Cosmetic change only (fix cmake style)
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
dcd7e8a3 5 copyright : (C) 2003-2014 by Intra2net AG and the libftdi developers
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
1bfc403c 21 http://www.intra2net.com/en/developer/libftdi/
b5ec1820 22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
579b006f 31#include <libusb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
b56d5a64 34#include <stdio.h>
579b006f 35#include <stdlib.h>
0e302db6 36
b790d38e 37#include "ftdi_i.h"
98452d97 38#include "ftdi.h"
0220adfa 39#include "ftdi_version_i.h"
a3da1d95 40
21abaf2e 41#define ftdi_error_return(code, str) do { \
b0a50459
PS
42 if ( ftdi ) \
43 ftdi->error_str = str; \
44 else \
45 fprintf(stderr, str); \
21abaf2e 46 return code; \
d2f10023 47 } while(0);
c3d95b87 48
99650502
UB
49#define ftdi_error_return_free_device_list(code, str, devs) do { \
50 libusb_free_device_list(devs,1); \
51 ftdi->error_str = str; \
52 return code; \
53 } while(0);
54
418aaa72 55
f3f81007
TJ
56/**
57 Internal function to close usb device pointer.
58 Sets ftdi->usb_dev to NULL.
59 \internal
60
61 \param ftdi pointer to ftdi_context
62
579b006f 63 \retval none
f3f81007 64*/
579b006f 65static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 66{
22a1b5c1 67 if (ftdi && ftdi->usb_dev)
dff4fdb0 68 {
56ac0383
TJ
69 libusb_close (ftdi->usb_dev);
70 ftdi->usb_dev = NULL;
44f41f11
UB
71 if(ftdi->eeprom)
72 ftdi->eeprom->initialized_for_connected_device = 0;
dff4fdb0 73 }
dff4fdb0 74}
c3d95b87 75
1941414d
TJ
76/**
77 Initializes a ftdi_context.
4837f98a 78
1941414d 79 \param ftdi pointer to ftdi_context
4837f98a 80
1941414d
TJ
81 \retval 0: all fine
82 \retval -1: couldn't allocate read buffer
a35aa9bd 83 \retval -2: couldn't allocate struct buffer
3a284749 84 \retval -3: libusb_init() failed
1941414d
TJ
85
86 \remark This should be called before all functions
948f9ada 87*/
a8f46ddc
TJ
88int ftdi_init(struct ftdi_context *ftdi)
89{
a35aa9bd 90 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
02212d8e 91 ftdi->usb_ctx = NULL;
98452d97 92 ftdi->usb_dev = NULL;
545820ce
TJ
93 ftdi->usb_read_timeout = 5000;
94 ftdi->usb_write_timeout = 5000;
a3da1d95 95
53ad271d 96 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 97 ftdi->baudrate = -1;
418aaa72 98 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 99
948f9ada
TJ
100 ftdi->readbuffer = NULL;
101 ftdi->readbuffer_offset = 0;
102 ftdi->readbuffer_remaining = 0;
103 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 104 ftdi->max_packet_size = 0;
3a284749
TJ
105 ftdi->error_str = NULL;
106 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
107
108 if (libusb_init(&ftdi->usb_ctx) < 0)
109 ftdi_error_return(-3, "libusb_init() failed");
948f9ada 110
ac0af8ec 111 ftdi_set_interface(ftdi, INTERFACE_ANY);
418aaa72 112 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 113
a35aa9bd
UB
114 if (eeprom == 0)
115 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
b4d19dea 116 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
a35aa9bd 117 ftdi->eeprom = eeprom;
c201f80f 118
1c733d33
TJ
119 /* All fine. Now allocate the readbuffer */
120 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 121}
4837f98a 122
1941414d 123/**
cef378aa
TJ
124 Allocate and initialize a new ftdi_context
125
126 \return a pointer to a new ftdi_context, or NULL on failure
127*/
672ac008 128struct ftdi_context *ftdi_new(void)
cef378aa
TJ
129{
130 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
131
22d12cda
TJ
132 if (ftdi == NULL)
133 {
cef378aa
TJ
134 return NULL;
135 }
136
22d12cda
TJ
137 if (ftdi_init(ftdi) != 0)
138 {
cef378aa 139 free(ftdi);
cdf448f6 140 return NULL;
cef378aa
TJ
141 }
142
143 return ftdi;
144}
145
146/**
1941414d
TJ
147 Open selected channels on a chip, otherwise use first channel.
148
149 \param ftdi pointer to ftdi_context
f9d69895 150 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
151
152 \retval 0: all fine
153 \retval -1: unknown interface
22a1b5c1 154 \retval -2: USB device unavailable
1c5fa36b 155 \retval -3: Device already open, interface can't be set in that state
c4446c36 156*/
0ce2f5fa 157int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 158{
1971c26d 159 if (ftdi == NULL)
22a1b5c1
TJ
160 ftdi_error_return(-2, "USB device unavailable");
161
1c5fa36b
TJ
162 if (ftdi->usb_dev != NULL)
163 {
164 int check_interface = interface;
165 if (check_interface == INTERFACE_ANY)
166 check_interface = INTERFACE_A;
167
168 if (ftdi->index != check_interface)
169 ftdi_error_return(-3, "Interface can not be changed on an already open device");
170 }
171
22d12cda
TJ
172 switch (interface)
173 {
174 case INTERFACE_ANY:
175 case INTERFACE_A:
ac0af8ec
VY
176 ftdi->interface = 0;
177 ftdi->index = INTERFACE_A;
178 ftdi->in_ep = 0x02;
179 ftdi->out_ep = 0x81;
22d12cda
TJ
180 break;
181 case INTERFACE_B:
182 ftdi->interface = 1;
183 ftdi->index = INTERFACE_B;
184 ftdi->in_ep = 0x04;
185 ftdi->out_ep = 0x83;
186 break;
f9d69895
AH
187 case INTERFACE_C:
188 ftdi->interface = 2;
189 ftdi->index = INTERFACE_C;
190 ftdi->in_ep = 0x06;
191 ftdi->out_ep = 0x85;
192 break;
193 case INTERFACE_D:
194 ftdi->interface = 3;
195 ftdi->index = INTERFACE_D;
196 ftdi->in_ep = 0x08;
197 ftdi->out_ep = 0x87;
198 break;
22d12cda
TJ
199 default:
200 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
201 }
202 return 0;
203}
948f9ada 204
1941414d
TJ
205/**
206 Deinitializes a ftdi_context.
4837f98a 207
1941414d 208 \param ftdi pointer to ftdi_context
4837f98a 209*/
a8f46ddc
TJ
210void ftdi_deinit(struct ftdi_context *ftdi)
211{
22a1b5c1
TJ
212 if (ftdi == NULL)
213 return;
214
f3f81007 215 ftdi_usb_close_internal (ftdi);
dff4fdb0 216
22d12cda
TJ
217 if (ftdi->readbuffer != NULL)
218 {
d9f0cce7
TJ
219 free(ftdi->readbuffer);
220 ftdi->readbuffer = NULL;
948f9ada 221 }
a35aa9bd
UB
222
223 if (ftdi->eeprom != NULL)
224 {
74e8e79d
UB
225 if (ftdi->eeprom->manufacturer != 0)
226 {
227 free(ftdi->eeprom->manufacturer);
228 ftdi->eeprom->manufacturer = 0;
229 }
230 if (ftdi->eeprom->product != 0)
231 {
232 free(ftdi->eeprom->product);
233 ftdi->eeprom->product = 0;
234 }
235 if (ftdi->eeprom->serial != 0)
236 {
237 free(ftdi->eeprom->serial);
238 ftdi->eeprom->serial = 0;
239 }
a35aa9bd
UB
240 free(ftdi->eeprom);
241 ftdi->eeprom = NULL;
242 }
3a284749
TJ
243
244 if (ftdi->usb_ctx)
245 {
246 libusb_exit(ftdi->usb_ctx);
247 ftdi->usb_ctx = NULL;
248 }
a3da1d95
GE
249}
250
1941414d 251/**
cef378aa
TJ
252 Deinitialize and free an ftdi_context.
253
254 \param ftdi pointer to ftdi_context
255*/
256void ftdi_free(struct ftdi_context *ftdi)
257{
258 ftdi_deinit(ftdi);
259 free(ftdi);
260}
261
262/**
1941414d
TJ
263 Use an already open libusb device.
264
265 \param ftdi pointer to ftdi_context
579b006f 266 \param usb libusb libusb_device_handle to use
4837f98a 267*/
579b006f 268void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 269{
22a1b5c1
TJ
270 if (ftdi == NULL)
271 return;
272
98452d97
TJ
273 ftdi->usb_dev = usb;
274}
275
0220adfa
TJ
276/**
277 * @brief Get libftdi library version
278 *
279 * @return ftdi_version_info Library version information
280 **/
bd6941fd 281struct ftdi_version_info ftdi_get_library_version(void)
0220adfa
TJ
282{
283 struct ftdi_version_info ver;
284
285 ver.major = FTDI_MAJOR_VERSION;
286 ver.minor = FTDI_MINOR_VERSION;
287 ver.micro = FTDI_MICRO_VERSION;
288 ver.version_str = FTDI_VERSION_STRING;
289 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
290
291 return ver;
292}
98452d97 293
1941414d 294/**
7879216a
UB
295 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
296 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
297 use. With VID:PID 0:0, search for the default devices
809d711d 298 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014, 0x403:0x6015)
1941414d
TJ
299
300 \param ftdi pointer to ftdi_context
301 \param devlist Pointer where to store list of found devices
302 \param vendor Vendor ID to search for
303 \param product Product ID to search for
edb82cbf 304
1941414d 305 \retval >0: number of devices found
1941414d 306 \retval -3: out of memory
579b006f
JZ
307 \retval -5: libusb_get_device_list() failed
308 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 309*/
d2f10023 310int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
311{
312 struct ftdi_device_list **curdev;
579b006f
JZ
313 libusb_device *dev;
314 libusb_device **devs;
edb82cbf 315 int count = 0;
579b006f
JZ
316 int i = 0;
317
02212d8e 318 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 319 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
320
321 curdev = devlist;
6db32169 322 *curdev = NULL;
579b006f
JZ
323
324 while ((dev = devs[i++]) != NULL)
22d12cda 325 {
579b006f 326 struct libusb_device_descriptor desc;
d2f10023 327
579b006f 328 if (libusb_get_device_descriptor(dev, &desc) < 0)
77377af7 329 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
edb82cbf 330
8de26dde 331 if (((vendor || product) &&
74387f27 332 desc.idVendor == vendor && desc.idProduct == product) ||
8de26dde 333 (!(vendor || product) &&
74387f27 334 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
809d711d
TJ
335 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014
336 || desc.idProduct == 0x6015)))
579b006f
JZ
337 {
338 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
339 if (!*curdev)
77377af7 340 ftdi_error_return_free_device_list(-3, "out of memory", devs);
56ac0383 341
579b006f
JZ
342 (*curdev)->next = NULL;
343 (*curdev)->dev = dev;
0c33162c 344 libusb_ref_device(dev);
579b006f
JZ
345 curdev = &(*curdev)->next;
346 count++;
edb82cbf
TJ
347 }
348 }
77377af7 349 libusb_free_device_list(devs,1);
edb82cbf
TJ
350 return count;
351}
352
1941414d
TJ
353/**
354 Frees a usb device list.
edb82cbf 355
1941414d 356 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 357*/
d2f10023 358void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 359{
6db32169
TJ
360 struct ftdi_device_list *curdev, *next;
361
22d12cda
TJ
362 for (curdev = *devlist; curdev != NULL;)
363 {
6db32169 364 next = curdev->next;
0c33162c 365 libusb_unref_device(curdev->dev);
6db32169
TJ
366 free(curdev);
367 curdev = next;
edb82cbf
TJ
368 }
369
6db32169 370 *devlist = NULL;
edb82cbf
TJ
371}
372
1941414d 373/**
cef378aa
TJ
374 Frees a usb device list.
375
376 \param devlist USB device list created by ftdi_usb_find_all()
377*/
378void ftdi_list_free2(struct ftdi_device_list *devlist)
379{
380 ftdi_list_free(&devlist);
381}
382
383/**
474786c0
TJ
384 Return device ID strings from the usb device.
385
386 The parameters manufacturer, description and serial may be NULL
387 or pointer to buffers to store the fetched strings.
388
898c34dd
TJ
389 \note Use this function only in combination with ftdi_usb_find_all()
390 as it closes the internal "usb_dev" after use.
391
474786c0
TJ
392 \param ftdi pointer to ftdi_context
393 \param dev libusb usb_dev to use
394 \param manufacturer Store manufacturer string here if not NULL
395 \param mnf_len Buffer size of manufacturer string
396 \param description Store product description string here if not NULL
397 \param desc_len Buffer size of product description string
398 \param serial Store serial string here if not NULL
399 \param serial_len Buffer size of serial string
400
401 \retval 0: all fine
402 \retval -1: wrong arguments
403 \retval -4: unable to open device
404 \retval -7: get product manufacturer failed
405 \retval -8: get product description failed
406 \retval -9: get serial number failed
579b006f 407 \retval -11: libusb_get_device_descriptor() failed
474786c0 408*/
579b006f 409int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
22d12cda 410 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
474786c0 411{
579b006f
JZ
412 struct libusb_device_descriptor desc;
413
474786c0
TJ
414 if ((ftdi==NULL) || (dev==NULL))
415 return -1;
416
bc384123
DS
417 if (ftdi->usb_dev == NULL && libusb_open(dev, &ftdi->usb_dev) < 0)
418 ftdi_error_return(-4, "libusb_open() failed");
579b006f
JZ
419
420 if (libusb_get_device_descriptor(dev, &desc) < 0)
421 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 422
22d12cda
TJ
423 if (manufacturer != NULL)
424 {
579b006f 425 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 426 {
f3f81007 427 ftdi_usb_close_internal (ftdi);
579b006f 428 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
429 }
430 }
431
22d12cda
TJ
432 if (description != NULL)
433 {
579b006f 434 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 435 {
f3f81007 436 ftdi_usb_close_internal (ftdi);
579b006f 437 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
438 }
439 }
440
22d12cda
TJ
441 if (serial != NULL)
442 {
579b006f 443 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 444 {
f3f81007 445 ftdi_usb_close_internal (ftdi);
579b006f 446 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
447 }
448 }
449
579b006f 450 ftdi_usb_close_internal (ftdi);
474786c0
TJ
451
452 return 0;
453}
454
455/**
e2f12a4f
TJ
456 * Internal function to determine the maximum packet size.
457 * \param ftdi pointer to ftdi_context
458 * \param dev libusb usb_dev to use
459 * \retval Maximum packet size for this device
460 */
579b006f 461static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 462{
579b006f
JZ
463 struct libusb_device_descriptor desc;
464 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
465 unsigned int packet_size;
466
22a1b5c1
TJ
467 // Sanity check
468 if (ftdi == NULL || dev == NULL)
469 return 64;
470
e2f12a4f
TJ
471 // Determine maximum packet size. Init with default value.
472 // New hi-speed devices from FTDI use a packet size of 512 bytes
473 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
6ae693b2 474 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
e2f12a4f
TJ
475 packet_size = 512;
476 else
477 packet_size = 64;
478
579b006f
JZ
479 if (libusb_get_device_descriptor(dev, &desc) < 0)
480 return packet_size;
481
482 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
483 return packet_size;
e2f12a4f 484
579b006f
JZ
485 if (desc.bNumConfigurations > 0)
486 {
487 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 488 {
579b006f 489 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
490 if (interface.num_altsetting > 0)
491 {
579b006f 492 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
493 if (descriptor.bNumEndpoints > 0)
494 {
495 packet_size = descriptor.endpoint[0].wMaxPacketSize;
496 }
497 }
498 }
499 }
500
579b006f 501 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
502 return packet_size;
503}
504
505/**
418aaa72 506 Opens a ftdi device given by an usb_device.
7b18bef6 507
1941414d
TJ
508 \param ftdi pointer to ftdi_context
509 \param dev libusb usb_dev to use
510
511 \retval 0: all fine
23b1798d 512 \retval -3: unable to config device
1941414d
TJ
513 \retval -4: unable to open device
514 \retval -5: unable to claim device
515 \retval -6: reset failed
516 \retval -7: set baudrate failed
22a1b5c1 517 \retval -8: ftdi context invalid
579b006f
JZ
518 \retval -9: libusb_get_device_descriptor() failed
519 \retval -10: libusb_get_config_descriptor() failed
e375e6cb 520 \retval -11: libusb_detach_kernel_driver() failed
579b006f 521 \retval -12: libusb_get_configuration() failed
7b18bef6 522*/
579b006f 523int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 524{
579b006f
JZ
525 struct libusb_device_descriptor desc;
526 struct libusb_config_descriptor *config0;
43aee24f 527 int cfg, cfg0, detach_errno = 0;
579b006f 528
22a1b5c1
TJ
529 if (ftdi == NULL)
530 ftdi_error_return(-8, "ftdi context invalid");
531
579b006f
JZ
532 if (libusb_open(dev, &ftdi->usb_dev) < 0)
533 ftdi_error_return(-4, "libusb_open() failed");
534
535 if (libusb_get_device_descriptor(dev, &desc) < 0)
536 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
537
538 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
539 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
540 cfg0 = config0->bConfigurationValue;
541 libusb_free_config_descriptor (config0);
d2f10023 542
22592e17 543 // Try to detach ftdi_sio kernel module.
22592e17
TJ
544 //
545 // The return code is kept in a separate variable and only parsed
546 // if usb_set_configuration() or usb_claim_interface() fails as the
547 // detach operation might be denied and everything still works fine.
548 // Likely scenario is a static ftdi_sio kernel module.
a3d86bdb
TJ
549 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
550 {
551 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
552 detach_errno = errno;
553 }
d2f10023 554
579b006f
JZ
555 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
556 ftdi_error_return(-12, "libusb_get_configuration () failed");
b57aedfd
GE
557 // set configuration (needed especially for windows)
558 // tolerate EBUSY: one device with one configuration, but two interfaces
559 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 560 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 561 {
579b006f 562 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 563 {
a56ba2bd 564 ftdi_usb_close_internal (ftdi);
56ac0383 565 if (detach_errno == EPERM)
43aee24f
UB
566 {
567 ftdi_error_return(-8, "inappropriate permissions on device!");
568 }
569 else
570 {
c16b162d 571 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
43aee24f 572 }
23b1798d
TJ
573 }
574 }
575
579b006f 576 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 577 {
f3f81007 578 ftdi_usb_close_internal (ftdi);
56ac0383 579 if (detach_errno == EPERM)
43aee24f
UB
580 {
581 ftdi_error_return(-8, "inappropriate permissions on device!");
582 }
583 else
584 {
c16b162d 585 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
43aee24f 586 }
7b18bef6
TJ
587 }
588
22d12cda
TJ
589 if (ftdi_usb_reset (ftdi) != 0)
590 {
f3f81007 591 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
592 ftdi_error_return(-6, "ftdi_usb_reset failed");
593 }
594
7b18bef6
TJ
595 // Try to guess chip type
596 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f 597 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
56ac0383 598 && desc.iSerialNumber == 0))
7b18bef6 599 ftdi->type = TYPE_BM;
579b006f 600 else if (desc.bcdDevice == 0x200)
7b18bef6 601 ftdi->type = TYPE_AM;
579b006f 602 else if (desc.bcdDevice == 0x500)
7b18bef6 603 ftdi->type = TYPE_2232C;
579b006f 604 else if (desc.bcdDevice == 0x600)
cb6250fa 605 ftdi->type = TYPE_R;
579b006f 606 else if (desc.bcdDevice == 0x700)
0beb9686 607 ftdi->type = TYPE_2232H;
579b006f 608 else if (desc.bcdDevice == 0x800)
0beb9686 609 ftdi->type = TYPE_4232H;
c7e4c09e
UB
610 else if (desc.bcdDevice == 0x900)
611 ftdi->type = TYPE_232H;
2f80efc2
NP
612 else if (desc.bcdDevice == 0x1000)
613 ftdi->type = TYPE_230X;
7b18bef6 614
e2f12a4f
TJ
615 // Determine maximum packet size
616 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
617
ef6f4838
TE
618 if (ftdi_set_baudrate (ftdi, 9600) != 0)
619 {
620 ftdi_usb_close_internal (ftdi);
621 ftdi_error_return(-7, "set baudrate failed");
622 }
623
7b18bef6
TJ
624 ftdi_error_return(0, "all fine");
625}
626
1941414d
TJ
627/**
628 Opens the first device with a given vendor and product ids.
629
630 \param ftdi pointer to ftdi_context
631 \param vendor Vendor ID
632 \param product Product ID
633
9bec2387 634 \retval same as ftdi_usb_open_desc()
1941414d 635*/
edb82cbf
TJ
636int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
637{
638 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
639}
640
1941414d
TJ
641/**
642 Opens the first device with a given, vendor id, product id,
643 description and serial.
