Fix initialization order (found by -Wall)
[libftdi] / src / ftdi.c
CommitLineData
a3da1d95
GE
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
22a1b5c1 5 copyright : (C) 2003-2010 by Intra2net AG
5fdb1cb1 6 email : opensource@intra2net.com
a3da1d95
GE
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
d9f0cce7 16
b5ec1820
TJ
17/**
18 \mainpage libftdi API documentation
19
ad397a4b 20 Library to talk to FTDI chips. You find the latest versions of libftdi at
1bfc403c 21 http://www.intra2net.com/en/developer/libftdi/
b5ec1820 22
ad397a4b
TJ
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
b5ec1820
TJ
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
579b006f 31#include <libusb.h>
a8f46ddc 32#include <string.h>
d2f10023 33#include <errno.h>
b56d5a64 34#include <stdio.h>
579b006f 35#include <stdlib.h>
0e302db6 36
98452d97 37#include "ftdi.h"
a3da1d95 38
21abaf2e 39#define ftdi_error_return(code, str) do { \
2f73e59f 40 ftdi->error_str = str; \
21abaf2e 41 return code; \
d2f10023 42 } while(0);
c3d95b87 43
99650502
UB
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
418aaa72 50
f3f81007
TJ
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
579b006f 58 \retval none
f3f81007 59*/
579b006f 60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
dff4fdb0 61{
22a1b5c1 62 if (ftdi && ftdi->usb_dev)
dff4fdb0 63 {
579b006f 64 libusb_close (ftdi->usb_dev);
dff4fdb0
NF
65 ftdi->usb_dev = NULL;
66 }
dff4fdb0 67}
c3d95b87 68
1941414d
TJ
69/**
70 Initializes a ftdi_context.
4837f98a 71
1941414d 72 \param ftdi pointer to ftdi_context
4837f98a 73
1941414d
TJ
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
76
77 \remark This should be called before all functions
948f9ada 78*/
a8f46ddc
TJ
79int ftdi_init(struct ftdi_context *ftdi)
80{
02212d8e 81 ftdi->usb_ctx = NULL;
98452d97 82 ftdi->usb_dev = NULL;
545820ce
TJ
83 ftdi->usb_read_timeout = 5000;
84 ftdi->usb_write_timeout = 5000;
a3da1d95 85
53ad271d 86 ftdi->type = TYPE_BM; /* chip type */
a3da1d95 87 ftdi->baudrate = -1;
418aaa72 88 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
a3da1d95 89
948f9ada
TJ
90 ftdi->readbuffer = NULL;
91 ftdi->readbuffer_offset = 0;
92 ftdi->readbuffer_remaining = 0;
93 ftdi->writebuffer_chunksize = 4096;
e2f12a4f 94 ftdi->max_packet_size = 0;
948f9ada 95
545820ce
TJ
96 ftdi->interface = 0;
97 ftdi->index = 0;
98 ftdi->in_ep = 0x02;
99 ftdi->out_ep = 0x81;
418aaa72 100 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
53ad271d 101
a3da1d95
GE
102 ftdi->error_str = NULL;
103
c201f80f
TJ
104 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
105
1c733d33
TJ
106 /* All fine. Now allocate the readbuffer */
107 return ftdi_read_data_set_chunksize(ftdi, 4096);
948f9ada 108}
4837f98a 109
1941414d 110/**
cef378aa
TJ
111 Allocate and initialize a new ftdi_context
112
113 \return a pointer to a new ftdi_context, or NULL on failure
114*/
672ac008 115struct ftdi_context *ftdi_new(void)
cef378aa
TJ
116{
117 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
118
22d12cda
TJ
119 if (ftdi == NULL)
120 {
cef378aa
TJ
121 return NULL;
122 }
123
22d12cda
TJ
124 if (ftdi_init(ftdi) != 0)
125 {
cef378aa 126 free(ftdi);
cdf448f6 127 return NULL;
cef378aa
TJ
128 }
129
130 return ftdi;
131}
132
133/**
1941414d
TJ
134 Open selected channels on a chip, otherwise use first channel.
135
136 \param ftdi pointer to ftdi_context
f9d69895 137 \param interface Interface to use for FT2232C/2232H/4232H chips.
1941414d
TJ
138
139 \retval 0: all fine
140 \retval -1: unknown interface
22a1b5c1 141 \retval -2: USB device unavailable
c4446c36 142*/
0ce2f5fa 143int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
c4446c36 144{
1971c26d 145 if (ftdi == NULL)
22a1b5c1
TJ
146 ftdi_error_return(-2, "USB device unavailable");
147
22d12cda
TJ
148 switch (interface)
149 {
150 case INTERFACE_ANY:
151 case INTERFACE_A:
152 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
153 break;
154 case INTERFACE_B:
155 ftdi->interface = 1;
156 ftdi->index = INTERFACE_B;
157 ftdi->in_ep = 0x04;
158 ftdi->out_ep = 0x83;
159 break;
f9d69895
AH
160 case INTERFACE_C:
161 ftdi->interface = 2;
162 ftdi->index = INTERFACE_C;
163 ftdi->in_ep = 0x06;
164 ftdi->out_ep = 0x85;
165 break;
166 case INTERFACE_D:
167 ftdi->interface = 3;
168 ftdi->index = INTERFACE_D;
169 ftdi->in_ep = 0x08;
170 ftdi->out_ep = 0x87;
171 break;
22d12cda
TJ
172 default:
173 ftdi_error_return(-1, "Unknown interface");
c4446c36
TJ
174 }
175 return 0;
176}
948f9ada 177
1941414d
TJ
178/**
179 Deinitializes a ftdi_context.
4837f98a 180
1941414d 181 \param ftdi pointer to ftdi_context
4837f98a 182*/
a8f46ddc
TJ
183void ftdi_deinit(struct ftdi_context *ftdi)
184{
22a1b5c1
TJ
185 if (ftdi == NULL)
186 return;
187
f3f81007 188 ftdi_usb_close_internal (ftdi);
dff4fdb0 189
22d12cda
TJ
190 if (ftdi->readbuffer != NULL)
191 {
d9f0cce7
TJ
192 free(ftdi->readbuffer);
193 ftdi->readbuffer = NULL;
948f9ada 194 }
02212d8e 195 libusb_exit(ftdi->usb_ctx);
a3da1d95
GE
196}
197
1941414d 198/**
cef378aa
TJ
199 Deinitialize and free an ftdi_context.
200
201 \param ftdi pointer to ftdi_context
202*/
203void ftdi_free(struct ftdi_context *ftdi)
204{
205 ftdi_deinit(ftdi);
206 free(ftdi);
207}
208
209/**
1941414d
TJ
210 Use an already open libusb device.
211
212 \param ftdi pointer to ftdi_context
579b006f 213 \param usb libusb libusb_device_handle to use
4837f98a 214*/
579b006f 215void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
a8f46ddc 216{
22a1b5c1
TJ
217 if (ftdi == NULL)
218 return;
219
98452d97
TJ
220 ftdi->usb_dev = usb;
221}
222
223
1941414d
TJ
224/**
225 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
226 needs to be deallocated by ftdi_list_free() after use.
227
228 \param ftdi pointer to ftdi_context
229 \param devlist Pointer where to store list of found devices
230 \param vendor Vendor ID to search for
231 \param product Product ID to search for
edb82cbf 232
1941414d 233 \retval >0: number of devices found
1941414d 234 \retval -3: out of memory
579b006f
JZ
235 \retval -4: libusb_init() failed
236 \retval -5: libusb_get_device_list() failed
237 \retval -6: libusb_get_device_descriptor() failed
edb82cbf 238*/
d2f10023 239int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
edb82cbf
TJ
240{
241 struct ftdi_device_list **curdev;
579b006f
JZ
242 libusb_device *dev;
243 libusb_device **devs;
edb82cbf 244 int count = 0;
579b006f
JZ
245 int i = 0;
246
02212d8e 247 if (libusb_init(&ftdi->usb_ctx) < 0)
579b006f 248 ftdi_error_return(-4, "libusb_init() failed");
d2f10023 249
02212d8e 250 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 251 ftdi_error_return(-5, "libusb_get_device_list() failed");
edb82cbf
TJ
252
253 curdev = devlist;
6db32169 254 *curdev = NULL;
579b006f
JZ
255
256 while ((dev = devs[i++]) != NULL)
22d12cda 257 {
579b006f 258 struct libusb_device_descriptor desc;
d2f10023 259
579b006f
JZ
260 if (libusb_get_device_descriptor(dev, &desc) < 0)
261 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
edb82cbf 262
579b006f
JZ
263 if (desc.idVendor == vendor && desc.idProduct == product)
264 {
265 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
266 if (!*curdev)
267 ftdi_error_return(-3, "out of memory");
268
269 (*curdev)->next = NULL;
270 (*curdev)->dev = dev;
271
272 curdev = &(*curdev)->next;
273 count++;
edb82cbf
TJ
274 }
275 }
d2f10023 276
edb82cbf
TJ
277 return count;
278}
279
1941414d
TJ
280/**
281 Frees a usb device list.
edb82cbf 282
1941414d 283 \param devlist USB device list created by ftdi_usb_find_all()
edb82cbf 284*/
d2f10023 285void ftdi_list_free(struct ftdi_device_list **devlist)
edb82cbf 286{
6db32169
TJ
287 struct ftdi_device_list *curdev, *next;
288
22d12cda
TJ
289 for (curdev = *devlist; curdev != NULL;)
290 {
6db32169
TJ
291 next = curdev->next;
292 free(curdev);
293 curdev = next;
edb82cbf
TJ
294 }
295
6db32169 296 *devlist = NULL;
edb82cbf
TJ
297}
298
1941414d 299/**
cef378aa
TJ
300 Frees a usb device list.
301
302 \param devlist USB device list created by ftdi_usb_find_all()
303*/
304void ftdi_list_free2(struct ftdi_device_list *devlist)
305{
306 ftdi_list_free(&devlist);
307}
308
309/**
474786c0
TJ
310 Return device ID strings from the usb device.
311
312 The parameters manufacturer, description and serial may be NULL
313 or pointer to buffers to store the fetched strings.
314
898c34dd
TJ
315 \note Use this function only in combination with ftdi_usb_find_all()
316 as it closes the internal "usb_dev" after use.
317
474786c0
TJ
318 \param ftdi pointer to ftdi_context
319 \param dev libusb usb_dev to use
320 \param manufacturer Store manufacturer string here if not NULL
321 \param mnf_len Buffer size of manufacturer string
322 \param description Store product description string here if not NULL
323 \param desc_len Buffer size of product description string
324 \param serial Store serial string here if not NULL
325 \param serial_len Buffer size of serial string
326
327 \retval 0: all fine
328 \retval -1: wrong arguments
329 \retval -4: unable to open device
330 \retval -7: get product manufacturer failed
331 \retval -8: get product description failed
332 \retval -9: get serial number failed
579b006f 333 \retval -11: libusb_get_device_descriptor() failed
474786c0 334*/
579b006f 335int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
22d12cda 336 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
474786c0 337{
579b006f
JZ
338 struct libusb_device_descriptor desc;
339
474786c0
TJ
340 if ((ftdi==NULL) || (dev==NULL))
341 return -1;
342
579b006f
JZ
343 if (libusb_open(dev, &ftdi->usb_dev) < 0)
344 ftdi_error_return(-4, "libusb_open() failed");
345
346 if (libusb_get_device_descriptor(dev, &desc) < 0)
347 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
474786c0 348
22d12cda
TJ
349 if (manufacturer != NULL)
350 {
579b006f 351 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
22d12cda 352 {
f3f81007 353 ftdi_usb_close_internal (ftdi);
579b006f 354 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
355 }
356 }
357
22d12cda
TJ
358 if (description != NULL)
359 {
579b006f 360 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
22d12cda 361 {
f3f81007 362 ftdi_usb_close_internal (ftdi);
579b006f 363 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
364 }
365 }
366
22d12cda
TJ
367 if (serial != NULL)
368 {
579b006f 369 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
22d12cda 370 {
f3f81007 371 ftdi_usb_close_internal (ftdi);
579b006f 372 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
474786c0
TJ
373 }
374 }
375
579b006f 376 ftdi_usb_close_internal (ftdi);
474786c0
TJ
377
378 return 0;
379}
380
381/**
e2f12a4f
TJ
382 * Internal function to determine the maximum packet size.
383 * \param ftdi pointer to ftdi_context
384 * \param dev libusb usb_dev to use
385 * \retval Maximum packet size for this device
386 */
579b006f 387static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
e2f12a4f 388{
579b006f
JZ
389 struct libusb_device_descriptor desc;
390 struct libusb_config_descriptor *config0;
e2f12a4f
TJ
391 unsigned int packet_size;
392
22a1b5c1
TJ
393 // Sanity check
394 if (ftdi == NULL || dev == NULL)
395 return 64;
396
e2f12a4f
TJ
397 // Determine maximum packet size. Init with default value.
