gitignore: temporary swp-files created by vim
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
22a1b5c1 5 copyright : (C) 2003-2010 by Intra2net AG
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
1bfc403c 21 http://www.intra2net.com/en/developer/libftdi/
b5ec1820 22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
579b006f 31#include <libusb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
b56d5a64 34#include <stdio.h>
579b006f 35#include <stdlib.h>
0e302db6 36
98452d97 37#include "ftdi.h"
a3da1d95 38
21abaf2e 39#define ftdi_error_return(code, str) do { \
2f73e59f 40 ftdi->error_str = str; \
21abaf2e 41 return code; \
d2f10023 42 } while(0);
c3d95b87 43
99650502
UB
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
418aaa72 50
f3f81007
TJ
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
579b006f 58 \retval none
f3f81007 59*/
579b006f 60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 61{
22a1b5c1 62 if (ftdi && ftdi->usb_dev)
dff4fdb0 63 {
579b006f 64 libusb_close (ftdi->usb_dev);
dff4fdb0
NF
65 ftdi->usb_dev = NULL;
66 }
dff4fdb0 67}
c3d95b87 68
1941414d
TJ
69/**
70 Initializes a ftdi_context.
4837f98a 71
1941414d 72 \param ftdi pointer to ftdi_context
4837f98a 73
1941414d
TJ
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
76
77 \remark This should be called before all functions
948f9ada 78*/
a8f46ddc
TJ
79int ftdi_init(struct ftdi_context *ftdi)
80{
02212d8e 81 ftdi->usb_ctx = NULL;
98452d97 82 ftdi->usb_dev = NULL;
545820ce
TJ
83 ftdi->usb_read_timeout = 5000;
84 ftdi->usb_write_timeout = 5000;
a3da1d95 85
53ad271d 86 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 87 ftdi->baudrate = -1;
418aaa72 88 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 89
948f9ada
TJ
90 ftdi->readbuffer = NULL;
91 ftdi->readbuffer_offset = 0;
92 ftdi->readbuffer_remaining = 0;
93 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 94 ftdi->max_packet_size = 0;
948f9ada 95
545820ce
TJ
96 ftdi->interface = 0;
97 ftdi->index = 0;
98 ftdi->in_ep = 0x02;
99 ftdi->out_ep = 0x81;
418aaa72 100 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 101
a3da1d95
GE
102 ftdi->error_str = NULL;
103
c201f80f
TJ
104 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
105
1c733d33
TJ
106 /* All fine. Now allocate the readbuffer */
107 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 108}
4837f98a 109
1941414d 110/**
cef378aa
TJ
111 Allocate and initialize a new ftdi_context
112
113 \return a pointer to a new ftdi_context, or NULL on failure
114*/
672ac008 115struct ftdi_context *ftdi_new(void)
cef378aa
TJ
116{
117 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
118
22d12cda
TJ
119 if (ftdi == NULL)
120 {
cef378aa
TJ
121 return NULL;
122 }
123
22d12cda
TJ
124 if (ftdi_init(ftdi) != 0)
125 {
cef378aa 126 free(ftdi);
cdf448f6 127 return NULL;
cef378aa
TJ
128 }
129
130 return ftdi;
131}
132
133/**
1941414d
TJ
134 Open selected channels on a chip, otherwise use first channel.
135
136 \param ftdi pointer to ftdi_context
f9d69895 137 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
138
139 \retval 0: all fine
140 \retval -1: unknown interface
22a1b5c1 141 \retval -2: USB device unavailable
c4446c36 142*/
0ce2f5fa 143int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 144{
1971c26d 145 if (ftdi == NULL)
22a1b5c1
TJ
146 ftdi_error_return(-2, "USB device unavailable");
147
22d12cda
TJ
148 switch (interface)
149 {
150 case INTERFACE_ANY:
151 case INTERFACE_A:
152 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
153 break;
154 case INTERFACE_B:
155 ftdi->interface = 1;
156 ftdi->index = INTERFACE_B;
157 ftdi->in_ep = 0x04;
158 ftdi->out_ep = 0x83;
159 break;
f9d69895
AH
160 case INTERFACE_C:
161 ftdi->interface = 2;
162 ftdi->index = INTERFACE_C;
163 ftdi->in_ep = 0x06;
164 ftdi->out_ep = 0x85;
165 break;
166 case INTERFACE_D:
167 ftdi->interface = 3;
168 ftdi->index = INTERFACE_D;
169 ftdi->in_ep = 0x08;
170 ftdi->out_ep = 0x87;
171 break;
22d12cda
TJ
172 default:
173 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
174 }
175 return 0;
176}
948f9ada 177
1941414d
TJ
178/**
179 Deinitializes a ftdi_context.
4837f98a 180
1941414d 181 \param ftdi pointer to ftdi_context
4837f98a 182*/
a8f46ddc
TJ
183void ftdi_deinit(struct ftdi_context *ftdi)
184{
22a1b5c1
TJ
185 if (ftdi == NULL)
186 return;
187
f3f81007 188 ftdi_usb_close_internal (ftdi);
dff4fdb0 189
22d12cda
TJ
190 if (ftdi->readbuffer != NULL)
191 {
d9f0cce7
TJ
192 free(ftdi->readbuffer);
193 ftdi->readbuffer = NULL;
948f9ada 194 }
02212d8e 195 libusb_exit(ftdi->usb_ctx);
a3da1d95
GE
196}
197
1941414d 198/**
cef378aa
TJ
199 Deinitialize and free an ftdi_context.
200
201 \param ftdi pointer to ftdi_context
202*/
203void ftdi_free(struct ftdi_context *ftdi)
204{
205 ftdi_deinit(ftdi);
206 free(ftdi);
207}
208
209/**
1941414d
TJ
210 Use an already open libusb device.
211
212 \param ftdi pointer to ftdi_context
579b006f 213 \param usb libusb libusb_device_handle to use
4837f98a 214*/
579b006f 215void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 216{
22a1b5c1
TJ
217 if (ftdi == NULL)
218 return;
219
98452d97
TJ
220 ftdi->usb_dev = usb;
221}
222
223
1941414d
TJ
224/**
225 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
226 needs to be deallocated by ftdi_list_free() after use.
227
228 \param ftdi pointer to ftdi_context
229 \param devlist Pointer where to store list of found devices
230 \param vendor Vendor ID to search for
231 \param product Product ID to search for
edb82cbf 232
1941414d 233 \retval >0: number of devices found
1941414d 234 \retval -3: out of memory
579b006f
JZ
235 \retval -4: libusb_init() failed
236 \retval -5: libusb_get_device_list() failed
237 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 238*/
d2f10023 239int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
240{
241 struct ftdi_device_list **curdev;
579b006f
JZ
242 libusb_device *dev;
243 libusb_device **devs;
edb82cbf 244 int count = 0;
579b006f
JZ
245 int i = 0;
246
02212d8e 247 if (libusb_init(&ftdi->usb_ctx) < 0)
579b006f 248 ftdi_error_return(-4, "libusb_init() failed");
d2f10023 249
02212d8e 250 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 251 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
252
253 curdev = devlist;
6db32169 254 *curdev = NULL;
579b006f
JZ
255
256 while ((dev = devs[i++]) != NULL)
22d12cda 257 {
579b006f 258 struct libusb_device_descriptor desc;
d2f10023 259
579b006f
JZ
260 if (libusb_get_device_descriptor(dev, &desc) < 0)
261 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
edb82cbf 262
579b006f
JZ
263 if (desc.idVendor == vendor && desc.idProduct == product)
264 {
265 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
266 if (!*curdev)
267 ftdi_error_return(-3, "out of memory");
268
269 (*curdev)->next = NULL;
270 (*curdev)->dev = dev;
271
272 curdev = &(*curdev)->next;
273 count++;
edb82cbf
TJ
274 }
275 }
d2f10023 276
edb82cbf
TJ
277 return count;
278}
279
1941414d
TJ
280/**
281 Frees a usb device list.
edb82cbf 282
1941414d 283 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 284*/
d2f10023 285void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 286{
6db32169
TJ
287 struct ftdi_device_list *curdev, *next;
288
22d12cda
TJ
289 for (curdev = *devlist; curdev != NULL;)
290 {
6db32169
TJ
291 next = curdev->next;
292 free(curdev);
293 curdev = next;
edb82cbf
TJ
294 }
295
6db32169 296 *devlist = NULL;
edb82cbf
TJ
297}
298
1941414d 299/**
cef378aa
TJ
300 Frees a usb device list.
301
302 \param devlist USB device list created by ftdi_usb_find_all()
303*/
304void ftdi_list_free2(struct ftdi_device_list *devlist)
305{
306 ftdi_list_free(&devlist);
307}
308
309/**
474786c0
TJ
310 Return device ID strings from the usb device.
311
312 The parameters manufacturer, description and serial may be NULL
313 or pointer to buffers to store the fetched strings.
314
898c34dd
TJ
315 \note Use this function only in combination with ftdi_usb_find_all()
316 as it closes the internal "usb_dev" after use.
317
474786c0
TJ
318 \param ftdi pointer to ftdi_context
319 \param dev libusb usb_dev to use
320 \param manufacturer Store manufacturer string here if not NULL
321 \param mnf_len Buffer size of manufacturer string
322 \param description Store product description string here if not NULL
323 \param desc_len Buffer size of product description string
324 \param serial Store serial string here if not NULL
325 \param serial_len Buffer size of serial string
326
327 \retval 0: all fine
328 \retval -1: wrong arguments
329 \retval -4: unable to open device
330 \retval -7: get product manufacturer failed
331 \retval -8: get product description failed
332 \retval -9: get serial number failed
579b006f 333 \retval -11: libusb_get_device_descriptor() failed
474786c0 334*/
579b006f 335int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
22d12cda 336 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
474786c0 337{
579b006f
JZ
338 struct libusb_device_descriptor desc;
339
474786c0
TJ
340 if ((ftdi==NULL) || (dev==NULL))
341 return -1;
342
579b006f
JZ
343 if (libusb_open(dev, &ftdi->usb_dev) < 0)
344 ftdi_error_return(-4, "libusb_open() failed");
345
346 if (libusb_get_device_descriptor(dev, &desc) < 0)
347 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 348
22d12cda
TJ
349 if (manufacturer != NULL)
350 {
579b006f 351 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 352 {
f3f81007 353 ftdi_usb_close_internal (ftdi);
579b006f 354 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
355 }
356 }
357
22d12cda
TJ
358 if (description != NULL)
359 {
579b006f 360 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 361 {
f3f81007 362 ftdi_usb_close_internal (ftdi);
579b006f 363 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
364 }
365 }
366
22d12cda
TJ
367 if (serial != NULL)
368 {
579b006f 369 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 370 {
f3f81007 371 ftdi_usb_close_internal (ftdi);
579b006f 372 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
373 }
374 }
375
579b006f 376 ftdi_usb_close_internal (ftdi);
474786c0
TJ
377
378 return 0;
379}
380
381/**
e2f12a4f
TJ
382 * Internal function to determine the maximum packet size.
383 * \param ftdi pointer to ftdi_context
384 * \param dev libusb usb_dev to use
385 * \retval Maximum packet size for this device
386 */
579b006f 387static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 388{
579b006f
JZ
389 struct libusb_device_descriptor desc;
390 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
391 unsigned int packet_size;
392
22a1b5c1
TJ
393 // Sanity check
394 if (ftdi == NULL || dev == NULL)
395 return 64;
396
e2f12a4f
TJ
397 // Determine maximum packet size. Init with default value.
