bug fix for async write and read
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
22a1b5c1 5 copyright : (C) 2003-2010 by Intra2net AG
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
1bfc403c 21 http://www.intra2net.com/en/developer/libftdi/
b5ec1820 22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
579b006f 31#include <libusb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
b56d5a64 34#include <stdio.h>
579b006f 35#include <stdlib.h>
0e302db6 36
98452d97 37#include "ftdi.h"
a3da1d95 38
21abaf2e 39#define ftdi_error_return(code, str) do { \
2f73e59f 40 ftdi->error_str = str; \
21abaf2e 41 return code; \
d2f10023 42 } while(0);
c3d95b87 43
99650502
UB
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
418aaa72 50
f3f81007
TJ
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
579b006f 58 \retval none
f3f81007 59*/
579b006f 60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 61{
22a1b5c1 62 if (ftdi && ftdi->usb_dev)
dff4fdb0 63 {
579b006f 64 libusb_close (ftdi->usb_dev);
dff4fdb0
NF
65 ftdi->usb_dev = NULL;
66 }
dff4fdb0 67}
c3d95b87 68
1941414d
TJ
69/**
70 Initializes a ftdi_context.
4837f98a 71
1941414d 72 \param ftdi pointer to ftdi_context
4837f98a 73
1941414d
TJ
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
76
77 \remark This should be called before all functions
948f9ada 78*/
a8f46ddc
TJ
79int ftdi_init(struct ftdi_context *ftdi)
80{
02212d8e 81 ftdi->usb_ctx = NULL;
98452d97 82 ftdi->usb_dev = NULL;
545820ce
TJ
83 ftdi->usb_read_timeout = 5000;
84 ftdi->usb_write_timeout = 5000;
a3da1d95 85
53ad271d 86 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 87 ftdi->baudrate = -1;
418aaa72 88 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 89
948f9ada
TJ
90 ftdi->readbuffer = NULL;
91 ftdi->readbuffer_offset = 0;
92 ftdi->readbuffer_remaining = 0;
93 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 94 ftdi->max_packet_size = 0;
948f9ada 95
545820ce
TJ
96 ftdi->interface = 0;
97 ftdi->index = 0;
98 ftdi->in_ep = 0x02;
99 ftdi->out_ep = 0x81;
418aaa72 100 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 101
a3da1d95
GE
102 ftdi->error_str = NULL;
103
c201f80f
TJ
104 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
105
1c733d33
TJ
106 /* All fine. Now allocate the readbuffer */
107 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 108}
4837f98a 109
1941414d 110/**
cef378aa
TJ
111 Allocate and initialize a new ftdi_context
112
113 \return a pointer to a new ftdi_context, or NULL on failure
114*/
672ac008 115struct ftdi_context *ftdi_new(void)
cef378aa
TJ
116{
117 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
118
22d12cda
TJ
119 if (ftdi == NULL)
120 {
cef378aa
TJ
121 return NULL;
122 }
123
22d12cda
TJ
124 if (ftdi_init(ftdi) != 0)
125 {
cef378aa 126 free(ftdi);
cdf448f6 127 return NULL;
cef378aa
TJ
128 }
129
130 return ftdi;
131}
132
133/**
1941414d
TJ
134 Open selected channels on a chip, otherwise use first channel.
135
136 \param ftdi pointer to ftdi_context
f9d69895 137 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
138
139 \retval 0: all fine
140 \retval -1: unknown interface
22a1b5c1 141 \retval -2: USB device unavailable
c4446c36 142*/
0ce2f5fa 143int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 144{
1971c26d 145 if (ftdi == NULL)
22a1b5c1
TJ
146 ftdi_error_return(-2, "USB device unavailable");
147
22d12cda
TJ
148 switch (interface)
149 {
150 case INTERFACE_ANY:
151 case INTERFACE_A:
152 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
153 break;
154 case INTERFACE_B:
155 ftdi->interface = 1;
156 ftdi->index = INTERFACE_B;
157 ftdi->in_ep = 0x04;
158 ftdi->out_ep = 0x83;
159 break;
f9d69895
AH
160 case INTERFACE_C:
161 ftdi->interface = 2;
162 ftdi->index = INTERFACE_C;
163 ftdi->in_ep = 0x06;
164 ftdi->out_ep = 0x85;
165 break;
166 case INTERFACE_D:
167 ftdi->interface = 3;
168 ftdi->index = INTERFACE_D;
169 ftdi->in_ep = 0x08;
170 ftdi->out_ep = 0x87;
171 break;
22d12cda
TJ
172 default:
173 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
174 }
175 return 0;
176}
948f9ada 177
1941414d
TJ
178/**
179 Deinitializes a ftdi_context.
4837f98a 180
1941414d 181 \param ftdi pointer to ftdi_context
4837f98a 182*/
a8f46ddc
TJ
183void ftdi_deinit(struct ftdi_context *ftdi)
184{
22a1b5c1
TJ
185 if (ftdi == NULL)
186 return;
187
f3f81007 188 ftdi_usb_close_internal (ftdi);
dff4fdb0 189
22d12cda
TJ
190 if (ftdi->readbuffer != NULL)
191 {
d9f0cce7
TJ
192 free(ftdi->readbuffer);
193 ftdi->readbuffer = NULL;
948f9ada 194 }
02212d8e 195 libusb_exit(ftdi->usb_ctx);
a3da1d95
GE
196}
197
1941414d 198/**
cef378aa
TJ
199 Deinitialize and free an ftdi_context.
200
201 \param ftdi pointer to ftdi_context
202*/
203void ftdi_free(struct ftdi_context *ftdi)
204{
205 ftdi_deinit(ftdi);
206 free(ftdi);
207}
208
209/**
1941414d
TJ
210 Use an already open libusb device.
211
212 \param ftdi pointer to ftdi_context
579b006f 213 \param usb libusb libusb_device_handle to use
4837f98a 214*/
579b006f 215void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 216{
22a1b5c1
TJ
217 if (ftdi == NULL)
218 return;
219
98452d97
TJ
220 ftdi->usb_dev = usb;
221}
222
223
1941414d
TJ
224/**
225 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
226 needs to be deallocated by ftdi_list_free() after use.
227
228 \param ftdi pointer to ftdi_context
229 \param devlist Pointer where to store list of found devices
230 \param vendor Vendor ID to search for
231 \param product Product ID to search for
edb82cbf 232
1941414d 233 \retval >0: number of devices found
1941414d 234 \retval -3: out of memory
579b006f
JZ
235 \retval -4: libusb_init() failed
236 \retval -5: libusb_get_device_list() failed
237 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 238*/
d2f10023 239int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
240{
241 struct ftdi_device_list **curdev;
579b006f
JZ
242 libusb_device *dev;
243 libusb_device **devs;
edb82cbf 244 int count = 0;
579b006f
JZ
245 int i = 0;
246
02212d8e 247 if (libusb_init(&ftdi->usb_ctx) < 0)
579b006f 248 ftdi_error_return(-4, "libusb_init() failed");
d2f10023 249
02212d8e 250 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 251 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
252
253 curdev = devlist;
6db32169 254 *curdev = NULL;
579b006f
JZ
255
256 while ((dev = devs[i++]) != NULL)
22d12cda 257 {
579b006f 258 struct libusb_device_descriptor desc;
d2f10023 259
579b006f
JZ
260 if (libusb_get_device_descriptor(dev, &desc) < 0)
261 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
edb82cbf 262
579b006f
JZ
263 if (desc.idVendor == vendor && desc.idProduct == product)
264 {
265 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
266 if (!*curdev)
267 ftdi_error_return(-3, "out of memory");
268
269 (*curdev)->next = NULL;
270 (*curdev)->dev = dev;
271
272 curdev = &(*curdev)->next;
273 count++;
edb82cbf
TJ
274 }
275 }
d2f10023 276
edb82cbf
TJ
277 return count;
278}
279
1941414d
TJ
280/**
281 Frees a usb device list.
edb82cbf 282
1941414d 283 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 284*/
d2f10023 285void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 286{
6db32169
TJ
287 struct ftdi_device_list *curdev, *next;
288
22d12cda
TJ
289 for (curdev = *devlist; curdev != NULL;)
290 {
6db32169
TJ
291 next = curdev->next;
292 free(curdev);
293 curdev = next;
edb82cbf
TJ
294 }
295
6db32169 296 *devlist = NULL;
edb82cbf
TJ
297}
298
1941414d 299/**
cef378aa
TJ
300 Frees a usb device list.
301
302 \param devlist USB device list created by ftdi_usb_find_all()
303*/
304void ftdi_list_free2(struct ftdi_device_list *devlist)
305{
306 ftdi_list_free(&devlist);
307}
308
309/**
474786c0
TJ
310 Return device ID strings from the usb device.
311
312 The parameters manufacturer, description and serial may be NULL
313 or pointer to buffers to store the fetched strings.
314
898c34dd
TJ
315 \note Use this function only in combination with ftdi_usb_find_all()
316 as it closes the internal "usb_dev" after use.
317
474786c0
TJ
318 \param ftdi pointer to ftdi_context
319 \param dev libusb usb_dev to use
320 \param manufacturer Store manufacturer string here if not NULL
321 \param mnf_len Buffer size of manufacturer string
322 \param description Store product description string here if not NULL
323 \param desc_len Buffer size of product description string
324 \param serial Store serial string here if not NULL
325 \param serial_len Buffer size of serial string
326
327 \retval 0: all fine
328 \retval -1: wrong arguments
329 \retval -4: unable to open device
330 \retval -7: get product manufacturer failed
331 \retval -8: get product description failed
332 \retval -9: get serial number failed
579b006f 333 \retval -11: libusb_get_device_descriptor() failed
474786c0 334*/
579b006f 335int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
22d12cda 336 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
474786c0 337{
579b006f
JZ
338 struct libusb_device_descriptor desc;
339
474786c0
TJ
340 if ((ftdi==NULL) || (dev==NULL))
341 return -1;
342
579b006f
JZ
343 if (libusb_open(dev, &ftdi->usb_dev) < 0)
344 ftdi_error_return(-4, "libusb_open() failed");
345
346 if (libusb_get_device_descriptor(dev, &desc) < 0)
347 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 348
22d12cda
TJ
349 if (manufacturer != NULL)
350 {
579b006f 351 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 352 {
f3f81007 353 ftdi_usb_close_internal (ftdi);
579b006f 354 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
355 }
356 }
357
22d12cda
TJ
358 if (description != NULL)
359 {
579b006f 360 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 361 {
f3f81007 362 ftdi_usb_close_internal (ftdi);
579b006f 363 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
364 }
365 }
366
22d12cda
TJ
367 if (serial != NULL)
368 {
579b006f 369 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 370 {
f3f81007 371 ftdi_usb_close_internal (ftdi);
579b006f 372 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
373 }
374 }
375
579b006f 376 ftdi_usb_close_internal (ftdi);
474786c0
TJ
377
378 return 0;
379}
380
381/**
e2f12a4f
TJ
382 * Internal function to determine the maximum packet size.
383 * \param ftdi pointer to ftdi_context
384 * \param dev libusb usb_dev to use
385 * \retval Maximum packet size for this device
386 */
579b006f 387static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 388{
579b006f
JZ
389 struct libusb_device_descriptor desc;
390 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
391 unsigned int packet_size;
392
22a1b5c1
TJ
393 // Sanity check
394 if (ftdi == NULL || dev == NULL)
395 return 64;
396
e2f12a4f
TJ
397 // Determine maximum packet size. Init with default value.
