrate failed
778 \retval -8: get product description failed
779 \retval -9: get serial number failed
780 \retval -10: unable to close device
781 \retval -11: illegal description format
22a1b5c1 782 \retval -12: ftdi context invalid
5ebbdab9
GE
783*/
784int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
785{
22a1b5c1
TJ
786 if (ftdi == NULL)
787 ftdi_error_return(-12, "ftdi context invalid");
788
5ebbdab9
GE
789 if (description[0] == 0 || description[1] != ':')
790 ftdi_error_return(-11, "illegal description format");
791
792 if (description[0] == 'd')
793 {
579b006f
JZ
794 libusb_device *dev;
795 libusb_device **devs;
56ac0383
TJ
796 unsigned int bus_number, device_address;
797 int i = 0;
579b006f 798
56ac0383
TJ
799 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
800 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 801
579b006f
JZ
802 /* XXX: This doesn't handle symlinks/odd paths/etc... */
803 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
56ac0383 804 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
5ebbdab9 805
56ac0383 806 while ((dev = devs[i++]) != NULL)
5ebbdab9 807 {
99650502 808 int ret;
56ac0383
TJ
809 if (bus_number == libusb_get_bus_number (dev)
810 && device_address == libusb_get_device_address (dev))
99650502
UB
811 {
812 ret = ftdi_usb_open_dev(ftdi, dev);
813 libusb_free_device_list(devs,1);
814 return ret;
815 }
5ebbdab9
GE
816 }
817
818 // device not found
99650502 819 ftdi_error_return_free_device_list(-3, "device not found", devs);
5ebbdab9
GE
820 }
821 else if (description[0] == 'i' || description[0] == 's')
822 {
823 unsigned int vendor;
824 unsigned int product;
825 unsigned int index=0;
0e6cf62b 826 const char *serial=NULL;
5ebbdab9
GE
827 const char *startp, *endp;
828
829 errno=0;
830 startp=description+2;
831 vendor=strtoul((char*)startp,(char**)&endp,0);
832 if (*endp != ':' || endp == startp || errno != 0)
833 ftdi_error_return(-11, "illegal description format");
834
835 startp=endp+1;
836 product=strtoul((char*)startp,(char**)&endp,0);
837 if (endp == startp || errno != 0)
838 ftdi_error_return(-11, "illegal description format");
839
840 if (description[0] == 'i' && *endp != 0)
841 {
842 /* optional index field in i-mode */
843 if (*endp != ':')
844 ftdi_error_return(-11, "illegal description format");
845
846 startp=endp+1;
847 index=strtoul((char*)startp,(char**)&endp,0);
848 if (*endp != 0 || endp == startp || errno != 0)
849 ftdi_error_return(-11, "illegal description format");
850 }
851 if (description[0] == 's')
852 {
853 if (*endp != ':')
854 ftdi_error_return(-11, "illegal description format");
855
856 /* rest of the description is the serial */
857 serial=endp+1;
858 }
859
860 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
861 }
862 else
863 {
864 ftdi_error_return(-11, "illegal description format");
865 }
866}
867
868/**
1941414d 869 Resets the ftdi device.
a3da1d95 870
1941414d
TJ
871 \param ftdi pointer to ftdi_context
872
873 \retval 0: all fine
874 \retval -1: FTDI reset failed
22a1b5c1 875 \retval -2: USB device unavailable
4837f98a 876*/
edb82cbf 877int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 878{
22a1b5c1
TJ
879 if (ftdi == NULL || ftdi->usb_dev == NULL)
880 ftdi_error_return(-2, "USB device unavailable");
881
579b006f
JZ
882 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
883 SIO_RESET_REQUEST, SIO_RESET_SIO,
884 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 885 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 886
545820ce 887 // Invalidate data in the readbuffer
bfcee05b
TJ
888 ftdi->readbuffer_offset = 0;
889 ftdi->readbuffer_remaining = 0;
890
a3da1d95
GE
891 return 0;
892}
893
1941414d 894/**
1189b11a 895 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
896
897 \param ftdi pointer to ftdi_context
4837f98a 898
1941414d 899 \retval 0: all fine
1189b11a 900 \retval -1: read buffer purge failed
22a1b5c1 901 \retval -2: USB device unavailable
4837f98a 902*/
1189b11a 903int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 904{
22a1b5c1
TJ
905 if (ftdi == NULL || ftdi->usb_dev == NULL)
906 ftdi_error_return(-2, "USB device unavailable");
907
579b006f
JZ
908 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
909 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
910 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
911 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
912
545820ce 913 // Invalidate data in the readbuffer
bfcee05b
TJ
914 ftdi->readbuffer_offset = 0;
915 ftdi->readbuffer_remaining = 0;
a60be878 916
1189b11a
TJ
917 return 0;
918}
919
920/**
921 Clears the write buffer on the chip.
922
923 \param ftdi pointer to ftdi_context
924
925 \retval 0: all fine
926 \retval -1: write buffer purge failed
22a1b5c1 927 \retval -2: USB device unavailable
1189b11a
TJ
928*/
929int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
930{
22a1b5c1
TJ
931 if (ftdi == NULL || ftdi->usb_dev == NULL)
932 ftdi_error_return(-2, "USB device unavailable");
933
579b006f
JZ
934 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
935 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
936 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
937 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
938
939 return 0;
940}
941
942/**
943 Clears the buffers on the chip and the internal read buffer.
944
945 \param ftdi pointer to ftdi_context
946
947 \retval 0: all fine
948 \retval -1: read buffer purge failed
949 \retval -2: write buffer purge failed
22a1b5c1 950 \retval -3: USB device unavailable
1189b11a
TJ
951*/
952int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
953{
954 int result;
955
22a1b5c1
TJ
956 if (ftdi == NULL || ftdi->usb_dev == NULL)
957 ftdi_error_return(-3, "USB device unavailable");
958
1189b11a 959 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 960 if (result < 0)
1189b11a
TJ
961 return -1;
962
963 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 964 if (result < 0)
1189b11a 965 return -2;
545820ce 966
a60be878
TJ
967 return 0;
968}
a3da1d95 969
f3f81007
TJ
970
971
1941414d
TJ
972/**
973 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
974
975 \param ftdi pointer to ftdi_context
976
977 \retval 0: all fine
978 \retval -1: usb_release failed
22a1b5c1 979 \retval -3: ftdi context invalid
a3da1d95 980*/
a8f46ddc
TJ
981int ftdi_usb_close(struct ftdi_context *ftdi)
982{
a3da1d95
GE
983 int rtn = 0;
984
22a1b5c1
TJ
985 if (ftdi == NULL)
986 ftdi_error_return(-3, "ftdi context invalid");
987
dff4fdb0 988 if (ftdi->usb_dev != NULL)
579b006f 989 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 990 rtn = -1;
98452d97 991
579b006f 992 ftdi_usb_close_internal (ftdi);
98452d97 993
a3da1d95
GE
994 return rtn;
995}
996
f15786e4
UB
997/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
998 to encoded divisor and the achievable baudrate
53ad271d 999 Function is only used internally
b5ec1820 1000 \internal
f15786e4
UB
1001
1002 See AN120
1003 clk/1 -> 0
1004 clk/1.5 -> 1
1005 clk/2 -> 2
1006 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1007 The fractional part has frac_code encoding
53ad271d 1008*/
f15786e4
UB
1009static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1010
a8f46ddc 1011{
f15786e4 1012 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
53ad271d
TJ
1013 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1014 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
53ad271d 1015 int divisor, best_divisor, best_baud, best_baud_diff;
53ad271d 1016 divisor = 24000000 / baudrate;
f15786e4 1017 int i;
53ad271d 1018
f15786e4
UB
1019 // Round down to supported fraction (AM only)
1020 divisor -= am_adjust_dn[divisor & 7];
53ad271d
TJ
1021
1022 // Try this divisor and the one above it (because division rounds down)
1023 best_divisor = 0;
1024 best_baud = 0;
1025 best_baud_diff = 0;
22d12cda
TJ
1026 for (i = 0; i < 2; i++)
1027 {
53ad271d
TJ
1028 int try_divisor = divisor + i;
1029 int baud_estimate;
1030 int baud_diff;
1031
1032 // Round up to supported divisor value
22d12cda
TJ
1033 if (try_divisor <= 8)
1034 {
53ad271d
TJ
1035 // Round up to minimum supported divisor
1036 try_divisor = 8;
22d12cda 1037 }
22d12cda
TJ
1038 else if (divisor < 16)
1039 {
53ad271d
TJ
1040 // AM doesn't support divisors 9 through 15 inclusive
1041 try_divisor = 16;
22d12cda
TJ
1042 }
1043 else
1044 {
f15786e4
UB
1045 // Round up to supported fraction (AM only)
1046 try_divisor += am_adjust_up[try_divisor & 7];
1047 if (try_divisor > 0x1FFF8)
22d12cda 1048 {
f15786e4
UB
1049 // Round down to maximum supported divisor value (for AM)
1050 try_divisor = 0x1FFF8;
53ad271d
TJ
1051 }
1052 }
1053 // Get estimated baud rate (to nearest integer)
1054 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1055 // Get absolute difference from requested baud rate
22d12cda
TJ
1056 if (baud_estimate < baudrate)
1057 {
53ad271d 1058 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
1059 }
1060 else
1061 {
53ad271d
TJ
1062 baud_diff = baud_estimate - baudrate;
1063 }
22d12cda
TJ
1064 if (i == 0 || baud_diff < best_baud_diff)
1065 {
53ad271d
TJ
1066 // Closest to requested baud rate so far
1067 best_divisor = try_divisor;
1068 best_baud = baud_estimate;
1069 best_baud_diff = baud_diff;
22d12cda
TJ
1070 if (baud_diff == 0)
1071 {
53ad271d
TJ
1072 // Spot on! No point trying
1073 break;
1074 }
1075 }
1076 }
1077 // Encode the best divisor value
f15786e4 1078 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
53ad271d 1079 // Deal with special cases for encoded value
f15786e4 1080 if (*encoded_divisor == 1)
22d12cda 1081 {
f15786e4 1082 *encoded_divisor = 0; // 3000000 baud
22d12cda 1083 }
f15786e4
UB
1084 else if (*encoded_divisor == 0x4001)
1085 {
1086 *encoded_divisor = 1; // 2000000 baud (BM only)
1087 }
1088 return best_baud;
1089}
1090
1091/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1092 to encoded divisor and the achievable baudrate
1093 Function is only used internally
1094 \internal
1095
1096 See AN120
1097 clk/1 -> 0
1098 clk/1.5 -> 1
1099 clk/2 -> 2
1100 From /2, 0.125 steps may be taken.
1101 The fractional part has frac_code encoding
9956d428
UB
1102
1103 value[13:0] of value is the divisor
1104 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1105
1106 H Type have all features above with
1107 {index[8],value[15:14]} is the encoded subdivisor
1108
1109 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
1110 {index[0],value[15:14]} is the encoded subdivisor
1111
1112 AM Type chips have only four fractional subdivisors at value[15:14]
1113 for subdivisors 0, 0.5, 0.25, 0.125
f15786e4
UB
1114*/
1115static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor)
1116{
1117 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1118 int best_baud = 0;
1119 int divisor, best_divisor;
1120 if (baudrate >= clk/clk_div)
1121 {
1122 *encoded_divisor = 0;
1123 best_baud = clk/clk_div;
1124 }
1125 else if (baudrate >= clk/(clk_div + clk_div/2))
1126 {
1127 *encoded_divisor = 1;
1128 best_baud = clk/(clk_div + clk_div/2);
1129 }
1130 else if (baudrate >= clk/(2*clk_div))
1131 {
1132 *encoded_divisor = 2;
1133 best_baud = clk/(2*clk_div);
1134 }
1135 else
1136 {
1137 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1138 divisor = clk*16/clk_div / baudrate;
1139 if (divisor & 1) /* Decide if to round up or down*/
1140 best_divisor = divisor /2 +1;
1141 else
1142 best_divisor = divisor/2;
1143 if(best_divisor > 0x20000)
1144 best_divisor = 0x1ffff;
aae08071
UB
1145 best_baud = clk*16/clk_div/best_divisor;
1146 if (best_baud & 1) /* Decide if to round up or down*/
1147 best_baud = best_baud /2 +1;
1148 else
1149 best_baud = best_baud /2;
f15786e4
UB
1150 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1151 }
1152 return best_baud;
1153}
1154/**
1155 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1156 Function is only used internally
1157 \internal
1158*/
1159static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1160 unsigned short *value, unsigned short *index)
1161{
1162 int best_baud;
1163 unsigned long encoded_divisor;
1164
1165 if (baudrate <= 0)
1166 {
1167 // Return error
1168 return -1;
1169 }
1170
1171#define H_CLK 120000000
1172#define C_CLK 48000000
1173 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H ))
1174 {
1175 if(baudrate*10 > H_CLK /0x3fff)
1176 {
1177 /* On H Devices, use 12 000 000 Baudrate when possible
1178 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
1179 three fractional bits and a 120 MHz clock
1180 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1181 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1182 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1183 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1184 }
1185 else
1186 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1187 }
1188 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R ))
1189 {
1190 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1191 }
1192 else
22d12cda 1193 {
f15786e4 1194 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
53ad271d
TJ
1195 }
1196 // Split into "value" and "index" values
1197 *value = (unsigned short)(encoded_divisor & 0xFFFF);
e03f60a1 1198 if (ftdi->type == TYPE_2232H ||
f15786e4 1199 ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
22d12cda 1200 {
0126d22e
TJ
1201 *index = (unsigned short)(encoded_divisor >> 8);
1202 *index &= 0xFF00;
a9c57c05 1203 *index |= ftdi->index;
0126d22e
TJ
1204 }
1205 else
1206 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 1207
53ad271d
TJ
1208 // Return the nearest baud rate
1209 return best_baud;
1210}
1211
1941414d 1212/**
ac6944cc
TJ
1213 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1214 * Do not use, it's only for the unit test framework
1215 **/
1216int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1217 unsigned short *value, unsigned short *index)
1218{
1219 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1220}
1221
1222/**
9bec2387 1223 Sets the chip baud rate
1941414d
TJ
1224
1225 \param ftdi pointer to ftdi_context
9bec2387 1226 \param baudrate baud rate to set
1941414d
TJ
1227
1228 \retval 0: all fine
1229 \retval -1: invalid baudrate
1230 \retval -2: setting baudrate failed
22a1b5c1 1231 \retval -3: USB device unavailable
a3da1d95 1232*/
a8f46ddc
TJ
1233int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1234{
53ad271d
TJ
1235 unsigned short value, index;
1236 int actual_baudrate;
a3da1d95 1237
22a1b5c1
TJ
1238 if (ftdi == NULL || ftdi->usb_dev == NULL)
1239 ftdi_error_return(-3, "USB device unavailable");
1240
22d12cda
TJ
1241 if (ftdi->bitbang_enabled)
1242 {
a3da1d95
GE
1243 baudrate = baudrate*4;
1244 }
1245
25707904 1246 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1247 if (actual_baudrate <= 0)
1248 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1249
53ad271d
TJ
1250 // Check within tolerance (about 5%)
1251 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1252 || ((actual_baudrate < baudrate)
1253 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1254 : (baudrate * 21 < actual_baudrate * 20)))
1255 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1256
579b006f
JZ
1257 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1258 SIO_SET_BAUDRATE_REQUEST, value,
1259 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1260 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1261
1262 ftdi->baudrate = baudrate;
1263 return 0;
1264}
1265
1941414d 1266/**
6c32e222
TJ
1267 Set (RS232) line characteristics.
1268 The break type can only be set via ftdi_set_line_property2()
1269 and defaults to "off".