398 // New hi-speed devices from FTDI use a packet size of 512 bytes
399 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
400 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
401 packet_size = 512;
402 else
403 packet_size = 64;
404
579b006f
JZ
405 if (libusb_get_device_descriptor(dev, &desc) < 0)
406 return packet_size;
407
408 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
409 return packet_size;
e2f12a4f 410
579b006f
JZ
411 if (desc.bNumConfigurations > 0)
412 {
413 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 414 {
579b006f 415 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
416 if (interface.num_altsetting > 0)
417 {
579b006f 418 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
419 if (descriptor.bNumEndpoints > 0)
420 {
421 packet_size = descriptor.endpoint[0].wMaxPacketSize;
422 }
423 }
424 }
425 }
426
579b006f 427 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
428 return packet_size;
429}
430
431/**
418aaa72 432 Opens a ftdi device given by an usb_device.
7b18bef6 433
1941414d
TJ
434 \param ftdi pointer to ftdi_context
435 \param dev libusb usb_dev to use
436
437 \retval 0: all fine
23b1798d 438 \retval -3: unable to config device
1941414d
TJ
439 \retval -4: unable to open device
440 \retval -5: unable to claim device
441 \retval -6: reset failed
442 \retval -7: set baudrate failed
22a1b5c1 443 \retval -8: ftdi context invalid
579b006f
JZ
444 \retval -9: libusb_get_device_descriptor() failed
445 \retval -10: libusb_get_config_descriptor() failed
446 \retval -11: libusb_etach_kernel_driver() failed
447 \retval -12: libusb_get_configuration() failed
7b18bef6 448*/
579b006f 449int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 450{
579b006f
JZ
451 struct libusb_device_descriptor desc;
452 struct libusb_config_descriptor *config0;
43aee24f 453 int cfg, cfg0, detach_errno = 0;
579b006f 454
22a1b5c1
TJ
455 if (ftdi == NULL)
456 ftdi_error_return(-8, "ftdi context invalid");
457
579b006f
JZ
458 if (libusb_open(dev, &ftdi->usb_dev) < 0)
459 ftdi_error_return(-4, "libusb_open() failed");
460
461 if (libusb_get_device_descriptor(dev, &desc) < 0)
462 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
463
464 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
465 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
466 cfg0 = config0->bConfigurationValue;
467 libusb_free_config_descriptor (config0);
d2f10023 468
22592e17 469 // Try to detach ftdi_sio kernel module.
22592e17
TJ
470 //
471 // The return code is kept in a separate variable and only parsed
472 // if usb_set_configuration() or usb_claim_interface() fails as the
473 // detach operation might be denied and everything still works fine.
474 // Likely scenario is a static ftdi_sio kernel module.
43aee24f
UB
475 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
476 detach_errno = errno;
d2f10023 477
579b006f
JZ
478 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
479 ftdi_error_return(-12, "libusb_get_configuration () failed");
b57aedfd
GE
480 // set configuration (needed especially for windows)
481 // tolerate EBUSY: one device with one configuration, but two interfaces
482 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 483 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 484 {
579b006f 485 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 486 {
a56ba2bd 487 ftdi_usb_close_internal (ftdi);
43aee24f
UB
488 if(detach_errno == EPERM)
489 {
490 ftdi_error_return(-8, "inappropriate permissions on device!");
491 }
492 else
493 {
c16b162d 494 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
43aee24f 495 }
23b1798d
TJ
496 }
497 }
498
579b006f 499 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 500 {
f3f81007 501 ftdi_usb_close_internal (ftdi);
43aee24f
UB
502 if(detach_errno == EPERM)
503 {
504 ftdi_error_return(-8, "inappropriate permissions on device!");
505 }
506 else
507 {
c16b162d 508 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
43aee24f 509 }
7b18bef6
TJ
510 }
511
22d12cda
TJ
512 if (ftdi_usb_reset (ftdi) != 0)
513 {
f3f81007 514 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
515 ftdi_error_return(-6, "ftdi_usb_reset failed");
516 }
517
7b18bef6
TJ
518 // Try to guess chip type
519 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f
JZ
520 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
521 && desc.iSerialNumber == 0))
7b18bef6 522 ftdi->type = TYPE_BM;
579b006f 523 else if (desc.bcdDevice == 0x200)
7b18bef6 524 ftdi->type = TYPE_AM;
579b006f 525 else if (desc.bcdDevice == 0x500)
7b18bef6 526 ftdi->type = TYPE_2232C;
579b006f 527 else if (desc.bcdDevice == 0x600)
cb6250fa 528 ftdi->type = TYPE_R;
579b006f 529 else if (desc.bcdDevice == 0x700)
0beb9686 530 ftdi->type = TYPE_2232H;
579b006f 531 else if (desc.bcdDevice == 0x800)
0beb9686 532 ftdi->type = TYPE_4232H;
7b18bef6 533
f9d69895
AH
534 // Set default interface on dual/quad type chips
535 switch(ftdi->type)
536 {
537 case TYPE_2232C:
538 case TYPE_2232H:
539 case TYPE_4232H:
540 if (!ftdi->index)
541 ftdi->index = INTERFACE_A;
542 break;
543 default:
544 break;
545 }
546
e2f12a4f
TJ
547 // Determine maximum packet size
548 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
549
ef6f4838
TE
550 if (ftdi_set_baudrate (ftdi, 9600) != 0)
551 {
552 ftdi_usb_close_internal (ftdi);
553 ftdi_error_return(-7, "set baudrate failed");
554 }
555
7b18bef6
TJ
556 ftdi_error_return(0, "all fine");
557}
558
1941414d
TJ
559/**
560 Opens the first device with a given vendor and product ids.
561
562 \param ftdi pointer to ftdi_context
563 \param vendor Vendor ID
564 \param product Product ID
565
9bec2387 566 \retval same as ftdi_usb_open_desc()
1941414d 567*/
edb82cbf
TJ
568int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
569{
570 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
571}
572
1941414d
TJ
573/**
574 Opens the first device with a given, vendor id, product id,
575 description and serial.
576
577 \param ftdi pointer to ftdi_context
578 \param vendor Vendor ID
579 \param product Product ID
580 \param description Description to search for. Use NULL if not needed.
581 \param serial Serial to search for. Use NULL if not needed.
582
583 \retval 0: all fine
1941414d
TJ
584 \retval -3: usb device not found
585 \retval -4: unable to open device
586 \retval -5: unable to claim device
587 \retval -6: reset failed
588 \retval -7: set baudrate failed
589 \retval -8: get product description failed
590 \retval -9: get serial number failed
579b006f
JZ
591 \retval -11: libusb_init() failed
592 \retval -12: libusb_get_device_list() failed
593 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 594*/
04e1ea0a 595int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
596 const char* description, const char* serial)
597{
5ebbdab9
GE
598 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
599}
600
601/**
602 Opens the index-th device with a given, vendor id, product id,
603 description and serial.
604
605 \param ftdi pointer to ftdi_context
606 \param vendor Vendor ID
607 \param product Product ID
608 \param description Description to search for. Use NULL if not needed.
609 \param serial Serial to search for. Use NULL if not needed.
610 \param index Number of matching device to open if there are more than one, starts with 0.
611
612 \retval 0: all fine
613 \retval -1: usb_find_busses() failed
614 \retval -2: usb_find_devices() failed
615 \retval -3: usb device not found
616 \retval -4: unable to open device
617 \retval -5: unable to claim device
618 \retval -6: reset failed
619 \retval -7: set baudrate failed
620 \retval -8: get product description failed
621 \retval -9: get serial number failed
622 \retval -10: unable to close device
22a1b5c1 623 \retval -11: ftdi context invalid
5ebbdab9
GE
624*/
625int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
626 const char* description, const char* serial, unsigned int index)
627{
579b006f
JZ
628 libusb_device *dev;
629 libusb_device **devs;
c3d95b87 630 char string[256];
579b006f 631 int i = 0;
98452d97 632
02212d8e 633 if (libusb_init(&ftdi->usb_ctx) < 0)
579b006f 634 ftdi_error_return(-11, "libusb_init() failed");
98452d97 635
22a1b5c1
TJ
636 if (ftdi == NULL)
637 ftdi_error_return(-11, "ftdi context invalid");
638
02212d8e 639 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
99650502
UB
640 ftdi_error_return(-12, "libusb_get_device_list() failed");
641
579b006f 642 while ((dev = devs[i++]) != NULL)
22d12cda 643 {
579b006f 644 struct libusb_device_descriptor desc;
99650502 645 int res;
579b006f
JZ
646
647 if (libusb_get_device_descriptor(dev, &desc) < 0)
99650502 648 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
579b006f
JZ
649
650 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 651 {
579b006f 652 if (libusb_open(dev, &ftdi->usb_dev) < 0)
99650502 653 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
c3d95b87 654
579b006f
JZ
655 if (description != NULL)
656 {
657 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 658 {
579b006f 659 libusb_close (ftdi->usb_dev);
99650502 660 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
a8f46ddc 661 }
579b006f 662 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 663 {
579b006f
JZ
664 libusb_close (ftdi->usb_dev);
665 continue;
a8f46ddc 666 }
579b006f
JZ
667 }
668 if (serial != NULL)
669 {
670 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
671 {
672 ftdi_usb_close_internal (ftdi);
99650502 673 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
579b006f
JZ
674 }
675 if (strncmp(string, serial, sizeof(string)) != 0)
676 {
677 ftdi_usb_close_internal (ftdi);
678 continue;
679 }
680 }
98452d97 681
579b006f 682 ftdi_usb_close_internal (ftdi);
d2f10023 683
5ebbdab9
GE
684 if (index > 0)
685 {
686 index--;
687 continue;
688 }
689
99650502
UB
690 res = ftdi_usb_open_dev(ftdi, dev);
691 libusb_free_device_list(devs,1);
692 return res;
98452d97 693 }
98452d97 694 }
a3da1d95 695
98452d97 696 // device not found
99650502 697 ftdi_error_return_free_device_list(-3, "device not found", devs);
a3da1d95
GE
698}
699
1941414d 700/**
5ebbdab9
GE
701 Opens the ftdi-device described by a description-string.
702 Intended to be used for parsing a device-description given as commandline argument.
703
704 \param ftdi pointer to ftdi_context
705 \param description NULL-terminated description-string, using this format:
706 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
707 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
708 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
709 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
710
711 \note The description format may be extended in later versions.