644
645 \param ftdi pointer to ftdi_context
646 \param vendor Vendor ID
647 \param product Product ID
648 \param description Description to search for. Use NULL if not needed.
649 \param serial Serial to search for. Use NULL if not needed.
650
651 \retval 0: all fine
1941414d
TJ
652 \retval -3: usb device not found
653 \retval -4: unable to open device
654 \retval -5: unable to claim device
655 \retval -6: reset failed
656 \retval -7: set baudrate failed
657 \retval -8: get product description failed
658 \retval -9: get serial number failed
579b006f
JZ
659 \retval -12: libusb_get_device_list() failed
660 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 661*/
04e1ea0a 662int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
663 const char* description, const char* serial)
664{
5ebbdab9
GE
665 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
666}
667
668/**
669 Opens the index-th device with a given, vendor id, product id,
670 description and serial.
671
672 \param ftdi pointer to ftdi_context
673 \param vendor Vendor ID
674 \param product Product ID
675 \param description Description to search for. Use NULL if not needed.
676 \param serial Serial to search for. Use NULL if not needed.
677 \param index Number of matching device to open if there are more than one, starts with 0.
678
679 \retval 0: all fine
680 \retval -1: usb_find_busses() failed
681 \retval -2: usb_find_devices() failed
682 \retval -3: usb device not found
683 \retval -4: unable to open device
684 \retval -5: unable to claim device
685 \retval -6: reset failed
686 \retval -7: set baudrate failed
687 \retval -8: get product description failed
688 \retval -9: get serial number failed
689 \retval -10: unable to close device
22a1b5c1 690 \retval -11: ftdi context invalid
5ebbdab9
GE
691*/
692int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
56ac0383 693 const char* description, const char* serial, unsigned int index)
5ebbdab9 694{
579b006f
JZ
695 libusb_device *dev;
696 libusb_device **devs;
c3d95b87 697 char string[256];
579b006f 698 int i = 0;
98452d97 699
22a1b5c1
TJ
700 if (ftdi == NULL)
701 ftdi_error_return(-11, "ftdi context invalid");
702
02212d8e 703 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
99650502
UB
704 ftdi_error_return(-12, "libusb_get_device_list() failed");
705
579b006f 706 while ((dev = devs[i++]) != NULL)
22d12cda 707 {
579b006f 708 struct libusb_device_descriptor desc;
99650502 709 int res;
579b006f
JZ
710
711 if (libusb_get_device_descriptor(dev, &desc) < 0)
99650502 712 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
579b006f
JZ
713
714 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 715 {
579b006f 716 if (libusb_open(dev, &ftdi->usb_dev) < 0)
99650502 717 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
c3d95b87 718
579b006f
JZ
719 if (description != NULL)
720 {
721 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 722 {
d4afae5f 723 ftdi_usb_close_internal (ftdi);
99650502 724 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
a8f46ddc 725 }
579b006f 726 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 727 {
d4afae5f 728 ftdi_usb_close_internal (ftdi);
579b006f 729 continue;
a8f46ddc 730 }
579b006f
JZ
731 }
732 if (serial != NULL)
733 {
734 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
735 {
736 ftdi_usb_close_internal (ftdi);
99650502 737 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
579b006f
JZ
738 }
739 if (strncmp(string, serial, sizeof(string)) != 0)
740 {
741 ftdi_usb_close_internal (ftdi);
742 continue;
743 }
744 }
98452d97 745
579b006f 746 ftdi_usb_close_internal (ftdi);
d2f10023 747
56ac0383
TJ
748 if (index > 0)
749 {
750 index--;
751 continue;
752 }
5ebbdab9 753
99650502
UB
754 res = ftdi_usb_open_dev(ftdi, dev);
755 libusb_free_device_list(devs,1);
756 return res;
98452d97 757 }
98452d97 758 }
a3da1d95 759
98452d97 760 // device not found
99650502 761 ftdi_error_return_free_device_list(-3, "device not found", devs);
a3da1d95
GE
762}
763
1941414d 764/**
5ebbdab9
GE
765 Opens the ftdi-device described by a description-string.
766 Intended to be used for parsing a device-description given as commandline argument.
767
768 \param ftdi pointer to ftdi_context
769 \param description NULL-terminated description-string, using this format:
770 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
771 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
772 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
773 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
774
775 \note The description format may be extended in later versions.
776
777 \retval 0: all fine
579b006f 778 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
779 \retval -3: usb device not found
780 \retval -4: unable to open device
781 \retval -5: unable to claim device
782 \retval -6: reset failed
783 \retval -7: set baudrate failed
784 \retval -8: get product description failed
785 \retval -9: get serial number failed
786 \retval -10: unable to close device
787 \retval -11: illegal description format
22a1b5c1 788 \retval -12: ftdi context invalid
5ebbdab9
GE
789*/
790int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
791{
22a1b5c1
TJ
792 if (ftdi == NULL)
793 ftdi_error_return(-12, "ftdi context invalid");
794
5ebbdab9
GE
795 if (description[0] == 0 || description[1] != ':')
796 ftdi_error_return(-11, "illegal description format");
797
798 if (description[0] == 'd')
799 {
579b006f
JZ
800 libusb_device *dev;
801 libusb_device **devs;
56ac0383
TJ
802 unsigned int bus_number, device_address;
803 int i = 0;
579b006f 804
56ac0383
TJ
805 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
806 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 807
579b006f
JZ
808 /* XXX: This doesn't handle symlinks/odd paths/etc... */
809 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
56ac0383 810 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
5ebbdab9 811
56ac0383 812 while ((dev = devs[i++]) != NULL)
5ebbdab9 813 {
99650502 814 int ret;
56ac0383
TJ
815 if (bus_number == libusb_get_bus_number (dev)
816 && device_address == libusb_get_device_address (dev))
99650502
UB
817 {
818 ret = ftdi_usb_open_dev(ftdi, dev);
819 libusb_free_device_list(devs,1);
820 return ret;
821 }
5ebbdab9
GE
822 }
823
824 // device not found
99650502 825 ftdi_error_return_free_device_list(-3, "device not found", devs);
5ebbdab9
GE
826 }
827 else if (description[0] == 'i' || description[0] == 's')
828 {
829 unsigned int vendor;
830 unsigned int product;
831 unsigned int index=0;
0e6cf62b 832 const char *serial=NULL;
5ebbdab9
GE
833 const char *startp, *endp;
834
835 errno=0;
836 startp=description+2;
837 vendor=strtoul((char*)startp,(char**)&endp,0);
838 if (*endp != ':' || endp == startp || errno != 0)
839 ftdi_error_return(-11, "illegal description format");
840
841 startp=endp+1;
842 product=strtoul((char*)startp,(char**)&endp,0);
843 if (endp == startp || errno != 0)
844 ftdi_error_return(-11, "illegal description format");
845
846 if (description[0] == 'i' && *endp != 0)
847 {
848 /* optional index field in i-mode */
849 if (*endp != ':')
850 ftdi_error_return(-11, "illegal description format");
851
852 startp=endp+1;
853 index=strtoul((char*)startp,(char**)&endp,0);
854 if (*endp != 0 || endp == startp || errno != 0)
855 ftdi_error_return(-11, "illegal description format");
856 }
857 if (description[0] == 's')
858 {
859 if (*endp != ':')
860 ftdi_error_return(-11, "illegal description format");
861
862 /* rest of the description is the serial */
863 serial=endp+1;
864 }
865
866 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
867 }
868 else
869 {
870 ftdi_error_return(-11, "illegal description format");
871 }
872}
873
874/**
1941414d 875 Resets the ftdi device.
a3da1d95 876
1941414d
TJ
877 \param ftdi pointer to ftdi_context
878
879 \retval 0: all fine
880 \retval -1: FTDI reset failed
22a1b5c1 881 \retval -2: USB device unavailable
4837f98a 882*/
edb82cbf 883int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 884{
22a1b5c1
TJ
885 if (ftdi == NULL || ftdi->usb_dev == NULL)
886 ftdi_error_return(-2, "USB device unavailable");
887
579b006f
JZ
888 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
889 SIO_RESET_REQUEST, SIO_RESET_SIO,
890 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 891 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 892
545820ce 893 // Invalidate data in the readbuffer
bfcee05b
TJ
894 ftdi->readbuffer_offset = 0;
895 ftdi->readbuffer_remaining = 0;
896
a3da1d95
GE
897 return 0;
898}
899
1941414d 900/**
1189b11a 901 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
902
903 \param ftdi pointer to ftdi_context
4837f98a 904
1941414d 905 \retval 0: all fine
1189b11a 906 \retval -1: read buffer purge failed
22a1b5c1 907 \retval -2: USB device unavailable
4837f98a 908*/
1189b11a 909int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 910{
22a1b5c1
TJ
911 if (ftdi == NULL || ftdi->usb_dev == NULL)
912 ftdi_error_return(-2, "USB device unavailable");
913
579b006f
JZ
914 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
915 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
916 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
917 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
918
545820ce 919 // Invalidate data in the readbuffer
bfcee05b
TJ
920 ftdi->readbuffer_offset = 0;
921 ftdi->readbuffer_remaining = 0;
a60be878 922
1189b11a
TJ
923 return 0;
924}
925
926/**
927 Clears the write buffer on the chip.
928
929 \param ftdi pointer to ftdi_context
930
931 \retval 0: all fine
932 \retval -1: write buffer purge failed
22a1b5c1 933 \retval -2: USB device unavailable
1189b11a
TJ
934*/
935int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
936{
22a1b5c1
TJ
937 if (ftdi == NULL || ftdi->usb_dev == NULL)
938 ftdi_error_return(-2, "USB device unavailable");
939
579b006f
JZ
940 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
941 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
942 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
943 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
944
945 return 0;
946}
947
948/**
949 Clears the buffers on the chip and the internal read buffer.
950
951 \param ftdi pointer to ftdi_context
952
953 \retval 0: all fine
954 \retval -1: read buffer purge failed
955 \retval -2: write buffer purge failed
22a1b5c1 956 \retval -3: USB device unavailable
1189b11a
TJ
957*/
958int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
959{
960 int result;
961
22a1b5c1
TJ
962 if (ftdi == NULL || ftdi->usb_dev == NULL)
963 ftdi_error_return(-3, "USB device unavailable");
964
1189b11a 965 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 966 if (result < 0)
1189b11a
TJ
967 return -1;
968
969 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 970 if (result < 0)
1189b11a 971 return -2;
545820ce 972
a60be878
TJ
973 return 0;
974}
a3da1d95 975
f3f81007
TJ
976
977
1941414d
TJ
978/**
979 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
980
981 \param ftdi pointer to ftdi_context
982
983 \retval 0: all fine
984 \retval -1: usb_release failed
22a1b5c1 985 \retval -3: ftdi context invalid
a3da1d95 986*/
a8f46ddc
TJ
987int ftdi_usb_close(struct ftdi_context *ftdi)
988{
a3da1d95
GE
989 int rtn = 0;
990
22a1b5c1
TJ
991 if (ftdi == NULL)
992 ftdi_error_return(-3, "ftdi context invalid");
993
dff4fdb0 994 if (ftdi->usb_dev != NULL)
579b006f 995 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 996 rtn = -1;
98452d97 997
579b006f 998 ftdi_usb_close_internal (ftdi);
98452d97 999
a3da1d95
GE
1000 return rtn;
1001}
1002
74387f27 1003/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
f15786e4 1004 to encoded divisor and the achievable baudrate
53ad271d 1005 Function is only used internally
b5ec1820 1006 \internal
f15786e4
UB
1007
1008 See AN120
1009 clk/1 -> 0
1010 clk/1.5 -> 1
1011 clk/2 -> 2
1012 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1013 The fractional part has frac_code encoding
53ad271d 1014*/
f15786e4
UB
1015static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1016
a8f46ddc 1017{
f15786e4 1018 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
53ad271d
TJ
1019 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1020 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
53ad271d 1021 int divisor, best_divisor, best_baud, best_baud_diff;
f15786e4 1022 int i;
32e2d8b0 1023 divisor = 24000000 / baudrate;
53ad271d 1024
f15786e4
UB
1025 // Round down to supported fraction (AM only)
1026 divisor -= am_adjust_dn[divisor & 7];
53ad271d
TJ
1027
1028 // Try this divisor and the one above it (because division rounds down)
1029 best_divisor = 0;
1030 best_baud = 0;
1031 best_baud_diff = 0;
22d12cda
TJ
1032 for (i = 0; i < 2; i++)
1033 {
53ad271d
TJ
1034 int try_divisor = divisor + i;
1035 int baud_estimate;
1036 int baud_diff;
1037
1038 // Round up to supported divisor value
22d12cda
TJ
1039 if (try_divisor <= 8)
1040 {
53ad271d
TJ
1041 // Round up to minimum supported divisor
1042 try_divisor = 8;
22d12cda 1043 }
22d12cda
TJ
1044 else if (divisor < 16)
1045 {
53ad271d
TJ
1046 // AM doesn't support divisors 9 through 15 inclusive
1047 try_divisor = 16;
22d12cda
TJ
1048 }
1049 else
1050 {
f15786e4
UB
1051 // Round up to supported fraction (AM only)
1052 try_divisor += am_adjust_up[try_divisor & 7];
1053 if (try_divisor > 0x1FFF8)
22d12cda 1054 {
f15786e4
UB
1055 // Round down to maximum supported divisor value (for AM)
1056 try_divisor = 0x1FFF8;
53ad271d
TJ
1057 }
1058 }
1059 // Get estimated baud rate (to nearest integer)
1060 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1061 // Get absolute difference from requested baud rate
22d12cda
TJ
1062 if (baud_estimate < baudrate)
1063 {
53ad271d 1064 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
1065 }
1066 else
1067 {
53ad271d
TJ
1068 baud_diff = baud_estimate - baudrate;
1069 }
22d12cda
TJ
1070 if (i == 0 || baud_diff < best_baud_diff)
1071 {
53ad271d
TJ
1072 // Closest to requested baud rate so far
1073 best_divisor = try_divisor;
1074 best_baud = baud_estimate;
1075 best_baud_diff = baud_diff;
22d12cda
TJ
1076 if (baud_diff == 0)
1077 {
53ad271d
TJ
1078 // Spot on! No point trying
1079 break;
1080 }
1081 }
1082 }
1083 // Encode the best divisor value
f15786e4 1084 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
53ad271d 1085 // Deal with special cases for encoded value
f15786e4 1086 if (*encoded_divisor == 1)
22d12cda 1087 {
f15786e4 1088 *encoded_divisor = 0; // 3000000 baud
22d12cda 1089 }
f15786e4
UB
1090 else if (*encoded_divisor == 0x4001)
1091 {
1092 *encoded_divisor = 1; // 2000000 baud (BM only)
1093 }
1094 return best_baud;
1095}
1096
1097/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1098 to encoded divisor and the achievable baudrate
1099 Function is only used internally
1100 \internal
1101
1102 See AN120
1103 clk/1 -> 0
1104 clk/1.5 -> 1
1105 clk/2 -> 2
1106 From /2, 0.125 steps may be taken.
1107 The fractional part has frac_code encoding
9956d428
UB
1108
1109 value[13:0] of value is the divisor
1110 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1111
1112 H Type have all features above with
1113 {index[8],value[15:14]} is the encoded subdivisor
1114
74387f27 1115 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
9956d428
UB
1116 {index[0],value[15:14]} is the encoded subdivisor
1117
1118 AM Type chips have only four fractional subdivisors at value[15:14]
1119 for subdivisors 0, 0.5, 0.25, 0.125
f15786e4
UB
1120*/
1121static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor)
1122{
1123 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1124 int best_baud = 0;
1125 int divisor, best_divisor;
1126 if (baudrate >= clk/clk_div)
1127 {
1128 *encoded_divisor = 0;
1129 best_baud = clk/clk_div;
1130 }
1131 else if (baudrate >= clk/(clk_div + clk_div/2))
1132 {
1133 *encoded_divisor = 1;
1134 best_baud = clk/(clk_div + clk_div/2);
1135 }
1136 else if (baudrate >= clk/(2*clk_div))
1137 {
1138 *encoded_divisor = 2;
1139 best_baud = clk/(2*clk_div);
1140 }
1141 else
1142 {
1143 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1144 divisor = clk*16/clk_div / baudrate;
1145 if (divisor & 1) /* Decide if to round up or down*/
1146 best_divisor = divisor /2 +1;
1147 else
1148 best_divisor = divisor/2;
1149 if(best_divisor > 0x20000)
1150 best_divisor = 0x1ffff;
aae08071
UB
1151 best_baud = clk*16/clk_div/best_divisor;
1152 if (best_baud & 1) /* Decide if to round up or down*/
1153 best_baud = best_baud /2 +1;
1154 else
1155 best_baud = best_baud /2;
f15786e4
UB
1156 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1157 }
1158 return best_baud;
74387f27 1159}
f15786e4
UB
1160/**
1161 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1162 Function is only used internally
1163 \internal
1164*/
1165static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1166 unsigned short *value, unsigned short *index)
1167{
1168 int best_baud;
1169 unsigned long encoded_divisor;
1170
1171 if (baudrate <= 0)
1172 {
1173 // Return error
1174 return -1;
1175 }
1176
1177#define H_CLK 120000000
1178#define C_CLK 48000000
6ae693b2 1179 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H))
f15786e4
UB
1180 {
1181 if(baudrate*10 > H_CLK /0x3fff)
1182 {
1183 /* On H Devices, use 12 000 000 Baudrate when possible
74387f27 1184 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
f15786e4
UB
1185 three fractional bits and a 120 MHz clock
1186 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1187 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1188 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1189 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1190 }
1191 else
1192 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1193 }
1194 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R ))
1195 {
1196 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1197 }
1198 else
22d12cda 1199 {
f15786e4 1200 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
53ad271d
TJ
1201 }
1202 // Split into "value" and "index" values
1203 *value = (unsigned short)(encoded_divisor & 0xFFFF);
6ae693b2 1204 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
22d12cda 1205 {
0126d22e
TJ
1206 *index = (unsigned short)(encoded_divisor >> 8);
1207 *index &= 0xFF00;
a9c57c05 1208 *index |= ftdi->index;
0126d22e
TJ
1209 }
1210 else
1211 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 1212
53ad271d
TJ
1213 // Return the nearest baud rate
1214 return best_baud;
1215}
1216
1941414d 1217/**
ac6944cc
TJ
1218 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1219 * Do not use, it's only for the unit test framework
1220 **/
1221int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
74387f27 1222 unsigned short *value, unsigned short *index)
ac6944cc
TJ
1223{
1224 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1225}
1226
1227/**
9bec2387 1228 Sets the chip baud rate
1941414d
TJ
1229
1230 \param ftdi pointer to ftdi_context
9bec2387 1231 \param baudrate baud rate to set
1941414d
TJ
1232
1233 \retval 0: all fine
1234 \retval -1: invalid baudrate
1235 \retval -2: setting baudrate failed
22a1b5c1 1236 \retval -3: USB device unavailable
a3da1d95 1237*/
a8f46ddc
TJ
1238int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1239{
53ad271d
TJ
1240 unsigned short value, index;
1241 int actual_baudrate;
a3da1d95 1242
22a1b5c1
TJ
1243 if (ftdi == NULL || ftdi->usb_dev == NULL)
1244 ftdi_error_return(-3, "USB device unavailable");
1245
22d12cda
TJ
1246 if (ftdi->bitbang_enabled)
1247 {
a3da1d95
GE
1248 baudrate = baudrate*4;
1249 }
1250
25707904 1251 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1252 if (actual_baudrate <= 0)
1253 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1254
53ad271d
TJ
1255 // Check within tolerance (about 5%)
1256 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1257 || ((actual_baudrate < baudrate)
1258 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1259 : (baudrate * 21 < actual_baudrate * 20)))
1260 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1261
579b006f
JZ
1262 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1263 SIO_SET_BAUDRATE_REQUEST, value,
1264 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1265 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1266
1267 ftdi->baudrate = baudrate;
1268 return 0;
1269}
1270
1941414d 1271/**
6c32e222
TJ
1272 Set (RS232) line characteristics.
1273 The break type can only be set via ftdi_set_line_property2()
1274 and defaults to "off".
