Declare ftdi_read_data_submit and ftdi_transfer_data_done in ftdi.h.
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
c201f80f 5 copyright : (C) 2003-2008 by Intra2net AG
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
1bfc403c 21 http://www.intra2net.com/en/developer/libftdi/
b5ec1820 22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
579b006f 31#include <libusb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
b56d5a64 34#include <stdio.h>
579b006f 35#include <stdlib.h>
0e302db6 36
98452d97 37#include "ftdi.h"
a3da1d95 38
21abaf2e 39#define ftdi_error_return(code, str) do { \
2f73e59f 40 ftdi->error_str = str; \
21abaf2e 41 return code; \
d2f10023 42 } while(0);
c3d95b87 43
418aaa72 44
f3f81007
TJ
45/**
46 Internal function to close usb device pointer.
47 Sets ftdi->usb_dev to NULL.
48 \internal
49
50 \param ftdi pointer to ftdi_context
51
579b006f 52 \retval none
f3f81007 53*/
579b006f 54static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 55{
f3f81007 56 if (ftdi->usb_dev)
dff4fdb0 57 {
579b006f 58 libusb_close (ftdi->usb_dev);
dff4fdb0
NF
59 ftdi->usb_dev = NULL;
60 }
dff4fdb0 61}
c3d95b87 62
1941414d
TJ
63/**
64 Initializes a ftdi_context.
4837f98a 65
1941414d 66 \param ftdi pointer to ftdi_context
4837f98a 67
1941414d
TJ
68 \retval 0: all fine
69 \retval -1: couldn't allocate read buffer
70
71 \remark This should be called before all functions
948f9ada 72*/
a8f46ddc
TJ
73int ftdi_init(struct ftdi_context *ftdi)
74{
98452d97 75 ftdi->usb_dev = NULL;
545820ce
TJ
76 ftdi->usb_read_timeout = 5000;
77 ftdi->usb_write_timeout = 5000;
a3da1d95 78
53ad271d 79 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 80 ftdi->baudrate = -1;
418aaa72 81 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 82
948f9ada
TJ
83 ftdi->readbuffer = NULL;
84 ftdi->readbuffer_offset = 0;
85 ftdi->readbuffer_remaining = 0;
86 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 87 ftdi->max_packet_size = 0;
948f9ada 88
545820ce
TJ
89 ftdi->interface = 0;
90 ftdi->index = 0;
91 ftdi->in_ep = 0x02;
92 ftdi->out_ep = 0x81;
418aaa72 93 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 94
a3da1d95
GE
95 ftdi->error_str = NULL;
96
c201f80f
TJ
97 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
98
1c733d33
TJ
99 /* All fine. Now allocate the readbuffer */
100 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 101}
4837f98a 102
1941414d 103/**
cef378aa
TJ
104 Allocate and initialize a new ftdi_context
105
106 \return a pointer to a new ftdi_context, or NULL on failure
107*/
672ac008 108struct ftdi_context *ftdi_new(void)
cef378aa
TJ
109{
110 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
111
22d12cda
TJ
112 if (ftdi == NULL)
113 {
cef378aa
TJ
114 return NULL;
115 }
116
22d12cda
TJ
117 if (ftdi_init(ftdi) != 0)
118 {
cef378aa 119 free(ftdi);
cdf448f6 120 return NULL;
cef378aa
TJ
121 }
122
123 return ftdi;
124}
125
126/**
1941414d
TJ
127 Open selected channels on a chip, otherwise use first channel.
128
129 \param ftdi pointer to ftdi_context
f9d69895 130 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
131
132 \retval 0: all fine
133 \retval -1: unknown interface
c4446c36 134*/
0ce2f5fa 135int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 136{
22d12cda
TJ
137 switch (interface)
138 {
139 case INTERFACE_ANY:
140 case INTERFACE_A:
141 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
142 break;
143 case INTERFACE_B:
144 ftdi->interface = 1;
145 ftdi->index = INTERFACE_B;
146 ftdi->in_ep = 0x04;
147 ftdi->out_ep = 0x83;
148 break;
f9d69895
AH
149 case INTERFACE_C:
150 ftdi->interface = 2;
151 ftdi->index = INTERFACE_C;
152 ftdi->in_ep = 0x06;
153 ftdi->out_ep = 0x85;
154 break;
155 case INTERFACE_D:
156 ftdi->interface = 3;
157 ftdi->index = INTERFACE_D;
158 ftdi->in_ep = 0x08;
159 ftdi->out_ep = 0x87;
160 break;
22d12cda
TJ
161 default:
162 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
163 }
164 return 0;
165}
948f9ada 166
1941414d
TJ
167/**
168 Deinitializes a ftdi_context.
4837f98a 169
1941414d 170 \param ftdi pointer to ftdi_context
4837f98a 171*/
a8f46ddc
TJ
172void ftdi_deinit(struct ftdi_context *ftdi)
173{
f3f81007 174 ftdi_usb_close_internal (ftdi);
dff4fdb0 175
22d12cda
TJ
176 if (ftdi->readbuffer != NULL)
177 {
d9f0cce7
TJ
178 free(ftdi->readbuffer);
179 ftdi->readbuffer = NULL;
948f9ada 180 }
a3da1d95
GE
181}
182
1941414d 183/**
cef378aa
TJ
184 Deinitialize and free an ftdi_context.
185
186 \param ftdi pointer to ftdi_context
187*/
188void ftdi_free(struct ftdi_context *ftdi)
189{
190 ftdi_deinit(ftdi);
191 free(ftdi);
192}
193
194/**
1941414d
TJ
195 Use an already open libusb device.
196
197 \param ftdi pointer to ftdi_context
579b006f 198 \param usb libusb libusb_device_handle to use
4837f98a 199*/
579b006f 200void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 201{
98452d97
TJ
202 ftdi->usb_dev = usb;
203}
204
205
1941414d
TJ
206/**
207 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
208 needs to be deallocated by ftdi_list_free() after use.
209
210 \param ftdi pointer to ftdi_context
211 \param devlist Pointer where to store list of found devices
212 \param vendor Vendor ID to search for
213 \param product Product ID to search for
edb82cbf 214
1941414d 215 \retval >0: number of devices found
1941414d 216 \retval -3: out of memory
579b006f
JZ
217 \retval -4: libusb_init() failed
218 \retval -5: libusb_get_device_list() failed
219 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 220*/
d2f10023 221int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
222{
223 struct ftdi_device_list **curdev;
579b006f
JZ
224 libusb_device *dev;
225 libusb_device **devs;
edb82cbf 226 int count = 0;
579b006f
JZ
227 int i = 0;
228
229 if (libusb_init(NULL) < 0)
230 ftdi_error_return(-4, "libusb_init() failed");
d2f10023 231
579b006f
JZ
232 if (libusb_get_device_list(NULL, &devs) < 0)
233 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
234
235 curdev = devlist;
6db32169 236 *curdev = NULL;
579b006f
JZ
237
238 while ((dev = devs[i++]) != NULL)
22d12cda 239 {
579b006f 240 struct libusb_device_descriptor desc;
d2f10023 241
579b006f
JZ
242 if (libusb_get_device_descriptor(dev, &desc) < 0)
243 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
edb82cbf 244
579b006f
JZ
245 if (desc.idVendor == vendor && desc.idProduct == product)
246 {
247 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
248 if (!*curdev)
249 ftdi_error_return(-3, "out of memory");
250
251 (*curdev)->next = NULL;
252 (*curdev)->dev = dev;
253
254 curdev = &(*curdev)->next;
255 count++;
edb82cbf
TJ
256 }
257 }
d2f10023 258
edb82cbf
TJ
259 return count;
260}
261
1941414d
TJ
262/**
263 Frees a usb device list.
edb82cbf 264
1941414d 265 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 266*/
d2f10023 267void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 268{
6db32169
TJ
269 struct ftdi_device_list *curdev, *next;
270
22d12cda
TJ
271 for (curdev = *devlist; curdev != NULL;)
272 {
6db32169
TJ
273 next = curdev->next;
274 free(curdev);
275 curdev = next;
edb82cbf
TJ
276 }
277
6db32169 278 *devlist = NULL;
edb82cbf
TJ
279}
280
1941414d 281/**
cef378aa
TJ
282 Frees a usb device list.
283
284 \param devlist USB device list created by ftdi_usb_find_all()
285*/
286void ftdi_list_free2(struct ftdi_device_list *devlist)
287{
288 ftdi_list_free(&devlist);
289}
290
291/**
474786c0
TJ
292 Return device ID strings from the usb device.
293
294 The parameters manufacturer, description and serial may be NULL
295 or pointer to buffers to store the fetched strings.
296
898c34dd
TJ
297 \note Use this function only in combination with ftdi_usb_find_all()
298 as it closes the internal "usb_dev" after use.
299
474786c0
TJ
300 \param ftdi pointer to ftdi_context
301 \param dev libusb usb_dev to use
302 \param manufacturer Store manufacturer string here if not NULL
303 \param mnf_len Buffer size of manufacturer string
304 \param description Store product description string here if not NULL
305 \param desc_len Buffer size of product description string
306 \param serial Store serial string here if not NULL
307 \param serial_len Buffer size of serial string
308
309 \retval 0: all fine
310 \retval -1: wrong arguments
311 \retval -4: unable to open device
312 \retval -7: get product manufacturer failed
313 \retval -8: get product description failed
314 \retval -9: get serial number failed
579b006f 315 \retval -11: libusb_get_device_descriptor() failed
474786c0 316*/
579b006f 317int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
22d12cda 318 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
474786c0 319{
579b006f
JZ
320 struct libusb_device_descriptor desc;
321
474786c0
TJ
322 if ((ftdi==NULL) || (dev==NULL))
323 return -1;
324
579b006f
JZ
325 if (libusb_open(dev, &ftdi->usb_dev) < 0)
326 ftdi_error_return(-4, "libusb_open() failed");
327
328 if (libusb_get_device_descriptor(dev, &desc) < 0)
329 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 330
22d12cda
TJ
331 if (manufacturer != NULL)
332 {
579b006f 333 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 334 {
f3f81007 335 ftdi_usb_close_internal (ftdi);
579b006f 336 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
337 }
338 }
339
22d12cda
TJ
340 if (description != NULL)
341 {
579b006f 342 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 343 {
f3f81007 344 ftdi_usb_close_internal (ftdi);
579b006f 345 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
346 }
347 }
348
22d12cda
TJ
349 if (serial != NULL)
350 {
579b006f 351 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 352 {
f3f81007 353 ftdi_usb_close_internal (ftdi);
579b006f 354 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
355 }
356 }
357
579b006f 358 ftdi_usb_close_internal (ftdi);
474786c0
TJ
359
360 return 0;
361}
362
363/**
e2f12a4f
TJ
364 * Internal function to determine the maximum packet size.