398 // New hi-speed devices from FTDI use a packet size of 512 bytes
399 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
400 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
401 packet_size = 512;
402 else
403 packet_size = 64;
404
579b006f
JZ
405 if (libusb_get_device_descriptor(dev, &desc) < 0)
406 return packet_size;
407
408 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
409 return packet_size;
e2f12a4f 410
579b006f
JZ
411 if (desc.bNumConfigurations > 0)
412 {
413 if (ftdi->interface < config0->bNumInterfaces)
e2f12a4f 414 {
579b006f 415 struct libusb_interface interface = config0->interface[ftdi->interface];
e2f12a4f
TJ
416 if (interface.num_altsetting > 0)
417 {
579b006f 418 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
e2f12a4f
TJ
419 if (descriptor.bNumEndpoints > 0)
420 {
421 packet_size = descriptor.endpoint[0].wMaxPacketSize;
422 }
423 }
424 }
425 }
426
579b006f 427 libusb_free_config_descriptor (config0);
e2f12a4f
TJ
428 return packet_size;
429}
430
431/**
418aaa72 432 Opens a ftdi device given by an usb_device.
7b18bef6 433
1941414d
TJ
434 \param ftdi pointer to ftdi_context
435 \param dev libusb usb_dev to use
436
437 \retval 0: all fine
23b1798d 438 \retval -3: unable to config device
1941414d
TJ
439 \retval -4: unable to open device
440 \retval -5: unable to claim device
441 \retval -6: reset failed
442 \retval -7: set baudrate failed
22a1b5c1 443 \retval -8: ftdi context invalid
579b006f
JZ
444 \retval -9: libusb_get_device_descriptor() failed
445 \retval -10: libusb_get_config_descriptor() failed
446 \retval -11: libusb_etach_kernel_driver() failed
447 \retval -12: libusb_get_configuration() failed
7b18bef6 448*/
579b006f 449int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
7b18bef6 450{
579b006f
JZ
451 struct libusb_device_descriptor desc;
452 struct libusb_config_descriptor *config0;
43aee24f 453 int cfg, cfg0, detach_errno = 0;
579b006f 454
22a1b5c1
TJ
455 if (ftdi == NULL)
456 ftdi_error_return(-8, "ftdi context invalid");
457
579b006f
JZ
458 if (libusb_open(dev, &ftdi->usb_dev) < 0)
459 ftdi_error_return(-4, "libusb_open() failed");
460
461 if (libusb_get_device_descriptor(dev, &desc) < 0)
462 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
463
464 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
465 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
466 cfg0 = config0->bConfigurationValue;
467 libusb_free_config_descriptor (config0);
d2f10023 468
22592e17 469 // Try to detach ftdi_sio kernel module.
22592e17
TJ
470 //
471 // The return code is kept in a separate variable and only parsed
472 // if usb_set_configuration() or usb_claim_interface() fails as the
473 // detach operation might be denied and everything still works fine.
474 // Likely scenario is a static ftdi_sio kernel module.
43aee24f
UB
475 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
476 detach_errno = errno;
d2f10023 477
579b006f
JZ
478 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
479 ftdi_error_return(-12, "libusb_get_configuration () failed");
b57aedfd
GE
480 // set configuration (needed especially for windows)
481 // tolerate EBUSY: one device with one configuration, but two interfaces
482 // and libftdi sessions to both interfaces (e.g. FT2232)
579b006f 483 if (desc.bNumConfigurations > 0 && cfg != cfg0)
b57aedfd 484 {
579b006f 485 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
22d12cda 486 {
a56ba2bd 487 ftdi_usb_close_internal (ftdi);
43aee24f
UB
488 if(detach_errno == EPERM)
489 {
490 ftdi_error_return(-8, "inappropriate permissions on device!");
491 }
492 else
493 {
c16b162d 494 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
43aee24f 495 }
23b1798d
TJ
496 }
497 }
498
579b006f 499 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
22d12cda 500 {
f3f81007 501 ftdi_usb_close_internal (ftdi);
43aee24f
UB
502 if(detach_errno == EPERM)
503 {
504 ftdi_error_return(-8, "inappropriate permissions on device!");
505 }
506 else
507 {
c16b162d 508 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
43aee24f 509 }
7b18bef6
TJ
510 }
511
22d12cda
TJ
512 if (ftdi_usb_reset (ftdi) != 0)
513 {
f3f81007 514 ftdi_usb_close_internal (ftdi);
7b18bef6
TJ
515 ftdi_error_return(-6, "ftdi_usb_reset failed");
516 }
517
7b18bef6
TJ
518 // Try to guess chip type
519 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
579b006f
JZ
520 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
521 && desc.iSerialNumber == 0))
7b18bef6 522 ftdi->type = TYPE_BM;
579b006f 523 else if (desc.bcdDevice == 0x200)
7b18bef6 524 ftdi->type = TYPE_AM;
579b006f 525 else if (desc.bcdDevice == 0x500)
7b18bef6 526 ftdi->type = TYPE_2232C;
579b006f 527 else if (desc.bcdDevice == 0x600)
cb6250fa 528 ftdi->type = TYPE_R;
579b006f 529 else if (desc.bcdDevice == 0x700)
0beb9686 530 ftdi->type = TYPE_2232H;
579b006f 531 else if (desc.bcdDevice == 0x800)
0beb9686 532 ftdi->type = TYPE_4232H;
7b18bef6 533
f9d69895
AH
534 // Set default interface on dual/quad type chips
535 switch(ftdi->type)
536 {
537 case TYPE_2232C:
538 case TYPE_2232H:
539 case TYPE_4232H:
540 if (!ftdi->index)
541 ftdi->index = INTERFACE_A;
542 break;
543 default:
544 break;
545 }
546
e2f12a4f
TJ
547 // Determine maximum packet size
548 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
549
ef6f4838
TE
550 if (ftdi_set_baudrate (ftdi, 9600) != 0)
551 {
552 ftdi_usb_close_internal (ftdi);
553 ftdi_error_return(-7, "set baudrate failed");
554 }
555
7b18bef6
TJ
556 ftdi_error_return(0, "all fine");
557}
558
1941414d
TJ
559/**
560 Opens the first device with a given vendor and product ids.
561
562 \param ftdi pointer to ftdi_context
563 \param vendor Vendor ID
564 \param product Product ID
565
9bec2387 566 \retval same as ftdi_usb_open_desc()
1941414d 567*/
edb82cbf
TJ
568int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
569{
570 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
571}
572
1941414d
TJ
573/**
574 Opens the first device with a given, vendor id, product id,
575 description and serial.
576
577 \param ftdi pointer to ftdi_context
578 \param vendor Vendor ID
579 \param product Product ID
580 \param description Description to search for. Use NULL if not needed.
581 \param serial Serial to search for. Use NULL if not needed.
582
583 \retval 0: all fine
1941414d
TJ
584 \retval -3: usb device not found
585 \retval -4: unable to open device
586 \retval -5: unable to claim device
587 \retval -6: reset failed
588 \retval -7: set baudrate failed
589 \retval -8: get product description failed
590 \retval -9: get serial number failed
579b006f
JZ
591 \retval -11: libusb_init() failed
592 \retval -12: libusb_get_device_list() failed
593 \retval -13: libusb_get_device_descriptor() failed
a3da1d95 594*/
04e1ea0a 595int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
a8f46ddc
TJ
596 const char* description, const char* serial)
597{
5ebbdab9
GE
598 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
599}
600
601/**
602 Opens the index-th device with a given, vendor id, product id,
603 description and serial.
604
605 \param ftdi pointer to ftdi_context
606 \param vendor Vendor ID
607 \param product Product ID
608 \param description Description to search for. Use NULL if not needed.
609 \param serial Serial to search for. Use NULL if not needed.
610 \param index Number of matching device to open if there are more than one, starts with 0.
611
612 \retval 0: all fine
613 \retval -1: usb_find_busses() failed
614 \retval -2: usb_find_devices() failed
615 \retval -3: usb device not found
616 \retval -4: unable to open device
617 \retval -5: unable to claim device
618 \retval -6: reset failed
619 \retval -7: set baudrate failed
620 \retval -8: get product description failed
621 \retval -9: get serial number failed
622 \retval -10: unable to close device
22a1b5c1 623 \retval -11: ftdi context invalid
5ebbdab9
GE
624*/
625int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
626 const char* description, const char* serial, unsigned int index)
627{
579b006f
JZ
628 libusb_device *dev;
629 libusb_device **devs;
c3d95b87 630 char string[256];
579b006f 631 int i = 0;
98452d97 632
02212d8e 633 if (libusb_init(&ftdi->usb_ctx) < 0)
579b006f 634 ftdi_error_return(-11, "libusb_init() failed");
98452d97 635
22a1b5c1
TJ
636 if (ftdi == NULL)
637 ftdi_error_return(-11, "ftdi context invalid");
638
02212d8e 639 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
99650502
UB
640 ftdi_error_return(-12, "libusb_get_device_list() failed");
641
579b006f 642 while ((dev = devs[i++]) != NULL)
22d12cda 643 {
579b006f 644 struct libusb_device_descriptor desc;
99650502 645 int res;
579b006f
JZ
646
647 if (libusb_get_device_descriptor(dev, &desc) < 0)
99650502 648 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
579b006f
JZ
649
650 if (desc.idVendor == vendor && desc.idProduct == product)
22d12cda 651 {
579b006f 652 if (libusb_open(dev, &ftdi->usb_dev) < 0)
99650502 653 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
c3d95b87 654
579b006f
JZ
655 if (description != NULL)
656 {
657 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
22d12cda 658 {
579b006f 659 libusb_close (ftdi->usb_dev);
99650502 660 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
a8f46ddc 661 }
579b006f 662 if (strncmp(string, description, sizeof(string)) != 0)
22d12cda 663 {
579b006f
JZ
664 libusb_close (ftdi->usb_dev);
665 continue;
a8f46ddc 666 }
579b006f
JZ
667 }
668 if (serial != NULL)
669 {
670 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
671 {
672 ftdi_usb_close_internal (ftdi);
99650502 673 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
579b006f
JZ
674 }
675 if (strncmp(string, serial, sizeof(string)) != 0)
676 {
677 ftdi_usb_close_internal (ftdi);
678 continue;
679 }
680 }
98452d97 681
579b006f 682 ftdi_usb_close_internal (ftdi);
d2f10023 683
5ebbdab9
GE
684 if (index > 0)
685 {
686 index--;
687 continue;
688 }
689
99650502
UB
690 res = ftdi_usb_open_dev(ftdi, dev);
691 libusb_free_device_list(devs,1);
692 return res;
98452d97 693 }
98452d97 694 }
a3da1d95 695
98452d97 696 // device not found
99650502 697 ftdi_error_return_free_device_list(-3, "device not found", devs);
a3da1d95
GE
698}
699
1941414d 700/**
5ebbdab9
GE
701 Opens the ftdi-device described by a description-string.
702 Intended to be used for parsing a device-description given as commandline argument.
703
704 \param ftdi pointer to ftdi_context
705 \param description NULL-terminated description-string, using this format:
706 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
707 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
708 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
709 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
710
711 \note The description format may be extended in later versions.
712
713 \retval 0: all fine
579b006f
JZ
714 \retval -1: libusb_init() failed
715 \retval -2: libusb_get_device_list() failed
5ebbdab9
GE
716 \retval -3: usb device not found
717 \retval -4: unable to open device
718 \retval -5: unable to claim device
719 \retval -6: reset failed
720 \retval -7: set baudrate failed
721 \retval -8: get product description failed
722 \retval -9: get serial number failed
723 \retval -10: unable to close device
724 \retval -11: illegal description format
22a1b5c1 725 \retval -12: ftdi context invalid
5ebbdab9
GE
726*/
727int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
728{
22a1b5c1
TJ
729 if (ftdi == NULL)
730 ftdi_error_return(-12, "ftdi context invalid");
731
5ebbdab9
GE
732 if (description[0] == 0 || description[1] != ':')
733 ftdi_error_return(-11, "illegal description format");
734
735 if (description[0] == 'd')
736 {
579b006f
JZ
737 libusb_device *dev;
738 libusb_device **devs;
739 unsigned int bus_number, device_address;
740 int i = 0;
741
02212d8e 742 if (libusb_init (&ftdi->usb_ctx) < 0)
579b006f 743 ftdi_error_return(-1, "libusb_init() failed");
5ebbdab9 744
02212d8e 745 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
579b006f 746 ftdi_error_return(-2, "libusb_get_device_list() failed");
5ebbdab9 747
579b006f
JZ
748 /* XXX: This doesn't handle symlinks/odd paths/etc... */
749 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
99650502 750 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
5ebbdab9 751
579b006f 752 while ((dev = devs[i++]) != NULL)
5ebbdab9 753 {
99650502 754 int ret;
579b006f
JZ
755 if (bus_number == libusb_get_bus_number (dev)
756 && device_address == libusb_get_device_address (dev))
99650502
UB
757 {
758 ret = ftdi_usb_open_dev(ftdi, dev);
759 libusb_free_device_list(devs,1);
760 return ret;
761 }
5ebbdab9
GE
762 }
763
764 // device not found
99650502 765 ftdi_error_return_free_device_list(-3, "device not found", devs);
5ebbdab9
GE
766 }
767 else if (description[0] == 'i' || description[0] == 's')
768 {
769 unsigned int vendor;
770 unsigned int product;
771 unsigned int index=0;
0e6cf62b 772 const char *serial=NULL;
5ebbdab9
GE
773 const char *startp, *endp;
774
775 errno=0;
776 startp=description+2;
777 vendor=strtoul((char*)startp,(char**)&endp,0);
778 if (*endp != ':' || endp == startp || errno != 0)
779 ftdi_error_return(-11, "illegal description format");
780
781 startp=endp+1;
782 product=strtoul((char*)startp,(char**)&endp,0);
783 if (endp == startp || errno != 0)
784 ftdi_error_return(-11, "illegal description format");
785
786 if (description[0] == 'i' && *endp != 0)
787 {
788 /* optional index field in i-mode */
789 if (*endp != ':')
790 ftdi_error_return(-11, "illegal description format");
791
792 startp=endp+1;
793 index=strtoul((char*)startp,(char**)&endp,0);
794 if (*endp != 0 || endp == startp || errno != 0)
795 ftdi_error_return(-11, "illegal description format");
796 }
797 if (description[0] == 's')
798 {
799 if (*endp != ':')
800 ftdi_error_return(-11, "illegal description format");
801
802 /* rest of the description is the serial */
803 serial=endp+1;
804 }
805
806 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
807 }
808 else
809 {
810 ftdi_error_return(-11, "illegal description format");
811 }
812}
813
814/**
1941414d 815 Resets the ftdi device.