712
713 \retval 0: all fine
579b006f
JZ
714 \retval -1: libusb_init() failed
715 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
716 \retval -3: usb device not found
717 \retval -4: unable to open device
718 \retval -5: unable to claim device
719 \retval -6: reset failed
720 \retval -7: set baudrate failed
721 \retval -8: get product description failed
722 \retval -9: get serial number failed
723 \retval -10: unable to close device
724 \retval -11: illegal description format
22a1b5c1 725 \retval -12: ftdi context invalid
5ebbdab9
GE
726*/
727int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
728{
22a1b5c1
TJ
729 if (ftdi == NULL)
730 ftdi_error_return(-12, "ftdi context invalid");
731
5ebbdab9
GE
732 if (description[0] == 0 || description[1] != ':')
733 ftdi_error_return(-11, "illegal description format");
734
735 if (description[0] == 'd')
736 {
579b006f
JZ
737 libusb_device *dev;
738 libusb_device **devs;
739 unsigned int bus_number, device_address;
740 int i = 0;
741
02212d8e 742 if (libusb_init (&ftdi->usb_ctx) < 0)
579b006f 743 ftdi_error_return(-1, "libusb_init() failed");
5ebbdab9 744
02212d8e 745 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 746 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 747
579b006f
JZ
748 /* XXX: This doesn't handle symlinks/odd paths/etc... */
749 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
99650502 750 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
5ebbdab9 751
579b006f 752 while ((dev = devs[i++]) != NULL)
5ebbdab9 753 {
99650502 754 int ret;
579b006f
JZ
755 if (bus_number == libusb_get_bus_number (dev)
756 && device_address == libusb_get_device_address (dev))
99650502
UB
757 {
758 ret = ftdi_usb_open_dev(ftdi, dev);
759 libusb_free_device_list(devs,1);
760 return ret;
761 }
5ebbdab9
GE
762 }
763
764 // device not found
99650502 765 ftdi_error_return_free_device_list(-3, "device not found", devs);
5ebbdab9
GE
766 }
767 else if (description[0] == 'i' || description[0] == 's')
768 {
769 unsigned int vendor;
770 unsigned int product;
771 unsigned int index=0;
0e6cf62b 772 const char *serial=NULL;
5ebbdab9
GE
773 const char *startp, *endp;
774
775 errno=0;
776 startp=description+2;
777 vendor=strtoul((char*)startp,(char**)&endp,0);
778 if (*endp != ':' || endp == startp || errno != 0)
779 ftdi_error_return(-11, "illegal description format");
780
781 startp=endp+1;
782 product=strtoul((char*)startp,(char**)&endp,0);
783 if (endp == startp || errno != 0)
784 ftdi_error_return(-11, "illegal description format");
785
786 if (description[0] == 'i' && *endp != 0)
787 {
788 /* optional index field in i-mode */
789 if (*endp != ':')
790 ftdi_error_return(-11, "illegal description format");
791
792 startp=endp+1;
793 index=strtoul((char*)startp,(char**)&endp,0);
794 if (*endp != 0 || endp == startp || errno != 0)
795 ftdi_error_return(-11, "illegal description format");
796 }
797 if (description[0] == 's')
798 {
799 if (*endp != ':')
800 ftdi_error_return(-11, "illegal description format");
801
802 /* rest of the description is the serial */
803 serial=endp+1;
804 }
805
806 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
807 }
808 else
809 {
810 ftdi_error_return(-11, "illegal description format");
811 }
812}
813
814/**
1941414d 815 Resets the ftdi device.
a3da1d95 816
1941414d
TJ
817 \param ftdi pointer to ftdi_context
818
819 \retval 0: all fine
820 \retval -1: FTDI reset failed
22a1b5c1 821 \retval -2: USB device unavailable
4837f98a 822*/
edb82cbf 823int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 824{
22a1b5c1
TJ
825 if (ftdi == NULL || ftdi->usb_dev == NULL)
826 ftdi_error_return(-2, "USB device unavailable");
827
579b006f
JZ
828 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
829 SIO_RESET_REQUEST, SIO_RESET_SIO,
830 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 831 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 832
545820ce 833 // Invalidate data in the readbuffer
bfcee05b
TJ
834 ftdi->readbuffer_offset = 0;
835 ftdi->readbuffer_remaining = 0;
836
a3da1d95
GE
837 return 0;
838}
839
1941414d 840/**
1189b11a 841 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
842
843 \param ftdi pointer to ftdi_context
4837f98a 844
1941414d 845 \retval 0: all fine
1189b11a 846 \retval -1: read buffer purge failed
22a1b5c1 847 \retval -2: USB device unavailable
4837f98a 848*/
1189b11a 849int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 850{
22a1b5c1
TJ
851 if (ftdi == NULL || ftdi->usb_dev == NULL)
852 ftdi_error_return(-2, "USB device unavailable");
853
579b006f
JZ
854 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
855 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
856 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
857 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
858
545820ce 859 // Invalidate data in the readbuffer
bfcee05b
TJ
860 ftdi->readbuffer_offset = 0;
861 ftdi->readbuffer_remaining = 0;
a60be878 862
1189b11a
TJ
863 return 0;
864}
865
866/**
867 Clears the write buffer on the chip.
868
869 \param ftdi pointer to ftdi_context
870
871 \retval 0: all fine
872 \retval -1: write buffer purge failed
22a1b5c1 873 \retval -2: USB device unavailable
1189b11a
TJ
874*/
875int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
876{
22a1b5c1
TJ
877 if (ftdi == NULL || ftdi->usb_dev == NULL)
878 ftdi_error_return(-2, "USB device unavailable");
879
579b006f
JZ
880 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
881 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
882 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
883 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
884
885 return 0;
886}
887
888/**
889 Clears the buffers on the chip and the internal read buffer.
890
891 \param ftdi pointer to ftdi_context
892
893 \retval 0: all fine
894 \retval -1: read buffer purge failed
895 \retval -2: write buffer purge failed
22a1b5c1 896 \retval -3: USB device unavailable
1189b11a
TJ
897*/
898int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
899{
900 int result;
901
22a1b5c1
TJ
902 if (ftdi == NULL || ftdi->usb_dev == NULL)
903 ftdi_error_return(-3, "USB device unavailable");
904
1189b11a 905 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 906 if (result < 0)
1189b11a
TJ
907 return -1;
908
909 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 910 if (result < 0)
1189b11a 911 return -2;
545820ce 912
a60be878
TJ
913 return 0;
914}
a3da1d95 915
f3f81007
TJ
916
917
1941414d
TJ
918/**
919 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
920
921 \param ftdi pointer to ftdi_context
922
923 \retval 0: all fine
924 \retval -1: usb_release failed
22a1b5c1 925 \retval -3: ftdi context invalid
a3da1d95 926*/
a8f46ddc
TJ
927int ftdi_usb_close(struct ftdi_context *ftdi)
928{
a3da1d95
GE
929 int rtn = 0;
930
22a1b5c1
TJ
931 if (ftdi == NULL)
932 ftdi_error_return(-3, "ftdi context invalid");
933
dff4fdb0 934 if (ftdi->usb_dev != NULL)
579b006f 935 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 936 rtn = -1;
98452d97 937
579b006f 938 ftdi_usb_close_internal (ftdi);
98452d97 939
a3da1d95
GE
940 return rtn;
941}
942
418aaa72 943/**
53ad271d
TJ
944 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
945 Function is only used internally
b5ec1820 946 \internal
53ad271d 947*/
0126d22e 948static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
a8f46ddc
TJ
949 unsigned short *value, unsigned short *index)
950{
53ad271d
TJ
951 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
952 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
953 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
954 int divisor, best_divisor, best_baud, best_baud_diff;
955 unsigned long encoded_divisor;
956 int i;
957
22d12cda
TJ
958 if (baudrate <= 0)
959 {
53ad271d
TJ
960 // Return error
961 return -1;
962 }
963
964 divisor = 24000000 / baudrate;
965
22d12cda
TJ
966 if (ftdi->type == TYPE_AM)
967 {
53ad271d
TJ
968 // Round down to supported fraction (AM only)
969 divisor -= am_adjust_dn[divisor & 7];
970 }
971
972 // Try this divisor and the one above it (because division rounds down)
973 best_divisor = 0;
974 best_baud = 0;
975 best_baud_diff = 0;
22d12cda
TJ
976 for (i = 0; i < 2; i++)
977 {
53ad271d
TJ
978 int try_divisor = divisor + i;
979 int baud_estimate;
980 int baud_diff;
981
982 // Round up to supported divisor value
22d12cda
TJ
983 if (try_divisor <= 8)
984 {
53ad271d
TJ
985 // Round up to minimum supported divisor
986 try_divisor = 8;
22d12cda
TJ
987 }
988 else if (ftdi->type != TYPE_AM && try_divisor < 12)
989 {
53ad271d
TJ
990 // BM doesn't support divisors 9 through 11 inclusive
991 try_divisor = 12;
22d12cda
TJ
992 }
993 else if (divisor < 16)
994 {
53ad271d
TJ
995 // AM doesn't support divisors 9 through 15 inclusive
996 try_divisor = 16;
22d12cda
TJ
997 }
998 else
999 {
1000 if (ftdi->type == TYPE_AM)
1001 {
53ad271d
TJ
1002 // Round up to supported fraction (AM only)
1003 try_divisor += am_adjust_up[try_divisor & 7];
22d12cda
TJ
1004 if (try_divisor > 0x1FFF8)
1005 {
53ad271d
TJ
1006 // Round down to maximum supported divisor value (for AM)
1007 try_divisor = 0x1FFF8;
1008 }
22d12cda
TJ
1009 }
1010 else
1011 {
1012 if (try_divisor > 0x1FFFF)
1013 {
53ad271d
TJ
1014 // Round down to maximum supported divisor value (for BM)
1015 try_divisor = 0x1FFFF;
1016 }
1017 }
1018 }
1019 // Get estimated baud rate (to nearest integer)
1020 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1021 // Get absolute difference from requested baud rate
22d12cda
TJ
1022 if (baud_estimate < baudrate)
1023 {
53ad271d 1024 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
1025 }
1026 else
1027 {
53ad271d
TJ
1028 baud_diff = baud_estimate - baudrate;
1029 }
22d12cda
TJ
1030 if (i == 0 || baud_diff < best_baud_diff)
1031 {
53ad271d
TJ
1032 // Closest to requested baud rate so far
1033 best_divisor = try_divisor;
1034 best_baud = baud_estimate;
1035 best_baud_diff = baud_diff;
22d12cda
TJ
1036 if (baud_diff == 0)
1037 {
53ad271d
TJ
1038 // Spot on! No point trying
1039 break;
1040 }
1041 }
1042 }
1043 // Encode the best divisor value
1044 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1045 // Deal with special cases for encoded value
22d12cda
TJ
1046 if (encoded_divisor == 1)
1047 {
4837f98a 1048 encoded_divisor = 0; // 3000000 baud
22d12cda
TJ
1049 }
1050 else if (encoded_divisor == 0x4001)
1051 {
4837f98a 1052 encoded_divisor = 1; // 2000000 baud (BM only)
53ad271d
TJ
1053 }
1054 // Split into "value" and "index" values
1055 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1416eb14 1056 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
22d12cda 1057 {
0126d22e
TJ
1058 *index = (unsigned short)(encoded_divisor >> 8);
1059 *index &= 0xFF00;
a9c57c05 1060 *index |= ftdi->index;
0126d22e
TJ
1061 }
1062 else
1063 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 1064
53ad271d
TJ
1065 // Return the nearest baud rate
1066 return best_baud;
1067}
1068
1941414d 1069/**
9bec2387 1070 Sets the chip baud rate
1941414d
TJ
1071
1072 \param ftdi pointer to ftdi_context
9bec2387 1073 \param baudrate baud rate to set
1941414d
TJ
1074
1075 \retval 0: all fine
1076 \retval -1: invalid baudrate
1077 \retval -2: setting baudrate failed
22a1b5c1 1078 \retval -3: USB device unavailable
a3da1d95 1079*/
a8f46ddc
TJ
1080int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1081{
53ad271d
TJ
1082 unsigned short value, index;
1083 int actual_baudrate;
a3da1d95 1084
22a1b5c1
TJ
1085 if (ftdi == NULL || ftdi->usb_dev == NULL)
1086 ftdi_error_return(-3, "USB device unavailable");
1087
22d12cda
TJ
1088 if (ftdi->bitbang_enabled)
1089 {
a3da1d95
GE
1090 baudrate = baudrate*4;
1091 }
1092
25707904 1093 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1094 if (actual_baudrate <= 0)
1095 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1096
53ad271d
TJ
1097 // Check within tolerance (about 5%)
1098 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1099 || ((actual_baudrate < baudrate)
1100 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1101 : (baudrate * 21 < actual_baudrate * 20)))
1102 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1103
579b006f
JZ
1104 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1105 SIO_SET_BAUDRATE_REQUEST, value,
1106 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1107 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1108
1109 ftdi->baudrate = baudrate;
1110 return 0;
1111}
1112
1941414d 1113/**
6c32e222
TJ
1114 Set (RS232) line characteristics.
1115 The break type can only be set via ftdi_set_line_property2()
1116 and defaults to "off".