365 * \param ftdi pointer to ftdi_context
366 * \param dev libusb usb_dev to use
367 * \retval Maximum packet size for this device
368 */
579b006f 369static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 370{
579b006f
JZ
371 struct libusb_device_descriptor desc;
372 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
373 unsigned int packet_size;
374
375 // Determine maximum packet size. Init with default value.
376 // New hi-speed devices from FTDI use a packet size of 512 bytes
377 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
378 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
379 packet_size = 512;
380 else
381 packet_size = 64;
382
579b006f
JZ
383 if (libusb_get_device_descriptor(dev, &desc) < 0)
384 return packet_size;
385
386 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
387 return packet_size;
e2f12a4f 388
579b006f
JZ
389 if (desc.bNumConfigurations > 0)
390 {
391 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 392 {
579b006f 393 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
394 if (interface.num_altsetting > 0)
395 {
579b006f 396 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
397 if (descriptor.bNumEndpoints > 0)
398 {
399 packet_size = descriptor.endpoint[0].wMaxPacketSize;
400 }
401 }
402 }
403 }
404
579b006f 405 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
406 return packet_size;
407}
408
409/**
418aaa72 410 Opens a ftdi device given by an usb_device.
7b18bef6 411
1941414d
TJ
412 \param ftdi pointer to ftdi_context
413 \param dev libusb usb_dev to use
414
415 \retval 0: all fine
23b1798d 416 \retval -3: unable to config device
1941414d
TJ
417 \retval -4: unable to open device
418 \retval -5: unable to claim device
419 \retval -6: reset failed
420 \retval -7: set baudrate failed
579b006f
JZ
421 \retval -9: libusb_get_device_descriptor() failed
422 \retval -10: libusb_get_config_descriptor() failed
423 \retval -11: libusb_etach_kernel_driver() failed
424 \retval -12: libusb_get_configuration() failed
7b18bef6 425*/
579b006f 426int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 427{
579b006f
JZ
428 struct libusb_device_descriptor desc;
429 struct libusb_config_descriptor *config0;
430 int cfg, cfg0;
431
432 if (libusb_open(dev, &ftdi->usb_dev) < 0)
433 ftdi_error_return(-4, "libusb_open() failed");
434
435 if (libusb_get_device_descriptor(dev, &desc) < 0)
436 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
437
438 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
439 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
440 cfg0 = config0->bConfigurationValue;
441 libusb_free_config_descriptor (config0);
d2f10023
TJ
442
443#ifdef LIBUSB_HAS_GET_DRIVER_NP
22592e17
TJ
444 // Try to detach ftdi_sio kernel module.
445 // Returns ENODATA if driver is not loaded.
446 //
447 // The return code is kept in a separate variable and only parsed
448 // if usb_set_configuration() or usb_claim_interface() fails as the
449 // detach operation might be denied and everything still works fine.
450 // Likely scenario is a static ftdi_sio kernel module.
579b006f
JZ
451 ret = libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface);
452 if (ret < 0 && ret != LIBUSB_ERROR_NOT_FOUND)
453 ftdi_error_return(-11, "libusb_detach_kernel_driver () failed");
d2f10023
TJ
454#endif
455
579b006f
JZ
456 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
457 ftdi_error_return(-12, "libusb_get_configuration () failed");
458
b57aedfd
GE
459 // set configuration (needed especially for windows)
460 // tolerate EBUSY: one device with one configuration, but two interfaces
461 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 462 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 463 {
579b006f 464 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 465 {
a56ba2bd 466 ftdi_usb_close_internal (ftdi);
579b006f 467 ftdi_error_return(-3, "unable to set usb configuration. Make sure ftdi_sio is unloaded!");
23b1798d
TJ
468 }
469 }
470
579b006f 471 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 472 {
f3f81007 473 ftdi_usb_close_internal (ftdi);
579b006f 474 ftdi_error_return(-5, "unable to claim usb device. Make sure ftdi_sio is unloaded!");
7b18bef6
TJ
475 }
476
22d12cda
TJ
477 if (ftdi_usb_reset (ftdi) != 0)
478 {
f3f81007 479 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
480 ftdi_error_return(-6, "ftdi_usb_reset failed");
481 }
482
7b18bef6
TJ
483 // Try to guess chip type
484 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f
JZ
485 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
486 && desc.iSerialNumber == 0))
7b18bef6 487 ftdi->type = TYPE_BM;
579b006f 488 else if (desc.bcdDevice == 0x200)
7b18bef6 489 ftdi->type = TYPE_AM;
579b006f 490 else if (desc.bcdDevice == 0x500)
7b18bef6 491 ftdi->type = TYPE_2232C;
579b006f 492 else if (desc.bcdDevice == 0x600)
cb6250fa 493 ftdi->type = TYPE_R;
579b006f 494 else if (desc.bcdDevice == 0x700)
0beb9686 495 ftdi->type = TYPE_2232H;
579b006f 496 else if (desc.bcdDevice == 0x800)
0beb9686 497 ftdi->type = TYPE_4232H;
7b18bef6 498
f9d69895
AH
499 // Set default interface on dual/quad type chips
500 switch(ftdi->type)
501 {
502 case TYPE_2232C:
503 case TYPE_2232H:
504 case TYPE_4232H:
505 if (!ftdi->index)
506 ftdi->index = INTERFACE_A;
507 break;
508 default:
509 break;
510 }
511
e2f12a4f
TJ
512 // Determine maximum packet size
513 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
514
ef6f4838
TE
515 if (ftdi_set_baudrate (ftdi, 9600) != 0)
516 {
517 ftdi_usb_close_internal (ftdi);
518 ftdi_error_return(-7, "set baudrate failed");
519 }
520
7b18bef6
TJ
521 ftdi_error_return(0, "all fine");
522}
523
1941414d
TJ
524/**
525 Opens the first device with a given vendor and product ids.
526
527 \param ftdi pointer to ftdi_context
528 \param vendor Vendor ID
529 \param product Product ID
530
9bec2387 531 \retval same as ftdi_usb_open_desc()
1941414d 532*/
edb82cbf
TJ
533int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
534{
535 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
536}
537
1941414d
TJ
538/**
539 Opens the first device with a given, vendor id, product id,
540 description and serial.
541
542 \param ftdi pointer to ftdi_context
543 \param vendor Vendor ID
544 \param product Product ID
545 \param description Description to search for. Use NULL if not needed.
546 \param serial Serial to search for. Use NULL if not needed.
547
548 \retval 0: all fine
1941414d
TJ
549 \retval -3: usb device not found
550 \retval -4: unable to open device
551 \retval -5: unable to claim device
552 \retval -6: reset failed
553 \retval -7: set baudrate failed
554 \retval -8: get product description failed
555 \retval -9: get serial number failed
579b006f
JZ
556 \retval -11: libusb_init() failed
557 \retval -12: libusb_get_device_list() failed
558 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 559*/
04e1ea0a 560int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
561 const char* description, const char* serial)
562{
5ebbdab9
GE
563 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
564}
565
566/**
567 Opens the index-th device with a given, vendor id, product id,
568 description and serial.
569
570 \param ftdi pointer to ftdi_context
571 \param vendor Vendor ID
572 \param product Product ID
573 \param description Description to search for. Use NULL if not needed.
574 \param serial Serial to search for. Use NULL if not needed.
575 \param index Number of matching device to open if there are more than one, starts with 0.
576
577 \retval 0: all fine
578 \retval -1: usb_find_busses() failed
579 \retval -2: usb_find_devices() failed
580 \retval -3: usb device not found
581 \retval -4: unable to open device
582 \retval -5: unable to claim device
583 \retval -6: reset failed
584 \retval -7: set baudrate failed
585 \retval -8: get product description failed
586 \retval -9: get serial number failed
587 \retval -10: unable to close device
588*/
589int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
590 const char* description, const char* serial, unsigned int index)
591{
579b006f
JZ
592 libusb_device *dev;
593 libusb_device **devs;
c3d95b87 594 char string[256];
579b006f 595 int i = 0;
98452d97 596
579b006f
JZ
597 if (libusb_init(NULL) < 0)
598 ftdi_error_return(-11, "libusb_init() failed");
98452d97 599
579b006f
JZ
600 if (libusb_get_device_list(NULL, &devs) < 0)
601 ftdi_error_return(-12, "libusb_get_device_list() failed");
a3da1d95 602
579b006f 603 while ((dev = devs[i++]) != NULL)
22d12cda 604 {
579b006f
JZ
605 struct libusb_device_descriptor desc;
606
607 if (libusb_get_device_descriptor(dev, &desc) < 0)
608 ftdi_error_return(-13, "libusb_get_device_descriptor() failed");
609
610 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 611 {
579b006f
JZ
612 if (libusb_open(dev, &ftdi->usb_dev) < 0)
613 ftdi_error_return(-4, "usb_open() failed");
c3d95b87 614
579b006f
JZ
615 if (description != NULL)
616 {
617 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 618 {
579b006f
JZ
619 libusb_close (ftdi->usb_dev);
620 ftdi_error_return(-8, "unable to fetch product description");
a8f46ddc 621 }
579b006f 622 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 623 {
579b006f
JZ
624 libusb_close (ftdi->usb_dev);
625 continue;
a8f46ddc 626 }
579b006f
JZ
627 }
628 if (serial != NULL)
629 {
630 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
631 {
632 ftdi_usb_close_internal (ftdi);
633 ftdi_error_return(-9, "unable to fetch serial number");
634 }
635 if (strncmp(string, serial, sizeof(string)) != 0)
636 {
637 ftdi_usb_close_internal (ftdi);
638 continue;
639 }
640 }
98452d97 641
579b006f 642 ftdi_usb_close_internal (ftdi);
d2f10023 643
5ebbdab9
GE
644 if (index > 0)
645 {
646 index--;
647 continue;
648 }
649
579b006f 650 return ftdi_usb_open_dev(ftdi, dev);
98452d97 651 }
98452d97 652 }
a3da1d95 653
98452d97 654 // device not found
c3d95b87 655 ftdi_error_return(-3, "device not found");
a3da1d95
GE
656}
657
1941414d 658/**
5ebbdab9
GE
659 Opens the ftdi-device described by a description-string.
660 Intended to be used for parsing a device-description given as commandline argument.
661
662 \param ftdi pointer to ftdi_context
663 \param description NULL-terminated description-string, using this format:
664 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
665 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
666 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
667 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
668
669 \note The description format may be extended in later versions.