a3da1d95 816
1941414d
TJ
817 \param ftdi pointer to ftdi_context
818
819 \retval 0: all fine
820 \retval -1: FTDI reset failed
22a1b5c1 821 \retval -2: USB device unavailable
4837f98a 822*/
edb82cbf 823int ftdi_usb_reset(struct ftdi_context *ftdi)
a8f46ddc 824{
22a1b5c1
TJ
825 if (ftdi == NULL || ftdi->usb_dev == NULL)
826 ftdi_error_return(-2, "USB device unavailable");
827
579b006f
JZ
828 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
829 SIO_RESET_REQUEST, SIO_RESET_SIO,
830 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 831 ftdi_error_return(-1,"FTDI reset failed");
c3d95b87 832
545820ce 833 // Invalidate data in the readbuffer
bfcee05b
TJ
834 ftdi->readbuffer_offset = 0;
835 ftdi->readbuffer_remaining = 0;
836
a3da1d95
GE
837 return 0;
838}
839
1941414d 840/**
1189b11a 841 Clears the read buffer on the chip and the internal read buffer.
1941414d
TJ
842
843 \param ftdi pointer to ftdi_context
4837f98a 844
1941414d 845 \retval 0: all fine
1189b11a 846 \retval -1: read buffer purge failed
22a1b5c1 847 \retval -2: USB device unavailable
4837f98a 848*/
1189b11a 849int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
a8f46ddc 850{
22a1b5c1
TJ
851 if (ftdi == NULL || ftdi->usb_dev == NULL)
852 ftdi_error_return(-2, "USB device unavailable");
853
579b006f
JZ
854 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
855 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
856 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
857 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
858
545820ce 859 // Invalidate data in the readbuffer
bfcee05b
TJ
860 ftdi->readbuffer_offset = 0;
861 ftdi->readbuffer_remaining = 0;
a60be878 862
1189b11a
TJ
863 return 0;
864}
865
866/**
867 Clears the write buffer on the chip.
868
869 \param ftdi pointer to ftdi_context
870
871 \retval 0: all fine
872 \retval -1: write buffer purge failed
22a1b5c1 873 \retval -2: USB device unavailable
1189b11a
TJ
874*/
875int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
876{
22a1b5c1
TJ
877 if (ftdi == NULL || ftdi->usb_dev == NULL)
878 ftdi_error_return(-2, "USB device unavailable");
879
579b006f
JZ
880 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
881 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
882 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
883 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
884
885 return 0;
886}
887
888/**
889 Clears the buffers on the chip and the internal read buffer.
890
891 \param ftdi pointer to ftdi_context
892
893 \retval 0: all fine
894 \retval -1: read buffer purge failed
895 \retval -2: write buffer purge failed
22a1b5c1 896 \retval -3: USB device unavailable
1189b11a
TJ
897*/
898int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
899{
900 int result;
901
22a1b5c1
TJ
902 if (ftdi == NULL || ftdi->usb_dev == NULL)
903 ftdi_error_return(-3, "USB device unavailable");
904
1189b11a 905 result = ftdi_usb_purge_rx_buffer(ftdi);
5a2b51cb 906 if (result < 0)
1189b11a
TJ
907 return -1;
908
909 result = ftdi_usb_purge_tx_buffer(ftdi);
5a2b51cb 910 if (result < 0)
1189b11a 911 return -2;
545820ce 912
a60be878
TJ
913 return 0;
914}
a3da1d95 915
f3f81007
TJ
916
917
1941414d
TJ
918/**
919 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
920
921 \param ftdi pointer to ftdi_context
922
923 \retval 0: all fine
924 \retval -1: usb_release failed
22a1b5c1 925 \retval -3: ftdi context invalid
a3da1d95 926*/
a8f46ddc
TJ
927int ftdi_usb_close(struct ftdi_context *ftdi)
928{
a3da1d95
GE
929 int rtn = 0;
930
22a1b5c1
TJ
931 if (ftdi == NULL)
932 ftdi_error_return(-3, "ftdi context invalid");
933
dff4fdb0 934 if (ftdi->usb_dev != NULL)
579b006f 935 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
dff4fdb0 936 rtn = -1;
98452d97 937
579b006f 938 ftdi_usb_close_internal (ftdi);
98452d97 939
a3da1d95
GE
940 return rtn;
941}
942
418aaa72 943/**
53ad271d
TJ
944 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
945 Function is only used internally
b5ec1820 946 \internal
53ad271d 947*/
0126d22e 948static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
a8f46ddc
TJ
949 unsigned short *value, unsigned short *index)
950{
53ad271d
TJ
951 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
952 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
953 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
954 int divisor, best_divisor, best_baud, best_baud_diff;
955 unsigned long encoded_divisor;
956 int i;
957
22d12cda
TJ
958 if (baudrate <= 0)
959 {
53ad271d
TJ
960 // Return error
961 return -1;
962 }
963
964 divisor = 24000000 / baudrate;
965
22d12cda
TJ
966 if (ftdi->type == TYPE_AM)
967 {
53ad271d
TJ
968 // Round down to supported fraction (AM only)
969 divisor -= am_adjust_dn[divisor & 7];
970 }
971
972 // Try this divisor and the one above it (because division rounds down)
973 best_divisor = 0;
974 best_baud = 0;
975 best_baud_diff = 0;
22d12cda
TJ
976 for (i = 0; i < 2; i++)
977 {
53ad271d
TJ
978 int try_divisor = divisor + i;
979 int baud_estimate;
980 int baud_diff;
981
982 // Round up to supported divisor value
22d12cda
TJ
983 if (try_divisor <= 8)
984 {
53ad271d
TJ
985 // Round up to minimum supported divisor
986 try_divisor = 8;
22d12cda
TJ
987 }
988 else if (ftdi->type != TYPE_AM && try_divisor < 12)
989 {
53ad271d
TJ
990 // BM doesn't support divisors 9 through 11 inclusive
991 try_divisor = 12;
22d12cda
TJ
992 }
993 else if (divisor < 16)
994 {
53ad271d
TJ
995 // AM doesn't support divisors 9 through 15 inclusive
996 try_divisor = 16;
22d12cda
TJ
997 }
998 else
999 {
1000 if (ftdi->type == TYPE_AM)
1001 {
53ad271d
TJ
1002 // Round up to supported fraction (AM only)
1003 try_divisor += am_adjust_up[try_divisor & 7];
22d12cda
TJ
1004 if (try_divisor > 0x1FFF8)
1005 {
53ad271d
TJ
1006 // Round down to maximum supported divisor value (for AM)
1007 try_divisor = 0x1FFF8;
1008 }
22d12cda
TJ
1009 }
1010 else
1011 {
1012 if (try_divisor > 0x1FFFF)
1013 {
53ad271d
TJ
1014 // Round down to maximum supported divisor value (for BM)
1015 try_divisor = 0x1FFFF;
1016 }
1017 }
1018 }
1019 // Get estimated baud rate (to nearest integer)
1020 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1021 // Get absolute difference from requested baud rate
22d12cda
TJ
1022 if (baud_estimate < baudrate)
1023 {
53ad271d 1024 baud_diff = baudrate - baud_estimate;
22d12cda
TJ
1025 }
1026 else
1027 {
53ad271d
TJ
1028 baud_diff = baud_estimate - baudrate;
1029 }
22d12cda
TJ
1030 if (i == 0 || baud_diff < best_baud_diff)
1031 {
53ad271d
TJ
1032 // Closest to requested baud rate so far
1033 best_divisor = try_divisor;
1034 best_baud = baud_estimate;
1035 best_baud_diff = baud_diff;
22d12cda
TJ
1036 if (baud_diff == 0)
1037 {
53ad271d
TJ
1038 // Spot on! No point trying
1039 break;
1040 }
1041 }
1042 }
1043 // Encode the best divisor value
1044 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1045 // Deal with special cases for encoded value
22d12cda
TJ
1046 if (encoded_divisor == 1)
1047 {
4837f98a 1048 encoded_divisor = 0; // 3000000 baud
22d12cda
TJ
1049 }
1050 else if (encoded_divisor == 0x4001)
1051 {
4837f98a 1052 encoded_divisor = 1; // 2000000 baud (BM only)
53ad271d
TJ
1053 }
1054 // Split into "value" and "index" values
1055 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1416eb14 1056 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
22d12cda 1057 {
0126d22e
TJ
1058 *index = (unsigned short)(encoded_divisor >> 8);
1059 *index &= 0xFF00;
a9c57c05 1060 *index |= ftdi->index;
0126d22e
TJ
1061 }
1062 else
1063 *index = (unsigned short)(encoded_divisor >> 16);
c3d95b87 1064
53ad271d
TJ
1065 // Return the nearest baud rate
1066 return best_baud;
1067}
1068
1941414d 1069/**
9bec2387 1070 Sets the chip baud rate
1941414d
TJ
1071
1072 \param ftdi pointer to ftdi_context
9bec2387 1073 \param baudrate baud rate to set
1941414d
TJ
1074
1075 \retval 0: all fine
1076 \retval -1: invalid baudrate
1077 \retval -2: setting baudrate failed
22a1b5c1 1078 \retval -3: USB device unavailable
a3da1d95 1079*/
a8f46ddc
TJ
1080int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1081{
53ad271d
TJ
1082 unsigned short value, index;
1083 int actual_baudrate;
a3da1d95 1084
22a1b5c1
TJ
1085 if (ftdi == NULL || ftdi->usb_dev == NULL)
1086 ftdi_error_return(-3, "USB device unavailable");
1087
22d12cda
TJ
1088 if (ftdi->bitbang_enabled)
1089 {
a3da1d95
GE
1090 baudrate = baudrate*4;
1091 }
1092
25707904 1093 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
c3d95b87
TJ
1094 if (actual_baudrate <= 0)
1095 ftdi_error_return (-1, "Silly baudrate <= 0.");
a3da1d95 1096
53ad271d
TJ
1097 // Check within tolerance (about 5%)
1098 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1099 || ((actual_baudrate < baudrate)
1100 ? (actual_baudrate * 21 < baudrate * 20)
c3d95b87
TJ
1101 : (baudrate * 21 < actual_baudrate * 20)))
1102 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
545820ce 1103
579b006f
JZ
1104 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1105 SIO_SET_BAUDRATE_REQUEST, value,
1106 index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1107 ftdi_error_return (-2, "Setting new baudrate failed");
a3da1d95
GE
1108
1109 ftdi->baudrate = baudrate;
1110 return 0;
1111}
1112
1941414d 1113/**
6c32e222
TJ
1114 Set (RS232) line characteristics.
1115 The break type can only be set via ftdi_set_line_property2()
1116 and defaults to "off".