4837f98a 1270
1941414d
TJ
1271 \param ftdi pointer to ftdi_context
1272 \param bits Number of bits
1273 \param sbit Number of stop bits
1274 \param parity Parity mode
1275
1276 \retval 0: all fine
1277 \retval -1: Setting line property failed
2f73e59f
TJ
1278*/
1279int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1280 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1281{
6c32e222
TJ
1282 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1283}
1284
1285/**
1286 Set (RS232) line characteristics
1287
1288 \param ftdi pointer to ftdi_context
1289 \param bits Number of bits
1290 \param sbit Number of stop bits
1291 \param parity Parity mode
1292 \param break_type Break type
1293
1294 \retval 0: all fine
1295 \retval -1: Setting line property failed
22a1b5c1 1296 \retval -2: USB device unavailable
6c32e222
TJ
1297*/
1298int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1299 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1300 enum ftdi_break_type break_type)
6c32e222 1301{
2f73e59f
TJ
1302 unsigned short value = bits;
1303
22a1b5c1
TJ
1304 if (ftdi == NULL || ftdi->usb_dev == NULL)
1305 ftdi_error_return(-2, "USB device unavailable");
1306
22d12cda
TJ
1307 switch (parity)
1308 {
1309 case NONE:
1310 value |= (0x00 << 8);
1311 break;
1312 case ODD:
1313 value |= (0x01 << 8);
1314 break;
1315 case EVEN:
1316 value |= (0x02 << 8);
1317 break;
1318 case MARK:
1319 value |= (0x03 << 8);
1320 break;
1321 case SPACE:
1322 value |= (0x04 << 8);
1323 break;
2f73e59f 1324 }
d2f10023 1325
22d12cda
TJ
1326 switch (sbit)
1327 {
1328 case STOP_BIT_1:
1329 value |= (0x00 << 11);
1330 break;
1331 case STOP_BIT_15:
1332 value |= (0x01 << 11);
1333 break;
1334 case STOP_BIT_2:
1335 value |= (0x02 << 11);
1336 break;
2f73e59f 1337 }
d2f10023 1338
22d12cda
TJ
1339 switch (break_type)
1340 {
1341 case BREAK_OFF:
1342 value |= (0x00 << 14);
1343 break;
1344 case BREAK_ON:
1345 value |= (0x01 << 14);
1346 break;
6c32e222
TJ
1347 }
1348
579b006f
JZ
1349 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1350 SIO_SET_DATA_REQUEST, value,
1351 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1352 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1353
2f73e59f
TJ
1354 return 0;
1355}
a3da1d95 1356
1941414d
TJ
1357/**
1358 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1359
1360 \param ftdi pointer to ftdi_context
1361 \param buf Buffer with the data
1362 \param size Size of the buffer
1363
22a1b5c1 1364 \retval -666: USB device unavailable
1941414d
TJ
1365 \retval <0: error code from usb_bulk_write()
1366 \retval >0: number of bytes written
1367*/
a8f46ddc
TJ
1368int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1369{
a3da1d95 1370 int offset = 0;
579b006f 1371 int actual_length;
c3d95b87 1372
22a1b5c1
TJ
1373 if (ftdi == NULL || ftdi->usb_dev == NULL)
1374 ftdi_error_return(-666, "USB device unavailable");
1375
22d12cda
TJ
1376 while (offset < size)
1377 {
948f9ada 1378 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1379
1380 if (offset+write_size > size)
1381 write_size = size-offset;
1382
579b006f
JZ
1383 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1384 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1385
579b006f 1386 offset += actual_length;
a3da1d95
GE
1387 }
1388
579b006f 1389 return offset;
a3da1d95
GE
1390}
1391
579b006f 1392static void ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1393{
579b006f
JZ
1394 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1395 struct ftdi_context *ftdi = tc->ftdi;
1396 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1397
b1139150 1398 packet_size = ftdi->max_packet_size;
579b006f
JZ
1399
1400 actual_length = transfer->actual_length;
1401
1402 if (actual_length > 2)
1403 {
1404 // skip FTDI status bytes.
1405 // Maybe stored in the future to enable modem use
1406 num_of_chunks = actual_length / packet_size;
1407 chunk_remains = actual_length % packet_size;
1408 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1409
1410 ftdi->readbuffer_offset += 2;
1411 actual_length -= 2;
1412
1413 if (actual_length > packet_size - 2)
1414 {
1415 for (i = 1; i < num_of_chunks; i++)
56ac0383
TJ
1416 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1417 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1418 packet_size - 2);
579b006f
JZ
1419 if (chunk_remains > 2)
1420 {
1421 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1422 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1423 chunk_remains-2);
1424 actual_length -= 2*num_of_chunks;
1425 }
1426 else
56ac0383 1427 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
579b006f
JZ
1428 }
1429
1430 if (actual_length > 0)
1431 {
1432 // data still fits in buf?
1433 if (tc->offset + actual_length <= tc->size)
1434 {
1435 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1436 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1437 tc->offset += actual_length;
1438
1439 ftdi->readbuffer_offset = 0;
1440 ftdi->readbuffer_remaining = 0;
1441
1442 /* Did we read exactly the right amount of bytes? */
1443 if (tc->offset == tc->size)
1444 {
1445 //printf("read_data exact rem %d offset %d\n",
1446 //ftdi->readbuffer_remaining, offset);
1447 tc->completed = 1;
1448 return;
1449 }
1450 }
1451 else
1452 {
1453 // only copy part of the data or size <= readbuffer_chunksize
1454 int part_size = tc->size - tc->offset;
1455 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1456 tc->offset += part_size;
1457
1458 ftdi->readbuffer_offset += part_size;
1459 ftdi->readbuffer_remaining = actual_length - part_size;
1460
1461 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1462 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1463 tc->completed = 1;
1464 return;
1465 }
1466 }
1467 }
1468 ret = libusb_submit_transfer (transfer);
1469 if (ret < 0)
1470 tc->completed = 1;
1471}
1472
1473
1474static void ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1475{
579b006f
JZ
1476 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1477 struct ftdi_context *ftdi = tc->ftdi;
56ac0383 1478
90ef163e 1479 tc->offset += transfer->actual_length;
56ac0383 1480
579b006f 1481 if (tc->offset == tc->size)
22d12cda 1482 {
579b006f 1483 tc->completed = 1;
7cc9950e 1484 }
579b006f
JZ
1485 else
1486 {
1487 int write_size = ftdi->writebuffer_chunksize;
1488 int ret;
7cc9950e 1489
579b006f
JZ
1490 if (tc->offset + write_size > tc->size)
1491 write_size = tc->size - tc->offset;
1492
1493 transfer->length = write_size;
1494 transfer->buffer = tc->buf + tc->offset;
1495 ret = libusb_submit_transfer (transfer);
1496 if (ret < 0)
1497 tc->completed = 1;
1498 }
7cc9950e
GE
1499}
1500
579b006f 1501
84f85aaa 1502/**
579b006f
JZ
1503 Writes data to the chip. Does not wait for completion of the transfer
1504 nor does it make sure that the transfer was successful.
1505
249888c8 1506 Use libusb 1.0 asynchronous API.
84f85aaa
GE
1507
1508 \param ftdi pointer to ftdi_context
579b006f
JZ
1509 \param buf Buffer with the data
1510 \param size Size of the buffer
84f85aaa 1511
579b006f
JZ
1512 \retval NULL: Some error happens when submit transfer
1513 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1514*/
579b006f
JZ
1515
1516struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1517{
579b006f 1518 struct ftdi_transfer_control *tc;
5e77e870 1519 struct libusb_transfer *transfer;
579b006f 1520 int write_size, ret;
22d12cda 1521
22a1b5c1 1522 if (ftdi == NULL || ftdi->usb_dev == NULL)
22a1b5c1 1523 return NULL;
22a1b5c1 1524
579b006f 1525 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
5e77e870
TJ
1526 if (!tc)
1527 return NULL;
22d12cda 1528
5e77e870
TJ
1529 transfer = libusb_alloc_transfer(0);
1530 if (!transfer)
1531 {
1532 free(tc);
579b006f 1533 return NULL;
5e77e870 1534 }
22d12cda 1535
579b006f
JZ
1536 tc->ftdi = ftdi;
1537 tc->completed = 0;
1538 tc->buf = buf;
1539 tc->size = size;
1540 tc->offset = 0;
7cc9950e 1541
579b006f 1542 if (size < ftdi->writebuffer_chunksize)
56ac0383 1543 write_size = size;
579b006f 1544 else
56ac0383 1545 write_size = ftdi->writebuffer_chunksize;
22d12cda 1546
90ef163e
YSL
1547 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1548 write_size, ftdi_write_data_cb, tc,
1549 ftdi->usb_write_timeout);
579b006f 1550 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1551
579b006f
JZ
1552 ret = libusb_submit_transfer(transfer);
1553 if (ret < 0)
1554 {
1555 libusb_free_transfer(transfer);
5e77e870 1556 free(tc);
579b006f 1557 return NULL;
7cc9950e 1558 }
579b006f
JZ
1559 tc->transfer = transfer;
1560
1561 return tc;
7cc9950e
GE
1562}
1563
1564/**
579b006f
JZ
1565 Reads data from the chip. Does not wait for completion of the transfer
1566 nor does it make sure that the transfer was successful.
1567
249888c8 1568 Use libusb 1.0 asynchronous API.
7cc9950e
GE
1569
1570 \param ftdi pointer to ftdi_context
579b006f
JZ
1571 \param buf Buffer with the data
1572 \param size Size of the buffer
4c9e3812 1573
579b006f
JZ
1574 \retval NULL: Some error happens when submit transfer
1575 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1576*/
579b006f
JZ
1577
1578struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1579{
579b006f
JZ
1580 struct ftdi_transfer_control *tc;
1581 struct libusb_transfer *transfer;
1582 int ret;
22d12cda 1583
22a1b5c1
TJ
1584 if (ftdi == NULL || ftdi->usb_dev == NULL)
1585 return NULL;
1586
579b006f
JZ
1587 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1588 if (!tc)
1589 return NULL;
1590
1591 tc->ftdi = ftdi;
1592 tc->buf = buf;
1593 tc->size = size;
1594
1595 if (size <= ftdi->readbuffer_remaining)
7cc9950e 1596 {
579b006f 1597 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1598
579b006f
JZ
1599 // Fix offsets
1600 ftdi->readbuffer_remaining -= size;
1601 ftdi->readbuffer_offset += size;
7cc9950e 1602
579b006f 1603 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1604
579b006f
JZ
1605 tc->completed = 1;
1606 tc->offset = size;
1607 tc->transfer = NULL;
1608 return tc;
1609 }
4c9e3812 1610
579b006f
JZ
1611 tc->completed = 0;
1612 if (ftdi->readbuffer_remaining != 0)
1613 {
1614 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1615
579b006f
JZ
1616 tc->offset = ftdi->readbuffer_remaining;
1617 }
1618 else
1619 tc->offset = 0;
22d12cda 1620
579b006f
JZ
1621 transfer = libusb_alloc_transfer(0);
1622 if (!transfer)
1623 {
1624 free (tc);
1625 return NULL;
1626 }
22d12cda 1627
579b006f
JZ
1628 ftdi->readbuffer_remaining = 0;
1629 ftdi->readbuffer_offset = 0;
1630
1631 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1632 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1633
1634 ret = libusb_submit_transfer(transfer);
1635 if (ret < 0)
1636 {
1637 libusb_free_transfer(transfer);
1638 free (tc);
1639 return NULL;
22d12cda 1640 }
579b006f
JZ
1641 tc->transfer = transfer;
1642
1643 return tc;
4c9e3812
GE
1644}
1645
1646/**
579b006f 1647 Wait for completion of the transfer.
4c9e3812 1648
249888c8 1649 Use libusb 1.0 asynchronous API.
4c9e3812 1650
579b006f 1651 \param tc pointer to ftdi_transfer_control
4c9e3812 1652
579b006f
JZ
1653 \retval < 0: Some error happens
1654 \retval >= 0: Data size transferred
4c9e3812 1655*/
579b006f
JZ
1656
1657int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1658{
1659 int ret;
4c9e3812 1660
579b006f 1661 while (!tc->completed)
22d12cda 1662 {
29b1dfd9 1663 ret = libusb_handle_events(tc->ftdi->usb_ctx);
4c9e3812 1664 if (ret < 0)
579b006f
JZ
1665 {
1666 if (ret == LIBUSB_ERROR_INTERRUPTED)
1667 continue;
1668 libusb_cancel_transfer(tc->transfer);
1669 while (!tc->completed)
29b1dfd9 1670 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
579b006f
JZ
1671 break;
1672 libusb_free_transfer(tc->transfer);
1673 free (tc);
579b006f
JZ
1674 return ret;
1675 }
4c9e3812
GE
1676 }
1677
90ef163e
YSL
1678 ret = tc->offset;
1679 /**
1680 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
ef15fab5 1681 * at ftdi_read_data_submit(). Therefore, we need to check it here.
90ef163e 1682 **/
ef15fab5
TJ
1683 if (tc->transfer)
1684 {
1685 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1686 ret = -1;
1687 libusb_free_transfer(tc->transfer);
90ef163e 1688 }
579b006f
JZ
1689 free(tc);
1690 return ret;
4c9e3812 1691}
579b006f 1692
1941414d
TJ
1693/**
1694 Configure write buffer chunk size.
1695 Default is 4096.
1696
1697 \param ftdi pointer to ftdi_context
1698 \param chunksize Chunk size
a3da1d95 1699
1941414d 1700 \retval 0: all fine
22a1b5c1 1701 \retval -1: ftdi context invalid
1941414d 1702*/
a8f46ddc
TJ
1703int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1704{
22a1b5c1
TJ
1705 if (ftdi == NULL)
1706 ftdi_error_return(-1, "ftdi context invalid");
1707
948f9ada
TJ
1708 ftdi->writebuffer_chunksize = chunksize;
1709 return 0;
1710}
1711
1941414d
TJ
1712/**
1713 Get write buffer chunk size.
1714
1715 \param ftdi pointer to ftdi_context
1716 \param chunksize Pointer to store chunk size in
948f9ada 1717
1941414d 1718 \retval 0: all fine
22a1b5c1 1719 \retval -1: ftdi context invalid
1941414d 1720*/
a8f46ddc
TJ
1721int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1722{
22a1b5c1
TJ
1723 if (ftdi == NULL)
1724 ftdi_error_return(-1, "ftdi context invalid");
1725
948f9ada
TJ
1726 *chunksize = ftdi->writebuffer_chunksize;
1727 return 0;
1728}
cbabb7d3 1729
1941414d
TJ
1730/**
1731 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1732
1733 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1734
1941414d
TJ
1735 \param ftdi pointer to ftdi_context
1736 \param buf Buffer to store data in
1737 \param size Size of the buffer
1738
22a1b5c1 1739 \retval -666: USB device unavailable
579b006f 1740 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 1741 \retval 0: no data was available
1941414d
TJ
1742 \retval >0: number of bytes read
1743
1941414d 1744*/
a8f46ddc
TJ
1745int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1746{
579b006f 1747 int offset = 0, ret, i, num_of_chunks, chunk_remains;
e2f12a4f 1748 int packet_size = ftdi->max_packet_size;
579b006f 1749 int actual_length = 1;
f2f00cb5 1750
22a1b5c1
TJ
1751 if (ftdi == NULL || ftdi->usb_dev == NULL)
1752 ftdi_error_return(-666, "USB device unavailable");
1753
e2f12a4f
TJ
1754 // Packet size sanity check (avoid division by zero)
1755 if (packet_size == 0)
1756 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 1757
948f9ada 1758 // everything we want is still in the readbuffer?