4837f98a 1275
1941414d
TJ
1276 \param ftdi pointer to ftdi_context
1277 \param bits Number of bits
1278 \param sbit Number of stop bits
1279 \param parity Parity mode
1280
1281 \retval 0: all fine
1282 \retval -1: Setting line property failed
2f73e59f
TJ
1283*/
1284int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1285 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1286{
6c32e222
TJ
1287 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1288}
1289
1290/**
1291 Set (RS232) line characteristics
1292
1293 \param ftdi pointer to ftdi_context
1294 \param bits Number of bits
1295 \param sbit Number of stop bits
1296 \param parity Parity mode
1297 \param break_type Break type
1298
1299 \retval 0: all fine
1300 \retval -1: Setting line property failed
22a1b5c1 1301 \retval -2: USB device unavailable
6c32e222
TJ
1302*/
1303int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1304 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1305 enum ftdi_break_type break_type)
6c32e222 1306{
2f73e59f
TJ
1307 unsigned short value = bits;
1308
22a1b5c1
TJ
1309 if (ftdi == NULL || ftdi->usb_dev == NULL)
1310 ftdi_error_return(-2, "USB device unavailable");
1311
22d12cda
TJ
1312 switch (parity)
1313 {
1314 case NONE:
1315 value |= (0x00 << 8);
1316 break;
1317 case ODD:
1318 value |= (0x01 << 8);
1319 break;
1320 case EVEN:
1321 value |= (0x02 << 8);
1322 break;
1323 case MARK:
1324 value |= (0x03 << 8);
1325 break;
1326 case SPACE:
1327 value |= (0x04 << 8);
1328 break;
2f73e59f 1329 }
d2f10023 1330
22d12cda
TJ
1331 switch (sbit)
1332 {
1333 case STOP_BIT_1:
1334 value |= (0x00 << 11);
1335 break;
1336 case STOP_BIT_15:
1337 value |= (0x01 << 11);
1338 break;
1339 case STOP_BIT_2:
1340 value |= (0x02 << 11);
1341 break;
2f73e59f 1342 }
d2f10023 1343
22d12cda
TJ
1344 switch (break_type)
1345 {
1346 case BREAK_OFF:
1347 value |= (0x00 << 14);
1348 break;
1349 case BREAK_ON:
1350 value |= (0x01 << 14);
1351 break;
6c32e222
TJ
1352 }
1353
579b006f
JZ
1354 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1355 SIO_SET_DATA_REQUEST, value,
1356 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1357 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1358
2f73e59f
TJ
1359 return 0;
1360}
a3da1d95 1361
1941414d
TJ
1362/**
1363 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1364
1365 \param ftdi pointer to ftdi_context
1366 \param buf Buffer with the data
1367 \param size Size of the buffer
1368
22a1b5c1 1369 \retval -666: USB device unavailable
1941414d
TJ
1370 \retval <0: error code from usb_bulk_write()
1371 \retval >0: number of bytes written
1372*/
276750c1 1373int ftdi_write_data(struct ftdi_context *ftdi, const unsigned char *buf, int size)
a8f46ddc 1374{
a3da1d95 1375 int offset = 0;
579b006f 1376 int actual_length;
c3d95b87 1377
22a1b5c1
TJ
1378 if (ftdi == NULL || ftdi->usb_dev == NULL)
1379 ftdi_error_return(-666, "USB device unavailable");
1380
22d12cda
TJ
1381 while (offset < size)
1382 {
948f9ada 1383 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1384
1385 if (offset+write_size > size)
1386 write_size = size-offset;
1387
276750c1 1388 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, (unsigned char *)buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
579b006f 1389 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1390
579b006f 1391 offset += actual_length;
a3da1d95
GE
1392 }
1393
579b006f 1394 return offset;
a3da1d95
GE
1395}
1396
32e2d8b0 1397static void LIBUSB_CALL ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1398{
579b006f
JZ
1399 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1400 struct ftdi_context *ftdi = tc->ftdi;
1401 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1402
b1139150 1403 packet_size = ftdi->max_packet_size;
579b006f
JZ
1404
1405 actual_length = transfer->actual_length;
1406
1407 if (actual_length > 2)
1408 {
1409 // skip FTDI status bytes.
1410 // Maybe stored in the future to enable modem use
1411 num_of_chunks = actual_length / packet_size;
1412 chunk_remains = actual_length % packet_size;
1413 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1414
1415 ftdi->readbuffer_offset += 2;
1416 actual_length -= 2;
1417
1418 if (actual_length > packet_size - 2)
1419 {
1420 for (i = 1; i < num_of_chunks; i++)
56ac0383
TJ
1421 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1422 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1423 packet_size - 2);
579b006f
JZ
1424 if (chunk_remains > 2)
1425 {
1426 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1427 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1428 chunk_remains-2);
1429 actual_length -= 2*num_of_chunks;
1430 }
1431 else
56ac0383 1432 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
579b006f
JZ
1433 }
1434
1435 if (actual_length > 0)
1436 {
1437 // data still fits in buf?
1438 if (tc->offset + actual_length <= tc->size)
1439 {
1440 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1441 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1442 tc->offset += actual_length;
1443
1444 ftdi->readbuffer_offset = 0;
1445 ftdi->readbuffer_remaining = 0;
1446
1447 /* Did we read exactly the right amount of bytes? */
1448 if (tc->offset == tc->size)
1449 {
1450 //printf("read_data exact rem %d offset %d\n",
1451 //ftdi->readbuffer_remaining, offset);
1452 tc->completed = 1;
1453 return;
1454 }
1455 }
1456 else
1457 {
1458 // only copy part of the data or size <= readbuffer_chunksize
1459 int part_size = tc->size - tc->offset;
1460 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1461 tc->offset += part_size;
1462
1463 ftdi->readbuffer_offset += part_size;
1464 ftdi->readbuffer_remaining = actual_length - part_size;
1465
1466 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1467 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1468 tc->completed = 1;
1469 return;
1470 }
1471 }
1472 }
1473 ret = libusb_submit_transfer (transfer);
1474 if (ret < 0)
1475 tc->completed = 1;
1476}
1477
1478
32e2d8b0 1479static void LIBUSB_CALL ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1480{
579b006f
JZ
1481 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1482 struct ftdi_context *ftdi = tc->ftdi;
56ac0383 1483
90ef163e 1484 tc->offset += transfer->actual_length;
56ac0383 1485
579b006f 1486 if (tc->offset == tc->size)
22d12cda 1487 {
579b006f 1488 tc->completed = 1;
7cc9950e 1489 }
579b006f
JZ
1490 else
1491 {
1492 int write_size = ftdi->writebuffer_chunksize;
1493 int ret;
7cc9950e 1494
579b006f
JZ
1495 if (tc->offset + write_size > tc->size)
1496 write_size = tc->size - tc->offset;
1497
1498 transfer->length = write_size;
1499 transfer->buffer = tc->buf + tc->offset;
1500 ret = libusb_submit_transfer (transfer);
1501 if (ret < 0)
1502 tc->completed = 1;
1503 }
7cc9950e
GE
1504}
1505
579b006f 1506
84f85aaa 1507/**
579b006f
JZ
1508 Writes data to the chip. Does not wait for completion of the transfer
1509 nor does it make sure that the transfer was successful.
1510
249888c8 1511 Use libusb 1.0 asynchronous API.
84f85aaa
GE
1512
1513 \param ftdi pointer to ftdi_context
579b006f
JZ
1514 \param buf Buffer with the data
1515 \param size Size of the buffer
84f85aaa 1516
579b006f
JZ
1517 \retval NULL: Some error happens when submit transfer
1518 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1519*/
579b006f
JZ
1520
1521struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1522{
579b006f 1523 struct ftdi_transfer_control *tc;
5e77e870 1524 struct libusb_transfer *transfer;
579b006f 1525 int write_size, ret;
22d12cda 1526
22a1b5c1 1527 if (ftdi == NULL || ftdi->usb_dev == NULL)
22a1b5c1 1528 return NULL;
22a1b5c1 1529
579b006f 1530 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
5e77e870
TJ
1531 if (!tc)
1532 return NULL;
22d12cda 1533
5e77e870
TJ
1534 transfer = libusb_alloc_transfer(0);
1535 if (!transfer)
1536 {
1537 free(tc);
579b006f 1538 return NULL;
5e77e870 1539 }
22d12cda 1540
579b006f
JZ
1541 tc->ftdi = ftdi;
1542 tc->completed = 0;
1543 tc->buf = buf;
1544 tc->size = size;
1545 tc->offset = 0;
7cc9950e 1546
9e44fc94 1547 if (size < (int)ftdi->writebuffer_chunksize)
56ac0383 1548 write_size = size;
579b006f 1549 else
56ac0383 1550 write_size = ftdi->writebuffer_chunksize;
22d12cda 1551
90ef163e
YSL
1552 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1553 write_size, ftdi_write_data_cb, tc,
1554 ftdi->usb_write_timeout);
579b006f 1555 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1556
579b006f
JZ
1557 ret = libusb_submit_transfer(transfer);
1558 if (ret < 0)
1559 {
1560 libusb_free_transfer(transfer);
5e77e870 1561 free(tc);
579b006f 1562 return NULL;
7cc9950e 1563 }
579b006f
JZ
1564 tc->transfer = transfer;
1565
1566 return tc;
7cc9950e
GE
1567}
1568
1569/**
579b006f
JZ
1570 Reads data from the chip. Does not wait for completion of the transfer
1571 nor does it make sure that the transfer was successful.
1572
249888c8 1573 Use libusb 1.0 asynchronous API.
7cc9950e
GE
1574
1575 \param ftdi pointer to ftdi_context
579b006f
JZ
1576 \param buf Buffer with the data
1577 \param size Size of the buffer
4c9e3812 1578
579b006f
JZ
1579 \retval NULL: Some error happens when submit transfer
1580 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1581*/
579b006f
JZ
1582
1583struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1584{
579b006f
JZ
1585 struct ftdi_transfer_control *tc;
1586 struct libusb_transfer *transfer;
1587 int ret;
22d12cda 1588
22a1b5c1
TJ
1589 if (ftdi == NULL || ftdi->usb_dev == NULL)
1590 return NULL;
1591
579b006f
JZ
1592 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1593 if (!tc)
1594 return NULL;
1595
1596 tc->ftdi = ftdi;
1597 tc->buf = buf;
1598 tc->size = size;
1599
9e44fc94 1600 if (size <= (int)ftdi->readbuffer_remaining)
7cc9950e 1601 {
579b006f 1602 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1603
579b006f
JZ
1604 // Fix offsets
1605 ftdi->readbuffer_remaining -= size;
1606 ftdi->readbuffer_offset += size;
7cc9950e 1607
579b006f 1608 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1609
579b006f
JZ
1610 tc->completed = 1;
1611 tc->offset = size;
1612 tc->transfer = NULL;
1613 return tc;
1614 }
4c9e3812 1615
579b006f
JZ
1616 tc->completed = 0;
1617 if (ftdi->readbuffer_remaining != 0)
1618 {
1619 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1620
579b006f
JZ
1621 tc->offset = ftdi->readbuffer_remaining;
1622 }
1623 else
1624 tc->offset = 0;
22d12cda 1625
579b006f
JZ
1626 transfer = libusb_alloc_transfer(0);
1627 if (!transfer)
1628 {
1629 free (tc);
1630 return NULL;
1631 }
22d12cda 1632
579b006f
JZ
1633 ftdi->readbuffer_remaining = 0;
1634 ftdi->readbuffer_offset = 0;
1635
1636 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1637 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1638
1639 ret = libusb_submit_transfer(transfer);
1640 if (ret < 0)
1641 {
1642 libusb_free_transfer(transfer);
1643 free (tc);
1644 return NULL;
22d12cda 1645 }
579b006f
JZ
1646 tc->transfer = transfer;
1647
1648 return tc;
4c9e3812
GE
1649}
1650
1651/**
579b006f 1652 Wait for completion of the transfer.
4c9e3812 1653
249888c8 1654 Use libusb 1.0 asynchronous API.
4c9e3812 1655
579b006f 1656 \param tc pointer to ftdi_transfer_control
4c9e3812 1657
579b006f
JZ
1658 \retval < 0: Some error happens
1659 \retval >= 0: Data size transferred
4c9e3812 1660*/
579b006f
JZ
1661
1662int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1663{
1664 int ret;
4c9e3812 1665
579b006f 1666 while (!tc->completed)
22d12cda 1667 {
29b1dfd9 1668 ret = libusb_handle_events(tc->ftdi->usb_ctx);
4c9e3812 1669 if (ret < 0)
579b006f
JZ
1670 {
1671 if (ret == LIBUSB_ERROR_INTERRUPTED)
1672 continue;
1673 libusb_cancel_transfer(tc->transfer);
1674 while (!tc->completed)
29b1dfd9 1675 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
579b006f
JZ
1676 break;
1677 libusb_free_transfer(tc->transfer);
1678 free (tc);
579b006f
JZ
1679 return ret;
1680 }
4c9e3812
GE
1681 }
1682
90ef163e
YSL
1683 ret = tc->offset;
1684 /**
1685 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
ef15fab5 1686 * at ftdi_read_data_submit(). Therefore, we need to check it here.
90ef163e 1687 **/
ef15fab5
TJ
1688 if (tc->transfer)
1689 {
1690 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1691 ret = -1;
1692 libusb_free_transfer(tc->transfer);
90ef163e 1693 }
579b006f
JZ
1694 free(tc);
1695 return ret;
4c9e3812 1696}
579b006f 1697
1941414d
TJ
1698/**
1699 Configure write buffer chunk size.
1700 Default is 4096.
1701
1702 \param ftdi pointer to ftdi_context
1703 \param chunksize Chunk size
a3da1d95 1704
1941414d 1705 \retval 0: all fine
22a1b5c1 1706 \retval -1: ftdi context invalid
1941414d 1707*/
a8f46ddc
TJ
1708int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1709{
22a1b5c1
TJ
1710 if (ftdi == NULL)
1711 ftdi_error_return(-1, "ftdi context invalid");
1712
948f9ada
TJ
1713 ftdi->writebuffer_chunksize = chunksize;
1714 return 0;
1715}
1716
1941414d
TJ
1717/**
1718 Get write buffer chunk size.
1719
1720 \param ftdi pointer to ftdi_context
1721 \param chunksize Pointer to store chunk size in
948f9ada 1722
1941414d 1723 \retval 0: all fine
22a1b5c1 1724 \retval -1: ftdi context invalid
1941414d 1725*/
a8f46ddc
TJ
1726int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1727{
22a1b5c1
TJ
1728 if (ftdi == NULL)
1729 ftdi_error_return(-1, "ftdi context invalid");
1730
948f9ada
TJ
1731 *chunksize = ftdi->writebuffer_chunksize;
1732 return 0;
1733}
cbabb7d3 1734
1941414d
TJ
1735/**
1736 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1737
1738 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1739
1941414d
TJ
1740 \param ftdi pointer to ftdi_context
1741 \param buf Buffer to store data in
1742 \param size Size of the buffer
1743
22a1b5c1 1744 \retval -666: USB device unavailable
579b006f 1745 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 1746 \retval 0: no data was available
1941414d
TJ
1747 \retval >0: number of bytes read
1748
1941414d 1749*/
a8f46ddc
TJ
1750int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1751{
579b006f 1752 int offset = 0, ret, i, num_of_chunks, chunk_remains;
e2f12a4f 1753 int packet_size = ftdi->max_packet_size;
579b006f 1754 int actual_length = 1;
f2f00cb5 1755
22a1b5c1
TJ
1756 if (ftdi == NULL || ftdi->usb_dev == NULL)
1757 ftdi_error_return(-666, "USB device unavailable");
1758
e2f12a4f
TJ
1759 // Packet size sanity check (avoid division by zero)
1760 if (packet_size == 0)
1761 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 1762
948f9ada 1763 // everything we want is still in the readbuffer?
9e44fc94 1764 if (size <= (int)ftdi->readbuffer_remaining)
22d12cda 1765 {
d9f0cce7
TJ
1766 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1767
1768 // Fix offsets
1769 ftdi->readbuffer_remaining -= size;
1770 ftdi->readbuffer_offset += size;
1771
545820ce 1772 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1773
1774 return size;
979a145c 1775 }
948f9ada 1776 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
1777 if (ftdi->readbuffer_remaining != 0)
1778 {
d9f0cce7 1779 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1780
d9f0cce7
TJ
1781 // Fix offset
1782 offset += ftdi->readbuffer_remaining;
948f9ada 1783 }
948f9ada 1784 // do the actual USB read
579b006f 1785 while (offset < size && actual_length > 0)
22d12cda 1786 {
d9f0cce7
TJ
1787 ftdi->readbuffer_remaining = 0;
1788 ftdi->readbuffer_offset = 0;
98452d97 1789 /* returns how much received */
579b006f 1790 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
1791 if (ret < 0)
1792 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1793
579b006f 1794 if (actual_length > 2)
22d12cda 1795 {
d9f0cce7
TJ
1796 // skip FTDI status bytes.
1797 // Maybe stored in the future to enable modem use
579b006f
JZ
1798 num_of_chunks = actual_length / packet_size;
1799 chunk_remains = actual_length % packet_size;
1800 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 1801
d9f0cce7 1802 ftdi->readbuffer_offset += 2;
579b006f 1803 actual_length -= 2;
1c733d33 1804
579b006f 1805 if (actual_length > packet_size - 2)
22d12cda 1806 {
1c733d33 1807 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
1808 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1809 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1810 packet_size - 2);
22d12cda
TJ
1811 if (chunk_remains > 2)
1812 {
f2f00cb5
DC
1813 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1814 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 1815 chunk_remains-2);
579b006f 1816 actual_length -= 2*num_of_chunks;
22d12cda
TJ
1817 }
1818 else
579b006f 1819 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 1820 }
22d12cda 1821 }
579b006f 1822 else if (actual_length <= 2)
22d12cda 1823 {
d9f0cce7
TJ
1824 // no more data to read?
1825 return offset;
1826 }
579b006f 1827 if (actual_length > 0)
22d12cda 1828 {
d9f0cce7 1829 // data still fits in buf?