398 // New hi-speed devices from FTDI use a packet size of 512 bytes
399 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
400 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
401 packet_size = 512;
402 else
403 packet_size = 64;
404
579b006f
JZ
405 if (libusb_get_device_descriptor(dev, &desc) < 0)
406 return packet_size;
407
408 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
409 return packet_size;
e2f12a4f 410
579b006f
JZ
411 if (desc.bNumConfigurations > 0)
412 {
413 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 414 {
579b006f 415 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
416 if (interface.num_altsetting > 0)
417 {
579b006f 418 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
419 if (descriptor.bNumEndpoints > 0)
420 {
421 packet_size = descriptor.endpoint[0].wMaxPacketSize;
422 }
423 }
424 }
425 }
426
579b006f 427 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
428 return packet_size;
429}
430
431/**
418aaa72 432 Opens a ftdi device given by an usb_device.
7b18bef6 433
1941414d
TJ
434 \param ftdi pointer to ftdi_context
435 \param dev libusb usb_dev to use
436
437 \retval 0: all fine
23b1798d 438 \retval -3: unable to config device
1941414d
TJ
439 \retval -4: unable to open device
440 \retval -5: unable to claim device
441 \retval -6: reset failed
442 \retval -7: set baudrate failed
22a1b5c1 443 \retval -8: ftdi context invalid
579b006f
JZ
444 \retval -9: libusb_get_device_descriptor() failed
445 \retval -10: libusb_get_config_descriptor() failed
446 \retval -11: libusb_etach_kernel_driver() failed
447 \retval -12: libusb_get_configuration() failed
7b18bef6 448*/
579b006f 449int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 450{
579b006f
JZ
451 struct libusb_device_descriptor desc;
452 struct libusb_config_descriptor *config0;
43aee24f 453 int cfg, cfg0, detach_errno = 0;
579b006f 454
22a1b5c1
TJ
455 if (ftdi == NULL)
456 ftdi_error_return(-8, "ftdi context invalid");
457
579b006f
JZ
458 if (libusb_open(dev, &ftdi->usb_dev) < 0)
459 ftdi_error_return(-4, "libusb_open() failed");
460
461 if (libusb_get_device_descriptor(dev, &desc) < 0)
462 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
463
464 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
465 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
466 cfg0 = config0->bConfigurationValue;
467 libusb_free_config_descriptor (config0);
d2f10023 468
22592e17 469 // Try to detach ftdi_sio kernel module.
22592e17
TJ
470 //
471 // The return code is kept in a separate variable and only parsed
472 // if usb_set_configuration() or usb_claim_interface() fails as the
473 // detach operation might be denied and everything still works fine.
474 // Likely scenario is a static ftdi_sio kernel module.
43aee24f
UB
475 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
476 detach_errno = errno;
d2f10023 477
579b006f
JZ
478 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
479 ftdi_error_return(-12, "libusb_get_configuration () failed");
b57aedfd
GE
480 // set configuration (needed especially for windows)
481 // tolerate EBUSY: one device with one configuration, but two interfaces
482 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 483 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 484 {
579b006f 485 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 486 {
a56ba2bd 487 ftdi_usb_close_internal (ftdi);
43aee24f
UB
488 if(detach_errno == EPERM)
489 {
490 ftdi_error_return(-8, "inappropriate permissions on device!");
491 }
492 else
493 {
c16b162d 494 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
43aee24f 495 }
23b1798d
TJ
496 }
497 }
498
579b006f 499 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 500 {
f3f81007 501 ftdi_usb_close_internal (ftdi);
43aee24f
UB
502 if(detach_errno == EPERM)
503 {
504 ftdi_error_return(-8, "inappropriate permissions on device!");
505 }
506 else
507 {
c16b162d 508 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
43aee24f 509 }
7b18bef6
TJ
510 }
511
22d12cda
TJ
512 if (ftdi_usb_reset (ftdi) != 0)
513 {
f3f81007 514 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
515 ftdi_error_return(-6, "ftdi_usb_reset failed");
516 }
517
7b18bef6
TJ
518 // Try to guess chip type
519 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f
JZ
520 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
521 && desc.iSerialNumber == 0))
7b18bef6 522 ftdi->type = TYPE_BM;
579b006f 523 else if (desc.bcdDevice == 0x200)
7b18bef6 524 ftdi->type = TYPE_AM;
579b006f 525 else if (desc.bcdDevice == 0x500)
7b18bef6 526 ftdi->type = TYPE_2232C;
579b006f 527 else if (desc.bcdDevice == 0x600)
cb6250fa 528 ftdi->type = TYPE_R;
579b006f 529 else if (desc.bcdDevice == 0x700)
0beb9686 530 ftdi->type = TYPE_2232H;
579b006f 531 else if (desc.bcdDevice == 0x800)
0beb9686 532 ftdi->type = TYPE_4232H;
7b18bef6 533
f9d69895
AH
534 // Set default interface on dual/quad type chips
535 switch(ftdi->type)
536 {
537 case TYPE_2232C:
538 case TYPE_2232H:
539 case TYPE_4232H:
540 if (!ftdi->index)
541 ftdi->index = INTERFACE_A;
542 break;
543 default:
544 break;
545 }
546
e2f12a4f
TJ
547 // Determine maximum packet size
548 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
549
ef6f4838
TE
550 if (ftdi_set_baudrate (ftdi, 9600) != 0)
551 {
552 ftdi_usb_close_internal (ftdi);
553 ftdi_error_return(-7, "set baudrate failed");
554 }
555
7b18bef6
TJ
556 ftdi_error_return(0, "all fine");
557}
558
1941414d
TJ
559/**
560 Opens the first device with a given vendor and product ids.
561
562 \param ftdi pointer to ftdi_context
563 \param vendor Vendor ID
564 \param product Product ID
565
9bec2387 566 \retval same as ftdi_usb_open_desc()
1941414d 567*/
edb82cbf
TJ
568int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
569{
570 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
571}
572
1941414d
TJ
573/**
574 Opens the first device with a given, vendor id, product id,
575 description and serial.
576
577 \param ftdi pointer to ftdi_context
578 \param vendor Vendor ID
579 \param product Product ID
580 \param description Description to search for. Use NULL if not needed.
581 \param serial Serial to search for. Use NULL if not needed.
582
583 \retval 0: all fine
1941414d
TJ
584 \retval -3: usb device not found
585 \retval -4: unable to open device
586 \retval -5: unable to claim device
587 \retval -6: reset failed
588 \retval -7: set baudrate failed
589 \retval -8: get product description failed
590 \retval -9: get serial number failed
579b006f
JZ
591 \retval -11: libusb_init() failed
592 \retval -12: libusb_get_device_list() failed
593 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 594*/
04e1ea0a 595int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
596 const char* description, const char* serial)
597{
5ebbdab9
GE
598 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
599}
600
601/**
602 Opens the index-th device with a given, vendor id, product id,
603 description and serial.
604
605 \param ftdi pointer to ftdi_context
606 \param vendor Vendor ID
607 \param product Product ID
608 \param description Description to search for. Use NULL if not needed.
609 \param serial Serial to search for. Use NULL if not needed.
610 \param index Number of matching device to open if there are more than one, starts with 0.
611
612 \retval 0: all fine
613 \retval -1: usb_find_busses() failed
614 \retval -2: usb_find_devices() failed
615 \retval -3: usb device not found
616 \retval -4: unable to open device
617 \retval -5: unable to claim device
618 \retval -6: reset failed
619 \retval -7: set baudrate failed
620 \retval -8: get product description failed
621 \retval -9: get serial number failed
622 \retval -10: unable to close device
22a1b5c1 623 \retval -11: ftdi context invalid
5ebbdab9
GE
624*/
625int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
626 const char* description, const char* serial, unsigned int index)
627{
579b006f
JZ
628 libusb_device *dev;
629 libusb_device **devs;
c3d95b87 630 char string[256];
579b006f 631 int i = 0;
98452d97 632
02212d8e 633 if (libusb_init(&ftdi->usb_ctx) < 0)
579b006f 634 ftdi_error_return(-11, "libusb_init() failed");
98452d97 635
22a1b5c1
TJ
636 if (ftdi == NULL)
637 ftdi_error_return(-11, "ftdi context invalid");
638
02212d8e 639 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
99650502
UB
640 ftdi_error_return(-12, "libusb_get_device_list() failed");
641
579b006f 642 while ((dev = devs[i++]) != NULL)
22d12cda 643 {
579b006f 644 struct libusb_device_descriptor desc;
99650502 645 int res;
579b006f
JZ
646
647 if (libusb_get_device_descriptor(dev, &desc) < 0)
99650502 648 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
579b006f
JZ
649
650 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 651 {
579b006f 652 if (libusb_open(dev, &ftdi->usb_dev) < 0)
99650502 653 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
c3d95b87 654
579b006f
JZ
655 if (description != NULL)
656 {
657 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 658 {
579b006f 659 libusb_close (ftdi->usb_dev);
99650502 660 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
a8f46ddc 661 }
579b006f 662 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 663 {
579b006f
JZ
664 libusb_close (ftdi->usb_dev);
665 continue;
a8f46ddc 666 }
579b006f
JZ
667 }
668 if (serial != NULL)
669 {
670 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
671 {
672 ftdi_usb_close_internal (ftdi);
99650502 673 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
579b006f
JZ
674 }
675 if (strncmp(string, serial, sizeof(string)) != 0)
676 {
677 ftdi_usb_close_internal (ftdi);
678 continue;
679 }
680 }
98452d97 681
579b006f 682 ftdi_usb_close_internal (ftdi);
d2f10023 683
5ebbdab9
GE
684 if (index > 0)
685 {
686 index--;
687 continue;
688 }
689
99650502
UB
690 res = ftdi_usb_open_dev(ftdi, dev);
691 libusb_free_device_list(devs,1);
692 return res;
98452d97 693 }
98452d97 694 }
a3da1d95 695
98452d97 696 // device not found
99650502 697 ftdi_error_return_free_device_list(-3, "device not found", devs);
a3da1d95
GE
698}
699
1941414d 700/**
5ebbdab9
GE
701 Opens the ftdi-device described by a description-string.
702 Intended to be used for parsing a device-description given as commandline argument.
703
704 \param ftdi pointer to ftdi_context
705 \param description NULL-terminated description-string, using this format:
706 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
707 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
708 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
709 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
710
711 \note The description format may be extended in later versions.
712
713 \retval 0: all fine
579b006f
JZ
714 \retval -1: libusb_init() failed
715 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
716 \retval -3: usb device not found
717 \retval -4: unable to open device
718 \retval -5: unable to claim device
719 \retval -6: reset failed
720 \retval -7: set baudrate failed
721 \retval -8: get product description failed
722 \retval -9: get serial number failed
723 \retval -10: unable to close device
724 \retval -11: illegal description format
22a1b5c1 725 \retval -12: ftdi context invalid
5ebbdab9
GE
726*/
727int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
728{
22a1b5c1
TJ
729 if (ftdi == NULL)
730 ftdi_error_return(-12, "ftdi context invalid");
731
5ebbdab9
GE
732 if (description[0] == 0 || description[1] != ':')
733 ftdi_error_return(-11, "illegal description format");
734
735 if (description[0] == 'd')
736 {
579b006f
JZ
737 libusb_device *dev;
738 libusb_device **devs;
739 unsigned int bus_number, device_address;
740 int i = 0;
741
02212d8e 742 if (libusb_init (&ftdi->usb_ctx) < 0)
579b006f 743 ftdi_error_return(-1, "libusb_init() failed");
5ebbdab9 744
02212d8e 745 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 746 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 747
579b006f
JZ
748 /* XXX: This doesn't handle symlinks/odd paths/etc... */
749 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
99650502 750 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
5ebbdab9 751
579b006f 752 while ((dev = devs[i++]) != NULL)
5ebbdab9 753 {
99650502 754 int ret;
579b006f
JZ
755 if (bus_number == libusb_get_bus_number (dev)
756 && device_address == libusb_get_device_address (dev))
99650502
UB
757 {
758 ret = ftdi_usb_open_dev(ftdi, dev);
759 libusb_free_device_list(devs,1);
760 return ret;
761 }
5ebbdab9
GE
762 }
763
764 // device not found
99650502 765 ftdi_error_return_free_device_list(-3, "device not found", devs);
5ebbdab9
GE
766 }
767 else if (description[0] == 'i' || description[0] == 's')
768 {
769 unsigned int vendor;
770 unsigned int product;
771 unsigned int index=0;
0e6cf62b 772 const char *serial=NULL;
5ebbdab9
GE
773 const char *startp, *endp;
774
775 errno=0;
776 startp=description+2;
777 vendor=strtoul((char*)startp,(char**)&endp,0);
778 if (*endp != ':' || endp == startp || errno != 0)
779 ftdi_error_return(-11, "illegal description format");
780
781 startp=endp+1;
782 product=strtoul((char*)startp,(char**)&endp,0);
783 if (endp == startp || errno != 0)
784 ftdi_error_return(-11, "illegal description format");
785
786 if (description[0] == 'i' && *endp != 0)
787 {
788 /* optional index field in i-mode */
789 if (*endp != ':')
790 ftdi_error_return(-11, "illegal description format");
791
792 startp=endp+1;
793 index=strtoul((char*)startp,(char**)&endp,0);
794 if (*endp != 0 || endp == startp || errno != 0)
795 ftdi_error_return(-11, "illegal description format");
796 }
797 if (description[0] == 's')
798 {
799 if (*endp != ':')
800 ftdi_error_return(-11, "illegal description format");
801
802 /* rest of the description is the serial */
803 serial=endp+1;
804 }
805
806 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
807 }
808 else
809 {
810 ftdi_error_return(-11, "illegal description format");
811 }
812}
813
814/**
1941414d 815 Resets the ftdi device.