4837f98a 1117
1941414d
TJ
1118 \param ftdi pointer to ftdi_context
1119 \param bits Number of bits
1120 \param sbit Number of stop bits
1121 \param parity Parity mode
1122
1123 \retval 0: all fine
1124 \retval -1: Setting line property failed
2f73e59f
TJ
1125*/
1126int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1127 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1128{
6c32e222
TJ
1129 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1130}
1131
1132/**
1133 Set (RS232) line characteristics
1134
1135 \param ftdi pointer to ftdi_context
1136 \param bits Number of bits
1137 \param sbit Number of stop bits
1138 \param parity Parity mode
1139 \param break_type Break type
1140
1141 \retval 0: all fine
1142 \retval -1: Setting line property failed
22a1b5c1 1143 \retval -2: USB device unavailable
6c32e222
TJ
1144*/
1145int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1146 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1147 enum ftdi_break_type break_type)
6c32e222 1148{
2f73e59f
TJ
1149 unsigned short value = bits;
1150
22a1b5c1
TJ
1151 if (ftdi == NULL || ftdi->usb_dev == NULL)
1152 ftdi_error_return(-2, "USB device unavailable");
1153
22d12cda
TJ
1154 switch (parity)
1155 {
1156 case NONE:
1157 value |= (0x00 << 8);
1158 break;
1159 case ODD:
1160 value |= (0x01 << 8);
1161 break;
1162 case EVEN:
1163 value |= (0x02 << 8);
1164 break;
1165 case MARK:
1166 value |= (0x03 << 8);
1167 break;
1168 case SPACE:
1169 value |= (0x04 << 8);
1170 break;
2f73e59f 1171 }
d2f10023 1172
22d12cda
TJ
1173 switch (sbit)
1174 {
1175 case STOP_BIT_1:
1176 value |= (0x00 << 11);
1177 break;
1178 case STOP_BIT_15:
1179 value |= (0x01 << 11);
1180 break;
1181 case STOP_BIT_2:
1182 value |= (0x02 << 11);
1183 break;
2f73e59f 1184 }
d2f10023 1185
22d12cda
TJ
1186 switch (break_type)
1187 {
1188 case BREAK_OFF:
1189 value |= (0x00 << 14);
1190 break;
1191 case BREAK_ON:
1192 value |= (0x01 << 14);
1193 break;
6c32e222
TJ
1194 }
1195
579b006f
JZ
1196 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1197 SIO_SET_DATA_REQUEST, value,
1198 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1199 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1200
2f73e59f
TJ
1201 return 0;
1202}
a3da1d95 1203
1941414d
TJ
1204/**
1205 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1206
1207 \param ftdi pointer to ftdi_context
1208 \param buf Buffer with the data
1209 \param size Size of the buffer
1210
22a1b5c1 1211 \retval -666: USB device unavailable
1941414d
TJ
1212 \retval <0: error code from usb_bulk_write()
1213 \retval >0: number of bytes written
1214*/
a8f46ddc
TJ
1215int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1216{
a3da1d95 1217 int offset = 0;
579b006f 1218 int actual_length;
c3d95b87 1219
22a1b5c1
TJ
1220 if (ftdi == NULL || ftdi->usb_dev == NULL)
1221 ftdi_error_return(-666, "USB device unavailable");
1222
22d12cda
TJ
1223 while (offset < size)
1224 {
948f9ada 1225 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1226
1227 if (offset+write_size > size)
1228 write_size = size-offset;
1229
579b006f
JZ
1230 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1231 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1232
579b006f 1233 offset += actual_length;
a3da1d95
GE
1234 }
1235
579b006f 1236 return offset;
a3da1d95
GE
1237}
1238
579b006f 1239static void ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1240{
579b006f
JZ
1241 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1242 struct ftdi_context *ftdi = tc->ftdi;
1243 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1244
b1139150 1245 packet_size = ftdi->max_packet_size;
579b006f
JZ
1246
1247 actual_length = transfer->actual_length;
1248
1249 if (actual_length > 2)
1250 {
1251 // skip FTDI status bytes.
1252 // Maybe stored in the future to enable modem use
1253 num_of_chunks = actual_length / packet_size;
1254 chunk_remains = actual_length % packet_size;
1255 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1256
1257 ftdi->readbuffer_offset += 2;
1258 actual_length -= 2;
1259
1260 if (actual_length > packet_size - 2)
1261 {
1262 for (i = 1; i < num_of_chunks; i++)
1263 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1264 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1265 packet_size - 2);
1266 if (chunk_remains > 2)
1267 {
1268 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1269 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1270 chunk_remains-2);
1271 actual_length -= 2*num_of_chunks;
1272 }
1273 else
1274 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1275 }
1276
1277 if (actual_length > 0)
1278 {
1279 // data still fits in buf?
1280 if (tc->offset + actual_length <= tc->size)
1281 {
1282 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1283 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1284 tc->offset += actual_length;
1285
1286 ftdi->readbuffer_offset = 0;
1287 ftdi->readbuffer_remaining = 0;
1288
1289 /* Did we read exactly the right amount of bytes? */
1290 if (tc->offset == tc->size)
1291 {
1292 //printf("read_data exact rem %d offset %d\n",
1293 //ftdi->readbuffer_remaining, offset);
1294 tc->completed = 1;
1295 return;
1296 }
1297 }
1298 else
1299 {
1300 // only copy part of the data or size <= readbuffer_chunksize
1301 int part_size = tc->size - tc->offset;
1302 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1303 tc->offset += part_size;
1304
1305 ftdi->readbuffer_offset += part_size;
1306 ftdi->readbuffer_remaining = actual_length - part_size;
1307
1308 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1309 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1310 tc->completed = 1;
1311 return;
1312 }
1313 }
1314 }
1315 ret = libusb_submit_transfer (transfer);
1316 if (ret < 0)
1317 tc->completed = 1;
1318}
1319
1320
1321static void ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1322{
579b006f
JZ
1323 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1324 struct ftdi_context *ftdi = tc->ftdi;
1325
1326 tc->offset = transfer->actual_length;
7cc9950e 1327
579b006f 1328 if (tc->offset == tc->size)
22d12cda 1329 {
579b006f 1330 tc->completed = 1;
7cc9950e 1331 }
579b006f
JZ
1332 else
1333 {
1334 int write_size = ftdi->writebuffer_chunksize;
1335 int ret;
7cc9950e 1336
579b006f
JZ
1337 if (tc->offset + write_size > tc->size)
1338 write_size = tc->size - tc->offset;
1339
1340 transfer->length = write_size;
1341 transfer->buffer = tc->buf + tc->offset;
1342 ret = libusb_submit_transfer (transfer);
1343 if (ret < 0)
1344 tc->completed = 1;
1345 }
7cc9950e
GE
1346}
1347
579b006f 1348
84f85aaa 1349/**
579b006f
JZ
1350 Writes data to the chip. Does not wait for completion of the transfer
1351 nor does it make sure that the transfer was successful.
1352
249888c8 1353 Use libusb 1.0 asynchronous API.
84f85aaa
GE
1354
1355 \param ftdi pointer to ftdi_context
579b006f
JZ
1356 \param buf Buffer with the data
1357 \param size Size of the buffer
84f85aaa 1358
579b006f
JZ
1359 \retval NULL: Some error happens when submit transfer
1360 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1361*/
579b006f
JZ
1362
1363struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1364{
579b006f
JZ
1365 struct ftdi_transfer_control *tc;
1366 struct libusb_transfer *transfer = libusb_alloc_transfer(0);
1367 int write_size, ret;
22d12cda 1368
22a1b5c1
TJ
1369 if (ftdi == NULL || ftdi->usb_dev == NULL)
1370 {
1371 libusb_free_transfer(transfer);
1372 return NULL;
1373 }
1374
579b006f 1375 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
22d12cda 1376
579b006f
JZ
1377 if (!tc || !transfer)
1378 return NULL;
22d12cda 1379
579b006f
JZ
1380 tc->ftdi = ftdi;
1381 tc->completed = 0;
1382 tc->buf = buf;
1383 tc->size = size;
1384 tc->offset = 0;
7cc9950e 1385
579b006f
JZ
1386 if (size < ftdi->writebuffer_chunksize)
1387 write_size = size;
1388 else
1389 write_size = ftdi->writebuffer_chunksize;
22d12cda 1390
579b006f
JZ
1391 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf, write_size, ftdi_write_data_cb, tc, ftdi->usb_write_timeout);
1392 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1393
579b006f
JZ
1394 ret = libusb_submit_transfer(transfer);
1395 if (ret < 0)
1396 {
1397 libusb_free_transfer(transfer);
1398 tc->completed = 1;
1399 tc->transfer = NULL;
1400 return NULL;
7cc9950e 1401 }
579b006f
JZ
1402 tc->transfer = transfer;
1403
1404 return tc;
7cc9950e
GE
1405}
1406
1407/**
579b006f
JZ
1408 Reads data from the chip. Does not wait for completion of the transfer
1409 nor does it make sure that the transfer was successful.
1410
249888c8 1411 Use libusb 1.0 asynchronous API.
7cc9950e
GE
1412
1413 \param ftdi pointer to ftdi_context
579b006f
JZ
1414 \param buf Buffer with the data
1415 \param size Size of the buffer
4c9e3812 1416
579b006f
JZ
1417 \retval NULL: Some error happens when submit transfer
1418 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1419*/
579b006f
JZ
1420
1421struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1422{
579b006f
JZ
1423 struct ftdi_transfer_control *tc;
1424 struct libusb_transfer *transfer;
1425 int ret;
22d12cda 1426
22a1b5c1
TJ
1427 if (ftdi == NULL || ftdi->usb_dev == NULL)
1428 return NULL;
1429
579b006f
JZ
1430 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1431 if (!tc)
1432 return NULL;
1433
1434 tc->ftdi = ftdi;
1435 tc->buf = buf;
1436 tc->size = size;
1437
1438 if (size <= ftdi->readbuffer_remaining)
7cc9950e 1439 {
579b006f 1440 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1441
579b006f
JZ
1442 // Fix offsets
1443 ftdi->readbuffer_remaining -= size;
1444 ftdi->readbuffer_offset += size;
7cc9950e 1445
579b006f 1446 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1447
579b006f
JZ
1448 tc->completed = 1;
1449 tc->offset = size;
1450 tc->transfer = NULL;
1451 return tc;
1452 }
4c9e3812 1453
579b006f
JZ
1454 tc->completed = 0;
1455 if (ftdi->readbuffer_remaining != 0)
1456 {
1457 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1458
579b006f
JZ
1459 tc->offset = ftdi->readbuffer_remaining;
1460 }
1461 else
1462 tc->offset = 0;
22d12cda 1463
579b006f
JZ
1464 transfer = libusb_alloc_transfer(0);
1465 if (!transfer)
1466 {
1467 free (tc);
1468 return NULL;
1469 }
22d12cda 1470
579b006f
JZ
1471 ftdi->readbuffer_remaining = 0;
1472 ftdi->readbuffer_offset = 0;
1473
1474 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1475 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1476
1477 ret = libusb_submit_transfer(transfer);
1478 if (ret < 0)
1479 {
1480 libusb_free_transfer(transfer);
1481 free (tc);
1482 return NULL;
22d12cda 1483 }
579b006f
JZ
1484 tc->transfer = transfer;
1485
1486 return tc;
4c9e3812
GE
1487}
1488
1489/**
579b006f 1490 Wait for completion of the transfer.
4c9e3812 1491
249888c8 1492 Use libusb 1.0 asynchronous API.