579b006f 1830 if (offset+actual_length <= size)
22d12cda 1831 {
579b006f 1832 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 1833 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 1834 offset += actual_length;
d9f0cce7 1835
53ad271d 1836 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1837 if (offset == size)
c4446c36
TJ
1838 //printf("read_data exact rem %d offset %d\n",
1839 //ftdi->readbuffer_remaining, offset);
d9f0cce7 1840 return offset;
22d12cda
TJ
1841 }
1842 else
1843 {
d9f0cce7
TJ
1844 // only copy part of the data or size <= readbuffer_chunksize
1845 int part_size = size-offset;
1846 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1847
d9f0cce7 1848 ftdi->readbuffer_offset += part_size;
579b006f 1849 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
1850 offset += part_size;
1851
579b006f
JZ
1852 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1853 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1854
1855 return offset;
1856 }
1857 }
cbabb7d3 1858 }
948f9ada 1859 // never reached
29c4af7f 1860 return -127;
a3da1d95
GE
1861}
1862
1941414d
TJ
1863/**
1864 Configure read buffer chunk size.
1865 Default is 4096.
1866
1867 Automatically reallocates the buffer.
a3da1d95 1868
1941414d
TJ
1869 \param ftdi pointer to ftdi_context
1870 \param chunksize Chunk size
1871
1872 \retval 0: all fine
22a1b5c1 1873 \retval -1: ftdi context invalid
1941414d 1874*/
a8f46ddc
TJ
1875int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1876{
29c4af7f
TJ
1877 unsigned char *new_buf;
1878
22a1b5c1
TJ
1879 if (ftdi == NULL)
1880 ftdi_error_return(-1, "ftdi context invalid");
1881
948f9ada
TJ
1882 // Invalidate all remaining data
1883 ftdi->readbuffer_offset = 0;
1884 ftdi->readbuffer_remaining = 0;
8de6eea4
JZ
1885#ifdef __linux__
1886 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1887 which is defined in libusb-1.0. Otherwise, each USB read request will
2e685a1f 1888 be divided into multiple URBs. This will cause issues on Linux kernel
8de6eea4
JZ
1889 older than 2.6.32. */
1890 if (chunksize > 16384)
1891 chunksize = 16384;
1892#endif
948f9ada 1893
c3d95b87
TJ
1894 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1895 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1896
948f9ada
TJ
1897 ftdi->readbuffer = new_buf;
1898 ftdi->readbuffer_chunksize = chunksize;
1899
1900 return 0;
1901}
1902
1941414d
TJ
1903/**
1904 Get read buffer chunk size.
948f9ada 1905
1941414d
TJ
1906 \param ftdi pointer to ftdi_context
1907 \param chunksize Pointer to store chunk size in
1908
1909 \retval 0: all fine
22a1b5c1 1910 \retval -1: FTDI context invalid
1941414d 1911*/
a8f46ddc
TJ
1912int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1913{
22a1b5c1
TJ
1914 if (ftdi == NULL)
1915 ftdi_error_return(-1, "FTDI context invalid");
1916
948f9ada
TJ
1917 *chunksize = ftdi->readbuffer_chunksize;
1918 return 0;
1919}
1920
1941414d 1921/**
2d790e37 1922 Enable/disable bitbang modes.
1941414d
TJ
1923
1924 \param ftdi pointer to ftdi_context
1925 \param bitmask Bitmask to configure lines.
1926 HIGH/ON value configures a line as output.
2d790e37 1927 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
1928
1929 \retval 0: all fine
1930 \retval -1: can't enable bitbang mode
22a1b5c1 1931 \retval -2: USB device unavailable
1941414d 1932*/
2d790e37 1933int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
a8f46ddc 1934{
a3da1d95
GE
1935 unsigned short usb_val;
1936
22a1b5c1
TJ
1937 if (ftdi == NULL || ftdi->usb_dev == NULL)
1938 ftdi_error_return(-2, "USB device unavailable");
1939
d9f0cce7 1940 usb_val = bitmask; // low byte: bitmask
2d790e37
TJ
1941 usb_val |= (mode << 8);
1942 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1943 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
c3d95b87 1944
2d790e37
TJ
1945 ftdi->bitbang_mode = mode;
1946 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
a3da1d95
GE
1947 return 0;
1948}
1949
1941414d
TJ
1950/**
1951 Disable bitbang mode.
a3da1d95 1952
1941414d
TJ
1953 \param ftdi pointer to ftdi_context
1954
1955 \retval 0: all fine
1956 \retval -1: can't disable bitbang mode
22a1b5c1 1957 \retval -2: USB device unavailable
1941414d 1958*/
a8f46ddc
TJ
1959int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1960{
22a1b5c1
TJ
1961 if (ftdi == NULL || ftdi->usb_dev == NULL)
1962 ftdi_error_return(-2, "USB device unavailable");
1963
579b006f 1964 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1965 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1966
1967 ftdi->bitbang_enabled = 0;
1968 return 0;
1969}
1970
c4446c36 1971
1941414d 1972/**
418aaa72 1973 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
1974
1975 \param ftdi pointer to ftdi_context
1976 \param pins Pointer to store pins into
1977
1978 \retval 0: all fine
1979 \retval -1: read pins failed
22a1b5c1 1980 \retval -2: USB device unavailable
1941414d 1981*/
a8f46ddc
TJ
1982int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1983{
22a1b5c1
TJ
1984 if (ftdi == NULL || ftdi->usb_dev == NULL)
1985 ftdi_error_return(-2, "USB device unavailable");
1986
579b006f 1987 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1988 ftdi_error_return(-1, "read pins failed");
a3da1d95 1989
a3da1d95
GE
1990 return 0;
1991}
1992
1941414d
TJ
1993/**
1994 Set latency timer
1995
1996 The FTDI chip keeps data in the internal buffer for a specific
1997 amount of time if the buffer is not full yet to decrease
1998 load on the usb bus.
a3da1d95 1999
1941414d
TJ
2000 \param ftdi pointer to ftdi_context
2001 \param latency Value between 1 and 255
2002
2003 \retval 0: all fine
2004 \retval -1: latency out of range
2005 \retval -2: unable to set latency timer
22a1b5c1 2006 \retval -3: USB device unavailable
1941414d 2007*/
a8f46ddc
TJ
2008int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2009{
a3da1d95
GE
2010 unsigned short usb_val;
2011
c3d95b87
TJ
2012 if (latency < 1)
2013 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 2014
22a1b5c1
TJ
2015 if (ftdi == NULL || ftdi->usb_dev == NULL)
2016 ftdi_error_return(-3, "USB device unavailable");
2017
d79d2e68 2018 usb_val = latency;
579b006f 2019 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
2020 ftdi_error_return(-2, "unable to set latency timer");
2021
a3da1d95
GE
2022 return 0;
2023}
2024
1941414d
TJ
2025/**
2026 Get latency timer
a3da1d95 2027
1941414d
TJ
2028 \param ftdi pointer to ftdi_context
2029 \param latency Pointer to store latency value in
2030
2031 \retval 0: all fine
2032 \retval -1: unable to get latency timer
22a1b5c1 2033 \retval -2: USB device unavailable
1941414d 2034*/
a8f46ddc
TJ
2035int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2036{
a3da1d95 2037 unsigned short usb_val;
22a1b5c1
TJ
2038
2039 if (ftdi == NULL || ftdi->usb_dev == NULL)
2040 ftdi_error_return(-2, "USB device unavailable");
2041
579b006f 2042 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 2043 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
2044
2045 *latency = (unsigned char)usb_val;
2046 return 0;
2047}
2048
1941414d 2049/**
1189b11a
TJ
2050 Poll modem status information
2051
2052 This function allows the retrieve the two status bytes of the device.
2053 The device sends these bytes also as a header for each read access
2054 where they are discarded by ftdi_read_data(). The chip generates
2055 the two stripped status bytes in the absence of data every 40 ms.
2056
2057 Layout of the first byte:
2058 - B0..B3 - must be 0
2059 - B4 Clear to send (CTS)
2060 0 = inactive
2061 1 = active
2062 - B5 Data set ready (DTS)
2063 0 = inactive
2064 1 = active
2065 - B6 Ring indicator (RI)
2066 0 = inactive
2067 1 = active
2068 - B7 Receive line signal detect (RLSD)
2069 0 = inactive
2070 1 = active
2071
2072 Layout of the second byte:
2073 - B0 Data ready (DR)
2074 - B1 Overrun error (OE)
2075 - B2 Parity error (PE)
2076 - B3 Framing error (FE)
2077 - B4 Break interrupt (BI)
2078 - B5 Transmitter holding register (THRE)
2079 - B6 Transmitter empty (TEMT)
2080 - B7 Error in RCVR FIFO
2081
2082 \param ftdi pointer to ftdi_context
2083 \param status Pointer to store status information in. Must be two bytes.
2084
2085 \retval 0: all fine
2086 \retval -1: unable to retrieve status information
22a1b5c1 2087 \retval -2: USB device unavailable
1189b11a
TJ
2088*/
2089int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2090{
2091 char usb_val[2];
2092
22a1b5c1
TJ
2093 if (ftdi == NULL || ftdi->usb_dev == NULL)
2094 ftdi_error_return(-2, "USB device unavailable");
2095
579b006f 2096 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
2097 ftdi_error_return(-1, "getting modem status failed");
2098
dc09eaa8 2099 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
1189b11a
TJ
2100
2101 return 0;
2102}
2103
a7fb8440
TJ
2104/**
2105 Set flowcontrol for ftdi chip
2106
2107 \param ftdi pointer to ftdi_context
22d12cda
TJ
2108 \param flowctrl flow control to use. should be
2109 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
a7fb8440
TJ
2110
2111 \retval 0: all fine
2112 \retval -1: set flow control failed
22a1b5c1 2113 \retval -2: USB device unavailable
a7fb8440
TJ
2114*/
2115int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2116{
22a1b5c1
TJ
2117 if (ftdi == NULL || ftdi->usb_dev == NULL)
2118 ftdi_error_return(-2, "USB device unavailable");
2119
579b006f
JZ
2120 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2121 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2122 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2123 ftdi_error_return(-1, "set flow control failed");
2124
2125 return 0;
2126}
2127
2128/**
2129 Set dtr line
2130
2131 \param ftdi pointer to ftdi_context
2132 \param state state to set line to (1 or 0)
2133
2134 \retval 0: all fine
2135 \retval -1: set dtr failed
22a1b5c1 2136 \retval -2: USB device unavailable
a7fb8440
TJ
2137*/
2138int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2139{
2140 unsigned short usb_val;
2141
22a1b5c1
TJ
2142 if (ftdi == NULL || ftdi->usb_dev == NULL)
2143 ftdi_error_return(-2, "USB device unavailable");
2144
a7fb8440
TJ
2145 if (state)
2146 usb_val = SIO_SET_DTR_HIGH;
2147 else
2148 usb_val = SIO_SET_DTR_LOW;
2149
579b006f
JZ
2150 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2151 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2152 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2153 ftdi_error_return(-1, "set dtr failed");
2154
2155 return 0;
2156}
2157
2158/**
2159 Set rts line
2160
2161 \param ftdi pointer to ftdi_context
2162 \param state state to set line to (1 or 0)
2163
2164 \retval 0: all fine
22a1b5c1
TJ
2165 \retval -1: set rts failed
2166 \retval -2: USB device unavailable
a7fb8440
TJ
2167*/
2168int ftdi_setrts(struct ftdi_context *ftdi, int state)
2169{
2170 unsigned short usb_val;
2171
22a1b5c1
TJ
2172 if (ftdi == NULL || ftdi->usb_dev == NULL)
2173 ftdi_error_return(-2, "USB device unavailable");
2174
a7fb8440
TJ
2175 if (state)
2176 usb_val = SIO_SET_RTS_HIGH;
2177 else
2178 usb_val = SIO_SET_RTS_LOW;
2179
579b006f
JZ
2180 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2181 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2182 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2183 ftdi_error_return(-1, "set of rts failed");
2184
2185 return 0;
2186}
2187
1189b11a 2188/**
22a1b5c1 2189 Set dtr and rts line in one pass
9ecfef2a 2190
22a1b5c1
TJ
2191 \param ftdi pointer to ftdi_context
2192 \param dtr DTR state to set line to (1 or 0)
2193 \param rts RTS state to set line to (1 or 0)
9ecfef2a 2194
22a1b5c1
TJ
2195 \retval 0: all fine
2196 \retval -1: set dtr/rts failed
2197 \retval -2: USB device unavailable
9ecfef2a
TJ
2198 */
2199int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2200{
2201 unsigned short usb_val;
2202
22a1b5c1
TJ
2203 if (ftdi == NULL || ftdi->usb_dev == NULL)
2204 ftdi_error_return(-2, "USB device unavailable");
2205
9ecfef2a 2206 if (dtr)
22d12cda 2207 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 2208 else
22d12cda 2209 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
2210
2211 if (rts)
22d12cda 2212 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 2213 else
22d12cda 2214 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 2215
579b006f
JZ
2216 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2217 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2218 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 2219 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
2220
2221 return 0;
2222}
2223
2224/**
1189b11a
TJ
2225 Set the special event character
2226
2227 \param ftdi pointer to ftdi_context
2228 \param eventch Event character
2229 \param enable 0 to disable the event character, non-zero otherwise
2230
2231 \retval 0: all fine
2232 \retval -1: unable to set event character
22a1b5c1 2233 \retval -2: USB device unavailable
1189b11a
TJ
2234*/
2235int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 2236 unsigned char eventch, unsigned char enable)
1189b11a
TJ
2237{
2238 unsigned short usb_val;
2239
22a1b5c1
TJ
2240 if (ftdi == NULL || ftdi->usb_dev == NULL)
2241 ftdi_error_return(-2, "USB device unavailable");
2242
1189b11a
TJ
2243 usb_val = eventch;
2244 if (enable)
2245 usb_val |= 1 << 8;
2246
579b006f 2247 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2248 ftdi_error_return(-1, "setting event character failed");
2249
2250 return 0;
2251}
2252
2253/**
2254 Set error character
2255
2256 \param ftdi pointer to ftdi_context
2257 \param errorch Error character
2258 \param enable 0 to disable the error character, non-zero otherwise
2259
2260 \retval 0: all fine
2261 \retval -1: unable to set error character
22a1b5c1 2262 \retval -2: USB device unavailable
1189b11a
TJ
2263*/
2264int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 2265 unsigned char errorch, unsigned char enable)
1189b11a
TJ
2266{
2267 unsigned short usb_val;
2268
22a1b5c1
TJ
2269 if (ftdi == NULL || ftdi->usb_dev == NULL)
2270 ftdi_error_return(-2, "USB device unavailable");
2271
1189b11a
TJ
2272 usb_val = errorch;
2273 if (enable)
2274 usb_val |= 1 << 8;
2275
579b006f 2276 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2277 ftdi_error_return(-1, "setting error character failed");
2278
2279 return 0;
2280}
2281
2282/**
44f41f11 2283 Init eeprom with default values for the connected device
a35aa9bd 2284 \param ftdi pointer to ftdi_context
f14f84d3
UB
2285 \param manufacturer String to use as Manufacturer
2286 \param product String to use as Product description
2287 \param serial String to use as Serial number description
4e74064b 2288
f14f84d3
UB
2289 \retval 0: all fine
2290 \retval -1: No struct ftdi_context
2291 \retval -2: No struct ftdi_eeprom
44f41f11 2292 \retval -3: No connected device or device not yet opened
1941414d 2293*/
f14f84d3 2294int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
56ac0383 2295 char * product, char * serial)
a8f46ddc 2296{
c0a96aed 2297 struct ftdi_eeprom *eeprom;
f505134f 2298
c0a96aed 2299 if (ftdi == NULL)
f14f84d3 2300 ftdi_error_return(-1, "No struct ftdi_context");
c0a96aed
UB
2301
2302 if (ftdi->eeprom == NULL)
56ac0383 2303 ftdi_error_return(-2,"No struct ftdi_eeprom");
22a1b5c1 2304
c0a96aed 2305 eeprom = ftdi->eeprom;
a02587d5 2306 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
c0a96aed 2307
44f41f11
UB
2308 if (ftdi->usb_dev == NULL)
2309 ftdi_error_return(-3, "No connected device or device not yet opened");
2310
f396dbad 2311 eeprom->vendor_id = 0x0403;
d4b5af27 2312 eeprom->use_serial = 1;
56ac0383
TJ
2313 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2314 (ftdi->type == TYPE_R))
a02587d5 2315 eeprom->product_id = 0x6001;
c7e4c09e
UB
2316 else if (ftdi->type == TYPE_4232H)
2317 eeprom->product_id = 0x6011;
2318 else if (ftdi->type == TYPE_232H)
2319 eeprom->product_id = 0x6014;
2f80efc2
NP
2320 else if (ftdi->type == TYPE_230X)
2321 eeprom->product_id = 0x6015;
a02587d5
UB
2322 else
2323 eeprom->product_id = 0x6010;
2f80efc2 2324
b1859923
UB
2325 if (ftdi->type == TYPE_AM)
2326 eeprom->usb_version = 0x0101;
2327 else
2328 eeprom->usb_version = 0x0200;
a886436a 2329 eeprom->max_power = 100;
d9f0cce7 2330
74e8e79d
UB
2331 if (eeprom->manufacturer)
2332 free (eeprom->manufacturer);
b8aa7b35 2333 eeprom->manufacturer = NULL;
74e8e79d
UB
2334 if (manufacturer)
2335 {
2336 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2337 if (eeprom->manufacturer)
2338 strcpy(eeprom->manufacturer, manufacturer);
2339 }
2340
2341 if (eeprom->product)
2342 free (eeprom->product);
b8aa7b35 2343 eeprom->product = NULL;
10771971 2344 if(product)
74e8e79d
UB
2345 {
2346 eeprom->product = malloc(strlen(product)+1);
2347 if (eeprom->product)
2348 strcpy(eeprom->product, product);
2349 }
6a6fcd89
UB
2350 else
2351 {
2352 const char* default_product;
2353 switch(ftdi->type)
2354 {
74387f27
TJ
2355 case TYPE_AM: default_product = "AM"; break;
2356 case TYPE_BM: default_product = "BM"; break;
2357 case TYPE_2232C: default_product = "Dual RS232"; break;
2358 case TYPE_R: default_product = "FT232R USB UART"; break;
2359 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2360 case TYPE_4232H: default_product = "FT4232H"; break;
2361 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2362 case TYPE_230X: default_product = "FT230X Basic UART"; break;
2363 default:
2364 ftdi_error_return(-3, "Unknown chip type");
6a6fcd89
UB
2365 }
2366 eeprom->product = malloc(strlen(default_product) +1);
2367 if (eeprom->product)
2368 strcpy(eeprom->product, default_product);
2369 }
74e8e79d
UB
2370
2371 if (eeprom->serial)
2372 free (eeprom->serial);
b8aa7b35 2373 eeprom->serial = NULL;
74e8e79d
UB
2374 if (serial)
2375 {
2376 eeprom->serial = malloc(strlen(serial)+1);
2377 if (eeprom->serial)
2378 strcpy(eeprom->serial, serial);
2379 }
2380
56ac0383 2381 if (ftdi->type == TYPE_R)
a4980043 2382 {
a886436a 2383 eeprom->max_power = 90;
a02587d5 2384 eeprom->size = 0x80;
a4980043
UB
2385 eeprom->cbus_function[0] = CBUS_TXLED;
2386 eeprom->cbus_function[1] = CBUS_RXLED;
2387 eeprom->cbus_function[2] = CBUS_TXDEN;
2388 eeprom->cbus_function[3] = CBUS_PWREN;
2389 eeprom->cbus_function[4] = CBUS_SLEEP;
2390 }
2f80efc2
NP
2391 else if (ftdi->type == TYPE_230X)
2392 {
2393 eeprom->max_power = 90;
2394 eeprom->size = 0x100;
2395 eeprom->cbus_function[0] = CBUSH_TXDEN;
2396 eeprom->cbus_function[1] = CBUSH_RXLED;
2397 eeprom->cbus_function[2] = CBUSH_TXLED;
2398 eeprom->cbus_function[3] = CBUSH_SLEEP;
2399 }
a02587d5 2400 else
263d3ba0
UB
2401 {
2402 if(ftdi->type == TYPE_232H)
2403 {
2404 int i;
2405 for (i=0; i<10; i++)
2406 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2407 }
a02587d5 2408 eeprom->size = -1;
263d3ba0 2409 }
68e78641
JS
2410 switch (ftdi->type)
2411 {
2412 case TYPE_AM:
2413 eeprom->release_number = 0x0200;
2414 break;
2415 case TYPE_BM:
2416 eeprom->release_number = 0x0400;
2417 break;
2418 case TYPE_2232C:
2419 eeprom->release_number = 0x0500;
2420 break;
2421 case TYPE_R:
2422 eeprom->release_number = 0x0600;
2423 break;
2424 case TYPE_2232H:
2425 eeprom->release_number = 0x0700;
2426 break;
2427 case TYPE_4232H:
2428 eeprom->release_number = 0x0800;
2429 break;
2430 case TYPE_232H:
2431 eeprom->release_number = 0x0900;
2432 break;
2f80efc2
NP
2433 case TYPE_230X:
2434 eeprom->release_number = 0x1000;
2435 break;
68e78641
JS
2436 default:
2437 eeprom->release_number = 0x00;
2438 }
f14f84d3 2439 return 0;
b8aa7b35 2440}
878f0c6a
NP
2441
2442int ftdi_eeprom_set_strings(struct ftdi_context *ftdi, char * manufacturer,
74387f27 2443 char * product, char * serial)
878f0c6a
NP
2444{
2445 struct ftdi_eeprom *eeprom;
2446
2447 if (ftdi == NULL)
2448 ftdi_error_return(-1, "No struct ftdi_context");
2449
2450 if (ftdi->eeprom == NULL)
2451 ftdi_error_return(-2,"No struct ftdi_eeprom");
2452
2453 eeprom = ftdi->eeprom;
2454
2455 if (ftdi->usb_dev == NULL)
2456 ftdi_error_return(-3, "No connected device or device not yet opened");
2457
74387f27
TJ
2458 if (manufacturer)
2459 {
878f0c6a
NP
2460 if (eeprom->manufacturer)
2461 free (eeprom->manufacturer);
2462 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2463 if (eeprom->manufacturer)
2464 strcpy(eeprom->manufacturer, manufacturer);
2465 }
2466
74387f27
TJ
2467 if(product)
2468 {
878f0c6a
NP
2469 if (eeprom->product)
2470 free (eeprom->product);
2471 eeprom->product = malloc(strlen(product)+1);
2472 if (eeprom->product)
2473 strcpy(eeprom->product, product);
2474 }
2475
74387f27
TJ
2476 if (serial)
2477 {
878f0c6a
NP
2478 if (eeprom->serial)
2479 free (eeprom->serial);
2480 eeprom->serial = malloc(strlen(serial)+1);
74387f27
TJ
2481 if (eeprom->serial)
2482 {
878f0c6a
NP
2483 strcpy(eeprom->serial, serial);
2484 eeprom->use_serial = 1;
2485 }
2486 }
2487 return 0;
2488}
2489
2490
263d3ba0
UB
2491/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2492void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2493{
2494 int i;
74387f27 2495 for(i=0; i<5; i++)
263d3ba0
UB
2496 {
2497 int mode_low, mode_high;
2498 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2499 mode_low = CBUSH_TRISTATE;
2500 else
2501 mode_low = eeprom->cbus_function[2*i];
2502 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2503 mode_high = CBUSH_TRISTATE;
2504 else
f37a1524 2505 mode_high = eeprom->cbus_function[2*i+1];
b8aa7b35 2506
f37a1524 2507 output[0x18+i] = (mode_high <<4) | mode_low;
263d3ba0
UB
2508 }
2509}
c8f69686
UB
2510/* Return the bits for the encoded EEPROM Structure of a requested Mode
2511 *
2512 */
2513static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2514{
2515 switch (chip)
2516 {
74387f27
TJ
2517 case TYPE_2232H:
2518 case TYPE_2232C:
c8f69686 2519 {
74387f27
TJ
2520 switch (type)
2521 {
2522 case CHANNEL_IS_UART: return 0;
2523 case CHANNEL_IS_FIFO: return 0x01;
2524 case CHANNEL_IS_OPTO: return 0x02;
2525 case CHANNEL_IS_CPU : return 0x04;
2526 default: return 0;
2527 }
c8f69686 2528 }
74387f27 2529 case TYPE_232H:
c8f69686 2530 {
74387f27
TJ
2531 switch (type)
2532 {
2533 case CHANNEL_IS_UART : return 0;
2534 case CHANNEL_IS_FIFO : return 0x01;
2535 case CHANNEL_IS_OPTO : return 0x02;
2536 case CHANNEL_IS_CPU : return 0x04;
2537 case CHANNEL_IS_FT1284 : return 0x08;
2538 default: return 0;
2539 }
c8f69686 2540 }
74387f27
TJ
2541 case TYPE_230X: /* FT230X is only UART */
2542 default: return 0;
c8f69686
UB
2543 }
2544 return 0;
74387f27 2545}
c8f69686 2546
1941414d 2547/**
a35aa9bd 2548 Build binary buffer from ftdi_eeprom structure.