22d12cda
TJ
1759 if (size <= ftdi->readbuffer_remaining)
1760 {
d9f0cce7
TJ
1761 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1762
1763 // Fix offsets
1764 ftdi->readbuffer_remaining -= size;
1765 ftdi->readbuffer_offset += size;
1766
545820ce 1767 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1768
1769 return size;
979a145c 1770 }
948f9ada 1771 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
1772 if (ftdi->readbuffer_remaining != 0)
1773 {
d9f0cce7 1774 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1775
d9f0cce7
TJ
1776 // Fix offset
1777 offset += ftdi->readbuffer_remaining;
948f9ada 1778 }
948f9ada 1779 // do the actual USB read
579b006f 1780 while (offset < size && actual_length > 0)
22d12cda 1781 {
d9f0cce7
TJ
1782 ftdi->readbuffer_remaining = 0;
1783 ftdi->readbuffer_offset = 0;
98452d97 1784 /* returns how much received */
579b006f 1785 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
1786 if (ret < 0)
1787 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1788
579b006f 1789 if (actual_length > 2)
22d12cda 1790 {
d9f0cce7
TJ
1791 // skip FTDI status bytes.
1792 // Maybe stored in the future to enable modem use
579b006f
JZ
1793 num_of_chunks = actual_length / packet_size;
1794 chunk_remains = actual_length % packet_size;
1795 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 1796
d9f0cce7 1797 ftdi->readbuffer_offset += 2;
579b006f 1798 actual_length -= 2;
1c733d33 1799
579b006f 1800 if (actual_length > packet_size - 2)
22d12cda 1801 {
1c733d33 1802 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
1803 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1804 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1805 packet_size - 2);
22d12cda
TJ
1806 if (chunk_remains > 2)
1807 {
f2f00cb5
DC
1808 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1809 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 1810 chunk_remains-2);
579b006f 1811 actual_length -= 2*num_of_chunks;
22d12cda
TJ
1812 }
1813 else
579b006f 1814 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 1815 }
22d12cda 1816 }
579b006f 1817 else if (actual_length <= 2)
22d12cda 1818 {
d9f0cce7
TJ
1819 // no more data to read?
1820 return offset;
1821 }
579b006f 1822 if (actual_length > 0)
22d12cda 1823 {
d9f0cce7 1824 // data still fits in buf?
579b006f 1825 if (offset+actual_length <= size)
22d12cda 1826 {
579b006f 1827 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 1828 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 1829 offset += actual_length;
d9f0cce7 1830
53ad271d 1831 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1832 if (offset == size)
c4446c36
TJ
1833 //printf("read_data exact rem %d offset %d\n",
1834 //ftdi->readbuffer_remaining, offset);
d9f0cce7 1835 return offset;
22d12cda
TJ
1836 }
1837 else
1838 {
d9f0cce7
TJ
1839 // only copy part of the data or size <= readbuffer_chunksize
1840 int part_size = size-offset;
1841 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1842
d9f0cce7 1843 ftdi->readbuffer_offset += part_size;
579b006f 1844 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
1845 offset += part_size;
1846
579b006f
JZ
1847 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1848 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1849
1850 return offset;
1851 }
1852 }
cbabb7d3 1853 }
948f9ada 1854 // never reached
29c4af7f 1855 return -127;
a3da1d95
GE
1856}
1857
1941414d
TJ
1858/**
1859 Configure read buffer chunk size.
1860 Default is 4096.
1861
1862 Automatically reallocates the buffer.
a3da1d95 1863
1941414d
TJ
1864 \param ftdi pointer to ftdi_context
1865 \param chunksize Chunk size
1866
1867 \retval 0: all fine
22a1b5c1 1868 \retval -1: ftdi context invalid
1941414d 1869*/
a8f46ddc
TJ
1870int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1871{
29c4af7f
TJ
1872 unsigned char *new_buf;
1873
22a1b5c1
TJ
1874 if (ftdi == NULL)
1875 ftdi_error_return(-1, "ftdi context invalid");
1876
948f9ada
TJ
1877 // Invalidate all remaining data
1878 ftdi->readbuffer_offset = 0;
1879 ftdi->readbuffer_remaining = 0;
8de6eea4
JZ
1880#ifdef __linux__
1881 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1882 which is defined in libusb-1.0. Otherwise, each USB read request will
2e685a1f 1883 be divided into multiple URBs. This will cause issues on Linux kernel
8de6eea4
JZ
1884 older than 2.6.32. */
1885 if (chunksize > 16384)
1886 chunksize = 16384;
1887#endif
948f9ada 1888
c3d95b87
TJ
1889 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1890 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1891
948f9ada
TJ
1892 ftdi->readbuffer = new_buf;
1893 ftdi->readbuffer_chunksize = chunksize;
1894
1895 return 0;
1896}
1897
1941414d
TJ
1898/**
1899 Get read buffer chunk size.
948f9ada 1900
1941414d
TJ
1901 \param ftdi pointer to ftdi_context
1902 \param chunksize Pointer to store chunk size in
1903
1904 \retval 0: all fine
22a1b5c1 1905 \retval -1: FTDI context invalid
1941414d 1906*/
a8f46ddc
TJ
1907int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1908{
22a1b5c1
TJ
1909 if (ftdi == NULL)
1910 ftdi_error_return(-1, "FTDI context invalid");
1911
948f9ada
TJ
1912 *chunksize = ftdi->readbuffer_chunksize;
1913 return 0;
1914}
1915
1941414d 1916/**
2d790e37 1917 Enable/disable bitbang modes.
1941414d
TJ
1918
1919 \param ftdi pointer to ftdi_context
1920 \param bitmask Bitmask to configure lines.
1921 HIGH/ON value configures a line as output.
2d790e37 1922 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
1923
1924 \retval 0: all fine
1925 \retval -1: can't enable bitbang mode
22a1b5c1 1926 \retval -2: USB device unavailable
1941414d 1927*/
2d790e37 1928int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
a8f46ddc 1929{
a3da1d95
GE
1930 unsigned short usb_val;
1931
22a1b5c1
TJ
1932 if (ftdi == NULL || ftdi->usb_dev == NULL)
1933 ftdi_error_return(-2, "USB device unavailable");
1934
d9f0cce7 1935 usb_val = bitmask; // low byte: bitmask
2d790e37
TJ
1936 usb_val |= (mode << 8);
1937 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1938 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
c3d95b87 1939
2d790e37
TJ
1940 ftdi->bitbang_mode = mode;
1941 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
a3da1d95
GE
1942 return 0;
1943}
1944
1941414d
TJ
1945/**
1946 Disable bitbang mode.
a3da1d95 1947
1941414d
TJ
1948 \param ftdi pointer to ftdi_context
1949
1950 \retval 0: all fine
1951 \retval -1: can't disable bitbang mode
22a1b5c1 1952 \retval -2: USB device unavailable
1941414d 1953*/
a8f46ddc
TJ
1954int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1955{
22a1b5c1
TJ
1956 if (ftdi == NULL || ftdi->usb_dev == NULL)
1957 ftdi_error_return(-2, "USB device unavailable");
1958
579b006f 1959 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1960 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1961
1962 ftdi->bitbang_enabled = 0;
1963 return 0;
1964}
1965
c4446c36 1966
1941414d 1967/**
418aaa72 1968 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
1969
1970 \param ftdi pointer to ftdi_context
1971 \param pins Pointer to store pins into
1972
1973 \retval 0: all fine
1974 \retval -1: read pins failed
22a1b5c1 1975 \retval -2: USB device unavailable
1941414d 1976*/
a8f46ddc
TJ
1977int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1978{
22a1b5c1
TJ
1979 if (ftdi == NULL || ftdi->usb_dev == NULL)
1980 ftdi_error_return(-2, "USB device unavailable");
1981
579b006f 1982 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1983 ftdi_error_return(-1, "read pins failed");
a3da1d95 1984
a3da1d95
GE
1985 return 0;
1986}
1987
1941414d
TJ
1988/**
1989 Set latency timer
1990
1991 The FTDI chip keeps data in the internal buffer for a specific
1992 amount of time if the buffer is not full yet to decrease
1993 load on the usb bus.
a3da1d95 1994
1941414d
TJ
1995 \param ftdi pointer to ftdi_context
1996 \param latency Value between 1 and 255
1997
1998 \retval 0: all fine
1999 \retval -1: latency out of range
2000 \retval -2: unable to set latency timer
22a1b5c1 2001 \retval -3: USB device unavailable
1941414d 2002*/
a8f46ddc
TJ
2003int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2004{
a3da1d95
GE
2005 unsigned short usb_val;
2006
c3d95b87
TJ
2007 if (latency < 1)
2008 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 2009
22a1b5c1
TJ
2010 if (ftdi == NULL || ftdi->usb_dev == NULL)
2011 ftdi_error_return(-3, "USB device unavailable");
2012
d79d2e68 2013 usb_val = latency;
579b006f 2014 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
2015 ftdi_error_return(-2, "unable to set latency timer");
2016
a3da1d95
GE
2017 return 0;
2018}
2019
1941414d
TJ
2020/**
2021 Get latency timer
a3da1d95 2022
1941414d
TJ
2023 \param ftdi pointer to ftdi_context
2024 \param latency Pointer to store latency value in
2025
2026 \retval 0: all fine
2027 \retval -1: unable to get latency timer
22a1b5c1 2028 \retval -2: USB device unavailable
1941414d 2029*/
a8f46ddc
TJ
2030int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2031{
a3da1d95 2032 unsigned short usb_val;
22a1b5c1
TJ
2033
2034 if (ftdi == NULL || ftdi->usb_dev == NULL)
2035 ftdi_error_return(-2, "USB device unavailable");
2036
579b006f 2037 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 2038 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
2039
2040 *latency = (unsigned char)usb_val;
2041 return 0;
2042}
2043
1941414d 2044/**
1189b11a
TJ
2045 Poll modem status information
2046
2047 This function allows the retrieve the two status bytes of the device.
2048 The device sends these bytes also as a header for each read access
2049 where they are discarded by ftdi_read_data(). The chip generates
2050 the two stripped status bytes in the absence of data every 40 ms.
2051
2052 Layout of the first byte:
2053 - B0..B3 - must be 0
2054 - B4 Clear to send (CTS)
2055 0 = inactive
2056 1 = active
2057 - B5 Data set ready (DTS)
2058 0 = inactive
2059 1 = active
2060 - B6 Ring indicator (RI)
2061 0 = inactive
2062 1 = active
2063 - B7 Receive line signal detect (RLSD)
2064 0 = inactive
2065 1 = active
2066
2067 Layout of the second byte:
2068 - B0 Data ready (DR)
2069 - B1 Overrun error (OE)
2070 - B2 Parity error (PE)
2071 - B3 Framing error (FE)
2072 - B4 Break interrupt (BI)
2073 - B5 Transmitter holding register (THRE)
2074 - B6 Transmitter empty (TEMT)
2075 - B7 Error in RCVR FIFO
2076
2077 \param ftdi pointer to ftdi_context
2078 \param status Pointer to store status information in. Must be two bytes.