670
671 \retval 0: all fine
579b006f
JZ
672 \retval -1: libusb_init() failed
673 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
674 \retval -3: usb device not found
675 \retval -4: unable to open device
676 \retval -5: unable to claim device
677 \retval -6: reset failed
678 \retval -7: set baudrate failed
679 \retval -8: get product description failed
680 \retval -9: get serial number failed
681 \retval -10: unable to close device
682 \retval -11: illegal description format
683*/
684int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
685{
686 if (description[0] == 0 || description[1] != ':')
687 ftdi_error_return(-11, "illegal description format");
688
689 if (description[0] == 'd')
690 {
579b006f
JZ
691 libusb_device *dev;
692 libusb_device **devs;
693 unsigned int bus_number, device_address;
694 int i = 0;
695
696 if (libusb_init (NULL) < 0)
697 ftdi_error_return(-1, "libusb_init() failed");
5ebbdab9 698
579b006f
JZ
699 if (libusb_get_device_list(NULL, &devs) < 0)
700 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 701
579b006f
JZ
702 /* XXX: This doesn't handle symlinks/odd paths/etc... */
703 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
704 ftdi_error_return(-11, "illegal description format");
5ebbdab9 705
579b006f 706 while ((dev = devs[i++]) != NULL)
5ebbdab9 707 {
579b006f
JZ
708 if (bus_number == libusb_get_bus_number (dev)
709 && device_address == libusb_get_device_address (dev))
3d0099ee 710 return ftdi_usb_open_dev(ftdi, dev);
5ebbdab9
GE
711 }
712
713 // device not found
714 ftdi_error_return(-3, "device not found");
715 }
716 else if (description[0] == 'i' || description[0] == 's')
717 {
718 unsigned int vendor;
719 unsigned int product;
720 unsigned int index=0;
0e6cf62b 721 const char *serial=NULL;
5ebbdab9
GE
722 const char *startp, *endp;
723
724 errno=0;
725 startp=description+2;
726 vendor=strtoul((char*)startp,(char**)&endp,0);
727 if (*endp != ':' || endp == startp || errno != 0)
728 ftdi_error_return(-11, "illegal description format");
729
730 startp=endp+1;
731 product=strtoul((char*)startp,(char**)&endp,0);
732 if (endp == startp || errno != 0)
733 ftdi_error_return(-11, "illegal description format");
734
735 if (description[0] == 'i' && *endp != 0)
736 {
737 /* optional index field in i-mode */
738 if (*endp != ':')
739 ftdi_error_return(-11, "illegal description format");
740
741 startp=endp+1;
742 index=strtoul((char*)startp,(char**)&endp,0);
743 if (*endp != 0 || endp == startp || errno != 0)
744 ftdi_error_return(-11, "illegal description format");
745 }
746 if (description[0] == 's')
747 {
748 if (*endp != ':')
749 ftdi_error_return(-11, "illegal description format");
750
751 /* rest of the description is the serial */
752 serial=endp+1;
753 }
754
755 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
756 }
757 else
758 {
759 ftdi_error_return(-11, "illegal description format");
760 }
761}
762
763/**
1941414d 764 Resets the ftdi device.
a3da1d95 765
1941414d
TJ
766 \param ftdi pointer to ftdi_context
767
768 \retval 0: all fine
769 \retval -1: FTDI reset failed
4837f98a 770*/
edb82cbf 771int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 772{
579b006f
JZ
773 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
774 SIO_RESET_REQUEST, SIO_RESET_SIO,
775 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 776 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 777
545820ce 778 // Invalidate data in the readbuffer
bfcee05b
TJ
779 ftdi->readbuffer_offset = 0;
780 ftdi->readbuffer_remaining = 0;
781
a3da1d95
GE
782 return 0;
783}
784
1941414d 785/**
1189b11a 786 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
787
788 \param ftdi pointer to ftdi_context
4837f98a 789
1941414d 790 \retval 0: all fine
1189b11a 791 \retval -1: read buffer purge failed
4837f98a 792*/
1189b11a 793int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 794{
579b006f
JZ
795 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
796 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
797 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
798 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
799
545820ce 800 // Invalidate data in the readbuffer
bfcee05b
TJ
801 ftdi->readbuffer_offset = 0;
802 ftdi->readbuffer_remaining = 0;
a60be878 803
1189b11a
TJ
804 return 0;
805}
806
807/**
808 Clears the write buffer on the chip.
809
810 \param ftdi pointer to ftdi_context
811
812 \retval 0: all fine
813 \retval -1: write buffer purge failed
814*/
815int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
816{
579b006f
JZ
817 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
818 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
819 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
820 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
821
822 return 0;
823}
824
825/**
826 Clears the buffers on the chip and the internal read buffer.
827
828 \param ftdi pointer to ftdi_context
829
830 \retval 0: all fine
831 \retval -1: read buffer purge failed
832 \retval -2: write buffer purge failed
833*/
834int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
835{
836 int result;
837
838 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 839 if (result < 0)
1189b11a
TJ
840 return -1;
841
842 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 843 if (result < 0)
1189b11a 844 return -2;
545820ce 845
a60be878
TJ
846 return 0;
847}
a3da1d95 848
f3f81007
TJ
849
850
1941414d
TJ
851/**
852 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
853
854 \param ftdi pointer to ftdi_context
855
856 \retval 0: all fine
857 \retval -1: usb_release failed
a3da1d95 858*/
a8f46ddc
TJ
859int ftdi_usb_close(struct ftdi_context *ftdi)
860{
a3da1d95
GE
861 int rtn = 0;
862
dff4fdb0 863 if (ftdi->usb_dev != NULL)
579b006f 864 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 865 rtn = -1;
98452d97 866
579b006f 867 ftdi_usb_close_internal (ftdi);
98452d97 868
a3da1d95
GE
869 return rtn;
870}
871
418aaa72 872/**
53ad271d
TJ
873 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
874 Function is only used internally
b5ec1820 875 \internal
53ad271d 876*/
0126d22e 877static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
a8f46ddc
TJ
878 unsigned short *value, unsigned short *index)
879{
53ad271d
TJ
880 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
881 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
882 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
883 int divisor, best_divisor, best_baud, best_baud_diff;
884 unsigned long encoded_divisor;
885 int i;
886
22d12cda
TJ
887 if (baudrate <= 0)
888 {
53ad271d
TJ
889 // Return error
890 return -1;
891 }
892
893 divisor = 24000000 / baudrate;
894
22d12cda
TJ
895 if (ftdi->type == TYPE_AM)
896 {
53ad271d
TJ
897 // Round down to supported fraction (AM only)
898 divisor -= am_adjust_dn[divisor & 7];
899 }
900
901 // Try this divisor and the one above it (because division rounds down)
902 best_divisor = 0;
903 best_baud = 0;
904 best_baud_diff = 0;
22d12cda
TJ
905 for (i = 0; i < 2; i++)
906 {
53ad271d
TJ
907 int try_divisor = divisor + i;
908 int baud_estimate;
909 int baud_diff;
910
911 // Round up to supported divisor value
22d12cda
TJ
912 if (try_divisor <= 8)
913 {
53ad271d
TJ
914 // Round up to minimum supported divisor
915 try_divisor = 8;
22d12cda
TJ
916 }
917 else if (ftdi->type != TYPE_AM && try_divisor < 12)
918 {
53ad271d
TJ
919 // BM doesn't support divisors 9 through 11 inclusive
920 try_divisor = 12;
22d12cda
TJ
921 }
922 else if (divisor < 16)
923 {
53ad271d
TJ
924 // AM doesn't support divisors 9 through 15 inclusive
925 try_divisor = 16;
22d12cda
TJ
926 }
927 else
928 {
929 if (ftdi->type == TYPE_AM)
930 {
53ad271d
TJ
931 // Round up to supported fraction (AM only)
932 try_divisor += am_adjust_up[try_divisor & 7];
22d12cda
TJ
933 if (try_divisor > 0x1FFF8)
934 {
53ad271d
TJ
935 // Round down to maximum supported divisor value (for AM)
936 try_divisor = 0x1FFF8;
937 }
22d12cda
TJ
938 }
939 else
940 {
941 if (try_divisor > 0x1FFFF)
942 {
53ad271d
TJ
943 // Round down to maximum supported divisor value (for BM)
944 try_divisor = 0x1FFFF;
945 }
946 }
947 }
948 // Get estimated baud rate (to nearest integer)
949 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
950 // Get absolute difference from requested baud rate
22d12cda
TJ
951 if (baud_estimate < baudrate)
952 {
53ad271d 953 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
954 }
955 else
956 {
53ad271d
TJ
957 baud_diff = baud_estimate - baudrate;
958 }
22d12cda
TJ
959 if (i == 0 || baud_diff < best_baud_diff)
960 {
53ad271d
TJ
961 // Closest to requested baud rate so far
962 best_divisor = try_divisor;
963 best_baud = baud_estimate;
964 best_baud_diff = baud_diff;
22d12cda
TJ
965 if (baud_diff == 0)
966 {
53ad271d
TJ
967 // Spot on! No point trying
968 break;
969 }
970 }
971 }
972 // Encode the best divisor value
973 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
974 // Deal with special cases for encoded value
22d12cda
TJ
975 if (encoded_divisor == 1)
976 {
4837f98a 977 encoded_divisor = 0; // 3000000 baud
22d12cda
TJ
978 }
979 else if (encoded_divisor == 0x4001)
980 {
4837f98a 981 encoded_divisor = 1; // 2000000 baud (BM only)
53ad271d
TJ
982 }
983 // Split into "value" and "index" values
984 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1416eb14 985 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
22d12cda 986 {
0126d22e
TJ
987 *index = (unsigned short)(encoded_divisor >> 8);
988 *index &= 0xFF00;
a9c57c05 989 *index |= ftdi->index;
0126d22e
TJ
990 }
991 else
992 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 993
53ad271d
TJ
994 // Return the nearest baud rate
995 return best_baud;
996}
997
1941414d 998/**
9bec2387 999 Sets the chip baud rate
1941414d
TJ
1000
1001 \param ftdi pointer to ftdi_context
9bec2387 1002 \param baudrate baud rate to set
1941414d
TJ
1003
1004 \retval 0: all fine
1005 \retval -1: invalid baudrate
1006 \retval -2: setting baudrate failed
a3da1d95 1007*/
a8f46ddc
TJ
1008int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1009{
53ad271d
TJ
1010 unsigned short value, index;
1011 int actual_baudrate;
a3da1d95 1012
22d12cda
TJ
1013 if (ftdi->bitbang_enabled)
1014 {
a3da1d95
GE
1015 baudrate = baudrate*4;
1016 }
1017
25707904 1018 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1019 if (actual_baudrate <= 0)
1020 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1021
53ad271d
TJ
1022 // Check within tolerance (about 5%)
1023 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1024 || ((actual_baudrate < baudrate)
1025 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1026 : (baudrate * 21 < actual_baudrate * 20)))
1027 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1028
579b006f
JZ
1029 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1030 SIO_SET_BAUDRATE_REQUEST, value,
1031 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1032 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1033
1034 ftdi->baudrate = baudrate;
1035 return 0;
1036}
1037
1941414d 1038/**
6c32e222
TJ
1039 Set (RS232) line characteristics.
1040 The break type can only be set via ftdi_set_line_property2()
1041 and defaults to "off".
