Fix user area size calculation
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
22a1b5c1 5 copyright : (C) 2003-2010 by Intra2net AG
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
1bfc403c 21 http://www.intra2net.com/en/developer/libftdi/
b5ec1820 22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
579b006f 31#include <libusb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
b56d5a64 34#include <stdio.h>
579b006f 35#include <stdlib.h>
0e302db6 36
98452d97 37#include "ftdi.h"
a3da1d95 38
21abaf2e 39#define ftdi_error_return(code, str) do { \
2f73e59f 40 ftdi->error_str = str; \
21abaf2e 41 return code; \
d2f10023 42 } while(0);
c3d95b87 43
99650502
UB
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
418aaa72 50
f3f81007
TJ
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
579b006f 58 \retval none
f3f81007 59*/
579b006f 60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 61{
22a1b5c1 62 if (ftdi && ftdi->usb_dev)
dff4fdb0 63 {
56ac0383
TJ
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
dff4fdb0 66 }
dff4fdb0 67}
c3d95b87 68
1941414d
TJ
69/**
70 Initializes a ftdi_context.
4837f98a 71
1941414d 72 \param ftdi pointer to ftdi_context
4837f98a 73
1941414d
TJ
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
a35aa9bd 76 \retval -2: couldn't allocate struct buffer
1941414d
TJ
77
78 \remark This should be called before all functions
948f9ada 79*/
a8f46ddc
TJ
80int ftdi_init(struct ftdi_context *ftdi)
81{
a35aa9bd 82 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
02212d8e 83 ftdi->usb_ctx = NULL;
98452d97 84 ftdi->usb_dev = NULL;
545820ce
TJ
85 ftdi->usb_read_timeout = 5000;
86 ftdi->usb_write_timeout = 5000;
a3da1d95 87
53ad271d 88 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 89 ftdi->baudrate = -1;
418aaa72 90 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 91
948f9ada
TJ
92 ftdi->readbuffer = NULL;
93 ftdi->readbuffer_offset = 0;
94 ftdi->readbuffer_remaining = 0;
95 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 96 ftdi->max_packet_size = 0;
948f9ada 97
ac0af8ec 98 ftdi_set_interface(ftdi, INTERFACE_ANY);
418aaa72 99 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 100
a3da1d95
GE
101 ftdi->error_str = NULL;
102
a35aa9bd
UB
103 if (eeprom == 0)
104 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
b4d19dea 105 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
a35aa9bd 106 ftdi->eeprom = eeprom;
c201f80f 107
1c733d33
TJ
108 /* All fine. Now allocate the readbuffer */
109 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 110}
4837f98a 111
1941414d 112/**
cef378aa
TJ
113 Allocate and initialize a new ftdi_context
114
115 \return a pointer to a new ftdi_context, or NULL on failure
116*/
672ac008 117struct ftdi_context *ftdi_new(void)
cef378aa
TJ
118{
119 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
120
22d12cda
TJ
121 if (ftdi == NULL)
122 {
cef378aa
TJ
123 return NULL;
124 }
125
22d12cda
TJ
126 if (ftdi_init(ftdi) != 0)
127 {
cef378aa 128 free(ftdi);
cdf448f6 129 return NULL;
cef378aa
TJ
130 }
131
132 return ftdi;
133}
134
135/**
1941414d
TJ
136 Open selected channels on a chip, otherwise use first channel.
137
138 \param ftdi pointer to ftdi_context
f9d69895 139 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
140
141 \retval 0: all fine
142 \retval -1: unknown interface
22a1b5c1 143 \retval -2: USB device unavailable
c4446c36 144*/
0ce2f5fa 145int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 146{
1971c26d 147 if (ftdi == NULL)
22a1b5c1
TJ
148 ftdi_error_return(-2, "USB device unavailable");
149
22d12cda
TJ
150 switch (interface)
151 {
152 case INTERFACE_ANY:
153 case INTERFACE_A:
ac0af8ec
VY
154 ftdi->interface = 0;
155 ftdi->index = INTERFACE_A;
156 ftdi->in_ep = 0x02;
157 ftdi->out_ep = 0x81;
22d12cda
TJ
158 break;
159 case INTERFACE_B:
160 ftdi->interface = 1;
161 ftdi->index = INTERFACE_B;
162 ftdi->in_ep = 0x04;
163 ftdi->out_ep = 0x83;
164 break;
f9d69895
AH
165 case INTERFACE_C:
166 ftdi->interface = 2;
167 ftdi->index = INTERFACE_C;
168 ftdi->in_ep = 0x06;
169 ftdi->out_ep = 0x85;
170 break;
171 case INTERFACE_D:
172 ftdi->interface = 3;
173 ftdi->index = INTERFACE_D;
174 ftdi->in_ep = 0x08;
175 ftdi->out_ep = 0x87;
176 break;
22d12cda
TJ
177 default:
178 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
179 }
180 return 0;
181}
948f9ada 182
1941414d
TJ
183/**
184 Deinitializes a ftdi_context.
4837f98a 185
1941414d 186 \param ftdi pointer to ftdi_context
4837f98a 187*/
a8f46ddc
TJ
188void ftdi_deinit(struct ftdi_context *ftdi)
189{
22a1b5c1
TJ
190 if (ftdi == NULL)
191 return;
192
f3f81007 193 ftdi_usb_close_internal (ftdi);
dff4fdb0 194
22d12cda
TJ
195 if (ftdi->readbuffer != NULL)
196 {
d9f0cce7
TJ
197 free(ftdi->readbuffer);
198 ftdi->readbuffer = NULL;
948f9ada 199 }
a35aa9bd
UB
200
201 if (ftdi->eeprom != NULL)
202 {
74e8e79d
UB
203 if (ftdi->eeprom->manufacturer != 0)
204 {
205 free(ftdi->eeprom->manufacturer);
206 ftdi->eeprom->manufacturer = 0;
207 }
208 if (ftdi->eeprom->product != 0)
209 {
210 free(ftdi->eeprom->product);
211 ftdi->eeprom->product = 0;
212 }
213 if (ftdi->eeprom->serial != 0)
214 {
215 free(ftdi->eeprom->serial);
216 ftdi->eeprom->serial = 0;
217 }
a35aa9bd
UB
218 free(ftdi->eeprom);
219 ftdi->eeprom = NULL;
220 }
02212d8e 221 libusb_exit(ftdi->usb_ctx);
a3da1d95
GE
222}
223
1941414d 224/**
cef378aa
TJ
225 Deinitialize and free an ftdi_context.
226
227 \param ftdi pointer to ftdi_context
228*/
229void ftdi_free(struct ftdi_context *ftdi)
230{
231 ftdi_deinit(ftdi);
232 free(ftdi);
233}
234
235/**
1941414d
TJ
236 Use an already open libusb device.
237
238 \param ftdi pointer to ftdi_context
579b006f 239 \param usb libusb libusb_device_handle to use
4837f98a 240*/
579b006f 241void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 242{
22a1b5c1
TJ
243 if (ftdi == NULL)
244 return;
245
98452d97
TJ
246 ftdi->usb_dev = usb;
247}
248
249
1941414d
TJ
250/**
251 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
252 needs to be deallocated by ftdi_list_free() after use.
253
254 \param ftdi pointer to ftdi_context
255 \param devlist Pointer where to store list of found devices
256 \param vendor Vendor ID to search for
257 \param product Product ID to search for
edb82cbf 258
1941414d 259 \retval >0: number of devices found
1941414d 260 \retval -3: out of memory
579b006f
JZ
261 \retval -4: libusb_init() failed
262 \retval -5: libusb_get_device_list() failed
263 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 264*/
d2f10023 265int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
266{
267 struct ftdi_device_list **curdev;
579b006f
JZ
268 libusb_device *dev;
269 libusb_device **devs;
edb82cbf 270 int count = 0;
579b006f
JZ
271 int i = 0;
272
02212d8e 273 if (libusb_init(&ftdi->usb_ctx) < 0)
579b006f 274 ftdi_error_return(-4, "libusb_init() failed");
d2f10023 275
02212d8e 276 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 277 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
278
279 curdev = devlist;
6db32169 280 *curdev = NULL;
579b006f
JZ
281
282 while ((dev = devs[i++]) != NULL)
22d12cda 283 {
579b006f 284 struct libusb_device_descriptor desc;
d2f10023 285
579b006f
JZ
286 if (libusb_get_device_descriptor(dev, &desc) < 0)
287 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
edb82cbf 288
579b006f
JZ
289 if (desc.idVendor == vendor && desc.idProduct == product)
290 {
291 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
292 if (!*curdev)
293 ftdi_error_return(-3, "out of memory");
56ac0383 294
579b006f
JZ
295 (*curdev)->next = NULL;
296 (*curdev)->dev = dev;
297
298 curdev = &(*curdev)->next;
299 count++;
edb82cbf
TJ
300 }
301 }
d2f10023 302
edb82cbf
TJ
303 return count;
304}
305
1941414d
TJ
306/**
307 Frees a usb device list.
edb82cbf 308
1941414d 309 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 310*/
d2f10023 311void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 312{
6db32169
TJ
313 struct ftdi_device_list *curdev, *next;
314
22d12cda
TJ
315 for (curdev = *devlist; curdev != NULL;)
316 {
6db32169
TJ
317 next = curdev->next;
318 free(curdev);
319 curdev = next;
edb82cbf
TJ
320 }
321
6db32169 322 *devlist = NULL;
edb82cbf
TJ
323}
324
1941414d 325/**
cef378aa
TJ
326 Frees a usb device list.
327
328 \param devlist USB device list created by ftdi_usb_find_all()
329*/
330void ftdi_list_free2(struct ftdi_device_list *devlist)
331{
332 ftdi_list_free(&devlist);
333}
334
335/**
474786c0
TJ
336 Return device ID strings from the usb device.
337
338 The parameters manufacturer, description and serial may be NULL
339 or pointer to buffers to store the fetched strings.
340
898c34dd
TJ
341 \note Use this function only in combination with ftdi_usb_find_all()
342 as it closes the internal "usb_dev" after use.
343
474786c0
TJ
344 \param ftdi pointer to ftdi_context
345 \param dev libusb usb_dev to use
346 \param manufacturer Store manufacturer string here if not NULL
347 \param mnf_len Buffer size of manufacturer string
348 \param description Store product description string here if not NULL
349 \param desc_len Buffer size of product description string
350 \param serial Store serial string here if not NULL
351 \param serial_len Buffer size of serial string
352
353 \retval 0: all fine
354 \retval -1: wrong arguments
355 \retval -4: unable to open device
356 \retval -7: get product manufacturer failed
357 \retval -8: get product description failed
358 \retval -9: get serial number failed
579b006f 359 \retval -11: libusb_get_device_descriptor() failed
474786c0 360*/
579b006f 361int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
22d12cda 362 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
474786c0 363{
579b006f
JZ
364 struct libusb_device_descriptor desc;
365
474786c0
TJ
366 if ((ftdi==NULL) || (dev==NULL))
367 return -1;
368
579b006f
JZ
369 if (libusb_open(dev, &ftdi->usb_dev) < 0)
370 ftdi_error_return(-4, "libusb_open() failed");
371
372 if (libusb_get_device_descriptor(dev, &desc) < 0)
373 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 374
22d12cda
TJ
375 if (manufacturer != NULL)
376 {
579b006f 377 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 378 {
f3f81007 379 ftdi_usb_close_internal (ftdi);
579b006f 380 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
381 }
382 }
383
22d12cda
TJ
384 if (description != NULL)
385 {
579b006f 386 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 387 {
f3f81007 388 ftdi_usb_close_internal (ftdi);
579b006f 389 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
390 }
391 }
392
22d12cda
TJ
393 if (serial != NULL)
394 {
579b006f 395 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 396 {
f3f81007 397 ftdi_usb_close_internal (ftdi);
579b006f 398 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
399 }
400 }
401
579b006f 402 ftdi_usb_close_internal (ftdi);
474786c0
TJ
403
404 return 0;
405}
406
407/**
e2f12a4f
TJ
408 * Internal function to determine the maximum packet size.
409 * \param ftdi pointer to ftdi_context
410 * \param dev libusb usb_dev to use
411 * \retval Maximum packet size for this device
412 */
579b006f 413static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 414{
579b006f
JZ
415 struct libusb_device_descriptor desc;
416 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
417 unsigned int packet_size;
418
22a1b5c1
TJ
419 // Sanity check
420 if (ftdi == NULL || dev == NULL)
421 return 64;
422
e2f12a4f
TJ
423 // Determine maximum packet size. Init with default value.
424 // New hi-speed devices from FTDI use a packet size of 512 bytes
425 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
426 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
427 packet_size = 512;
428 else
429 packet_size = 64;
430
579b006f
JZ
431 if (libusb_get_device_descriptor(dev, &desc) < 0)
432 return packet_size;
433
434 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
435 return packet_size;
e2f12a4f 436
579b006f
JZ
437 if (desc.bNumConfigurations > 0)
438 {
439 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 440 {
579b006f 441 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
442 if (interface.num_altsetting > 0)
443 {
579b006f 444 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
445 if (descriptor.bNumEndpoints > 0)
446 {
447 packet_size = descriptor.endpoint[0].wMaxPacketSize;
448 }
449 }
450 }
451 }
452
579b006f 453 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
454 return packet_size;
455}
456
457/**
418aaa72 458 Opens a ftdi device given by an usb_device.
7b18bef6 459
1941414d
TJ
460 \param ftdi pointer to ftdi_context
461 \param dev libusb usb_dev to use
462
463 \retval 0: all fine
23b1798d 464 \retval -3: unable to config device
1941414d
TJ
465 \retval -4: unable to open device
466 \retval -5: unable to claim device
467 \retval -6: reset failed
468 \retval -7: set baudrate failed
22a1b5c1 469 \retval -8: ftdi context invalid
579b006f
JZ
470 \retval -9: libusb_get_device_descriptor() failed
471 \retval -10: libusb_get_config_descriptor() failed
472 \retval -11: libusb_etach_kernel_driver() failed
473 \retval -12: libusb_get_configuration() failed
7b18bef6 474*/
579b006f 475int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 476{
579b006f
JZ
477 struct libusb_device_descriptor desc;
478 struct libusb_config_descriptor *config0;
43aee24f 479 int cfg, cfg0, detach_errno = 0;
579b006f 480
22a1b5c1
TJ
481 if (ftdi == NULL)
482 ftdi_error_return(-8, "ftdi context invalid");
483
579b006f
JZ
484 if (libusb_open(dev, &ftdi->usb_dev) < 0)
485 ftdi_error_return(-4, "libusb_open() failed");
486
487 if (libusb_get_device_descriptor(dev, &desc) < 0)
488 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
489
490 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
491 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
492 cfg0 = config0->bConfigurationValue;
493 libusb_free_config_descriptor (config0);
d2f10023 494
22592e17 495 // Try to detach ftdi_sio kernel module.
22592e17
TJ
496 //
497 // The return code is kept in a separate variable and only parsed
498 // if usb_set_configuration() or usb_claim_interface() fails as the
499 // detach operation might be denied and everything still works fine.
500 // Likely scenario is a static ftdi_sio kernel module.