2079
2080 \retval 0: all fine
2081 \retval -1: unable to retrieve status information
22a1b5c1 2082 \retval -2: USB device unavailable
1189b11a
TJ
2083*/
2084int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2085{
2086 char usb_val[2];
2087
22a1b5c1
TJ
2088 if (ftdi == NULL || ftdi->usb_dev == NULL)
2089 ftdi_error_return(-2, "USB device unavailable");
2090
579b006f 2091 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
2092 ftdi_error_return(-1, "getting modem status failed");
2093
dc09eaa8 2094 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
1189b11a
TJ
2095
2096 return 0;
2097}
2098
a7fb8440
TJ
2099/**
2100 Set flowcontrol for ftdi chip
2101
2102 \param ftdi pointer to ftdi_context
22d12cda
TJ
2103 \param flowctrl flow control to use. should be
2104 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
a7fb8440
TJ
2105
2106 \retval 0: all fine
2107 \retval -1: set flow control failed
22a1b5c1 2108 \retval -2: USB device unavailable
a7fb8440
TJ
2109*/
2110int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2111{
22a1b5c1
TJ
2112 if (ftdi == NULL || ftdi->usb_dev == NULL)
2113 ftdi_error_return(-2, "USB device unavailable");
2114
579b006f
JZ
2115 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2116 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2117 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2118 ftdi_error_return(-1, "set flow control failed");
2119
2120 return 0;
2121}
2122
2123/**
2124 Set dtr line
2125
2126 \param ftdi pointer to ftdi_context
2127 \param state state to set line to (1 or 0)
2128
2129 \retval 0: all fine
2130 \retval -1: set dtr failed
22a1b5c1 2131 \retval -2: USB device unavailable
a7fb8440
TJ
2132*/
2133int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2134{
2135 unsigned short usb_val;
2136
22a1b5c1
TJ
2137 if (ftdi == NULL || ftdi->usb_dev == NULL)
2138 ftdi_error_return(-2, "USB device unavailable");
2139
a7fb8440
TJ
2140 if (state)
2141 usb_val = SIO_SET_DTR_HIGH;
2142 else
2143 usb_val = SIO_SET_DTR_LOW;
2144
579b006f
JZ
2145 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2146 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2147 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2148 ftdi_error_return(-1, "set dtr failed");
2149
2150 return 0;
2151}
2152
2153/**
2154 Set rts line
2155
2156 \param ftdi pointer to ftdi_context
2157 \param state state to set line to (1 or 0)
2158
2159 \retval 0: all fine
22a1b5c1
TJ
2160 \retval -1: set rts failed
2161 \retval -2: USB device unavailable
a7fb8440
TJ
2162*/
2163int ftdi_setrts(struct ftdi_context *ftdi, int state)
2164{
2165 unsigned short usb_val;
2166
22a1b5c1
TJ
2167 if (ftdi == NULL || ftdi->usb_dev == NULL)
2168 ftdi_error_return(-2, "USB device unavailable");
2169
a7fb8440
TJ
2170 if (state)
2171 usb_val = SIO_SET_RTS_HIGH;
2172 else
2173 usb_val = SIO_SET_RTS_LOW;
2174
579b006f
JZ
2175 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2176 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2177 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2178 ftdi_error_return(-1, "set of rts failed");
2179
2180 return 0;
2181}
2182
1189b11a 2183/**
22a1b5c1 2184 Set dtr and rts line in one pass
9ecfef2a 2185
22a1b5c1
TJ
2186 \param ftdi pointer to ftdi_context
2187 \param dtr DTR state to set line to (1 or 0)
2188 \param rts RTS state to set line to (1 or 0)
9ecfef2a 2189
22a1b5c1
TJ
2190 \retval 0: all fine
2191 \retval -1: set dtr/rts failed
2192 \retval -2: USB device unavailable
9ecfef2a
TJ
2193 */
2194int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2195{
2196 unsigned short usb_val;
2197
22a1b5c1
TJ
2198 if (ftdi == NULL || ftdi->usb_dev == NULL)
2199 ftdi_error_return(-2, "USB device unavailable");
2200
9ecfef2a 2201 if (dtr)
22d12cda 2202 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 2203 else
22d12cda 2204 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
2205
2206 if (rts)
22d12cda 2207 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 2208 else
22d12cda 2209 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 2210
579b006f
JZ
2211 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2212 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2213 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 2214 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
2215
2216 return 0;
2217}
2218
2219/**
1189b11a
TJ
2220 Set the special event character
2221
2222 \param ftdi pointer to ftdi_context
2223 \param eventch Event character
2224 \param enable 0 to disable the event character, non-zero otherwise
2225
2226 \retval 0: all fine
2227 \retval -1: unable to set event character
22a1b5c1 2228 \retval -2: USB device unavailable
1189b11a
TJ
2229*/
2230int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 2231 unsigned char eventch, unsigned char enable)
1189b11a
TJ
2232{
2233 unsigned short usb_val;
2234
22a1b5c1
TJ
2235 if (ftdi == NULL || ftdi->usb_dev == NULL)
2236 ftdi_error_return(-2, "USB device unavailable");
2237
1189b11a
TJ
2238 usb_val = eventch;
2239 if (enable)
2240 usb_val |= 1 << 8;
2241
579b006f 2242 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2243 ftdi_error_return(-1, "setting event character failed");
2244
2245 return 0;
2246}
2247
2248/**
2249 Set error character
2250
2251 \param ftdi pointer to ftdi_context
2252 \param errorch Error character
2253 \param enable 0 to disable the error character, non-zero otherwise
2254
2255 \retval 0: all fine
2256 \retval -1: unable to set error character
22a1b5c1 2257 \retval -2: USB device unavailable
1189b11a
TJ
2258*/
2259int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 2260 unsigned char errorch, unsigned char enable)
1189b11a
TJ
2261{
2262 unsigned short usb_val;
2263
22a1b5c1
TJ
2264 if (ftdi == NULL || ftdi->usb_dev == NULL)
2265 ftdi_error_return(-2, "USB device unavailable");
2266
1189b11a
TJ
2267 usb_val = errorch;
2268 if (enable)
2269 usb_val |= 1 << 8;
2270
579b006f 2271 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2272 ftdi_error_return(-1, "setting error character failed");
2273
2274 return 0;
2275}
2276
2277/**
44f41f11 2278 Init eeprom with default values for the connected device
a35aa9bd 2279 \param ftdi pointer to ftdi_context
f14f84d3
UB
2280 \param manufacturer String to use as Manufacturer
2281 \param product String to use as Product description
2282 \param serial String to use as Serial number description
4e74064b 2283
f14f84d3
UB
2284 \retval 0: all fine
2285 \retval -1: No struct ftdi_context
2286 \retval -2: No struct ftdi_eeprom
44f41f11 2287 \retval -3: No connected device or device not yet opened
1941414d 2288*/
f14f84d3 2289int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
56ac0383 2290 char * product, char * serial)
a8f46ddc 2291{
c0a96aed 2292 struct ftdi_eeprom *eeprom;
f505134f 2293
c0a96aed 2294 if (ftdi == NULL)
f14f84d3 2295 ftdi_error_return(-1, "No struct ftdi_context");
c0a96aed
UB
2296
2297 if (ftdi->eeprom == NULL)
56ac0383 2298 ftdi_error_return(-2,"No struct ftdi_eeprom");
22a1b5c1 2299
c0a96aed 2300 eeprom = ftdi->eeprom;
a02587d5 2301 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
c0a96aed 2302
44f41f11
UB
2303 if (ftdi->usb_dev == NULL)
2304 ftdi_error_return(-3, "No connected device or device not yet opened");
2305
f396dbad 2306 eeprom->vendor_id = 0x0403;
d4b5af27 2307 eeprom->use_serial = 1;
56ac0383
TJ
2308 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2309 (ftdi->type == TYPE_R))
a02587d5 2310 eeprom->product_id = 0x6001;
c7e4c09e
UB
2311 else if (ftdi->type == TYPE_4232H)
2312 eeprom->product_id = 0x6011;
2313 else if (ftdi->type == TYPE_232H)
2314 eeprom->product_id = 0x6014;
a02587d5
UB
2315 else
2316 eeprom->product_id = 0x6010;
b1859923
UB
2317 if (ftdi->type == TYPE_AM)
2318 eeprom->usb_version = 0x0101;
2319 else
2320 eeprom->usb_version = 0x0200;
a886436a 2321 eeprom->max_power = 100;
d9f0cce7 2322
74e8e79d
UB
2323 if (eeprom->manufacturer)
2324 free (eeprom->manufacturer);
b8aa7b35 2325 eeprom->manufacturer = NULL;
74e8e79d
UB
2326 if (manufacturer)
2327 {
2328 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2329 if (eeprom->manufacturer)
2330 strcpy(eeprom->manufacturer, manufacturer);
2331 }
2332
2333 if (eeprom->product)
2334 free (eeprom->product);
b8aa7b35 2335 eeprom->product = NULL;
10771971 2336 if(product)
74e8e79d
UB
2337 {
2338 eeprom->product = malloc(strlen(product)+1);
2339 if (eeprom->product)
2340 strcpy(eeprom->product, product);
2341 }
6a6fcd89
UB
2342 else
2343 {
2344 const char* default_product;
2345 switch(ftdi->type)
2346 {
2347 case TYPE_AM: default_product = "AM"; break;
2348 case TYPE_BM: default_product = "BM"; break;
2349 case TYPE_2232C: default_product = "Dual RS232"; break;
2350 case TYPE_R: default_product = "FT232R USB UART"; break;
2351 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2352 case TYPE_4232H: default_product = "FT4232H"; break;
2353 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2354 default:
2355 ftdi_error_return(-3, "Unknown chip type");
2356 }
2357 eeprom->product = malloc(strlen(default_product) +1);
2358 if (eeprom->product)
2359 strcpy(eeprom->product, default_product);
2360 }
74e8e79d
UB
2361
2362 if (eeprom->serial)
2363 free (eeprom->serial);
b8aa7b35 2364 eeprom->serial = NULL;
74e8e79d
UB
2365 if (serial)
2366 {
2367 eeprom->serial = malloc(strlen(serial)+1);
2368 if (eeprom->serial)
2369 strcpy(eeprom->serial, serial);
2370 }
2371
56ac0383 2372 if (ftdi->type == TYPE_R)
a4980043 2373 {
a886436a 2374 eeprom->max_power = 90;
a02587d5 2375 eeprom->size = 0x80;
a4980043
UB
2376 eeprom->cbus_function[0] = CBUS_TXLED;
2377 eeprom->cbus_function[1] = CBUS_RXLED;
2378 eeprom->cbus_function[2] = CBUS_TXDEN;
2379 eeprom->cbus_function[3] = CBUS_PWREN;
2380 eeprom->cbus_function[4] = CBUS_SLEEP;
2381 }
a02587d5 2382 else
263d3ba0
UB
2383 {
2384 if(ftdi->type == TYPE_232H)
2385 {
2386 int i;
2387 for (i=0; i<10; i++)
2388 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2389 }
a02587d5 2390 eeprom->size = -1;
263d3ba0 2391 }
44f41f11 2392 eeprom->initialized_for_connected_device = 1;
f14f84d3 2393 return 0;
b8aa7b35 2394}
263d3ba0
UB
2395/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2396void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2397{
2398 int i;
2399 for(i=0; i<5;i++)
2400 {
2401 int mode_low, mode_high;
2402 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2403 mode_low = CBUSH_TRISTATE;
2404 else
2405 mode_low = eeprom->cbus_function[2*i];
2406 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2407 mode_high = CBUSH_TRISTATE;
2408 else
2409 mode_high = eeprom->cbus_function[2*i];
b8aa7b35 2410
263d3ba0
UB
2411 output[0x18+i] = mode_high <<4 | mode_low;
2412 }
2413}
c8f69686
UB
2414/* Return the bits for the encoded EEPROM Structure of a requested Mode
2415 *
2416 */
2417static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2418{
2419 switch (chip)
2420 {
2421 case TYPE_2232H:
2422 case TYPE_2232C:
2423 {
2424 switch (type)
2425 {
2426 case CHANNEL_IS_UART: return 0;
2427 case CHANNEL_IS_FIFO: return 0x01;
2428 case CHANNEL_IS_OPTO: return 0x02;
2429 case CHANNEL_IS_CPU : return 0x04;
2430 default: return 0;
2431 }
2432 }
2433 case TYPE_232H:
2434 {
2435 switch (type)
2436 {
2437 case CHANNEL_IS_UART : return 0;
2438 case CHANNEL_IS_FIFO : return 0x01;
2439 case CHANNEL_IS_OPTO : return 0x02;
2440 case CHANNEL_IS_CPU : return 0x04;
2441 case CHANNEL_IS_FT1284 : return 0x08;
2442 default: return 0;
2443 }
2444 }
2445 default: return 0;
2446 }
2447 return 0;
2448}
2449
1941414d 2450/**
a35aa9bd 2451 Build binary buffer from ftdi_eeprom structure.
22a1b5c1 2452 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2453
a35aa9bd 2454 \param ftdi pointer to ftdi_context
1941414d 2455
516ebfb1 2456 \retval >=0: size of eeprom user area in bytes
22a1b5c1 2457 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2c1e2bde
TJ
2458 \retval -2: Invalid eeprom or ftdi pointer
2459 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2460 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2461 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2b9a3c82 2462 \retval -6: No connected EEPROM or EEPROM Type unknown
b8aa7b35 2463*/
a35aa9bd 2464int ftdi_eeprom_build(struct ftdi_context *ftdi)
a8f46ddc 2465{
e2bbd9af 2466 unsigned char i, j, eeprom_size_mask;
b8aa7b35
TJ
2467 unsigned short checksum, value;
2468 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
516ebfb1 2469 int user_area_size;
c0a96aed 2470 struct ftdi_eeprom *eeprom;
a35aa9bd 2471 unsigned char * output;
b8aa7b35 2472
c0a96aed 2473 if (ftdi == NULL)
cc9c9d58 2474 ftdi_error_return(-2,"No context");
c0a96aed 2475 if (ftdi->eeprom == NULL)
cc9c9d58 2476 ftdi_error_return(-2,"No eeprom structure");
c0a96aed
UB
2477
2478 eeprom= ftdi->eeprom;
a35aa9bd 2479 output = eeprom->buf;
22a1b5c1 2480
56ac0383 2481 if (eeprom->chip == -1)
2c1e2bde 2482 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2b9a3c82 2483
f75bf139
UB
2484 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2485 eeprom->size = 0x100;
2486 else
2487 eeprom->size = 0x80;
2488
b8aa7b35 2489 if (eeprom->manufacturer != NULL)
d9f0cce7 2490 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2491 if (eeprom->product != NULL)
d9f0cce7 2492 product_size = strlen(eeprom->product);
b8aa7b35 2493 if (eeprom->serial != NULL)
d9f0cce7 2494 serial_size = strlen(eeprom->serial);
b8aa7b35 2495
814710ba
TJ
2496 // eeprom size check
2497 switch (ftdi->type)
2498 {
2499 case TYPE_AM:
2500 case TYPE_BM:
2501 user_area_size = 96; // base size for strings (total of 48 characters)
2502 break;
2503 case TYPE_2232C:
56ac0383
TJ
2504 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2505 break;
814710ba 2506 case TYPE_R:
56ac0383
TJ
2507 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2508 break;
814710ba
TJ
2509 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2510 case TYPE_4232H:
56ac0383 2511 user_area_size = 86;
118c4561 2512 break;
c1c3d564
UB
2513 case TYPE_232H:
2514 user_area_size = 80;
2515 break;
2c1e2bde
TJ
2516 default:
2517 user_area_size = 0;
56ac0383 2518 break;
665cda04
UB
2519 }
2520 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
814710ba 2521
516ebfb1
TJ
2522 if (user_area_size < 0)
2523 ftdi_error_return(-1,"eeprom size exceeded");
b8aa7b35
TJ
2524
2525 // empty eeprom
a35aa9bd 2526 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
b8aa7b35 2527
93738c79
UB
2528 // Bytes and Bits set for all Types
2529
b8aa7b35
TJ
2530 // Addr 02: Vendor ID
2531 output[0x02] = eeprom->vendor_id;
2532 output[0x03] = eeprom->vendor_id >> 8;
2533
2534 // Addr 04: Product ID
2535 output[0x04] = eeprom->product_id;
2536 output[0x05] = eeprom->product_id >> 8;
2537
2538 // Addr 06: Device release number (0400h for BM features)
2539 output[0x06] = 0x00;
814710ba
TJ
2540 switch (ftdi->type)
2541 {
f505134f
HK
2542 case TYPE_AM:
2543 output[0x07] = 0x02;
2544 break;
2545 case TYPE_BM:
2546 output[0x07] = 0x04;
2547 break;
2548 case TYPE_2232C:
2549 output[0x07] = 0x05;
2550 break;
2551 case TYPE_R:
2552 output[0x07] = 0x06;
2553 break;
56ac0383 2554 case TYPE_2232H:
6123f7ab
UB
2555 output[0x07] = 0x07;
2556 break;
56ac0383 2557 case TYPE_4232H:
6123f7ab
UB
2558 output[0x07] = 0x08;
2559 break;
c7e4c09e
UB
2560 case TYPE_232H:
2561 output[0x07] = 0x09;
2562 break;
f505134f
HK
2563 default:
2564 output[0x07] = 0x00;
2565 }
b8aa7b35
TJ
2566
2567 // Addr 08: Config descriptor
8fae3e8e
TJ
2568 // Bit 7: always 1
2569 // Bit 6: 1 if this device is self powered, 0 if bus powered
2570 // Bit 5: 1 if this device uses remote wakeup
37186e34 2571 // Bit 4-0: reserved - 0
5a1dcd55 2572 j = 0x80;
b8aa7b35 2573 if (eeprom->self_powered == 1)
5a1dcd55 2574 j |= 0x40;
b8aa7b35 2575 if (eeprom->remote_wakeup == 1)
5a1dcd55 2576 j |= 0x20;
b8aa7b35
TJ
2577 output[0x08] = j;
2578
2579 // Addr 09: Max power consumption: max power = value * 2 mA
bb5ec68a 2580 output[0x09] = eeprom->max_power>>1;
d9f0cce7 2581
56ac0383 2582 if (ftdi->type != TYPE_AM)
93738c79
UB
2583 {
2584 // Addr 0A: Chip configuration
2585 // Bit 7: 0 - reserved
2586 // Bit 6: 0 - reserved
2587 // Bit 5: 0 - reserved
56ac0383 2588 // Bit 4: 1 - Change USB version
93738c79
UB
2589 // Bit 3: 1 - Use the serial number string
2590 // Bit 2: 1 - Enable suspend pull downs for lower power
2591 // Bit 1: 1 - Out EndPoint is Isochronous
2592 // Bit 0: 1 - In EndPoint is Isochronous
2593 //
2594 j = 0;
2595 if (eeprom->in_is_isochronous == 1)
2596 j = j | 1;
2597 if (eeprom->out_is_isochronous == 1)
2598 j = j | 2;
2599 output[0x0A] = j;
2600 }
f505134f 2601
b8aa7b35 2602 // Dynamic content
93738c79
UB
2603 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2604 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
c7e4c09e 2605 // 0xa0 (TYPE_232H)
93738c79 2606 i = 0;
56ac0383
TJ
2607 switch (ftdi->type)
2608 {
c7e4c09e
UB
2609 case TYPE_232H:
2610 i += 2;
56ac0383
TJ
2611 case TYPE_2232H:
2612 case TYPE_4232H:
2613 i += 2;
2614 case TYPE_R:
2615 i += 2;
2616 case TYPE_2232C:
2617 i += 2;
2618 case TYPE_AM:
2619 case TYPE_BM:
2620 i += 0x94;
f505134f 2621 }
93738c79 2622 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
e2bbd9af 2623 eeprom_size_mask = eeprom->size -1;
c201f80f 2624
93738c79
UB
2625 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2626 // Addr 0F: Length of manufacturer string
22d12cda 2627 // Output manufacturer
93738c79 2628 output[0x0E] = i; // calculate offset
e2bbd9af
TJ
2629 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2630 output[i & eeprom_size_mask] = 0x03, i++; // type: string
22d12cda
TJ
2631 for (j = 0; j < manufacturer_size; j++)
2632 {
e2bbd9af
TJ
2633 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2634 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2635 }
93738c79 2636 output[0x0F] = manufacturer_size*2 + 2;
b8aa7b35 2637
93738c79
UB
2638 // Addr 10: Offset of the product string + 0x80, calculated later
2639 // Addr 11: Length of product string
c201f80f 2640 output[0x10] = i | 0x80; // calculate offset
e2bbd9af
TJ
2641 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2642 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2643 for (j = 0; j < product_size; j++)
2644 {
e2bbd9af
TJ
2645 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2646 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2647 }
93738c79 2648 output[0x11] = product_size*2 + 2;
37186e34 2649
93738c79
UB
2650 // Addr 12: Offset of the serial string + 0x80, calculated later
2651 // Addr 13: Length of serial string
c201f80f 2652 output[0x12] = i | 0x80; // calculate offset
e2bbd9af
TJ
2653 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2654 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2655 for (j = 0; j < serial_size; j++)
2656 {
e2bbd9af
TJ
2657 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2658 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2659 }
c2700d6d
TJ
2660
2661 // Legacy port name and PnP fields for FT2232 and newer chips
2662 if (ftdi->type > TYPE_BM)
2663 {
2664 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2665 i++;
2666 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2667 i++;
2668 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2669 i++;
2670 }
802a949e 2671
93738c79 2672 output[0x13] = serial_size*2 + 2;
b8aa7b35 2673
56ac0383 2674 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
bf2f6ef7 2675 {
d4b5af27 2676 if (eeprom->use_serial)
bf2f6ef7
UB
2677 output[0x0A] |= USE_SERIAL_NUM;
2678 else
2679 output[0x0A] &= ~USE_SERIAL_NUM;
2680 }
3802140c
UB
2681
2682 /* Bytes and Bits specific to (some) types
2683 Write linear, as this allows easier fixing*/
56ac0383
TJ
2684 switch (ftdi->type)
2685 {
2686 case TYPE_AM:
2687 break;
2688 case TYPE_BM:
2689 output[0x0C] = eeprom->usb_version & 0xff;
2690 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2691 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2692 output[0x0A] |= USE_USB_VERSION_BIT;
2693 else
2694 output[0x0A] &= ~USE_USB_VERSION_BIT;
caec1294 2695
56ac0383
TJ
2696 break;
2697 case TYPE_2232C:
3802140c 2698
c8f69686 2699 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
56ac0383
TJ
2700 if ( eeprom->channel_a_driver == DRIVER_VCP)
2701 output[0x00] |= DRIVER_VCP;
2702 else
2703 output[0x00] &= ~DRIVER_VCP;
4e74064b 2704
56ac0383
TJ
2705 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2706 output[0x00] |= HIGH_CURRENT_DRIVE;
2707 else
2708 output[0x00] &= ~HIGH_CURRENT_DRIVE;
3802140c 2709
c8f69686 2710 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
56ac0383
TJ
2711 if ( eeprom->channel_b_driver == DRIVER_VCP)
2712 output[0x01] |= DRIVER_VCP;
2713 else
2714 output[0x01] &= ~DRIVER_VCP;
4e74064b 2715
56ac0383
TJ
2716 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2717 output[0x01] |= HIGH_CURRENT_DRIVE;
2718 else
2719 output[0x01] &= ~HIGH_CURRENT_DRIVE;
3802140c 2720
56ac0383
TJ
2721 if (eeprom->in_is_isochronous == 1)
2722 output[0x0A] |= 0x1;
2723 else
2724 output[0x0A] &= ~0x1;
2725 if (eeprom->out_is_isochronous == 1)
2726 output[0x0A] |= 0x2;
2727 else
2728 output[0x0A] &= ~0x2;
2729 if (eeprom->suspend_pull_downs == 1)
2730 output[0x0A] |= 0x4;
2731 else
2732 output[0x0A] &= ~0x4;
2733 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2734 output[0x0A] |= USE_USB_VERSION_BIT;
2735 else
2736 output[0x0A] &= ~USE_USB_VERSION_BIT;
4e74064b 2737
56ac0383
TJ
2738 output[0x0C] = eeprom->usb_version & 0xff;
2739 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2740 output[0x14] = eeprom->chip;
2741 break;
2742 case TYPE_R:
2743 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2744 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2745 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
4e74064b 2746
56ac0383
TJ
2747 if (eeprom->suspend_pull_downs == 1)
2748 output[0x0A] |= 0x4;
2749 else
2750 output[0x0A] &= ~0x4;
2751 output[0x0B] = eeprom->invert;
2752 output[0x0C] = eeprom->usb_version & 0xff;
2753 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
4e74064b 2754
56ac0383
TJ
2755 if (eeprom->cbus_function[0] > CBUS_BB)
2756 output[0x14] = CBUS_TXLED;
2757 else
2758 output[0x14] = eeprom->cbus_function[0];
4e74064b 2759
56ac0383
TJ
2760 if (eeprom->cbus_function[1] > CBUS_BB)
2761 output[0x14] |= CBUS_RXLED<<4;
2762 else
2763 output[0x14] |= eeprom->cbus_function[1]<<4;
4e74064b 2764
56ac0383
TJ
2765 if (eeprom->cbus_function[2] > CBUS_BB)
2766 output[0x15] = CBUS_TXDEN;
2767 else
2768 output[0x15] = eeprom->cbus_function[2];
4e74064b 2769
56ac0383
TJ
2770 if (eeprom->cbus_function[3] > CBUS_BB)
2771 output[0x15] |= CBUS_PWREN<<4;
2772 else
2773 output[0x15] |= eeprom->cbus_function[3]<<4;
4e74064b 2774
56ac0383
TJ
2775 if (eeprom->cbus_function[4] > CBUS_CLK6)
2776 output[0x16] = CBUS_SLEEP;
2777 else
2778 output[0x16] = eeprom->cbus_function[4];
2779 break;
2780 case TYPE_2232H:
c8f69686 2781 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
56ac0383
TJ
2782 if ( eeprom->channel_a_driver == DRIVER_VCP)
2783 output[0x00] |= DRIVER_VCP;
2784 else
2785 output[0x00] &= ~DRIVER_VCP;
6e6a1c3f 2786
c8f69686 2787 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
56ac0383
TJ
2788 if ( eeprom->channel_b_driver == DRIVER_VCP)
2789 output[0x01] |= DRIVER_VCP;
2790 else
2791 output[0x01] &= ~DRIVER_VCP;
2792 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2793 output[0x01] |= SUSPEND_DBUS7_BIT;
2794 else
2795 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2796
2797 if (eeprom->suspend_pull_downs == 1)
2798 output[0x0A] |= 0x4;
2799 else
2800 output[0x0A] &= ~0x4;
2801
2802 if (eeprom->group0_drive > DRIVE_16MA)
2803 output[0x0c] |= DRIVE_16MA;
2804 else
2805 output[0x0c] |= eeprom->group0_drive;
2806 if (eeprom->group0_schmitt == IS_SCHMITT)
2807 output[0x0c] |= IS_SCHMITT;
2808 if (eeprom->group0_slew == SLOW_SLEW)
2809 output[0x0c] |= SLOW_SLEW;
2810
2811 if (eeprom->group1_drive > DRIVE_16MA)
2812 output[0x0c] |= DRIVE_16MA<<4;
2813 else
2814 output[0x0c] |= eeprom->group1_drive<<4;
2815 if (eeprom->group1_schmitt == IS_SCHMITT)
2816 output[0x0c] |= IS_SCHMITT<<4;
2817 if (eeprom->group1_slew == SLOW_SLEW)
2818 output[0x0c] |= SLOW_SLEW<<4;
2819
2820 if (eeprom->group2_drive > DRIVE_16MA)
2821 output[0x0d] |= DRIVE_16MA;
2822 else
2823 output[0x0d] |= eeprom->group2_drive;
2824 if (eeprom->group2_schmitt == IS_SCHMITT)
2825 output[0x0d] |= IS_SCHMITT;
2826 if (eeprom->group2_slew == SLOW_SLEW)
2827 output[0x0d] |= SLOW_SLEW;
2828
2829 if (eeprom->group3_drive > DRIVE_16MA)
2830 output[0x0d] |= DRIVE_16MA<<4;
2831 else
2832 output[0x0d] |= eeprom->group3_drive<<4;
2833 if (eeprom->group3_schmitt == IS_SCHMITT)
2834 output[0x0d] |= IS_SCHMITT<<4;
2835 if (eeprom->group3_slew == SLOW_SLEW)
2836 output[0x0d] |= SLOW_SLEW<<4;
3802140c 2837
56ac0383 2838 output[0x18] = eeprom->chip;
3802140c 2839
56ac0383
TJ
2840 break;
2841 case TYPE_4232H:
be4bae37
AL
2842 if (eeprom->channel_a_driver == DRIVER_VCP)
2843 output[0x00] |= DRIVER_VCP;
2844 else
2845 output[0x00] &= ~DRIVER_VCP;
2846 if (eeprom->channel_b_driver == DRIVER_VCP)
2847 output[0x01] |= DRIVER_VCP;
2848 else
2849 output[0x01] &= ~DRIVER_VCP;
2850 if (eeprom->channel_c_driver == DRIVER_VCP)
2851 output[0x00] |= (DRIVER_VCP << 4);
2852 else
2853 output[0x00] &= ~(DRIVER_VCP << 4);
2854 if (eeprom->channel_d_driver == DRIVER_VCP)
2855 output[0x01] |= (DRIVER_VCP << 4);
2856 else
2857 output[0x01] &= ~(DRIVER_VCP << 4);
2858
2859 if (eeprom->suspend_pull_downs == 1)
2860 output[0x0a] |= 0x4;
2861 else
2862 output[0x0a] &= ~0x4;
2863
2864 if (eeprom->channel_a_rs485enable)
2865 output[0x0b] |= CHANNEL_IS_RS485 << 0;
2866 else
2867 output[0x0b] &= ~(CHANNEL_IS_RS485 << 0);
2868 if (eeprom->channel_b_rs485enable)
2869 output[0x0b] |= CHANNEL_IS_RS485 << 1;
2870 else
2871 output[0x0b] &= ~(CHANNEL_IS_RS485 << 1);
2872 if (eeprom->channel_c_rs485enable)
2873 output[0x0b] |= CHANNEL_IS_RS485 << 2;
2874 else
2875 output[0x0b] &= ~(CHANNEL_IS_RS485 << 2);
2876 if (eeprom->channel_d_rs485enable)
2877 output[0x0b] |= CHANNEL_IS_RS485 << 3;
2878 else
2879 output[0x0b] &= ~(CHANNEL_IS_RS485 << 3);
2880
2881 if (eeprom->group0_drive > DRIVE_16MA)
2882 output[0x0c] |= DRIVE_16MA;
2883 else
2884 output[0x0c] |= eeprom->group0_drive;
2885 if (eeprom->group0_schmitt == IS_SCHMITT)
2886 output[0x0c] |= IS_SCHMITT;
2887 if (eeprom->group0_slew == SLOW_SLEW)
2888 output[0x0c] |= SLOW_SLEW;
2889
2890 if (eeprom->group1_drive > DRIVE_16MA)
2891 output[0x0c] |= DRIVE_16MA<<4;
2892 else
2893 output[0x0c] |= eeprom->group1_drive<<4;
2894 if (eeprom->group1_schmitt == IS_SCHMITT)
2895 output[0x0c] |= IS_SCHMITT<<4;
2896 if (eeprom->group1_slew == SLOW_SLEW)
2897 output[0x0c] |= SLOW_SLEW<<4;
2898
2899 if (eeprom->group2_drive > DRIVE_16MA)
2900 output[0x0d] |= DRIVE_16MA;
2901 else
2902 output[0x0d] |= eeprom->group2_drive;
2903 if (eeprom->group2_schmitt == IS_SCHMITT)
2904 output[0x0d] |= IS_SCHMITT;
2905 if (eeprom->group2_slew == SLOW_SLEW)
2906 output[0x0d] |= SLOW_SLEW;
2907
2908 if (eeprom->group3_drive > DRIVE_16MA)
2909 output[0x0d] |= DRIVE_16MA<<4;
2910 else
2911 output[0x0d] |= eeprom->group3_drive<<4;
2912 if (eeprom->group3_schmitt == IS_SCHMITT)
2913 output[0x0d] |= IS_SCHMITT<<4;
2914 if (eeprom->group3_slew == SLOW_SLEW)
2915 output[0x0d] |= SLOW_SLEW<<4;
2916
c7e4c09e 2917 output[0x18] = eeprom->chip;
be4bae37 2918
c7e4c09e
UB
2919 break;
2920 case TYPE_232H:
c8f69686 2921 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
ac4a82a5
UB
2922 if ( eeprom->channel_a_driver == DRIVER_VCP)
2923 output[0x00] |= DRIVER_VCPH;
2924 else
2925 output[0x00] &= ~DRIVER_VCPH;
837a71d6
UB
2926 if (eeprom->powersave)
2927 output[0x01] |= POWER_SAVE_DISABLE_H;
2928 else
2929 output[0x01] &= ~POWER_SAVE_DISABLE_H;
18199b76
UB
2930 if (eeprom->clock_polarity)
2931 output[0x01] |= FT1284_CLK_IDLE_STATE;
2932 else
2933 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
2934 if (eeprom->data_order)
2935 output[0x01] |= FT1284_DATA_LSB;
2936 else
2937 output[0x01] &= ~FT1284_DATA_LSB;
2938 if (eeprom->flow_control)
2939 output[0x01] |= FT1284_FLOW_CONTROL;
2940 else
2941 output[0x01] &= ~FT1284_FLOW_CONTROL;
91d7a201
UB
2942 if (eeprom->group0_drive > DRIVE_16MA)
2943 output[0x0c] |= DRIVE_16MA;
2944 else
2945 output[0x0c] |= eeprom->group0_drive;
2946 if (eeprom->group0_schmitt == IS_SCHMITT)
2947 output[0x0c] |= IS_SCHMITT;
2948 if (eeprom->group0_slew == SLOW_SLEW)
2949 output[0x0c] |= SLOW_SLEW;
2950
2951 if (eeprom->group1_drive > DRIVE_16MA)
2952 output[0x0d] |= DRIVE_16MA;
2953 else
2954 output[0x0d] |= eeprom->group1_drive;
2955 if (eeprom->group1_schmitt == IS_SCHMITT)
2956 output[0x0d] |= IS_SCHMITT;
2957 if (eeprom->group1_slew == SLOW_SLEW)
2958 output[0x0d] |= SLOW_SLEW;
2959
263d3ba0
UB
2960 set_ft232h_cbus(eeprom, output);
2961
c7e4c09e
UB
2962 output[0x1e] = eeprom->chip;
2963 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
2964 break;
2965
3802140c
UB
2966 }
2967
cbf65673 2968 // calculate checksum
b8aa7b35 2969 checksum = 0xAAAA;
d9f0cce7 2970
22d12cda
TJ
2971 for (i = 0; i < eeprom->size/2-1; i++)
2972 {
d9f0cce7
TJ
2973 value = output[i*2];
2974 value += output[(i*2)+1] << 8;
b8aa7b35 2975
d9f0cce7
TJ
2976 checksum = value^checksum;
2977 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
2978 }
2979
c201f80f
TJ
2980 output[eeprom->size-2] = checksum;
2981 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 2982
516ebfb1 2983 return user_area_size;
b8aa7b35 2984}
c8f69686
UB
2985/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
2986 * EEPROM structure
2987 *
2988 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
2989 */
2990static unsigned char bit2type(unsigned char bits)
0fc2170c
UB
2991{
2992 switch (bits)
2993 {
c8f69686
UB
2994 case 0: return CHANNEL_IS_UART;
2995 case 1: return CHANNEL_IS_FIFO;
2996 case 2: return CHANNEL_IS_OPTO;
2997 case 4: return CHANNEL_IS_CPU;
2998 case 8: return CHANNEL_IS_FT1284;
0fc2170c
UB
2999 default:
3000 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
3001 bits);
3002 }
3003 return 0;