a3da1d95 816
1941414d
TJ
817 \param ftdi pointer to ftdi_context
818
819 \retval 0: all fine
820 \retval -1: FTDI reset failed
22a1b5c1 821 \retval -2: USB device unavailable
4837f98a 822*/
edb82cbf 823int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 824{
22a1b5c1
TJ
825 if (ftdi == NULL || ftdi->usb_dev == NULL)
826 ftdi_error_return(-2, "USB device unavailable");
827
579b006f
JZ
828 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
829 SIO_RESET_REQUEST, SIO_RESET_SIO,
830 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 831 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 832
545820ce 833 // Invalidate data in the readbuffer
bfcee05b
TJ
834 ftdi->readbuffer_offset = 0;
835 ftdi->readbuffer_remaining = 0;
836
a3da1d95
GE
837 return 0;
838}
839
1941414d 840/**
1189b11a 841 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
842
843 \param ftdi pointer to ftdi_context
4837f98a 844
1941414d 845 \retval 0: all fine
1189b11a 846 \retval -1: read buffer purge failed
22a1b5c1 847 \retval -2: USB device unavailable
4837f98a 848*/
1189b11a 849int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 850{
22a1b5c1
TJ
851 if (ftdi == NULL || ftdi->usb_dev == NULL)
852 ftdi_error_return(-2, "USB device unavailable");
853
579b006f
JZ
854 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
855 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
856 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
857 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
858
545820ce 859 // Invalidate data in the readbuffer
bfcee05b
TJ
860 ftdi->readbuffer_offset = 0;
861 ftdi->readbuffer_remaining = 0;
a60be878 862
1189b11a
TJ
863 return 0;
864}
865
866/**
867 Clears the write buffer on the chip.
868
869 \param ftdi pointer to ftdi_context
870
871 \retval 0: all fine
872 \retval -1: write buffer purge failed
22a1b5c1 873 \retval -2: USB device unavailable
1189b11a
TJ
874*/
875int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
876{
22a1b5c1
TJ
877 if (ftdi == NULL || ftdi->usb_dev == NULL)
878 ftdi_error_return(-2, "USB device unavailable");
879
579b006f
JZ
880 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
881 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
882 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
883 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
884
885 return 0;
886}
887
888/**
889 Clears the buffers on the chip and the internal read buffer.
890
891 \param ftdi pointer to ftdi_context
892
893 \retval 0: all fine
894 \retval -1: read buffer purge failed
895 \retval -2: write buffer purge failed
22a1b5c1 896 \retval -3: USB device unavailable
1189b11a
TJ
897*/
898int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
899{
900 int result;
901
22a1b5c1
TJ
902 if (ftdi == NULL || ftdi->usb_dev == NULL)
903 ftdi_error_return(-3, "USB device unavailable");
904
1189b11a 905 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 906 if (result < 0)
1189b11a
TJ
907 return -1;
908
909 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 910 if (result < 0)
1189b11a 911 return -2;
545820ce 912
a60be878
TJ
913 return 0;
914}
a3da1d95 915
f3f81007
TJ
916
917
1941414d
TJ
918/**
919 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
920
921 \param ftdi pointer to ftdi_context
922
923 \retval 0: all fine
924 \retval -1: usb_release failed
22a1b5c1 925 \retval -3: ftdi context invalid
a3da1d95 926*/
a8f46ddc
TJ
927int ftdi_usb_close(struct ftdi_context *ftdi)
928{
a3da1d95
GE
929 int rtn = 0;
930
22a1b5c1
TJ
931 if (ftdi == NULL)
932 ftdi_error_return(-3, "ftdi context invalid");
933
dff4fdb0 934 if (ftdi->usb_dev != NULL)
579b006f 935 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 936 rtn = -1;
98452d97 937
579b006f 938 ftdi_usb_close_internal (ftdi);
98452d97 939
a3da1d95
GE
940 return rtn;
941}
942
418aaa72 943/**
53ad271d
TJ
944 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
945 Function is only used internally
b5ec1820 946 \internal
53ad271d 947*/
0126d22e 948static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
a8f46ddc
TJ
949 unsigned short *value, unsigned short *index)
950{
53ad271d
TJ
951 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
952 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
953 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
954 int divisor, best_divisor, best_baud, best_baud_diff;
955 unsigned long encoded_divisor;
956 int i;
957
22d12cda
TJ
958 if (baudrate <= 0)
959 {
53ad271d
TJ
960 // Return error
961 return -1;
962 }
963
964 divisor = 24000000 / baudrate;
965
22d12cda
TJ
966 if (ftdi->type == TYPE_AM)
967 {
53ad271d
TJ
968 // Round down to supported fraction (AM only)
969 divisor -= am_adjust_dn[divisor & 7];
970 }
971
972 // Try this divisor and the one above it (because division rounds down)
973 best_divisor = 0;
974 best_baud = 0;
975 best_baud_diff = 0;
22d12cda
TJ
976 for (i = 0; i < 2; i++)
977 {
53ad271d
TJ
978 int try_divisor = divisor + i;
979 int baud_estimate;
980 int baud_diff;
981
982 // Round up to supported divisor value
22d12cda
TJ
983 if (try_divisor <= 8)
984 {
53ad271d
TJ
985 // Round up to minimum supported divisor
986 try_divisor = 8;
22d12cda
TJ
987 }
988 else if (ftdi->type != TYPE_AM && try_divisor < 12)
989 {
53ad271d
TJ
990 // BM doesn't support divisors 9 through 11 inclusive
991 try_divisor = 12;
22d12cda
TJ
992 }
993 else if (divisor < 16)
994 {
53ad271d
TJ
995 // AM doesn't support divisors 9 through 15 inclusive
996 try_divisor = 16;
22d12cda
TJ
997 }
998 else
999 {
1000 if (ftdi->type == TYPE_AM)
1001 {
53ad271d
TJ
1002 // Round up to supported fraction (AM only)
1003 try_divisor += am_adjust_up[try_divisor & 7];
22d12cda
TJ
1004 if (try_divisor > 0x1FFF8)
1005 {
53ad271d
TJ
1006 // Round down to maximum supported divisor value (for AM)
1007 try_divisor = 0x1FFF8;
1008 }
22d12cda
TJ
1009 }
1010 else
1011 {
1012 if (try_divisor > 0x1FFFF)
1013 {
53ad271d
TJ
1014 // Round down to maximum supported divisor value (for BM)
1015 try_divisor = 0x1FFFF;
1016 }
1017 }
1018 }
1019 // Get estimated baud rate (to nearest integer)
1020 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1021 // Get absolute difference from requested baud rate
22d12cda
TJ
1022 if (baud_estimate < baudrate)
1023 {
53ad271d 1024 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
1025 }
1026 else
1027 {
53ad271d
TJ
1028 baud_diff = baud_estimate - baudrate;
1029 }
22d12cda
TJ
1030 if (i == 0 || baud_diff < best_baud_diff)
1031 {
53ad271d
TJ
1032 // Closest to requested baud rate so far
1033 best_divisor = try_divisor;
1034 best_baud = baud_estimate;
1035 best_baud_diff = baud_diff;
22d12cda
TJ
1036 if (baud_diff == 0)
1037 {
53ad271d
TJ
1038 // Spot on! No point trying
1039 break;
1040 }
1041 }
1042 }
1043 // Encode the best divisor value
1044 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1045 // Deal with special cases for encoded value
22d12cda
TJ
1046 if (encoded_divisor == 1)
1047 {
4837f98a 1048 encoded_divisor = 0; // 3000000 baud
22d12cda
TJ
1049 }
1050 else if (encoded_divisor == 0x4001)
1051 {
4837f98a 1052 encoded_divisor = 1; // 2000000 baud (BM only)
53ad271d
TJ
1053 }
1054 // Split into "value" and "index" values
1055 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1416eb14 1056 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
22d12cda 1057 {
0126d22e
TJ
1058 *index = (unsigned short)(encoded_divisor >> 8);
1059 *index &= 0xFF00;
a9c57c05 1060 *index |= ftdi->index;
0126d22e
TJ
1061 }
1062 else
1063 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 1064
53ad271d
TJ
1065 // Return the nearest baud rate
1066 return best_baud;
1067}
1068
1941414d 1069/**
9bec2387 1070 Sets the chip baud rate
1941414d
TJ
1071
1072 \param ftdi pointer to ftdi_context
9bec2387 1073 \param baudrate baud rate to set
1941414d
TJ
1074
1075 \retval 0: all fine
1076 \retval -1: invalid baudrate
1077 \retval -2: setting baudrate failed
22a1b5c1 1078 \retval -3: USB device unavailable
a3da1d95 1079*/
a8f46ddc
TJ
1080int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1081{
53ad271d
TJ
1082 unsigned short value, index;
1083 int actual_baudrate;
a3da1d95 1084
22a1b5c1
TJ
1085 if (ftdi == NULL || ftdi->usb_dev == NULL)
1086 ftdi_error_return(-3, "USB device unavailable");
1087
22d12cda
TJ
1088 if (ftdi->bitbang_enabled)
1089 {
a3da1d95
GE
1090 baudrate = baudrate*4;
1091 }
1092
25707904 1093 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1094 if (actual_baudrate <= 0)
1095 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1096
53ad271d
TJ
1097 // Check within tolerance (about 5%)
1098 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1099 || ((actual_baudrate < baudrate)
1100 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1101 : (baudrate * 21 < actual_baudrate * 20)))
1102 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1103
579b006f
JZ
1104 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1105 SIO_SET_BAUDRATE_REQUEST, value,
1106 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1107 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1108
1109 ftdi->baudrate = baudrate;
1110 return 0;
1111}
1112
1941414d 1113/**
6c32e222
TJ
1114 Set (RS232) line characteristics.
1115 The break type can only be set via ftdi_set_line_property2()
1116 and defaults to "off".