43aee24f
UB
501 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
502 detach_errno = errno;
d2f10023 503
579b006f
JZ
504 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
505 ftdi_error_return(-12, "libusb_get_configuration () failed");
b57aedfd
GE
506 // set configuration (needed especially for windows)
507 // tolerate EBUSY: one device with one configuration, but two interfaces
508 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 509 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 510 {
579b006f 511 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 512 {
a56ba2bd 513 ftdi_usb_close_internal (ftdi);
56ac0383 514 if (detach_errno == EPERM)
43aee24f
UB
515 {
516 ftdi_error_return(-8, "inappropriate permissions on device!");
517 }
518 else
519 {
c16b162d 520 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
43aee24f 521 }
23b1798d
TJ
522 }
523 }
524
579b006f 525 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 526 {
f3f81007 527 ftdi_usb_close_internal (ftdi);
56ac0383 528 if (detach_errno == EPERM)
43aee24f
UB
529 {
530 ftdi_error_return(-8, "inappropriate permissions on device!");
531 }
532 else
533 {
c16b162d 534 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
43aee24f 535 }
7b18bef6
TJ
536 }
537
22d12cda
TJ
538 if (ftdi_usb_reset (ftdi) != 0)
539 {
f3f81007 540 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
541 ftdi_error_return(-6, "ftdi_usb_reset failed");
542 }
543
7b18bef6
TJ
544 // Try to guess chip type
545 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f 546 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
56ac0383 547 && desc.iSerialNumber == 0))
7b18bef6 548 ftdi->type = TYPE_BM;
579b006f 549 else if (desc.bcdDevice == 0x200)
7b18bef6 550 ftdi->type = TYPE_AM;
579b006f 551 else if (desc.bcdDevice == 0x500)
7b18bef6 552 ftdi->type = TYPE_2232C;
579b006f 553 else if (desc.bcdDevice == 0x600)
cb6250fa 554 ftdi->type = TYPE_R;
579b006f 555 else if (desc.bcdDevice == 0x700)
0beb9686 556 ftdi->type = TYPE_2232H;
579b006f 557 else if (desc.bcdDevice == 0x800)
0beb9686 558 ftdi->type = TYPE_4232H;
7b18bef6 559
e2f12a4f
TJ
560 // Determine maximum packet size
561 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
562
ef6f4838
TE
563 if (ftdi_set_baudrate (ftdi, 9600) != 0)
564 {
565 ftdi_usb_close_internal (ftdi);
566 ftdi_error_return(-7, "set baudrate failed");
567 }
568
7b18bef6
TJ
569 ftdi_error_return(0, "all fine");
570}
571
1941414d
TJ
572/**
573 Opens the first device with a given vendor and product ids.
574
575 \param ftdi pointer to ftdi_context
576 \param vendor Vendor ID
577 \param product Product ID
578
9bec2387 579 \retval same as ftdi_usb_open_desc()
1941414d 580*/
edb82cbf
TJ
581int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
582{
583 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
584}
585
1941414d
TJ
586/**
587 Opens the first device with a given, vendor id, product id,
588 description and serial.
589
590 \param ftdi pointer to ftdi_context
591 \param vendor Vendor ID
592 \param product Product ID
593 \param description Description to search for. Use NULL if not needed.
594 \param serial Serial to search for. Use NULL if not needed.
595
596 \retval 0: all fine
1941414d
TJ
597 \retval -3: usb device not found
598 \retval -4: unable to open device
599 \retval -5: unable to claim device
600 \retval -6: reset failed
601 \retval -7: set baudrate failed
602 \retval -8: get product description failed
603 \retval -9: get serial number failed
579b006f
JZ
604 \retval -11: libusb_init() failed
605 \retval -12: libusb_get_device_list() failed
606 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 607*/
04e1ea0a 608int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
609 const char* description, const char* serial)
610{
5ebbdab9
GE
611 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
612}
613
614/**
615 Opens the index-th device with a given, vendor id, product id,
616 description and serial.
617
618 \param ftdi pointer to ftdi_context
619 \param vendor Vendor ID
620 \param product Product ID
621 \param description Description to search for. Use NULL if not needed.
622 \param serial Serial to search for. Use NULL if not needed.
623 \param index Number of matching device to open if there are more than one, starts with 0.
624
625 \retval 0: all fine
626 \retval -1: usb_find_busses() failed
627 \retval -2: usb_find_devices() failed
628 \retval -3: usb device not found
629 \retval -4: unable to open device
630 \retval -5: unable to claim device
631 \retval -6: reset failed
632 \retval -7: set baudrate failed
633 \retval -8: get product description failed
634 \retval -9: get serial number failed
635 \retval -10: unable to close device
22a1b5c1 636 \retval -11: ftdi context invalid
5ebbdab9
GE
637*/
638int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
56ac0383 639 const char* description, const char* serial, unsigned int index)
5ebbdab9 640{
579b006f
JZ
641 libusb_device *dev;
642 libusb_device **devs;
c3d95b87 643 char string[256];
579b006f 644 int i = 0;
98452d97 645
02212d8e 646 if (libusb_init(&ftdi->usb_ctx) < 0)
579b006f 647 ftdi_error_return(-11, "libusb_init() failed");
98452d97 648
22a1b5c1
TJ
649 if (ftdi == NULL)
650 ftdi_error_return(-11, "ftdi context invalid");
651
02212d8e 652 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
99650502
UB
653 ftdi_error_return(-12, "libusb_get_device_list() failed");
654
579b006f 655 while ((dev = devs[i++]) != NULL)
22d12cda 656 {
579b006f 657 struct libusb_device_descriptor desc;
99650502 658 int res;
579b006f
JZ
659
660 if (libusb_get_device_descriptor(dev, &desc) < 0)
99650502 661 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
579b006f
JZ
662
663 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 664 {
579b006f 665 if (libusb_open(dev, &ftdi->usb_dev) < 0)
99650502 666 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
c3d95b87 667
579b006f
JZ
668 if (description != NULL)
669 {
670 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 671 {
579b006f 672 libusb_close (ftdi->usb_dev);
99650502 673 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
a8f46ddc 674 }
579b006f 675 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 676 {
579b006f
JZ
677 libusb_close (ftdi->usb_dev);
678 continue;
a8f46ddc 679 }
579b006f
JZ
680 }
681 if (serial != NULL)
682 {
683 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
684 {
685 ftdi_usb_close_internal (ftdi);
99650502 686 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
579b006f
JZ
687 }
688 if (strncmp(string, serial, sizeof(string)) != 0)
689 {
690 ftdi_usb_close_internal (ftdi);
691 continue;
692 }
693 }
98452d97 694
579b006f 695 ftdi_usb_close_internal (ftdi);
d2f10023 696
56ac0383
TJ
697 if (index > 0)
698 {
699 index--;
700 continue;
701 }
5ebbdab9 702
99650502
UB
703 res = ftdi_usb_open_dev(ftdi, dev);
704 libusb_free_device_list(devs,1);
705 return res;
98452d97 706 }
98452d97 707 }
a3da1d95 708
98452d97 709 // device not found
99650502 710 ftdi_error_return_free_device_list(-3, "device not found", devs);
a3da1d95
GE
711}
712
1941414d 713/**
5ebbdab9
GE
714 Opens the ftdi-device described by a description-string.
715 Intended to be used for parsing a device-description given as commandline argument.
716
717 \param ftdi pointer to ftdi_context
718 \param description NULL-terminated description-string, using this format:
719 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
720 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
721 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
722 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
723
724 \note The description format may be extended in later versions.
725
726 \retval 0: all fine
579b006f
JZ
727 \retval -1: libusb_init() failed
728 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
729 \retval -3: usb device not found
730 \retval -4: unable to open device
731 \retval -5: unable to claim device
732 \retval -6: reset failed
733 \retval -7: set baudrate failed
734 \retval -8: get product description failed
735 \retval -9: get serial number failed
736 \retval -10: unable to close device
737 \retval -11: illegal description format
22a1b5c1 738 \retval -12: ftdi context invalid
5ebbdab9
GE
739*/
740int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
741{
22a1b5c1
TJ
742 if (ftdi == NULL)
743 ftdi_error_return(-12, "ftdi context invalid");
744
5ebbdab9
GE
745 if (description[0] == 0 || description[1] != ':')
746 ftdi_error_return(-11, "illegal description format");
747
748 if (description[0] == 'd')
749 {
579b006f
JZ
750 libusb_device *dev;
751 libusb_device **devs;
56ac0383
TJ
752 unsigned int bus_number, device_address;
753 int i = 0;
579b006f 754
02212d8e 755 if (libusb_init (&ftdi->usb_ctx) < 0)
56ac0383 756 ftdi_error_return(-1, "libusb_init() failed");
5ebbdab9 757
56ac0383
TJ
758 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
759 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 760
579b006f
JZ
761 /* XXX: This doesn't handle symlinks/odd paths/etc... */
762 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
56ac0383 763 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
5ebbdab9 764
56ac0383 765 while ((dev = devs[i++]) != NULL)
5ebbdab9 766 {
99650502 767 int ret;
56ac0383
TJ
768 if (bus_number == libusb_get_bus_number (dev)
769 && device_address == libusb_get_device_address (dev))
99650502
UB
770 {
771 ret = ftdi_usb_open_dev(ftdi, dev);
772 libusb_free_device_list(devs,1);
773 return ret;
774 }
5ebbdab9
GE
775 }
776
777 // device not found
99650502 778 ftdi_error_return_free_device_list(-3, "device not found", devs);
5ebbdab9
GE
779 }
780 else if (description[0] == 'i' || description[0] == 's')
781 {
782 unsigned int vendor;
783 unsigned int product;
784 unsigned int index=0;
0e6cf62b 785 const char *serial=NULL;
5ebbdab9
GE
786 const char *startp, *endp;
787
788 errno=0;
789 startp=description+2;
790 vendor=strtoul((char*)startp,(char**)&endp,0);
791 if (*endp != ':' || endp == startp || errno != 0)
792 ftdi_error_return(-11, "illegal description format");
793
794 startp=endp+1;
795 product=strtoul((char*)startp,(char**)&endp,0);
796 if (endp == startp || errno != 0)
797 ftdi_error_return(-11, "illegal description format");
798
799 if (description[0] == 'i' && *endp != 0)
800 {
801 /* optional index field in i-mode */
802 if (*endp != ':')
803 ftdi_error_return(-11, "illegal description format");
804
805 startp=endp+1;
806 index=strtoul((char*)startp,(char**)&endp,0);
807 if (*endp != 0 || endp == startp || errno != 0)
808 ftdi_error_return(-11, "illegal description format");
809 }
810 if (description[0] == 's')
811 {
812 if (*endp != ':')
813 ftdi_error_return(-11, "illegal description format");
814
815 /* rest of the description is the serial */
816 serial=endp+1;
817 }
818
819 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
820 }
821 else
822 {
823 ftdi_error_return(-11, "illegal description format");
824 }
825}
826
827/**
1941414d 828 Resets the ftdi device.
a3da1d95 829
1941414d
TJ
830 \param ftdi pointer to ftdi_context
831
832 \retval 0: all fine
833 \retval -1: FTDI reset failed
22a1b5c1 834 \retval -2: USB device unavailable
4837f98a 835*/
edb82cbf 836int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 837{
22a1b5c1
TJ
838 if (ftdi == NULL || ftdi->usb_dev == NULL)
839 ftdi_error_return(-2, "USB device unavailable");
840
579b006f
JZ
841 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
842 SIO_RESET_REQUEST, SIO_RESET_SIO,
843 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 844 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 845
545820ce 846 // Invalidate data in the readbuffer
bfcee05b
TJ
847 ftdi->readbuffer_offset = 0;
848 ftdi->readbuffer_remaining = 0;
849
a3da1d95
GE
850 return 0;
851}
852
1941414d 853/**
1189b11a 854 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
855
856 \param ftdi pointer to ftdi_context
4837f98a 857
1941414d 858 \retval 0: all fine
1189b11a 859 \retval -1: read buffer purge failed
22a1b5c1 860 \retval -2: USB device unavailable
4837f98a 861*/
1189b11a 862int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 863{
22a1b5c1
TJ
864 if (ftdi == NULL || ftdi->usb_dev == NULL)
865 ftdi_error_return(-2, "USB device unavailable");
866
579b006f
JZ
867 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
868 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
869 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
870 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
871
545820ce 872 // Invalidate data in the readbuffer
bfcee05b
TJ
873 ftdi->readbuffer_offset = 0;
874 ftdi->readbuffer_remaining = 0;
a60be878 875
1189b11a
TJ
876 return 0;
877}
878
879/**
880 Clears the write buffer on the chip.
881
882 \param ftdi pointer to ftdi_context
883
884 \retval 0: all fine
885 \retval -1: write buffer purge failed
22a1b5c1 886 \retval -2: USB device unavailable
1189b11a
TJ
887*/
888int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
889{
22a1b5c1
TJ
890 if (ftdi == NULL || ftdi->usb_dev == NULL)
891 ftdi_error_return(-2, "USB device unavailable");
892
579b006f
JZ
893 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
894 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
895 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
896 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
897
898 return 0;