4c9e3812 1493
579b006f 1494 \param tc pointer to ftdi_transfer_control
4c9e3812 1495
579b006f
JZ
1496 \retval < 0: Some error happens
1497 \retval >= 0: Data size transferred
4c9e3812 1498*/
579b006f
JZ
1499
1500int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1501{
1502 int ret;
4c9e3812 1503
579b006f 1504 while (!tc->completed)
22d12cda 1505 {
29b1dfd9 1506 ret = libusb_handle_events(tc->ftdi->usb_ctx);
4c9e3812 1507 if (ret < 0)
579b006f
JZ
1508 {
1509 if (ret == LIBUSB_ERROR_INTERRUPTED)
1510 continue;
1511 libusb_cancel_transfer(tc->transfer);
1512 while (!tc->completed)
29b1dfd9 1513 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
579b006f
JZ
1514 break;
1515 libusb_free_transfer(tc->transfer);
1516 free (tc);
1517 tc = NULL;
1518 return ret;
1519 }
4c9e3812
GE
1520 }
1521
579b006f
JZ
1522 if (tc->transfer->status == LIBUSB_TRANSFER_COMPLETED)
1523 ret = tc->offset;
1524 else
1525 ret = -1;
1526
1527 libusb_free_transfer(tc->transfer);
1528 free(tc);
1529 return ret;
4c9e3812 1530}
579b006f 1531
1941414d
TJ
1532/**
1533 Configure write buffer chunk size.
1534 Default is 4096.
1535
1536 \param ftdi pointer to ftdi_context
1537 \param chunksize Chunk size
a3da1d95 1538
1941414d 1539 \retval 0: all fine
22a1b5c1 1540 \retval -1: ftdi context invalid
1941414d 1541*/
a8f46ddc
TJ
1542int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1543{
22a1b5c1
TJ
1544 if (ftdi == NULL)
1545 ftdi_error_return(-1, "ftdi context invalid");
1546
948f9ada
TJ
1547 ftdi->writebuffer_chunksize = chunksize;
1548 return 0;
1549}
1550
1941414d
TJ
1551/**
1552 Get write buffer chunk size.
1553
1554 \param ftdi pointer to ftdi_context
1555 \param chunksize Pointer to store chunk size in
948f9ada 1556
1941414d 1557 \retval 0: all fine
22a1b5c1 1558 \retval -1: ftdi context invalid
1941414d 1559*/
a8f46ddc
TJ
1560int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1561{
22a1b5c1
TJ
1562 if (ftdi == NULL)
1563 ftdi_error_return(-1, "ftdi context invalid");
1564
948f9ada
TJ
1565 *chunksize = ftdi->writebuffer_chunksize;
1566 return 0;
1567}
cbabb7d3 1568
1941414d
TJ
1569/**
1570 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1571
1572 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1573
1941414d
TJ
1574 \param ftdi pointer to ftdi_context
1575 \param buf Buffer to store data in
1576 \param size Size of the buffer
1577
22a1b5c1 1578 \retval -666: USB device unavailable
579b006f 1579 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 1580 \retval 0: no data was available
1941414d
TJ
1581 \retval >0: number of bytes read
1582
1941414d 1583*/
a8f46ddc
TJ
1584int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1585{
579b006f 1586 int offset = 0, ret, i, num_of_chunks, chunk_remains;
e2f12a4f 1587 int packet_size = ftdi->max_packet_size;
579b006f 1588 int actual_length = 1;
f2f00cb5 1589
22a1b5c1
TJ
1590 if (ftdi == NULL || ftdi->usb_dev == NULL)
1591 ftdi_error_return(-666, "USB device unavailable");
1592
e2f12a4f
TJ
1593 // Packet size sanity check (avoid division by zero)
1594 if (packet_size == 0)
1595 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 1596
948f9ada 1597 // everything we want is still in the readbuffer?
22d12cda
TJ
1598 if (size <= ftdi->readbuffer_remaining)
1599 {
d9f0cce7
TJ
1600 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1601
1602 // Fix offsets
1603 ftdi->readbuffer_remaining -= size;
1604 ftdi->readbuffer_offset += size;
1605
545820ce 1606 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1607
1608 return size;
979a145c 1609 }
948f9ada 1610 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
1611 if (ftdi->readbuffer_remaining != 0)
1612 {
d9f0cce7 1613 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1614
d9f0cce7
TJ
1615 // Fix offset
1616 offset += ftdi->readbuffer_remaining;
948f9ada 1617 }
948f9ada 1618 // do the actual USB read
579b006f 1619 while (offset < size && actual_length > 0)
22d12cda 1620 {
d9f0cce7
TJ
1621 ftdi->readbuffer_remaining = 0;
1622 ftdi->readbuffer_offset = 0;
98452d97 1623 /* returns how much received */
579b006f 1624 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
1625 if (ret < 0)
1626 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1627
579b006f 1628 if (actual_length > 2)
22d12cda 1629 {
d9f0cce7
TJ
1630 // skip FTDI status bytes.
1631 // Maybe stored in the future to enable modem use
579b006f
JZ
1632 num_of_chunks = actual_length / packet_size;
1633 chunk_remains = actual_length % packet_size;
1634 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 1635
d9f0cce7 1636 ftdi->readbuffer_offset += 2;
579b006f 1637 actual_length -= 2;
1c733d33 1638
579b006f 1639 if (actual_length > packet_size - 2)
22d12cda 1640 {
1c733d33 1641 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
1642 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1643 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1644 packet_size - 2);
22d12cda
TJ
1645 if (chunk_remains > 2)
1646 {
f2f00cb5
DC
1647 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1648 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 1649 chunk_remains-2);
579b006f 1650 actual_length -= 2*num_of_chunks;
22d12cda
TJ
1651 }
1652 else
579b006f 1653 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 1654 }
22d12cda 1655 }
579b006f 1656 else if (actual_length <= 2)
22d12cda 1657 {
d9f0cce7
TJ
1658 // no more data to read?
1659 return offset;
1660 }
579b006f 1661 if (actual_length > 0)
22d12cda 1662 {
d9f0cce7 1663 // data still fits in buf?
579b006f 1664 if (offset+actual_length <= size)
22d12cda 1665 {
579b006f 1666 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 1667 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 1668 offset += actual_length;
d9f0cce7 1669
53ad271d 1670 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1671 if (offset == size)
c4446c36
TJ
1672 //printf("read_data exact rem %d offset %d\n",
1673 //ftdi->readbuffer_remaining, offset);
d9f0cce7 1674 return offset;
22d12cda
TJ
1675 }
1676 else
1677 {
d9f0cce7
TJ
1678 // only copy part of the data or size <= readbuffer_chunksize
1679 int part_size = size-offset;
1680 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1681
d9f0cce7 1682 ftdi->readbuffer_offset += part_size;
579b006f 1683 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
1684 offset += part_size;
1685
579b006f
JZ
1686 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1687 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1688
1689 return offset;
1690 }
1691 }
cbabb7d3 1692 }
948f9ada 1693 // never reached
29c4af7f 1694 return -127;
a3da1d95
GE
1695}
1696
1941414d
TJ
1697/**
1698 Configure read buffer chunk size.
1699 Default is 4096.
1700
1701 Automatically reallocates the buffer.
a3da1d95 1702
1941414d
TJ
1703 \param ftdi pointer to ftdi_context
1704 \param chunksize Chunk size
1705
1706 \retval 0: all fine
22a1b5c1 1707 \retval -1: ftdi context invalid
1941414d 1708*/
a8f46ddc
TJ
1709int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1710{
29c4af7f
TJ
1711 unsigned char *new_buf;
1712
22a1b5c1
TJ
1713 if (ftdi == NULL)
1714 ftdi_error_return(-1, "ftdi context invalid");
1715
948f9ada
TJ
1716 // Invalidate all remaining data
1717 ftdi->readbuffer_offset = 0;
1718 ftdi->readbuffer_remaining = 0;
8de6eea4
JZ
1719#ifdef __linux__
1720 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1721 which is defined in libusb-1.0. Otherwise, each USB read request will
2e685a1f 1722 be divided into multiple URBs. This will cause issues on Linux kernel
8de6eea4
JZ
1723 older than 2.6.32. */
1724 if (chunksize > 16384)
1725 chunksize = 16384;
1726#endif
948f9ada 1727
c3d95b87
TJ
1728 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1729 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1730
948f9ada
TJ
1731 ftdi->readbuffer = new_buf;
1732 ftdi->readbuffer_chunksize = chunksize;
1733
1734 return 0;
1735}
1736
1941414d
TJ
1737/**
1738 Get read buffer chunk size.
948f9ada 1739
1941414d
TJ
1740 \param ftdi pointer to ftdi_context
1741 \param chunksize Pointer to store chunk size in
1742
1743 \retval 0: all fine
22a1b5c1 1744 \retval -1: FTDI context invalid
1941414d 1745*/
a8f46ddc
TJ
1746int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1747{
22a1b5c1
TJ
1748 if (ftdi == NULL)
1749 ftdi_error_return(-1, "FTDI context invalid");
1750
948f9ada
TJ
1751 *chunksize = ftdi->readbuffer_chunksize;
1752 return 0;
1753}
1754
1755
1941414d
TJ
1756/**
1757 Enable bitbang mode.
948f9ada 1758
fd282db3 1759 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1941414d
TJ
1760
1761 \param ftdi pointer to ftdi_context
1762 \param bitmask Bitmask to configure lines.
1763 HIGH/ON value configures a line as output.
1764
1765 \retval 0: all fine
1766 \retval -1: can't enable bitbang mode
22a1b5c1 1767 \retval -2: USB device unavailable
1941414d 1768*/
a8f46ddc
TJ
1769int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1770{
a3da1d95
GE
1771 unsigned short usb_val;
1772
22a1b5c1
TJ
1773 if (ftdi == NULL || ftdi->usb_dev == NULL)
1774 ftdi_error_return(-2, "USB device unavailable");
1775
d9f0cce7 1776 usb_val = bitmask; // low byte: bitmask
3119537f
TJ
1777 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1778 usb_val |= (ftdi->bitbang_mode << 8);
1779
579b006f
JZ
1780 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1781 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1782 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1783 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1784
a3da1d95
GE
1785 ftdi->bitbang_enabled = 1;
1786 return 0;
1787}
1788
1941414d
TJ
1789/**
1790 Disable bitbang mode.
a3da1d95 1791
1941414d
TJ
1792 \param ftdi pointer to ftdi_context
1793
1794 \retval 0: all fine
1795 \retval -1: can't disable bitbang mode
22a1b5c1 1796 \retval -2: USB device unavailable
1941414d 1797*/
a8f46ddc
TJ
1798int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1799{
22a1b5c1
TJ
1800 if (ftdi == NULL || ftdi->usb_dev == NULL)
1801 ftdi_error_return(-2, "USB device unavailable");
1802
579b006f 1803 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1804 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1805
1806 ftdi->bitbang_enabled = 0;
1807 return 0;
1808}
1809
1941414d 1810/**
418aaa72 1811 Enable/disable bitbang modes.
a3da1d95 1812
1941414d
TJ
1813 \param ftdi pointer to ftdi_context
1814 \param bitmask Bitmask to configure lines.