4837f98a 1117
1941414d
TJ
1118 \param ftdi pointer to ftdi_context
1119 \param bits Number of bits
1120 \param sbit Number of stop bits
1121 \param parity Parity mode
1122
1123 \retval 0: all fine
1124 \retval -1: Setting line property failed
2f73e59f
TJ
1125*/
1126int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
d2f10023 1127 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
2f73e59f 1128{
6c32e222
TJ
1129 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1130}
1131
1132/**
1133 Set (RS232) line characteristics
1134
1135 \param ftdi pointer to ftdi_context
1136 \param bits Number of bits
1137 \param sbit Number of stop bits
1138 \param parity Parity mode
1139 \param break_type Break type
1140
1141 \retval 0: all fine
1142 \retval -1: Setting line property failed
22a1b5c1 1143 \retval -2: USB device unavailable
6c32e222
TJ
1144*/
1145int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
22d12cda
TJ
1146 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1147 enum ftdi_break_type break_type)
6c32e222 1148{
2f73e59f
TJ
1149 unsigned short value = bits;
1150
22a1b5c1
TJ
1151 if (ftdi == NULL || ftdi->usb_dev == NULL)
1152 ftdi_error_return(-2, "USB device unavailable");
1153
22d12cda
TJ
1154 switch (parity)
1155 {
1156 case NONE:
1157 value |= (0x00 << 8);
1158 break;
1159 case ODD:
1160 value |= (0x01 << 8);
1161 break;
1162 case EVEN:
1163 value |= (0x02 << 8);
1164 break;
1165 case MARK:
1166 value |= (0x03 << 8);
1167 break;
1168 case SPACE:
1169 value |= (0x04 << 8);
1170 break;
2f73e59f 1171 }
d2f10023 1172
22d12cda
TJ
1173 switch (sbit)
1174 {
1175 case STOP_BIT_1:
1176 value |= (0x00 << 11);
1177 break;
1178 case STOP_BIT_15:
1179 value |= (0x01 << 11);
1180 break;
1181 case STOP_BIT_2:
1182 value |= (0x02 << 11);
1183 break;
2f73e59f 1184 }
d2f10023 1185
22d12cda
TJ
1186 switch (break_type)
1187 {
1188 case BREAK_OFF:
1189 value |= (0x00 << 14);
1190 break;
1191 case BREAK_ON:
1192 value |= (0x01 << 14);
1193 break;
6c32e222
TJ
1194 }
1195
579b006f
JZ
1196 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1197 SIO_SET_DATA_REQUEST, value,
1198 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2f73e59f 1199 ftdi_error_return (-1, "Setting new line property failed");
d2f10023 1200
2f73e59f
TJ
1201 return 0;
1202}
a3da1d95 1203
1941414d
TJ
1204/**
1205 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1206
1207 \param ftdi pointer to ftdi_context
1208 \param buf Buffer with the data
1209 \param size Size of the buffer
1210
22a1b5c1 1211 \retval -666: USB device unavailable
1941414d
TJ
1212 \retval <0: error code from usb_bulk_write()
1213 \retval >0: number of bytes written
1214*/
a8f46ddc
TJ
1215int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1216{
a3da1d95 1217 int offset = 0;
579b006f 1218 int actual_length;
c3d95b87 1219
22a1b5c1
TJ
1220 if (ftdi == NULL || ftdi->usb_dev == NULL)
1221 ftdi_error_return(-666, "USB device unavailable");
1222
22d12cda
TJ
1223 while (offset < size)
1224 {
948f9ada 1225 int write_size = ftdi->writebuffer_chunksize;
a3da1d95
GE
1226
1227 if (offset+write_size > size)
1228 write_size = size-offset;
1229
579b006f
JZ
1230 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1231 ftdi_error_return(-1, "usb bulk write failed");
a3da1d95 1232
579b006f 1233 offset += actual_length;
a3da1d95
GE
1234 }
1235
579b006f 1236 return offset;
a3da1d95
GE
1237}
1238
579b006f 1239static void ftdi_read_data_cb(struct libusb_transfer *transfer)
22d12cda 1240{
579b006f
JZ
1241 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1242 struct ftdi_context *ftdi = tc->ftdi;
1243 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
4c9e3812 1244
b1139150 1245 packet_size = ftdi->max_packet_size;
579b006f
JZ
1246
1247 actual_length = transfer->actual_length;
1248
1249 if (actual_length > 2)
1250 {
1251 // skip FTDI status bytes.
1252 // Maybe stored in the future to enable modem use
1253 num_of_chunks = actual_length / packet_size;
1254 chunk_remains = actual_length % packet_size;
1255 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1256
1257 ftdi->readbuffer_offset += 2;
1258 actual_length -= 2;
1259
1260 if (actual_length > packet_size - 2)
1261 {
1262 for (i = 1; i < num_of_chunks; i++)
1263 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1264 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1265 packet_size - 2);
1266 if (chunk_remains > 2)
1267 {
1268 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1269 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1270 chunk_remains-2);
1271 actual_length -= 2*num_of_chunks;
1272 }
1273 else
1274 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1275 }
1276
1277 if (actual_length > 0)
1278 {
1279 // data still fits in buf?
1280 if (tc->offset + actual_length <= tc->size)
1281 {
1282 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1283 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1284 tc->offset += actual_length;
1285
1286 ftdi->readbuffer_offset = 0;
1287 ftdi->readbuffer_remaining = 0;
1288
1289 /* Did we read exactly the right amount of bytes? */
1290 if (tc->offset == tc->size)
1291 {
1292 //printf("read_data exact rem %d offset %d\n",
1293 //ftdi->readbuffer_remaining, offset);
1294 tc->completed = 1;
1295 return;
1296 }
1297 }
1298 else
1299 {
1300 // only copy part of the data or size <= readbuffer_chunksize
1301 int part_size = tc->size - tc->offset;
1302 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1303 tc->offset += part_size;
1304
1305 ftdi->readbuffer_offset += part_size;
1306 ftdi->readbuffer_remaining = actual_length - part_size;
1307
1308 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1309 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1310 tc->completed = 1;
1311 return;
1312 }
1313 }
1314 }
1315 ret = libusb_submit_transfer (transfer);
1316 if (ret < 0)
1317 tc->completed = 1;
1318}
1319
1320
1321static void ftdi_write_data_cb(struct libusb_transfer *transfer)
7cc9950e 1322{
579b006f
JZ
1323 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1324 struct ftdi_context *ftdi = tc->ftdi;
90ef163e
YSL
1325
1326 tc->offset += transfer->actual_length;
1327
579b006f 1328 if (tc->offset == tc->size)
22d12cda 1329 {
579b006f 1330 tc->completed = 1;
7cc9950e 1331 }
579b006f
JZ
1332 else
1333 {
1334 int write_size = ftdi->writebuffer_chunksize;
1335 int ret;
7cc9950e 1336
579b006f
JZ
1337 if (tc->offset + write_size > tc->size)
1338 write_size = tc->size - tc->offset;
1339
1340 transfer->length = write_size;
1341 transfer->buffer = tc->buf + tc->offset;
1342 ret = libusb_submit_transfer (transfer);
1343 if (ret < 0)
1344 tc->completed = 1;
1345 }
7cc9950e
GE
1346}
1347
579b006f 1348
84f85aaa 1349/**
579b006f
JZ
1350 Writes data to the chip. Does not wait for completion of the transfer
1351 nor does it make sure that the transfer was successful.
1352
249888c8 1353 Use libusb 1.0 asynchronous API.
84f85aaa
GE
1354
1355 \param ftdi pointer to ftdi_context
579b006f
JZ
1356 \param buf Buffer with the data
1357 \param size Size of the buffer
84f85aaa 1358
579b006f
JZ
1359 \retval NULL: Some error happens when submit transfer
1360 \retval !NULL: Pointer to a ftdi_transfer_control
c201f80f 1361*/
579b006f
JZ
1362
1363struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
7cc9950e 1364{
579b006f
JZ
1365 struct ftdi_transfer_control *tc;
1366 struct libusb_transfer *transfer = libusb_alloc_transfer(0);
1367 int write_size, ret;
22d12cda 1368
22a1b5c1
TJ
1369 if (ftdi == NULL || ftdi->usb_dev == NULL)
1370 {
1371 libusb_free_transfer(transfer);
1372 return NULL;
1373 }
1374
579b006f 1375 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
22d12cda 1376
579b006f
JZ
1377 if (!tc || !transfer)
1378 return NULL;
22d12cda 1379
579b006f
JZ
1380 tc->ftdi = ftdi;
1381 tc->completed = 0;
1382 tc->buf = buf;
1383 tc->size = size;
1384 tc->offset = 0;
7cc9950e 1385
579b006f
JZ
1386 if (size < ftdi->writebuffer_chunksize)
1387 write_size = size;
1388 else
1389 write_size = ftdi->writebuffer_chunksize;
22d12cda 1390
90ef163e
YSL
1391 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1392 write_size, ftdi_write_data_cb, tc,
1393 ftdi->usb_write_timeout);
579b006f 1394 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
7cc9950e 1395
579b006f
JZ
1396 ret = libusb_submit_transfer(transfer);
1397 if (ret < 0)
1398 {
1399 libusb_free_transfer(transfer);
1400 tc->completed = 1;
1401 tc->transfer = NULL;
1402 return NULL;
7cc9950e 1403 }
579b006f
JZ
1404 tc->transfer = transfer;
1405
1406 return tc;
7cc9950e
GE
1407}
1408
1409/**
579b006f
JZ
1410 Reads data from the chip. Does not wait for completion of the transfer
1411 nor does it make sure that the transfer was successful.
1412
249888c8 1413 Use libusb 1.0 asynchronous API.
7cc9950e
GE
1414
1415 \param ftdi pointer to ftdi_context
579b006f
JZ
1416 \param buf Buffer with the data
1417 \param size Size of the buffer
4c9e3812 1418
579b006f
JZ
1419 \retval NULL: Some error happens when submit transfer
1420 \retval !NULL: Pointer to a ftdi_transfer_control
4c9e3812 1421*/
579b006f
JZ
1422
1423struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
4c9e3812 1424{
579b006f
JZ
1425 struct ftdi_transfer_control *tc;
1426 struct libusb_transfer *transfer;
1427 int ret;
22d12cda 1428
22a1b5c1
TJ
1429 if (ftdi == NULL || ftdi->usb_dev == NULL)
1430 return NULL;
1431
579b006f
JZ
1432 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1433 if (!tc)
1434 return NULL;
1435
1436 tc->ftdi = ftdi;
1437 tc->buf = buf;
1438 tc->size = size;
1439
1440 if (size <= ftdi->readbuffer_remaining)
7cc9950e 1441 {
579b006f 1442 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
7cc9950e 1443
579b006f
JZ
1444 // Fix offsets
1445 ftdi->readbuffer_remaining -= size;
1446 ftdi->readbuffer_offset += size;
7cc9950e 1447
579b006f 1448 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
22d12cda 1449
579b006f
JZ
1450 tc->completed = 1;
1451 tc->offset = size;
1452 tc->transfer = NULL;
1453 return tc;
1454 }
4c9e3812 1455
579b006f
JZ
1456 tc->completed = 0;
1457 if (ftdi->readbuffer_remaining != 0)
1458 {
1459 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
22d12cda 1460
579b006f
JZ
1461 tc->offset = ftdi->readbuffer_remaining;
1462 }
1463 else
1464 tc->offset = 0;
22d12cda 1465
579b006f
JZ
1466 transfer = libusb_alloc_transfer(0);
1467 if (!transfer)
1468 {
1469 free (tc);
1470 return NULL;
1471 }
22d12cda 1472
579b006f
JZ
1473 ftdi->readbuffer_remaining = 0;
1474 ftdi->readbuffer_offset = 0;
1475
1476 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1477 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1478
1479 ret = libusb_submit_transfer(transfer);
1480 if (ret < 0)
1481 {
1482 libusb_free_transfer(transfer);
1483 free (tc);
1484 return NULL;
22d12cda 1485 }
579b006f
JZ
1486 tc->transfer = transfer;
1487
1488 return tc;
4c9e3812
GE
1489}
1490
1491/**
579b006f 1492 Wait for completion of the transfer.
4c9e3812 1493
249888c8 1494 Use libusb 1.0 asynchronous API.
4c9e3812 1495
579b006f 1496 \param tc pointer to ftdi_transfer_control
4c9e3812 1497
579b006f
JZ
1498 \retval < 0: Some error happens
1499 \retval >= 0: Data size transferred
4c9e3812 1500*/
579b006f
JZ
1501
1502int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
4c9e3812
GE
1503{
1504 int ret;
4c9e3812 1505
579b006f 1506 while (!tc->completed)
22d12cda 1507 {
29b1dfd9 1508 ret = libusb_handle_events(tc->ftdi->usb_ctx);
4c9e3812 1509 if (ret < 0)
579b006f
JZ
1510 {
1511 if (ret == LIBUSB_ERROR_INTERRUPTED)
1512 continue;
1513 libusb_cancel_transfer(tc->transfer);
1514 while (!tc->completed)
29b1dfd9 1515 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
579b006f
JZ
1516 break;
1517 libusb_free_transfer(tc->transfer);
1518 free (tc);
579b006f
JZ
1519 return ret;
1520 }
4c9e3812
GE
1521 }
1522
90ef163e
YSL
1523 ret = tc->offset;
1524 /**
1525 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
ef15fab5 1526 * at ftdi_read_data_submit(). Therefore, we need to check it here.