899}
900
901/**
902 Clears the buffers on the chip and the internal read buffer.
903
904 \param ftdi pointer to ftdi_context
905
906 \retval 0: all fine
907 \retval -1: read buffer purge failed
908 \retval -2: write buffer purge failed
22a1b5c1 909 \retval -3: USB device unavailable
1189b11a
TJ
910*/
911int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
912{
913 int result;
914
22a1b5c1
TJ
915 if (ftdi == NULL || ftdi->usb_dev == NULL)
916 ftdi_error_return(-3, "USB device unavailable");
917
1189b11a 918 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 919 if (result < 0)
1189b11a
TJ
920 return -1;
921
922 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 923 if (result < 0)
1189b11a 924 return -2;
545820ce 925
a60be878
TJ
926 return 0;
927}
a3da1d95 928
f3f81007
TJ
929
930
1941414d
TJ
931/**
932 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
933
934 \param ftdi pointer to ftdi_context
935
936 \retval 0: all fine
937 \retval -1: usb_release failed
22a1b5c1 938 \retval -3: ftdi context invalid
a3da1d95 939*/
a8f46ddc
TJ
940int ftdi_usb_close(struct ftdi_context *ftdi)
941{
a3da1d95
GE
942 int rtn = 0;
943
22a1b5c1
TJ
944 if (ftdi == NULL)
945 ftdi_error_return(-3, "ftdi context invalid");
946
dff4fdb0 947 if (ftdi->usb_dev != NULL)
579b006f 948 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 949 rtn = -1;
98452d97 950
579b006f 951 ftdi_usb_close_internal (ftdi);
98452d97 952
a3da1d95
GE
953 return rtn;
954}
955
418aaa72 956/**
53ad271d
TJ
957 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
958 Function is only used internally
b5ec1820 959 \internal
53ad271d 960*/
0126d22e 961static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
a8f46ddc
TJ
962 unsigned short *value, unsigned short *index)
963{
53ad271d
TJ
964 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
965 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
966 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
967 int divisor, best_divisor, best_baud, best_baud_diff;
968 unsigned long encoded_divisor;
969 int i;
970
22d12cda
TJ
971 if (baudrate <= 0)
972 {
53ad271d
TJ
973 // Return error
974 return -1;
975 }
976
977 divisor = 24000000 / baudrate;
978
22d12cda
TJ
979 if (ftdi->type == TYPE_AM)
980 {
53ad271d
TJ
981 // Round down to supported fraction (AM only)
982 divisor -= am_adjust_dn[divisor & 7];
983 }
984
985 // Try this divisor and the one above it (because division rounds down)
986 best_divisor = 0;
987 best_baud = 0;
988 best_baud_diff = 0;
22d12cda
TJ
989 for (i = 0; i < 2; i++)
990 {
53ad271d
TJ
991 int try_divisor = divisor + i;
992 int baud_estimate;
993 int baud_diff;
994
995 // Round up to supported divisor value
22d12cda
TJ
996 if (try_divisor <= 8)
997 {
53ad271d
TJ
998 // Round up to minimum supported divisor
999 try_divisor = 8;
22d12cda
TJ
1000 }
1001 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1002 {
53ad271d
TJ
1003 // BM doesn't support divisors 9 through 11 inclusive
1004 try_divisor = 12;
22d12cda
TJ
1005 }
1006 else if (divisor < 16)
1007 {
53ad271d
TJ
1008 // AM doesn't support divisors 9 through 15 inclusive
1009 try_divisor = 16;
22d12cda
TJ
1010 }
1011 else
1012 {
1013 if (ftdi->type == TYPE_AM)
1014 {
53ad271d
TJ
1015 // Round up to supported fraction (AM only)
1016 try_divisor += am_adjust_up[try_divisor & 7];
22d12cda
TJ
1017 if (try_divisor > 0x1FFF8)
1018 {
53ad271d
TJ
1019 // Round down to maximum supported divisor value (for AM)
1020 try_divisor = 0x1FFF8;
1021 }
22d12cda
TJ
1022 }
1023 else
1024 {
1025 if (try_divisor > 0x1FFFF)
1026 {
53ad271d
TJ
1027 // Round down to maximum supported divisor value (for BM)
1028 try_divisor = 0x1FFFF;
1029 }
1030 }
1031 }
1032 // Get estimated baud rate (to nearest integer)
1033 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1034 // Get absolute difference from requested baud rate
22d12cda
TJ
1035 if (baud_estimate < baudrate)
1036 {
53ad271d 1037 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
1038 }
1039 else
1040 {
53ad271d
TJ
1041 baud_diff = baud_estimate - baudrate;
1042 }
22d12cda
TJ
1043 if (i == 0 || baud_diff < best_baud_diff)
1044 {
53ad271d
TJ
1045 // Closest to requested baud rate so far
1046 best_divisor = try_divisor;
1047 best_baud = baud_estimate;
1048 best_baud_diff = baud_diff;
22d12cda
TJ
1049 if (baud_diff == 0)
1050 {
53ad271d
TJ
1051 // Spot on! No point trying
1052 break;
1053 }
1054 }
1055 }
1056 // Encode the best divisor value
1057 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1058 // Deal with special cases for encoded value
22d12cda
TJ
1059 if (encoded_divisor == 1)
1060 {
4837f98a 1061 encoded_divisor = 0; // 3000000 baud
22d12cda
TJ
1062 }
1063 else if (encoded_divisor == 0x4001)
1064 {
4837f98a 1065 encoded_divisor = 1; // 2000000 baud (BM only)
53ad271d
TJ
1066 }
1067 // Split into "value" and "index" values
1068 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1416eb14 1069 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
22d12cda 1070 {
0126d22e
TJ
1071 *index = (unsigned short)(encoded_divisor >> 8);
1072 *index &= 0xFF00;
a9c57c05 1073 *index |= ftdi->index;
0126d22e
TJ
1074 }
1075 else
1076 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 1077
53ad271d
TJ
1078 // Return the nearest baud rate
1079 return best_baud;
1080}
1081
1941414d 1082/**
9bec2387 1083 Sets the chip baud rate
1941414d
TJ
1084
1085 \param ftdi pointer to ftdi_context
9bec2387 1086 \param baudrate baud rate to set
1941414d
TJ
1087
1088 \retval 0: all fine
1089 \retval -1: invalid baudrate
1090 \retval -2: setting baudrate failed
22a1b5c1 1091 \retval -3: USB device unavailable
a3da1d95 1092*/
a8f46ddc
TJ
1093int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1094{
53ad271d
TJ
1095 unsigned short value, index;
1096 int actual_baudrate;
a3da1d95 1097
22a1b5c1
TJ
1098 if (ftdi == NULL || ftdi->usb_dev == NULL)
1099 ftdi_error_return(-3, "USB device unavailable");
1100
22d12cda
TJ
1101 if (ftdi->bitbang_enabled)
1102 {
a3da1d95
GE
1103 baudrate = baudrate*4;
1104 }
1105
25707904 1106 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1107 if (actual_baudrate <= 0)
1108 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1109
53ad271d
TJ
1110 // Check within tolerance (about 5%)
1111 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1112 || ((actual_baudrate < baudrate)
1113 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1114 : (baudrate * 21 < actual_baudrate * 20)))
1115 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1116
579b006f
JZ
1117 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1118 SIO_SET_BAUDRATE_REQUEST, value,
1119 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1120 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1121
1122 ftdi->baudrate = baudrate;
1123 return 0;
1124}
1125
1941414d 1126/**
6c32e222
TJ
1127 Set (RS232) line characteristics.
1128 The break type can only be set via ftdi_set_line_property2()
1129 and defaults to "off".
4837f98a 1130
1941414d
TJ
1131 \param ftdi pointer to ftdi_context
1132 \param bits Number of bits
1133 \param sbit Number of stop bits
1134 \param parity Parity mode
1135
1136 \retval 0: all fine
1137 \retval -1: Setting line property failed
2f73e59f
TJ
1138*/
1139int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1140 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1141{
6c32e222
TJ
1142 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1143}
1144
1145/**
1146 Set (RS232) line characteristics
1147
1148 \param ftdi pointer to ftdi_context
1149 \param bits Number of bits
1150 \param sbit Number of stop bits
1151 \param parity Parity mode
1152 \param break_type Break type
1153
1154 \retval 0: all fine
1155 \retval -1: Setting line property failed
22a1b5c1 1156 \retval -2: USB device unavailable
6c32e222
TJ
1157*/
1158int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1159 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1160 enum ftdi_break_type break_type)
6c32e222 1161{
2f73e59f
TJ
1162 unsigned short value = bits;
1163
22a1b5c1
TJ
1164 if (ftdi == NULL || ftdi->usb_dev == NULL)
1165 ftdi_error_return(-2, "USB device unavailable");
1166
22d12cda
TJ
1167 switch (parity)
1168 {
1169 case NONE:
1170 value |= (0x00 << 8);
1171 break;
1172 case ODD:
1173 value |= (0x01 << 8);
1174 break;
1175 case EVEN:
1176 value |= (0x02 << 8);
1177 break;
1178 case MARK:
1179 value |= (0x03 << 8);
1180 break;
1181 case SPACE:
1182 value |= (0x04 << 8);
1183 break;
2f73e59f 1184 }
d2f10023 1185
22d12cda
TJ
1186 switch (sbit)
1187 {
1188 case STOP_BIT_1:
1189 value |= (0x00 << 11);
1190 break;
1191 case STOP_BIT_15:
1192 value |= (0x01 << 11);
1193 break;
1194 case STOP_BIT_2:
1195 value |= (0x02 << 11);
1196 break;
2f73e59f 1197 }
d2f10023 1198
22d12cda
TJ
1199 switch (break_type)
1200 {
1201 case BREAK_OFF:
1202 value |= (0x00 << 14);
1203 break;
1204 case BREAK_ON:
1205 value |= (0x01 << 14);
1206 break;
6c32e222
TJ
1207 }
1208
579b006f
JZ
1209 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1210 SIO_SET_DATA_REQUEST, value,
1211 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1212 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1213
2f73e59f
TJ
1214 return 0;
1215}
a3da1d95 1216
1941414d
TJ
1217/**
1218 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1219
1220 \param ftdi pointer to ftdi_context
1221 \param buf Buffer with the data
1222 \param size Size of the buffer
1223
22a1b5c1 1224 \retval -666: USB device unavailable
1941414d
TJ
1225 \retval <0: error code from usb_bulk_write()
1226 \retval >0: number of bytes written
1227*/
a8f46ddc
TJ
1228int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1229{
a3da1d95 1230 int offset = 0;
579b006f 1231 int actual_length;
c3d95b87 1232
22a1b5c1
TJ
1233 if (ftdi == NULL || ftdi->usb_dev == NULL)
1234 ftdi_error_return(-666, "USB device unavailable");
1235
22d12cda
TJ
1236 while (offset < size)
1237 {
948f9ada 1238 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1239
1240 if (offset+write_size > size)
1241 write_size = size-offset;
1242
579b006f
JZ
1243 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1244 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1245
579b006f 1246 offset += actual_length;
a3da1d95
GE
1247 }
1248
579b006f 1249 return offset;
a3da1d95
GE
1250}
1251
579b006f 1252static void ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1253{
579b006f
JZ
1254 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1255 struct ftdi_context *ftdi = tc->ftdi;
1256 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1257
b1139150 1258 packet_size = ftdi->max_packet_size;
579b006f
JZ
1259
1260 actual_length = transfer->actual_length;
1261
1262 if (actual_length > 2)
1263 {
1264 // skip FTDI status bytes.
1265 // Maybe stored in the future to enable modem use
1266 num_of_chunks = actual_length / packet_size;
1267 chunk_remains = actual_length % packet_size;
1268 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1269
1270 ftdi->readbuffer_offset += 2;
1271 actual_length -= 2;
1272
1273 if (actual_length > packet_size - 2)
1274 {
1275 for (i = 1; i < num_of_chunks; i++)
56ac0383
TJ
1276 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1277 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1278 packet_size - 2);
579b006f
JZ
1279 if (chunk_remains > 2)
1280 {
1281 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1282 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1283 chunk_remains-2);
1284 actual_length -= 2*num_of_chunks;
1285 }
1286 else
56ac0383 1287 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
579b006f
JZ
1288 }
1289
1290 if (actual_length > 0)
1291 {
1292 // data still fits in buf?
1293 if (tc->offset + actual_length <= tc->size)
1294 {
1295 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1296 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1297 tc->offset += actual_length;
1298
1299 ftdi->readbuffer_offset = 0;
1300 ftdi->readbuffer_remaining = 0;
1301
1302 /* Did we read exactly the right amount of bytes? */
1303 if (tc->offset == tc->size)
1304 {
1305 //printf("read_data exact rem %d offset %d\n",
1306 //ftdi->readbuffer_remaining, offset);
1307 tc->completed = 1;
1308 return;
1309 }
1310 }
1311 else
1312 {
1313 // only copy part of the data or size <= readbuffer_chunksize
1314 int part_size = tc->size - tc->offset;
1315 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1316 tc->offset += part_size;
1317
1318 ftdi->readbuffer_offset += part_size;
1319 ftdi->readbuffer_remaining = actual_length - part_size;
1320
1321 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1322 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1323 tc->completed = 1;
1324 return;
1325 }
1326 }
1327 }
1328 ret = libusb_submit_transfer (transfer);
1329 if (ret < 0)
1330 tc->completed = 1;
1331}
1332
1333
1334static void ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1335{
579b006f
JZ
1336 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1337 struct ftdi_context *ftdi = tc->ftdi;
56ac0383 1338
90ef163e 1339 tc->offset += transfer->actual_length;
56ac0383 1340
579b006f 1341 if (tc->offset == tc->size)
22d12cda 1342 {
579b006f 1343 tc->completed = 1;
7cc9950e 1344 }
579b006f
JZ
1345 else
1346 {
1347 int write_size = ftdi->writebuffer_chunksize;
1348 int ret;
7cc9950e 1349
579b006f
JZ
1350 if (tc->offset + write_size > tc->size)
1351 write_size = tc->size - tc->offset;
1352
1353 transfer->length = write_size;
1354 transfer->buffer = tc->buf + tc->offset;
1355 ret = libusb_submit_transfer (transfer);
1356 if (ret < 0)
1357 tc->completed = 1;
1358 }
7cc9950e
GE
1359}
1360
579b006f 1361
84f85aaa 1362/**
579b006f
JZ
1363 Writes data to the chip. Does not wait for completion of the transfer
1364 nor does it make sure that the transfer was successful.
1365
249888c8 1366 Use libusb 1.0 asynchronous API.
84f85aaa
GE
1367
1368 \param ftdi pointer to ftdi_context
579b006f
JZ
1369 \param buf Buffer with the data
1370 \param size Size of the buffer
84f85aaa 1371
579b006f
JZ
1372 \retval NULL: Some error happens when submit transfer
1373 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1374*/
579b006f
JZ
1375
1376struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1377{
579b006f
JZ
1378 struct ftdi_transfer_control *tc;
1379 struct libusb_transfer *transfer = libusb_alloc_transfer(0);
1380 int write_size, ret;
22d12cda 1381
22a1b5c1
TJ
1382 if (ftdi == NULL || ftdi->usb_dev == NULL)
1383 {
1384 libusb_free_transfer(transfer);
1385 return NULL;
1386 }
1387
579b006f 1388 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
22d12cda 1389
579b006f
JZ
1390 if (!tc || !transfer)
1391 return NULL;
22d12cda 1392
579b006f
JZ
1393 tc->ftdi = ftdi;
1394 tc->completed = 0;
1395 tc->buf = buf;
1396 tc->size = size;
1397 tc->offset = 0;
7cc9950e 1398
579b006f 1399 if (size < ftdi->writebuffer_chunksize)
56ac0383 1400 write_size = size;
579b006f 1401 else
56ac0383 1402 write_size = ftdi->writebuffer_chunksize;
22d12cda 1403
90ef163e
YSL
1404 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1405 write_size, ftdi_write_data_cb, tc,
1406 ftdi->usb_write_timeout);
579b006f 1407 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1408
579b006f
JZ
1409 ret = libusb_submit_transfer(transfer);
1410 if (ret < 0)
1411 {
1412 libusb_free_transfer(transfer);
1413 tc->completed = 1;
1414 tc->transfer = NULL;
1415 return NULL;
7cc9950e 1416 }
579b006f
JZ
1417 tc->transfer = transfer;
1418
1419 return tc;
7cc9950e
GE
1420}
1421
1422/**
579b006f
JZ
1423 Reads data from the chip. Does not wait for completion of the transfer
1424 nor does it make sure that the transfer was successful.
1425
249888c8 1426 Use libusb 1.0 asynchronous API.
7cc9950e
GE
1427
1428 \param ftdi pointer to ftdi_context
579b006f
JZ
1429 \param buf Buffer with the data
1430 \param size Size of the buffer
4c9e3812 1431
579b006f
JZ
1432 \retval NULL: Some error happens when submit transfer
1433 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1434*/
579b006f
JZ
1435
1436struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1437{
579b006f
JZ
1438 struct ftdi_transfer_control *tc;
1439 struct libusb_transfer *transfer;
1440 int ret;
22d12cda 1441
22a1b5c1
TJ
1442 if (ftdi == NULL || ftdi->usb_dev == NULL)
1443 return NULL;
1444
579b006f
JZ
1445 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1446 if (!tc)
1447 return NULL;
1448
1449 tc->ftdi = ftdi;
1450 tc->buf = buf;
1451 tc->size = size;
1452
1453 if (size <= ftdi->readbuffer_remaining)
7cc9950e 1454 {
579b006f 1455 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1456
579b006f
JZ
1457 // Fix offsets
1458 ftdi->readbuffer_remaining -= size;
1459 ftdi->readbuffer_offset += size;
7cc9950e 1460
579b006f 1461 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1462
579b006f
JZ
1463 tc->completed = 1;
1464 tc->offset = size;
1465 tc->transfer = NULL;
1466 return tc;
1467 }
4c9e3812 1468
579b006f
JZ
1469 tc->completed = 0;
1470 if (ftdi->readbuffer_remaining != 0)
1471 {
1472 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1473
579b006f
JZ
1474 tc->offset = ftdi->readbuffer_remaining;
1475 }
1476 else
1477 tc->offset = 0;
22d12cda 1478
579b006f
JZ
1479 transfer = libusb_alloc_transfer(0);
1480 if (!transfer)
1481 {
1482 free (tc);
1483 return NULL;
1484 }
22d12cda 1485
579b006f
JZ
1486 ftdi->readbuffer_remaining = 0;
1487 ftdi->readbuffer_offset = 0;
1488
1489 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1490 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1491
1492 ret = libusb_submit_transfer(transfer);
1493 if (ret < 0)
1494 {
1495 libusb_free_transfer(transfer);
1496 free (tc);
1497 return NULL;
22d12cda 1498 }
579b006f
JZ
1499 tc->transfer = transfer;
1500
1501 return tc;
4c9e3812
GE
1502}
1503
1504/**
579b006f 1505 Wait for completion of the transfer.