3004}
4af1d1bb
MK
3005/**
3006 Decode binary EEPROM image into an ftdi_eeprom structure.
3007
a35aa9bd
UB
3008 \param ftdi pointer to ftdi_context
3009 \param verbose Decode EEPROM on stdout
56ac0383 3010
4af1d1bb
MK
3011 \retval 0: all fine
3012 \retval -1: something went wrong
3013
3014 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
3015 FIXME: Strings are malloc'ed here and should be freed somewhere
3016*/
a35aa9bd 3017int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
b56d5a64
MK
3018{
3019 unsigned char i, j;
3020 unsigned short checksum, eeprom_checksum, value;
3021 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
f2cd9fd5 3022 int eeprom_size;
c0a96aed 3023 struct ftdi_eeprom *eeprom;
a35aa9bd 3024 unsigned char *buf = ftdi->eeprom->buf;
38801bf8 3025 int release;
22a1b5c1 3026
c0a96aed 3027 if (ftdi == NULL)
cc9c9d58 3028 ftdi_error_return(-1,"No context");
c0a96aed 3029 if (ftdi->eeprom == NULL)
6cd4f922 3030 ftdi_error_return(-1,"No eeprom structure");
56ac0383 3031
c0a96aed 3032 eeprom = ftdi->eeprom;
a35aa9bd 3033 eeprom_size = eeprom->size;
b56d5a64 3034
b56d5a64
MK
3035 // Addr 02: Vendor ID
3036 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
3037
3038 // Addr 04: Product ID
3039 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
22d12cda 3040
38801bf8 3041 release = buf[0x06] + (buf[0x07]<<8);
b56d5a64
MK
3042
3043 // Addr 08: Config descriptor
3044 // Bit 7: always 1
3045 // Bit 6: 1 if this device is self powered, 0 if bus powered
3046 // Bit 5: 1 if this device uses remote wakeup
f6ef2983 3047 eeprom->self_powered = buf[0x08] & 0x40;
814710ba 3048 eeprom->remote_wakeup = buf[0x08] & 0x20;
b56d5a64
MK
3049
3050 // Addr 09: Max power consumption: max power = value * 2 mA
3051 eeprom->max_power = buf[0x09];
3052
3053 // Addr 0A: Chip configuration
3054 // Bit 7: 0 - reserved
3055 // Bit 6: 0 - reserved
3056 // Bit 5: 0 - reserved
caec1294 3057 // Bit 4: 1 - Change USB version on BM and 2232C
b56d5a64
MK
3058 // Bit 3: 1 - Use the serial number string
3059 // Bit 2: 1 - Enable suspend pull downs for lower power
3060 // Bit 1: 1 - Out EndPoint is Isochronous
3061 // Bit 0: 1 - In EndPoint is Isochronous
3062 //
8d3fe5c9
UB
3063 eeprom->in_is_isochronous = buf[0x0A]&0x01;
3064 eeprom->out_is_isochronous = buf[0x0A]&0x02;
3065 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
d4b5af27 3066 eeprom->use_serial = (buf[0x0A] & USE_SERIAL_NUM)?1:0;
caec1294 3067 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
b56d5a64 3068
b1859923 3069 // Addr 0C: USB version low byte when 0x0A
56ac0383 3070 // Addr 0D: USB version high byte when 0x0A
b1859923 3071 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
b56d5a64
MK
3072
3073 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3074 // Addr 0F: Length of manufacturer string
3075 manufacturer_size = buf[0x0F]/2;
56ac0383 3076 if (eeprom->manufacturer)
74e8e79d 3077 free(eeprom->manufacturer);
56ac0383 3078 if (manufacturer_size > 0)
acc1fa05
UB
3079 {
3080 eeprom->manufacturer = malloc(manufacturer_size);
3081 if (eeprom->manufacturer)
3082 {
3083 // Decode manufacturer
84ec032f 3084 i = buf[0x0E] & (eeprom_size -1); // offset
acc1fa05
UB
3085 for (j=0;j<manufacturer_size-1;j++)
3086 {
3087 eeprom->manufacturer[j] = buf[2*j+i+2];
3088 }
3089 eeprom->manufacturer[j] = '\0';
3090 }
3091 }
b56d5a64
MK
3092 else eeprom->manufacturer = NULL;
3093
3094 // Addr 10: Offset of the product string + 0x80, calculated later
3095 // Addr 11: Length of product string
56ac0383 3096 if (eeprom->product)
74e8e79d 3097 free(eeprom->product);
b56d5a64 3098 product_size = buf[0x11]/2;
acc1fa05
UB
3099 if (product_size > 0)
3100 {
3101 eeprom->product = malloc(product_size);
56ac0383 3102 if (eeprom->product)
acc1fa05
UB
3103 {
3104 // Decode product name
84ec032f 3105 i = buf[0x10] & (eeprom_size -1); // offset
acc1fa05
UB
3106 for (j=0;j<product_size-1;j++)
3107 {
3108 eeprom->product[j] = buf[2*j+i+2];
3109 }
3110 eeprom->product[j] = '\0';
3111 }
3112 }
b56d5a64
MK
3113 else eeprom->product = NULL;
3114
3115 // Addr 12: Offset of the serial string + 0x80, calculated later
3116 // Addr 13: Length of serial string
56ac0383 3117 if (eeprom->serial)
74e8e79d 3118 free(eeprom->serial);
b56d5a64 3119 serial_size = buf[0x13]/2;
acc1fa05
UB
3120 if (serial_size > 0)
3121 {
3122 eeprom->serial = malloc(serial_size);
56ac0383 3123 if (eeprom->serial)
acc1fa05
UB
3124 {
3125 // Decode serial
84ec032f 3126 i = buf[0x12] & (eeprom_size -1); // offset
acc1fa05
UB
3127 for (j=0;j<serial_size-1;j++)
3128 {
3129 eeprom->serial[j] = buf[2*j+i+2];
3130 }
3131 eeprom->serial[j] = '\0';
3132 }
3133 }
b56d5a64
MK
3134 else eeprom->serial = NULL;
3135
b56d5a64
MK
3136 // verify checksum
3137 checksum = 0xAAAA;
3138
22d12cda
TJ
3139 for (i = 0; i < eeprom_size/2-1; i++)
3140 {
b56d5a64
MK
3141 value = buf[i*2];
3142 value += buf[(i*2)+1] << 8;
3143
3144 checksum = value^checksum;
3145 checksum = (checksum << 1) | (checksum >> 15);
3146 }
3147
3148 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3149
22d12cda
TJ
3150 if (eeprom_checksum != checksum)
3151 {
3152 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
cc9c9d58 3153 ftdi_error_return(-1,"EEPROM checksum error");
4af1d1bb
MK
3154 }
3155
eb498cff 3156 eeprom->channel_a_type = 0;
aa099f46 3157 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
f6ef2983 3158 {
6cd4f922 3159 eeprom->chip = -1;
f6ef2983 3160 }
56ac0383 3161 else if (ftdi->type == TYPE_2232C)
f6ef2983 3162 {
0fc2170c 3163 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2cde7c52
UB
3164 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3165 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
3166 eeprom->channel_b_type = buf[0x01] & 0x7;
3167 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3168 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
6cd4f922 3169 eeprom->chip = buf[0x14];
065edc58 3170 }
56ac0383 3171 else if (ftdi->type == TYPE_R)
564b2716 3172 {
2cde7c52 3173 /* TYPE_R flags D2XX, not VCP as all others*/
be4bae37 3174 eeprom->channel_a_driver = ~buf[0x00] & DRIVER_VCP;
2cde7c52 3175 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
56ac0383
TJ
3176 if ( (buf[0x01]&0x40) != 0x40)
3177 fprintf(stderr,
3178 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3179 " If this happened with the\n"
3180 " EEPROM programmed by FTDI tools, please report "
3181 "to libftdi@developer.intra2net.com\n");
2cde7c52 3182
6cd4f922 3183 eeprom->chip = buf[0x16];
cecb9cb2
UB
3184 // Addr 0B: Invert data lines
3185 // Works only on FT232R, not FT245R, but no way to distinguish
07851949
UB
3186 eeprom->invert = buf[0x0B];
3187 // Addr 14: CBUS function: CBUS0, CBUS1
3188 // Addr 15: CBUS function: CBUS2, CBUS3
3189 // Addr 16: CBUS function: CBUS5
3190 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3191 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3192 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3193 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3194 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
564b2716 3195 }
be4bae37 3196 else if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
db099ec5 3197 {
2cde7c52 3198 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2cde7c52
UB
3199 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3200
56ac0383 3201 if (ftdi->type == TYPE_2232H)
be4bae37
AL
3202 {
3203 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3204 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
ec0dcd3f 3205 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
be4bae37
AL
3206 }
3207 else
3208 {
3209 eeprom->channel_c_driver = (buf[0x00] >> 4) & DRIVER_VCP;
3210 eeprom->channel_d_driver = (buf[0x01] >> 4) & DRIVER_VCP;
3211 eeprom->channel_a_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 0);
3212 eeprom->channel_b_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 1);
3213 eeprom->channel_c_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 2);
3214 eeprom->channel_d_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 3);
3215 }
2cde7c52 3216
6cd4f922 3217 eeprom->chip = buf[0x18];
db099ec5
UB
3218 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3219 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3220 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3221 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3222 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3223 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3224 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3225 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3226 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3227 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3228 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3229 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
947d9552 3230 }
c7e4c09e
UB
3231 else if (ftdi->type == TYPE_232H)
3232 {
263d3ba0
UB
3233 int i;
3234
ac4a82a5
UB
3235 eeprom->channel_a_type = buf[0x00] & 0xf;
3236 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
18199b76
UB
3237 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3238 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3239 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
837a71d6 3240 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
91d7a201
UB
3241 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3242 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3243 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3244 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3245 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3246 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3247
263d3ba0
UB
3248 for(i=0; i<5; i++)
3249 {
3250 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3251 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3252 }
c7e4c09e
UB
3253 eeprom->chip = buf[0x1e];
3254 /*FIXME: Decipher more values*/
3255 }
56ac0383
TJ
3256
3257 if (verbose)
f6ef2983 3258 {
c8f69686 3259 char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
f6ef2983
UB
3260 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3261 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
38801bf8 3262 fprintf(stdout, "Release: 0x%04x\n",release);
f6ef2983 3263
56ac0383 3264 if (eeprom->self_powered)
f6ef2983
UB
3265 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3266 else
1cd815ad 3267 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
f6ef2983 3268 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
56ac0383 3269 if (eeprom->manufacturer)
f6ef2983 3270 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
56ac0383 3271 if (eeprom->product)
f6ef2983 3272 fprintf(stdout, "Product: %s\n",eeprom->product);
56ac0383 3273 if (eeprom->serial)
f6ef2983 3274 fprintf(stdout, "Serial: %s\n",eeprom->serial);
e107f509 3275 fprintf(stdout, "Checksum : %04x\n", checksum);
6cd4f922
UB
3276 if (ftdi->type == TYPE_R)
3277 fprintf(stdout, "Internal EEPROM\n");
3278 else if (eeprom->chip >= 0x46)
3279 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
56ac0383
TJ
3280 if (eeprom->suspend_dbus7)
3281 fprintf(stdout, "Suspend on DBUS7\n");
3282 if (eeprom->suspend_pull_downs)
fb9bfdd1 3283 fprintf(stdout, "Pull IO pins low during suspend\n");
837a71d6
UB
3284 if(eeprom->powersave)
3285 {
3286 if(ftdi->type >= TYPE_232H)
3287 fprintf(stdout,"Enter low power state on ACBUS7\n");
3288 }
56ac0383 3289 if (eeprom->remote_wakeup)
fb9bfdd1 3290 fprintf(stdout, "Enable Remote Wake Up\n");
802a949e 3291 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
db099ec5 3292 if (ftdi->type >= TYPE_2232C)
56ac0383 3293 fprintf(stdout,"Channel A has Mode %s%s%s\n",
e107f509 3294 channel_mode[eeprom->channel_a_type],
2cde7c52
UB
3295 (eeprom->channel_a_driver)?" VCP":"",
3296 (eeprom->high_current_a)?" High Current IO":"");
18199b76
UB
3297 if (ftdi->type >= TYPE_232H)
3298 {
3299 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3300 (eeprom->clock_polarity)?"HIGH":"LOW",
3301 (eeprom->data_order)?"LSB":"MSB",
3302 (eeprom->flow_control)?"":"No ");
3303 }
c7e4c09e 3304 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
56ac0383 3305 fprintf(stdout,"Channel B has Mode %s%s%s\n",
e107f509 3306 channel_mode[eeprom->channel_b_type],
2cde7c52
UB
3307 (eeprom->channel_b_driver)?" VCP":"",
3308 (eeprom->high_current_b)?" High Current IO":"");
caec1294 3309 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
56ac0383 3310 eeprom->use_usb_version == USE_USB_VERSION_BIT)
caec1294
UB
3311 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3312