90ef163e 1527 **/
ef15fab5
TJ
1528 if (tc->transfer)
1529 {
1530 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1531 ret = -1;
1532 libusb_free_transfer(tc->transfer);
90ef163e 1533 }
579b006f
JZ
1534 free(tc);
1535 return ret;
4c9e3812 1536}
579b006f 1537
1941414d
TJ
1538/**
1539 Configure write buffer chunk size.
1540 Default is 4096.
1541
1542 \param ftdi pointer to ftdi_context
1543 \param chunksize Chunk size
a3da1d95 1544
1941414d 1545 \retval 0: all fine
22a1b5c1 1546 \retval -1: ftdi context invalid
1941414d 1547*/
a8f46ddc
TJ
1548int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1549{
22a1b5c1
TJ
1550 if (ftdi == NULL)
1551 ftdi_error_return(-1, "ftdi context invalid");
1552
948f9ada
TJ
1553 ftdi->writebuffer_chunksize = chunksize;
1554 return 0;
1555}
1556
1941414d
TJ
1557/**
1558 Get write buffer chunk size.
1559
1560 \param ftdi pointer to ftdi_context
1561 \param chunksize Pointer to store chunk size in
948f9ada 1562
1941414d 1563 \retval 0: all fine
22a1b5c1 1564 \retval -1: ftdi context invalid
1941414d 1565*/
a8f46ddc
TJ
1566int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1567{
22a1b5c1
TJ
1568 if (ftdi == NULL)
1569 ftdi_error_return(-1, "ftdi context invalid");
1570
948f9ada
TJ
1571 *chunksize = ftdi->writebuffer_chunksize;
1572 return 0;
1573}
cbabb7d3 1574
1941414d
TJ
1575/**
1576 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1577
1578 Automatically strips the two modem status bytes transfered during every read.
948f9ada 1579
1941414d
TJ
1580 \param ftdi pointer to ftdi_context
1581 \param buf Buffer to store data in
1582 \param size Size of the buffer
1583
22a1b5c1 1584 \retval -666: USB device unavailable
579b006f 1585 \retval <0: error code from libusb_bulk_transfer()
d77b0e94 1586 \retval 0: no data was available
1941414d
TJ
1587 \retval >0: number of bytes read
1588
1941414d 1589*/
a8f46ddc
TJ
1590int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1591{
579b006f 1592 int offset = 0, ret, i, num_of_chunks, chunk_remains;
e2f12a4f 1593 int packet_size = ftdi->max_packet_size;
579b006f 1594 int actual_length = 1;
f2f00cb5 1595
22a1b5c1
TJ
1596 if (ftdi == NULL || ftdi->usb_dev == NULL)
1597 ftdi_error_return(-666, "USB device unavailable");
1598
e2f12a4f
TJ
1599 // Packet size sanity check (avoid division by zero)
1600 if (packet_size == 0)
1601 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
d9f0cce7 1602
948f9ada 1603 // everything we want is still in the readbuffer?
22d12cda
TJ
1604 if (size <= ftdi->readbuffer_remaining)
1605 {
d9f0cce7
TJ
1606 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1607
1608 // Fix offsets
1609 ftdi->readbuffer_remaining -= size;
1610 ftdi->readbuffer_offset += size;
1611
545820ce 1612 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1613
1614 return size;
979a145c 1615 }
948f9ada 1616 // something still in the readbuffer, but not enough to satisfy 'size'?
22d12cda
TJ
1617 if (ftdi->readbuffer_remaining != 0)
1618 {
d9f0cce7 1619 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
979a145c 1620
d9f0cce7
TJ
1621 // Fix offset
1622 offset += ftdi->readbuffer_remaining;
948f9ada 1623 }
948f9ada 1624 // do the actual USB read
579b006f 1625 while (offset < size && actual_length > 0)
22d12cda 1626 {
d9f0cce7
TJ
1627 ftdi->readbuffer_remaining = 0;
1628 ftdi->readbuffer_offset = 0;
98452d97 1629 /* returns how much received */
579b006f 1630 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
c3d95b87
TJ
1631 if (ret < 0)
1632 ftdi_error_return(ret, "usb bulk read failed");
98452d97 1633
579b006f 1634 if (actual_length > 2)
22d12cda 1635 {
d9f0cce7
TJ
1636 // skip FTDI status bytes.
1637 // Maybe stored in the future to enable modem use
579b006f
JZ
1638 num_of_chunks = actual_length / packet_size;
1639 chunk_remains = actual_length % packet_size;
1640 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1c733d33 1641
d9f0cce7 1642 ftdi->readbuffer_offset += 2;
579b006f 1643 actual_length -= 2;
1c733d33 1644
579b006f 1645 if (actual_length > packet_size - 2)
22d12cda 1646 {
1c733d33 1647 for (i = 1; i < num_of_chunks; i++)
f2f00cb5
DC
1648 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1649 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1650 packet_size - 2);
22d12cda
TJ
1651 if (chunk_remains > 2)
1652 {
f2f00cb5
DC
1653 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1654 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1c733d33 1655 chunk_remains-2);
579b006f 1656 actual_length -= 2*num_of_chunks;
22d12cda
TJ
1657 }
1658 else
579b006f 1659 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1c733d33 1660 }
22d12cda 1661 }
579b006f 1662 else if (actual_length <= 2)
22d12cda 1663 {
d9f0cce7
TJ
1664 // no more data to read?
1665 return offset;
1666 }
579b006f 1667 if (actual_length > 0)
22d12cda 1668 {
d9f0cce7 1669 // data still fits in buf?
579b006f 1670 if (offset+actual_length <= size)
22d12cda 1671 {
579b006f 1672 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
545820ce 1673 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
579b006f 1674 offset += actual_length;
d9f0cce7 1675
53ad271d 1676 /* Did we read exactly the right amount of bytes? */
d9f0cce7 1677 if (offset == size)
c4446c36
TJ
1678 //printf("read_data exact rem %d offset %d\n",
1679 //ftdi->readbuffer_remaining, offset);
d9f0cce7 1680 return offset;
22d12cda
TJ
1681 }
1682 else
1683 {
d9f0cce7
TJ
1684 // only copy part of the data or size <= readbuffer_chunksize
1685 int part_size = size-offset;
1686 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
98452d97 1687
d9f0cce7 1688 ftdi->readbuffer_offset += part_size;
579b006f 1689 ftdi->readbuffer_remaining = actual_length-part_size;
d9f0cce7
TJ
1690 offset += part_size;
1691
579b006f
JZ
1692 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1693 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
d9f0cce7
TJ
1694
1695 return offset;
1696 }
1697 }
cbabb7d3 1698 }
948f9ada 1699 // never reached
29c4af7f 1700 return -127;
a3da1d95
GE
1701}
1702
1941414d
TJ
1703/**
1704 Configure read buffer chunk size.
1705 Default is 4096.
1706
1707 Automatically reallocates the buffer.
a3da1d95 1708
1941414d
TJ
1709 \param ftdi pointer to ftdi_context
1710 \param chunksize Chunk size
1711
1712 \retval 0: all fine
22a1b5c1 1713 \retval -1: ftdi context invalid
1941414d 1714*/
a8f46ddc
TJ
1715int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1716{
29c4af7f
TJ
1717 unsigned char *new_buf;
1718
22a1b5c1
TJ
1719 if (ftdi == NULL)
1720 ftdi_error_return(-1, "ftdi context invalid");
1721
948f9ada
TJ
1722 // Invalidate all remaining data
1723 ftdi->readbuffer_offset = 0;
1724 ftdi->readbuffer_remaining = 0;
8de6eea4
JZ
1725#ifdef __linux__
1726 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1727 which is defined in libusb-1.0. Otherwise, each USB read request will
2e685a1f 1728 be divided into multiple URBs. This will cause issues on Linux kernel
8de6eea4
JZ
1729 older than 2.6.32. */
1730 if (chunksize > 16384)
1731 chunksize = 16384;
1732#endif
948f9ada 1733
c3d95b87
TJ
1734 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1735 ftdi_error_return(-1, "out of memory for readbuffer");
d9f0cce7 1736
948f9ada
TJ
1737 ftdi->readbuffer = new_buf;
1738 ftdi->readbuffer_chunksize = chunksize;
1739
1740 return 0;
1741}
1742
1941414d
TJ
1743/**
1744 Get read buffer chunk size.
948f9ada 1745
1941414d
TJ
1746 \param ftdi pointer to ftdi_context
1747 \param chunksize Pointer to store chunk size in
1748
1749 \retval 0: all fine
22a1b5c1 1750 \retval -1: FTDI context invalid
1941414d 1751*/
a8f46ddc
TJ
1752int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1753{
22a1b5c1
TJ
1754 if (ftdi == NULL)
1755 ftdi_error_return(-1, "FTDI context invalid");
1756
948f9ada
TJ
1757 *chunksize = ftdi->readbuffer_chunksize;
1758 return 0;
1759}
1760
1761
1941414d
TJ
1762/**
1763 Enable bitbang mode.
948f9ada 1764
fd282db3 1765 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1941414d
TJ
1766
1767 \param ftdi pointer to ftdi_context
1768 \param bitmask Bitmask to configure lines.
1769 HIGH/ON value configures a line as output.
1770
1771 \retval 0: all fine
1772 \retval -1: can't enable bitbang mode
22a1b5c1 1773 \retval -2: USB device unavailable
1941414d 1774*/
a8f46ddc
TJ
1775int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1776{
a3da1d95
GE
1777 unsigned short usb_val;
1778
22a1b5c1
TJ
1779 if (ftdi == NULL || ftdi->usb_dev == NULL)
1780 ftdi_error_return(-2, "USB device unavailable");
1781
d9f0cce7 1782 usb_val = bitmask; // low byte: bitmask
3119537f
TJ
1783 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1784 usb_val |= (ftdi->bitbang_mode << 8);
1785
579b006f
JZ
1786 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1787 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1788 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1789 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1790
a3da1d95
GE
1791 ftdi->bitbang_enabled = 1;
1792 return 0;
1793}
1794
1941414d
TJ
1795/**
1796 Disable bitbang mode.
a3da1d95 1797
1941414d
TJ
1798 \param ftdi pointer to ftdi_context
1799
1800 \retval 0: all fine
1801 \retval -1: can't disable bitbang mode
22a1b5c1 1802 \retval -2: USB device unavailable
1941414d 1803*/
a8f46ddc
TJ
1804int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1805{
22a1b5c1
TJ
1806 if (ftdi == NULL || ftdi->usb_dev == NULL)
1807 ftdi_error_return(-2, "USB device unavailable");
1808
579b006f 1809 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 1810 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
a3da1d95
GE
1811
1812 ftdi->bitbang_enabled = 0;
1813 return 0;
1814}
1815
1941414d 1816/**
418aaa72 1817 Enable/disable bitbang modes.
a3da1d95 1818
1941414d
TJ
1819 \param ftdi pointer to ftdi_context
1820 \param bitmask Bitmask to configure lines.
1821 HIGH/ON value configures a line as output.
fd282db3 1822 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1941414d
TJ
1823
1824 \retval 0: all fine
1825 \retval -1: can't enable bitbang mode
22a1b5c1 1826 \retval -2: USB device unavailable
1941414d 1827*/
c4446c36
TJ
1828int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1829{
1830 unsigned short usb_val;
1831
22a1b5c1
TJ
1832 if (ftdi == NULL || ftdi->usb_dev == NULL)
1833 ftdi_error_return(-2, "USB device unavailable");
1834
c4446c36
TJ
1835 usb_val = bitmask; // low byte: bitmask
1836 usb_val |= (mode << 8);
579b006f
JZ
1837 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1838 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
c4446c36
TJ
1839
1840 ftdi->bitbang_mode = mode;
418aaa72 1841 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
c4446c36
TJ
1842 return 0;
1843}
1844
1941414d 1845/**
418aaa72 1846 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1941414d
TJ
1847
1848 \param ftdi pointer to ftdi_context
1849 \param pins Pointer to store pins into
1850
1851 \retval 0: all fine
1852 \retval -1: read pins failed
22a1b5c1 1853 \retval -2: USB device unavailable
1941414d 1854*/
a8f46ddc
TJ
1855int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1856{
22a1b5c1
TJ
1857 if (ftdi == NULL || ftdi->usb_dev == NULL)
1858 ftdi_error_return(-2, "USB device unavailable");
1859
579b006f 1860 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1861 ftdi_error_return(-1, "read pins failed");
a3da1d95 1862
a3da1d95
GE
1863 return 0;
1864}
1865
1941414d
TJ
1866/**
1867 Set latency timer
1868
1869 The FTDI chip keeps data in the internal buffer for a specific
1870 amount of time if the buffer is not full yet to decrease
1871 load on the usb bus.
a3da1d95 1872
1941414d
TJ
1873 \param ftdi pointer to ftdi_context
1874 \param latency Value between 1 and 255
1875
1876 \retval 0: all fine
1877 \retval -1: latency out of range
1878 \retval -2: unable to set latency timer
22a1b5c1 1879 \retval -3: USB device unavailable
1941414d 1880*/
a8f46ddc
TJ
1881int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1882{
a3da1d95
GE
1883 unsigned short usb_val;
1884
c3d95b87
TJ
1885 if (latency < 1)
1886 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
a3da1d95 1887
22a1b5c1
TJ
1888 if (ftdi == NULL || ftdi->usb_dev == NULL)
1889 ftdi_error_return(-3, "USB device unavailable");
1890
d79d2e68 1891 usb_val = latency;
579b006f 1892 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87
TJ
1893 ftdi_error_return(-2, "unable to set latency timer");
1894
a3da1d95
GE
1895 return 0;
1896}
1897
1941414d
TJ
1898/**
1899 Get latency timer
a3da1d95 1900
1941414d
TJ
1901 \param ftdi pointer to ftdi_context
1902 \param latency Pointer to store latency value in
1903
1904 \retval 0: all fine
1905 \retval -1: unable to get latency timer
22a1b5c1 1906 \retval -2: USB device unavailable
1941414d 1907*/
a8f46ddc
TJ
1908int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1909{
a3da1d95 1910 unsigned short usb_val;
22a1b5c1
TJ
1911
1912 if (ftdi == NULL || ftdi->usb_dev == NULL)
1913 ftdi_error_return(-2, "USB device unavailable");
1914
579b006f 1915 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
c3d95b87 1916 ftdi_error_return(-1, "reading latency timer failed");
a3da1d95
GE
1917
1918 *latency = (unsigned char)usb_val;
1919 return 0;
1920}
1921
1941414d 1922/**
1189b11a
TJ
1923 Poll modem status information
1924
1925 This function allows the retrieve the two status bytes of the device.
1926 The device sends these bytes also as a header for each read access
1927 where they are discarded by ftdi_read_data(). The chip generates
1928 the two stripped status bytes in the absence of data every 40 ms.