4c9e3812 1506
249888c8 1507 Use libusb 1.0 asynchronous API.
4c9e3812 1508
579b006f 1509 \param tc pointer to ftdi_transfer_control
4c9e3812 1510
579b006f
JZ
1511 \retval < 0: Some error happens
1512 \retval >= 0: Data size transferred
4c9e3812 1513*/
579b006f
JZ
1514
1515int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1516{
1517 int ret;
4c9e3812 1518
579b006f 1519 while (!tc->completed)
22d12cda 1520 {
29b1dfd9 1521 ret = libusb_handle_events(tc->ftdi->usb_ctx);
4c9e3812 1522 if (ret < 0)
579b006f
JZ
1523 {
1524 if (ret == LIBUSB_ERROR_INTERRUPTED)
1525 continue;
1526 libusb_cancel_transfer(tc->transfer);
1527 while (!tc->completed)
29b1dfd9 1528 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
579b006f
JZ
1529 break;
1530 libusb_free_transfer(tc->transfer);
1531 free (tc);
579b006f
JZ
1532 return ret;
1533 }
4c9e3812
GE
1534 }
1535
90ef163e
YSL
1536 ret = tc->offset;
1537 /**
1538 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
ef15fab5 1539 * at ftdi_read_data_submit(). Therefore, we need to check it here.
90ef163e 1540 **/
ef15fab5
TJ
1541 if (tc->transfer)
1542 {
1543 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1544 ret = -1;
1545 libusb_free_transfer(tc->transfer);
90ef163e 1546 }
579b006f
JZ
1547 free(tc);
1548 return ret;
4c9e3812 1549}
579b006f 1550
1941414d
TJ
1551/**
1552 Configure write buffer chunk size.
1553 Default is 4096.
1554
1555 \param ftdi pointer to ftdi_context
1556 \param chunksize Chunk size
a3da1d95 1557
1941414d 1558 \retval 0: all fine
22a1b5c1 1559 \retval -1: ftdi context invalid
1941414d 1560*/
a8f46ddc
TJ
1561int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1562{
22a1b5c1
TJ
1563 if (ftdi == NULL)
1564 ftdi_error_return(-1, "ftdi context invalid");
1565
948f9ada
TJ
1566 ftdi->writebuffer_chunksize = chunksize;
1567 return 0;
1568}
1569
1941414d
TJ
1570/**
1571 Get write buffer chunk size.
1572
1573 \param ftdi pointer to ftdi_context
1574 \param chunksize Pointer to store chunk size in
948f9ada 1575
1941414d 1576 \retval 0: all fine
22a1b5c1 1577 \retval -1: ftdi context invalid
1941414d 1578*/
a8f46ddc
TJ
1579int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1580{
22a1b5c1
TJ
1581 if (ftdi == NULL)
1582 ftdi_error_return(-1, "ftdi context invalid");
1583
948f9ada
TJ
1584 *chunksize = ftdi->writebuffer_chunksize;
1585 return 0;
1586}
cbabb7d3 1587
1941414d
TJ
1588/**
1589 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1590
1591 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1592
1941414d
TJ
1593 \param ftdi pointer to ftdi_context
1594 \param buf Buffer to store data in
1595 \param size Size of the buffer
1596
22a1b5c1 1597 \retval -666: USB device unavailable
579b006f 1598 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 1599 \retval 0: no data was available
1941414d
TJ
1600 \retval >0: number of bytes read
1601
1941414d 1602*/
a8f46ddc
TJ
1603int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1604{
579b006f 1605 int offset = 0, ret, i, num_of_chunks, chunk_remains;
e2f12a4f 1606 int packet_size = ftdi->max_packet_size;
579b006f 1607 int actual_length = 1;
f2f00cb5 1608
22a1b5c1
TJ
1609 if (ftdi == NULL || ftdi->usb_dev == NULL)
1610 ftdi_error_return(-666, "USB device unavailable");
1611
e2f12a4f
TJ
1612 // Packet size sanity check (avoid division by zero)
1613 if (packet_size == 0)
1614 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 1615
948f9ada 1616 // everything we want is still in the readbuffer?
22d12cda
TJ
1617 if (size <= ftdi->readbuffer_remaining)
1618 {
d9f0cce7
TJ
1619 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1620
1621 // Fix offsets
1622 ftdi->readbuffer_remaining -= size;
1623 ftdi->readbuffer_offset += size;
1624
545820ce 1625 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1626
1627 return size;
979a145c 1628 }
948f9ada 1629 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
1630 if (ftdi->readbuffer_remaining != 0)
1631 {
d9f0cce7 1632 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1633
d9f0cce7
TJ
1634 // Fix offset
1635 offset += ftdi->readbuffer_remaining;
948f9ada 1636 }
948f9ada 1637 // do the actual USB read
579b006f 1638 while (offset < size && actual_length > 0)
22d12cda 1639 {
d9f0cce7
TJ
1640 ftdi->readbuffer_remaining = 0;
1641 ftdi->readbuffer_offset = 0;
98452d97 1642 /* returns how much received */
579b006f 1643 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
1644 if (ret < 0)
1645 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1646
579b006f 1647 if (actual_length > 2)
22d12cda 1648 {
d9f0cce7
TJ
1649 // skip FTDI status bytes.
1650 // Maybe stored in the future to enable modem use
579b006f
JZ
1651 num_of_chunks = actual_length / packet_size;
1652 chunk_remains = actual_length % packet_size;
1653 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 1654
d9f0cce7 1655 ftdi->readbuffer_offset += 2;
579b006f 1656 actual_length -= 2;
1c733d33 1657
579b006f 1658 if (actual_length > packet_size - 2)
22d12cda 1659 {
1c733d33 1660 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
1661 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1662 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1663 packet_size - 2);
22d12cda
TJ
1664 if (chunk_remains > 2)
1665 {
f2f00cb5
DC
1666 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1667 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 1668 chunk_remains-2);
579b006f 1669 actual_length -= 2*num_of_chunks;
22d12cda
TJ
1670 }
1671 else
579b006f 1672 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 1673 }
22d12cda 1674 }
579b006f 1675 else if (actual_length <= 2)
22d12cda 1676 {
d9f0cce7
TJ
1677 // no more data to read?
1678 return offset;
1679 }
579b006f 1680 if (actual_length > 0)
22d12cda 1681 {
d9f0cce7 1682 // data still fits in buf?
579b006f 1683 if (offset+actual_length <= size)
22d12cda 1684 {
579b006f 1685 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 1686 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 1687 offset += actual_length;
d9f0cce7 1688
53ad271d 1689 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1690 if (offset == size)
c4446c36
TJ
1691 //printf("read_data exact rem %d offset %d\n",
1692 //ftdi->readbuffer_remaining, offset);
d9f0cce7 1693 return offset;
22d12cda
TJ
1694 }
1695 else
1696 {
d9f0cce7
TJ
1697 // only copy part of the data or size <= readbuffer_chunksize
1698 int part_size = size-offset;
1699 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1700
d9f0cce7 1701 ftdi->readbuffer_offset += part_size;
579b006f 1702 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
1703 offset += part_size;
1704
579b006f
JZ
1705 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1706 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1707
1708 return offset;
1709 }
1710 }
cbabb7d3 1711 }
948f9ada 1712 // never reached
29c4af7f 1713 return -127;
a3da1d95
GE
1714}
1715
1941414d
TJ
1716/**
1717 Configure read buffer chunk size.
1718 Default is 4096.
1719
1720 Automatically reallocates the buffer.
a3da1d95 1721
1941414d
TJ
1722 \param ftdi pointer to ftdi_context
1723 \param chunksize Chunk size
1724
1725 \retval 0: all fine
22a1b5c1 1726 \retval -1: ftdi context invalid
1941414d 1727*/
a8f46ddc
TJ
1728int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1729{
29c4af7f
TJ
1730 unsigned char *new_buf;
1731
22a1b5c1
TJ
1732 if (ftdi == NULL)
1733 ftdi_error_return(-1, "ftdi context invalid");
1734
948f9ada
TJ
1735 // Invalidate all remaining data
1736 ftdi->readbuffer_offset = 0;
1737 ftdi->readbuffer_remaining = 0;
8de6eea4
JZ
1738#ifdef __linux__
1739 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1740 which is defined in libusb-1.0. Otherwise, each USB read request will
2e685a1f 1741 be divided into multiple URBs. This will cause issues on Linux kernel
8de6eea4
JZ
1742 older than 2.6.32. */
1743 if (chunksize > 16384)
1744 chunksize = 16384;
1745#endif
948f9ada 1746
c3d95b87
TJ
1747 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1748 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1749
948f9ada
TJ
1750 ftdi->readbuffer = new_buf;
1751 ftdi->readbuffer_chunksize = chunksize;
1752
1753 return 0;
1754}
1755
1941414d
TJ
1756/**
1757 Get read buffer chunk size.
948f9ada 1758
1941414d
TJ
1759 \param ftdi pointer to ftdi_context
1760 \param chunksize Pointer to store chunk size in
1761
1762 \retval 0: all fine
22a1b5c1 1763 \retval -1: FTDI context invalid
1941414d 1764*/
a8f46ddc
TJ
1765int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1766{
22a1b5c1
TJ
1767 if (ftdi == NULL)
1768 ftdi_error_return(-1, "FTDI context invalid");
1769
948f9ada
TJ
1770 *chunksize = ftdi->readbuffer_chunksize;
1771 return 0;
1772}
1773
1774
1941414d
TJ
1775/**
1776 Enable bitbang mode.
948f9ada 1777
fd282db3 1778 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1941414d
TJ
1779
1780 \param ftdi pointer to ftdi_context
1781 \param bitmask Bitmask to configure lines.
1782 HIGH/ON value configures a line as output.
1783
1784 \retval 0: all fine
1785 \retval -1: can't enable bitbang mode
22a1b5c1 1786 \retval -2: USB device unavailable
1941414d 1787*/
a8f46ddc
TJ
1788int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1789{
a3da1d95
GE
1790 unsigned short usb_val;
1791
22a1b5c1
TJ
1792 if (ftdi == NULL || ftdi->usb_dev == NULL)
1793 ftdi_error_return(-2, "USB device unavailable");
1794
d9f0cce7 1795 usb_val = bitmask; // low byte: bitmask
3119537f
TJ
1796 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1797 usb_val |= (ftdi->bitbang_mode << 8);
1798
579b006f
JZ
1799 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1800 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1801 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1802 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1803
a3da1d95
GE
1804 ftdi->bitbang_enabled = 1;
1805 return 0;
1806}
1807
1941414d
TJ
1808/**
1809 Disable bitbang mode.
a3da1d95 1810
1941414d
TJ
1811 \param ftdi pointer to ftdi_context
1812
1813 \retval 0: all fine
1814 \retval -1: can't disable bitbang mode
22a1b5c1 1815 \retval -2: USB device unavailable
1941414d 1816*/
a8f46ddc
TJ
1817int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1818{
22a1b5c1
TJ
1819 if (ftdi == NULL || ftdi->usb_dev == NULL)
1820 ftdi_error_return(-2, "USB device unavailable");
1821
579b006f 1822 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1823 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1824
1825 ftdi->bitbang_enabled = 0;
1826 return 0;
1827}
1828
1941414d 1829/**
418aaa72 1830 Enable/disable bitbang modes.
a3da1d95 1831
1941414d
TJ
1832 \param ftdi pointer to ftdi_context
1833 \param bitmask Bitmask to configure lines.
1834 HIGH/ON value configures a line as output.
fd282db3 1835 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
1836
1837 \retval 0: all fine
1838 \retval -1: can't enable bitbang mode
22a1b5c1 1839 \retval -2: USB device unavailable
1941414d 1840*/
c4446c36
TJ
1841int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1842{
1843 unsigned short usb_val;
1844
22a1b5c1
TJ
1845 if (ftdi == NULL || ftdi->usb_dev == NULL)
1846 ftdi_error_return(-2, "USB device unavailable");
1847
c4446c36
TJ
1848 usb_val = bitmask; // low byte: bitmask
1849 usb_val |= (mode << 8);
579b006f
JZ
1850 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1851 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
c4446c36
TJ
1852
1853 ftdi->bitbang_mode = mode;
418aaa72 1854 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
c4446c36
TJ
1855 return 0;
1856}
1857
1941414d 1858/**
418aaa72 1859 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
1860
1861 \param ftdi pointer to ftdi_context
1862 \param pins Pointer to store pins into
1863
1864 \retval 0: all fine
1865 \retval -1: read pins failed
22a1b5c1 1866 \retval -2: USB device unavailable
1941414d 1867*/
a8f46ddc
TJ
1868int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1869{
22a1b5c1
TJ
1870 if (ftdi == NULL || ftdi->usb_dev == NULL)
1871 ftdi_error_return(-2, "USB device unavailable");
1872
579b006f 1873 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1874 ftdi_error_return(-1, "read pins failed");
a3da1d95 1875
a3da1d95
GE
1876 return 0;
1877}
1878
1941414d
TJ
1879/**
1880 Set latency timer
1881
1882 The FTDI chip keeps data in the internal buffer for a specific
1883 amount of time if the buffer is not full yet to decrease
1884 load on the usb bus.
a3da1d95 1885
1941414d
TJ
1886 \param ftdi pointer to ftdi_context
1887 \param latency Value between 1 and 255
1888
1889 \retval 0: all fine
1890 \retval -1: latency out of range
1891 \retval -2: unable to set latency timer
22a1b5c1 1892 \retval -3: USB device unavailable
1941414d 1893*/
a8f46ddc
TJ
1894int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1895{
a3da1d95
GE
1896 unsigned short usb_val;
1897
c3d95b87
TJ
1898 if (latency < 1)
1899 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 1900
22a1b5c1
TJ
1901 if (ftdi == NULL || ftdi->usb_dev == NULL)
1902 ftdi_error_return(-3, "USB device unavailable");
1903
d79d2e68 1904 usb_val = latency;
579b006f 1905 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1906 ftdi_error_return(-2, "unable to set latency timer");
1907
a3da1d95
GE
1908 return 0;
1909}
1910
1941414d
TJ
1911/**
1912 Get latency timer
a3da1d95 1913
1941414d
TJ
1914 \param ftdi pointer to ftdi_context
1915 \param latency Pointer to store latency value in
1916
1917 \retval 0: all fine
1918 \retval -1: unable to get latency timer
22a1b5c1 1919 \retval -2: USB device unavailable
1941414d 1920*/
a8f46ddc
TJ
1921int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1922{
a3da1d95 1923 unsigned short usb_val;
22a1b5c1
TJ
1924
1925 if (ftdi == NULL || ftdi->usb_dev == NULL)
1926 ftdi_error_return(-2, "USB device unavailable");
1927
579b006f 1928 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1929 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
1930
1931 *latency = (unsigned char)usb_val;
1932 return 0;
1933}
1934
1941414d 1935/**
1189b11a
TJ
1936 Poll modem status information
1937
1938 This function allows the retrieve the two status bytes of the device.
1939 The device sends these bytes also as a header for each read access
1940 where they are discarded by ftdi_read_data(). The chip generates
1941 the two stripped status bytes in the absence of data every 40 ms.