1815 HIGH/ON value configures a line as output.
fd282db3 1816 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
1817
1818 \retval 0: all fine
1819 \retval -1: can't enable bitbang mode
22a1b5c1 1820 \retval -2: USB device unavailable
1941414d 1821*/
c4446c36
TJ
1822int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1823{
1824 unsigned short usb_val;
1825
22a1b5c1
TJ
1826 if (ftdi == NULL || ftdi->usb_dev == NULL)
1827 ftdi_error_return(-2, "USB device unavailable");
1828
c4446c36
TJ
1829 usb_val = bitmask; // low byte: bitmask
1830 usb_val |= (mode << 8);
579b006f
JZ
1831 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1832 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
c4446c36
TJ
1833
1834 ftdi->bitbang_mode = mode;
418aaa72 1835 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
c4446c36
TJ
1836 return 0;
1837}
1838
1941414d 1839/**
418aaa72 1840 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
1841
1842 \param ftdi pointer to ftdi_context
1843 \param pins Pointer to store pins into
1844
1845 \retval 0: all fine
1846 \retval -1: read pins failed
22a1b5c1 1847 \retval -2: USB device unavailable
1941414d 1848*/
a8f46ddc
TJ
1849int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1850{
22a1b5c1
TJ
1851 if (ftdi == NULL || ftdi->usb_dev == NULL)
1852 ftdi_error_return(-2, "USB device unavailable");
1853
579b006f 1854 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1855 ftdi_error_return(-1, "read pins failed");
a3da1d95 1856
a3da1d95
GE
1857 return 0;
1858}
1859
1941414d
TJ
1860/**
1861 Set latency timer
1862
1863 The FTDI chip keeps data in the internal buffer for a specific
1864 amount of time if the buffer is not full yet to decrease
1865 load on the usb bus.
a3da1d95 1866
1941414d
TJ
1867 \param ftdi pointer to ftdi_context
1868 \param latency Value between 1 and 255
1869
1870 \retval 0: all fine
1871 \retval -1: latency out of range
1872 \retval -2: unable to set latency timer
22a1b5c1 1873 \retval -3: USB device unavailable
1941414d 1874*/
a8f46ddc
TJ
1875int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1876{
a3da1d95
GE
1877 unsigned short usb_val;
1878
c3d95b87
TJ
1879 if (latency < 1)
1880 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 1881
22a1b5c1
TJ
1882 if (ftdi == NULL || ftdi->usb_dev == NULL)
1883 ftdi_error_return(-3, "USB device unavailable");
1884
d79d2e68 1885 usb_val = latency;
579b006f 1886 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1887 ftdi_error_return(-2, "unable to set latency timer");
1888
a3da1d95
GE
1889 return 0;
1890}
1891
1941414d
TJ
1892/**
1893 Get latency timer
a3da1d95 1894
1941414d
TJ
1895 \param ftdi pointer to ftdi_context
1896 \param latency Pointer to store latency value in
1897
1898 \retval 0: all fine
1899 \retval -1: unable to get latency timer
22a1b5c1 1900 \retval -2: USB device unavailable
1941414d 1901*/
a8f46ddc
TJ
1902int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1903{
a3da1d95 1904 unsigned short usb_val;
22a1b5c1
TJ
1905
1906 if (ftdi == NULL || ftdi->usb_dev == NULL)
1907 ftdi_error_return(-2, "USB device unavailable");
1908
579b006f 1909 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1910 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
1911
1912 *latency = (unsigned char)usb_val;
1913 return 0;
1914}
1915
1941414d 1916/**
1189b11a
TJ
1917 Poll modem status information
1918
1919 This function allows the retrieve the two status bytes of the device.
1920 The device sends these bytes also as a header for each read access
1921 where they are discarded by ftdi_read_data(). The chip generates
1922 the two stripped status bytes in the absence of data every 40 ms.
1923
1924 Layout of the first byte:
1925 - B0..B3 - must be 0
1926 - B4 Clear to send (CTS)
1927 0 = inactive
1928 1 = active
1929 - B5 Data set ready (DTS)
1930 0 = inactive
1931 1 = active
1932 - B6 Ring indicator (RI)
1933 0 = inactive
1934 1 = active
1935 - B7 Receive line signal detect (RLSD)
1936 0 = inactive
1937 1 = active
1938
1939 Layout of the second byte:
1940 - B0 Data ready (DR)
1941 - B1 Overrun error (OE)
1942 - B2 Parity error (PE)
1943 - B3 Framing error (FE)
1944 - B4 Break interrupt (BI)
1945 - B5 Transmitter holding register (THRE)
1946 - B6 Transmitter empty (TEMT)
1947 - B7 Error in RCVR FIFO
1948
1949 \param ftdi pointer to ftdi_context
1950 \param status Pointer to store status information in. Must be two bytes.
1951
1952 \retval 0: all fine
1953 \retval -1: unable to retrieve status information
22a1b5c1 1954 \retval -2: USB device unavailable
1189b11a
TJ
1955*/
1956int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1957{
1958 char usb_val[2];
1959
22a1b5c1
TJ
1960 if (ftdi == NULL || ftdi->usb_dev == NULL)
1961 ftdi_error_return(-2, "USB device unavailable");
1962
579b006f 1963 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
1964 ftdi_error_return(-1, "getting modem status failed");
1965
1966 *status = (usb_val[1] << 8) | usb_val[0];
1967
1968 return 0;
1969}
1970
a7fb8440
TJ
1971/**
1972 Set flowcontrol for ftdi chip
1973
1974 \param ftdi pointer to ftdi_context
22d12cda
TJ
1975 \param flowctrl flow control to use. should be
1976 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
a7fb8440
TJ
1977
1978 \retval 0: all fine
1979 \retval -1: set flow control failed
22a1b5c1 1980 \retval -2: USB device unavailable
a7fb8440
TJ
1981*/
1982int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1983{
22a1b5c1
TJ
1984 if (ftdi == NULL || ftdi->usb_dev == NULL)
1985 ftdi_error_return(-2, "USB device unavailable");
1986
579b006f
JZ
1987 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1988 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
1989 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
1990 ftdi_error_return(-1, "set flow control failed");
1991
1992 return 0;
1993}
1994
1995/**
1996 Set dtr line
1997
1998 \param ftdi pointer to ftdi_context
1999 \param state state to set line to (1 or 0)
2000
2001 \retval 0: all fine
2002 \retval -1: set dtr failed
22a1b5c1 2003 \retval -2: USB device unavailable
a7fb8440
TJ
2004*/
2005int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2006{
2007 unsigned short usb_val;
2008
22a1b5c1
TJ
2009 if (ftdi == NULL || ftdi->usb_dev == NULL)
2010 ftdi_error_return(-2, "USB device unavailable");
2011
a7fb8440
TJ
2012 if (state)
2013 usb_val = SIO_SET_DTR_HIGH;
2014 else
2015 usb_val = SIO_SET_DTR_LOW;
2016
579b006f
JZ
2017 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2018 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2019 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2020 ftdi_error_return(-1, "set dtr failed");
2021
2022 return 0;
2023}
2024
2025/**
2026 Set rts line
2027
2028 \param ftdi pointer to ftdi_context
2029 \param state state to set line to (1 or 0)
2030
2031 \retval 0: all fine
22a1b5c1
TJ
2032 \retval -1: set rts failed
2033 \retval -2: USB device unavailable
a7fb8440
TJ
2034*/
2035int ftdi_setrts(struct ftdi_context *ftdi, int state)
2036{
2037 unsigned short usb_val;
2038
22a1b5c1
TJ
2039 if (ftdi == NULL || ftdi->usb_dev == NULL)
2040 ftdi_error_return(-2, "USB device unavailable");
2041
a7fb8440
TJ
2042 if (state)
2043 usb_val = SIO_SET_RTS_HIGH;
2044 else
2045 usb_val = SIO_SET_RTS_LOW;
2046
579b006f
JZ
2047 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2048 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2049 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2050 ftdi_error_return(-1, "set of rts failed");
2051
2052 return 0;
2053}
2054
1189b11a 2055/**
22a1b5c1 2056 Set dtr and rts line in one pass
9ecfef2a 2057
22a1b5c1
TJ
2058 \param ftdi pointer to ftdi_context
2059 \param dtr DTR state to set line to (1 or 0)
2060 \param rts RTS state to set line to (1 or 0)
9ecfef2a 2061
22a1b5c1
TJ
2062 \retval 0: all fine
2063 \retval -1: set dtr/rts failed
2064 \retval -2: USB device unavailable
9ecfef2a
TJ
2065 */
2066int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2067{
2068 unsigned short usb_val;
2069
22a1b5c1
TJ
2070 if (ftdi == NULL || ftdi->usb_dev == NULL)
2071 ftdi_error_return(-2, "USB device unavailable");
2072
9ecfef2a 2073 if (dtr)
22d12cda 2074 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 2075 else
22d12cda 2076 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
2077
2078 if (rts)
22d12cda 2079 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 2080 else
22d12cda 2081 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 2082
579b006f
JZ
2083 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2084 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2085 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 2086 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
2087
2088 return 0;
2089}
2090
2091/**
1189b11a
TJ
2092 Set the special event character
2093
2094 \param ftdi pointer to ftdi_context
2095 \param eventch Event character
2096 \param enable 0 to disable the event character, non-zero otherwise
2097
2098 \retval 0: all fine
2099 \retval -1: unable to set event character
22a1b5c1 2100 \retval -2: USB device unavailable
1189b11a
TJ
2101*/
2102int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 2103 unsigned char eventch, unsigned char enable)
1189b11a
TJ
2104{
2105 unsigned short usb_val;
2106
22a1b5c1
TJ
2107 if (ftdi == NULL || ftdi->usb_dev == NULL)
2108 ftdi_error_return(-2, "USB device unavailable");
2109
1189b11a
TJ
2110 usb_val = eventch;
2111 if (enable)
2112 usb_val |= 1 << 8;
2113
579b006f 2114 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2115 ftdi_error_return(-1, "setting event character failed");
2116
2117 return 0;
2118}
2119
2120/**
2121 Set error character
2122
2123 \param ftdi pointer to ftdi_context
2124 \param errorch Error character
2125 \param enable 0 to disable the error character, non-zero otherwise
2126
2127 \retval 0: all fine
2128 \retval -1: unable to set error character
22a1b5c1 2129 \retval -2: USB device unavailable
1189b11a
TJ
2130*/
2131int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 2132 unsigned char errorch, unsigned char enable)
1189b11a
TJ
2133{
2134 unsigned short usb_val;
2135
22a1b5c1
TJ
2136 if (ftdi == NULL || ftdi->usb_dev == NULL)
2137 ftdi_error_return(-2, "USB device unavailable");
2138
1189b11a
TJ
2139 usb_val = errorch;
2140 if (enable)
2141 usb_val |= 1 << 8;
2142
579b006f 2143 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2144 ftdi_error_return(-1, "setting error character failed");
2145
2146 return 0;
2147}
2148
2149/**
c201f80f
TJ
2150 Set the eeprom size
2151
2152 \param ftdi pointer to ftdi_context
2153 \param eeprom Pointer to ftdi_eeprom
2154 \param size
2155
2156*/
2157void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
2158{
22a1b5c1
TJ
2159 if (ftdi == NULL)
2160 return;
2161
22d12cda
TJ
2162 ftdi->eeprom_size=size;
2163 eeprom->size=size;
c201f80f
TJ
2164}
2165
2166/**
1941414d 2167 Init eeprom with default values.