1929
1930 Layout of the first byte:
1931 - B0..B3 - must be 0
1932 - B4 Clear to send (CTS)
1933 0 = inactive
1934 1 = active
1935 - B5 Data set ready (DTS)
1936 0 = inactive
1937 1 = active
1938 - B6 Ring indicator (RI)
1939 0 = inactive
1940 1 = active
1941 - B7 Receive line signal detect (RLSD)
1942 0 = inactive
1943 1 = active
1944
1945 Layout of the second byte:
1946 - B0 Data ready (DR)
1947 - B1 Overrun error (OE)
1948 - B2 Parity error (PE)
1949 - B3 Framing error (FE)
1950 - B4 Break interrupt (BI)
1951 - B5 Transmitter holding register (THRE)
1952 - B6 Transmitter empty (TEMT)
1953 - B7 Error in RCVR FIFO
1954
1955 \param ftdi pointer to ftdi_context
1956 \param status Pointer to store status information in. Must be two bytes.
1957
1958 \retval 0: all fine
1959 \retval -1: unable to retrieve status information
22a1b5c1 1960 \retval -2: USB device unavailable
1189b11a
TJ
1961*/
1962int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1963{
1964 char usb_val[2];
1965
22a1b5c1
TJ
1966 if (ftdi == NULL || ftdi->usb_dev == NULL)
1967 ftdi_error_return(-2, "USB device unavailable");
1968
579b006f 1969 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1189b11a
TJ
1970 ftdi_error_return(-1, "getting modem status failed");
1971
1972 *status = (usb_val[1] << 8) | usb_val[0];
1973
1974 return 0;
1975}
1976
a7fb8440
TJ
1977/**
1978 Set flowcontrol for ftdi chip
1979
1980 \param ftdi pointer to ftdi_context
22d12cda
TJ
1981 \param flowctrl flow control to use. should be
1982 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
a7fb8440
TJ
1983
1984 \retval 0: all fine
1985 \retval -1: set flow control failed
22a1b5c1 1986 \retval -2: USB device unavailable
a7fb8440
TJ
1987*/
1988int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1989{
22a1b5c1
TJ
1990 if (ftdi == NULL || ftdi->usb_dev == NULL)
1991 ftdi_error_return(-2, "USB device unavailable");
1992
579b006f
JZ
1993 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1994 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
1995 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
1996 ftdi_error_return(-1, "set flow control failed");
1997
1998 return 0;
1999}
2000
2001/**
2002 Set dtr line
2003
2004 \param ftdi pointer to ftdi_context
2005 \param state state to set line to (1 or 0)
2006
2007 \retval 0: all fine
2008 \retval -1: set dtr failed
22a1b5c1 2009 \retval -2: USB device unavailable
a7fb8440
TJ
2010*/
2011int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2012{
2013 unsigned short usb_val;
2014
22a1b5c1
TJ
2015 if (ftdi == NULL || ftdi->usb_dev == NULL)
2016 ftdi_error_return(-2, "USB device unavailable");
2017
a7fb8440
TJ
2018 if (state)
2019 usb_val = SIO_SET_DTR_HIGH;
2020 else
2021 usb_val = SIO_SET_DTR_LOW;
2022
579b006f
JZ
2023 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2024 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2025 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2026 ftdi_error_return(-1, "set dtr failed");
2027
2028 return 0;
2029}
2030
2031/**
2032 Set rts line
2033
2034 \param ftdi pointer to ftdi_context
2035 \param state state to set line to (1 or 0)
2036
2037 \retval 0: all fine
22a1b5c1
TJ
2038 \retval -1: set rts failed
2039 \retval -2: USB device unavailable
a7fb8440
TJ
2040*/
2041int ftdi_setrts(struct ftdi_context *ftdi, int state)
2042{
2043 unsigned short usb_val;
2044
22a1b5c1
TJ
2045 if (ftdi == NULL || ftdi->usb_dev == NULL)
2046 ftdi_error_return(-2, "USB device unavailable");
2047
a7fb8440
TJ
2048 if (state)
2049 usb_val = SIO_SET_RTS_HIGH;
2050 else
2051 usb_val = SIO_SET_RTS_LOW;
2052
579b006f
JZ
2053 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2054 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2055 NULL, 0, ftdi->usb_write_timeout) < 0)
a7fb8440
TJ
2056 ftdi_error_return(-1, "set of rts failed");
2057
2058 return 0;
2059}
2060
1189b11a 2061/**
22a1b5c1 2062 Set dtr and rts line in one pass
9ecfef2a 2063
22a1b5c1
TJ
2064 \param ftdi pointer to ftdi_context
2065 \param dtr DTR state to set line to (1 or 0)
2066 \param rts RTS state to set line to (1 or 0)
9ecfef2a 2067
22a1b5c1
TJ
2068 \retval 0: all fine
2069 \retval -1: set dtr/rts failed
2070 \retval -2: USB device unavailable
9ecfef2a
TJ
2071 */
2072int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2073{
2074 unsigned short usb_val;
2075
22a1b5c1
TJ
2076 if (ftdi == NULL || ftdi->usb_dev == NULL)
2077 ftdi_error_return(-2, "USB device unavailable");
2078
9ecfef2a 2079 if (dtr)
22d12cda 2080 usb_val = SIO_SET_DTR_HIGH;
9ecfef2a 2081 else
22d12cda 2082 usb_val = SIO_SET_DTR_LOW;
9ecfef2a
TJ
2083
2084 if (rts)
22d12cda 2085 usb_val |= SIO_SET_RTS_HIGH;
9ecfef2a 2086 else
22d12cda 2087 usb_val |= SIO_SET_RTS_LOW;
9ecfef2a 2088
579b006f
JZ
2089 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2090 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2091 NULL, 0, ftdi->usb_write_timeout) < 0)
22d12cda 2092 ftdi_error_return(-1, "set of rts/dtr failed");
9ecfef2a
TJ
2093
2094 return 0;
2095}
2096
2097/**
1189b11a
TJ
2098 Set the special event character
2099
2100 \param ftdi pointer to ftdi_context
2101 \param eventch Event character
2102 \param enable 0 to disable the event character, non-zero otherwise
2103
2104 \retval 0: all fine
2105 \retval -1: unable to set event character
22a1b5c1 2106 \retval -2: USB device unavailable
1189b11a
TJ
2107*/
2108int ftdi_set_event_char(struct ftdi_context *ftdi,
22d12cda 2109 unsigned char eventch, unsigned char enable)
1189b11a
TJ
2110{
2111 unsigned short usb_val;
2112
22a1b5c1
TJ
2113 if (ftdi == NULL || ftdi->usb_dev == NULL)
2114 ftdi_error_return(-2, "USB device unavailable");
2115
1189b11a
TJ
2116 usb_val = eventch;
2117 if (enable)
2118 usb_val |= 1 << 8;
2119
579b006f 2120 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2121 ftdi_error_return(-1, "setting event character failed");
2122
2123 return 0;
2124}
2125
2126/**
2127 Set error character
2128
2129 \param ftdi pointer to ftdi_context
2130 \param errorch Error character
2131 \param enable 0 to disable the error character, non-zero otherwise
2132
2133 \retval 0: all fine
2134 \retval -1: unable to set error character
22a1b5c1 2135 \retval -2: USB device unavailable
1189b11a
TJ
2136*/
2137int ftdi_set_error_char(struct ftdi_context *ftdi,
22d12cda 2138 unsigned char errorch, unsigned char enable)
1189b11a
TJ
2139{
2140 unsigned short usb_val;
2141
22a1b5c1
TJ
2142 if (ftdi == NULL || ftdi->usb_dev == NULL)
2143 ftdi_error_return(-2, "USB device unavailable");
2144
1189b11a
TJ
2145 usb_val = errorch;
2146 if (enable)
2147 usb_val |= 1 << 8;
2148
579b006f 2149 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1189b11a
TJ
2150 ftdi_error_return(-1, "setting error character failed");
2151
2152 return 0;
2153}
2154
2155/**
c201f80f
TJ
2156 Set the eeprom size
2157
2158 \param ftdi pointer to ftdi_context
2159 \param eeprom Pointer to ftdi_eeprom
2160 \param size
2161
2162*/
2163void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
2164{
22a1b5c1
TJ
2165 if (ftdi == NULL)
2166 return;
2167
22d12cda
TJ
2168 ftdi->eeprom_size=size;
2169 eeprom->size=size;
c201f80f
TJ
2170}
2171
2172/**
1941414d 2173 Init eeprom with default values.
a3da1d95 2174
1941414d
TJ
2175 \param eeprom Pointer to ftdi_eeprom
2176*/
a8f46ddc
TJ
2177void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
2178{
f505134f
HK
2179 int i;
2180
22a1b5c1
TJ
2181 if (eeprom == NULL)
2182 return;
2183
f396dbad
TJ
2184 eeprom->vendor_id = 0x0403;
2185 eeprom->product_id = 0x6001;
d9f0cce7 2186
b8aa7b35
TJ
2187 eeprom->self_powered = 1;
2188 eeprom->remote_wakeup = 1;
f505134f 2189 eeprom->chip_type = TYPE_BM;
d9f0cce7 2190
b8aa7b35
TJ
2191 eeprom->in_is_isochronous = 0;
2192 eeprom->out_is_isochronous = 0;
2193 eeprom->suspend_pull_downs = 0;
d9f0cce7 2194
b8aa7b35
TJ
2195 eeprom->use_serial = 0;
2196 eeprom->change_usb_version = 0;
f396dbad 2197 eeprom->usb_version = 0x0200;
b8aa7b35 2198 eeprom->max_power = 0;
d9f0cce7 2199
b8aa7b35
TJ
2200 eeprom->manufacturer = NULL;
2201 eeprom->product = NULL;
2202 eeprom->serial = NULL;
f505134f
HK
2203 for (i=0; i < 5; i++)
2204 {
2205 eeprom->cbus_function[i] = 0;
2206 }
2207 eeprom->high_current = 0;
2208 eeprom->invert = 0;
c201f80f
TJ
2209
2210 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
b8aa7b35
TJ
2211}
2212
1941414d 2213/**
95ac1ca2
WH
2214 Frees allocated memory in eeprom.
2215
2216 \param eeprom Pointer to ftdi_eeprom
2217*/
2218void ftdi_eeprom_free(struct ftdi_eeprom *eeprom)
2219{
2220 if (eeprom->manufacturer != 0) {
2221 free(eeprom->manufacturer);
2222 eeprom->manufacturer = 0;
2223 }
2224 if (eeprom->product != 0) {
2225 free(eeprom->product);
2226 eeprom->product = 0;
2227 }
2228 if (eeprom->serial != 0) {
2229 free(eeprom->serial);
2230 eeprom->serial = 0;
2231 }
2232}
2233
2234/**
22a1b5c1
TJ
2235 Build binary output from ftdi_eeprom structure.
2236 Output is suitable for ftdi_write_eeprom().
b8aa7b35 2237
f505134f 2238 \note This function doesn't handle FT2232x devices. Only FT232x.