4837f98a 1117
1941414d
TJ
1118 \param ftdi pointer to ftdi_context
1119 \param bits Number of bits
1120 \param sbit Number of stop bits
1121 \param parity Parity mode
1122
1123 \retval 0: all fine
1124 \retval -1: Setting line property failed
2f73e59f
TJ
1125*/
1126int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1127 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1128{
6c32e222
TJ
1129 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1130}
1131
1132/**
1133 Set (RS232) line characteristics
1134
1135 \param ftdi pointer to ftdi_context
1136 \param bits Number of bits
1137 \param sbit Number of stop bits
1138 \param parity Parity mode
1139 \param break_type Break type
1140
1141 \retval 0: all fine
1142 \retval -1: Setting line property failed
22a1b5c1 1143 \retval -2: USB device unavailable
6c32e222
TJ
1144*/
1145int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1146 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1147 enum ftdi_break_type break_type)
6c32e222 1148{
2f73e59f
TJ
1149 unsigned short value = bits;
1150
22a1b5c1
TJ
1151 if (ftdi == NULL || ftdi->usb_dev == NULL)
1152 ftdi_error_return(-2, "USB device unavailable");
1153
22d12cda
TJ
1154 switch (parity)
1155 {
1156 case NONE:
1157 value |= (0x00 << 8);
1158 break;
1159 case ODD:
1160 value |= (0x01 << 8);
1161 break;
1162 case EVEN:
1163 value |= (0x02 << 8);
1164 break;
1165 case MARK:
1166 value |= (0x03 << 8);
1167 break;
1168 case SPACE:
1169 value |= (0x04 << 8);
1170 break;
2f73e59f 1171 }
d2f10023 1172
22d12cda
TJ
1173 switch (sbit)
1174 {
1175 case STOP_BIT_1:
1176 value |= (0x00 << 11);
1177 break;
1178 case STOP_BIT_15:
1179 value |= (0x01 << 11);
1180 break;
1181 case STOP_BIT_2:
1182 value |= (0x02 << 11);
1183 break;
2f73e59f 1184 }
d2f10023 1185
22d12cda
TJ
1186 switch (break_type)
1187 {
1188 case BREAK_OFF:
1189 value |= (0x00 << 14);
1190 break;
1191 case BREAK_ON:
1192 value |= (0x01 << 14);
1193 break;
6c32e222
TJ
1194 }
1195
579b006f
JZ
1196 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1197 SIO_SET_DATA_REQUEST, value,
1198 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1199 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1200
2f73e59f
TJ
1201 return 0;
1202}
a3da1d95 1203
1941414d
TJ
1204/**
1205 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1206
1207 \param ftdi pointer to ftdi_context
1208 \param buf Buffer with the data
1209 \param size Size of the buffer
1210
22a1b5c1 1211 \retval -666: USB device unavailable
1941414d
TJ
1212 \retval <0: error code from usb_bulk_write()
1213 \retval >0: number of bytes written
1214*/
a8f46ddc
TJ
1215int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1216{
a3da1d95 1217 int offset = 0;
579b006f 1218 int actual_length;
c3d95b87 1219
22a1b5c1
TJ
1220 if (ftdi == NULL || ftdi->usb_dev == NULL)
1221 ftdi_error_return(-666, "USB device unavailable");
1222
22d12cda
TJ
1223 while (offset < size)
1224 {
948f9ada 1225 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1226
1227 if (offset+write_size > size)
1228 write_size = size-offset;
1229
579b006f
JZ
1230 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1231 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1232
579b006f 1233 offset += actual_length;
a3da1d95
GE
1234 }
1235
579b006f 1236 return offset;
a3da1d95
GE
1237}
1238
579b006f 1239static void ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1240{
579b006f
JZ
1241 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1242 struct ftdi_context *ftdi = tc->ftdi;
1243 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1244
b1139150 1245 packet_size = ftdi->max_packet_size;
579b006f
JZ
1246
1247 actual_length = transfer->actual_length;
1248
1249 if (actual_length > 2)
1250 {
1251 // skip FTDI status bytes.
1252 // Maybe stored in the future to enable modem use
1253 num_of_chunks = actual_length / packet_size;
1254 chunk_remains = actual_length % packet_size;
1255 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1256
1257 ftdi->readbuffer_offset += 2;
1258 actual_length -= 2;
1259
1260 if (actual_length > packet_size - 2)
1261 {
1262 for (i = 1; i < num_of_chunks; i++)
1263 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1264 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1265 packet_size - 2);
1266 if (chunk_remains > 2)
1267 {
1268 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1269 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1270 chunk_remains-2);
1271 actual_length -= 2*num_of_chunks;
1272 }
1273 else
1274 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1275 }
1276
1277 if (actual_length > 0)
1278 {
1279 // data still fits in buf?
1280 if (tc->offset + actual_length <= tc->size)
1281 {
1282 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1283 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1284 tc->offset += actual_length;
1285
1286 ftdi->readbuffer_offset = 0;
1287 ftdi->readbuffer_remaining = 0;
1288
1289 /* Did we read exactly the right amount of bytes? */
1290 if (tc->offset == tc->size)
1291 {
1292 //printf("read_data exact rem %d offset %d\n",
1293 //ftdi->readbuffer_remaining, offset);
1294 tc->completed = 1;
1295 return;
1296 }
1297 }
1298 else
1299 {
1300 // only copy part of the data or size <= readbuffer_chunksize
1301 int part_size = tc->size - tc->offset;
1302 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1303 tc->offset += part_size;
1304
1305 ftdi->readbuffer_offset += part_size;
1306 ftdi->readbuffer_remaining = actual_length - part_size;
1307
1308 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1309 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1310 tc->completed = 1;
1311 return;
1312 }
1313 }
1314 }
1315 ret = libusb_submit_transfer (transfer);
1316 if (ret < 0)
1317 tc->completed = 1;
1318}
1319
1320
1321static void ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1322{
579b006f
JZ
1323 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1324 struct ftdi_context *ftdi = tc->ftdi;
90ef163e
YSL
1325
1326 tc->offset += transfer->actual_length;
1327
579b006f 1328 if (tc->offset == tc->size)
22d12cda 1329 {
579b006f 1330 tc->completed = 1;
7cc9950e 1331 }
579b006f
JZ
1332 else
1333 {
1334 int write_size = ftdi->writebuffer_chunksize;
1335 int ret;
7cc9950e 1336
579b006f
JZ
1337 if (tc->offset + write_size > tc->size)
1338 write_size = tc->size - tc->offset;
1339
1340 transfer->length = write_size;
1341 transfer->buffer = tc->buf + tc->offset;
1342 ret = libusb_submit_transfer (transfer);
1343 if (ret < 0)
1344 tc->completed = 1;
1345 }
7cc9950e
GE
1346}
1347
579b006f 1348
84f85aaa 1349/**
579b006f
JZ
1350 Writes data to the chip. Does not wait for completion of the transfer
1351 nor does it make sure that the transfer was successful.
1352
249888c8 1353 Use libusb 1.0 asynchronous API.
84f85aaa
GE
1354
1355 \param ftdi pointer to ftdi_context
579b006f
JZ
1356 \param buf Buffer with the data
1357 \param size Size of the buffer
84f85aaa 1358
579b006f
JZ
1359 \retval NULL: Some error happens when submit transfer
1360 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1361*/
579b006f
JZ
1362
1363struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1364{
579b006f
JZ
1365 struct ftdi_transfer_control *tc;
1366 struct libusb_transfer *transfer = libusb_alloc_transfer(0);
1367 int write_size, ret;
22d12cda 1368
22a1b5c1
TJ
1369 if (ftdi == NULL || ftdi->usb_dev == NULL)
1370 {
1371 libusb_free_transfer(transfer);
1372 return NULL;
1373 }
1374
579b006f 1375 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
22d12cda 1376
579b006f
JZ
1377 if (!tc || !transfer)
1378 return NULL;
22d12cda 1379
579b006f
JZ
1380 tc->ftdi = ftdi;
1381 tc->completed = 0;
1382 tc->buf = buf;
1383 tc->size = size;
1384 tc->offset = 0;
7cc9950e 1385
579b006f
JZ
1386 if (size < ftdi->writebuffer_chunksize)
1387 write_size = size;
1388 else
1389 write_size = ftdi->writebuffer_chunksize;
22d12cda 1390
90ef163e
YSL
1391 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1392 write_size, ftdi_write_data_cb, tc,
1393 ftdi->usb_write_timeout);
579b006f 1394 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1395
579b006f
JZ
1396 ret = libusb_submit_transfer(transfer);
1397 if (ret < 0)
1398 {
1399 libusb_free_transfer(transfer);
1400 tc->completed = 1;
1401 tc->transfer = NULL;
1402 return NULL;
7cc9950e 1403 }
579b006f
JZ
1404 tc->transfer = transfer;
1405
1406 return tc;
7cc9950e
GE
1407}
1408
1409/**
579b006f
JZ
1410 Reads data from the chip. Does not wait for completion of the transfer
1411 nor does it make sure that the transfer was successful.
1412
249888c8 1413 Use libusb 1.0 asynchronous API.
7cc9950e
GE
1414
1415 \param ftdi pointer to ftdi_context
579b006f
JZ
1416 \param buf Buffer with the data
1417 \param size Size of the buffer
4c9e3812 1418
579b006f
JZ
1419 \retval NULL: Some error happens when submit transfer
1420 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1421*/
579b006f
JZ
1422
1423struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1424{
579b006f
JZ
1425 struct ftdi_transfer_control *tc;
1426 struct libusb_transfer *transfer;
1427 int ret;
22d12cda 1428
22a1b5c1
TJ
1429 if (ftdi == NULL || ftdi->usb_dev == NULL)
1430 return NULL;
1431
579b006f
JZ
1432 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1433 if (!tc)
1434 return NULL;
1435
1436 tc->ftdi = ftdi;
1437 tc->buf = buf;
1438 tc->size = size;
1439
1440 if (size <= ftdi->readbuffer_remaining)
7cc9950e 1441 {
579b006f 1442 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1443
579b006f
JZ
1444 // Fix offsets
1445 ftdi->readbuffer_remaining -= size;
1446 ftdi->readbuffer_offset += size;
7cc9950e 1447
579b006f 1448 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1449
579b006f
JZ
1450 tc->completed = 1;
1451 tc->offset = size;
1452 tc->transfer = NULL;
1453 return tc;
1454 }
4c9e3812 1455
579b006f
JZ
1456 tc->completed = 0;
1457 if (ftdi->readbuffer_remaining != 0)
1458 {
1459 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1460
579b006f
JZ
1461 tc->offset = ftdi->readbuffer_remaining;
1462 }
1463 else
1464 tc->offset = 0;
22d12cda 1465
579b006f
JZ
1466 transfer = libusb_alloc_transfer(0);
1467 if (!transfer)
1468 {
1469 free (tc);
1470 return NULL;
1471 }
22d12cda 1472
579b006f
JZ
1473 ftdi->readbuffer_remaining = 0;
1474 ftdi->readbuffer_offset = 0;
1475
1476 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1477 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1478
1479 ret = libusb_submit_transfer(transfer);
1480 if (ret < 0)
1481 {
1482 libusb_free_transfer(transfer);
1483 free (tc);
1484 return NULL;
22d12cda 1485 }
579b006f
JZ
1486 tc->transfer = transfer;
1487
1488 return tc;
4c9e3812
GE
1489}
1490
1491/**
579b006f 1492 Wait for completion of the transfer.
4c9e3812 1493
249888c8 1494 Use libusb 1.0 asynchronous API.
4c9e3812 1495
579b006f 1496 \param tc pointer to ftdi_transfer_control
4c9e3812 1497
579b006f
JZ
1498 \retval < 0: Some error happens
1499 \retval >= 0: Data size transferred
4c9e3812 1500*/
579b006f
JZ
1501
1502int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1503{
1504 int ret;
4c9e3812 1505
579b006f 1506 while (!tc->completed)
22d12cda 1507 {
29b1dfd9 1508 ret = libusb_handle_events(tc->ftdi->usb_ctx);
4c9e3812 1509 if (ret < 0)
579b006f
JZ
1510 {
1511 if (ret == LIBUSB_ERROR_INTERRUPTED)
1512 continue;
1513 libusb_cancel_transfer(tc->transfer);
1514 while (!tc->completed)
29b1dfd9 1515 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
579b006f
JZ
1516 break;
1517 libusb_free_transfer(tc->transfer);
1518 free (tc);
579b006f
JZ
1519 return ret;
1520 }
4c9e3812
GE
1521 }
1522
90ef163e
YSL
1523 ret = tc->offset;
1524 /**
1525 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1526 * at ftdi_read_data_submit(). Therefore, has to check it here.