22a1b5c1 2549 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2550
a35aa9bd 2551 \param ftdi pointer to ftdi_context
1941414d 2552
516ebfb1 2553 \retval >=0: size of eeprom user area in bytes
22a1b5c1 2554 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2c1e2bde
TJ
2555 \retval -2: Invalid eeprom or ftdi pointer
2556 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2557 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2558 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2b9a3c82 2559 \retval -6: No connected EEPROM or EEPROM Type unknown
b8aa7b35 2560*/
a35aa9bd 2561int ftdi_eeprom_build(struct ftdi_context *ftdi)
a8f46ddc 2562{
e2bbd9af 2563 unsigned char i, j, eeprom_size_mask;
b8aa7b35
TJ
2564 unsigned short checksum, value;
2565 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
516ebfb1 2566 int user_area_size;
c0a96aed 2567 struct ftdi_eeprom *eeprom;
a35aa9bd 2568 unsigned char * output;
b8aa7b35 2569
c0a96aed 2570 if (ftdi == NULL)
cc9c9d58 2571 ftdi_error_return(-2,"No context");
c0a96aed 2572 if (ftdi->eeprom == NULL)
cc9c9d58 2573 ftdi_error_return(-2,"No eeprom structure");
c0a96aed
UB
2574
2575 eeprom= ftdi->eeprom;
a35aa9bd 2576 output = eeprom->buf;
22a1b5c1 2577
56ac0383 2578 if (eeprom->chip == -1)
2c1e2bde 2579 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2b9a3c82 2580
74387f27
TJ
2581 if (eeprom->size == -1)
2582 {
2f80efc2
NP
2583 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2584 eeprom->size = 0x100;
2585 else
2586 eeprom->size = 0x80;
2587 }
f75bf139 2588
b8aa7b35 2589 if (eeprom->manufacturer != NULL)
d9f0cce7 2590 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2591 if (eeprom->product != NULL)
d9f0cce7 2592 product_size = strlen(eeprom->product);
b8aa7b35 2593 if (eeprom->serial != NULL)
d9f0cce7 2594 serial_size = strlen(eeprom->serial);
b8aa7b35 2595
814710ba
TJ
2596 // eeprom size check
2597 switch (ftdi->type)
2598 {
2599 case TYPE_AM:
2600 case TYPE_BM:
2601 user_area_size = 96; // base size for strings (total of 48 characters)
2602 break;
2603 case TYPE_2232C:
56ac0383
TJ
2604 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2605 break;
814710ba 2606 case TYPE_R:
2f80efc2 2607 case TYPE_230X:
56ac0383
TJ
2608 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2609 break;
814710ba
TJ
2610 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2611 case TYPE_4232H:
56ac0383 2612 user_area_size = 86;
118c4561 2613 break;
c1c3d564
UB
2614 case TYPE_232H:
2615 user_area_size = 80;
2616 break;
2c1e2bde
TJ
2617 default:
2618 user_area_size = 0;
56ac0383 2619 break;
665cda04
UB
2620 }
2621 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
814710ba 2622
516ebfb1
TJ
2623 if (user_area_size < 0)
2624 ftdi_error_return(-1,"eeprom size exceeded");
b8aa7b35
TJ
2625
2626 // empty eeprom
74387f27
TJ
2627 if (ftdi->type == TYPE_230X)
2628 {
2f80efc2
NP
2629 /* FT230X have a reserved section in the middle of the MTP,
2630 which cannot be written to, but must be included in the checksum */
2631 memset(ftdi->eeprom->buf, 0, 0x80);
2632 memset((ftdi->eeprom->buf + 0xa0), 0, (FTDI_MAX_EEPROM_SIZE - 0xa0));
74387f27
TJ
2633 }
2634 else
2635 {
2f80efc2
NP
2636 memset(ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2637 }
b8aa7b35 2638
93738c79
UB
2639 // Bytes and Bits set for all Types
2640
b8aa7b35
TJ
2641 // Addr 02: Vendor ID
2642 output[0x02] = eeprom->vendor_id;
2643 output[0x03] = eeprom->vendor_id >> 8;
2644
2645 // Addr 04: Product ID
2646 output[0x04] = eeprom->product_id;
2647 output[0x05] = eeprom->product_id >> 8;
2648
2649 // Addr 06: Device release number (0400h for BM features)
68e78641
JS
2650 output[0x06] = eeprom->release_number;
2651 output[0x07] = eeprom->release_number >> 8;
b8aa7b35
TJ
2652
2653 // Addr 08: Config descriptor
8fae3e8e
TJ
2654 // Bit 7: always 1
2655 // Bit 6: 1 if this device is self powered, 0 if bus powered
2656 // Bit 5: 1 if this device uses remote wakeup
37186e34 2657 // Bit 4-0: reserved - 0
5a1dcd55 2658 j = 0x80;
afb90824 2659 if (eeprom->self_powered)
5a1dcd55 2660 j |= 0x40;
afb90824 2661 if (eeprom->remote_wakeup)
5a1dcd55 2662 j |= 0x20;
b8aa7b35
TJ
2663 output[0x08] = j;
2664
2665 // Addr 09: Max power consumption: max power = value * 2 mA
a7c32c59 2666 output[0x09] = eeprom->max_power / MAX_POWER_MILLIAMP_PER_UNIT;
d9f0cce7 2667
2f80efc2 2668 if ((ftdi->type != TYPE_AM) && (ftdi->type != TYPE_230X))
93738c79
UB
2669 {
2670 // Addr 0A: Chip configuration
2671 // Bit 7: 0 - reserved
2672 // Bit 6: 0 - reserved
2673 // Bit 5: 0 - reserved
56ac0383 2674 // Bit 4: 1 - Change USB version
93738c79
UB
2675 // Bit 3: 1 - Use the serial number string
2676 // Bit 2: 1 - Enable suspend pull downs for lower power
2677 // Bit 1: 1 - Out EndPoint is Isochronous
2678 // Bit 0: 1 - In EndPoint is Isochronous
2679 //
2680 j = 0;
afb90824 2681 if (eeprom->in_is_isochronous)
93738c79 2682 j = j | 1;
afb90824 2683 if (eeprom->out_is_isochronous)
93738c79
UB
2684 j = j | 2;
2685 output[0x0A] = j;
2686 }
f505134f 2687
b8aa7b35 2688 // Dynamic content
93738c79
UB
2689 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2690 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
c7e4c09e 2691 // 0xa0 (TYPE_232H)
93738c79 2692 i = 0;
56ac0383
TJ
2693 switch (ftdi->type)
2694 {
2695 case TYPE_2232H:
2696 case TYPE_4232H:
2697 i += 2;
2698 case TYPE_R:
2699 i += 2;
2700 case TYPE_2232C:
2701 i += 2;
2702 case TYPE_AM:
2703 case TYPE_BM:
2704 i += 0x94;
2f80efc2 2705 break;
fa3032f0 2706 case TYPE_232H:
2f80efc2
NP
2707 case TYPE_230X:
2708 i = 0xa0;
2709 break;
f505134f 2710 }
93738c79 2711 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
e2bbd9af 2712 eeprom_size_mask = eeprom->size -1;
c201f80f 2713
93738c79
UB
2714 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2715 // Addr 0F: Length of manufacturer string
22d12cda 2716 // Output manufacturer
93738c79 2717 output[0x0E] = i; // calculate offset
e2bbd9af
TJ
2718 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2719 output[i & eeprom_size_mask] = 0x03, i++; // type: string
22d12cda
TJ
2720 for (j = 0; j < manufacturer_size; j++)
2721 {
e2bbd9af
TJ
2722 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2723 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2724 }
93738c79 2725 output[0x0F] = manufacturer_size*2 + 2;
b8aa7b35 2726
93738c79
UB
2727 // Addr 10: Offset of the product string + 0x80, calculated later
2728 // Addr 11: Length of product string
c201f80f 2729 output[0x10] = i | 0x80; // calculate offset
e2bbd9af
TJ
2730 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2731 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2732 for (j = 0; j < product_size; j++)
2733 {
e2bbd9af
TJ
2734 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2735 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2736 }
93738c79 2737 output[0x11] = product_size*2 + 2;
37186e34 2738
93738c79
UB
2739 // Addr 12: Offset of the serial string + 0x80, calculated later
2740 // Addr 13: Length of serial string
c201f80f 2741 output[0x12] = i | 0x80; // calculate offset
e2bbd9af
TJ
2742 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2743 output[i & eeprom_size_mask] = 0x03, i++;
22d12cda
TJ
2744 for (j = 0; j < serial_size; j++)
2745 {
e2bbd9af
TJ
2746 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2747 output[i & eeprom_size_mask] = 0x00, i++;
b8aa7b35 2748 }
c2700d6d
TJ
2749
2750 // Legacy port name and PnP fields for FT2232 and newer chips
2751 if (ftdi->type > TYPE_BM)
2752 {
2753 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2754 i++;
2755 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2756 i++;
2757 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2758 i++;
2759 }
802a949e 2760
93738c79 2761 output[0x13] = serial_size*2 + 2;
b8aa7b35 2762
56ac0383 2763 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
bf2f6ef7 2764 {
d4b5af27 2765 if (eeprom->use_serial)
bf2f6ef7
UB
2766 output[0x0A] |= USE_SERIAL_NUM;
2767 else
2768 output[0x0A] &= ~USE_SERIAL_NUM;
2769 }
3802140c
UB
2770
2771 /* Bytes and Bits specific to (some) types
2772 Write linear, as this allows easier fixing*/
56ac0383
TJ
2773 switch (ftdi->type)
2774 {
2775 case TYPE_AM:
2776 break;
2777 case TYPE_BM:
2778 output[0x0C] = eeprom->usb_version & 0xff;
2779 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2780 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2781 output[0x0A] |= USE_USB_VERSION_BIT;
2782 else
2783 output[0x0A] &= ~USE_USB_VERSION_BIT;
caec1294 2784
56ac0383
TJ
2785 break;
2786 case TYPE_2232C:
3802140c 2787
c8f69686 2788 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
56ac0383
TJ
2789 if ( eeprom->channel_a_driver == DRIVER_VCP)
2790 output[0x00] |= DRIVER_VCP;
2791 else
2792 output[0x00] &= ~DRIVER_VCP;
4e74064b 2793
56ac0383
TJ
2794 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2795 output[0x00] |= HIGH_CURRENT_DRIVE;
2796 else
2797 output[0x00] &= ~HIGH_CURRENT_DRIVE;
3802140c 2798
c8f69686 2799 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
56ac0383
TJ
2800 if ( eeprom->channel_b_driver == DRIVER_VCP)
2801 output[0x01] |= DRIVER_VCP;
2802 else
2803 output[0x01] &= ~DRIVER_VCP;
4e74064b 2804
56ac0383
TJ
2805 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2806 output[0x01] |= HIGH_CURRENT_DRIVE;
2807 else
2808 output[0x01] &= ~HIGH_CURRENT_DRIVE;
3802140c 2809
afb90824 2810 if (eeprom->in_is_isochronous)
56ac0383
TJ
2811 output[0x0A] |= 0x1;
2812 else
2813 output[0x0A] &= ~0x1;
afb90824 2814 if (eeprom->out_is_isochronous)
56ac0383
TJ
2815 output[0x0A] |= 0x2;
2816 else
2817 output[0x0A] &= ~0x2;
afb90824 2818 if (eeprom->suspend_pull_downs)
56ac0383
TJ
2819 output[0x0A] |= 0x4;
2820 else
2821 output[0x0A] &= ~0x4;
2822 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2823 output[0x0A] |= USE_USB_VERSION_BIT;
2824 else
2825 output[0x0A] &= ~USE_USB_VERSION_BIT;
4e74064b 2826
56ac0383
TJ
2827 output[0x0C] = eeprom->usb_version & 0xff;
2828 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2829 output[0x14] = eeprom->chip;
2830 break;
2831 case TYPE_R:
2832 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2833 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2834 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
4e74064b 2835
afb90824 2836 if (eeprom->suspend_pull_downs)
56ac0383
TJ
2837 output[0x0A] |= 0x4;
2838 else
2839 output[0x0A] &= ~0x4;
2840 output[0x0B] = eeprom->invert;
2841 output[0x0C] = eeprom->usb_version & 0xff;
2842 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
4e74064b 2843
56ac0383
TJ
2844 if (eeprom->cbus_function[0] > CBUS_BB)
2845 output[0x14] = CBUS_TXLED;
2846 else
2847 output[0x14] = eeprom->cbus_function[0];
4e74064b 2848
56ac0383
TJ
2849 if (eeprom->cbus_function[1] > CBUS_BB)
2850 output[0x14] |= CBUS_RXLED<<4;
2851 else
2852 output[0x14] |= eeprom->cbus_function[1]<<4;
4e74064b 2853
56ac0383
TJ
2854 if (eeprom->cbus_function[2] > CBUS_BB)
2855 output[0x15] = CBUS_TXDEN;
2856 else
2857 output[0x15] = eeprom->cbus_function[2];
4e74064b 2858
56ac0383
TJ
2859 if (eeprom->cbus_function[3] > CBUS_BB)
2860 output[0x15] |= CBUS_PWREN<<4;
2861 else
2862 output[0x15] |= eeprom->cbus_function[3]<<4;
4e74064b 2863
56ac0383
TJ
2864 if (eeprom->cbus_function[4] > CBUS_CLK6)
2865 output[0x16] = CBUS_SLEEP;
2866 else
2867 output[0x16] = eeprom->cbus_function[4];
2868 break;
2869 case TYPE_2232H:
c8f69686 2870 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
56ac0383
TJ
2871 if ( eeprom->channel_a_driver == DRIVER_VCP)
2872 output[0x00] |= DRIVER_VCP;
2873 else
2874 output[0x00] &= ~DRIVER_VCP;
6e6a1c3f 2875
c8f69686 2876 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
56ac0383
TJ
2877 if ( eeprom->channel_b_driver == DRIVER_VCP)
2878 output[0x01] |= DRIVER_VCP;
2879 else
2880 output[0x01] &= ~DRIVER_VCP;
2881 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2882 output[0x01] |= SUSPEND_DBUS7_BIT;
2883 else
2884 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2885
afb90824 2886 if (eeprom->suspend_pull_downs)
56ac0383
TJ
2887 output[0x0A] |= 0x4;
2888 else
2889 output[0x0A] &= ~0x4;
2890
2891 if (eeprom->group0_drive > DRIVE_16MA)
2892 output[0x0c] |= DRIVE_16MA;
2893 else
2894 output[0x0c] |= eeprom->group0_drive;
2895 if (eeprom->group0_schmitt == IS_SCHMITT)
2896 output[0x0c] |= IS_SCHMITT;
2897 if (eeprom->group0_slew == SLOW_SLEW)
2898 output[0x0c] |= SLOW_SLEW;
2899
2900 if (eeprom->group1_drive > DRIVE_16MA)
2901 output[0x0c] |= DRIVE_16MA<<4;
2902 else
2903 output[0x0c] |= eeprom->group1_drive<<4;
2904 if (eeprom->group1_schmitt == IS_SCHMITT)
2905 output[0x0c] |= IS_SCHMITT<<4;
2906 if (eeprom->group1_slew == SLOW_SLEW)
2907 output[0x0c] |= SLOW_SLEW<<4;
2908
2909 if (eeprom->group2_drive > DRIVE_16MA)
2910 output[0x0d] |= DRIVE_16MA;
2911 else
2912 output[0x0d] |= eeprom->group2_drive;
2913 if (eeprom->group2_schmitt == IS_SCHMITT)
2914 output[0x0d] |= IS_SCHMITT;
2915 if (eeprom->group2_slew == SLOW_SLEW)
2916 output[0x0d] |= SLOW_SLEW;
2917
2918 if (eeprom->group3_drive > DRIVE_16MA)
2919 output[0x0d] |= DRIVE_16MA<<4;
2920 else
2921 output[0x0d] |= eeprom->group3_drive<<4;
2922 if (eeprom->group3_schmitt == IS_SCHMITT)
2923 output[0x0d] |= IS_SCHMITT<<4;
2924 if (eeprom->group3_slew == SLOW_SLEW)
2925 output[0x0d] |= SLOW_SLEW<<4;
3802140c 2926
56ac0383 2927 output[0x18] = eeprom->chip;
3802140c 2928
56ac0383
TJ
2929 break;
2930 case TYPE_4232H:
be4bae37
AL
2931 if (eeprom->channel_a_driver == DRIVER_VCP)
2932 output[0x00] |= DRIVER_VCP;
2933 else
2934 output[0x00] &= ~DRIVER_VCP;
2935 if (eeprom->channel_b_driver == DRIVER_VCP)
2936 output[0x01] |= DRIVER_VCP;
2937 else
2938 output[0x01] &= ~DRIVER_VCP;
2939 if (eeprom->channel_c_driver == DRIVER_VCP)
2940 output[0x00] |= (DRIVER_VCP << 4);
2941 else
2942 output[0x00] &= ~(DRIVER_VCP << 4);
2943 if (eeprom->channel_d_driver == DRIVER_VCP)
2944 output[0x01] |= (DRIVER_VCP << 4);
2945 else
2946 output[0x01] &= ~(DRIVER_VCP << 4);
2947
afb90824 2948 if (eeprom->suspend_pull_downs)
be4bae37
AL
2949 output[0x0a] |= 0x4;
2950 else
2951 output[0x0a] &= ~0x4;
2952
2953 if (eeprom->channel_a_rs485enable)
2954 output[0x0b] |= CHANNEL_IS_RS485 << 0;
2955 else
2956 output[0x0b] &= ~(CHANNEL_IS_RS485 << 0);
2957 if (eeprom->channel_b_rs485enable)
2958 output[0x0b] |= CHANNEL_IS_RS485 << 1;
2959 else
2960 output[0x0b] &= ~(CHANNEL_IS_RS485 << 1);
2961 if (eeprom->channel_c_rs485enable)
2962 output[0x0b] |= CHANNEL_IS_RS485 << 2;
2963 else
2964 output[0x0b] &= ~(CHANNEL_IS_RS485 << 2);
2965 if (eeprom->channel_d_rs485enable)
2966 output[0x0b] |= CHANNEL_IS_RS485 << 3;
2967 else
2968 output[0x0b] &= ~(CHANNEL_IS_RS485 << 3);
2969
2970 if (eeprom->group0_drive > DRIVE_16MA)
2971 output[0x0c] |= DRIVE_16MA;
2972 else
2973 output[0x0c] |= eeprom->group0_drive;
2974 if (eeprom->group0_schmitt == IS_SCHMITT)
2975 output[0x0c] |= IS_SCHMITT;
2976 if (eeprom->group0_slew == SLOW_SLEW)
2977 output[0x0c] |= SLOW_SLEW;
2978
2979 if (eeprom->group1_drive > DRIVE_16MA)
2980 output[0x0c] |= DRIVE_16MA<<4;
2981 else
2982 output[0x0c] |= eeprom->group1_drive<<4;
2983 if (eeprom->group1_schmitt == IS_SCHMITT)