56ac0383 3313 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
db099ec5
UB
3314 {
3315 fprintf(stdout,"%s has %d mA drive%s%s\n",
3316 (ftdi->type == TYPE_2232H)?"AL":"A",
3317 (eeprom->group0_drive+1) *4,
3318 (eeprom->group0_schmitt)?" Schmitt Input":"",
3319 (eeprom->group0_slew)?" Slow Slew":"");
3320 fprintf(stdout,"%s has %d mA drive%s%s\n",
3321 (ftdi->type == TYPE_2232H)?"AH":"B",
3322 (eeprom->group1_drive+1) *4,
3323 (eeprom->group1_schmitt)?" Schmitt Input":"",
3324 (eeprom->group1_slew)?" Slow Slew":"");
3325 fprintf(stdout,"%s has %d mA drive%s%s\n",
3326 (ftdi->type == TYPE_2232H)?"BL":"C",
3327 (eeprom->group2_drive+1) *4,
3328 (eeprom->group2_schmitt)?" Schmitt Input":"",
3329 (eeprom->group2_slew)?" Slow Slew":"");
3330 fprintf(stdout,"%s has %d mA drive%s%s\n",
3331 (ftdi->type == TYPE_2232H)?"BH":"D",
3332 (eeprom->group3_drive+1) *4,
3333 (eeprom->group3_schmitt)?" Schmitt Input":"",
3334 (eeprom->group3_slew)?" Slow Slew":"");
3335 }
91d7a201
UB
3336 else if (ftdi->type == TYPE_232H)
3337 {
263d3ba0
UB
3338 int i;
3339 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3340 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3341 "CLK30","CLK15","CLK7_5"
3342 };
91d7a201
UB
3343 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3344 (eeprom->group0_drive+1) *4,
3345 (eeprom->group0_schmitt)?" Schmitt Input":"",
3346 (eeprom->group0_slew)?" Slow Slew":"");
3347 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3348 (eeprom->group1_drive+1) *4,
3349 (eeprom->group1_schmitt)?" Schmitt Input":"",
3350 (eeprom->group1_slew)?" Slow Slew":"");
263d3ba0
UB
3351 for (i=0; i<10; i++)
3352 {
3353 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3354 fprintf(stdout,"C%d Function: %s\n", i,
3355 cbush_mux[eeprom->cbus_function[i]]);
3356 }
91d7a201
UB
3357 }
3358
a4980043
UB
3359 if (ftdi->type == TYPE_R)
3360 {
3361 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
13f00d3c 3362 "SLEEP","CLK48","CLK24","CLK12","CLK6",
56ac0383
TJ
3363 "IOMODE","BB_WR","BB_RD"
3364 };
13f00d3c 3365 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
56ac0383
TJ
3366
3367 if (eeprom->invert)
3368 {
a4980043
UB
3369 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3370 fprintf(stdout,"Inverted bits:");
3371 for (i=0; i<8; i++)
56ac0383 3372 if ((eeprom->invert & (1<<i)) == (1<<i))
a4980043
UB
3373 fprintf(stdout," %s",r_bits[i]);
3374 fprintf(stdout,"\n");
3375 }
56ac0383 3376 for (i=0; i<5; i++)
a4980043 3377 {
56ac0383 3378 if (eeprom->cbus_function[i]<CBUS_BB)
a4980043
UB
3379 fprintf(stdout,"C%d Function: %s\n", i,
3380 cbus_mux[eeprom->cbus_function[i]]);
3381 else
17431287 3382 {
598b2334
UB
3383 if (i < 4)
3384 /* Running MPROG show that C0..3 have fixed function Synchronous
3385 Bit Bang mode */
3386 fprintf(stdout,"C%d BB Function: %s\n", i,
3387 cbus_BB[i]);
3388 else
3389 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
17431287 3390 }
a4980043
UB
3391 }
3392 }
f6ef2983 3393 }
4af1d1bb 3394 return 0;
b56d5a64
MK
3395}
3396
1941414d 3397/**
44ef02bd
UB
3398 Get a value from the decoded EEPROM structure
3399
735e81ea
TJ
3400 \param ftdi pointer to ftdi_context
3401 \param value_name Enum of the value to query
3402 \param value Pointer to store read value
44ef02bd 3403
735e81ea
TJ
3404 \retval 0: all fine
3405 \retval -1: Value doesn't exist
44ef02bd
UB
3406*/
3407int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3408{
3409 switch (value_name)
3410 {
56ac0383
TJ
3411 case VENDOR_ID:
3412 *value = ftdi->eeprom->vendor_id;
3413 break;
3414 case PRODUCT_ID:
3415 *value = ftdi->eeprom->product_id;
3416 break;
3417 case SELF_POWERED:
3418 *value = ftdi->eeprom->self_powered;
3419 break;
3420 case REMOTE_WAKEUP:
3421 *value = ftdi->eeprom->remote_wakeup;
3422 break;
3423 case IS_NOT_PNP:
3424 *value = ftdi->eeprom->is_not_pnp;
3425 break;
3426 case SUSPEND_DBUS7:
3427 *value = ftdi->eeprom->suspend_dbus7;
3428 break;
3429 case IN_IS_ISOCHRONOUS:
3430 *value = ftdi->eeprom->in_is_isochronous;
3431 break;
cffed9f5
UB
3432 case OUT_IS_ISOCHRONOUS:
3433 *value = ftdi->eeprom->out_is_isochronous;
3434 break;
56ac0383
TJ
3435 case SUSPEND_PULL_DOWNS:
3436 *value = ftdi->eeprom->suspend_pull_downs;
3437 break;
3438 case USE_SERIAL:
3439 *value = ftdi->eeprom->use_serial;
3440 break;
3441 case USB_VERSION:
3442 *value = ftdi->eeprom->usb_version;
3443 break;
cffed9f5
UB
3444 case USE_USB_VERSION:
3445 *value = ftdi->eeprom->use_usb_version;
3446 break;
56ac0383
TJ
3447 case MAX_POWER:
3448 *value = ftdi->eeprom->max_power;
3449 break;
3450 case CHANNEL_A_TYPE:
3451 *value = ftdi->eeprom->channel_a_type;
3452 break;
3453 case CHANNEL_B_TYPE:
3454 *value = ftdi->eeprom->channel_b_type;
3455 break;
3456 case CHANNEL_A_DRIVER:
3457 *value = ftdi->eeprom->channel_a_driver;
3458 break;
3459 case CHANNEL_B_DRIVER:
3460 *value = ftdi->eeprom->channel_b_driver;
3461 break;
be4bae37
AL
3462 case CHANNEL_C_DRIVER:
3463 *value = ftdi->eeprom->channel_c_driver;
3464 break;
3465 case CHANNEL_D_DRIVER:
3466 *value = ftdi->eeprom->channel_d_driver;
3467 break;
3468 case CHANNEL_A_RS485:
3469 *value = ftdi->eeprom->channel_a_rs485enable;
3470 break;
3471 case CHANNEL_B_RS485:
3472 *value = ftdi->eeprom->channel_b_rs485enable;
3473 break;
3474 case CHANNEL_C_RS485:
3475 *value = ftdi->eeprom->channel_c_rs485enable;
3476 break;
3477 case CHANNEL_D_RS485:
3478 *value = ftdi->eeprom->channel_d_rs485enable;
3479 break;
56ac0383
TJ
3480 case CBUS_FUNCTION_0:
3481 *value = ftdi->eeprom->cbus_function[0];
3482 break;
3483 case CBUS_FUNCTION_1:
3484 *value = ftdi->eeprom->cbus_function[1];
3485 break;
3486 case CBUS_FUNCTION_2:
3487 *value = ftdi->eeprom->cbus_function[2];
3488 break;
3489 case CBUS_FUNCTION_3:
3490 *value = ftdi->eeprom->cbus_function[3];
3491 break;
3492 case CBUS_FUNCTION_4:
3493 *value = ftdi->eeprom->cbus_function[4];
3494 break;
263d3ba0
UB
3495 case CBUS_FUNCTION_5:
3496 *value = ftdi->eeprom->cbus_function[5];
3497 break;
3498 case CBUS_FUNCTION_6:
3499 *value = ftdi->eeprom->cbus_function[6];
3500 break;
3501 case CBUS_FUNCTION_7:
3502 *value = ftdi->eeprom->cbus_function[7];
3503 break;
3504 case CBUS_FUNCTION_8:
3505 *value = ftdi->eeprom->cbus_function[8];
3506 break;
3507 case CBUS_FUNCTION_9:
3508 *value = ftdi->eeprom->cbus_function[8];
3509 break;
56ac0383
TJ
3510 case HIGH_CURRENT:
3511 *value = ftdi->eeprom->high_current;
3512 break;
3513 case HIGH_CURRENT_A:
3514 *value = ftdi->eeprom->high_current_a;
3515 break;
3516 case HIGH_CURRENT_B:
3517 *value = ftdi->eeprom->high_current_b;
3518 break;
3519 case INVERT:
3520 *value = ftdi->eeprom->invert;
3521 break;
3522 case GROUP0_DRIVE:
3523 *value = ftdi->eeprom->group0_drive;
3524 break;
3525 case GROUP0_SCHMITT:
3526 *value = ftdi->eeprom->group0_schmitt;
3527 break;
3528 case GROUP0_SLEW:
3529 *value = ftdi->eeprom->group0_slew;
3530 break;
3531 case GROUP1_DRIVE:
3532 *value = ftdi->eeprom->group1_drive;
3533 break;
3534 case GROUP1_SCHMITT:
3535 *value = ftdi->eeprom->group1_schmitt;
3536 break;
3537 case GROUP1_SLEW:
3538 *value = ftdi->eeprom->group1_slew;
3539 break;
3540 case GROUP2_DRIVE:
3541 *value = ftdi->eeprom->group2_drive;
3542 break;
3543 case GROUP2_SCHMITT:
3544 *value = ftdi->eeprom->group2_schmitt;
3545 break;
3546 case GROUP2_SLEW:
3547 *value = ftdi->eeprom->group2_slew;
3548 break;
3549 case GROUP3_DRIVE:
3550 *value = ftdi->eeprom->group3_drive;
3551 break;
3552 case GROUP3_SCHMITT:
3553 *value = ftdi->eeprom->group3_schmitt;
3554 break;
3555 case GROUP3_SLEW:
3556 *value = ftdi->eeprom->group3_slew;
3557 break;
837a71d6
UB
3558 case POWER_SAVE:
3559 *value = ftdi->eeprom->powersave;
3560 break;
18199b76
UB
3561 case CLOCK_POLARITY:
3562 *value = ftdi->eeprom->clock_polarity;
3563 break;
3564 case DATA_ORDER:
3565 *value = ftdi->eeprom->data_order;
3566 break;
3567 case FLOW_CONTROL:
3568 *value = ftdi->eeprom->flow_control;
3569 break;
3570 case CHIP_TYPE:
56ac0383
TJ
3571 *value = ftdi->eeprom->chip;
3572 break;
3573 case CHIP_SIZE:
3574 *value = ftdi->eeprom->size;
3575 break;
3576 default:
3577 ftdi_error_return(-1, "Request for unknown EEPROM value");
44ef02bd
UB
3578 }
3579 return 0;
3580}
3581
3582/**
3583 Set a value in the decoded EEPROM Structure
3584 No parameter checking is performed
3585
735e81ea 3586 \param ftdi pointer to ftdi_context
545f9df9 3587 \param value_name Enum of the value to set
735e81ea 3588 \param value to set
44ef02bd 3589
735e81ea
TJ
3590 \retval 0: all fine
3591 \retval -1: Value doesn't exist
3592 \retval -2: Value not user settable
44ef02bd
UB
3593*/
3594int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3595{
3596 switch (value_name)
3597 {
56ac0383
TJ
3598 case VENDOR_ID:
3599 ftdi->eeprom->vendor_id = value;
3600 break;
3601 case PRODUCT_ID:
3602 ftdi->eeprom->product_id = value;
3603 break;
3604 case SELF_POWERED:
3605 ftdi->eeprom->self_powered = value;
3606 break;
3607 case REMOTE_WAKEUP:
3608 ftdi->eeprom->remote_wakeup = value;
3609 break;
3610 case IS_NOT_PNP:
3611 ftdi->eeprom->is_not_pnp = value;
3612 break;
3613 case SUSPEND_DBUS7:
3614 ftdi->eeprom->suspend_dbus7 = value;
3615 break;
3616 case IN_IS_ISOCHRONOUS:
3617 ftdi->eeprom->in_is_isochronous = value;
3618 break;
cffed9f5
UB
3619 case OUT_IS_ISOCHRONOUS:
3620 ftdi->eeprom->out_is_isochronous = value;
3621 break;
56ac0383
TJ
3622 case SUSPEND_PULL_DOWNS:
3623 ftdi->eeprom->suspend_pull_downs = value;
3624 break;
3625 case USE_SERIAL:
3626 ftdi->eeprom->use_serial = value;
3627 break;
3628 case USB_VERSION:
3629 ftdi->eeprom->usb_version = value;
3630 break;
cffed9f5
UB
3631 case USE_USB_VERSION:
3632 ftdi->eeprom->use_usb_version = value;
3633 break;
56ac0383
TJ
3634 case MAX_POWER:
3635 ftdi->eeprom->max_power = value;
3636 break;
3637 case CHANNEL_A_TYPE:
3638 ftdi->eeprom->channel_a_type = value;
3639 break;
3640 case CHANNEL_B_TYPE:
3641 ftdi->eeprom->channel_b_type = value;
3642 break;
3643 case CHANNEL_A_DRIVER:
3644 ftdi->eeprom->channel_a_driver = value;
3645 break;
3646 case CHANNEL_B_DRIVER:
3647 ftdi->eeprom->channel_b_driver = value;
3648 break;
be4bae37
AL
3649 case CHANNEL_C_DRIVER:
3650 ftdi->eeprom->channel_c_driver = value;
3651 break;
3652 case CHANNEL_D_DRIVER:
3653 ftdi->eeprom->channel_d_driver = value;
3654 break;
3655 case CHANNEL_A_RS485:
3656 ftdi->eeprom->channel_a_rs485enable = value;
3657 break;
3658 case CHANNEL_B_RS485:
3659 ftdi->eeprom->channel_b_rs485enable = value;
3660 break;
3661 case CHANNEL_C_RS485:
3662 ftdi->eeprom->channel_c_rs485enable = value;
3663 break;
3664 case CHANNEL_D_RS485:
3665 ftdi->eeprom->channel_d_rs485enable = value;
3666 break;
56ac0383
TJ
3667 case CBUS_FUNCTION_0:
3668 ftdi->eeprom->cbus_function[0] = value;
3669 break;
3670 case CBUS_FUNCTION_1:
3671 ftdi->eeprom->cbus_function[1] = value;
3672 break;
3673 case CBUS_FUNCTION_2:
3674 ftdi->eeprom->cbus_function[2] = value;
3675 break;
3676 case CBUS_FUNCTION_3:
3677 ftdi->eeprom->cbus_function[3] = value;
3678 break;
3679 case CBUS_FUNCTION_4:
3680 ftdi->eeprom->cbus_function[4] = value;
3681 break;
263d3ba0
UB
3682 case CBUS_FUNCTION_5:
3683 ftdi->eeprom->cbus_function[5] = value;
3684 break;
3685 case CBUS_FUNCTION_6:
3686 ftdi->eeprom->cbus_function[6] = value;
3687 break;
3688 case CBUS_FUNCTION_7:
3689 ftdi->eeprom->cbus_function[7] = value;
3690 break;
3691 case CBUS_FUNCTION_8:
3692 ftdi->eeprom->cbus_function[8] = value;
3693 break;
3694 case CBUS_FUNCTION_9:
3695 ftdi->eeprom->cbus_function[9] = value;
3696 break;
56ac0383
TJ
3697 case HIGH_CURRENT:
3698 ftdi->eeprom->high_current = value;
3699 break;
3700 case HIGH_CURRENT_A:
3701 ftdi->eeprom->high_current_a = value;
3702 break;
3703 case HIGH_CURRENT_B:
3704 ftdi->eeprom->high_current_b = value;
3705 break;
3706 case INVERT:
3707 ftdi->eeprom->invert = value;
3708 break;
3709 case GROUP0_DRIVE:
3710 ftdi->eeprom->group0_drive = value;
3711 break;
3712 case GROUP0_SCHMITT:
3713 ftdi->eeprom->group0_schmitt = value;
3714 break;
3715 case GROUP0_SLEW:
3716 ftdi->eeprom->group0_slew = value;
3717 break;
3718 case GROUP1_DRIVE:
3719 ftdi->eeprom->group1_drive = value;
3720 break;
3721 case GROUP1_SCHMITT:
3722 ftdi->eeprom->group1_schmitt = value;
3723 break;
3724 case GROUP1_SLEW:
3725 ftdi->eeprom->group1_slew = value;
3726 break;
3727 case GROUP2_DRIVE:
3728 ftdi->eeprom->group2_drive = value;
3729 break;
3730 case GROUP2_SCHMITT:
3731 ftdi->eeprom->group2_schmitt = value;
3732 break;
3733 case GROUP2_SLEW:
3734 ftdi->eeprom->group2_slew = value;
3735 break;
3736 case GROUP3_DRIVE:
3737 ftdi->eeprom->group3_drive = value;
3738 break;
3739 case GROUP3_SCHMITT:
3740 ftdi->eeprom->group3_schmitt = value;
3741 break;
3742 case GROUP3_SLEW:
3743 ftdi->eeprom->group3_slew = value;
3744 break;
3745 case CHIP_TYPE:
3746 ftdi->eeprom->chip = value;
3747 break;
837a71d6
UB
3748 case POWER_SAVE:
3749 ftdi->eeprom->powersave = value;
3750 break;
18199b76
UB
3751 case CLOCK_POLARITY:
3752 ftdi->eeprom->clock_polarity = value;
3753 break;
3754 case DATA_ORDER:
3755 ftdi->eeprom->data_order = value;
3756 break;
3757 case FLOW_CONTROL:
3758 ftdi->eeprom->flow_control = value;
3759 break;
56ac0383
TJ
3760 case CHIP_SIZE:
3761 ftdi_error_return(-2, "EEPROM Value can't be changed");
3762 default :
3763 ftdi_error_return(-1, "Request to unknown EEPROM value");
44ef02bd
UB
3764 }
3765 return 0;
3766}
3767
3768/** Get the read-only buffer to the binary EEPROM content
3769
3770 \param ftdi pointer to ftdi_context
735e81ea 3771 \param buf buffer to receive EEPROM content
44ef02bd
UB
3772 \param size Size of receiving buffer
3773
3774 \retval 0: All fine
3775 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
200bd3ed 3776 \retval -2: Not enough room to store eeprom
44ef02bd 3777*/
56ac0383
TJ
3778int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3779{
3780 if (!ftdi || !(ftdi->eeprom))
3781 ftdi_error_return(-1, "No appropriate structure");
b95e4654 3782
200bd3ed
TJ
3783 if (!buf || size < ftdi->eeprom->size)
3784 ftdi_error_return(-1, "Not enough room to store eeprom");
3785
b95e4654
TJ
3786 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3787 if (size > FTDI_MAX_EEPROM_SIZE)
3788 size = FTDI_MAX_EEPROM_SIZE;
3789
56ac0383 3790 memcpy(buf, ftdi->eeprom->buf, size);
b95e4654 3791
56ac0383
TJ
3792 return 0;
3793}
44ef02bd 3794
672fd368
UB
3795/** Set the EEPROM content from the user-supplied prefilled buffer
3796
3797 \param ftdi pointer to ftdi_context
3798 \param buf buffer to read EEPROM content
3799 \param size Size of buffer
3800
3801 \retval 0: All fine
3802 \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing
3803*/
3804int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
3805{
3806 if (!ftdi || !(ftdi->eeprom) || !buf)
3807 ftdi_error_return(-1, "No appropriate structure");
3808
3809 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3810 if (size > FTDI_MAX_EEPROM_SIZE)
3811 size = FTDI_MAX_EEPROM_SIZE;
3812
3813 memcpy(ftdi->eeprom->buf, buf, size);
3814
3815 return 0;
3816}
3817
44ef02bd 3818/**
c1c70e13
OS
3819 Read eeprom location
3820
3821 \param ftdi pointer to ftdi_context
3822 \param eeprom_addr Address of eeprom location to be read
3823 \param eeprom_val Pointer to store read eeprom location
3824
3825 \retval 0: all fine
3826 \retval -1: read failed
22a1b5c1 3827 \retval -2: USB device unavailable
c1c70e13
OS
3828*/
3829int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3830{
22a1b5c1
TJ
3831 if (ftdi == NULL || ftdi->usb_dev == NULL)
3832 ftdi_error_return(-2, "USB device unavailable");
3833
97c6b5f6 3834 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
c1c70e13
OS
3835 ftdi_error_return(-1, "reading eeprom failed");
3836
3837 return 0;
3838}
3839
3840/**
1941414d
TJ
3841 Read eeprom
3842
3843 \param ftdi pointer to ftdi_context
b8aa7b35 3844
1941414d
TJ
3845 \retval 0: all fine
3846 \retval -1: read failed
22a1b5c1 3847 \retval -2: USB device unavailable
1941414d 3848*/
a35aa9bd 3849int ftdi_read_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3850{
a3da1d95 3851 int i;
a35aa9bd 3852 unsigned char *buf;
a3da1d95 3853
22a1b5c1
TJ
3854 if (ftdi == NULL || ftdi->usb_dev == NULL)
3855 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 3856 buf = ftdi->eeprom->buf;
22a1b5c1 3857
2d543486 3858 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
22d12cda 3859 {
a35aa9bd 3860 if (libusb_control_transfer(
56ac0383
TJ
3861 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3862 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
c3d95b87 3863 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
3864 }
3865
2d543486 3866 if (ftdi->type == TYPE_R)
a35aa9bd 3867 ftdi->eeprom->size = 0x80;
56ac0383 3868 /* Guesses size of eeprom by comparing halves
2d543486 3869 - will not work with blank eeprom */
a35aa9bd 3870 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
2d543486 3871 ftdi->eeprom->size = -1;
56ac0383 3872 else if (memcmp(buf,&buf[0x80],0x80) == 0)
2d543486 3873 ftdi->eeprom->size = 0x80;
56ac0383 3874 else if (memcmp(buf,&buf[0x40],0x40) == 0)
2d543486
UB
3875 ftdi->eeprom->size = 0x40;
3876 else
3877 ftdi->eeprom->size = 0x100;
a3da1d95
GE
3878 return 0;
3879}
3880
cb6250fa
TJ
3881/*
3882 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3883 Function is only used internally
3884 \internal
3885*/
3886static unsigned char ftdi_read_chipid_shift(unsigned char value)
3887{
3888 return ((value & 1) << 1) |
22d12cda
TJ
3889 ((value & 2) << 5) |
3890 ((value & 4) >> 2) |
3891 ((value & 8) << 4) |
3892 ((value & 16) >> 1) |
3893 ((value & 32) >> 1) |
3894 ((value & 64) >> 4) |
3895 ((value & 128) >> 2);
cb6250fa
TJ
3896}
3897
3898/**
3899 Read the FTDIChip-ID from R-type devices
3900
3901 \param ftdi pointer to ftdi_context
3902 \param chipid Pointer to store FTDIChip-ID
3903
3904 \retval 0: all fine
3905 \retval -1: read failed
22a1b5c1 3906 \retval -2: USB device unavailable
cb6250fa
TJ
3907*/
3908int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3909{
c7eb3112 3910 unsigned int a = 0, b = 0;
cb6250fa 3911
22a1b5c1
TJ
3912 if (ftdi == NULL || ftdi->usb_dev == NULL)
3913 ftdi_error_return(-2, "USB device unavailable");
3914
579b006f 3915 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3916 {
3917 a = a << 8 | a >> 8;
579b006f 3918 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3919 {
3920 b = b << 8 | b >> 8;
5230676f 3921 a = (a << 16) | (b & 0xFFFF);
912d50ca
TJ
3922 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3923 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 3924 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 3925 return 0;
cb6250fa
TJ
3926 }
3927 }
3928
c7eb3112 3929 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
3930}
3931
1941414d 3932/**
c1c70e13
OS
3933 Write eeprom location
3934
3935 \param ftdi pointer to ftdi_context
3936 \param eeprom_addr Address of eeprom location to be written
3937 \param eeprom_val Value to be written
3938
3939 \retval 0: all fine
a661e3e4 3940 \retval -1: write failed
22a1b5c1 3941 \retval -2: USB device unavailable
a661e3e4
UB
3942 \retval -3: Invalid access to checksum protected area below 0x80
3943 \retval -4: Device can't access unprotected area
3944 \retval -5: Reading chip type failed
c1c70e13 3945*/
56ac0383 3946int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
a661e3e4 3947 unsigned short eeprom_val)
c1c70e13 3948{
a661e3e4
UB
3949 int chip_type_location;
3950 unsigned short chip_type;
3951
22a1b5c1
TJ
3952 if (ftdi == NULL || ftdi->usb_dev == NULL)
3953 ftdi_error_return(-2, "USB device unavailable");
3954
56ac0383 3955 if (eeprom_addr <0x80)
a661e3e4
UB
3956 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3957
3958
3959 switch (ftdi->type)
3960 {
56ac0383
TJ
3961 case TYPE_BM:
3962 case TYPE_2232C:
3963 chip_type_location = 0x14;
3964 break;
3965 case TYPE_2232H:
3966 case TYPE_4232H:
3967 chip_type_location = 0x18;
3968 break;
c7e4c09e
UB
3969 case TYPE_232H:
3970 chip_type_location = 0x1e;
3971 break;
56ac0383
TJ
3972 default:
3973 ftdi_error_return(-4, "Device can't access unprotected area");
a661e3e4
UB
3974 }
3975
56ac0383 3976 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
a661e3e4 3977 ftdi_error_return(-5, "Reading failed failed");
56ac0383
TJ
3978 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3979 if ((chip_type & 0xff) != 0x66)
a661e3e4
UB
3980 {
3981 ftdi_error_return(-6, "EEPROM is not of 93x66");
3982 }
3983
579b006f 3984 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
3985 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3986 NULL, 0, ftdi->usb_write_timeout) != 0)
c1c70e13
OS
3987 ftdi_error_return(-1, "unable to write eeprom");
3988
3989 return 0;
3990}
3991
3992/**
1941414d 3993 Write eeprom
a3da1d95 3994
1941414d 3995 \param ftdi pointer to ftdi_context
56ac0383 3996
1941414d
TJ
3997 \retval 0: all fine
3998 \retval -1: read failed
22a1b5c1 3999 \retval -2: USB device unavailable
44f41f11 4000 \retval -3: EEPROM not initialized for the connected device;
1941414d 4001*/
a35aa9bd 4002int ftdi_write_eeprom(struct ftdi_context *ftdi)
a8f46ddc 4003{
ba5329be 4004 unsigned short usb_val, status;
e30da501 4005 int i, ret;
a35aa9bd 4006 unsigned char *eeprom;
a3da1d95 4007
22a1b5c1
TJ
4008 if (ftdi == NULL || ftdi->usb_dev == NULL)
4009 ftdi_error_return(-2, "USB device unavailable");
44f41f11
UB
4010
4011 if(ftdi->eeprom->initialized_for_connected_device == 0)
4012 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
4013
a35aa9bd 4014 eeprom = ftdi->eeprom->buf;
22a1b5c1 4015
ba5329be 4016 /* These commands were traced while running MProg */
e30da501
TJ
4017 if ((ret = ftdi_usb_reset(ftdi)) != 0)
4018 return ret;
4019 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
4020 return ret;
4021 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
4022 return ret;
ba5329be 4023
c0a96aed 4024 for (i = 0; i < ftdi->eeprom->size/2; i++)
22d12cda 4025 {
d9f0cce7
TJ
4026 usb_val = eeprom[i*2];
4027 usb_val += eeprom[(i*2)+1] << 8;
579b006f
JZ
4028 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4029 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
4030 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 4031 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
4032 }
4033
4034 return 0;
4035}
4036
1941414d
TJ
4037/**
4038 Erase eeprom
a3da1d95 4039
a5e1bd8c
MK
4040 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
4041
1941414d
TJ
4042 \param ftdi pointer to ftdi_context
4043
4044 \retval 0: all fine
4045 \retval -1: erase failed
22a1b5c1 4046 \retval -2: USB device unavailable
99404ad5
UB
4047 \retval -3: Writing magic failed
4048 \retval -4: Read EEPROM failed
4049 \retval -5: Unexpected EEPROM value
1941414d 4050*/
99404ad5 4051#define MAGIC 0x55aa
a8f46ddc
TJ
4052int ftdi_erase_eeprom(struct ftdi_context *ftdi)
4053{
99404ad5 4054 unsigned short eeprom_value;
22a1b5c1
TJ
4055 if (ftdi == NULL || ftdi->usb_dev == NULL)
4056 ftdi_error_return(-2, "USB device unavailable");
4057
56ac0383 4058 if (ftdi->type == TYPE_R)
99404ad5
UB
4059 {
4060 ftdi->eeprom->chip = 0;
4061 return 0;
4062 }
4063
56ac0383 4064 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5 4065 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 4066 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95 4067
56ac0383 4068
99404ad5
UB
4069 /* detect chip type by writing 0x55AA as magic at word position 0xc0
4070 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
4071 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
4072 Chip is 93x66 if magic is only read at word position 0xc0*/
10186c1f 4073 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
4074 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
4075 NULL, 0, ftdi->usb_write_timeout) != 0)
99404ad5 4076 ftdi_error_return(-3, "Writing magic failed");
56ac0383 4077 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
99404ad5 4078 ftdi_error_return(-4, "Reading failed failed");
56ac0383 4079 if (eeprom_value == MAGIC)
99404ad5
UB
4080 {
4081 ftdi->eeprom->chip = 0x46;
4082 }
56ac0383 4083 else
99404ad5 4084 {
56ac0383 4085 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
99404ad5 4086 ftdi_error_return(-4, "Reading failed failed");
56ac0383 4087 if (eeprom_value == MAGIC)
99404ad5 4088 ftdi->eeprom->chip = 0x56;
56ac0383 4089 else
99404ad5 4090 {
56ac0383 4091 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
99404ad5 4092 ftdi_error_return(-4, "Reading failed failed");
56ac0383 4093 if (eeprom_value == MAGIC)
99404ad5
UB
4094 ftdi->eeprom->chip = 0x66;
4095 else
4096 {
4097 ftdi->eeprom->chip = -1;
4098 }
4099 }
4100 }
56ac0383 4101 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5
UB
4102 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4103 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
4104 return 0;
4105}
c3d95b87 4106
1941414d
TJ
4107/**
4108 Get string representation for last error code
c3d95b87 4109
1941414d
TJ
4110 \param ftdi pointer to ftdi_context
4111
4112 \retval Pointer to error string
4113*/
c3d95b87
TJ
4114char *ftdi_get_error_string (struct ftdi_context *ftdi)
4115{
22a1b5c1
TJ
4116 if (ftdi == NULL)
4117 return "";
4118
c3d95b87
TJ
4119 return ftdi->error_str;
4120}
a01d31e2 4121
b5ec1820 4122/* @} end of doxygen libftdi group */