1527 **/
1528 if (tc->transfer) {
1529 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1530 ret = -1;
1531 libusb_free_transfer(tc->transfer);
1532 }
579b006f
JZ
1533 free(tc);
1534 return ret;
4c9e3812 1535}
579b006f 1536
1941414d
TJ
1537/**
1538 Configure write buffer chunk size.
1539 Default is 4096.
1540
1541 \param ftdi pointer to ftdi_context
1542 \param chunksize Chunk size
a3da1d95 1543
1941414d 1544 \retval 0: all fine
22a1b5c1 1545 \retval -1: ftdi context invalid
1941414d 1546*/
a8f46ddc
TJ
1547int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1548{
22a1b5c1
TJ
1549 if (ftdi == NULL)
1550 ftdi_error_return(-1, "ftdi context invalid");
1551
948f9ada
TJ
1552 ftdi->writebuffer_chunksize = chunksize;
1553 return 0;
1554}
1555
1941414d
TJ
1556/**
1557 Get write buffer chunk size.
1558
1559 \param ftdi pointer to ftdi_context
1560 \param chunksize Pointer to store chunk size in
948f9ada 1561
1941414d 1562 \retval 0: all fine
22a1b5c1 1563 \retval -1: ftdi context invalid
1941414d 1564*/
a8f46ddc
TJ
1565int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1566{
22a1b5c1
TJ
1567 if (ftdi == NULL)
1568 ftdi_error_return(-1, "ftdi context invalid");
1569
948f9ada
TJ
1570 *chunksize = ftdi->writebuffer_chunksize;
1571 return 0;
1572}
cbabb7d3 1573
1941414d
TJ
1574/**
1575 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1576
1577 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1578
1941414d
TJ
1579 \param ftdi pointer to ftdi_context
1580 \param buf Buffer to store data in
1581 \param size Size of the buffer
1582
22a1b5c1 1583 \retval -666: USB device unavailable
579b006f 1584 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 1585 \retval 0: no data was available
1941414d
TJ
1586 \retval >0: number of bytes read
1587
1941414d 1588*/
a8f46ddc
TJ
1589int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1590{
579b006f 1591 int offset = 0, ret, i, num_of_chunks, chunk_remains;
e2f12a4f 1592 int packet_size = ftdi->max_packet_size;
579b006f 1593 int actual_length = 1;
f2f00cb5 1594
22a1b5c1
TJ
1595 if (ftdi == NULL || ftdi->usb_dev == NULL)
1596 ftdi_error_return(-666, "USB device unavailable");
1597
e2f12a4f
TJ
1598 // Packet size sanity check (avoid division by zero)
1599 if (packet_size == 0)
1600 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 1601
948f9ada 1602 // everything we want is still in the readbuffer?
22d12cda
TJ
1603 if (size <= ftdi->readbuffer_remaining)
1604 {
d9f0cce7
TJ
1605 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1606
1607 // Fix offsets
1608 ftdi->readbuffer_remaining -= size;
1609 ftdi->readbuffer_offset += size;
1610
545820ce 1611 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1612
1613 return size;
979a145c 1614 }
948f9ada 1615 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
1616 if (ftdi->readbuffer_remaining != 0)
1617 {
d9f0cce7 1618 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1619
d9f0cce7
TJ
1620 // Fix offset
1621 offset += ftdi->readbuffer_remaining;
948f9ada 1622 }
948f9ada 1623 // do the actual USB read
579b006f 1624 while (offset < size && actual_length > 0)
22d12cda 1625 {
d9f0cce7
TJ
1626 ftdi->readbuffer_remaining = 0;
1627 ftdi->readbuffer_offset = 0;
98452d97 1628 /* returns how much received */
579b006f 1629 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
1630 if (ret < 0)
1631 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1632
579b006f 1633 if (actual_length > 2)
22d12cda 1634 {
d9f0cce7
TJ
1635 // skip FTDI status bytes.
1636 // Maybe stored in the future to enable modem use
579b006f
JZ
1637 num_of_chunks = actual_length / packet_size;
1638 chunk_remains = actual_length % packet_size;
1639 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 1640
d9f0cce7 1641 ftdi->readbuffer_offset += 2;
579b006f 1642 actual_length -= 2;
1c733d33 1643
579b006f 1644 if (actual_length > packet_size - 2)
22d12cda 1645 {
1c733d33 1646 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
1647 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1648 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1649 packet_size - 2);
22d12cda
TJ
1650 if (chunk_remains > 2)
1651 {
f2f00cb5
DC
1652 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1653 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 1654 chunk_remains-2);
579b006f 1655 actual_length -= 2*num_of_chunks;
22d12cda
TJ
1656 }
1657 else
579b006f 1658 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 1659 }
22d12cda 1660 }
579b006f 1661 else if (actual_length <= 2)
22d12cda 1662 {
d9f0cce7
TJ
1663 // no more data to read?
1664 return offset;
1665 }
579b006f 1666 if (actual_length > 0)
22d12cda 1667 {
d9f0cce7 1668 // data still fits in buf?
579b006f 1669 if (offset+actual_length <= size)
22d12cda 1670 {
579b006f 1671 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 1672 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 1673 offset += actual_length;
d9f0cce7 1674
53ad271d 1675 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1676 if (offset == size)
c4446c36
TJ
1677 //printf("read_data exact rem %d offset %d\n",
1678 //ftdi->readbuffer_remaining, offset);
d9f0cce7 1679 return offset;
22d12cda
TJ
1680 }
1681 else
1682 {
d9f0cce7
TJ
1683 // only copy part of the data or size <= readbuffer_chunksize
1684 int part_size = size-offset;
1685 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1686
d9f0cce7 1687 ftdi->readbuffer_offset += part_size;
579b006f 1688 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
1689 offset += part_size;
1690
579b006f
JZ
1691 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1692 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1693
1694 return offset;
1695 }
1696 }
cbabb7d3 1697 }
948f9ada 1698 // never reached
29c4af7f 1699 return -127;
a3da1d95
GE
1700}
1701
1941414d
TJ
1702/**
1703 Configure read buffer chunk size.
1704 Default is 4096.
1705
1706 Automatically reallocates the buffer.
a3da1d95 1707
1941414d
TJ
1708 \param ftdi pointer to ftdi_context
1709 \param chunksize Chunk size
1710
1711 \retval 0: all fine
22a1b5c1 1712 \retval -1: ftdi context invalid
1941414d 1713*/
a8f46ddc
TJ
1714int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1715{
29c4af7f
TJ
1716 unsigned char *new_buf;
1717
22a1b5c1
TJ
1718 if (ftdi == NULL)
1719 ftdi_error_return(-1, "ftdi context invalid");
1720
948f9ada
TJ
1721 // Invalidate all remaining data
1722 ftdi->readbuffer_offset = 0;
1723 ftdi->readbuffer_remaining = 0;
8de6eea4
JZ
1724#ifdef __linux__
1725 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1726 which is defined in libusb-1.0. Otherwise, each USB read request will
2e685a1f 1727 be divided into multiple URBs. This will cause issues on Linux kernel
8de6eea4
JZ
1728 older than 2.6.32. */
1729 if (chunksize > 16384)
1730 chunksize = 16384;
1731#endif
948f9ada 1732
c3d95b87
TJ
1733 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1734 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1735
948f9ada
TJ
1736 ftdi->readbuffer = new_buf;
1737 ftdi->readbuffer_chunksize = chunksize;
1738
1739 return 0;
1740}
1741
1941414d
TJ
1742/**
1743 Get read buffer chunk size.
948f9ada 1744
1941414d
TJ
1745 \param ftdi pointer to ftdi_context
1746 \param chunksize Pointer to store chunk size in
1747
1748 \retval 0: all fine
22a1b5c1 1749 \retval -1: FTDI context invalid
1941414d 1750*/
a8f46ddc
TJ
1751int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1752{
22a1b5c1
TJ
1753 if (ftdi == NULL)
1754 ftdi_error_return(-1, "FTDI context invalid");
1755
948f9ada
TJ
1756 *chunksize = ftdi->readbuffer_chunksize;
1757 return 0;
1758}
1759
1760
1941414d
TJ
1761/**
1762 Enable bitbang mode.
948f9ada 1763
fd282db3 1764 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1941414d
TJ
1765
1766 \param ftdi pointer to ftdi_context
1767 \param bitmask Bitmask to configure lines.
1768 HIGH/ON value configures a line as output.
1769
1770 \retval 0: all fine
1771 \retval -1: can't enable bitbang mode
22a1b5c1 1772 \retval -2: USB device unavailable
1941414d 1773*/
a8f46ddc
TJ
1774int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1775{
a3da1d95
GE
1776 unsigned short usb_val;
1777
22a1b5c1
TJ
1778 if (ftdi == NULL || ftdi->usb_dev == NULL)
1779 ftdi_error_return(-2, "USB device unavailable");
1780
d9f0cce7 1781 usb_val = bitmask; // low byte: bitmask
3119537f
TJ
1782 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1783 usb_val |= (ftdi->bitbang_mode << 8);
1784
579b006f
JZ
1785 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1786 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1787 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1788 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1789
a3da1d95
GE
1790 ftdi->bitbang_enabled = 1;
1791 return 0;
1792}
1793
1941414d
TJ
1794/**
1795 Disable bitbang mode.
a3da1d95 1796
1941414d
TJ
1797 \param ftdi pointer to ftdi_context
1798
1799 \retval 0: all fine
1800 \retval -1: can't disable bitbang mode
22a1b5c1 1801 \retval -2: USB device unavailable
1941414d 1802*/
a8f46ddc
TJ
1803int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1804{
22a1b5c1
TJ
1805 if (ftdi == NULL || ftdi->usb_dev == NULL)
1806 ftdi_error_return(-2, "USB device unavailable");
1807
579b006f 1808 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1809 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1810
1811 ftdi->bitbang_enabled = 0;
1812 return 0;
1813}
1814
1941414d 1815/**
418aaa72 1816 Enable/disable bitbang modes.
a3da1d95 1817
1941414d
TJ
1818 \param ftdi pointer to ftdi_context
1819 \param bitmask Bitmask to configure lines.