4837f98a 1042
1941414d
TJ
1043 \param ftdi pointer to ftdi_context
1044 \param bits Number of bits
1045 \param sbit Number of stop bits
1046 \param parity Parity mode
1047
1048 \retval 0: all fine
1049 \retval -1: Setting line property failed
2f73e59f
TJ
1050*/
1051int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1052 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1053{
6c32e222
TJ
1054 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1055}
1056
1057/**
1058 Set (RS232) line characteristics
1059
1060 \param ftdi pointer to ftdi_context
1061 \param bits Number of bits
1062 \param sbit Number of stop bits
1063 \param parity Parity mode
1064 \param break_type Break type
1065
1066 \retval 0: all fine
1067 \retval -1: Setting line property failed
1068*/
1069int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1070 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1071 enum ftdi_break_type break_type)
6c32e222 1072{
2f73e59f
TJ
1073 unsigned short value = bits;
1074
22d12cda
TJ
1075 switch (parity)
1076 {
1077 case NONE:
1078 value |= (0x00 << 8);
1079 break;
1080 case ODD:
1081 value |= (0x01 << 8);
1082 break;
1083 case EVEN:
1084 value |= (0x02 << 8);
1085 break;
1086 case MARK:
1087 value |= (0x03 << 8);
1088 break;
1089 case SPACE:
1090 value |= (0x04 << 8);
1091 break;
2f73e59f 1092 }
d2f10023 1093
22d12cda
TJ
1094 switch (sbit)
1095 {
1096 case STOP_BIT_1:
1097 value |= (0x00 << 11);
1098 break;
1099 case STOP_BIT_15:
1100 value |= (0x01 << 11);
1101 break;
1102 case STOP_BIT_2:
1103 value |= (0x02 << 11);
1104 break;
2f73e59f 1105 }
d2f10023 1106
22d12cda
TJ
1107 switch (break_type)
1108 {
1109 case BREAK_OFF:
1110 value |= (0x00 << 14);
1111 break;
1112 case BREAK_ON:
1113 value |= (0x01 << 14);
1114 break;
6c32e222
TJ
1115 }
1116
579b006f
JZ
1117 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1118 SIO_SET_DATA_REQUEST, value,
1119 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1120 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1121
2f73e59f
TJ
1122 return 0;
1123}
a3da1d95 1124
1941414d
TJ
1125/**
1126 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1127
1128 \param ftdi pointer to ftdi_context
1129 \param buf Buffer with the data
1130 \param size Size of the buffer
1131
1132 \retval <0: error code from usb_bulk_write()
1133 \retval >0: number of bytes written
1134*/
a8f46ddc
TJ
1135int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1136{
a3da1d95 1137 int offset = 0;
579b006f 1138 int actual_length;
c3d95b87 1139
22d12cda
TJ
1140 while (offset < size)
1141 {
948f9ada 1142 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1143
1144 if (offset+write_size > size)
1145 write_size = size-offset;
1146
579b006f
JZ
1147 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1148 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1149
579b006f 1150 offset += actual_length;
a3da1d95
GE
1151 }
1152
579b006f 1153 return offset;
a3da1d95
GE
1154}
1155
f01d7ca6 1156#ifdef LIBFTDI_LINUX_ASYNC_MODE
e59bc450
CW
1157#ifdef USB_CLASS_PTP
1158#error LIBFTDI_LINUX_ASYNC_MODE is not compatible with libusb-compat-0.1!
1159#endif
579b006f 1160static void ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1161{
579b006f
JZ
1162 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1163 struct ftdi_context *ftdi = tc->ftdi;
1164 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1165
579b006f
JZ
1166 // New hi-speed devices from FTDI use a packet size of 512 bytes
1167 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1168 packet_size = 512;
1169 else
1170 packet_size = 64;
1171
1172 actual_length = transfer->actual_length;
1173
1174 if (actual_length > 2)
1175 {
1176 // skip FTDI status bytes.
1177 // Maybe stored in the future to enable modem use
1178 num_of_chunks = actual_length / packet_size;
1179 chunk_remains = actual_length % packet_size;
1180 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1181
1182 ftdi->readbuffer_offset += 2;
1183 actual_length -= 2;
1184
1185 if (actual_length > packet_size - 2)
1186 {
1187 for (i = 1; i < num_of_chunks; i++)
1188 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1189 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1190 packet_size - 2);
1191 if (chunk_remains > 2)
1192 {
1193 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1194 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1195 chunk_remains-2);
1196 actual_length -= 2*num_of_chunks;
1197 }
1198 else
1199 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1200 }
1201
1202 if (actual_length > 0)
1203 {
1204 // data still fits in buf?
1205 if (tc->offset + actual_length <= tc->size)
1206 {
1207 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1208 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1209 tc->offset += actual_length;
1210
1211 ftdi->readbuffer_offset = 0;
1212 ftdi->readbuffer_remaining = 0;
1213
1214 /* Did we read exactly the right amount of bytes? */
1215 if (tc->offset == tc->size)
1216 {
1217 //printf("read_data exact rem %d offset %d\n",
1218 //ftdi->readbuffer_remaining, offset);
1219 tc->completed = 1;
1220 return;
1221 }
1222 }
1223 else
1224 {
1225 // only copy part of the data or size <= readbuffer_chunksize
1226 int part_size = tc->size - tc->offset;
1227 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1228 tc->offset += part_size;
1229
1230 ftdi->readbuffer_offset += part_size;
1231 ftdi->readbuffer_remaining = actual_length - part_size;
1232
1233 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1234 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1235 tc->completed = 1;
1236 return;
1237 }
1238 }
1239 }
1240 ret = libusb_submit_transfer (transfer);
1241 if (ret < 0)
1242 tc->completed = 1;
1243}
1244
1245
1246static void ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1247{
579b006f
JZ
1248 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1249 struct ftdi_context *ftdi = tc->ftdi;
1250
1251 tc->offset = transfer->actual_length;
7cc9950e 1252
579b006f 1253 if (tc->offset == tc->size)
22d12cda 1254 {
579b006f 1255 tc->completed = 1;
7cc9950e 1256 }
579b006f
JZ
1257 else
1258 {
1259 int write_size = ftdi->writebuffer_chunksize;
1260 int ret;
7cc9950e 1261
579b006f
JZ
1262 if (tc->offset + write_size > tc->size)
1263 write_size = tc->size - tc->offset;
1264
1265 transfer->length = write_size;
1266 transfer->buffer = tc->buf + tc->offset;
1267 ret = libusb_submit_transfer (transfer);
1268 if (ret < 0)
1269 tc->completed = 1;
1270 }
7cc9950e
GE
1271}
1272
579b006f 1273
84f85aaa 1274/**
579b006f
JZ
1275 Writes data to the chip. Does not wait for completion of the transfer
1276 nor does it make sure that the transfer was successful.
1277
1278 Use libusb 1.0 Asynchronous API.
1279 Only available if compiled with --with-async-mode.
84f85aaa
GE
1280
1281 \param ftdi pointer to ftdi_context
579b006f
JZ
1282 \param buf Buffer with the data
1283 \param size Size of the buffer
84f85aaa 1284
579b006f
JZ
1285 \retval NULL: Some error happens when submit transfer
1286 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1287*/
579b006f
JZ
1288
1289struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1290{
579b006f
JZ
1291 struct ftdi_transfer_control *tc;
1292 struct libusb_transfer *transfer = libusb_alloc_transfer(0);
1293 int write_size, ret;
22d12cda 1294
579b006f 1295 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
22d12cda 1296
579b006f
JZ
1297 if (!tc || !transfer)
1298 return NULL;
22d12cda 1299
579b006f
JZ
1300 tc->ftdi = ftdi;
1301 tc->completed = 0;
1302 tc->buf = buf;
1303 tc->size = size;
1304 tc->offset = 0;
7cc9950e 1305
579b006f
JZ
1306 if (size < ftdi->writebuffer_chunksize)
1307 write_size = size;
1308 else
1309 write_size = ftdi->writebuffer_chunksize;
22d12cda 1310
579b006f
JZ
1311 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf, write_size, ftdi_write_data_cb, tc, ftdi->usb_write_timeout);
1312 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1313
579b006f
JZ
1314 ret = libusb_submit_transfer(transfer);
1315 if (ret < 0)
1316 {
1317 libusb_free_transfer(transfer);
1318 tc->completed = 1;
1319 tc->transfer = NULL;
1320 return NULL;
7cc9950e 1321 }
579b006f
JZ
1322 tc->transfer = transfer;
1323
1324 return tc;
7cc9950e
GE
1325}
1326
1327/**
579b006f
JZ
1328 Reads data from the chip. Does not wait for completion of the transfer
1329 nor does it make sure that the transfer was successful.