1942
1943 Layout of the first byte:
1944 - B0..B3 - must be 0
1945 - B4 Clear to send (CTS)
1946 0 = inactive
1947 1 = active
1948 - B5 Data set ready (DTS)
1949 0 = inactive
1950 1 = active
1951 - B6 Ring indicator (RI)
1952 0 = inactive
1953 1 = active
1954 - B7 Receive line signal detect (RLSD)
1955 0 = inactive
1956 1 = active
1957
1958 Layout of the second byte:
1959 - B0 Data ready (DR)
1960 - B1 Overrun error (OE)
1961 - B2 Parity error (PE)
1962 - B3 Framing error (FE)
1963 - B4 Break interrupt (BI)
1964 - B5 Transmitter holding register (THRE)
1965 - B6 Transmitter empty (TEMT)
1966 - B7 Error in RCVR FIFO
1967
1968 \param ftdi pointer to ftdi_context
1969 \param status Pointer to store status information in. Must be two bytes.
1970
1971 \retval 0: all fine
1972 \retval -1: unable to retrieve status information
22a1b5c1 1973 \retval -2: USB device unavailable
1189b11a
TJ
1974*/
1975int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1976{
1977 char usb_val[2];
1978
22a1b5c1
TJ
1979 if (ftdi == NULL || ftdi->usb_dev == NULL)
1980 ftdi_error_return(-2, "USB device unavailable");
1981
579b006f 1982 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
1983 ftdi_error_return(-1, "getting modem status failed");
1984
1985 *status = (usb_val[1] << 8) | usb_val[0];
1986
1987 return 0;
1988}
1989
a7fb8440
TJ
1990/**
1991 Set flowcontrol for ftdi chip
1992
1993 \param ftdi pointer to ftdi_context
22d12cda
TJ
1994 \param flowctrl flow control to use. should be
1995 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
a7fb8440
TJ
1996
1997 \retval 0: all fine
1998 \retval -1: set flow control failed
22a1b5c1 1999 \retval -2: USB device unavailable
a7fb8440
TJ
2000*/
2001int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2002{
22a1b5c1
TJ
2003 if (ftdi == NULL || ftdi->usb_dev == NULL)
2004 ftdi_error_return(-2, "USB device unavailable");
2005
579b006f
JZ
2006 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2007 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2008 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2009 ftdi_error_return(-1, "set flow control failed");
2010
2011 return 0;
2012}
2013
2014/**
2015 Set dtr line
2016
2017 \param ftdi pointer to ftdi_context
2018 \param state state to set line to (1 or 0)
2019
2020 \retval 0: all fine
2021 \retval -1: set dtr failed
22a1b5c1 2022 \retval -2: USB device unavailable
a7fb8440
TJ
2023*/
2024int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2025{
2026 unsigned short usb_val;
2027
22a1b5c1
TJ
2028 if (ftdi == NULL || ftdi->usb_dev == NULL)
2029 ftdi_error_return(-2, "USB device unavailable");
2030
a7fb8440
TJ
2031 if (state)
2032 usb_val = SIO_SET_DTR_HIGH;
2033 else
2034 usb_val = SIO_SET_DTR_LOW;
2035
579b006f
JZ
2036 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2037 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2038 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2039 ftdi_error_return(-1, "set dtr failed");
2040
2041 return 0;
2042}
2043
2044/**
2045 Set rts line
2046
2047 \param ftdi pointer to ftdi_context
2048 \param state state to set line to (1 or 0)
2049
2050 \retval 0: all fine
22a1b5c1
TJ
2051 \retval -1: set rts failed
2052 \retval -2: USB device unavailable
a7fb8440
TJ
2053*/
2054int ftdi_setrts(struct ftdi_context *ftdi, int state)
2055{
2056 unsigned short usb_val;
2057
22a1b5c1
TJ
2058 if (ftdi == NULL || ftdi->usb_dev == NULL)
2059 ftdi_error_return(-2, "USB device unavailable");
2060
a7fb8440
TJ
2061 if (state)
2062 usb_val = SIO_SET_RTS_HIGH;
2063 else
2064 usb_val = SIO_SET_RTS_LOW;
2065
579b006f
JZ
2066 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2067 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2068 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2069 ftdi_error_return(-1, "set of rts failed");
2070
2071 return 0;
2072}
2073
1189b11a 2074/**
22a1b5c1 2075 Set dtr and rts line in one pass
9ecfef2a 2076
22a1b5c1
TJ
2077 \param ftdi pointer to ftdi_context
2078 \param dtr DTR state to set line to (1 or 0)
2079 \param rts RTS state to set line to (1 or 0)
9ecfef2a 2080
22a1b5c1
TJ
2081 \retval 0: all fine
2082 \retval -1: set dtr/rts failed
2083 \retval -2: USB device unavailable
9ecfef2a
TJ
2084 */
2085int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2086{
2087 unsigned short usb_val;
2088
22a1b5c1
TJ
2089 if (ftdi == NULL || ftdi->usb_dev == NULL)
2090 ftdi_error_return(-2, "USB device unavailable");
2091
9ecfef2a 2092 if (dtr)
22d12cda 2093 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 2094 else
22d12cda 2095 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
2096
2097 if (rts)
22d12cda 2098 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 2099 else
22d12cda 2100 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 2101
579b006f
JZ
2102 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2103 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2104 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 2105 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
2106
2107 return 0;
2108}
2109
2110/**
1189b11a
TJ
2111 Set the special event character
2112
2113 \param ftdi pointer to ftdi_context
2114 \param eventch Event character
2115 \param enable 0 to disable the event character, non-zero otherwise
2116
2117 \retval 0: all fine
2118 \retval -1: unable to set event character
22a1b5c1 2119 \retval -2: USB device unavailable
1189b11a
TJ
2120*/
2121int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 2122 unsigned char eventch, unsigned char enable)
1189b11a
TJ
2123{
2124 unsigned short usb_val;
2125
22a1b5c1
TJ
2126 if (ftdi == NULL || ftdi->usb_dev == NULL)
2127 ftdi_error_return(-2, "USB device unavailable");
2128
1189b11a
TJ
2129 usb_val = eventch;
2130 if (enable)
2131 usb_val |= 1 << 8;
2132
579b006f 2133 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2134 ftdi_error_return(-1, "setting event character failed");
2135
2136 return 0;
2137}
2138
2139/**
2140 Set error character
2141
2142 \param ftdi pointer to ftdi_context
2143 \param errorch Error character
2144 \param enable 0 to disable the error character, non-zero otherwise
2145
2146 \retval 0: all fine
2147 \retval -1: unable to set error character
22a1b5c1 2148 \retval -2: USB device unavailable
1189b11a
TJ
2149*/
2150int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 2151 unsigned char errorch, unsigned char enable)
1189b11a
TJ
2152{
2153 unsigned short usb_val;
2154
22a1b5c1
TJ
2155 if (ftdi == NULL || ftdi->usb_dev == NULL)
2156 ftdi_error_return(-2, "USB device unavailable");
2157
1189b11a
TJ
2158 usb_val = errorch;
2159 if (enable)
2160 usb_val |= 1 << 8;
2161
579b006f 2162 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2163 ftdi_error_return(-1, "setting error character failed");
2164
2165 return 0;
2166}
2167
2168/**
1941414d 2169 Init eeprom with default values.
a35aa9bd 2170 \param ftdi pointer to ftdi_context
f14f84d3
UB
2171 \param manufacturer String to use as Manufacturer
2172 \param product String to use as Product description
2173 \param serial String to use as Serial number description
4e74064b 2174
f14f84d3
UB
2175 \retval 0: all fine
2176 \retval -1: No struct ftdi_context
2177 \retval -2: No struct ftdi_eeprom
1941414d 2178*/
f14f84d3 2179int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
56ac0383 2180 char * product, char * serial)
a8f46ddc 2181{
c0a96aed 2182 struct ftdi_eeprom *eeprom;
f505134f 2183
c0a96aed 2184 if (ftdi == NULL)
f14f84d3 2185 ftdi_error_return(-1, "No struct ftdi_context");
c0a96aed
UB
2186
2187 if (ftdi->eeprom == NULL)
56ac0383 2188 ftdi_error_return(-2,"No struct ftdi_eeprom");
22a1b5c1 2189
c0a96aed 2190 eeprom = ftdi->eeprom;
a02587d5 2191 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
c0a96aed 2192
f396dbad 2193 eeprom->vendor_id = 0x0403;
a02587d5 2194 eeprom->use_serial = USE_SERIAL_NUM;
56ac0383
TJ
2195 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2196 (ftdi->type == TYPE_R))
a02587d5
UB
2197 eeprom->product_id = 0x6001;
2198 else
2199 eeprom->product_id = 0x6010;
b1859923
UB
2200 if (ftdi->type == TYPE_AM)
2201 eeprom->usb_version = 0x0101;
2202 else
2203 eeprom->usb_version = 0x0200;
a886436a 2204 eeprom->max_power = 100;
d9f0cce7 2205
74e8e79d
UB
2206 if (eeprom->manufacturer)
2207 free (eeprom->manufacturer);
b8aa7b35 2208 eeprom->manufacturer = NULL;
74e8e79d
UB
2209 if (manufacturer)
2210 {
2211 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2212 if (eeprom->manufacturer)
2213 strcpy(eeprom->manufacturer, manufacturer);
2214 }
2215
2216 if (eeprom->product)
2217 free (eeprom->product);
b8aa7b35 2218 eeprom->product = NULL;
74e8e79d
UB
2219 {
2220 eeprom->product = malloc(strlen(product)+1);
2221 if (eeprom->product)
2222 strcpy(eeprom->product, product);
2223 }
2224
2225 if (eeprom->serial)
2226 free (eeprom->serial);
b8aa7b35 2227 eeprom->serial = NULL;
74e8e79d
UB
2228 if (serial)
2229 {
2230 eeprom->serial = malloc(strlen(serial)+1);
2231 if (eeprom->serial)
2232 strcpy(eeprom->serial, serial);
2233 }
2234
c201f80f 2235
56ac0383 2236 if (ftdi->type == TYPE_R)
a4980043 2237 {
a886436a 2238 eeprom->max_power = 90;
a02587d5 2239 eeprom->size = 0x80;
a4980043
UB
2240 eeprom->cbus_function[0] = CBUS_TXLED;
2241 eeprom->cbus_function[1] = CBUS_RXLED;
2242 eeprom->cbus_function[2] = CBUS_TXDEN;
2243 eeprom->cbus_function[3] = CBUS_PWREN;
2244 eeprom->cbus_function[4] = CBUS_SLEEP;
2245 }
a02587d5
UB
2246 else
2247 eeprom->size = -1;
f14f84d3 2248 return 0;
b8aa7b35
TJ
2249}
2250
1941414d 2251/**
a35aa9bd 2252 Build binary buffer from ftdi_eeprom structure.
22a1b5c1 2253 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2254
a35aa9bd 2255 \param ftdi pointer to ftdi_context
1941414d 2256
516ebfb1 2257 \retval >=0: size of eeprom user area in bytes
22a1b5c1 2258 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2c1e2bde
TJ
2259 \retval -2: Invalid eeprom or ftdi pointer
2260 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2261 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2262 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2b9a3c82 2263 \retval -6: No connected EEPROM or EEPROM Type unknown
b8aa7b35 2264*/
a35aa9bd 2265int ftdi_eeprom_build(struct ftdi_context *ftdi)
a8f46ddc 2266{
e2bbd9af 2267 unsigned char i, j, eeprom_size_mask;
b8aa7b35
TJ
2268 unsigned short checksum, value;
2269 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
516ebfb1 2270 int user_area_size;
c0a96aed 2271 struct ftdi_eeprom *eeprom;
a35aa9bd 2272 unsigned char * output;
b8aa7b35 2273
c0a96aed 2274 if (ftdi == NULL)
cc9c9d58 2275 ftdi_error_return(-2,"No context");
c0a96aed 2276 if (ftdi->eeprom == NULL)
cc9c9d58 2277 ftdi_error_return(-2,"No eeprom structure");
c0a96aed
UB
2278
2279 eeprom= ftdi->eeprom;
a35aa9bd 2280 output = eeprom->buf;
22a1b5c1 2281
56ac0383 2282 if (eeprom->chip == -1)
2c1e2bde 2283 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2b9a3c82 2284
f75bf139
UB
2285 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2286 eeprom->size = 0x100;
2287 else
2288 eeprom->size = 0x80;
2289
b8aa7b35 2290 if (eeprom->manufacturer != NULL)
d9f0cce7 2291 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2292 if (eeprom->product != NULL)
d9f0cce7 2293 product_size = strlen(eeprom->product);
b8aa7b35 2294 if (eeprom->serial != NULL)
d9f0cce7 2295 serial_size = strlen(eeprom->serial);
b8aa7b35 2296
814710ba
TJ
2297 // eeprom size check
2298 switch (ftdi->type)
2299 {
2300 case TYPE_AM:
2301 case TYPE_BM:
2302 user_area_size = 96; // base size for strings (total of 48 characters)