1820 HIGH/ON value configures a line as output.
fd282db3 1821 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
1822
1823 \retval 0: all fine
1824 \retval -1: can't enable bitbang mode
22a1b5c1 1825 \retval -2: USB device unavailable
1941414d 1826*/
c4446c36
TJ
1827int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1828{
1829 unsigned short usb_val;
1830
22a1b5c1
TJ
1831 if (ftdi == NULL || ftdi->usb_dev == NULL)
1832 ftdi_error_return(-2, "USB device unavailable");
1833
c4446c36
TJ
1834 usb_val = bitmask; // low byte: bitmask
1835 usb_val |= (mode << 8);
579b006f
JZ
1836 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1837 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
c4446c36
TJ
1838
1839 ftdi->bitbang_mode = mode;
418aaa72 1840 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
c4446c36
TJ
1841 return 0;
1842}
1843
1941414d 1844/**
418aaa72 1845 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
1846
1847 \param ftdi pointer to ftdi_context
1848 \param pins Pointer to store pins into
1849
1850 \retval 0: all fine
1851 \retval -1: read pins failed
22a1b5c1 1852 \retval -2: USB device unavailable
1941414d 1853*/
a8f46ddc
TJ
1854int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1855{
22a1b5c1
TJ
1856 if (ftdi == NULL || ftdi->usb_dev == NULL)
1857 ftdi_error_return(-2, "USB device unavailable");
1858
579b006f 1859 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1860 ftdi_error_return(-1, "read pins failed");
a3da1d95 1861
a3da1d95
GE
1862 return 0;
1863}
1864
1941414d
TJ
1865/**
1866 Set latency timer
1867
1868 The FTDI chip keeps data in the internal buffer for a specific
1869 amount of time if the buffer is not full yet to decrease
1870 load on the usb bus.
a3da1d95 1871
1941414d
TJ
1872 \param ftdi pointer to ftdi_context
1873 \param latency Value between 1 and 255
1874
1875 \retval 0: all fine
1876 \retval -1: latency out of range
1877 \retval -2: unable to set latency timer
22a1b5c1 1878 \retval -3: USB device unavailable
1941414d 1879*/
a8f46ddc
TJ
1880int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1881{
a3da1d95
GE
1882 unsigned short usb_val;
1883
c3d95b87
TJ
1884 if (latency < 1)
1885 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 1886
22a1b5c1
TJ
1887 if (ftdi == NULL || ftdi->usb_dev == NULL)
1888 ftdi_error_return(-3, "USB device unavailable");
1889
d79d2e68 1890 usb_val = latency;
579b006f 1891 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1892 ftdi_error_return(-2, "unable to set latency timer");
1893
a3da1d95
GE
1894 return 0;
1895}
1896
1941414d
TJ
1897/**
1898 Get latency timer
a3da1d95 1899
1941414d
TJ
1900 \param ftdi pointer to ftdi_context
1901 \param latency Pointer to store latency value in
1902
1903 \retval 0: all fine
1904 \retval -1: unable to get latency timer
22a1b5c1 1905 \retval -2: USB device unavailable
1941414d 1906*/
a8f46ddc
TJ
1907int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1908{
a3da1d95 1909 unsigned short usb_val;
22a1b5c1
TJ
1910
1911 if (ftdi == NULL || ftdi->usb_dev == NULL)
1912 ftdi_error_return(-2, "USB device unavailable");
1913
579b006f 1914 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1915 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
1916
1917 *latency = (unsigned char)usb_val;
1918 return 0;
1919}
1920
1941414d 1921/**
1189b11a
TJ
1922 Poll modem status information
1923
1924 This function allows the retrieve the two status bytes of the device.
1925 The device sends these bytes also as a header for each read access
1926 where they are discarded by ftdi_read_data(). The chip generates
1927 the two stripped status bytes in the absence of data every 40 ms.
1928
1929 Layout of the first byte:
1930 - B0..B3 - must be 0
1931 - B4 Clear to send (CTS)
1932 0 = inactive
1933 1 = active
1934 - B5 Data set ready (DTS)
1935 0 = inactive
1936 1 = active
1937 - B6 Ring indicator (RI)
1938 0 = inactive
1939 1 = active
1940 - B7 Receive line signal detect (RLSD)
1941 0 = inactive
1942 1 = active
1943
1944 Layout of the second byte:
1945 - B0 Data ready (DR)
1946 - B1 Overrun error (OE)
1947 - B2 Parity error (PE)
1948 - B3 Framing error (FE)
1949 - B4 Break interrupt (BI)
1950 - B5 Transmitter holding register (THRE)
1951 - B6 Transmitter empty (TEMT)
1952 - B7 Error in RCVR FIFO
1953
1954 \param ftdi pointer to ftdi_context
1955 \param status Pointer to store status information in. Must be two bytes.
1956
1957 \retval 0: all fine
1958 \retval -1: unable to retrieve status information
22a1b5c1 1959 \retval -2: USB device unavailable
1189b11a
TJ
1960*/
1961int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1962{
1963 char usb_val[2];
1964
22a1b5c1
TJ
1965 if (ftdi == NULL || ftdi->usb_dev == NULL)
1966 ftdi_error_return(-2, "USB device unavailable");
1967
579b006f 1968 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
1969 ftdi_error_return(-1, "getting modem status failed");
1970
1971 *status = (usb_val[1] << 8) | usb_val[0];
1972
1973 return 0;
1974}
1975
a7fb8440
TJ
1976/**
1977 Set flowcontrol for ftdi chip
1978
1979 \param ftdi pointer to ftdi_context
22d12cda
TJ
1980 \param flowctrl flow control to use. should be
1981 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
a7fb8440
TJ
1982
1983 \retval 0: all fine
1984 \retval -1: set flow control failed
22a1b5c1 1985 \retval -2: USB device unavailable
a7fb8440
TJ
1986*/
1987int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1988{
22a1b5c1
TJ
1989 if (ftdi == NULL || ftdi->usb_dev == NULL)
1990 ftdi_error_return(-2, "USB device unavailable");
1991
579b006f
JZ
1992 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1993 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
1994 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
1995 ftdi_error_return(-1, "set flow control failed");
1996
1997 return 0;
1998}
1999
2000/**
2001 Set dtr line
2002
2003 \param ftdi pointer to ftdi_context
2004 \param state state to set line to (1 or 0)
2005
2006 \retval 0: all fine
2007 \retval -1: set dtr failed
22a1b5c1 2008 \retval -2: USB device unavailable
a7fb8440
TJ
2009*/
2010int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2011{
2012 unsigned short usb_val;
2013
22a1b5c1
TJ
2014 if (ftdi == NULL || ftdi->usb_dev == NULL)
2015 ftdi_error_return(-2, "USB device unavailable");
2016
a7fb8440
TJ
2017 if (state)
2018 usb_val = SIO_SET_DTR_HIGH;
2019 else
2020 usb_val = SIO_SET_DTR_LOW;
2021
579b006f
JZ
2022 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2023 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2024 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2025 ftdi_error_return(-1, "set dtr failed");
2026
2027 return 0;
2028}
2029
2030/**
2031 Set rts line
2032
2033 \param ftdi pointer to ftdi_context
2034 \param state state to set line to (1 or 0)
2035
2036 \retval 0: all fine
22a1b5c1
TJ
2037 \retval -1: set rts failed
2038 \retval -2: USB device unavailable
a7fb8440
TJ
2039*/
2040int ftdi_setrts(struct ftdi_context *ftdi, int state)
2041{
2042 unsigned short usb_val;
2043
22a1b5c1
TJ
2044 if (ftdi == NULL || ftdi->usb_dev == NULL)
2045 ftdi_error_return(-2, "USB device unavailable");
2046
a7fb8440
TJ
2047 if (state)
2048 usb_val = SIO_SET_RTS_HIGH;
2049 else
2050 usb_val = SIO_SET_RTS_LOW;
2051
579b006f
JZ
2052 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2053 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2054 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2055 ftdi_error_return(-1, "set of rts failed");
2056
2057 return 0;
2058}
2059
1189b11a 2060/**
22a1b5c1 2061 Set dtr and rts line in one pass
9ecfef2a 2062
22a1b5c1
TJ
2063 \param ftdi pointer to ftdi_context
2064 \param dtr DTR state to set line to (1 or 0)
2065 \param rts RTS state to set line to (1 or 0)
9ecfef2a 2066
22a1b5c1
TJ
2067 \retval 0: all fine
2068 \retval -1: set dtr/rts failed
2069 \retval -2: USB device unavailable
9ecfef2a
TJ
2070 */
2071int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2072{
2073 unsigned short usb_val;
2074
22a1b5c1
TJ
2075 if (ftdi == NULL || ftdi->usb_dev == NULL)
2076 ftdi_error_return(-2, "USB device unavailable");
2077
9ecfef2a 2078 if (dtr)
22d12cda 2079 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 2080 else
22d12cda 2081 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
2082
2083 if (rts)
22d12cda 2084 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 2085 else
22d12cda 2086 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 2087
579b006f
JZ
2088 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2089 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2090 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 2091 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
2092
2093 return 0;
2094}
2095
2096/**
1189b11a
TJ
2097 Set the special event character
2098
2099 \param ftdi pointer to ftdi_context
2100 \param eventch Event character
2101 \param enable 0 to disable the event character, non-zero otherwise
2102
2103 \retval 0: all fine
2104 \retval -1: unable to set event character
22a1b5c1 2105 \retval -2: USB device unavailable
1189b11a
TJ
2106*/
2107int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 2108 unsigned char eventch, unsigned char enable)
1189b11a
TJ
2109{
2110 unsigned short usb_val;
2111
22a1b5c1
TJ
2112 if (ftdi == NULL || ftdi->usb_dev == NULL)
2113 ftdi_error_return(-2, "USB device unavailable");
2114
1189b11a
TJ
2115 usb_val = eventch;
2116 if (enable)
2117 usb_val |= 1 << 8;
2118
579b006f 2119 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2120 ftdi_error_return(-1, "setting event character failed");
2121
2122 return 0;
2123}
2124
2125/**
2126 Set error character
2127
2128 \param ftdi pointer to ftdi_context
2129 \param errorch Error character
2130 \param enable 0 to disable the error character, non-zero otherwise
2131
2132 \retval 0: all fine
2133 \retval -1: unable to set error character
22a1b5c1 2134 \retval -2: USB device unavailable
1189b11a
TJ
2135*/
2136int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 2137 unsigned char errorch, unsigned char enable)
1189b11a
TJ
2138{
2139 unsigned short usb_val;
2140
22a1b5c1
TJ
2141 if (ftdi == NULL || ftdi->usb_dev == NULL)
2142 ftdi_error_return(-2, "USB device unavailable");
2143
1189b11a
TJ
2144 usb_val = errorch;
2145 if (enable)
2146 usb_val |= 1 << 8;
2147
579b006f 2148 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2149 ftdi_error_return(-1, "setting error character failed");
2150
2151 return 0;
2152}
2153
2154/**
c201f80f
TJ
2155 Set the eeprom size
2156
2157 \param ftdi pointer to ftdi_context
2158 \param eeprom Pointer to ftdi_eeprom
2159 \param size
2160
2161*/
2162void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
2163{
22a1b5c1
TJ
2164 if (ftdi == NULL)
2165 return;
2166
22d12cda
TJ
2167 ftdi->eeprom_size=size;
2168 eeprom->size=size;
c201f80f
TJ
2169}
2170
2171/**
1941414d 2172 Init eeprom with default values.