1330
1331 Use libusb 1.0 Asynchronous API.
1332 Only available if compiled with --with-async-mode.
7cc9950e
GE
1333
1334 \param ftdi pointer to ftdi_context
579b006f
JZ
1335 \param buf Buffer with the data
1336 \param size Size of the buffer
4c9e3812 1337
579b006f
JZ
1338 \retval NULL: Some error happens when submit transfer
1339 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1340*/
579b006f
JZ
1341
1342struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1343{
579b006f
JZ
1344 struct ftdi_transfer_control *tc;
1345 struct libusb_transfer *transfer;
1346 int ret;
22d12cda 1347
579b006f
JZ
1348 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1349 if (!tc)
1350 return NULL;
1351
1352 tc->ftdi = ftdi;
1353 tc->buf = buf;
1354 tc->size = size;
1355
1356 if (size <= ftdi->readbuffer_remaining)
7cc9950e 1357 {
579b006f 1358 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1359
579b006f
JZ
1360 // Fix offsets
1361 ftdi->readbuffer_remaining -= size;
1362 ftdi->readbuffer_offset += size;
7cc9950e 1363
579b006f 1364 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1365
579b006f
JZ
1366 tc->completed = 1;
1367 tc->offset = size;
1368 tc->transfer = NULL;
1369 return tc;
1370 }
4c9e3812 1371
579b006f
JZ
1372 tc->completed = 0;
1373 if (ftdi->readbuffer_remaining != 0)
1374 {
1375 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1376
579b006f
JZ
1377 tc->offset = ftdi->readbuffer_remaining;
1378 }
1379 else
1380 tc->offset = 0;
22d12cda 1381
579b006f
JZ
1382 transfer = libusb_alloc_transfer(0);
1383 if (!transfer)
1384 {
1385 free (tc);
1386 return NULL;
1387 }
22d12cda 1388
579b006f
JZ
1389 ftdi->readbuffer_remaining = 0;
1390 ftdi->readbuffer_offset = 0;
1391
1392 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1393 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1394
1395 ret = libusb_submit_transfer(transfer);
1396 if (ret < 0)
1397 {
1398 libusb_free_transfer(transfer);
1399 free (tc);
1400 return NULL;
22d12cda 1401 }
579b006f
JZ
1402 tc->transfer = transfer;
1403
1404 return tc;
4c9e3812
GE
1405}
1406
1407/**
579b006f 1408 Wait for completion of the transfer.
4c9e3812 1409
579b006f 1410 Use libusb 1.0 Asynchronous API.
cef378aa 1411 Only available if compiled with --with-async-mode.
4c9e3812 1412
579b006f 1413 \param tc pointer to ftdi_transfer_control
4c9e3812 1414
579b006f
JZ
1415 \retval < 0: Some error happens
1416 \retval >= 0: Data size transferred
4c9e3812 1417*/
579b006f
JZ
1418
1419int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1420{
1421 int ret;
4c9e3812 1422
579b006f 1423 while (!tc->completed)
22d12cda 1424 {
579b006f 1425 ret = libusb_handle_events(NULL);
4c9e3812 1426 if (ret < 0)
579b006f
JZ
1427 {
1428 if (ret == LIBUSB_ERROR_INTERRUPTED)
1429 continue;
1430 libusb_cancel_transfer(tc->transfer);
1431 while (!tc->completed)
1432 if (libusb_handle_events(NULL) < 0)
1433 break;
1434 libusb_free_transfer(tc->transfer);
1435 free (tc);
1436 tc = NULL;
1437 return ret;
1438 }
4c9e3812
GE
1439 }
1440
579b006f
JZ
1441 if (tc->transfer->status == LIBUSB_TRANSFER_COMPLETED)
1442 ret = tc->offset;
1443 else
1444 ret = -1;
1445
1446 libusb_free_transfer(tc->transfer);
1447 free(tc);
1448 return ret;
4c9e3812 1449}
579b006f 1450
f01d7ca6 1451#endif // LIBFTDI_LINUX_ASYNC_MODE
4c9e3812 1452
1941414d
TJ
1453/**
1454 Configure write buffer chunk size.
1455 Default is 4096.
1456
1457 \param ftdi pointer to ftdi_context
1458 \param chunksize Chunk size
a3da1d95 1459
1941414d
TJ
1460 \retval 0: all fine
1461*/
a8f46ddc
TJ
1462int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1463{
948f9ada
TJ
1464 ftdi->writebuffer_chunksize = chunksize;
1465 return 0;
1466}
1467
1941414d
TJ
1468/**
1469 Get write buffer chunk size.
1470
1471 \param ftdi pointer to ftdi_context
1472 \param chunksize Pointer to store chunk size in
948f9ada 1473
1941414d
TJ
1474 \retval 0: all fine
1475*/
a8f46ddc
TJ
1476int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1477{
948f9ada
TJ
1478 *chunksize = ftdi->writebuffer_chunksize;
1479 return 0;
1480}
cbabb7d3 1481
1941414d
TJ
1482/**
1483 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1484
1485 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1486
1941414d
TJ
1487 \param ftdi pointer to ftdi_context
1488 \param buf Buffer to store data in
1489 \param size Size of the buffer
1490
579b006f 1491 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 1492 \retval 0: no data was available
1941414d
TJ
1493 \retval >0: number of bytes read
1494
1941414d 1495*/
a8f46ddc
TJ
1496int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1497{
579b006f 1498 int offset = 0, ret, i, num_of_chunks, chunk_remains;
e2f12a4f 1499 int packet_size = ftdi->max_packet_size;
579b006f 1500 int actual_length = 1;
f2f00cb5 1501
e2f12a4f
TJ
1502 // Packet size sanity check (avoid division by zero)
1503 if (packet_size == 0)
1504 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 1505
948f9ada 1506 // everything we want is still in the readbuffer?
22d12cda
TJ
1507 if (size <= ftdi->readbuffer_remaining)
1508 {
d9f0cce7
TJ
1509 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1510
1511 // Fix offsets
1512 ftdi->readbuffer_remaining -= size;
1513 ftdi->readbuffer_offset += size;
1514
545820ce 1515 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1516
1517 return size;
979a145c 1518 }
948f9ada 1519 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
1520 if (ftdi->readbuffer_remaining != 0)
1521 {
d9f0cce7 1522 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1523
d9f0cce7
TJ
1524 // Fix offset
1525 offset += ftdi->readbuffer_remaining;
948f9ada 1526 }
948f9ada 1527 // do the actual USB read
579b006f 1528 while (offset < size && actual_length > 0)
22d12cda 1529 {
d9f0cce7
TJ
1530 ftdi->readbuffer_remaining = 0;
1531 ftdi->readbuffer_offset = 0;
98452d97 1532 /* returns how much received */
579b006f 1533 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
1534 if (ret < 0)
1535 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1536
579b006f 1537 if (actual_length > 2)
22d12cda 1538 {
d9f0cce7
TJ
1539 // skip FTDI status bytes.
1540 // Maybe stored in the future to enable modem use
579b006f
JZ
1541 num_of_chunks = actual_length / packet_size;
1542 chunk_remains = actual_length % packet_size;
1543 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 1544
d9f0cce7 1545 ftdi->readbuffer_offset += 2;
579b006f 1546 actual_length -= 2;
1c733d33 1547
579b006f 1548 if (actual_length > packet_size - 2)
22d12cda 1549 {
1c733d33 1550 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
1551 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1552 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1553 packet_size - 2);
22d12cda
TJ
1554 if (chunk_remains > 2)
1555 {
f2f00cb5
DC
1556 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1557 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 1558 chunk_remains-2);
579b006f 1559 actual_length -= 2*num_of_chunks;
22d12cda
TJ
1560 }
1561 else
579b006f 1562 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 1563 }
22d12cda 1564 }
579b006f 1565 else if (actual_length <= 2)
22d12cda 1566 {
d9f0cce7
TJ
1567 // no more data to read?
1568 return offset;
1569 }
579b006f 1570 if (actual_length > 0)
22d12cda 1571 {
d9f0cce7 1572 // data still fits in buf?
579b006f 1573 if (offset+actual_length <= size)
22d12cda 1574 {
579b006f 1575 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 1576 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 1577 offset += actual_length;
d9f0cce7 1578
53ad271d 1579 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1580 if (offset == size)
c4446c36
TJ
1581 //printf("read_data exact rem %d offset %d\n",
1582 //ftdi->readbuffer_remaining, offset);
d9f0cce7 1583 return offset;
22d12cda
TJ
1584 }
1585 else
1586 {
d9f0cce7
TJ
1587 // only copy part of the data or size <= readbuffer_chunksize
1588 int part_size = size-offset;
1589 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1590
d9f0cce7 1591 ftdi->readbuffer_offset += part_size;
579b006f 1592 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
1593 offset += part_size;
1594
579b006f
JZ
1595 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1596 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1597
1598 return offset;
1599 }
1600 }
cbabb7d3 1601 }
948f9ada 1602 // never reached
29c4af7f 1603 return -127;
a3da1d95
GE
1604}
1605
1941414d
TJ
1606/**
1607 Configure read buffer chunk size.
1608 Default is 4096.
1609
1610 Automatically reallocates the buffer.
a3da1d95 1611
1941414d
TJ
1612 \param ftdi pointer to ftdi_context
1613 \param chunksize Chunk size
1614
1615 \retval 0: all fine
1616*/
a8f46ddc
TJ
1617int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1618{
29c4af7f
TJ
1619 unsigned char *new_buf;
1620
948f9ada
TJ
1621 // Invalidate all remaining data
1622 ftdi->readbuffer_offset = 0;
1623 ftdi->readbuffer_remaining = 0;
1624
c3d95b87
TJ
1625 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1626 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1627
948f9ada
TJ
1628 ftdi->readbuffer = new_buf;
1629 ftdi->readbuffer_chunksize = chunksize;
1630
1631 return 0;
1632}
1633
1941414d
TJ
1634/**
1635 Get read buffer chunk size.
948f9ada 1636
1941414d
TJ
1637 \param ftdi pointer to ftdi_context
1638 \param chunksize Pointer to store chunk size in
1639
1640 \retval 0: all fine
1641*/
a8f46ddc
TJ
1642int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1643{
948f9ada
TJ
1644 *chunksize = ftdi->readbuffer_chunksize;
1645 return 0;
1646}
1647
1648
1941414d
TJ
1649/**
1650 Enable bitbang mode.
948f9ada 1651
fd282db3 1652 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1941414d
TJ
1653
1654 \param ftdi pointer to ftdi_context
1655 \param bitmask Bitmask to configure lines.