2303 break;
2304 case TYPE_2232C:
56ac0383
TJ
2305 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2306 break;
814710ba 2307 case TYPE_R:
56ac0383
TJ
2308 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2309 break;
814710ba
TJ
2310 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2311 case TYPE_4232H:
56ac0383 2312 user_area_size = 86;
118c4561 2313 break;
2c1e2bde
TJ
2314 default:
2315 user_area_size = 0;
56ac0383 2316 break;
665cda04
UB
2317 }
2318 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
814710ba 2319
516ebfb1
TJ
2320 if (user_area_size < 0)
2321 ftdi_error_return(-1,"eeprom size exceeded");
b8aa7b35
TJ
2322
2323 // empty eeprom
a35aa9bd 2324 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
b8aa7b35 2325
93738c79
UB
2326 // Bytes and Bits set for all Types
2327
b8aa7b35
TJ
2328 // Addr 02: Vendor ID
2329 output[0x02] = eeprom->vendor_id;
2330 output[0x03] = eeprom->vendor_id >> 8;
2331
2332 // Addr 04: Product ID
2333 output[0x04] = eeprom->product_id;
2334 output[0x05] = eeprom->product_id >> 8;
2335
2336 // Addr 06: Device release number (0400h for BM features)
2337 output[0x06] = 0x00;
814710ba
TJ
2338 switch (ftdi->type)
2339 {
f505134f
HK
2340 case TYPE_AM:
2341 output[0x07] = 0x02;
2342 break;
2343 case TYPE_BM:
2344 output[0x07] = 0x04;
2345 break;
2346 case TYPE_2232C:
2347 output[0x07] = 0x05;
2348 break;
2349 case TYPE_R:
2350 output[0x07] = 0x06;
2351 break;
56ac0383 2352 case TYPE_2232H:
6123f7ab
UB
2353 output[0x07] = 0x07;
2354 break;
56ac0383 2355 case TYPE_4232H:
6123f7ab
UB
2356 output[0x07] = 0x08;
2357 break;
f505134f
HK
2358 default:
2359 output[0x07] = 0x00;
2360 }
b8aa7b35
TJ
2361
2362 // Addr 08: Config descriptor
8fae3e8e
TJ
2363 // Bit 7: always 1
2364 // Bit 6: 1 if this device is self powered, 0 if bus powered
2365 // Bit 5: 1 if this device uses remote wakeup
37186e34 2366 // Bit 4-0: reserved - 0
5a1dcd55 2367 j = 0x80;
b8aa7b35 2368 if (eeprom->self_powered == 1)
5a1dcd55 2369 j |= 0x40;
b8aa7b35 2370 if (eeprom->remote_wakeup == 1)
5a1dcd55 2371 j |= 0x20;
b8aa7b35
TJ
2372 output[0x08] = j;
2373
2374 // Addr 09: Max power consumption: max power = value * 2 mA
bb5ec68a 2375 output[0x09] = eeprom->max_power>>1;
d9f0cce7 2376
56ac0383 2377 if (ftdi->type != TYPE_AM)
93738c79
UB
2378 {
2379 // Addr 0A: Chip configuration
2380 // Bit 7: 0 - reserved
2381 // Bit 6: 0 - reserved
2382 // Bit 5: 0 - reserved
56ac0383 2383 // Bit 4: 1 - Change USB version
93738c79
UB
2384 // Bit 3: 1 - Use the serial number string
2385 // Bit 2: 1 - Enable suspend pull downs for lower power
2386 // Bit 1: 1 - Out EndPoint is Isochronous
2387 // Bit 0: 1 - In EndPoint is Isochronous
2388 //
2389 j = 0;
2390 if (eeprom->in_is_isochronous == 1)
2391 j = j | 1;
2392 if (eeprom->out_is_isochronous == 1)
2393 j = j | 2;
2394 output[0x0A] = j;
2395 }
f505134f 2396
b8aa7b35 2397 // Dynamic content
93738c79
UB
2398 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2399 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2400 i = 0;
56ac0383
TJ
2401 switch (ftdi->type)
2402 {
2403 case TYPE_2232H:
2404 case TYPE_4232H:
2405 i += 2;
2406 case TYPE_R:
2407 i += 2;
2408 case TYPE_2232C:
2409 i += 2;
2410 case TYPE_AM:
2411 case TYPE_BM:
2412 i += 0x94;
f505134f 2413 }
93738c79 2414 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
e2bbd9af 2415 eeprom_size_mask = eeprom->size -1;
c201f80f 2416
93738c79
UB
2417 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2418 // Addr 0F: Length of manufacturer string
22d12cda 2419 // Output manufacturer
93738c79 2420 output[0x0E] = i; // calculate offset
e2bbd9af
TJ
2421 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2422 output[i & eeprom_size_mask] = 0x03, i++; // type: string
22d12cda
TJ
2423 for (j = 0; j < manufacturer_size; j++)
2424 {
e2bbd9af
TJ
2425 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2426 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2427 }
93738c79 2428 output[0x0F] = manufacturer_size*2 + 2;
b8aa7b35 2429
93738c79
UB
2430 // Addr 10: Offset of the product string + 0x80, calculated later
2431 // Addr 11: Length of product string
c201f80f 2432 output[0x10] = i | 0x80; // calculate offset
e2bbd9af
TJ
2433 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2434 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2435 for (j = 0; j < product_size; j++)
2436 {
e2bbd9af
TJ
2437 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2438 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2439 }
93738c79 2440 output[0x11] = product_size*2 + 2;
37186e34 2441
93738c79
UB
2442 // Addr 12: Offset of the serial string + 0x80, calculated later
2443 // Addr 13: Length of serial string
c201f80f 2444 output[0x12] = i | 0x80; // calculate offset
e2bbd9af
TJ
2445 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2446 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2447 for (j = 0; j < serial_size; j++)
2448 {
e2bbd9af
TJ
2449 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2450 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2451 }
c2700d6d
TJ
2452
2453 // Legacy port name and PnP fields for FT2232 and newer chips
2454 if (ftdi->type > TYPE_BM)
2455 {
2456 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2457 i++;
2458 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2459 i++;
2460 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2461 i++;
2462 }
802a949e 2463
93738c79 2464 output[0x13] = serial_size*2 + 2;
b8aa7b35 2465
56ac0383 2466 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
bf2f6ef7
UB
2467 {
2468 if (eeprom->use_serial == USE_SERIAL_NUM )
2469 output[0x0A] |= USE_SERIAL_NUM;
2470 else
2471 output[0x0A] &= ~USE_SERIAL_NUM;
2472 }
3802140c
UB
2473
2474 /* Bytes and Bits specific to (some) types
2475 Write linear, as this allows easier fixing*/
56ac0383
TJ
2476 switch (ftdi->type)
2477 {
2478 case TYPE_AM:
2479 break;
2480 case TYPE_BM:
2481 output[0x0C] = eeprom->usb_version & 0xff;
2482 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2483 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2484 output[0x0A] |= USE_USB_VERSION_BIT;
2485 else
2486 output[0x0A] &= ~USE_USB_VERSION_BIT;
caec1294 2487
56ac0383
TJ
2488 break;
2489 case TYPE_2232C:
3802140c 2490
56ac0383
TJ
2491 output[0x00] = (eeprom->channel_a_type);
2492 if ( eeprom->channel_a_driver == DRIVER_VCP)
2493 output[0x00] |= DRIVER_VCP;
2494 else
2495 output[0x00] &= ~DRIVER_VCP;
4e74064b 2496
56ac0383
TJ
2497 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2498 output[0x00] |= HIGH_CURRENT_DRIVE;
2499 else
2500 output[0x00] &= ~HIGH_CURRENT_DRIVE;
3802140c 2501
56ac0383
TJ
2502 output[0x01] = (eeprom->channel_b_type);
2503 if ( eeprom->channel_b_driver == DRIVER_VCP)
2504 output[0x01] |= DRIVER_VCP;
2505 else
2506 output[0x01] &= ~DRIVER_VCP;
4e74064b 2507
56ac0383
TJ
2508 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2509 output[0x01] |= HIGH_CURRENT_DRIVE;
2510 else
2511 output[0x01] &= ~HIGH_CURRENT_DRIVE;
3802140c 2512
56ac0383
TJ
2513 if (eeprom->in_is_isochronous == 1)
2514 output[0x0A] |= 0x1;
2515 else
2516 output[0x0A] &= ~0x1;
2517 if (eeprom->out_is_isochronous == 1)
2518 output[0x0A] |= 0x2;
2519 else
2520 output[0x0A] &= ~0x2;
2521 if (eeprom->suspend_pull_downs == 1)
2522 output[0x0A] |= 0x4;
2523 else
2524 output[0x0A] &= ~0x4;
2525 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2526 output[0x0A] |= USE_USB_VERSION_BIT;
2527 else
2528 output[0x0A] &= ~USE_USB_VERSION_BIT;
4e74064b 2529
56ac0383
TJ
2530 output[0x0C] = eeprom->usb_version & 0xff;
2531 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2532 output[0x14] = eeprom->chip;
2533 break;
2534 case TYPE_R:
2535 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2536 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2537 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
4e74064b 2538
56ac0383
TJ
2539 if (eeprom->suspend_pull_downs == 1)
2540 output[0x0A] |= 0x4;
2541 else
2542 output[0x0A] &= ~0x4;
2543 output[0x0B] = eeprom->invert;
2544 output[0x0C] = eeprom->usb_version & 0xff;
2545 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
4e74064b 2546
56ac0383
TJ
2547 if (eeprom->cbus_function[0] > CBUS_BB)
2548 output[0x14] = CBUS_TXLED;
2549 else
2550 output[0x14] = eeprom->cbus_function[0];
4e74064b 2551
56ac0383
TJ
2552 if (eeprom->cbus_function[1] > CBUS_BB)
2553 output[0x14] |= CBUS_RXLED<<4;
2554 else
2555 output[0x14] |= eeprom->cbus_function[1]<<4;
4e74064b 2556
56ac0383
TJ
2557 if (eeprom->cbus_function[2] > CBUS_BB)
2558 output[0x15] = CBUS_TXDEN;
2559 else
2560 output[0x15] = eeprom->cbus_function[2];
4e74064b 2561
56ac0383
TJ
2562 if (eeprom->cbus_function[3] > CBUS_BB)
2563 output[0x15] |= CBUS_PWREN<<4;
2564 else
2565 output[0x15] |= eeprom->cbus_function[3]<<4;
4e74064b 2566
56ac0383
TJ
2567 if (eeprom->cbus_function[4] > CBUS_CLK6)
2568 output[0x16] = CBUS_SLEEP;
2569 else
2570 output[0x16] = eeprom->cbus_function[4];
2571 break;
2572 case TYPE_2232H:
2573 output[0x00] = (eeprom->channel_a_type);
2574 if ( eeprom->channel_a_driver == DRIVER_VCP)
2575 output[0x00] |= DRIVER_VCP;
2576 else
2577 output[0x00] &= ~DRIVER_VCP;
6e6a1c3f 2578
56ac0383
TJ
2579 output[0x01] = (eeprom->channel_b_type);
2580 if ( eeprom->channel_b_driver == DRIVER_VCP)
2581 output[0x01] |= DRIVER_VCP;
2582 else
2583 output[0x01] &= ~DRIVER_VCP;
2584 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2585 output[0x01] |= SUSPEND_DBUS7_BIT;
2586 else
2587 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2588
2589 if (eeprom->suspend_pull_downs == 1)
2590 output[0x0A] |= 0x4;
2591 else
2592 output[0x0A] &= ~0x4;
2593
2594 if (eeprom->group0_drive > DRIVE_16MA)
2595 output[0x0c] |= DRIVE_16MA;
2596 else
2597 output[0x0c] |= eeprom->group0_drive;
2598 if (eeprom->group0_schmitt == IS_SCHMITT)
2599 output[0x0c] |= IS_SCHMITT;
2600 if (eeprom->group0_slew == SLOW_SLEW)
2601 output[0x0c] |= SLOW_SLEW;
2602
2603 if (eeprom->group1_drive > DRIVE_16MA)
2604 output[0x0c] |= DRIVE_16MA<<4;
2605 else
2606 output[0x0c] |= eeprom->group1_drive<<4;
2607 if (eeprom->group1_schmitt == IS_SCHMITT)
2608 output[0x0c] |= IS_SCHMITT<<4;
2609 if (eeprom->group1_slew == SLOW_SLEW)
2610 output[0x0c] |= SLOW_SLEW<<4;
2611
2612 if (eeprom->group2_drive > DRIVE_16MA)
2613 output[0x0d] |= DRIVE_16MA;
2614 else
2615 output[0x0d] |= eeprom->group2_drive;
2616 if (eeprom->group2_schmitt == IS_SCHMITT)
2617 output[0x0d] |= IS_SCHMITT;
2618 if (eeprom->group2_slew == SLOW_SLEW)
2619 output[0x0d] |= SLOW_SLEW;
2620
2621 if (eeprom->group3_drive > DRIVE_16MA)
2622 output[0x0d] |= DRIVE_16MA<<4;
2623 else
2624 output[0x0d] |= eeprom->group3_drive<<4;
2625 if (eeprom->group3_schmitt == IS_SCHMITT)
2626 output[0x0d] |= IS_SCHMITT<<4;
2627 if (eeprom->group3_slew == SLOW_SLEW)
2628 output[0x0d] |= SLOW_SLEW<<4;
3802140c 2629
56ac0383 2630 output[0x18] = eeprom->chip;
3802140c 2631
56ac0383
TJ
2632 break;
2633 case TYPE_4232H:
2634 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
3802140c
UB
2635 }
2636
cbf65673 2637 // calculate checksum
b8aa7b35 2638 checksum = 0xAAAA;
d9f0cce7 2639
22d12cda
TJ
2640 for (i = 0; i < eeprom->size/2-1; i++)
2641 {
d9f0cce7
TJ
2642 value = output[i*2];
2643 value += output[(i*2)+1] << 8;
b8aa7b35 2644
d9f0cce7
TJ
2645 checksum = value^checksum;
2646 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
2647 }
2648
c201f80f
TJ
2649 output[eeprom->size-2] = checksum;
2650 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 2651
516ebfb1 2652 return user_area_size;