a3da1d95 2168
1941414d
TJ
2169 \param eeprom Pointer to ftdi_eeprom
2170*/
a8f46ddc
TJ
2171void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
2172{
22a1b5c1
TJ
2173 if (eeprom == NULL)
2174 return;
2175
f396dbad
TJ
2176 eeprom->vendor_id = 0x0403;
2177 eeprom->product_id = 0x6001;
d9f0cce7 2178
b8aa7b35
TJ
2179 eeprom->self_powered = 1;
2180 eeprom->remote_wakeup = 1;
2181 eeprom->BM_type_chip = 1;
d9f0cce7 2182
b8aa7b35
TJ
2183 eeprom->in_is_isochronous = 0;
2184 eeprom->out_is_isochronous = 0;
2185 eeprom->suspend_pull_downs = 0;
d9f0cce7 2186
b8aa7b35
TJ
2187 eeprom->use_serial = 0;
2188 eeprom->change_usb_version = 0;
f396dbad 2189 eeprom->usb_version = 0x0200;
b8aa7b35 2190 eeprom->max_power = 0;
d9f0cce7 2191
b8aa7b35
TJ
2192 eeprom->manufacturer = NULL;
2193 eeprom->product = NULL;
2194 eeprom->serial = NULL;
c201f80f
TJ
2195
2196 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
b8aa7b35
TJ
2197}
2198
1941414d 2199/**
95ac1ca2
WH
2200 Frees allocated memory in eeprom.
2201
2202 \param eeprom Pointer to ftdi_eeprom
2203*/
2204void ftdi_eeprom_free(struct ftdi_eeprom *eeprom)
2205{
2206 if (eeprom->manufacturer != 0) {
2207 free(eeprom->manufacturer);
2208 eeprom->manufacturer = 0;
2209 }
2210 if (eeprom->product != 0) {
2211 free(eeprom->product);
2212 eeprom->product = 0;
2213 }
2214 if (eeprom->serial != 0) {
2215 free(eeprom->serial);
2216 eeprom->serial = 0;
2217 }
2218}
2219
2220/**
22a1b5c1
TJ
2221 Build binary output from ftdi_eeprom structure.
2222 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2223
22a1b5c1
TJ
2224 \param eeprom Pointer to ftdi_eeprom
2225 \param output Buffer of 128 bytes to store eeprom image to
1941414d 2226
22a1b5c1
TJ
2227 \retval >0: used eeprom size
2228 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2229 \retval -2: Invalid eeprom pointer
b8aa7b35 2230*/
a8f46ddc
TJ
2231int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
2232{
b8aa7b35
TJ
2233 unsigned char i, j;
2234 unsigned short checksum, value;
2235 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2236 int size_check;
2237
22a1b5c1
TJ
2238 if (eeprom == NULL)
2239 return -2;
2240
b8aa7b35 2241 if (eeprom->manufacturer != NULL)
d9f0cce7 2242 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2243 if (eeprom->product != NULL)
d9f0cce7 2244 product_size = strlen(eeprom->product);
b8aa7b35 2245 if (eeprom->serial != NULL)
d9f0cce7 2246 serial_size = strlen(eeprom->serial);
b8aa7b35 2247
c201f80f 2248 size_check = eeprom->size;
d9f0cce7 2249 size_check -= 28; // 28 are always in use (fixed)
c201f80f 2250
22d12cda 2251 // Top half of a 256byte eeprom is used just for strings and checksum
c201f80f
TJ
2252 // it seems that the FTDI chip will not read these strings from the lower half
2253 // Each string starts with two bytes; offset and type (0x03 for string)
2254 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
22d12cda 2255 if (eeprom->size>=256)size_check = 120;
b8aa7b35
TJ
2256 size_check -= manufacturer_size*2;
2257 size_check -= product_size*2;
2258 size_check -= serial_size*2;
2259
2260 // eeprom size exceeded?
2261 if (size_check < 0)
d9f0cce7 2262 return (-1);
b8aa7b35
TJ
2263
2264 // empty eeprom
c201f80f 2265 memset (output, 0, eeprom->size);
b8aa7b35
TJ
2266
2267 // Addr 00: Stay 00 00
2268 // Addr 02: Vendor ID
2269 output[0x02] = eeprom->vendor_id;
2270 output[0x03] = eeprom->vendor_id >> 8;
2271
2272 // Addr 04: Product ID
2273 output[0x04] = eeprom->product_id;
2274 output[0x05] = eeprom->product_id >> 8;
2275
2276 // Addr 06: Device release number (0400h for BM features)
2277 output[0x06] = 0x00;
d9f0cce7 2278
b8aa7b35 2279 if (eeprom->BM_type_chip == 1)
d9f0cce7 2280 output[0x07] = 0x04;
b8aa7b35 2281 else
d9f0cce7 2282 output[0x07] = 0x02;
b8aa7b35
TJ
2283
2284 // Addr 08: Config descriptor
8fae3e8e
TJ
2285 // Bit 7: always 1
2286 // Bit 6: 1 if this device is self powered, 0 if bus powered
2287 // Bit 5: 1 if this device uses remote wakeup
2288 // Bit 4: 1 if this device is battery powered
5a1dcd55 2289 j = 0x80;
b8aa7b35 2290 if (eeprom->self_powered == 1)
5a1dcd55 2291 j |= 0x40;
b8aa7b35 2292 if (eeprom->remote_wakeup == 1)
5a1dcd55 2293 j |= 0x20;
b8aa7b35
TJ
2294 output[0x08] = j;
2295
2296 // Addr 09: Max power consumption: max power = value * 2 mA
d9f0cce7 2297 output[0x09] = eeprom->max_power;
d9f0cce7 2298
b8aa7b35
TJ
2299 // Addr 0A: Chip configuration
2300 // Bit 7: 0 - reserved
2301 // Bit 6: 0 - reserved
2302 // Bit 5: 0 - reserved
2303 // Bit 4: 1 - Change USB version
2304 // Bit 3: 1 - Use the serial number string
2305 // Bit 2: 1 - Enable suspend pull downs for lower power
2306 // Bit 1: 1 - Out EndPoint is Isochronous
2307 // Bit 0: 1 - In EndPoint is Isochronous
2308 //
2309 j = 0;
2310 if (eeprom->in_is_isochronous == 1)
d9f0cce7 2311 j = j | 1;
b8aa7b35 2312 if (eeprom->out_is_isochronous == 1)
d9f0cce7 2313 j = j | 2;
b8aa7b35 2314 if (eeprom->suspend_pull_downs == 1)
d9f0cce7 2315 j = j | 4;
b8aa7b35 2316 if (eeprom->use_serial == 1)
d9f0cce7 2317 j = j | 8;
b8aa7b35 2318 if (eeprom->change_usb_version == 1)
d9f0cce7 2319 j = j | 16;
b8aa7b35 2320 output[0x0A] = j;
d9f0cce7 2321
b8aa7b35
TJ
2322 // Addr 0B: reserved
2323 output[0x0B] = 0x00;
d9f0cce7 2324
b8aa7b35
TJ
2325 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2326 // Addr 0D: USB version high byte when 0x0A bit 4 is set
22d12cda
TJ
2327 if (eeprom->change_usb_version == 1)
2328 {
b8aa7b35 2329 output[0x0C] = eeprom->usb_version;
d9f0cce7 2330 output[0x0D] = eeprom->usb_version >> 8;
b8aa7b35
TJ
2331 }
2332
2333
c201f80f 2334 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
b8aa7b35
TJ
2335 // Addr 0F: Length of manufacturer string
2336 output[0x0F] = manufacturer_size*2 + 2;
2337
2338 // Addr 10: Offset of the product string + 0x80, calculated later
2339 // Addr 11: Length of product string
2340 output[0x11] = product_size*2 + 2;
2341
2342 // Addr 12: Offset of the serial string + 0x80, calculated later
2343 // Addr 13: Length of serial string
2344 output[0x13] = serial_size*2 + 2;
2345
2346 // Dynamic content
c201f80f 2347 i=0x14;
22d12cda 2348 if (eeprom->size>=256) i = 0x80;
f01d7ca6 2349
c201f80f 2350
22d12cda 2351 // Output manufacturer
c201f80f
TJ
2352 output[0x0E] = i | 0x80; // calculate offset
2353 output[i++] = manufacturer_size*2 + 2;
2354 output[i++] = 0x03; // type: string
22d12cda
TJ
2355 for (j = 0; j < manufacturer_size; j++)
2356 {
d9f0cce7
TJ
2357 output[i] = eeprom->manufacturer[j], i++;
2358 output[i] = 0x00, i++;
b8aa7b35
TJ
2359 }
2360
2361 // Output product name
c201f80f 2362 output[0x10] = i | 0x80; // calculate offset
b8aa7b35
TJ
2363 output[i] = product_size*2 + 2, i++;
2364 output[i] = 0x03, i++;
22d12cda
TJ
2365 for (j = 0; j < product_size; j++)
2366 {
d9f0cce7
TJ
2367 output[i] = eeprom->product[j], i++;
2368 output[i] = 0x00, i++;
b8aa7b35 2369 }
d9f0cce7 2370
b8aa7b35 2371 // Output serial
c201f80f 2372 output[0x12] = i | 0x80; // calculate offset
b8aa7b35
TJ
2373 output[i] = serial_size*2 + 2, i++;
2374 output[i] = 0x03, i++;
22d12cda
TJ
2375 for (j = 0; j < serial_size; j++)
2376 {
d9f0cce7
TJ
2377 output[i] = eeprom->serial[j], i++;
2378 output[i] = 0x00, i++;
b8aa7b35
TJ
2379 }
2380
2381 // calculate checksum
2382 checksum = 0xAAAA;
d9f0cce7 2383
22d12cda
TJ
2384 for (i = 0; i < eeprom->size/2-1; i++)
2385 {
d9f0cce7
TJ
2386 value = output[i*2];
2387 value += output[(i*2)+1] << 8;
b8aa7b35 2388
d9f0cce7
TJ
2389 checksum = value^checksum;
2390 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
2391 }
2392
c201f80f
TJ
2393 output[eeprom->size-2] = checksum;
2394 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 2395
8ed61121 2396 return size_check;
b8aa7b35
TJ
2397}
2398
4af1d1bb
MK
2399/**
2400 Decode binary EEPROM image into an ftdi_eeprom structure.
2401
2402 \param eeprom Pointer to ftdi_eeprom which will be filled in.
1bbaf1ce 2403 \param buf Buffer of \a size bytes of raw eeprom data
4af1d1bb
MK
2404 \param size size size of eeprom data in bytes
2405
2406 \retval 0: all fine
2407 \retval -1: something went wrong
2408
2409 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2410 FIXME: Strings are malloc'ed here and should be freed somewhere
2411*/
49c5ac72 2412int ftdi_eeprom_decode(struct ftdi_eeprom *eeprom, unsigned char *buf, int size)
b56d5a64
MK
2413{
2414 unsigned char i, j;
2415 unsigned short checksum, eeprom_checksum, value;
2416 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
b56d5a64 2417 int eeprom_size = 128;
22a1b5c1
TJ
2418
2419 if (eeprom == NULL)
2420 return -1;
b56d5a64
MK
2421#if 0
2422 size_check = eeprom->size;
2423 size_check -= 28; // 28 are always in use (fixed)
2424
22d12cda 2425 // Top half of a 256byte eeprom is used just for strings and checksum
b56d5a64
MK
2426 // it seems that the FTDI chip will not read these strings from the lower half
2427 // Each string starts with two bytes; offset and type (0x03 for string)
2428 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
22d12cda 2429 if (eeprom->size>=256)size_check = 120;
b56d5a64
MK
2430 size_check -= manufacturer_size*2;
2431 size_check -= product_size*2;
2432 size_check -= serial_size*2;
2433
2434 // eeprom size exceeded?