1656 HIGH/ON value configures a line as output.
1657
1658 \retval 0: all fine
1659 \retval -1: can't enable bitbang mode
1660*/
a8f46ddc
TJ
1661int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1662{
a3da1d95
GE
1663 unsigned short usb_val;
1664
d9f0cce7 1665 usb_val = bitmask; // low byte: bitmask
3119537f
TJ
1666 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1667 usb_val |= (ftdi->bitbang_mode << 8);
1668
579b006f
JZ
1669 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1670 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1671 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1672 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1673
a3da1d95
GE
1674 ftdi->bitbang_enabled = 1;
1675 return 0;
1676}
1677
1941414d
TJ
1678/**
1679 Disable bitbang mode.
a3da1d95 1680
1941414d
TJ
1681 \param ftdi pointer to ftdi_context
1682
1683 \retval 0: all fine
1684 \retval -1: can't disable bitbang mode
1685*/
a8f46ddc
TJ
1686int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1687{
579b006f 1688 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1689 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1690
1691 ftdi->bitbang_enabled = 0;
1692 return 0;
1693}
1694
1941414d 1695/**
418aaa72 1696 Enable/disable bitbang modes.
a3da1d95 1697
1941414d
TJ
1698 \param ftdi pointer to ftdi_context
1699 \param bitmask Bitmask to configure lines.
1700 HIGH/ON value configures a line as output.
fd282db3 1701 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
1702
1703 \retval 0: all fine
1704 \retval -1: can't enable bitbang mode
1705*/
c4446c36
TJ
1706int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1707{
1708 unsigned short usb_val;
1709
1710 usb_val = bitmask; // low byte: bitmask
1711 usb_val |= (mode << 8);
579b006f
JZ
1712 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1713 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
c4446c36
TJ
1714
1715 ftdi->bitbang_mode = mode;
418aaa72 1716 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
c4446c36
TJ
1717 return 0;
1718}
1719
1941414d 1720/**
418aaa72 1721 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
1722
1723 \param ftdi pointer to ftdi_context
1724 \param pins Pointer to store pins into
1725
1726 \retval 0: all fine
1727 \retval -1: read pins failed
1728*/
a8f46ddc
TJ
1729int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1730{
579b006f 1731 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1732 ftdi_error_return(-1, "read pins failed");
a3da1d95 1733
a3da1d95
GE
1734 return 0;
1735}
1736
1941414d
TJ
1737/**
1738 Set latency timer
1739
1740 The FTDI chip keeps data in the internal buffer for a specific
1741 amount of time if the buffer is not full yet to decrease
1742 load on the usb bus.
a3da1d95 1743
1941414d
TJ
1744 \param ftdi pointer to ftdi_context
1745 \param latency Value between 1 and 255
1746
1747 \retval 0: all fine
1748 \retval -1: latency out of range
1749 \retval -2: unable to set latency timer
1750*/
a8f46ddc
TJ
1751int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1752{
a3da1d95
GE
1753 unsigned short usb_val;
1754
c3d95b87
TJ
1755 if (latency < 1)
1756 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 1757
d79d2e68 1758 usb_val = latency;
579b006f 1759 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1760 ftdi_error_return(-2, "unable to set latency timer");
1761
a3da1d95
GE
1762 return 0;
1763}
1764
1941414d
TJ
1765/**
1766 Get latency timer
a3da1d95 1767
1941414d
TJ
1768 \param ftdi pointer to ftdi_context
1769 \param latency Pointer to store latency value in
1770
1771 \retval 0: all fine
1772 \retval -1: unable to get latency timer
1773*/
a8f46ddc
TJ
1774int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1775{
a3da1d95 1776 unsigned short usb_val;
579b006f 1777 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1778 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
1779
1780 *latency = (unsigned char)usb_val;
1781 return 0;
1782}
1783
1941414d 1784/**
1189b11a
TJ
1785 Poll modem status information
1786
1787 This function allows the retrieve the two status bytes of the device.
1788 The device sends these bytes also as a header for each read access
1789 where they are discarded by ftdi_read_data(). The chip generates
1790 the two stripped status bytes in the absence of data every 40 ms.
1791
1792 Layout of the first byte:
1793 - B0..B3 - must be 0
1794 - B4 Clear to send (CTS)
1795 0 = inactive
1796 1 = active
1797 - B5 Data set ready (DTS)
1798 0 = inactive
1799 1 = active
1800 - B6 Ring indicator (RI)
1801 0 = inactive
1802 1 = active
1803 - B7 Receive line signal detect (RLSD)
1804 0 = inactive
1805 1 = active
1806
1807 Layout of the second byte:
1808 - B0 Data ready (DR)
1809 - B1 Overrun error (OE)
1810 - B2 Parity error (PE)
1811 - B3 Framing error (FE)
1812 - B4 Break interrupt (BI)
1813 - B5 Transmitter holding register (THRE)
1814 - B6 Transmitter empty (TEMT)
1815 - B7 Error in RCVR FIFO
1816
1817 \param ftdi pointer to ftdi_context
1818 \param status Pointer to store status information in. Must be two bytes.
1819
1820 \retval 0: all fine
1821 \retval -1: unable to retrieve status information
1822*/
1823int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1824{
1825 char usb_val[2];
1826
579b006f 1827 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
1828 ftdi_error_return(-1, "getting modem status failed");
1829
1830 *status = (usb_val[1] << 8) | usb_val[0];
1831
1832 return 0;
1833}
1834
a7fb8440
TJ
1835/**
1836 Set flowcontrol for ftdi chip
1837
1838 \param ftdi pointer to ftdi_context
22d12cda
TJ
1839 \param flowctrl flow control to use. should be
1840 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
a7fb8440
TJ
1841
1842 \retval 0: all fine
1843 \retval -1: set flow control failed
1844*/
1845int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1846{
579b006f
JZ
1847 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1848 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
1849 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
1850 ftdi_error_return(-1, "set flow control failed");
1851
1852 return 0;
1853}
1854
1855/**
1856 Set dtr line
1857
1858 \param ftdi pointer to ftdi_context
1859 \param state state to set line to (1 or 0)
1860
1861 \retval 0: all fine
1862 \retval -1: set dtr failed
1863*/
1864int ftdi_setdtr(struct ftdi_context *ftdi, int state)
1865{
1866 unsigned short usb_val;
1867
1868 if (state)
1869 usb_val = SIO_SET_DTR_HIGH;
1870 else
1871 usb_val = SIO_SET_DTR_LOW;
1872
579b006f
JZ
1873 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1874 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1875 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
1876 ftdi_error_return(-1, "set dtr failed");
1877
1878 return 0;
1879}
1880
1881/**
1882 Set rts line
1883
1884 \param ftdi pointer to ftdi_context
1885 \param state state to set line to (1 or 0)
1886
1887 \retval 0: all fine
1888 \retval -1 set rts failed
1889*/
1890int ftdi_setrts(struct ftdi_context *ftdi, int state)
1891{
1892 unsigned short usb_val;
1893
1894 if (state)
1895 usb_val = SIO_SET_RTS_HIGH;
1896 else
1897 usb_val = SIO_SET_RTS_LOW;
1898
579b006f
JZ
1899 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1900 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1901 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
1902 ftdi_error_return(-1, "set of rts failed");
1903
1904 return 0;
1905}
1906
1189b11a 1907/**
9ecfef2a
TJ
1908 Set dtr and rts line in one pass
1909
1910 \param ftdi pointer to ftdi_context
1911 \param dtr DTR state to set line to (1 or 0)
1912 \param rts RTS state to set line to (1 or 0)
1913
1914 \retval 0: all fine
1915 \retval -1 set dtr/rts failed
1916 */
1917int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
1918{
1919 unsigned short usb_val;
1920
1921 if (dtr)
22d12cda 1922 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 1923 else
22d12cda 1924 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
1925
1926 if (rts)
22d12cda 1927 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 1928 else
22d12cda 1929 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 1930
579b006f
JZ
1931 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1932 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1933 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 1934 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
1935
1936 return 0;
1937}
1938
1939/**
1189b11a
TJ
1940 Set the special event character
1941
1942 \param ftdi pointer to ftdi_context
1943 \param eventch Event character
1944 \param enable 0 to disable the event character, non-zero otherwise
1945
1946 \retval 0: all fine
1947 \retval -1: unable to set event character
1948*/
1949int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 1950 unsigned char eventch, unsigned char enable)
1189b11a
TJ
1951{
1952 unsigned short usb_val;
1953
1954 usb_val = eventch;
1955 if (enable)
1956 usb_val |= 1 << 8;
1957
579b006f 1958 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
1959 ftdi_error_return(-1, "setting event character failed");
1960
1961 return 0;
1962}
1963
1964/**
1965 Set error character
1966
1967 \param ftdi pointer to ftdi_context
1968 \param errorch Error character
1969 \param enable 0 to disable the error character, non-zero otherwise
1970
1971 \retval 0: all fine
1972 \retval -1: unable to set error character
1973*/
1974int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 1975 unsigned char errorch, unsigned char enable)
1189b11a
TJ
1976{
1977 unsigned short usb_val;
1978
1979 usb_val = errorch;
1980 if (enable)
1981 usb_val |= 1 << 8;
1982
579b006f 1983 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
1984 ftdi_error_return(-1, "setting error character failed");
1985
1986 return 0;
1987}
1988
1989/**
c201f80f
TJ
1990 Set the eeprom size
1991
1992 \param ftdi pointer to ftdi_context
1993 \param eeprom Pointer to ftdi_eeprom
1994 \param size
1995
1996*/
1997void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
1998{
22d12cda
TJ
1999 ftdi->eeprom_size=size;
2000 eeprom->size=size;
c201f80f
TJ
2001}
2002
2003/**
1941414d 2004 Init eeprom with default values.