b8aa7b35
TJ
2653}
2654
4af1d1bb
MK
2655/**
2656 Decode binary EEPROM image into an ftdi_eeprom structure.
2657
a35aa9bd
UB
2658 \param ftdi pointer to ftdi_context
2659 \param verbose Decode EEPROM on stdout
56ac0383 2660
4af1d1bb
MK
2661 \retval 0: all fine
2662 \retval -1: something went wrong
2663
2664 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2665 FIXME: Strings are malloc'ed here and should be freed somewhere
2666*/
a35aa9bd 2667int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
b56d5a64
MK
2668{
2669 unsigned char i, j;
2670 unsigned short checksum, eeprom_checksum, value;
2671 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
f2cd9fd5 2672 int eeprom_size;
c0a96aed 2673 struct ftdi_eeprom *eeprom;
a35aa9bd 2674 unsigned char *buf = ftdi->eeprom->buf;
38801bf8 2675 int release;
22a1b5c1 2676
c0a96aed 2677 if (ftdi == NULL)
cc9c9d58 2678 ftdi_error_return(-1,"No context");
c0a96aed 2679 if (ftdi->eeprom == NULL)
6cd4f922 2680 ftdi_error_return(-1,"No eeprom structure");
56ac0383 2681
c0a96aed 2682 eeprom = ftdi->eeprom;
a35aa9bd 2683 eeprom_size = eeprom->size;
b56d5a64 2684
b56d5a64
MK
2685 // Addr 02: Vendor ID
2686 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2687
2688 // Addr 04: Product ID
2689 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
22d12cda 2690
38801bf8 2691 release = buf[0x06] + (buf[0x07]<<8);
b56d5a64
MK
2692
2693 // Addr 08: Config descriptor
2694 // Bit 7: always 1
2695 // Bit 6: 1 if this device is self powered, 0 if bus powered
2696 // Bit 5: 1 if this device uses remote wakeup
f6ef2983 2697 eeprom->self_powered = buf[0x08] & 0x40;
814710ba 2698 eeprom->remote_wakeup = buf[0x08] & 0x20;
b56d5a64
MK
2699
2700 // Addr 09: Max power consumption: max power = value * 2 mA
2701 eeprom->max_power = buf[0x09];
2702
2703 // Addr 0A: Chip configuration
2704 // Bit 7: 0 - reserved
2705 // Bit 6: 0 - reserved
2706 // Bit 5: 0 - reserved
caec1294 2707 // Bit 4: 1 - Change USB version on BM and 2232C
b56d5a64
MK
2708 // Bit 3: 1 - Use the serial number string
2709 // Bit 2: 1 - Enable suspend pull downs for lower power
2710 // Bit 1: 1 - Out EndPoint is Isochronous
2711 // Bit 0: 1 - In EndPoint is Isochronous
2712 //
8d3fe5c9
UB
2713 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2714 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2715 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
a02587d5 2716 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
caec1294 2717 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
b56d5a64 2718
b1859923 2719 // Addr 0C: USB version low byte when 0x0A
56ac0383 2720 // Addr 0D: USB version high byte when 0x0A
b1859923 2721 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
b56d5a64
MK
2722
2723 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2724 // Addr 0F: Length of manufacturer string
2725 manufacturer_size = buf[0x0F]/2;
56ac0383 2726 if (eeprom->manufacturer)
74e8e79d 2727 free(eeprom->manufacturer);
56ac0383 2728 if (manufacturer_size > 0)
acc1fa05
UB
2729 {
2730 eeprom->manufacturer = malloc(manufacturer_size);
2731 if (eeprom->manufacturer)
2732 {
2733 // Decode manufacturer
84ec032f 2734 i = buf[0x0E] & (eeprom_size -1); // offset
acc1fa05
UB
2735 for (j=0;j<manufacturer_size-1;j++)
2736 {
2737 eeprom->manufacturer[j] = buf[2*j+i+2];
2738 }
2739 eeprom->manufacturer[j] = '\0';
2740 }
2741 }
b56d5a64
MK
2742 else eeprom->manufacturer = NULL;
2743
2744 // Addr 10: Offset of the product string + 0x80, calculated later
2745 // Addr 11: Length of product string
56ac0383 2746 if (eeprom->product)
74e8e79d 2747 free(eeprom->product);
b56d5a64 2748 product_size = buf[0x11]/2;
acc1fa05
UB
2749 if (product_size > 0)
2750 {
2751 eeprom->product = malloc(product_size);
56ac0383 2752 if (eeprom->product)
acc1fa05
UB
2753 {
2754 // Decode product name
84ec032f 2755 i = buf[0x10] & (eeprom_size -1); // offset
acc1fa05
UB
2756 for (j=0;j<product_size-1;j++)
2757 {
2758 eeprom->product[j] = buf[2*j+i+2];
2759 }
2760 eeprom->product[j] = '\0';
2761 }
2762 }
b56d5a64
MK
2763 else eeprom->product = NULL;
2764
2765 // Addr 12: Offset of the serial string + 0x80, calculated later
2766 // Addr 13: Length of serial string
56ac0383 2767 if (eeprom->serial)
74e8e79d 2768 free(eeprom->serial);
b56d5a64 2769 serial_size = buf[0x13]/2;
acc1fa05
UB
2770 if (serial_size > 0)
2771 {
2772 eeprom->serial = malloc(serial_size);
56ac0383 2773 if (eeprom->serial)
acc1fa05
UB
2774 {
2775 // Decode serial
84ec032f 2776 i = buf[0x12] & (eeprom_size -1); // offset
acc1fa05
UB
2777 for (j=0;j<serial_size-1;j++)
2778 {
2779 eeprom->serial[j] = buf[2*j+i+2];
2780 }
2781 eeprom->serial[j] = '\0';
2782 }
2783 }
b56d5a64
MK
2784 else eeprom->serial = NULL;
2785
b56d5a64
MK
2786 // verify checksum
2787 checksum = 0xAAAA;
2788
22d12cda
TJ
2789 for (i = 0; i < eeprom_size/2-1; i++)
2790 {
b56d5a64
MK
2791 value = buf[i*2];
2792 value += buf[(i*2)+1] << 8;
2793
2794 checksum = value^checksum;
2795 checksum = (checksum << 1) | (checksum >> 15);
2796 }
2797
2798 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2799
22d12cda
TJ
2800 if (eeprom_checksum != checksum)
2801 {
2802 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
cc9c9d58 2803 ftdi_error_return(-1,"EEPROM checksum error");
4af1d1bb
MK
2804 }
2805
eb498cff 2806 eeprom->channel_a_type = 0;
aa099f46 2807 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
f6ef2983 2808 {
6cd4f922 2809 eeprom->chip = -1;
f6ef2983 2810 }
56ac0383 2811 else if (ftdi->type == TYPE_2232C)
f6ef2983 2812 {
2cde7c52
UB
2813 eeprom->channel_a_type = buf[0x00] & 0x7;
2814 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2815 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2816 eeprom->channel_b_type = buf[0x01] & 0x7;
2817 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2818 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
6cd4f922 2819 eeprom->chip = buf[0x14];
065edc58 2820 }
56ac0383 2821 else if (ftdi->type == TYPE_R)
564b2716 2822 {
2cde7c52
UB
2823 /* TYPE_R flags D2XX, not VCP as all others*/
2824 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2825 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
56ac0383
TJ
2826 if ( (buf[0x01]&0x40) != 0x40)
2827 fprintf(stderr,
2828 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2829 " If this happened with the\n"
2830 " EEPROM programmed by FTDI tools, please report "
2831 "to libftdi@developer.intra2net.com\n");
2cde7c52 2832
6cd4f922 2833 eeprom->chip = buf[0x16];
cecb9cb2
UB
2834 // Addr 0B: Invert data lines
2835 // Works only on FT232R, not FT245R, but no way to distinguish
07851949
UB
2836 eeprom->invert = buf[0x0B];
2837 // Addr 14: CBUS function: CBUS0, CBUS1
2838 // Addr 15: CBUS function: CBUS2, CBUS3
2839 // Addr 16: CBUS function: CBUS5
2840 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2841 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2842 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2843 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2844 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
564b2716 2845 }
56ac0383 2846 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
db099ec5 2847 {
c6b94478 2848 eeprom->channel_a_type = buf[0x00] & 0x7;
2cde7c52
UB
2849 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2850 eeprom->channel_b_type = buf[0x01] & 0x7;
2851 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2852
56ac0383 2853 if (ftdi->type == TYPE_2232H)
ec0dcd3f 2854 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
2cde7c52 2855
6cd4f922 2856 eeprom->chip = buf[0x18];
db099ec5
UB
2857 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2858 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2859 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2860 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2861 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2862 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2863 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2864 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2865 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2866 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2867 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2868 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
947d9552 2869 }
56ac0383
TJ
2870
2871 if (verbose)
f6ef2983 2872 {
e107f509 2873 char *channel_mode[] = {"UART","245","CPU", "unknown", "OPTO"};
f6ef2983
UB
2874 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
2875 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
38801bf8 2876 fprintf(stdout, "Release: 0x%04x\n",release);
f6ef2983 2877
56ac0383 2878 if (eeprom->self_powered)
f6ef2983
UB
2879 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
2880 else
1cd815ad 2881 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
f6ef2983 2882 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
56ac0383 2883 if (eeprom->manufacturer)
f6ef2983 2884 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
56ac0383 2885 if (eeprom->product)
f6ef2983 2886 fprintf(stdout, "Product: %s\n",eeprom->product);
56ac0383 2887 if (eeprom->serial)
f6ef2983 2888 fprintf(stdout, "Serial: %s\n",eeprom->serial);
e107f509 2889 fprintf(stdout, "Checksum : %04x\n", checksum);
6cd4f922
UB
2890 if (ftdi->type == TYPE_R)
2891 fprintf(stdout, "Internal EEPROM\n");
2892 else if (eeprom->chip >= 0x46)
2893 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
56ac0383
TJ
2894 if (eeprom->suspend_dbus7)
2895 fprintf(stdout, "Suspend on DBUS7\n");
2896 if (eeprom->suspend_pull_downs)
fb9bfdd1 2897 fprintf(stdout, "Pull IO pins low during suspend\n");
56ac0383 2898 if (eeprom->remote_wakeup)
fb9bfdd1 2899 fprintf(stdout, "Enable Remote Wake Up\n");
802a949e 2900 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
db099ec5 2901 if (ftdi->type >= TYPE_2232C)
56ac0383 2902 fprintf(stdout,"Channel A has Mode %s%s%s\n",
e107f509 2903 channel_mode[eeprom->channel_a_type],
2cde7c52
UB
2904 (eeprom->channel_a_driver)?" VCP":"",
2905 (eeprom->high_current_a)?" High Current IO":"");
56ac0383
TJ
2906 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R))
2907 fprintf(stdout,"Channel B has Mode %s%s%s\n",
e107f509 2908 channel_mode[eeprom->channel_b_type],
2cde7c52
UB
2909 (eeprom->channel_b_driver)?" VCP":"",
2910 (eeprom->high_current_b)?" High Current IO":"");
caec1294 2911 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
56ac0383 2912 eeprom->use_usb_version == USE_USB_VERSION_BIT)
caec1294
UB
2913 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
2914
56ac0383 2915 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
db099ec5
UB
2916 {
2917 fprintf(stdout,"%s has %d mA drive%s%s\n",
2918 (ftdi->type == TYPE_2232H)?"AL":"A",
2919 (eeprom->group0_drive+1) *4,
2920 (eeprom->group0_schmitt)?" Schmitt Input":"",
2921 (eeprom->group0_slew)?" Slow Slew":"");
2922 fprintf(stdout,"%s has %d mA drive%s%s\n",
2923 (ftdi->type == TYPE_2232H)?"AH":"B",
2924 (eeprom->group1_drive+1) *4,
2925 (eeprom->group1_schmitt)?" Schmitt Input":"",
2926 (eeprom->group1_slew)?" Slow Slew":"");
2927 fprintf(stdout,"%s has %d mA drive%s%s\n",
2928 (ftdi->type == TYPE_2232H)?"BL":"C",
2929 (eeprom->group2_drive+1) *4,
2930 (eeprom->group2_schmitt)?" Schmitt Input":"",
2931 (eeprom->group2_slew)?" Slow Slew":"");
2932 fprintf(stdout,"%s has %d mA drive%s%s\n",
2933 (ftdi->type == TYPE_2232H)?"BH":"D",
2934 (eeprom->group3_drive+1) *4,
2935 (eeprom->group3_schmitt)?" Schmitt Input":"",
2936 (eeprom->group3_slew)?" Slow Slew":"");
2937 }
a4980043
UB
2938 if (ftdi->type == TYPE_R)
2939 {
2940 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
13f00d3c 2941 "SLEEP","CLK48","CLK24","CLK12","CLK6",
56ac0383
TJ
2942 "IOMODE","BB_WR","BB_RD"
2943 };
13f00d3c 2944 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
a4980043 2945 int i;
56ac0383
TJ
2946
2947 if (eeprom->invert)
2948 {
a4980043
UB
2949 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
2950 fprintf(stdout,"Inverted bits:");
2951 for (i=0; i<8; i++)
56ac0383 2952 if ((eeprom->invert & (1<<i)) == (1<<i))
a4980043
UB
2953 fprintf(stdout," %s",r_bits[i]);
2954 fprintf(stdout,"\n");
2955 }
56ac0383 2956 for (i=0; i<5; i++)
a4980043 2957 {
56ac0383 2958 if (eeprom->cbus_function[i]<CBUS_BB)
a4980043
UB
2959 fprintf(stdout,"C%d Function: %s\n", i,
2960 cbus_mux[eeprom->cbus_function[i]]);
2961 else
17431287
TJ
2962 {
2963 /* FIXME for Uwe: This results in an access above array bounds.
2964 Also I couldn't find documentation about this mode.
a4980043
UB
2965 fprintf(stdout,"C%d BB Function: %s\n", i,
2966 cbus_BB[i]);
17431287
TJ
2967 */
2968 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
2969 (void)cbus_BB;
2970 }
a4980043
UB
2971 }
2972 }
f6ef2983 2973 }
4af1d1bb 2974 return 0;
b56d5a64
MK
2975}
2976
1941414d 2977/**
44ef02bd
UB
2978 Get a value from the decoded EEPROM structure
2979
735e81ea
TJ
2980 \param ftdi pointer to ftdi_context
2981 \param value_name Enum of the value to query
2982 \param value Pointer to store read value
44ef02bd 2983
735e81ea
TJ
2984 \retval 0: all fine
2985 \retval -1: Value doesn't exist
44ef02bd
UB
2986*/
2987int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
2988{
2989 switch (value_name)
2990 {
56ac0383
TJ
2991 case VENDOR_ID:
2992 *value = ftdi->eeprom->vendor_id;
2993 break;
2994 case PRODUCT_ID:
2995 *value = ftdi->eeprom->product_id;
2996 break;
2997 case SELF_POWERED:
2998 *value = ftdi->eeprom->self_powered;
2999 break;
3000 case REMOTE_WAKEUP:
3001 *value = ftdi->eeprom->remote_wakeup;
3002 break;
3003 case IS_NOT_PNP:
3004 *value = ftdi->eeprom->is_not_pnp;
3005 break;
3006 case SUSPEND_DBUS7:
3007 *value = ftdi->eeprom->suspend_dbus7;
3008 break;
3009 case IN_IS_ISOCHRONOUS:
3010 *value = ftdi->eeprom->in_is_isochronous;
3011 break;
3012 case SUSPEND_PULL_DOWNS:
3013 *value = ftdi->eeprom->suspend_pull_downs;
3014 break;
3015 case USE_SERIAL:
3016 *value = ftdi->eeprom->use_serial;
3017 break;
3018 case USB_VERSION:
3019 *value = ftdi->eeprom->usb_version;
3020 break;
3021 case MAX_POWER:
3022 *value = ftdi->eeprom->max_power;
3023 break;
3024 case CHANNEL_A_TYPE:
3025 *value = ftdi->eeprom->channel_a_type;
3026 break;
3027 case CHANNEL_B_TYPE:
3028 *value = ftdi->eeprom->channel_b_type;
3029 break;
3030 case CHANNEL_A_DRIVER:
3031 *value = ftdi->eeprom->channel_a_driver;
3032 break;
3033 case CHANNEL_B_DRIVER:
3034 *value = ftdi->eeprom->channel_b_driver;
3035 break;
3036 case CBUS_FUNCTION_0:
3037 *value = ftdi->eeprom->cbus_function[0];
3038 break;
3039 case CBUS_FUNCTION_1:
3040 *value = ftdi->eeprom->cbus_function[1];
3041 break;
3042 case CBUS_FUNCTION_2:
3043 *value = ftdi->eeprom->cbus_function[2];
3044 break;
3045 case CBUS_FUNCTION_3:
3046 *value = ftdi->eeprom->cbus_function[3];
3047 break;
3048 case CBUS_FUNCTION_4:
3049 *value = ftdi->eeprom->cbus_function[4];
3050 break;
3051 case HIGH_CURRENT:
3052 *value = ftdi->eeprom->high_current;
3053 break;
3054 case HIGH_CURRENT_A:
3055 *value = ftdi->eeprom->high_current_a;
3056 break;
3057 case HIGH_CURRENT_B:
3058 *value = ftdi->eeprom->high_current_b;
3059 break;
3060 case INVERT:
3061 *value = ftdi->eeprom->invert;
3062 break;
3063 case GROUP0_DRIVE:
3064 *value = ftdi->eeprom->group0_drive;