22a1b5c1
TJ
2239 \param eeprom Pointer to ftdi_eeprom
2240 \param output Buffer of 128 bytes to store eeprom image to
1941414d 2241
f505134f 2242 \retval >0: free eeprom size
22a1b5c1
TJ
2243 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2244 \retval -2: Invalid eeprom pointer
f505134f
HK
2245 \retval -3: Invalid cbus function setting
2246 \retval -4: Chip doesn't support invert
2247 \retval -5: Chip doesn't support high current drive
b8aa7b35 2248*/
a8f46ddc
TJ
2249int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
2250{
b8aa7b35
TJ
2251 unsigned char i, j;
2252 unsigned short checksum, value;
2253 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2254 int size_check;
f505134f 2255 const int cbus_max[5] = {13, 13, 13, 13, 9};
b8aa7b35 2256
22a1b5c1
TJ
2257 if (eeprom == NULL)
2258 return -2;
2259
b8aa7b35 2260 if (eeprom->manufacturer != NULL)
d9f0cce7 2261 manufacturer_size = strlen(eeprom->manufacturer);
b8aa7b35 2262 if (eeprom->product != NULL)
d9f0cce7 2263 product_size = strlen(eeprom->product);
b8aa7b35 2264 if (eeprom->serial != NULL)
d9f0cce7 2265 serial_size = strlen(eeprom->serial);
b8aa7b35 2266
f505134f
HK
2267 // highest allowed cbus value
2268 for (i = 0; i < 5; i++)
2269 {
2270 if ((eeprom->cbus_function[i] > cbus_max[i]) ||
2271 (eeprom->cbus_function[i] && eeprom->chip_type != TYPE_R)) return -3;
2272 }
2273 if (eeprom->chip_type != TYPE_R)
2274 {
2275 if (eeprom->invert) return -4;
2276 if (eeprom->high_current) return -5;
2277 }
2278
c201f80f 2279 size_check = eeprom->size;
d9f0cce7 2280 size_check -= 28; // 28 are always in use (fixed)
c201f80f 2281
22d12cda 2282 // Top half of a 256byte eeprom is used just for strings and checksum
c201f80f
TJ
2283 // it seems that the FTDI chip will not read these strings from the lower half
2284 // Each string starts with two bytes; offset and type (0x03 for string)
2285 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
f505134f 2286 if (eeprom->size>=256) size_check = 120;
b8aa7b35
TJ
2287 size_check -= manufacturer_size*2;
2288 size_check -= product_size*2;
2289 size_check -= serial_size*2;
2290
2291 // eeprom size exceeded?
2292 if (size_check < 0)
d9f0cce7 2293 return (-1);
b8aa7b35
TJ
2294
2295 // empty eeprom
c201f80f 2296 memset (output, 0, eeprom->size);
b8aa7b35 2297
f505134f
HK
2298 // Addr 00: High current IO
2299 output[0x00] = eeprom->high_current ? HIGH_CURRENT_DRIVE : 0;
2300 // Addr 01: IN endpoint size (for R type devices, different for FT2232)
2301 if (eeprom->chip_type == TYPE_R) {
2302 output[0x01] = 0x40;
2303 }
b8aa7b35
TJ
2304 // Addr 02: Vendor ID
2305 output[0x02] = eeprom->vendor_id;
2306 output[0x03] = eeprom->vendor_id >> 8;
2307
2308 // Addr 04: Product ID
2309 output[0x04] = eeprom->product_id;
2310 output[0x05] = eeprom->product_id >> 8;
2311
2312 // Addr 06: Device release number (0400h for BM features)
2313 output[0x06] = 0x00;
f505134f
HK
2314 switch (eeprom->chip_type) {
2315 case TYPE_AM:
2316 output[0x07] = 0x02;
2317 break;
2318 case TYPE_BM:
2319 output[0x07] = 0x04;
2320 break;
2321 case TYPE_2232C:
2322 output[0x07] = 0x05;
2323 break;
2324 case TYPE_R:
2325 output[0x07] = 0x06;
2326 break;
2327 default:
2328 output[0x07] = 0x00;
2329 }
b8aa7b35
TJ
2330
2331 // Addr 08: Config descriptor
8fae3e8e
TJ
2332 // Bit 7: always 1
2333 // Bit 6: 1 if this device is self powered, 0 if bus powered
2334 // Bit 5: 1 if this device uses remote wakeup
2335 // Bit 4: 1 if this device is battery powered
5a1dcd55 2336 j = 0x80;
b8aa7b35 2337 if (eeprom->self_powered == 1)
5a1dcd55 2338 j |= 0x40;
b8aa7b35 2339 if (eeprom->remote_wakeup == 1)
5a1dcd55 2340 j |= 0x20;
b8aa7b35
TJ
2341 output[0x08] = j;
2342
2343 // Addr 09: Max power consumption: max power = value * 2 mA
d9f0cce7 2344 output[0x09] = eeprom->max_power;
d9f0cce7 2345
b8aa7b35
TJ
2346 // Addr 0A: Chip configuration
2347 // Bit 7: 0 - reserved
2348 // Bit 6: 0 - reserved
2349 // Bit 5: 0 - reserved
2350 // Bit 4: 1 - Change USB version
2351 // Bit 3: 1 - Use the serial number string
2352 // Bit 2: 1 - Enable suspend pull downs for lower power
2353 // Bit 1: 1 - Out EndPoint is Isochronous
2354 // Bit 0: 1 - In EndPoint is Isochronous
2355 //
2356 j = 0;
2357 if (eeprom->in_is_isochronous == 1)
d9f0cce7 2358 j = j | 1;
b8aa7b35 2359 if (eeprom->out_is_isochronous == 1)
d9f0cce7 2360 j = j | 2;
b8aa7b35 2361 if (eeprom->suspend_pull_downs == 1)
d9f0cce7 2362 j = j | 4;
b8aa7b35 2363 if (eeprom->use_serial == 1)
d9f0cce7 2364 j = j | 8;
b8aa7b35 2365 if (eeprom->change_usb_version == 1)
d9f0cce7 2366 j = j | 16;
b8aa7b35 2367 output[0x0A] = j;
d9f0cce7 2368
f505134f
HK
2369 // Addr 0B: Invert data lines
2370 output[0x0B] = eeprom->invert & 0xff;
d9f0cce7 2371
b8aa7b35
TJ
2372 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2373 // Addr 0D: USB version high byte when 0x0A bit 4 is set
22d12cda
TJ
2374 if (eeprom->change_usb_version == 1)
2375 {
b8aa7b35 2376 output[0x0C] = eeprom->usb_version;
d9f0cce7 2377 output[0x0D] = eeprom->usb_version >> 8;
b8aa7b35
TJ
2378 }
2379
2380
c201f80f 2381 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
b8aa7b35
TJ
2382 // Addr 0F: Length of manufacturer string
2383 output[0x0F] = manufacturer_size*2 + 2;
2384
2385 // Addr 10: Offset of the product string + 0x80, calculated later
2386 // Addr 11: Length of product string
2387 output[0x11] = product_size*2 + 2;
2388
2389 // Addr 12: Offset of the serial string + 0x80, calculated later
2390 // Addr 13: Length of serial string
2391 output[0x13] = serial_size*2 + 2;
2392
f505134f
HK
2393 // Addr 14: CBUS function: CBUS0, CBUS1
2394 // Addr 15: CBUS function: CBUS2, CBUS3
2395 // Addr 16: CBUS function: CBUS5
2396 output[0x14] = eeprom->cbus_function[0] | (eeprom->cbus_function[1] << 4);
2397 output[0x15] = eeprom->cbus_function[2] | (eeprom->cbus_function[3] << 4);
2398 output[0x16] = eeprom->cbus_function[4];
2399 // Addr 17: Unknown
2400
b8aa7b35 2401 // Dynamic content
f505134f
HK
2402 // In images produced by FTDI's FT_Prog for FT232R strings start at 0x18
2403 // Space till 0x18 should be considered as reserved.
2404 if (eeprom->chip_type >= TYPE_R) {
2405 i = 0x18;
2406 } else {
2407 i = 0x14;
2408 }
2409 if (eeprom->size >= 256) i = 0x80;
f01d7ca6 2410
c201f80f 2411
22d12cda 2412 // Output manufacturer
c201f80f
TJ
2413 output[0x0E] = i | 0x80; // calculate offset
2414 output[i++] = manufacturer_size*2 + 2;
2415 output[i++] = 0x03; // type: string
22d12cda
TJ
2416 for (j = 0; j < manufacturer_size; j++)
2417 {
d9f0cce7
TJ
2418 output[i] = eeprom->manufacturer[j], i++;
2419 output[i] = 0x00, i++;
b8aa7b35
TJ
2420 }
2421
2422 // Output product name
c201f80f 2423 output[0x10] = i | 0x80; // calculate offset
b8aa7b35
TJ
2424 output[i] = product_size*2 + 2, i++;
2425 output[i] = 0x03, i++;
22d12cda
TJ
2426 for (j = 0; j < product_size; j++)
2427 {
d9f0cce7
TJ
2428 output[i] = eeprom->product[j], i++;
2429 output[i] = 0x00, i++;
b8aa7b35 2430 }
d9f0cce7 2431
b8aa7b35 2432 // Output serial
c201f80f 2433 output[0x12] = i | 0x80; // calculate offset
b8aa7b35
TJ
2434 output[i] = serial_size*2 + 2, i++;
2435 output[i] = 0x03, i++;
22d12cda
TJ
2436 for (j = 0; j < serial_size; j++)
2437 {
d9f0cce7
TJ
2438 output[i] = eeprom->serial[j], i++;
2439 output[i] = 0x00, i++;
b8aa7b35
TJ
2440 }
2441
2442 // calculate checksum
2443 checksum = 0xAAAA;
d9f0cce7 2444
22d12cda
TJ
2445 for (i = 0; i < eeprom->size/2-1; i++)
2446 {
d9f0cce7
TJ
2447 value = output[i*2];
2448 value += output[(i*2)+1] << 8;
b8aa7b35 2449
d9f0cce7
TJ
2450 checksum = value^checksum;
2451 checksum = (checksum << 1) | (checksum >> 15);
b8aa7b35
TJ
2452 }
2453
c201f80f
TJ
2454 output[eeprom->size-2] = checksum;
2455 output[eeprom->size-1] = checksum >> 8;
b8aa7b35 2456
8ed61121 2457 return size_check;
b8aa7b35
TJ
2458}
2459
4af1d1bb
MK
2460/**
2461 Decode binary EEPROM image into an ftdi_eeprom structure.
2462
2463 \param eeprom Pointer to ftdi_eeprom which will be filled in.
1bbaf1ce 2464 \param buf Buffer of \a size bytes of raw eeprom data
4af1d1bb
MK
2465 \param size size size of eeprom data in bytes
2466
2467 \retval 0: all fine
2468 \retval -1: something went wrong
2469
2470 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2471 FIXME: Strings are malloc'ed here and should be freed somewhere
2472*/
49c5ac72 2473int ftdi_eeprom_decode(struct ftdi_eeprom *eeprom, unsigned char *buf, int size)
b56d5a64
MK
2474{
2475 unsigned char i, j;
2476 unsigned short checksum, eeprom_checksum, value;
2477 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
b56d5a64 2478 int eeprom_size = 128;
22a1b5c1
TJ
2479
2480 if (eeprom == NULL)
2481 return -1;
b56d5a64
MK
2482#if 0
2483 size_check = eeprom->size;
2484 size_check -= 28; // 28 are always in use (fixed)
2485
22d12cda 2486 // Top half of a 256byte eeprom is used just for strings and checksum
b56d5a64
MK
2487 // it seems that the FTDI chip will not read these strings from the lower half
2488 // Each string starts with two bytes; offset and type (0x03 for string)
2489 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
22d12cda 2490 if (eeprom->size>=256)size_check = 120;
b56d5a64
MK
2491 size_check -= manufacturer_size*2;
2492 size_check -= product_size*2;
2493 size_check -= serial_size*2;
2494
2495 // eeprom size exceeded?