a3da1d95 2005
1941414d
TJ
2006 \param eeprom Pointer to ftdi_eeprom
2007*/
a8f46ddc
TJ
2008void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
2009{
f396dbad
TJ
2010 eeprom->vendor_id = 0x0403;
2011 eeprom->product_id = 0x6001;
d9f0cce7 2012
b8aa7b35
TJ
2013 eeprom->self_powered = 1;
2014 eeprom->remote_wakeup = 1;
2015 eeprom->BM_type_chip = 1;
d9f0cce7 2016
b8aa7b35
TJ
2017 eeprom->in_is_isochronous = 0;
2018 eeprom->out_is_isochronous = 0;
2019 eeprom->suspend_pull_downs = 0;
d9f0cce7 2020
b8aa7b35
TJ
2021 eeprom->use_serial = 0;
2022 eeprom->change_usb_version = 0;
f396dbad 2023 eeprom->usb_version = 0x0200;
b8aa7b35 2024 eeprom->max_power = 0;
d9f0cce7 2025
b8aa7b35
TJ
2026 eeprom->manufacturer = NULL;
2027 eeprom->product = NULL;
2028 eeprom->serial = NULL;
c201f80f
TJ
2029
2030 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
b8aa7b35
TJ
2031}
2032
1941414d
TJ
2033/**
2034 Build binary output from ftdi_eeprom structure.
2035 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2036
1941414d
TJ
2037 \param eeprom Pointer to ftdi_eeprom
2038 \param output Buffer of 128 bytes to store eeprom image to
2039
2040 \retval >0: used eeprom size
2041 \retval -1: eeprom size (128 bytes) exceeded by custom strings
b8aa7b35 2042*/
a8f46ddc
TJ
2043int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
2044{
b8aa7b35
TJ
2045 unsigned char i, j;
2046 unsigned short checksum, value;
2047 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2048 int size_check;
2049
2050 if (eeprom->manufacturer != NULL)
d9f0cce7 2051 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2052 if (eeprom->product != NULL)
d9f0cce7 2053 product_size = strlen(eeprom->product);
b8aa7b35 2054 if (eeprom->serial != NULL)
d9f0cce7 2055 serial_size = strlen(eeprom->serial);
b8aa7b35 2056
c201f80f 2057 size_check = eeprom->size;
d9f0cce7 2058 size_check -= 28; // 28 are always in use (fixed)
c201f80f 2059
22d12cda 2060 // Top half of a 256byte eeprom is used just for strings and checksum
c201f80f
TJ
2061 // it seems that the FTDI chip will not read these strings from the lower half
2062 // Each string starts with two bytes; offset and type (0x03 for string)
2063 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
22d12cda 2064 if (eeprom->size>=256)size_check = 120;
b8aa7b35
TJ
2065 size_check -= manufacturer_size*2;
2066 size_check -= product_size*2;
2067 size_check -= serial_size*2;
2068
2069 // eeprom size exceeded?
2070 if (size_check < 0)
d9f0cce7 2071 return (-1);
b8aa7b35
TJ
2072
2073 // empty eeprom
c201f80f 2074 memset (output, 0, eeprom->size);
b8aa7b35
TJ
2075
2076 // Addr 00: Stay 00 00
2077 // Addr 02: Vendor ID
2078 output[0x02] = eeprom->vendor_id;
2079 output[0x03] = eeprom->vendor_id >> 8;
2080
2081 // Addr 04: Product ID
2082 output[0x04] = eeprom->product_id;
2083 output[0x05] = eeprom->product_id >> 8;
2084
2085 // Addr 06: Device release number (0400h for BM features)
2086 output[0x06] = 0x00;
d9f0cce7 2087
b8aa7b35 2088 if (eeprom->BM_type_chip == 1)
d9f0cce7 2089 output[0x07] = 0x04;
b8aa7b35 2090 else
d9f0cce7 2091 output[0x07] = 0x02;
b8aa7b35
TJ
2092
2093 // Addr 08: Config descriptor
8fae3e8e
TJ
2094 // Bit 7: always 1
2095 // Bit 6: 1 if this device is self powered, 0 if bus powered
2096 // Bit 5: 1 if this device uses remote wakeup
2097 // Bit 4: 1 if this device is battery powered
5a1dcd55 2098 j = 0x80;
b8aa7b35 2099 if (eeprom->self_powered == 1)
5a1dcd55 2100 j |= 0x40;
b8aa7b35 2101 if (eeprom->remote_wakeup == 1)
5a1dcd55 2102 j |= 0x20;
b8aa7b35
TJ
2103 output[0x08] = j;
2104
2105 // Addr 09: Max power consumption: max power = value * 2 mA
d9f0cce7 2106 output[0x09] = eeprom->max_power;
d9f0cce7 2107
b8aa7b35
TJ
2108 // Addr 0A: Chip configuration
2109 // Bit 7: 0 - reserved
2110 // Bit 6: 0 - reserved
2111 // Bit 5: 0 - reserved
2112 // Bit 4: 1 - Change USB version
2113 // Bit 3: 1 - Use the serial number string
2114 // Bit 2: 1 - Enable suspend pull downs for lower power
2115 // Bit 1: 1 - Out EndPoint is Isochronous
2116 // Bit 0: 1 - In EndPoint is Isochronous
2117 //
2118 j = 0;
2119 if (eeprom->in_is_isochronous == 1)
d9f0cce7 2120 j = j | 1;
b8aa7b35 2121 if (eeprom->out_is_isochronous == 1)
d9f0cce7 2122 j = j | 2;
b8aa7b35 2123 if (eeprom->suspend_pull_downs == 1)
d9f0cce7 2124 j = j | 4;
b8aa7b35 2125 if (eeprom->use_serial == 1)
d9f0cce7 2126 j = j | 8;
b8aa7b35 2127 if (eeprom->change_usb_version == 1)
d9f0cce7 2128 j = j | 16;
b8aa7b35 2129 output[0x0A] = j;
d9f0cce7 2130
b8aa7b35
TJ
2131 // Addr 0B: reserved
2132 output[0x0B] = 0x00;
d9f0cce7 2133
b8aa7b35
TJ
2134 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2135 // Addr 0D: USB version high byte when 0x0A bit 4 is set
22d12cda
TJ
2136 if (eeprom->change_usb_version == 1)
2137 {
b8aa7b35 2138 output[0x0C] = eeprom->usb_version;
d9f0cce7 2139 output[0x0D] = eeprom->usb_version >> 8;
b8aa7b35
TJ
2140 }
2141
2142
c201f80f 2143 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
b8aa7b35
TJ
2144 // Addr 0F: Length of manufacturer string
2145 output[0x0F] = manufacturer_size*2 + 2;
2146
2147 // Addr 10: Offset of the product string + 0x80, calculated later
2148 // Addr 11: Length of product string
2149 output[0x11] = product_size*2 + 2;
2150
2151 // Addr 12: Offset of the serial string + 0x80, calculated later
2152 // Addr 13: Length of serial string
2153 output[0x13] = serial_size*2 + 2;
2154
2155 // Dynamic content
c201f80f 2156 i=0x14;
22d12cda 2157 if (eeprom->size>=256) i = 0x80;
f01d7ca6 2158
c201f80f 2159
22d12cda 2160 // Output manufacturer
c201f80f
TJ
2161 output[0x0E] = i | 0x80; // calculate offset
2162 output[i++] = manufacturer_size*2 + 2;
2163 output[i++] = 0x03; // type: string
22d12cda
TJ
2164 for (j = 0; j < manufacturer_size; j++)
2165 {
d9f0cce7
TJ
2166 output[i] = eeprom->manufacturer[j], i++;
2167 output[i] = 0x00, i++;
b8aa7b35
TJ
2168 }
2169
2170 // Output product name
c201f80f 2171 output[0x10] = i | 0x80; // calculate offset
b8aa7b35
TJ
2172 output[i] = product_size*2 + 2, i++;
2173 output[i] = 0x03, i++;
22d12cda
TJ
2174 for (j = 0; j < product_size; j++)
2175 {
d9f0cce7
TJ
2176 output[i] = eeprom->product[j], i++;
2177 output[i] = 0x00, i++;
b8aa7b35 2178 }
d9f0cce7 2179
b8aa7b35 2180 // Output serial
c201f80f 2181 output[0x12] = i | 0x80; // calculate offset
b8aa7b35
TJ
2182 output[i] = serial_size*2 + 2, i++;
2183 output[i] = 0x03, i++;
22d12cda
TJ
2184 for (j = 0; j < serial_size; j++)
2185 {
d9f0cce7
TJ
2186 output[i] = eeprom->serial[j], i++;
2187 output[i] = 0x00, i++;
b8aa7b35
TJ
2188 }
2189
2190 // calculate checksum
2191 checksum = 0xAAAA;
d9f0cce7 2192
22d12cda
TJ
2193 for (i = 0; i < eeprom->size/2-1; i++)
2194 {
d9f0cce7
TJ
2195 value = output[i*2];
2196 value += output[(i*2)+1] << 8;
b8aa7b35 2197
d9f0cce7
TJ
2198 checksum = value^checksum;
2199 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
2200 }
2201
c201f80f
TJ
2202 output[eeprom->size-2] = checksum;
2203 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 2204
8ed61121 2205 return size_check;
b8aa7b35
TJ
2206}
2207
4af1d1bb
MK
2208/**
2209 Decode binary EEPROM image into an ftdi_eeprom structure.
2210
2211 \param eeprom Pointer to ftdi_eeprom which will be filled in.
1bbaf1ce 2212 \param buf Buffer of \a size bytes of raw eeprom data
4af1d1bb
MK
2213 \param size size size of eeprom data in bytes
2214
2215 \retval 0: all fine
2216 \retval -1: something went wrong
2217
2218 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2219 FIXME: Strings are malloc'ed here and should be freed somewhere
2220*/
49c5ac72 2221int ftdi_eeprom_decode(struct ftdi_eeprom *eeprom, unsigned char *buf, int size)
b56d5a64
MK
2222{
2223 unsigned char i, j;
2224 unsigned short checksum, eeprom_checksum, value;
2225 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
b56d5a64
MK
2226 int eeprom_size = 128;
2227#if 0
2228 size_check = eeprom->size;
2229 size_check -= 28; // 28 are always in use (fixed)
2230
22d12cda 2231 // Top half of a 256byte eeprom is used just for strings and checksum
b56d5a64
MK
2232 // it seems that the FTDI chip will not read these strings from the lower half
2233 // Each string starts with two bytes; offset and type (0x03 for string)
2234 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
22d12cda 2235 if (eeprom->size>=256)size_check = 120;
b56d5a64
MK
2236 size_check -= manufacturer_size*2;
2237 size_check -= product_size*2;
2238 size_check -= serial_size*2;
2239
2240 // eeprom size exceeded?