2435 if (size_check < 0)
2436 return (-1);
2437#endif
2438
2439 // empty eeprom struct
4af1d1bb 2440 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
b56d5a64
MK
2441
2442 // Addr 00: Stay 00 00
2443
2444 // Addr 02: Vendor ID
2445 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2446
2447 // Addr 04: Product ID
2448 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
22d12cda 2449
6335545d
TJ
2450 value = buf[0x06] + (buf[0x07]<<8);
2451 switch (value)
22d12cda
TJ
2452 {
2453 case 0x0400:
2454 eeprom->BM_type_chip = 1;
2455 break;
2456 case 0x0200:
2457 eeprom->BM_type_chip = 0;
2458 break;
2459 default: // Unknown device
2460 eeprom->BM_type_chip = 0;
2461 break;
4af1d1bb 2462 }
b56d5a64
MK
2463
2464 // Addr 08: Config descriptor
2465 // Bit 7: always 1
2466 // Bit 6: 1 if this device is self powered, 0 if bus powered
2467 // Bit 5: 1 if this device uses remote wakeup
2468 // Bit 4: 1 if this device is battery powered
2469 j = buf[0x08];
b56d5a64
MK
2470 if (j&0x40) eeprom->self_powered = 1;
2471 if (j&0x20) eeprom->remote_wakeup = 1;
2472
2473 // Addr 09: Max power consumption: max power = value * 2 mA
2474 eeprom->max_power = buf[0x09];
2475
2476 // Addr 0A: Chip configuration
2477 // Bit 7: 0 - reserved
2478 // Bit 6: 0 - reserved
2479 // Bit 5: 0 - reserved
2480 // Bit 4: 1 - Change USB version
2481 // Bit 3: 1 - Use the serial number string
2482 // Bit 2: 1 - Enable suspend pull downs for lower power
2483 // Bit 1: 1 - Out EndPoint is Isochronous
2484 // Bit 0: 1 - In EndPoint is Isochronous
2485 //
2486 j = buf[0x0A];
4af1d1bb
MK
2487 if (j&0x01) eeprom->in_is_isochronous = 1;
2488 if (j&0x02) eeprom->out_is_isochronous = 1;
2489 if (j&0x04) eeprom->suspend_pull_downs = 1;
2490 if (j&0x08) eeprom->use_serial = 1;
2491 if (j&0x10) eeprom->change_usb_version = 1;
b56d5a64 2492
4af1d1bb 2493 // Addr 0B: reserved
b56d5a64
MK
2494
2495 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2496 // Addr 0D: USB version high byte when 0x0A bit 4 is set
22d12cda
TJ
2497 if (eeprom->change_usb_version == 1)
2498 {
2499 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
b56d5a64
MK
2500 }
2501
2502 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2503 // Addr 0F: Length of manufacturer string
2504 manufacturer_size = buf[0x0F]/2;
2505 if (manufacturer_size > 0) eeprom->manufacturer = malloc(manufacturer_size);
2506 else eeprom->manufacturer = NULL;
2507
2508 // Addr 10: Offset of the product string + 0x80, calculated later
2509 // Addr 11: Length of product string
2510 product_size = buf[0x11]/2;
2511 if (product_size > 0) eeprom->product = malloc(product_size);
2512 else eeprom->product = NULL;
2513
2514 // Addr 12: Offset of the serial string + 0x80, calculated later
2515 // Addr 13: Length of serial string
2516 serial_size = buf[0x13]/2;
2517 if (serial_size > 0) eeprom->serial = malloc(serial_size);
2518 else eeprom->serial = NULL;
2519
22d12cda 2520 // Decode manufacturer
b56d5a64 2521 i = buf[0x0E] & 0x7f; // offset
22d12cda
TJ
2522 for (j=0;j<manufacturer_size-1;j++)
2523 {
2524 eeprom->manufacturer[j] = buf[2*j+i+2];
b56d5a64
MK
2525 }
2526 eeprom->manufacturer[j] = '\0';
2527
2528 // Decode product name
2529 i = buf[0x10] & 0x7f; // offset
22d12cda
TJ
2530 for (j=0;j<product_size-1;j++)
2531 {
2532 eeprom->product[j] = buf[2*j+i+2];
b56d5a64
MK
2533 }
2534 eeprom->product[j] = '\0';
2535
2536 // Decode serial
2537 i = buf[0x12] & 0x7f; // offset
22d12cda
TJ
2538 for (j=0;j<serial_size-1;j++)
2539 {
2540 eeprom->serial[j] = buf[2*j+i+2];
b56d5a64
MK
2541 }
2542 eeprom->serial[j] = '\0';
2543
2544 // verify checksum
2545 checksum = 0xAAAA;
2546
22d12cda
TJ
2547 for (i = 0; i < eeprom_size/2-1; i++)
2548 {
b56d5a64
MK
2549 value = buf[i*2];
2550 value += buf[(i*2)+1] << 8;
2551
2552 checksum = value^checksum;
2553 checksum = (checksum << 1) | (checksum >> 15);
2554 }
2555
2556 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2557
22d12cda
TJ
2558 if (eeprom_checksum != checksum)
2559 {
2560 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2561 return -1;
4af1d1bb
MK
2562 }
2563
2564 return 0;
b56d5a64
MK
2565}
2566
1941414d 2567/**
c1c70e13
OS
2568 Read eeprom location
2569
2570 \param ftdi pointer to ftdi_context
2571 \param eeprom_addr Address of eeprom location to be read
2572 \param eeprom_val Pointer to store read eeprom location
2573
2574 \retval 0: all fine
2575 \retval -1: read failed
22a1b5c1 2576 \retval -2: USB device unavailable
c1c70e13
OS
2577*/
2578int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
2579{
22a1b5c1
TJ
2580 if (ftdi == NULL || ftdi->usb_dev == NULL)
2581 ftdi_error_return(-2, "USB device unavailable");
2582
579b006f 2583 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
c1c70e13
OS
2584 ftdi_error_return(-1, "reading eeprom failed");
2585
2586 return 0;
2587}
2588
2589/**
1941414d
TJ
2590 Read eeprom
2591
2592 \param ftdi pointer to ftdi_context
2593 \param eeprom Pointer to store eeprom into
b8aa7b35 2594
1941414d
TJ
2595 \retval 0: all fine
2596 \retval -1: read failed
22a1b5c1 2597 \retval -2: USB device unavailable
1941414d 2598*/
a8f46ddc
TJ
2599int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2600{
a3da1d95
GE
2601 int i;
2602
22a1b5c1
TJ
2603 if (ftdi == NULL || ftdi->usb_dev == NULL)
2604 ftdi_error_return(-2, "USB device unavailable");
2605
22d12cda
TJ
2606 for (i = 0; i < ftdi->eeprom_size/2; i++)
2607 {
579b006f 2608 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
c3d95b87 2609 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
2610 }
2611
2612 return 0;
2613}
2614
cb6250fa
TJ
2615/*
2616 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
2617 Function is only used internally
2618 \internal
2619*/
2620static unsigned char ftdi_read_chipid_shift(unsigned char value)
2621{
2622 return ((value & 1) << 1) |
22d12cda
TJ
2623 ((value & 2) << 5) |
2624 ((value & 4) >> 2) |
2625 ((value & 8) << 4) |
2626 ((value & 16) >> 1) |
2627 ((value & 32) >> 1) |
2628 ((value & 64) >> 4) |
2629 ((value & 128) >> 2);
cb6250fa
TJ
2630}
2631
2632/**
2633 Read the FTDIChip-ID from R-type devices
2634
2635 \param ftdi pointer to ftdi_context
2636 \param chipid Pointer to store FTDIChip-ID
2637
2638 \retval 0: all fine
2639 \retval -1: read failed
22a1b5c1 2640 \retval -2: USB device unavailable
cb6250fa
TJ
2641*/
2642int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
2643{
c7eb3112 2644 unsigned int a = 0, b = 0;
cb6250fa 2645
22a1b5c1
TJ
2646 if (ftdi == NULL || ftdi->usb_dev == NULL)
2647 ftdi_error_return(-2, "USB device unavailable");
2648
579b006f 2649 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
2650 {
2651 a = a << 8 | a >> 8;
579b006f 2652 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
2653 {
2654 b = b << 8 | b >> 8;
5230676f 2655 a = (a << 16) | (b & 0xFFFF);
912d50ca
TJ
2656 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
2657 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 2658 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 2659 return 0;
cb6250fa
TJ
2660 }
2661 }
2662
c7eb3112 2663 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
2664}
2665
1941414d 2666/**
22a1b5c1
TJ
2667 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
2668 Call this function then do a write then call again to see if size changes, if so write again.
c201f80f 2669
22a1b5c1
TJ
2670 \param ftdi pointer to ftdi_context
2671 \param eeprom Pointer to store eeprom into
2672 \param maxsize the size of the buffer to read into
c201f80f 2673
22a1b5c1
TJ
2674 \retval -1: eeprom read failed
2675 \retval -2: USB device unavailable
2676 \retval >=0: size of eeprom
c201f80f
TJ
2677*/
2678int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
2679{
2680 int i=0,j,minsize=32;
2681 int size=minsize;
2682
22a1b5c1
TJ
2683 if (ftdi == NULL || ftdi->usb_dev == NULL)
2684 ftdi_error_return(-2, "USB device unavailable");
2685
22d12cda
TJ
2686 do
2687 {
2688 for (j = 0; i < maxsize/2 && j<size; j++)
2689 {
579b006f
JZ
2690 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,
2691 SIO_READ_EEPROM_REQUEST, 0, i,
2692 eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
22a1b5c1 2693 ftdi_error_return(-1, "eeprom read failed");
22d12cda
TJ
2694 i++;
2695 }
2696 size*=2;
2697 }
2698 while (size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
c201f80f
TJ
2699
2700 return size/2;
2701}
2702
2703/**
c1c70e13
OS
2704 Write eeprom location
2705
2706 \param ftdi pointer to ftdi_context
2707 \param eeprom_addr Address of eeprom location to be written
2708 \param eeprom_val Value to be written
2709
2710 \retval 0: all fine
2711 \retval -1: read failed
22a1b5c1 2712 \retval -2: USB device unavailable
c1c70e13
OS
2713*/
2714int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr, unsigned short eeprom_val)
2715{
22a1b5c1
TJ
2716 if (ftdi == NULL || ftdi->usb_dev == NULL)
2717 ftdi_error_return(-2, "USB device unavailable");
2718
579b006f 2719 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
c1c70e13
OS
2720 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
2721 NULL, 0, ftdi->usb_write_timeout) != 0)
2722 ftdi_error_return(-1, "unable to write eeprom");
2723
2724 return 0;
2725}
2726
2727/**
1941414d 2728 Write eeprom
a3da1d95 2729
1941414d
TJ
2730 \param ftdi pointer to ftdi_context
2731 \param eeprom Pointer to read eeprom from
2732
2733 \retval 0: all fine
2734 \retval -1: read failed
22a1b5c1 2735 \retval -2: USB device unavailable
1941414d 2736*/
a8f46ddc
TJ
2737int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2738{
ba5329be 2739 unsigned short usb_val, status;
e30da501 2740 int i, ret;
a3da1d95 2741
22a1b5c1
TJ
2742 if (ftdi == NULL || ftdi->usb_dev == NULL)
2743 ftdi_error_return(-2, "USB device unavailable");
2744
ba5329be 2745 /* These commands were traced while running MProg */
e30da501
TJ
2746 if ((ret = ftdi_usb_reset(ftdi)) != 0)
2747 return ret;
2748 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
2749 return ret;
2750 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
2751 return ret;
ba5329be 2752
22d12cda
TJ
2753 for (i = 0; i < ftdi->eeprom_size/2; i++)
2754 {
d9f0cce7
TJ
2755 usb_val = eeprom[i*2];
2756 usb_val += eeprom[(i*2)+1] << 8;
579b006f
JZ
2757 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2758 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
2759 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 2760 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
2761 }
2762
2763 return 0;
2764}
2765
1941414d
TJ
2766/**
2767 Erase eeprom
a3da1d95 2768
a5e1bd8c
MK
2769 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
2770
1941414d
TJ
2771 \param ftdi pointer to ftdi_context
2772
2773 \retval 0: all fine
2774 \retval -1: erase failed
22a1b5c1 2775 \retval -2: USB device unavailable
1941414d 2776*/
a8f46ddc
TJ
2777int ftdi_erase_eeprom(struct ftdi_context *ftdi)
2778{
22a1b5c1
TJ
2779 if (ftdi == NULL || ftdi->usb_dev == NULL)
2780 ftdi_error_return(-2, "USB device unavailable");
2781
579b006f 2782 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST, 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 2783 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
2784
2785 return 0;
2786}
c3d95b87 2787
1941414d
TJ
2788/**
2789 Get string representation for last error code
c3d95b87 2790
1941414d
TJ
2791 \param ftdi pointer to ftdi_context
2792
2793 \retval Pointer to error string
2794*/
c3d95b87
TJ
2795char *ftdi_get_error_string (struct ftdi_context *ftdi)
2796{
22a1b5c1
TJ
2797 if (ftdi == NULL)
2798 return "";
2799
c3d95b87
TJ
2800 return ftdi->error_str;
2801}
a01d31e2 2802
b5ec1820 2803/* @} end of doxygen libftdi group */