2984 output[0x0c] |= IS_SCHMITT<<4;
2985 if (eeprom->group1_slew == SLOW_SLEW)
2986 output[0x0c] |= SLOW_SLEW<<4;
2987
2988 if (eeprom->group2_drive > DRIVE_16MA)
2989 output[0x0d] |= DRIVE_16MA;
2990 else
2991 output[0x0d] |= eeprom->group2_drive;
2992 if (eeprom->group2_schmitt == IS_SCHMITT)
2993 output[0x0d] |= IS_SCHMITT;
2994 if (eeprom->group2_slew == SLOW_SLEW)
2995 output[0x0d] |= SLOW_SLEW;
2996
2997 if (eeprom->group3_drive > DRIVE_16MA)
2998 output[0x0d] |= DRIVE_16MA<<4;
2999 else
3000 output[0x0d] |= eeprom->group3_drive<<4;
3001 if (eeprom->group3_schmitt == IS_SCHMITT)
3002 output[0x0d] |= IS_SCHMITT<<4;
3003 if (eeprom->group3_slew == SLOW_SLEW)
3004 output[0x0d] |= SLOW_SLEW<<4;
3005
c7e4c09e 3006 output[0x18] = eeprom->chip;
be4bae37 3007
c7e4c09e
UB
3008 break;
3009 case TYPE_232H:
c8f69686 3010 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
ac4a82a5
UB
3011 if ( eeprom->channel_a_driver == DRIVER_VCP)
3012 output[0x00] |= DRIVER_VCPH;
3013 else
3014 output[0x00] &= ~DRIVER_VCPH;
837a71d6
UB
3015 if (eeprom->powersave)
3016 output[0x01] |= POWER_SAVE_DISABLE_H;
3017 else
3018 output[0x01] &= ~POWER_SAVE_DISABLE_H;
a7e05353
DM
3019
3020 if (eeprom->suspend_pull_downs)
3021 output[0x0a] |= 0x4;
3022 else
3023 output[0x0a] &= ~0x4;
3024
18199b76
UB
3025 if (eeprom->clock_polarity)
3026 output[0x01] |= FT1284_CLK_IDLE_STATE;
3027 else
3028 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
3029 if (eeprom->data_order)
3030 output[0x01] |= FT1284_DATA_LSB;
3031 else
3032 output[0x01] &= ~FT1284_DATA_LSB;
3033 if (eeprom->flow_control)
3034 output[0x01] |= FT1284_FLOW_CONTROL;
3035 else
3036 output[0x01] &= ~FT1284_FLOW_CONTROL;
91d7a201
UB
3037 if (eeprom->group0_drive > DRIVE_16MA)
3038 output[0x0c] |= DRIVE_16MA;
3039 else
3040 output[0x0c] |= eeprom->group0_drive;
3041 if (eeprom->group0_schmitt == IS_SCHMITT)
3042 output[0x0c] |= IS_SCHMITT;
3043 if (eeprom->group0_slew == SLOW_SLEW)
3044 output[0x0c] |= SLOW_SLEW;
3045
3046 if (eeprom->group1_drive > DRIVE_16MA)
3047 output[0x0d] |= DRIVE_16MA;
3048 else
3049 output[0x0d] |= eeprom->group1_drive;
3050 if (eeprom->group1_schmitt == IS_SCHMITT)
3051 output[0x0d] |= IS_SCHMITT;
3052 if (eeprom->group1_slew == SLOW_SLEW)
3053 output[0x0d] |= SLOW_SLEW;
3054
263d3ba0
UB
3055 set_ft232h_cbus(eeprom, output);
3056
c7e4c09e
UB
3057 output[0x1e] = eeprom->chip;
3058 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
3059 break;
2f80efc2
NP
3060 case TYPE_230X:
3061 output[0x00] = 0x80; /* Actually, leave the default value */
3062 output[0x0a] = 0x08; /* Enable USB Serial Number */
e659737a
UB
3063 /*FIXME: Make DBUS & CBUS Control configurable*/
3064 output[0x0c] = 0; /* DBUS drive 4mA, CBUS drive 4 mA like factory default */
74387f27
TJ
3065 for (j = 0; j <= 6; j++)
3066 {
2f80efc2
NP
3067 output[0x1a + j] = eeprom->cbus_function[j];
3068 }
347d87e5 3069 output[0x0b] = eeprom->invert;
2f80efc2 3070 break;
3802140c
UB
3071 }
3072
cbf65673 3073 // calculate checksum
b8aa7b35 3074 checksum = 0xAAAA;
d9f0cce7 3075
22d12cda
TJ
3076 for (i = 0; i < eeprom->size/2-1; i++)
3077 {
74387f27
TJ
3078 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3079 {
2f80efc2
NP
3080 /* FT230X has a user section in the MTP which is not part of the checksum */
3081 i = 0x40;
3082 }
519bbce1
UB
3083 if ((ftdi->type == TYPE_230X) && (i >= 0x40) && (i < 0x50)) {
3084 uint16_t data;
3085 if (ftdi_read_eeprom_location(ftdi, i, &data)) {
3086 fprintf(stderr, "Reading Factory Configuration Data failed\n");
3087 i = 0x50;
3088 }
3089 value = data;
3090 }
3091 else {
3092 value = output[i*2];
3093 value += output[(i*2)+1] << 8;
3094 }
d9f0cce7
TJ
3095 checksum = value^checksum;
3096 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
3097 }
3098
c201f80f
TJ
3099 output[eeprom->size-2] = checksum;
3100 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 3101
68e78641 3102 eeprom->initialized_for_connected_device = 1;
516ebfb1 3103 return user_area_size;
b8aa7b35 3104}
74387f27 3105/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
c8f69686
UB
3106 * EEPROM structure
3107 *
3108 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
3109 */
3110static unsigned char bit2type(unsigned char bits)
0fc2170c
UB
3111{
3112 switch (bits)
3113 {
74387f27
TJ
3114 case 0: return CHANNEL_IS_UART;
3115 case 1: return CHANNEL_IS_FIFO;
3116 case 2: return CHANNEL_IS_OPTO;
3117 case 4: return CHANNEL_IS_CPU;
3118 case 8: return CHANNEL_IS_FT1284;
3119 default:
3120 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
3121 bits);
0fc2170c
UB
3122 }
3123 return 0;
3124}
1ad9e4cc
TJ
3125/* Decode 230X / 232R type chips invert bits
3126 * Prints directly to stdout.
3127*/
3128static void print_inverted_bits(int invert)
3129{
3130 char *r_bits[] = {"TXD","RXD","RTS","CTS","DTR","DSR","DCD","RI"};
3131 int i;
3132
3133 fprintf(stdout,"Inverted bits:");
3134 for (i=0; i<8; i++)
3135 if ((invert & (1<<i)) == (1<<i))
3136 fprintf(stdout," %s",r_bits[i]);
3137
3138 fprintf(stdout,"\n");
3139}
4af1d1bb
MK
3140/**
3141 Decode binary EEPROM image into an ftdi_eeprom structure.
3142
e659737a
UB
3143 For FT-X devices use AN_201 FT-X MTP memory Configuration to decode.
3144
a35aa9bd
UB
3145 \param ftdi pointer to ftdi_context
3146 \param verbose Decode EEPROM on stdout
56ac0383 3147
4af1d1bb
MK
3148 \retval 0: all fine
3149 \retval -1: something went wrong
3150
3151 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
3152 FIXME: Strings are malloc'ed here and should be freed somewhere
3153*/
a35aa9bd 3154int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
b56d5a64 3155{
3fca5ea9 3156 int i, j;
b56d5a64
MK
3157 unsigned short checksum, eeprom_checksum, value;
3158 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
f2cd9fd5 3159 int eeprom_size;
c0a96aed 3160 struct ftdi_eeprom *eeprom;
3bc0387e 3161 unsigned char *buf = NULL;
22a1b5c1 3162
c0a96aed 3163 if (ftdi == NULL)
cc9c9d58 3164 ftdi_error_return(-1,"No context");
c0a96aed 3165 if (ftdi->eeprom == NULL)
6cd4f922 3166 ftdi_error_return(-1,"No eeprom structure");
56ac0383 3167
c0a96aed 3168 eeprom = ftdi->eeprom;
a35aa9bd 3169 eeprom_size = eeprom->size;
3bc0387e 3170 buf = ftdi->eeprom->buf;
b56d5a64 3171
b56d5a64
MK
3172 // Addr 02: Vendor ID
3173 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
3174
3175 // Addr 04: Product ID
3176 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
22d12cda 3177
68e78641
JS
3178 // Addr 06: Device release number
3179 eeprom->release_number = buf[0x06] + (buf[0x07]<<8);
b56d5a64
MK
3180
3181 // Addr 08: Config descriptor
3182 // Bit 7: always 1
3183 // Bit 6: 1 if this device is self powered, 0 if bus powered
3184 // Bit 5: 1 if this device uses remote wakeup
f6ef2983 3185 eeprom->self_powered = buf[0x08] & 0x40;
814710ba 3186 eeprom->remote_wakeup = buf[0x08] & 0x20;
b56d5a64
MK
3187
3188 // Addr 09: Max power consumption: max power = value * 2 mA
a7c32c59 3189 eeprom->max_power = MAX_POWER_MILLIAMP_PER_UNIT * buf[0x09];
b56d5a64
MK
3190
3191 // Addr 0A: Chip configuration
3192 // Bit 7: 0 - reserved
3193 // Bit 6: 0 - reserved
3194 // Bit 5: 0 - reserved
caec1294 3195 // Bit 4: 1 - Change USB version on BM and 2232C
b56d5a64
MK
3196 // Bit 3: 1 - Use the serial number string
3197 // Bit 2: 1 - Enable suspend pull downs for lower power
3198 // Bit 1: 1 - Out EndPoint is Isochronous
3199 // Bit 0: 1 - In EndPoint is Isochronous
3200 //
8d3fe5c9
UB
3201 eeprom->in_is_isochronous = buf[0x0A]&0x01;
3202 eeprom->out_is_isochronous = buf[0x0A]&0x02;
3203 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
d4b5af27 3204 eeprom->use_serial = (buf[0x0A] & USE_SERIAL_NUM)?1:0;
caec1294 3205 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
b56d5a64 3206
b1859923 3207 // Addr 0C: USB version low byte when 0x0A
56ac0383 3208 // Addr 0D: USB version high byte when 0x0A
b1859923 3209 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
b56d5a64
MK
3210
3211 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3212 // Addr 0F: Length of manufacturer string
3213 manufacturer_size = buf[0x0F]/2;
56ac0383 3214 if (eeprom->manufacturer)
74e8e79d 3215 free(eeprom->manufacturer);
56ac0383 3216 if (manufacturer_size > 0)
acc1fa05
UB
3217 {
3218 eeprom->manufacturer = malloc(manufacturer_size);
3219 if (eeprom->manufacturer)
3220 {
3221 // Decode manufacturer
84ec032f 3222 i = buf[0x0E] & (eeprom_size -1); // offset
74387f27 3223 for (j=0; j<manufacturer_size-1; j++)
acc1fa05
UB
3224 {
3225 eeprom->manufacturer[j] = buf[2*j+i+2];
3226 }
3227 eeprom->manufacturer[j] = '\0';
3228 }
3229 }
b56d5a64
MK
3230 else eeprom->manufacturer = NULL;
3231
3232 // Addr 10: Offset of the product string + 0x80, calculated later
3233 // Addr 11: Length of product string
56ac0383 3234 if (eeprom->product)
74e8e79d 3235 free(eeprom->product);
b56d5a64 3236 product_size = buf[0x11]/2;
acc1fa05
UB
3237 if (product_size > 0)
3238 {
3239 eeprom->product = malloc(product_size);
56ac0383 3240 if (eeprom->product)
acc1fa05
UB
3241 {
3242 // Decode product name
84ec032f 3243 i = buf[0x10] & (eeprom_size -1); // offset
74387f27 3244 for (j=0; j<product_size-1; j++)
acc1fa05
UB
3245 {
3246 eeprom->product[j] = buf[2*j+i+2];
3247 }
3248 eeprom->product[j] = '\0';
3249 }
3250 }
b56d5a64
MK
3251 else eeprom->product = NULL;
3252
3253 // Addr 12: Offset of the serial string + 0x80, calculated later
3254 // Addr 13: Length of serial string
56ac0383 3255 if (eeprom->serial)
74e8e79d 3256 free(eeprom->serial);
b56d5a64 3257 serial_size = buf[0x13]/2;
acc1fa05
UB
3258 if (serial_size > 0)
3259 {
3260 eeprom->serial = malloc(serial_size);
56ac0383 3261 if (eeprom->serial)
acc1fa05
UB
3262 {
3263 // Decode serial
84ec032f 3264 i = buf[0x12] & (eeprom_size -1); // offset
74387f27 3265 for (j=0; j<serial_size-1; j++)
acc1fa05
UB
3266 {
3267 eeprom->serial[j] = buf[2*j+i+2];
3268 }
3269 eeprom->serial[j] = '\0';
3270 }
3271 }
b56d5a64
MK
3272 else eeprom->serial = NULL;
3273
b56d5a64
MK
3274 // verify checksum
3275 checksum = 0xAAAA;
3276
22d12cda
TJ
3277 for (i = 0; i < eeprom_size/2-1; i++)
3278 {
74387f27
TJ
3279 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3280 {
2f80efc2
NP
3281 /* FT230X has a user section in the MTP which is not part of the checksum */
3282 i = 0x40;
3283 }
b56d5a64
MK
3284 value = buf[i*2];
3285 value += buf[(i*2)+1] << 8;
3286
3287 checksum = value^checksum;
3288 checksum = (checksum << 1) | (checksum >> 15);
3289 }
3290
3291 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3292
22d12cda
TJ
3293 if (eeprom_checksum != checksum)
3294 {
3295 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
cc9c9d58 3296 ftdi_error_return(-1,"EEPROM checksum error");
4af1d1bb
MK
3297 }
3298
eb498cff 3299 eeprom->channel_a_type = 0;
aa099f46 3300 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
f6ef2983 3301 {
6cd4f922 3302 eeprom->chip = -1;
f6ef2983 3303 }
56ac0383 3304 else if (ftdi->type == TYPE_2232C)
f6ef2983 3305 {
0fc2170c 3306 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2cde7c52
UB
3307 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3308 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
3309 eeprom->channel_b_type = buf[0x01] & 0x7;
3310 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3311 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
6cd4f922 3312 eeprom->chip = buf[0x14];
065edc58 3313 }
56ac0383 3314 else if (ftdi->type == TYPE_R)
564b2716 3315 {
2cde7c52 3316 /* TYPE_R flags D2XX, not VCP as all others*/
be4bae37 3317 eeprom->channel_a_driver = ~buf[0x00] & DRIVER_VCP;
2cde7c52 3318 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
56ac0383
TJ
3319 if ( (buf[0x01]&0x40) != 0x40)
3320 fprintf(stderr,
3321 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3322 " If this happened with the\n"
3323 " EEPROM programmed by FTDI tools, please report "
3324 "to libftdi@developer.intra2net.com\n");
2cde7c52 3325
6cd4f922 3326 eeprom->chip = buf[0x16];
cecb9cb2
UB
3327 // Addr 0B: Invert data lines
3328 // Works only on FT232R, not FT245R, but no way to distinguish
07851949
UB
3329 eeprom->invert = buf[0x0B];
3330 // Addr 14: CBUS function: CBUS0, CBUS1
3331 // Addr 15: CBUS function: CBUS2, CBUS3
3332 // Addr 16: CBUS function: CBUS5
3333 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3334 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3335 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3336 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3337 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
564b2716 3338 }
be4bae37 3339 else if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
db099ec5 3340 {
2cde7c52 3341 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2cde7c52
UB
3342 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3343
56ac0383 3344 if (ftdi->type == TYPE_2232H)
be4bae37
AL
3345 {
3346 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3347 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
ec0dcd3f 3348 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
be4bae37
AL
3349 }
3350 else
3351 {
3352 eeprom->channel_c_driver = (buf[0x00] >> 4) & DRIVER_VCP;
3353 eeprom->channel_d_driver = (buf[0x01] >> 4) & DRIVER_VCP;
3354 eeprom->channel_a_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 0);
3355 eeprom->channel_b_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 1);
3356 eeprom->channel_c_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 2);
3357 eeprom->channel_d_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 3);
3358 }
2cde7c52 3359
6cd4f922 3360 eeprom->chip = buf[0x18];
db099ec5
UB
3361 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3362 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3363 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3364 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3365 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3366 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3367 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3368 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3369 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3370 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3371 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3372 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
947d9552 3373 }
c7e4c09e
UB
3374 else if (ftdi->type == TYPE_232H)
3375 {
ac4a82a5
UB
3376 eeprom->channel_a_type = buf[0x00] & 0xf;
3377 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
18199b76
UB
3378 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3379 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3380 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
837a71d6 3381 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
91d7a201
UB
3382 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3383 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3384 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3385 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3386 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3387 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3388