2241 if (size_check < 0)
2242 return (-1);
2243#endif
2244
2245 // empty eeprom struct
4af1d1bb 2246 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
b56d5a64
MK
2247
2248 // Addr 00: Stay 00 00
2249
2250 // Addr 02: Vendor ID
2251 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2252
2253 // Addr 04: Product ID
2254 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
22d12cda 2255
6335545d
TJ
2256 value = buf[0x06] + (buf[0x07]<<8);
2257 switch (value)
22d12cda
TJ
2258 {
2259 case 0x0400:
2260 eeprom->BM_type_chip = 1;
2261 break;
2262 case 0x0200:
2263 eeprom->BM_type_chip = 0;
2264 break;
2265 default: // Unknown device
2266 eeprom->BM_type_chip = 0;
2267 break;
4af1d1bb 2268 }
b56d5a64
MK
2269
2270 // Addr 08: Config descriptor
2271 // Bit 7: always 1
2272 // Bit 6: 1 if this device is self powered, 0 if bus powered
2273 // Bit 5: 1 if this device uses remote wakeup
2274 // Bit 4: 1 if this device is battery powered
2275 j = buf[0x08];
b56d5a64
MK
2276 if (j&0x40) eeprom->self_powered = 1;
2277 if (j&0x20) eeprom->remote_wakeup = 1;
2278
2279 // Addr 09: Max power consumption: max power = value * 2 mA
2280 eeprom->max_power = buf[0x09];
2281
2282 // Addr 0A: Chip configuration
2283 // Bit 7: 0 - reserved
2284 // Bit 6: 0 - reserved
2285 // Bit 5: 0 - reserved
2286 // Bit 4: 1 - Change USB version
2287 // Bit 3: 1 - Use the serial number string
2288 // Bit 2: 1 - Enable suspend pull downs for lower power
2289 // Bit 1: 1 - Out EndPoint is Isochronous
2290 // Bit 0: 1 - In EndPoint is Isochronous
2291 //
2292 j = buf[0x0A];
4af1d1bb
MK
2293 if (j&0x01) eeprom->in_is_isochronous = 1;
2294 if (j&0x02) eeprom->out_is_isochronous = 1;
2295 if (j&0x04) eeprom->suspend_pull_downs = 1;
2296 if (j&0x08) eeprom->use_serial = 1;
2297 if (j&0x10) eeprom->change_usb_version = 1;
b56d5a64 2298
4af1d1bb 2299 // Addr 0B: reserved
b56d5a64
MK
2300
2301 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2302 // Addr 0D: USB version high byte when 0x0A bit 4 is set
22d12cda
TJ
2303 if (eeprom->change_usb_version == 1)
2304 {
2305 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
b56d5a64
MK
2306 }
2307
2308 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2309 // Addr 0F: Length of manufacturer string
2310 manufacturer_size = buf[0x0F]/2;
2311 if (manufacturer_size > 0) eeprom->manufacturer = malloc(manufacturer_size);
2312 else eeprom->manufacturer = NULL;
2313
2314 // Addr 10: Offset of the product string + 0x80, calculated later
2315 // Addr 11: Length of product string
2316 product_size = buf[0x11]/2;
2317 if (product_size > 0) eeprom->product = malloc(product_size);
2318 else eeprom->product = NULL;
2319
2320 // Addr 12: Offset of the serial string + 0x80, calculated later
2321 // Addr 13: Length of serial string
2322 serial_size = buf[0x13]/2;
2323 if (serial_size > 0) eeprom->serial = malloc(serial_size);
2324 else eeprom->serial = NULL;
2325
22d12cda 2326 // Decode manufacturer
b56d5a64 2327 i = buf[0x0E] & 0x7f; // offset
22d12cda
TJ
2328 for (j=0;j<manufacturer_size-1;j++)
2329 {
2330 eeprom->manufacturer[j] = buf[2*j+i+2];
b56d5a64
MK
2331 }
2332 eeprom->manufacturer[j] = '\0';
2333
2334 // Decode product name
2335 i = buf[0x10] & 0x7f; // offset
22d12cda
TJ
2336 for (j=0;j<product_size-1;j++)
2337 {
2338 eeprom->product[j] = buf[2*j+i+2];
b56d5a64
MK
2339 }
2340 eeprom->product[j] = '\0';
2341
2342 // Decode serial
2343 i = buf[0x12] & 0x7f; // offset
22d12cda
TJ
2344 for (j=0;j<serial_size-1;j++)
2345 {
2346 eeprom->serial[j] = buf[2*j+i+2];
b56d5a64
MK
2347 }
2348 eeprom->serial[j] = '\0';
2349
2350 // verify checksum
2351 checksum = 0xAAAA;
2352
22d12cda
TJ
2353 for (i = 0; i < eeprom_size/2-1; i++)
2354 {
b56d5a64
MK
2355 value = buf[i*2];
2356 value += buf[(i*2)+1] << 8;
2357
2358 checksum = value^checksum;
2359 checksum = (checksum << 1) | (checksum >> 15);
2360 }
2361
2362 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2363
22d12cda
TJ
2364 if (eeprom_checksum != checksum)
2365 {
2366 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2367 return -1;
4af1d1bb
MK
2368 }
2369
2370 return 0;
b56d5a64
MK
2371}
2372
1941414d 2373/**
c1c70e13
OS
2374 Read eeprom location
2375
2376 \param ftdi pointer to ftdi_context
2377 \param eeprom_addr Address of eeprom location to be read
2378 \param eeprom_val Pointer to store read eeprom location
2379
2380 \retval 0: all fine
2381 \retval -1: read failed
2382*/
2383int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
2384{
579b006f 2385 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
c1c70e13
OS
2386 ftdi_error_return(-1, "reading eeprom failed");
2387
2388 return 0;
2389}
2390
2391/**
1941414d
TJ
2392 Read eeprom
2393
2394 \param ftdi pointer to ftdi_context
2395 \param eeprom Pointer to store eeprom into
b8aa7b35 2396
1941414d
TJ
2397 \retval 0: all fine
2398 \retval -1: read failed
2399*/
a8f46ddc
TJ
2400int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2401{
a3da1d95
GE
2402 int i;
2403
22d12cda
TJ
2404 for (i = 0; i < ftdi->eeprom_size/2; i++)
2405 {
579b006f 2406 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
c3d95b87 2407 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
2408 }
2409
2410 return 0;
2411}
2412
cb6250fa
TJ
2413/*
2414 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
2415 Function is only used internally
2416 \internal
2417*/
2418static unsigned char ftdi_read_chipid_shift(unsigned char value)
2419{
2420 return ((value & 1) << 1) |
22d12cda
TJ
2421 ((value & 2) << 5) |
2422 ((value & 4) >> 2) |
2423 ((value & 8) << 4) |
2424 ((value & 16) >> 1) |
2425 ((value & 32) >> 1) |
2426 ((value & 64) >> 4) |
2427 ((value & 128) >> 2);
cb6250fa
TJ
2428}
2429
2430/**
2431 Read the FTDIChip-ID from R-type devices
2432
2433 \param ftdi pointer to ftdi_context
2434 \param chipid Pointer to store FTDIChip-ID
2435
2436 \retval 0: all fine
2437 \retval -1: read failed
2438*/
2439int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
2440{
c7eb3112 2441 unsigned int a = 0, b = 0;
cb6250fa 2442
579b006f 2443 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
2444 {
2445 a = a << 8 | a >> 8;
579b006f 2446 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
2447 {
2448 b = b << 8 | b >> 8;
5230676f 2449 a = (a << 16) | (b & 0xFFFF);
912d50ca
TJ
2450 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
2451 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 2452 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 2453 return 0;
cb6250fa
TJ
2454 }
2455 }
2456
c7eb3112 2457 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
2458}
2459
1941414d 2460/**
c201f80f
TJ
2461 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
2462 Call this function then do a write then call again to see if size changes, if so write again.
2463
2464 \param ftdi pointer to ftdi_context
2465 \param eeprom Pointer to store eeprom into
2466 \param maxsize the size of the buffer to read into
2467
2468 \retval size of eeprom
2469*/
2470int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
2471{
2472 int i=0,j,minsize=32;
2473 int size=minsize;
2474
22d12cda
TJ
2475 do
2476 {
2477 for (j = 0; i < maxsize/2 && j<size; j++)
2478 {
579b006f
JZ
2479 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,
2480 SIO_READ_EEPROM_REQUEST, 0, i,
2481 eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
22d12cda
TJ
2482 ftdi_error_return(-1, "reading eeprom failed");
2483 i++;
2484 }
2485 size*=2;
2486 }
2487 while (size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
c201f80f
TJ
2488
2489 return size/2;
2490}
2491
2492/**
c1c70e13
OS
2493 Write eeprom location
2494
2495 \param ftdi pointer to ftdi_context
2496 \param eeprom_addr Address of eeprom location to be written
2497 \param eeprom_val Value to be written
2498
2499 \retval 0: all fine
2500 \retval -1: read failed
2501*/
2502int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr, unsigned short eeprom_val)
2503{
579b006f 2504 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
c1c70e13
OS
2505 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
2506 NULL, 0, ftdi->usb_write_timeout) != 0)
2507 ftdi_error_return(-1, "unable to write eeprom");
2508
2509 return 0;
2510}
2511
2512/**
1941414d 2513 Write eeprom
a3da1d95 2514
1941414d
TJ
2515 \param ftdi pointer to ftdi_context
2516 \param eeprom Pointer to read eeprom from
2517
2518 \retval 0: all fine
2519 \retval -1: read failed
2520*/
a8f46ddc
TJ
2521int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2522{
ba5329be 2523 unsigned short usb_val, status;
e30da501 2524 int i, ret;
a3da1d95 2525
ba5329be 2526 /* These commands were traced while running MProg */
e30da501
TJ
2527 if ((ret = ftdi_usb_reset(ftdi)) != 0)
2528 return ret;
2529 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
2530 return ret;
2531 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
2532 return ret;
ba5329be 2533
22d12cda
TJ
2534 for (i = 0; i < ftdi->eeprom_size/2; i++)
2535 {
d9f0cce7
TJ
2536 usb_val = eeprom[i*2];
2537 usb_val += eeprom[(i*2)+1] << 8;
579b006f
JZ
2538 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2539 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
2540 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 2541 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
2542 }
2543
2544 return 0;
2545}
2546
1941414d
TJ
2547/**
2548 Erase eeprom
a3da1d95 2549
a5e1bd8c
MK
2550 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
2551
1941414d
TJ
2552 \param ftdi pointer to ftdi_context
2553
2554 \retval 0: all fine
2555 \retval -1: erase failed
2556*/
a8f46ddc
TJ
2557int ftdi_erase_eeprom(struct ftdi_context *ftdi)
2558{
579b006f 2559 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST, 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 2560 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
2561
2562 return 0;
2563}
c3d95b87 2564
1941414d
TJ
2565/**
2566 Get string representation for last error code
c3d95b87 2567
1941414d
TJ
2568 \param ftdi pointer to ftdi_context
2569
2570 \retval Pointer to error string
2571*/
c3d95b87
TJ
2572char *ftdi_get_error_string (struct ftdi_context *ftdi)
2573{
2574 return ftdi->error_str;
2575}
a01d31e2 2576
b5ec1820 2577/* @} end of doxygen libftdi group */