a3da1d95 2173
1941414d
TJ
2174 \param eeprom Pointer to ftdi_eeprom
2175*/
a8f46ddc
TJ
2176void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
2177{
22a1b5c1
TJ
2178 if (eeprom == NULL)
2179 return;
2180
f396dbad
TJ
2181 eeprom->vendor_id = 0x0403;
2182 eeprom->product_id = 0x6001;
d9f0cce7 2183
b8aa7b35
TJ
2184 eeprom->self_powered = 1;
2185 eeprom->remote_wakeup = 1;
2186 eeprom->BM_type_chip = 1;
d9f0cce7 2187
b8aa7b35
TJ
2188 eeprom->in_is_isochronous = 0;
2189 eeprom->out_is_isochronous = 0;
2190 eeprom->suspend_pull_downs = 0;
d9f0cce7 2191
b8aa7b35
TJ
2192 eeprom->use_serial = 0;
2193 eeprom->change_usb_version = 0;
f396dbad 2194 eeprom->usb_version = 0x0200;
b8aa7b35 2195 eeprom->max_power = 0;
d9f0cce7 2196
b8aa7b35
TJ
2197 eeprom->manufacturer = NULL;
2198 eeprom->product = NULL;
2199 eeprom->serial = NULL;
c201f80f
TJ
2200
2201 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
b8aa7b35
TJ
2202}
2203
1941414d 2204/**
95ac1ca2
WH
2205 Frees allocated memory in eeprom.
2206
2207 \param eeprom Pointer to ftdi_eeprom
2208*/
2209void ftdi_eeprom_free(struct ftdi_eeprom *eeprom)
2210{
2211 if (eeprom->manufacturer != 0) {
2212 free(eeprom->manufacturer);
2213 eeprom->manufacturer = 0;
2214 }
2215 if (eeprom->product != 0) {
2216 free(eeprom->product);
2217 eeprom->product = 0;
2218 }
2219 if (eeprom->serial != 0) {
2220 free(eeprom->serial);
2221 eeprom->serial = 0;
2222 }
2223}
2224
2225/**
22a1b5c1
TJ
2226 Build binary output from ftdi_eeprom structure.
2227 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2228
22a1b5c1
TJ
2229 \param eeprom Pointer to ftdi_eeprom
2230 \param output Buffer of 128 bytes to store eeprom image to
1941414d 2231
22a1b5c1
TJ
2232 \retval >0: used eeprom size
2233 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2234 \retval -2: Invalid eeprom pointer
b8aa7b35 2235*/
a8f46ddc
TJ
2236int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
2237{
b8aa7b35
TJ
2238 unsigned char i, j;
2239 unsigned short checksum, value;
2240 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2241 int size_check;
2242
22a1b5c1
TJ
2243 if (eeprom == NULL)
2244 return -2;
2245
b8aa7b35 2246 if (eeprom->manufacturer != NULL)
d9f0cce7 2247 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2248 if (eeprom->product != NULL)
d9f0cce7 2249 product_size = strlen(eeprom->product);
b8aa7b35 2250 if (eeprom->serial != NULL)
d9f0cce7 2251 serial_size = strlen(eeprom->serial);
b8aa7b35 2252
c201f80f 2253 size_check = eeprom->size;
d9f0cce7 2254 size_check -= 28; // 28 are always in use (fixed)
c201f80f 2255
22d12cda 2256 // Top half of a 256byte eeprom is used just for strings and checksum
c201f80f
TJ
2257 // it seems that the FTDI chip will not read these strings from the lower half
2258 // Each string starts with two bytes; offset and type (0x03 for string)
2259 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
22d12cda 2260 if (eeprom->size>=256)size_check = 120;
b8aa7b35
TJ
2261 size_check -= manufacturer_size*2;
2262 size_check -= product_size*2;
2263 size_check -= serial_size*2;
2264
2265 // eeprom size exceeded?
2266 if (size_check < 0)
d9f0cce7 2267 return (-1);
b8aa7b35
TJ
2268
2269 // empty eeprom
c201f80f 2270 memset (output, 0, eeprom->size);
b8aa7b35
TJ
2271
2272 // Addr 00: Stay 00 00
2273 // Addr 02: Vendor ID
2274 output[0x02] = eeprom->vendor_id;
2275 output[0x03] = eeprom->vendor_id >> 8;
2276
2277 // Addr 04: Product ID
2278 output[0x04] = eeprom->product_id;
2279 output[0x05] = eeprom->product_id >> 8;
2280
2281 // Addr 06: Device release number (0400h for BM features)
2282 output[0x06] = 0x00;
d9f0cce7 2283
b8aa7b35 2284 if (eeprom->BM_type_chip == 1)
d9f0cce7 2285 output[0x07] = 0x04;
b8aa7b35 2286 else
d9f0cce7 2287 output[0x07] = 0x02;
b8aa7b35
TJ
2288
2289 // Addr 08: Config descriptor
8fae3e8e
TJ
2290 // Bit 7: always 1
2291 // Bit 6: 1 if this device is self powered, 0 if bus powered
2292 // Bit 5: 1 if this device uses remote wakeup
2293 // Bit 4: 1 if this device is battery powered
5a1dcd55 2294 j = 0x80;
b8aa7b35 2295 if (eeprom->self_powered == 1)
5a1dcd55 2296 j |= 0x40;
b8aa7b35 2297 if (eeprom->remote_wakeup == 1)
5a1dcd55 2298 j |= 0x20;
b8aa7b35
TJ
2299 output[0x08] = j;
2300
2301 // Addr 09: Max power consumption: max power = value * 2 mA
d9f0cce7 2302 output[0x09] = eeprom->max_power;
d9f0cce7 2303
b8aa7b35
TJ
2304 // Addr 0A: Chip configuration
2305 // Bit 7: 0 - reserved
2306 // Bit 6: 0 - reserved
2307 // Bit 5: 0 - reserved
2308 // Bit 4: 1 - Change USB version
2309 // Bit 3: 1 - Use the serial number string
2310 // Bit 2: 1 - Enable suspend pull downs for lower power
2311 // Bit 1: 1 - Out EndPoint is Isochronous
2312 // Bit 0: 1 - In EndPoint is Isochronous
2313 //
2314 j = 0;
2315 if (eeprom->in_is_isochronous == 1)
d9f0cce7 2316 j = j | 1;
b8aa7b35 2317 if (eeprom->out_is_isochronous == 1)
d9f0cce7 2318 j = j | 2;
b8aa7b35 2319 if (eeprom->suspend_pull_downs == 1)
d9f0cce7 2320 j = j | 4;
b8aa7b35 2321 if (eeprom->use_serial == 1)
d9f0cce7 2322 j = j | 8;
b8aa7b35 2323 if (eeprom->change_usb_version == 1)
d9f0cce7 2324 j = j | 16;
b8aa7b35 2325 output[0x0A] = j;
d9f0cce7 2326
b8aa7b35
TJ
2327 // Addr 0B: reserved
2328 output[0x0B] = 0x00;
d9f0cce7 2329
b8aa7b35
TJ
2330 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2331 // Addr 0D: USB version high byte when 0x0A bit 4 is set
22d12cda
TJ
2332 if (eeprom->change_usb_version == 1)
2333 {
b8aa7b35 2334 output[0x0C] = eeprom->usb_version;
d9f0cce7 2335 output[0x0D] = eeprom->usb_version >> 8;
b8aa7b35
TJ
2336 }
2337
2338
c201f80f 2339 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
b8aa7b35
TJ
2340 // Addr 0F: Length of manufacturer string
2341 output[0x0F] = manufacturer_size*2 + 2;
2342
2343 // Addr 10: Offset of the product string + 0x80, calculated later
2344 // Addr 11: Length of product string
2345 output[0x11] = product_size*2 + 2;
2346
2347 // Addr 12: Offset of the serial string + 0x80, calculated later
2348 // Addr 13: Length of serial string
2349 output[0x13] = serial_size*2 + 2;
2350
2351 // Dynamic content
c201f80f 2352 i=0x14;
22d12cda 2353 if (eeprom->size>=256) i = 0x80;
f01d7ca6 2354
c201f80f 2355
22d12cda 2356 // Output manufacturer
c201f80f
TJ
2357 output[0x0E] = i | 0x80; // calculate offset
2358 output[i++] = manufacturer_size*2 + 2;
2359 output[i++] = 0x03; // type: string
22d12cda
TJ
2360 for (j = 0; j < manufacturer_size; j++)
2361 {
d9f0cce7
TJ
2362 output[i] = eeprom->manufacturer[j], i++;
2363 output[i] = 0x00, i++;
b8aa7b35
TJ
2364 }
2365
2366 // Output product name
c201f80f 2367 output[0x10] = i | 0x80; // calculate offset
b8aa7b35
TJ
2368 output[i] = product_size*2 + 2, i++;
2369 output[i] = 0x03, i++;
22d12cda
TJ
2370 for (j = 0; j < product_size; j++)
2371 {
d9f0cce7
TJ
2372 output[i] = eeprom->product[j], i++;
2373 output[i] = 0x00, i++;
b8aa7b35 2374 }
d9f0cce7 2375
b8aa7b35 2376 // Output serial
c201f80f 2377 output[0x12] = i | 0x80; // calculate offset
b8aa7b35
TJ
2378 output[i] = serial_size*2 + 2, i++;
2379 output[i] = 0x03, i++;
22d12cda
TJ
2380 for (j = 0; j < serial_size; j++)
2381 {
d9f0cce7
TJ
2382 output[i] = eeprom->serial[j], i++;
2383 output[i] = 0x00, i++;
b8aa7b35
TJ
2384 }
2385
2386 // calculate checksum
2387 checksum = 0xAAAA;
d9f0cce7 2388
22d12cda
TJ
2389 for (i = 0; i < eeprom->size/2-1; i++)
2390 {
d9f0cce7
TJ
2391 value = output[i*2];
2392 value += output[(i*2)+1] << 8;
b8aa7b35 2393
d9f0cce7
TJ
2394 checksum = value^checksum;
2395 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
2396 }
2397
c201f80f
TJ
2398 output[eeprom->size-2] = checksum;
2399 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 2400
8ed61121 2401 return size_check;
b8aa7b35
TJ
2402}
2403
4af1d1bb
MK
2404/**
2405 Decode binary EEPROM image into an ftdi_eeprom structure.
2406
2407 \param eeprom Pointer to ftdi_eeprom which will be filled in.
1bbaf1ce 2408 \param buf Buffer of \a size bytes of raw eeprom data
4af1d1bb
MK
2409 \param size size size of eeprom data in bytes
2410
2411 \retval 0: all fine
2412 \retval -1: something went wrong
2413
2414 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2415 FIXME: Strings are malloc'ed here and should be freed somewhere
2416*/
49c5ac72 2417int ftdi_eeprom_decode(struct ftdi_eeprom *eeprom, unsigned char *buf, int size)
b56d5a64
MK
2418{
2419 unsigned char i, j;
2420 unsigned short checksum, eeprom_checksum, value;
2421 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
b56d5a64 2422 int eeprom_size = 128;
22a1b5c1
TJ
2423
2424 if (eeprom == NULL)
2425 return -1;
b56d5a64
MK
2426#if 0
2427 size_check = eeprom->size;
2428 size_check -= 28; // 28 are always in use (fixed)
2429
22d12cda 2430 // Top half of a 256byte eeprom is used just for strings and checksum
b56d5a64
MK
2431 // it seems that the FTDI chip will not read these strings from the lower half
2432 // Each string starts with two bytes; offset and type (0x03 for string)
2433 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
22d12cda 2434 if (eeprom->size>=256)size_check = 120;
b56d5a64
MK
2435 size_check -= manufacturer_size*2;
2436 size_check -= product_size*2;
2437 size_check -= serial_size*2;
2438
2439 // eeprom size exceeded?