263d3ba0
UB
3389 for(i=0; i<5; i++)
3390 {
3391 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3392 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3393 }
c7e4c09e
UB
3394 eeprom->chip = buf[0x1e];
3395 /*FIXME: Decipher more values*/
3396 }
2f80efc2
NP
3397 else if (ftdi->type == TYPE_230X)
3398 {
74387f27
TJ
3399 for(i=0; i<4; i++)
3400 {
2f80efc2
NP
3401 eeprom->cbus_function[i] = buf[0x1a + i] & 0xFF;
3402 }
3403 eeprom->group0_drive = buf[0x0c] & 0x03;
3404 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3405 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3406 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x03;
3407 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3408 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
34b79ac7 3409
347d87e5 3410 eeprom->invert = buf[0xb];
2f80efc2 3411 }
56ac0383
TJ
3412
3413 if (verbose)
f6ef2983 3414 {
c8f69686 3415 char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
f6ef2983
UB
3416 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3417 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
68e78641 3418 fprintf(stdout, "Release: 0x%04x\n",eeprom->release_number);
f6ef2983 3419
56ac0383 3420 if (eeprom->self_powered)
f6ef2983
UB
3421 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3422 else
a7c32c59 3423 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power,
f6ef2983 3424 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
56ac0383 3425 if (eeprom->manufacturer)
f6ef2983 3426 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
56ac0383 3427 if (eeprom->product)
f6ef2983 3428 fprintf(stdout, "Product: %s\n",eeprom->product);
56ac0383 3429 if (eeprom->serial)
f6ef2983 3430 fprintf(stdout, "Serial: %s\n",eeprom->serial);
e107f509 3431 fprintf(stdout, "Checksum : %04x\n", checksum);
6cd4f922
UB
3432 if (ftdi->type == TYPE_R)
3433 fprintf(stdout, "Internal EEPROM\n");
3434 else if (eeprom->chip >= 0x46)
3435 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
56ac0383
TJ
3436 if (eeprom->suspend_dbus7)
3437 fprintf(stdout, "Suspend on DBUS7\n");
3438 if (eeprom->suspend_pull_downs)
fb9bfdd1 3439 fprintf(stdout, "Pull IO pins low during suspend\n");
837a71d6
UB
3440 if(eeprom->powersave)
3441 {
3442 if(ftdi->type >= TYPE_232H)
3443 fprintf(stdout,"Enter low power state on ACBUS7\n");
74387f27 3444 }
56ac0383 3445 if (eeprom->remote_wakeup)
fb9bfdd1 3446 fprintf(stdout, "Enable Remote Wake Up\n");
802a949e 3447 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
db099ec5 3448 if (ftdi->type >= TYPE_2232C)
56ac0383 3449 fprintf(stdout,"Channel A has Mode %s%s%s\n",
e107f509 3450 channel_mode[eeprom->channel_a_type],
2cde7c52
UB
3451 (eeprom->channel_a_driver)?" VCP":"",
3452 (eeprom->high_current_a)?" High Current IO":"");
f45f4237 3453 if (ftdi->type == TYPE_232H)
18199b76
UB
3454 {
3455 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3456 (eeprom->clock_polarity)?"HIGH":"LOW",
3457 (eeprom->data_order)?"LSB":"MSB",
3458 (eeprom->flow_control)?"":"No ");
74387f27 3459 }
f45f4237 3460 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
56ac0383 3461 fprintf(stdout,"Channel B has Mode %s%s%s\n",
e107f509 3462 channel_mode[eeprom->channel_b_type],
2cde7c52
UB
3463 (eeprom->channel_b_driver)?" VCP":"",
3464 (eeprom->high_current_b)?" High Current IO":"");
caec1294 3465 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
56ac0383 3466 eeprom->use_usb_version == USE_USB_VERSION_BIT)
caec1294
UB
3467 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3468
56ac0383 3469 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
db099ec5
UB
3470 {
3471 fprintf(stdout,"%s has %d mA drive%s%s\n",
3472 (ftdi->type == TYPE_2232H)?"AL":"A",
3473 (eeprom->group0_drive+1) *4,
3474 (eeprom->group0_schmitt)?" Schmitt Input":"",
3475 (eeprom->group0_slew)?" Slow Slew":"");
3476 fprintf(stdout,"%s has %d mA drive%s%s\n",
3477 (ftdi->type == TYPE_2232H)?"AH":"B",
3478 (eeprom->group1_drive+1) *4,
3479 (eeprom->group1_schmitt)?" Schmitt Input":"",
3480 (eeprom->group1_slew)?" Slow Slew":"");
3481 fprintf(stdout,"%s has %d mA drive%s%s\n",
3482 (ftdi->type == TYPE_2232H)?"BL":"C",
3483 (eeprom->group2_drive+1) *4,
3484 (eeprom->group2_schmitt)?" Schmitt Input":"",
3485 (eeprom->group2_slew)?" Slow Slew":"");
3486 fprintf(stdout,"%s has %d mA drive%s%s\n",
3487 (ftdi->type == TYPE_2232H)?"BH":"D",
3488 (eeprom->group3_drive+1) *4,
3489 (eeprom->group3_schmitt)?" Schmitt Input":"",
3490 (eeprom->group3_slew)?" Slow Slew":"");
3491 }
91d7a201
UB
3492 else if (ftdi->type == TYPE_232H)
3493 {
263d3ba0 3494 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
74387f27
TJ
3495 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3496 "CLK30","CLK15","CLK7_5"
3497 };
91d7a201
UB
3498 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3499 (eeprom->group0_drive+1) *4,
3500 (eeprom->group0_schmitt)?" Schmitt Input":"",
3501 (eeprom->group0_slew)?" Slow Slew":"");
3502 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3503 (eeprom->group1_drive+1) *4,
3504 (eeprom->group1_schmitt)?" Schmitt Input":"",
3505 (eeprom->group1_slew)?" Slow Slew":"");
263d3ba0
UB
3506 for (i=0; i<10; i++)
3507 {
3508 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3509 fprintf(stdout,"C%d Function: %s\n", i,
3510 cbush_mux[eeprom->cbus_function[i]]);
3511 }
91d7a201 3512 }
2f80efc2
NP
3513 else if (ftdi->type == TYPE_230X)
3514 {
2f80efc2 3515 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
74387f27
TJ
3516 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3517 "CLK24","CLK12","CLK6","BAT_DETECT","BAT_DETECT#",
3518 "I2C_TXE#", "I2C_RXF#", "VBUS_SENSE", "BB_WR#",
3519 "BBRD#", "TIME_STAMP", "AWAKE#",
3520 };
f45f4237 3521 fprintf(stdout,"DBUS has %d mA drive%s%s\n",
2f80efc2
NP
3522 (eeprom->group0_drive+1) *4,
3523 (eeprom->group0_schmitt)?" Schmitt Input":"",
3524 (eeprom->group0_slew)?" Slow Slew":"");
3525 fprintf(stdout,"CBUS has %d mA drive%s%s\n",
3526 (eeprom->group1_drive+1) *4,
3527 (eeprom->group1_schmitt)?" Schmitt Input":"",
3528 (eeprom->group1_slew)?" Slow Slew":"");
3529 for (i=0; i<4; i++)
3530 {
3531 if (eeprom->cbus_function[i]<= CBUSH_AWAKE)
3532 fprintf(stdout,"CBUS%d Function: %s\n", i, cbush_mux[eeprom->cbus_function[i]]);
3533 }
1ad9e4cc
TJ
3534
3535 if (eeprom->invert)
3536 print_inverted_bits(eeprom->invert);
2f80efc2 3537 }
91d7a201 3538
a4980043
UB
3539 if (ftdi->type == TYPE_R)
3540 {
3541 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
13f00d3c 3542 "SLEEP","CLK48","CLK24","CLK12","CLK6",
56ac0383
TJ
3543 "IOMODE","BB_WR","BB_RD"
3544 };
13f00d3c 3545 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
56ac0383
TJ
3546
3547 if (eeprom->invert)
1ad9e4cc 3548 print_inverted_bits(eeprom->invert);
13ea50d2 3549
56ac0383 3550 for (i=0; i<5; i++)
a4980043 3551 {
56ac0383 3552 if (eeprom->cbus_function[i]<CBUS_BB)
a4980043
UB
3553 fprintf(stdout,"C%d Function: %s\n", i,
3554 cbus_mux[eeprom->cbus_function[i]]);
3555 else
17431287 3556 {
598b2334
UB
3557 if (i < 4)
3558 /* Running MPROG show that C0..3 have fixed function Synchronous
3559 Bit Bang mode */
3560 fprintf(stdout,"C%d BB Function: %s\n", i,
3561 cbus_BB[i]);
3562 else
3563 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
17431287 3564 }
a4980043
UB
3565 }
3566 }
f6ef2983 3567 }
4af1d1bb 3568 return 0;
b56d5a64
MK
3569}
3570
1941414d 3571/**
44ef02bd
UB
3572 Get a value from the decoded EEPROM structure
3573
735e81ea
TJ
3574 \param ftdi pointer to ftdi_context
3575 \param value_name Enum of the value to query
3576 \param value Pointer to store read value
44ef02bd 3577
735e81ea
TJ
3578 \retval 0: all fine
3579 \retval -1: Value doesn't exist
44ef02bd
UB
3580*/
3581int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3582{
3583 switch (value_name)
3584 {
56ac0383
TJ
3585 case VENDOR_ID:
3586 *value = ftdi->eeprom->vendor_id;
3587 break;
3588 case PRODUCT_ID:
3589 *value = ftdi->eeprom->product_id;
3590 break;
68e78641
JS
3591 case RELEASE_NUMBER:
3592 *value = ftdi->eeprom->release_number;
3593 break;
56ac0383
TJ
3594 case SELF_POWERED:
3595 *value = ftdi->eeprom->self_powered;
3596 break;
3597 case REMOTE_WAKEUP:
3598 *value = ftdi->eeprom->remote_wakeup;
3599 break;
3600 case IS_NOT_PNP:
3601 *value = ftdi->eeprom->is_not_pnp;
3602 break;
3603 case SUSPEND_DBUS7:
3604 *value = ftdi->eeprom->suspend_dbus7;
3605 break;
3606 case IN_IS_ISOCHRONOUS:
3607 *value = ftdi->eeprom->in_is_isochronous;
3608 break;
cffed9f5
UB
3609 case OUT_IS_ISOCHRONOUS:
3610 *value = ftdi->eeprom->out_is_isochronous;
3611 break;
56ac0383
TJ
3612 case SUSPEND_PULL_DOWNS:
3613 *value = ftdi->eeprom->suspend_pull_downs;
3614 break;
3615 case USE_SERIAL:
3616 *value = ftdi->eeprom->use_serial;
3617 break;
3618 case USB_VERSION:
3619 *value = ftdi->eeprom->usb_version;
3620 break;
cffed9f5
UB
3621 case USE_USB_VERSION:
3622 *value = ftdi->eeprom->use_usb_version;
3623 break;
56ac0383
TJ
3624 case MAX_POWER:
3625 *value = ftdi->eeprom->max_power;
3626 break;
3627 case CHANNEL_A_TYPE:
3628 *value = ftdi->eeprom->channel_a_type;
3629 break;
3630 case CHANNEL_B_TYPE:
3631 *value = ftdi->eeprom->channel_b_type;
3632 break;
3633 case CHANNEL_A_DRIVER:
3634 *value = ftdi->eeprom->channel_a_driver;
3635 break;
3636 case CHANNEL_B_DRIVER:
3637 *value = ftdi->eeprom->channel_b_driver;
3638 break;
be4bae37
AL
3639 case CHANNEL_C_DRIVER:
3640 *value = ftdi->eeprom->channel_c_driver;
3641 break;
3642 case CHANNEL_D_DRIVER:
3643 *value = ftdi->eeprom->channel_d_driver;
3644 break;
3645 case CHANNEL_A_RS485:
3646 *value = ftdi->eeprom->channel_a_rs485enable;
3647 break;
3648 case CHANNEL_B_RS485:
3649 *value = ftdi->eeprom->channel_b_rs485enable;
3650 break;
3651 case CHANNEL_C_RS485:
3652 *value = ftdi->eeprom->channel_c_rs485enable;
3653 break;
3654 case CHANNEL_D_RS485:
3655 *value = ftdi->eeprom->channel_d_rs485enable;
3656 break;
56ac0383
TJ
3657 case CBUS_FUNCTION_0:
3658 *value = ftdi->eeprom->cbus_function[0];
3659 break;
3660 case CBUS_FUNCTION_1:
3661 *value = ftdi->eeprom->cbus_function[1];
3662 break;
3663 case CBUS_FUNCTION_2:
3664 *value = ftdi->eeprom->cbus_function[2];
3665 break;
3666 case CBUS_FUNCTION_3:
3667 *value = ftdi->eeprom->cbus_function[3];
3668 break;
3669 case CBUS_FUNCTION_4:
3670 *value = ftdi->eeprom->cbus_function[4];
3671 break;
263d3ba0
UB
3672 case CBUS_FUNCTION_5:
3673 *value = ftdi->eeprom->cbus_function[5];
3674 break;
3675 case CBUS_FUNCTION_6:
3676 *value = ftdi->eeprom->cbus_function[6];
3677 break;
3678 case CBUS_FUNCTION_7:
3679 *value = ftdi->eeprom->cbus_function[7];
3680 break;
3681 case CBUS_FUNCTION_8:
3682 *value = ftdi->eeprom->cbus_function[8];
3683 break;
3684 case CBUS_FUNCTION_9:
3685 *value = ftdi->eeprom->cbus_function[8];
3686 break;
56ac0383
TJ
3687 case HIGH_CURRENT:
3688 *value = ftdi->eeprom->high_current;
3689 break;
3690 case HIGH_CURRENT_A:
3691 *value = ftdi->eeprom->high_current_a;
3692 break;
3693 case HIGH_CURRENT_B:
3694 *value = ftdi->eeprom->high_current_b;
3695 break;
3696 case INVERT:
3697 *value = ftdi->eeprom->invert;
3698 break;
3699 case GROUP0_DRIVE:
3700 *value = ftdi->eeprom->group0_drive;
3701 break;
3702 case GROUP0_SCHMITT:
3703 *value = ftdi->eeprom->group0_schmitt;
3704 break;
3705 case GROUP0_SLEW:
3706 *value = ftdi->eeprom->group0_slew;
3707 break;
3708 case GROUP1_DRIVE:
3709 *value = ftdi->eeprom->group1_drive;
3710 break;
3711 case GROUP1_SCHMITT:
3712 *value = ftdi->eeprom->group1_schmitt;
3713 break;
3714 case GROUP1_SLEW:
3715 *value = ftdi->eeprom->group1_slew;
3716 break;
3717 case GROUP2_DRIVE:
3718 *value = ftdi->eeprom->group2_drive;
3719 break;
3720 case GROUP2_SCHMITT:
3721 *value = ftdi->eeprom->group2_schmitt;
3722 break;
3723 case GROUP2_SLEW:
3724 *value = ftdi->eeprom->group2_slew;
3725 break;
3726 case GROUP3_DRIVE:
3727 *value = ftdi->eeprom->group3_drive;
3728 break;
3729 case GROUP3_SCHMITT:
3730 *value = ftdi->eeprom->group3_schmitt;
3731 break;
3732 case GROUP3_SLEW:
3733 *value = ftdi->eeprom->group3_slew;
3734 break;
74387f27 3735 case POWER_SAVE:
837a71d6
UB
3736 *value = ftdi->eeprom->powersave;
3737 break;
74387f27 3738 case CLOCK_POLARITY:
18199b76
UB
3739 *value = ftdi->eeprom->clock_polarity;
3740 break;
74387f27 3741 case DATA_ORDER:
18199b76
UB
3742 *value = ftdi->eeprom->data_order;
3743 break;
74387f27 3744 case FLOW_CONTROL:
18199b76
UB
3745 *value = ftdi->eeprom->flow_control;
3746 break;
74387f27 3747 case CHIP_TYPE:
56ac0383
TJ
3748 *value = ftdi->eeprom->chip;
3749 break;
3750 case CHIP_SIZE:
3751 *value = ftdi->eeprom->size;
3752 break;
3753 default:
3754 ftdi_error_return(-1, "Request for unknown EEPROM value");
44ef02bd
UB
3755 }
3756 return 0;
3757}
3758
3759/**
3760 Set a value in the decoded EEPROM Structure
3761 No parameter checking is performed
3762
735e81ea 3763 \param ftdi pointer to ftdi_context
545f9df9 3764 \param value_name Enum of the value to set
735e81ea 3765 \param value to set
44ef02bd 3766
735e81ea
TJ
3767 \retval 0: all fine
3768 \retval -1: Value doesn't exist
3769 \retval -2: Value not user settable
44ef02bd
UB
3770*/
3771int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3772{
3773 switch (value_name)
3774 {
56ac0383
TJ
3775 case VENDOR_ID:
3776 ftdi->eeprom->vendor_id = value;
3777 break;
3778 case PRODUCT_ID:
3779 ftdi->eeprom->product_id = value;
3780 break;
68e78641
JS
3781 case RELEASE_NUMBER:
3782 ftdi->eeprom->release_number = value;
3783 break;
56ac0383
TJ
3784 case SELF_POWERED:
3785 ftdi->eeprom->self_powered = value;
3786 break;
3787 case REMOTE_WAKEUP:
3788 ftdi->eeprom->remote_wakeup = value;
3789 break;
3790 case IS_NOT_PNP:
3791 ftdi->eeprom->is_not_pnp = value;
3792 break;
3793 case SUSPEND_DBUS7:
3794 ftdi->eeprom->suspend_dbus7 = value;
3795 break;
3796 case IN_IS_ISOCHRONOUS:
3797 ftdi->eeprom->in_is_isochronous = value;
3798 break;
cffed9f5
UB
3799 case OUT_IS_ISOCHRONOUS:
3800 ftdi->eeprom->out_is_isochronous = value;
3801 break;
56ac0383
TJ
3802 case SUSPEND_PULL_DOWNS:
3803 ftdi->eeprom->suspend_pull_downs = value;
3804 break;
3805 case USE_SERIAL:
3806 ftdi->eeprom->use_serial = value;
3807 break;
3808 case USB_VERSION:
3809 ftdi->eeprom->usb_version = value;
3810 break;
cffed9f5
UB
3811 case USE_USB_VERSION:
3812 ftdi->eeprom->use_usb_version = value;
3813 break;
56ac0383
TJ
3814 case MAX_POWER:
3815 ftdi->eeprom->max_power = value;
3816 break;
3817 case CHANNEL_A_TYPE:
3818 ftdi->eeprom->channel_a_type = value;
3819 break;
3820 case CHANNEL_B_TYPE:
3821 ftdi->eeprom->channel_b_type = value;
3822 break;
3823 case CHANNEL_A_DRIVER:
3824 ftdi->eeprom->channel_a_driver = value;
3825 break;
3826 case CHANNEL_B_DRIVER:
3827 ftdi->eeprom->channel_b_driver = value;
3828 break;
be4bae37
AL
3829 case CHANNEL_C_DRIVER:
3830 ftdi->eeprom->channel_c_driver = value;
3831 break;
3832 case CHANNEL_D_DRIVER:
3833 ftdi->eeprom->channel_d_driver = value;
3834 break;
3835 case CHANNEL_A_RS485:
3836 ftdi->eeprom->channel_a_rs485enable = value;
3837 break;
3838 case CHANNEL_B_RS485:
3839 ftdi->eeprom->channel_b_rs485enable = value;
3840 break;
3841 case CHANNEL_C_RS485:
3842 ftdi->eeprom->channel_c_rs485enable = value;
3843 break;
3844 case CHANNEL_D_RS485:
3845 ftdi->eeprom->channel_d_rs485enable = value;
3846 break;
56ac0383
TJ
3847 case CBUS_FUNCTION_0:
3848 ftdi->eeprom->cbus_function[0] = value;
3849 break;
3850 case CBUS_FUNCTION_1:
3851 ftdi->eeprom->cbus_function[1] = value;
3852 break;
3853 case CBUS_FUNCTION_2:
3854 ftdi->eeprom->cbus_function[2] = value;
3855 break;
3856 case CBUS_FUNCTION_3:
3857 ftdi->eeprom->cbus_function[3] = value;
3858 break;
3859 case CBUS_FUNCTION_4:
3860 ftdi->eeprom->cbus_function[4] = value;
3861 break;
263d3ba0
UB
3862 case CBUS_FUNCTION_5:
3863 ftdi->eeprom->cbus_function[5] = value;
3864 break;
3865 case CBUS_FUNCTION_6:
3866 ftdi->eeprom->cbus_function[6] = value;
3867 break;
3868 case CBUS_FUNCTION_7:
3869 ftdi->eeprom->cbus_function[7] = value;
3870 break;
3871 case CBUS_FUNCTION_8:
3872 ftdi->eeprom->cbus_function[8] = value;
3873 break;
3874 case CBUS_FUNCTION_9:
3875 ftdi->eeprom->cbus_function[9] = value;
3876 break;
56ac0383
TJ
3877 case HIGH_CURRENT:
3878 ftdi->eeprom->high_current = value;
3879 break;
3880 case HIGH_CURRENT_A:
3881 ftdi->eeprom->high_current_a = value;
3882 break;
3883 case HIGH_CURRENT_B:
3884 ftdi->eeprom->high_current_b = value;
3885 break;
3886 case INVERT:
3887 ftdi->eeprom->invert = value;
3888 break;
3889 case GROUP0_DRIVE:
3890 ftdi->eeprom->group0_drive = value;
3891 break;
3892 case GROUP0_SCHMITT:
3893 ftdi->eeprom->group0_schmitt = value;
3894 break;
3895 case GROUP0_SLEW:
3896 ftdi->eeprom->group0_slew = value;
3897 break;
3898 case GROUP1_DRIVE:
3899 ftdi->eeprom->group1_drive = value;
3900 break;
3901 case GROUP1_SCHMITT:
3902 ftdi->eeprom->group1_schmitt = value;
3903 break;
3904 case GROUP1_SLEW:
3905 ftdi->eeprom->group1_slew = value;
3906 break;
3907 case GROUP2_DRIVE:
3908 ftdi->eeprom->group2_drive = value;
3909 break;
3910 case GROUP2_SCHMITT:
3911 ftdi->eeprom->group2_schmitt = value;
3912 break;
3913 case GROUP2_SLEW:
3914 ftdi->eeprom->group2_slew = value;
3915 break;
3916 case GROUP3_DRIVE:
3917 ftdi->eeprom->group3_drive = value;
3918 break;
3919 case GROUP3_SCHMITT:
3920 ftdi->eeprom->group3_schmitt = value;
3921 break;
3922 case GROUP3_SLEW:
3923 ftdi->eeprom->group3_slew = value;
3924 break;
3925 case CHIP_TYPE:
3926 ftdi->eeprom->chip = value;
3927 break;
74387f27 3928 case POWER_SAVE:
837a71d6
UB
3929 ftdi->eeprom->powersave = value;
3930 break;
74387f27 3931 case CLOCK_POLARITY:
18199b76
UB
3932 ftdi->eeprom->clock_polarity = value;
3933 break;
74387f27 3934 case DATA_ORDER:
18199b76
UB
3935 ftdi->eeprom->data_order = value;
3936 break;
74387f27 3937 case FLOW_CONTROL:
18199b76
UB
3938 ftdi->eeprom->flow_control = value;
3939 break;
56ac0383
TJ
3940 case CHIP_SIZE:
3941 ftdi_error_return(-2, "EEPROM Value can't be changed");
34b79ac7 3942 break;
34b79ac7 3943
56ac0383
TJ
3944 default :
3945 ftdi_error_return(-1, "Request to unknown EEPROM value");
44ef02bd 3946 }
45a3ebd5 3947 ftdi->eeprom->initialized_for_connected_device = 0;
44ef02bd
UB
3948 return 0;
3949}
3950
3951/** Get the read-only buffer to the binary EEPROM content
3952
3953 \param ftdi pointer to ftdi_context
735e81ea 3954 \param buf buffer to receive EEPROM content
44ef02bd
UB
3955 \param size Size of receiving buffer
3956
3957 \retval 0: All fine
3958 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
200bd3ed 3959 \retval -2: Not enough room to store eeprom
44ef02bd 3960*/
56ac0383
TJ
3961int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3962{
3963 if (!ftdi || !(ftdi->eeprom))
3964 ftdi_error_return(-1, "No appropriate structure");
b95e4654 3965
200bd3ed
TJ
3966 if (!buf || size < ftdi->eeprom->size)
3967 ftdi_error_return(-1, "Not enough room to store eeprom");
3968
b95e4654
TJ
3969 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3970 if (size > FTDI_MAX_EEPROM_SIZE)
3971 size = FTDI_MAX_EEPROM_SIZE;
3972
56ac0383 3973 memcpy(buf, ftdi->eeprom->buf, size);
b95e4654 3974
56ac0383
TJ
3975 return 0;
3976}
44ef02bd 3977
672fd368
UB
3978/** Set the EEPROM content from the user-supplied prefilled buffer
3979
3980 \param ftdi pointer to ftdi_context
3981 \param buf buffer to read EEPROM content
3982 \param size Size of buffer
3983
3984 \retval 0: All fine
3985 \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing
3986*/
3987int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
3988{
3989 if (!ftdi || !(ftdi->eeprom) || !buf)
3990 ftdi_error_return(-1, "No appropriate structure");
3991
3992 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3993 if (size > FTDI_MAX_EEPROM_SIZE)
3994 size = FTDI_MAX_EEPROM_SIZE;
3995
3996 memcpy(ftdi->eeprom->buf, buf, size);
3997
3998 return 0;
3999}
4000
44ef02bd 4001/**
c1c70e13
OS
4002 Read eeprom location
4003
4004 \param ftdi pointer to ftdi_context
4005 \param eeprom_addr Address of eeprom location to be read
4006 \param eeprom_val Pointer to store read eeprom location
4007
4008 \retval 0: all fine
4009 \retval -1: read failed
22a1b5c1 4010 \retval -2: USB device unavailable
c1c70e13
OS
4011*/
4012int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
4013{
22a1b5c1
TJ
4014 if (ftdi == NULL || ftdi->usb_dev == NULL)
4015 ftdi_error_return(-2, "USB device unavailable");
4016
97c6b5f6 4017 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
c1c70e13
OS
4018 ftdi_error_return(-1, "reading eeprom failed");
4019
4020 return 0;
4021}
4022
4023/**
1941414d
TJ
4024 Read eeprom
4025
4026 \param ftdi pointer to ftdi_context
b8aa7b35 4027
1941414d
TJ
4028 \retval 0: all fine
4029 \retval -1: read failed
22a1b5c1 4030 \retval -2: USB device unavailable
1941414d 4031*/
a35aa9bd 4032int ftdi_read_eeprom(struct ftdi_context *ftdi)
a8f46ddc 4033{
a3da1d95 4034 int i;
a35aa9bd 4035 unsigned char *buf;
a3da1d95 4036
22a1b5c1
TJ
4037 if (ftdi == NULL || ftdi->usb_dev == NULL)
4038 ftdi_error_return(-2, "USB device unavailable");
a35aa9bd 4039 buf = ftdi->eeprom->buf;
22a1b5c1 4040
2d543486 4041 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
22d12cda 4042 {
a35aa9bd 4043 if (libusb_control_transfer(
56ac0383
TJ
4044 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
4045 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
c3d95b87 4046 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
4047 }
4048
2d543486 4049 if (ftdi->type == TYPE_R)
a35aa9bd 4050 ftdi->eeprom->size = 0x80;
56ac0383 4051 /* Guesses size of eeprom by comparing halves
2d543486 4052 - will not work with blank eeprom */
a35aa9bd 4053 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
2d543486 4054 ftdi->eeprom->size = -1;
56ac0383 4055 else if (memcmp(buf,&buf[0x80],0x80) == 0)
2d543486 4056 ftdi->eeprom->size = 0x80;
56ac0383 4057 else if (memcmp(buf,&buf[0x40],0x40) == 0)
2d543486
UB
4058 ftdi->eeprom->size = 0x40;
4059 else
4060 ftdi->eeprom->size = 0x100;
a3da1d95
GE
4061 return 0;
4062}
4063
cb6250fa
TJ
4064/*
4065 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
4066 Function is only used internally
4067 \internal
4068*/
4069static unsigned char ftdi_read_chipid_shift(unsigned char value)
4070{
4071 return ((value & 1) << 1) |
22d12cda
TJ
4072 ((value & 2) << 5) |
4073 ((value & 4) >> 2) |
4074 ((value & 8) << 4) |
4075 ((value & 16) >> 1) |
4076 ((value & 32) >> 1) |
4077 ((value & 64) >> 4) |
4078 ((value & 128) >> 2);
cb6250fa
TJ
4079}
4080
4081/**
4082 Read the FTDIChip-ID from R-type devices
4083
4084 \param ftdi pointer to ftdi_context
4085 \param chipid Pointer to store FTDIChip-ID
4086
4087 \retval 0: all fine
4088 \retval -1: read failed
22a1b5c1 4089 \retval -2: USB device unavailable
cb6250fa
TJ
4090*/
4091int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
4092{
c7eb3112 4093 unsigned int a = 0, b = 0;
cb6250fa 4094
22a1b5c1
TJ
4095 if (ftdi == NULL || ftdi->usb_dev == NULL)
4096 ftdi_error_return(-2, "USB device unavailable");
4097
579b006f 4098 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
4099 {
4100 a = a << 8 | a >> 8;
579b006f 4101 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
4102 {
4103 b = b << 8 | b >> 8;
5230676f 4104 a = (a << 16) | (b & 0xFFFF);
912d50ca
TJ
4105 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
4106 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 4107 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 4108 return 0;
cb6250fa
TJ
4109 }
4110 }
4111
c7eb3112 4112 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
4113}
4114
1941414d 4115/**
c1c70e13
OS
4116 Write eeprom location
4117
4118 \param ftdi pointer to ftdi_context
4119 \param eeprom_addr Address of eeprom location to be written
4120 \param eeprom_val Value to be written
4121
4122 \retval 0: all fine
a661e3e4 4123 \retval -1: write failed
22a1b5c1 4124 \retval -2: USB device unavailable
a661e3e4
UB
4125 \retval -3: Invalid access to checksum protected area below 0x80
4126 \retval -4: Device can't access unprotected area
4127 \retval -5: Reading chip type failed
c1c70e13 4128*/
56ac0383 4129int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
a661e3e4 4130 unsigned short eeprom_val)
c1c70e13 4131{
a661e3e4
UB
4132 int chip_type_location;
4133 unsigned short chip_type;
4134
22a1b5c1
TJ
4135 if (ftdi == NULL || ftdi->usb_dev == NULL)
4136 ftdi_error_return(-2, "USB device unavailable");
4137
56ac0383 4138 if (eeprom_addr <0x80)
a661e3e4
UB
4139 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
4140
4141
4142 switch (ftdi->type)
4143 {
56ac0383
TJ
4144 case TYPE_BM:
4145 case TYPE_2232C:
4146 chip_type_location = 0x14;
4147 break;
4148 case TYPE_2232H:
4149 case TYPE_4232H:
4150 chip_type_location = 0x18;
4151 break;
c7e4c09e
UB
4152 case TYPE_232H:
4153 chip_type_location = 0x1e;
4154 break;
56ac0383
TJ
4155 default:
4156 ftdi_error_return(-4, "Device can't access unprotected area");
a661e3e4
UB
4157 }
4158
56ac0383 4159 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
a00c0a85 4160 ftdi_error_return(-5, "Reading failed");
56ac0383
TJ
4161 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
4162 if ((chip_type & 0xff) != 0x66)
a661e3e4
UB
4163 {
4164 ftdi_error_return(-6, "EEPROM is not of 93x66");
4165 }
4166
579b006f 4167 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
4168 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
4169 NULL, 0, ftdi->usb_write_timeout) != 0)
c1c70e13
OS
4170 ftdi_error_return(-1, "unable to write eeprom");
4171
4172 return 0;
4173}
4174
4175/**
1941414d 4176 Write eeprom
a3da1d95 4177
1941414d 4178 \param ftdi pointer to ftdi_context
56ac0383 4179
1941414d
TJ
4180 \retval 0: all fine
4181 \retval -1: read failed
22a1b5c1 4182 \retval -2: USB device unavailable
44f41f11 4183 \retval -3: EEPROM not initialized for the connected device;
1941414d 4184*/
a35aa9bd 4185int ftdi_write_eeprom(struct ftdi_context *ftdi)
a8f46ddc 4186{
ba5329be 4187 unsigned short usb_val, status;
e30da501 4188 int i, ret;
a35aa9bd 4189 unsigned char *eeprom;
a3da1d95 4190
22a1b5c1
TJ
4191 if (ftdi == NULL || ftdi->usb_dev == NULL)
4192 ftdi_error_return(-2, "USB device unavailable");
44f41f11
UB
4193
4194 if(ftdi->eeprom->initialized_for_connected_device == 0)
4195 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
4196
a35aa9bd 4197 eeprom = ftdi->eeprom->buf;
22a1b5c1 4198
ba5329be 4199 /* These commands were traced while running MProg */
e30da501
TJ
4200 if ((ret = ftdi_usb_reset(ftdi)) != 0)
4201 return ret;
4202 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
4203 return ret;
4204 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
4205 return ret;
ba5329be 4206
c0a96aed 4207 for (i = 0; i < ftdi->eeprom->size/2; i++)
22d12cda 4208 {
2f80efc2 4209 /* Do not try to write to reserved area */
74387f27
TJ
4210 if ((ftdi->type == TYPE_230X) && (i == 0x40))
4211 {
2f80efc2
NP
4212 i = 0x50;
4213 }
d9f0cce7
TJ
4214 usb_val = eeprom[i*2];
4215 usb_val += eeprom[(i*2)+1] << 8;
579b006f
JZ
4216 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4217 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
4218 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 4219 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
4220 }
4221
4222 return 0;
4223}
4224
1941414d
TJ
4225/**
4226 Erase eeprom
a3da1d95 4227
a5e1bd8c
MK
4228 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
4229
1941414d
TJ
4230 \param ftdi pointer to ftdi_context
4231
4232 \retval 0: all fine
4233 \retval -1: erase failed
22a1b5c1 4234 \retval -2: USB device unavailable
99404ad5
UB
4235 \retval -3: Writing magic failed
4236 \retval -4: Read EEPROM failed
4237 \retval -5: Unexpected EEPROM value
1941414d 4238*/
99404ad5 4239#define MAGIC 0x55aa
a8f46ddc
TJ
4240int ftdi_erase_eeprom(struct ftdi_context *ftdi)
4241{
99404ad5 4242 unsigned short eeprom_value;
22a1b5c1
TJ
4243 if (ftdi == NULL || ftdi->usb_dev == NULL)
4244 ftdi_error_return(-2, "USB device unavailable");
4245
519bbce1 4246 if ((ftdi->type == TYPE_R) || (ftdi->type == TYPE_230X))
99404ad5
UB
4247 {
4248 ftdi->eeprom->chip = 0;
4249 return 0;
4250 }
4251
56ac0383 4252 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5 4253 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 4254 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95 4255
56ac0383 4256
99404ad5
UB
4257 /* detect chip type by writing 0x55AA as magic at word position 0xc0
4258 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
4259 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
4260 Chip is 93x66 if magic is only read at word position 0xc0*/
10186c1f 4261 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
56ac0383
TJ
4262 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
4263 NULL, 0, ftdi->usb_write_timeout) != 0)
99404ad5 4264 ftdi_error_return(-3, "Writing magic failed");
56ac0383 4265 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
a00c0a85 4266 ftdi_error_return(-4, "Reading failed");
56ac0383 4267 if (eeprom_value == MAGIC)
99404ad5
UB
4268 {
4269 ftdi->eeprom->chip = 0x46;
4270 }
56ac0383 4271 else
99404ad5 4272 {
56ac0383 4273 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
a00c0a85 4274 ftdi_error_return(-4, "Reading failed");
56ac0383 4275 if (eeprom_value == MAGIC)
99404ad5 4276 ftdi->eeprom->chip = 0x56;
56ac0383 4277 else
99404ad5 4278 {
56ac0383 4279 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
a00c0a85 4280 ftdi_error_return(-4, "Reading failed");
56ac0383 4281 if (eeprom_value == MAGIC)
99404ad5
UB
4282 ftdi->eeprom->chip = 0x66;
4283 else
4284 {
4285 ftdi->eeprom->chip = -1;
4286 }
4287 }
4288 }
56ac0383 4289 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
99404ad5
UB
4290 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4291 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
4292 return 0;
4293}
c3d95b87 4294
1941414d
TJ
4295/**
4296 Get string representation for last error code
c3d95b87 4297
1941414d
TJ
4298 \param ftdi pointer to ftdi_context
4299
4300 \retval Pointer to error string
4301*/
c3d95b87
TJ
4302char *ftdi_get_error_string (struct ftdi_context *ftdi)
4303{
22a1b5c1
TJ
4304 if (ftdi == NULL)
4305 return "";
4306
c3d95b87
TJ
4307 return ftdi->error_str;
4308}
a01d31e2 4309
b5ec1820 4310/* @} end of doxygen libftdi group */