3065 break;
3066 case GROUP0_SCHMITT:
3067 *value = ftdi->eeprom->group0_schmitt;
3068 break;
3069 case GROUP0_SLEW:
3070 *value = ftdi->eeprom->group0_slew;
3071 break;
3072 case GROUP1_DRIVE:
3073 *value = ftdi->eeprom->group1_drive;
3074 break;
3075 case GROUP1_SCHMITT:
3076 *value = ftdi->eeprom->group1_schmitt;
3077 break;
3078 case GROUP1_SLEW:
3079 *value = ftdi->eeprom->group1_slew;
3080 break;
3081 case GROUP2_DRIVE:
3082 *value = ftdi->eeprom->group2_drive;
3083 break;
3084 case GROUP2_SCHMITT:
3085 *value = ftdi->eeprom->group2_schmitt;
3086 break;
3087 case GROUP2_SLEW:
3088 *value = ftdi->eeprom->group2_slew;
3089 break;
3090 case GROUP3_DRIVE:
3091 *value = ftdi->eeprom->group3_drive;
3092 break;
3093 case GROUP3_SCHMITT:
3094 *value = ftdi->eeprom->group3_schmitt;
3095 break;
3096 case GROUP3_SLEW:
3097 *value = ftdi->eeprom->group3_slew;
3098 break;
3099 case CHIP_TYPE:
3100 *value = ftdi->eeprom->chip;
3101 break;
3102 case CHIP_SIZE:
3103 *value = ftdi->eeprom->size;
3104 break;
3105 default:
3106 ftdi_error_return(-1, "Request for unknown EEPROM value");
44ef02bd
UB
3107 }
3108 return 0;
3109}
3110
3111/**
3112 Set a value in the decoded EEPROM Structure
3113 No parameter checking is performed
3114
735e81ea
TJ
3115 \param ftdi pointer to ftdi_context
3116 \param value_name Enum of the value to query
3117 \param value to set
44ef02bd 3118
735e81ea
TJ
3119 \retval 0: all fine
3120 \retval -1: Value doesn't exist
3121 \retval -2: Value not user settable
44ef02bd
UB
3122*/
3123int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3124{
3125 switch (value_name)
3126 {
56ac0383
TJ
3127 case VENDOR_ID:
3128 ftdi->eeprom->vendor_id = value;
3129 break;
3130 case PRODUCT_ID:
3131 ftdi->eeprom->product_id = value;
3132 break;
3133 case SELF_POWERED:
3134 ftdi->eeprom->self_powered = value;
3135 break;
3136 case REMOTE_WAKEUP:
3137 ftdi->eeprom->remote_wakeup = value;
3138 break;
3139 case IS_NOT_PNP:
3140 ftdi->eeprom->is_not_pnp = value;
3141 break;
3142 case SUSPEND_DBUS7:
3143 ftdi->eeprom->suspend_dbus7 = value;
3144 break;
3145 case IN_IS_ISOCHRONOUS:
3146 ftdi->eeprom->in_is_isochronous = value;
3147 break;
3148 case SUSPEND_PULL_DOWNS:
3149 ftdi->eeprom->suspend_pull_downs = value;
3150 break;
3151 case USE_SERIAL:
3152 ftdi->eeprom->use_serial = value;
3153 break;
3154 case USB_VERSION:
3155 ftdi->eeprom->usb_version = value;
3156 break;
3157 case MAX_POWER:
3158 ftdi->eeprom->max_power = value;
3159 break;
3160 case CHANNEL_A_TYPE:
3161 ftdi->eeprom->channel_a_type = value;
3162 break;
3163 case CHANNEL_B_TYPE:
3164 ftdi->eeprom->channel_b_type = value;
3165 break;
3166 case CHANNEL_A_DRIVER:
3167 ftdi->eeprom->channel_a_driver = value;
3168 break;
3169 case CHANNEL_B_DRIVER:
3170 ftdi->eeprom->channel_b_driver = value;
3171 break;
3172 case CBUS_FUNCTION_0:
3173 ftdi->eeprom->cbus_function[0] = value;
3174 break;
3175 case CBUS_FUNCTION_1:
3176 ftdi->eeprom->cbus_function[1] = value;
3177 break;
3178 case CBUS_FUNCTION_2:
3179 ftdi->eeprom->cbus_function[2] = value;
3180 break;
3181 case CBUS_FUNCTION_3:
3182 ftdi->eeprom->cbus_function[3] = value;
3183 break;
3184 case CBUS_FUNCTION_4:
3185 ftdi->eeprom->cbus_function[4] = value;
3186 break;
3187 case HIGH_CURRENT:
3188 ftdi->eeprom->high_current = value;
3189 break;
3190 case HIGH_CURRENT_A:
3191 ftdi->eeprom->high_current_a = value;
3192 break;
3193 case HIGH_CURRENT_B:
3194 ftdi->eeprom->high_current_b = value;
3195 break;
3196 case INVERT:
3197 ftdi->eeprom->invert = value;
3198 break;
3199 case GROUP0_DRIVE:
3200 ftdi->eeprom->group0_drive = value;
3201 break;
3202 case GROUP0_SCHMITT:
3203 ftdi->eeprom->group0_schmitt = value;
3204 break;
3205 case GROUP0_SLEW:
3206 ftdi->eeprom->group0_slew = value;
3207 break;
3208 case GROUP1_DRIVE:
3209 ftdi->eeprom->group1_drive = value;
3210 break;
3211 case GROUP1_SCHMITT:
3212 ftdi->eeprom->group1_schmitt = value;
3213 break;
3214 case GROUP1_SLEW:
3215 ftdi->eeprom->group1_slew = value;
3216 break;
3217 case GROUP2_DRIVE:
3218 ftdi->eeprom->group2_drive = value;
3219 break;
3220 case GROUP2_SCHMITT:
3221 ftdi->eeprom->group2_schmitt = value;
3222 break;
3223 case GROUP2_SLEW:
3224 ftdi->eeprom->group2_slew = value;
3225 break;
3226 case GROUP3_DRIVE:
3227 ftdi->eeprom->group3_drive = value;
3228 break;
3229 case GROUP3_SCHMITT:
3230 ftdi->eeprom->group3_schmitt = value;
3231 break;
3232 case GROUP3_SLEW:
3233 ftdi->eeprom->group3_slew = value;
3234 break;
3235 case CHIP_TYPE:
3236 ftdi->eeprom->chip = value;
3237 break;
3238 case CHIP_SIZE:
3239 ftdi_error_return(-2, "EEPROM Value can't be changed");
3240 default :
3241 ftdi_error_return(-1, "Request to unknown EEPROM value");
44ef02bd
UB
3242 }
3243 return 0;
3244}
3245
3246/** Get the read-only buffer to the binary EEPROM content
3247
3248 \param ftdi pointer to ftdi_context
735e81ea 3249 \param buf buffer to receive EEPROM content
44ef02bd
UB
3250 \param size Size of receiving buffer
3251
3252 \retval 0: All fine
3253 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3254*/
56ac0383
TJ
3255int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3256{
3257 if (!ftdi || !(ftdi->eeprom))
3258 ftdi_error_return(-1, "No appropriate structure");
3259 memcpy(buf, ftdi->eeprom->buf, size);
3260 return 0;
3261}
44ef02bd
UB
3262
3263/**
c1c70e13
OS
3264 Read eeprom location
3265
3266 \param ftdi pointer to ftdi_context
3267 \param eeprom_addr Address of eeprom location to be read
3268 \param eeprom_val Pointer to store read eeprom location
3269
3270 \retval 0: all fine
3271 \retval -1: read failed
22a1b5c1 3272 \retval -2: USB device unavailable
c1c70e13
OS
3273*/
3274int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3275{
22a1b5c1
TJ
3276 if (ftdi == NULL || ftdi->usb_dev == NULL)
3277 ftdi_error_return(-2, "USB device unavailable");
3278
97c6b5f6 3279 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
c1c70e13
OS
3280 ftdi_error_return(-1, "reading eeprom failed");
3281
3282 return 0;
3283}
3284
3285/**
1941414d
TJ
3286 Read eeprom
3287
3288 \param ftdi pointer to ftdi_context
b8aa7b35 3289
1941414d
TJ
3290 \retval 0: all fine
3291 \retval -1: read failed
22a1b5c1 3292 \retval -2: USB device unavailable
1941414d 3293*/
a35aa9bd 3294int ftdi_read_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3295{
a3da1d95 3296 int i;
a35aa9bd 3297 unsigned char *buf;
a3da1d95 3298
22a1b5c1
TJ
3299 if (ftdi == NULL || ftdi->usb_dev == NULL)
3300 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 3301 buf = ftdi->eeprom->buf;
22a1b5c1 3302
2d543486 3303 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
22d12cda 3304 {
a35aa9bd 3305 if (libusb_control_transfer(
56ac0383
TJ
3306 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3307 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
c3d95b87 3308 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
3309 }
3310
2d543486 3311 if (ftdi->type == TYPE_R)
a35aa9bd 3312 ftdi->eeprom->size = 0x80;
56ac0383 3313 /* Guesses size of eeprom by comparing halves
2d543486 3314 - will not work with blank eeprom */
a35aa9bd 3315 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
2d543486 3316 ftdi->eeprom->size = -1;
56ac0383 3317 else if (memcmp(buf,&buf[0x80],0x80) == 0)
2d543486 3318 ftdi->eeprom->size = 0x80;
56ac0383 3319 else if (memcmp(buf,&buf[0x40],0x40) == 0)
2d543486
UB
3320 ftdi->eeprom->size = 0x40;
3321 else
3322 ftdi->eeprom->size = 0x100;
a3da1d95
GE
3323 return 0;
3324}
3325
cb6250fa
TJ
3326/*
3327 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3328 Function is only used internally
3329 \internal
3330*/
3331static unsigned char ftdi_read_chipid_shift(unsigned char value)
3332{
3333 return ((value & 1) << 1) |
22d12cda
TJ
3334 ((value & 2) << 5) |
3335 ((value & 4) >> 2) |
3336 ((value & 8) << 4) |
3337 ((value & 16) >> 1) |
3338 ((value & 32) >> 1) |
3339 ((value & 64) >> 4) |
3340 ((value & 128) >> 2);
cb6250fa
TJ
3341}
3342
3343/**
3344 Read the FTDIChip-ID from R-type devices
3345
3346 \param ftdi pointer to ftdi_context
3347 \param chipid Pointer to store FTDIChip-ID
3348
3349 \retval 0: all fine
3350 \retval -1: read failed
22a1b5c1 3351 \retval -2: USB device unavailable
cb6250fa
TJ
3352*/
3353int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3354{
c7eb3112 3355 unsigned int a = 0, b = 0;
cb6250fa 3356
22a1b5c1
TJ
3357 if (ftdi == NULL || ftdi->usb_dev == NULL)
3358 ftdi_error_return(-2, "USB device unavailable");
3359
579b006f 3360 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3361 {
3362 a = a << 8 | a >> 8;
579b006f 3363 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
3364 {
3365 b = b << 8 | b >> 8;
5230676f 3366 a = (a << 16) | (b & 0xFFFF);
912d50ca
TJ
3367 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3368 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 3369 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 3370 return 0;
cb6250fa
TJ
3371 }
3372 }
3373
c7eb3112 3374 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
3375}
3376
1941414d 3377/**
c1c70e13
OS
3378 Write eeprom location
3379
3380 \param ftdi pointer to ftdi_context
3381 \param eeprom_addr Address of eeprom location to be written
3382 \param eeprom_val Value to be written
3383
3384 \retval 0: all fine
a661e3e4 3385 \retval -1: write failed
22a1b5c1 3386 \retval -2: USB device unavailable
a661e3e4
UB
3387 \retval -3: Invalid access to checksum protected area below 0x80
3388 \retval -4: Device can't access unprotected area
3389 \retval -5: Reading chip type failed
c1c70e13 3390*/
56ac0383 3391int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
a661e3e4 3392 unsigned short eeprom_val)
c1c70e13 3393{
a661e3e4
UB
3394 int chip_type_location;
3395 unsigned short chip_type;
3396
22a1b5c1
TJ
3397 if (ftdi == NULL || ftdi->usb_dev == NULL)
3398 ftdi_error_return(-2, "USB device unavailable");
3399
56ac0383 3400 if (eeprom_addr <0x80)
a661e3e4
UB
3401 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3402
3403
3404 switch (ftdi->type)
3405 {
56ac0383
TJ
3406 case TYPE_BM:
3407 case TYPE_2232C:
3408 chip_type_location = 0x14;
3409 break;
3410 case TYPE_2232H:
3411 case TYPE_4232H:
3412 chip_type_location = 0x18;
3413 break;
3414 default:
3415 ftdi_error_return(-4, "Device can't access unprotected area");
a661e3e4
UB
3416 }
3417
56ac0383 3418 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
a661e3e4 3419 ftdi_error_return(-5, "Reading failed failed");
56ac0383
TJ
3420 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3421 if ((chip_type & 0xff) != 0x66)
a661e3e4
UB
3422 {
3423 ftdi_error_return(-6, "EEPROM is not of 93x66");
3424 }
3425
579b006f 3426 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
3427 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3428 NULL, 0, ftdi->usb_write_timeout) != 0)
c1c70e13
OS
3429 ftdi_error_return(-1, "unable to write eeprom");
3430
3431 return 0;
3432}
3433
3434/**
1941414d 3435 Write eeprom
a3da1d95 3436
1941414d 3437 \param ftdi pointer to ftdi_context
56ac0383 3438
1941414d
TJ
3439 \retval 0: all fine
3440 \retval -1: read failed
22a1b5c1 3441 \retval -2: USB device unavailable
1941414d 3442*/
a35aa9bd 3443int ftdi_write_eeprom(struct ftdi_context *ftdi)
a8f46ddc 3444{
ba5329be 3445 unsigned short usb_val, status;
e30da501 3446 int i, ret;
a35aa9bd 3447 unsigned char *eeprom;
a3da1d95 3448
22a1b5c1
TJ
3449 if (ftdi == NULL || ftdi->usb_dev == NULL)
3450 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 3451 eeprom = ftdi->eeprom->buf;
22a1b5c1 3452
ba5329be 3453 /* These commands were traced while running MProg */
e30da501
TJ
3454 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3455 return ret;
3456 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3457 return ret;
3458 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3459 return ret;
ba5329be 3460
c0a96aed 3461 for (i = 0; i < ftdi->eeprom->size/2; i++)
22d12cda 3462 {
d9f0cce7
TJ
3463 usb_val = eeprom[i*2];
3464 usb_val += eeprom[(i*2)+1] << 8;
579b006f
JZ
3465 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3466 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3467 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3468 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
3469 }
3470
3471 return 0;
3472}
3473
1941414d
TJ
3474/**
3475 Erase eeprom
a3da1d95 3476
a5e1bd8c
MK
3477 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3478
1941414d
TJ
3479 \param ftdi pointer to ftdi_context
3480
3481 \retval 0: all fine
3482 \retval -1: erase failed
22a1b5c1 3483 \retval -2: USB device unavailable
99404ad5
UB
3484 \retval -3: Writing magic failed
3485 \retval -4: Read EEPROM failed
3486 \retval -5: Unexpected EEPROM value
1941414d 3487*/
99404ad5 3488#define MAGIC 0x55aa
a8f46ddc
TJ
3489int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3490{
99404ad5 3491 unsigned short eeprom_value;
22a1b5c1
TJ
3492 if (ftdi == NULL || ftdi->usb_dev == NULL)
3493 ftdi_error_return(-2, "USB device unavailable");
3494
56ac0383 3495 if (ftdi->type == TYPE_R)
99404ad5
UB
3496 {
3497 ftdi->eeprom->chip = 0;
3498 return 0;
3499 }
3500
56ac0383 3501 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5 3502 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 3503 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95 3504
56ac0383 3505
99404ad5
UB
3506 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3507 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3508 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3509 Chip is 93x66 if magic is only read at word position 0xc0*/
10186c1f 3510 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
3511 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3512 NULL, 0, ftdi->usb_write_timeout) != 0)
99404ad5 3513 ftdi_error_return(-3, "Writing magic failed");
56ac0383 3514 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
99404ad5 3515 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3516 if (eeprom_value == MAGIC)
99404ad5
UB
3517 {
3518 ftdi->eeprom->chip = 0x46;
3519 }
56ac0383 3520 else
99404ad5 3521 {
56ac0383 3522 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
99404ad5 3523 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3524 if (eeprom_value == MAGIC)
99404ad5 3525 ftdi->eeprom->chip = 0x56;
56ac0383 3526 else
99404ad5 3527 {
56ac0383 3528 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
99404ad5 3529 ftdi_error_return(-4, "Reading failed failed");
56ac0383 3530 if (eeprom_value == MAGIC)
99404ad5
UB
3531 ftdi->eeprom->chip = 0x66;
3532 else
3533 {
3534 ftdi->eeprom->chip = -1;
3535 }
3536 }
3537 }
56ac0383 3538 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5
UB
3539 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3540 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
3541 return 0;
3542}
c3d95b87 3543
1941414d
TJ
3544/**
3545 Get string representation for last error code
c3d95b87 3546
1941414d
TJ
3547 \param ftdi pointer to ftdi_context
3548
3549 \retval Pointer to error string
3550*/
c3d95b87
TJ
3551char *ftdi_get_error_string (struct ftdi_context *ftdi)
3552{
22a1b5c1
TJ
3553 if (ftdi == NULL)
3554 return "";
3555
c3d95b87
TJ
3556 return ftdi->error_str;
3557}
a01d31e2 3558
b5ec1820 3559/* @} end of doxygen libftdi group */