2440 if (size_check < 0)
2441 return (-1);
2442#endif
2443
2444 // empty eeprom struct
4af1d1bb 2445 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
b56d5a64
MK
2446
2447 // Addr 00: Stay 00 00
2448
2449 // Addr 02: Vendor ID
2450 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2451
2452 // Addr 04: Product ID
2453 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
22d12cda 2454
6335545d
TJ
2455 value = buf[0x06] + (buf[0x07]<<8);
2456 switch (value)
22d12cda
TJ
2457 {
2458 case 0x0400:
2459 eeprom->BM_type_chip = 1;
2460 break;
2461 case 0x0200:
2462 eeprom->BM_type_chip = 0;
2463 break;
2464 default: // Unknown device
2465 eeprom->BM_type_chip = 0;
2466 break;
4af1d1bb 2467 }
b56d5a64
MK
2468
2469 // Addr 08: Config descriptor
2470 // Bit 7: always 1
2471 // Bit 6: 1 if this device is self powered, 0 if bus powered
2472 // Bit 5: 1 if this device uses remote wakeup
2473 // Bit 4: 1 if this device is battery powered
2474 j = buf[0x08];
b56d5a64
MK
2475 if (j&0x40) eeprom->self_powered = 1;
2476 if (j&0x20) eeprom->remote_wakeup = 1;
2477
2478 // Addr 09: Max power consumption: max power = value * 2 mA
2479 eeprom->max_power = buf[0x09];
2480
2481 // Addr 0A: Chip configuration
2482 // Bit 7: 0 - reserved
2483 // Bit 6: 0 - reserved
2484 // Bit 5: 0 - reserved
2485 // Bit 4: 1 - Change USB version
2486 // Bit 3: 1 - Use the serial number string
2487 // Bit 2: 1 - Enable suspend pull downs for lower power
2488 // Bit 1: 1 - Out EndPoint is Isochronous
2489 // Bit 0: 1 - In EndPoint is Isochronous
2490 //
2491 j = buf[0x0A];
4af1d1bb
MK
2492 if (j&0x01) eeprom->in_is_isochronous = 1;
2493 if (j&0x02) eeprom->out_is_isochronous = 1;
2494 if (j&0x04) eeprom->suspend_pull_downs = 1;
2495 if (j&0x08) eeprom->use_serial = 1;
2496 if (j&0x10) eeprom->change_usb_version = 1;
b56d5a64 2497
4af1d1bb 2498 // Addr 0B: reserved
b56d5a64
MK
2499
2500 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2501 // Addr 0D: USB version high byte when 0x0A bit 4 is set
22d12cda
TJ
2502 if (eeprom->change_usb_version == 1)
2503 {
2504 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
b56d5a64
MK
2505 }
2506
2507 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2508 // Addr 0F: Length of manufacturer string
2509 manufacturer_size = buf[0x0F]/2;
2510 if (manufacturer_size > 0) eeprom->manufacturer = malloc(manufacturer_size);
2511 else eeprom->manufacturer = NULL;
2512
2513 // Addr 10: Offset of the product string + 0x80, calculated later
2514 // Addr 11: Length of product string
2515 product_size = buf[0x11]/2;
2516 if (product_size > 0) eeprom->product = malloc(product_size);
2517 else eeprom->product = NULL;
2518
2519 // Addr 12: Offset of the serial string + 0x80, calculated later
2520 // Addr 13: Length of serial string
2521 serial_size = buf[0x13]/2;
2522 if (serial_size > 0) eeprom->serial = malloc(serial_size);
2523 else eeprom->serial = NULL;
2524
22d12cda 2525 // Decode manufacturer
b56d5a64 2526 i = buf[0x0E] & 0x7f; // offset
22d12cda
TJ
2527 for (j=0;j<manufacturer_size-1;j++)
2528 {
2529 eeprom->manufacturer[j] = buf[2*j+i+2];
b56d5a64
MK
2530 }
2531 eeprom->manufacturer[j] = '\0';
2532
2533 // Decode product name
2534 i = buf[0x10] & 0x7f; // offset
22d12cda
TJ
2535 for (j=0;j<product_size-1;j++)
2536 {
2537 eeprom->product[j] = buf[2*j+i+2];
b56d5a64
MK
2538 }
2539 eeprom->product[j] = '\0';
2540
2541 // Decode serial
2542 i = buf[0x12] & 0x7f; // offset
22d12cda
TJ
2543 for (j=0;j<serial_size-1;j++)
2544 {
2545 eeprom->serial[j] = buf[2*j+i+2];
b56d5a64
MK
2546 }
2547 eeprom->serial[j] = '\0';
2548
2549 // verify checksum
2550 checksum = 0xAAAA;
2551
22d12cda
TJ
2552 for (i = 0; i < eeprom_size/2-1; i++)
2553 {
b56d5a64
MK
2554 value = buf[i*2];
2555 value += buf[(i*2)+1] << 8;
2556
2557 checksum = value^checksum;
2558 checksum = (checksum << 1) | (checksum >> 15);
2559 }
2560
2561 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2562
22d12cda
TJ
2563 if (eeprom_checksum != checksum)
2564 {
2565 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2566 return -1;
4af1d1bb
MK
2567 }
2568
2569 return 0;
b56d5a64
MK
2570}
2571
1941414d 2572/**
c1c70e13
OS
2573 Read eeprom location
2574
2575 \param ftdi pointer to ftdi_context
2576 \param eeprom_addr Address of eeprom location to be read
2577 \param eeprom_val Pointer to store read eeprom location
2578
2579 \retval 0: all fine
2580 \retval -1: read failed
22a1b5c1 2581 \retval -2: USB device unavailable
c1c70e13
OS
2582*/
2583int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
2584{
22a1b5c1
TJ
2585 if (ftdi == NULL || ftdi->usb_dev == NULL)
2586 ftdi_error_return(-2, "USB device unavailable");
2587
579b006f 2588 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
c1c70e13
OS
2589 ftdi_error_return(-1, "reading eeprom failed");
2590
2591 return 0;
2592}
2593
2594/**
1941414d
TJ
2595 Read eeprom
2596
2597 \param ftdi pointer to ftdi_context
2598 \param eeprom Pointer to store eeprom into
b8aa7b35 2599
1941414d
TJ
2600 \retval 0: all fine
2601 \retval -1: read failed
22a1b5c1 2602 \retval -2: USB device unavailable
1941414d 2603*/
a8f46ddc
TJ
2604int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2605{
a3da1d95
GE
2606 int i;
2607
22a1b5c1
TJ
2608 if (ftdi == NULL || ftdi->usb_dev == NULL)
2609 ftdi_error_return(-2, "USB device unavailable");
2610
22d12cda
TJ
2611 for (i = 0; i < ftdi->eeprom_size/2; i++)
2612 {
579b006f 2613 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
c3d95b87 2614 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
2615 }
2616
2617 return 0;
2618}
2619
cb6250fa
TJ
2620/*
2621 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
2622 Function is only used internally
2623 \internal
2624*/
2625static unsigned char ftdi_read_chipid_shift(unsigned char value)
2626{
2627 return ((value & 1) << 1) |
22d12cda
TJ
2628 ((value & 2) << 5) |
2629 ((value & 4) >> 2) |
2630 ((value & 8) << 4) |
2631 ((value & 16) >> 1) |
2632 ((value & 32) >> 1) |
2633 ((value & 64) >> 4) |
2634 ((value & 128) >> 2);
cb6250fa
TJ
2635}
2636
2637/**
2638 Read the FTDIChip-ID from R-type devices
2639
2640 \param ftdi pointer to ftdi_context
2641 \param chipid Pointer to store FTDIChip-ID
2642
2643 \retval 0: all fine
2644 \retval -1: read failed
22a1b5c1 2645 \retval -2: USB device unavailable
cb6250fa
TJ
2646*/
2647int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
2648{
c7eb3112 2649 unsigned int a = 0, b = 0;
cb6250fa 2650
22a1b5c1
TJ
2651 if (ftdi == NULL || ftdi->usb_dev == NULL)
2652 ftdi_error_return(-2, "USB device unavailable");
2653
579b006f 2654 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
2655 {
2656 a = a << 8 | a >> 8;
579b006f 2657 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
2658 {
2659 b = b << 8 | b >> 8;
5230676f 2660 a = (a << 16) | (b & 0xFFFF);
912d50ca
TJ
2661 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
2662 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 2663 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 2664 return 0;
cb6250fa
TJ
2665 }
2666 }
2667
c7eb3112 2668 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
2669}
2670
1941414d 2671/**
22a1b5c1
TJ
2672 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
2673 Call this function then do a write then call again to see if size changes, if so write again.
c201f80f 2674
22a1b5c1
TJ
2675 \param ftdi pointer to ftdi_context
2676 \param eeprom Pointer to store eeprom into
2677 \param maxsize the size of the buffer to read into
c201f80f 2678
22a1b5c1
TJ
2679 \retval -1: eeprom read failed
2680 \retval -2: USB device unavailable
2681 \retval >=0: size of eeprom
c201f80f
TJ
2682*/
2683int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
2684{
2685 int i=0,j,minsize=32;
2686 int size=minsize;
2687
22a1b5c1
TJ
2688 if (ftdi == NULL || ftdi->usb_dev == NULL)
2689 ftdi_error_return(-2, "USB device unavailable");
2690
22d12cda
TJ
2691 do
2692 {
2693 for (j = 0; i < maxsize/2 && j<size; j++)
2694 {
579b006f
JZ
2695 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,
2696 SIO_READ_EEPROM_REQUEST, 0, i,
2697 eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
22a1b5c1 2698 ftdi_error_return(-1, "eeprom read failed");
22d12cda
TJ
2699 i++;
2700 }
2701 size*=2;
2702 }
2703 while (size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
c201f80f
TJ
2704
2705 return size/2;
2706}
2707
2708/**
c1c70e13
OS
2709 Write eeprom location
2710
2711 \param ftdi pointer to ftdi_context
2712 \param eeprom_addr Address of eeprom location to be written
2713 \param eeprom_val Value to be written
2714
2715 \retval 0: all fine
2716 \retval -1: read failed
22a1b5c1 2717 \retval -2: USB device unavailable
c1c70e13
OS
2718*/
2719int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr, unsigned short eeprom_val)
2720{
22a1b5c1
TJ
2721 if (ftdi == NULL || ftdi->usb_dev == NULL)
2722 ftdi_error_return(-2, "USB device unavailable");
2723
579b006f 2724 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
c1c70e13
OS
2725 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
2726 NULL, 0, ftdi->usb_write_timeout) != 0)
2727 ftdi_error_return(-1, "unable to write eeprom");
2728
2729 return 0;
2730}
2731
2732/**
1941414d 2733 Write eeprom
a3da1d95 2734
1941414d
TJ
2735 \param ftdi pointer to ftdi_context
2736 \param eeprom Pointer to read eeprom from
2737
2738 \retval 0: all fine
2739 \retval -1: read failed
22a1b5c1 2740 \retval -2: USB device unavailable
1941414d 2741*/
a8f46ddc
TJ
2742int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2743{
ba5329be 2744 unsigned short usb_val, status;
e30da501 2745 int i, ret;
a3da1d95 2746
22a1b5c1
TJ
2747 if (ftdi == NULL || ftdi->usb_dev == NULL)
2748 ftdi_error_return(-2, "USB device unavailable");
2749
ba5329be 2750 /* These commands were traced while running MProg */
e30da501
TJ
2751 if ((ret = ftdi_usb_reset(ftdi)) != 0)
2752 return ret;
2753 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
2754 return ret;
2755 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
2756 return ret;
ba5329be 2757
22d12cda
TJ
2758 for (i = 0; i < ftdi->eeprom_size/2; i++)
2759 {
d9f0cce7
TJ
2760 usb_val = eeprom[i*2];
2761 usb_val += eeprom[(i*2)+1] << 8;
579b006f
JZ
2762 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2763 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
2764 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 2765 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
2766 }
2767
2768 return 0;
2769}
2770
1941414d
TJ
2771/**
2772 Erase eeprom
a3da1d95 2773
a5e1bd8c
MK
2774 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
2775
1941414d
TJ
2776 \param ftdi pointer to ftdi_context
2777
2778 \retval 0: all fine
2779 \retval -1: erase failed
22a1b5c1 2780 \retval -2: USB device unavailable
1941414d 2781*/
a8f46ddc
TJ
2782int ftdi_erase_eeprom(struct ftdi_context *ftdi)
2783{
22a1b5c1
TJ
2784 if (ftdi == NULL || ftdi->usb_dev == NULL)
2785 ftdi_error_return(-2, "USB device unavailable");
2786
579b006f 2787 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST, 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 2788 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
2789
2790 return 0;
2791}
c3d95b87 2792
1941414d
TJ
2793/**
2794 Get string representation for last error code
c3d95b87 2795
1941414d
TJ
2796 \param ftdi pointer to ftdi_context
2797
2798 \retval Pointer to error string
2799*/
c3d95b87
TJ
2800char *ftdi_get_error_string (struct ftdi_context *ftdi)
2801{
22a1b5c1
TJ
2802 if (ftdi == NULL)
2803 return "";
2804
c3d95b87
TJ
2805 return ftdi->error_str;
2806}
a01d31e2 2807
b5ec1820 2808/* @} end of doxygen libftdi group */