2496 if (size_check < 0)
2497 return (-1);
2498#endif
2499
2500 // empty eeprom struct
4af1d1bb 2501 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
b56d5a64 2502
f505134f
HK
2503 // Addr 00: High current IO
2504 eeprom->high_current = (buf[0x02] & HIGH_CURRENT_DRIVE);
b56d5a64
MK
2505
2506 // Addr 02: Vendor ID
2507 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2508
2509 // Addr 04: Product ID
2510 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
22d12cda 2511
6335545d
TJ
2512 value = buf[0x06] + (buf[0x07]<<8);
2513 switch (value)
22d12cda 2514 {
f505134f
HK
2515 case 0x0600:
2516 eeprom->chip_type = TYPE_R;
2517 break;
22d12cda 2518 case 0x0400:
f505134f 2519 eeprom->chip_type = TYPE_BM;
22d12cda
TJ
2520 break;
2521 case 0x0200:
f505134f 2522 eeprom->chip_type = TYPE_AM;
22d12cda
TJ
2523 break;
2524 default: // Unknown device
f505134f 2525 eeprom->chip_type = 0;
22d12cda 2526 break;
4af1d1bb 2527 }
b56d5a64
MK
2528
2529 // Addr 08: Config descriptor
2530 // Bit 7: always 1
2531 // Bit 6: 1 if this device is self powered, 0 if bus powered
2532 // Bit 5: 1 if this device uses remote wakeup
2533 // Bit 4: 1 if this device is battery powered
2534 j = buf[0x08];
b56d5a64
MK
2535 if (j&0x40) eeprom->self_powered = 1;
2536 if (j&0x20) eeprom->remote_wakeup = 1;
2537
2538 // Addr 09: Max power consumption: max power = value * 2 mA
2539 eeprom->max_power = buf[0x09];
2540
2541 // Addr 0A: Chip configuration
2542 // Bit 7: 0 - reserved
2543 // Bit 6: 0 - reserved
2544 // Bit 5: 0 - reserved
2545 // Bit 4: 1 - Change USB version
2546 // Bit 3: 1 - Use the serial number string
2547 // Bit 2: 1 - Enable suspend pull downs for lower power
2548 // Bit 1: 1 - Out EndPoint is Isochronous
2549 // Bit 0: 1 - In EndPoint is Isochronous
2550 //
2551 j = buf[0x0A];
4af1d1bb
MK
2552 if (j&0x01) eeprom->in_is_isochronous = 1;
2553 if (j&0x02) eeprom->out_is_isochronous = 1;
2554 if (j&0x04) eeprom->suspend_pull_downs = 1;
2555 if (j&0x08) eeprom->use_serial = 1;
2556 if (j&0x10) eeprom->change_usb_version = 1;
b56d5a64 2557
f505134f
HK
2558 // Addr 0B: Invert data lines
2559 eeprom->invert = buf[0x0B];
b56d5a64
MK
2560
2561 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2562 // Addr 0D: USB version high byte when 0x0A bit 4 is set
22d12cda
TJ
2563 if (eeprom->change_usb_version == 1)
2564 {
2565 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
b56d5a64
MK
2566 }
2567
2568 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2569 // Addr 0F: Length of manufacturer string
2570 manufacturer_size = buf[0x0F]/2;
2571 if (manufacturer_size > 0) eeprom->manufacturer = malloc(manufacturer_size);
2572 else eeprom->manufacturer = NULL;
2573
2574 // Addr 10: Offset of the product string + 0x80, calculated later
2575 // Addr 11: Length of product string
2576 product_size = buf[0x11]/2;
2577 if (product_size > 0) eeprom->product = malloc(product_size);
2578 else eeprom->product = NULL;
2579
2580 // Addr 12: Offset of the serial string + 0x80, calculated later
2581 // Addr 13: Length of serial string
2582 serial_size = buf[0x13]/2;
2583 if (serial_size > 0) eeprom->serial = malloc(serial_size);
2584 else eeprom->serial = NULL;
2585
f505134f
HK
2586 // Addr 14: CBUS function: CBUS0, CBUS1
2587 // Addr 15: CBUS function: CBUS2, CBUS3
2588 // Addr 16: CBUS function: CBUS5
2589 if (eeprom->chip_type == TYPE_R) {
2590 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2591 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2592 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2593 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2594 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
2595 } else {
2596 for (j=0; j<5; j++) eeprom->cbus_function[j] = 0;
2597 }
2598
22d12cda 2599 // Decode manufacturer
b56d5a64 2600 i = buf[0x0E] & 0x7f; // offset
22d12cda
TJ
2601 for (j=0;j<manufacturer_size-1;j++)
2602 {
2603 eeprom->manufacturer[j] = buf[2*j+i+2];
b56d5a64
MK
2604 }
2605 eeprom->manufacturer[j] = '\0';
2606
2607 // Decode product name
2608 i = buf[0x10] & 0x7f; // offset
22d12cda
TJ
2609 for (j=0;j<product_size-1;j++)
2610 {
2611 eeprom->product[j] = buf[2*j+i+2];
b56d5a64
MK
2612 }
2613 eeprom->product[j] = '\0';
2614
2615 // Decode serial
2616 i = buf[0x12] & 0x7f; // offset
22d12cda
TJ
2617 for (j=0;j<serial_size-1;j++)
2618 {
2619 eeprom->serial[j] = buf[2*j+i+2];
b56d5a64
MK
2620 }
2621 eeprom->serial[j] = '\0';
2622
2623 // verify checksum
2624 checksum = 0xAAAA;
2625
22d12cda
TJ
2626 for (i = 0; i < eeprom_size/2-1; i++)
2627 {
b56d5a64
MK
2628 value = buf[i*2];
2629 value += buf[(i*2)+1] << 8;
2630
2631 checksum = value^checksum;
2632 checksum = (checksum << 1) | (checksum >> 15);
2633 }
2634
2635 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2636
22d12cda
TJ
2637 if (eeprom_checksum != checksum)
2638 {
2639 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2640 return -1;
4af1d1bb
MK
2641 }
2642
2643 return 0;
b56d5a64
MK
2644}
2645
1941414d 2646/**
c1c70e13
OS
2647 Read eeprom location
2648
2649 \param ftdi pointer to ftdi_context
2650 \param eeprom_addr Address of eeprom location to be read
2651 \param eeprom_val Pointer to store read eeprom location
2652
2653 \retval 0: all fine
2654 \retval -1: read failed
22a1b5c1 2655 \retval -2: USB device unavailable
c1c70e13
OS
2656*/
2657int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
2658{
22a1b5c1
TJ
2659 if (ftdi == NULL || ftdi->usb_dev == NULL)
2660 ftdi_error_return(-2, "USB device unavailable");
2661
579b006f 2662 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
c1c70e13
OS
2663 ftdi_error_return(-1, "reading eeprom failed");
2664
2665 return 0;
2666}
2667
2668/**
1941414d
TJ
2669 Read eeprom
2670
2671 \param ftdi pointer to ftdi_context
2672 \param eeprom Pointer to store eeprom into
b8aa7b35 2673
1941414d
TJ
2674 \retval 0: all fine
2675 \retval -1: read failed
22a1b5c1 2676 \retval -2: USB device unavailable
1941414d 2677*/
a8f46ddc
TJ
2678int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2679{
a3da1d95
GE
2680 int i;
2681
22a1b5c1
TJ
2682 if (ftdi == NULL || ftdi->usb_dev == NULL)
2683 ftdi_error_return(-2, "USB device unavailable");
2684
22d12cda
TJ
2685 for (i = 0; i < ftdi->eeprom_size/2; i++)
2686 {
579b006f 2687 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
c3d95b87 2688 ftdi_error_return(-1, "reading eeprom failed");
a3da1d95
GE
2689 }
2690
2691 return 0;
2692}
2693
cb6250fa
TJ
2694/*
2695 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
2696 Function is only used internally
2697 \internal
2698*/
2699static unsigned char ftdi_read_chipid_shift(unsigned char value)
2700{
2701 return ((value & 1) << 1) |
22d12cda
TJ
2702 ((value & 2) << 5) |
2703 ((value & 4) >> 2) |
2704 ((value & 8) << 4) |
2705 ((value & 16) >> 1) |
2706 ((value & 32) >> 1) |
2707 ((value & 64) >> 4) |
2708 ((value & 128) >> 2);
cb6250fa
TJ
2709}
2710
2711/**
2712 Read the FTDIChip-ID from R-type devices
2713
2714 \param ftdi pointer to ftdi_context
2715 \param chipid Pointer to store FTDIChip-ID
2716
2717 \retval 0: all fine
2718 \retval -1: read failed
22a1b5c1 2719 \retval -2: USB device unavailable
cb6250fa
TJ
2720*/
2721int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
2722{
c7eb3112 2723 unsigned int a = 0, b = 0;
cb6250fa 2724
22a1b5c1
TJ
2725 if (ftdi == NULL || ftdi->usb_dev == NULL)
2726 ftdi_error_return(-2, "USB device unavailable");
2727
579b006f 2728 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
2729 {
2730 a = a << 8 | a >> 8;
579b006f 2731 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
cb6250fa
TJ
2732 {
2733 b = b << 8 | b >> 8;
5230676f 2734 a = (a << 16) | (b & 0xFFFF);
912d50ca
TJ
2735 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
2736 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
cb6250fa 2737 *chipid = a ^ 0xa5f0f7d1;
c7eb3112 2738 return 0;
cb6250fa
TJ
2739 }
2740 }
2741
c7eb3112 2742 ftdi_error_return(-1, "read of FTDIChip-ID failed");
cb6250fa
TJ
2743}
2744
1941414d 2745/**
22a1b5c1
TJ
2746 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
2747 Call this function then do a write then call again to see if size changes, if so write again.
c201f80f 2748
22a1b5c1
TJ
2749 \param ftdi pointer to ftdi_context
2750 \param eeprom Pointer to store eeprom into
2751 \param maxsize the size of the buffer to read into
c201f80f 2752
22a1b5c1
TJ
2753 \retval -1: eeprom read failed
2754 \retval -2: USB device unavailable
2755 \retval >=0: size of eeprom
c201f80f
TJ
2756*/
2757int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
2758{
2759 int i=0,j,minsize=32;
2760 int size=minsize;
2761
22a1b5c1
TJ
2762 if (ftdi == NULL || ftdi->usb_dev == NULL)
2763 ftdi_error_return(-2, "USB device unavailable");
2764
22d12cda
TJ
2765 do
2766 {
2767 for (j = 0; i < maxsize/2 && j<size; j++)
2768 {
579b006f
JZ
2769 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,
2770 SIO_READ_EEPROM_REQUEST, 0, i,
2771 eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
22a1b5c1 2772 ftdi_error_return(-1, "eeprom read failed");
22d12cda
TJ
2773 i++;
2774 }
2775 size*=2;
2776 }
2777 while (size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
c201f80f
TJ
2778
2779 return size/2;
2780}
2781
2782/**
c1c70e13
OS
2783 Write eeprom location
2784
2785 \param ftdi pointer to ftdi_context
2786 \param eeprom_addr Address of eeprom location to be written
2787 \param eeprom_val Value to be written
2788
2789 \retval 0: all fine
2790 \retval -1: read failed
22a1b5c1 2791 \retval -2: USB device unavailable
c1c70e13
OS
2792*/
2793int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr, unsigned short eeprom_val)
2794{
22a1b5c1
TJ
2795 if (ftdi == NULL || ftdi->usb_dev == NULL)
2796 ftdi_error_return(-2, "USB device unavailable");
2797
579b006f 2798 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
c1c70e13
OS
2799 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
2800 NULL, 0, ftdi->usb_write_timeout) != 0)
2801 ftdi_error_return(-1, "unable to write eeprom");
2802
2803 return 0;
2804}
2805
2806/**
1941414d 2807 Write eeprom
a3da1d95 2808
1941414d
TJ
2809 \param ftdi pointer to ftdi_context
2810 \param eeprom Pointer to read eeprom from
2811
2812 \retval 0: all fine
2813 \retval -1: read failed
22a1b5c1 2814 \retval -2: USB device unavailable
1941414d 2815*/
a8f46ddc
TJ
2816int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2817{
ba5329be 2818 unsigned short usb_val, status;
e30da501 2819 int i, ret;
a3da1d95 2820
22a1b5c1
TJ
2821 if (ftdi == NULL || ftdi->usb_dev == NULL)
2822 ftdi_error_return(-2, "USB device unavailable");
2823
ba5329be 2824 /* These commands were traced while running MProg */
e30da501
TJ
2825 if ((ret = ftdi_usb_reset(ftdi)) != 0)
2826 return ret;
2827 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
2828 return ret;
2829 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
2830 return ret;
ba5329be 2831
22d12cda
TJ
2832 for (i = 0; i < ftdi->eeprom_size/2; i++)
2833 {
d9f0cce7
TJ
2834 usb_val = eeprom[i*2];
2835 usb_val += eeprom[(i*2)+1] << 8;
579b006f
JZ
2836 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2837 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
2838 NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 2839 ftdi_error_return(-1, "unable to write eeprom");
a3da1d95
GE
2840 }
2841
2842 return 0;
2843}
2844
1941414d
TJ
2845/**
2846 Erase eeprom
a3da1d95 2847
a5e1bd8c
MK
2848 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
2849
1941414d
TJ
2850 \param ftdi pointer to ftdi_context
2851
2852 \retval 0: all fine
2853 \retval -1: erase failed
22a1b5c1 2854 \retval -2: USB device unavailable
1941414d 2855*/
a8f46ddc
TJ
2856int ftdi_erase_eeprom(struct ftdi_context *ftdi)
2857{
22a1b5c1
TJ
2858 if (ftdi == NULL || ftdi->usb_dev == NULL)
2859 ftdi_error_return(-2, "USB device unavailable");
2860
579b006f 2861 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST, 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
c3d95b87 2862 ftdi_error_return(-1, "unable to erase eeprom");
a3da1d95
GE
2863
2864 return 0;
2865}
c3d95b87 2866
1941414d
TJ
2867/**
2868 Get string representation for last error code
c3d95b87 2869
1941414d
TJ
2870 \param ftdi pointer to ftdi_context
2871
2872 \retval Pointer to error string
2873*/
c3d95b87
TJ
2874char *ftdi_get_error_string (struct ftdi_context *ftdi)
2875{
22a1b5c1
TJ
2876 if (ftdi == NULL)
2877 return "";
2878
c3d95b87
TJ
2879 return ftdi->error_str;
2880}
a01d31e2 2881
b5ec1820 2882/* @} end of doxygen libftdi group */