ftdi_eeprom: Fix segmentation fault after --flash_eeprom
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi_i.h"
38#include "ftdi.h"
39#include "ftdi_version_i.h"
40
41#define ftdi_error_return(code, str) do { \
42 ftdi->error_str = str; \
43 return code; \
44 } while(0);
45
46#define ftdi_error_return_free_device_list(code, str, devs) do { \
47 libusb_free_device_list(devs,1); \
48 ftdi->error_str = str; \
49 return code; \
50 } while(0);
51
52
53/**
54 Internal function to close usb device pointer.
55 Sets ftdi->usb_dev to NULL.
56 \internal
57
58 \param ftdi pointer to ftdi_context
59
60 \retval none
61*/
62static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
63{
64 if (ftdi && ftdi->usb_dev)
65 {
66 libusb_close (ftdi->usb_dev);
67 ftdi->usb_dev = NULL;
68 if(ftdi->eeprom)
69 ftdi->eeprom->initialized_for_connected_device = 0;
70 }
71}
72
73/**
74 Initializes a ftdi_context.
75
76 \param ftdi pointer to ftdi_context
77
78 \retval 0: all fine
79 \retval -1: couldn't allocate read buffer
80 \retval -2: couldn't allocate struct buffer
81 \retval -3: libusb_init() failed
82
83 \remark This should be called before all functions
84*/
85int ftdi_init(struct ftdi_context *ftdi)
86{
87 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
88 ftdi->usb_ctx = NULL;
89 ftdi->usb_dev = NULL;
90 ftdi->usb_read_timeout = 5000;
91 ftdi->usb_write_timeout = 5000;
92
93 ftdi->type = TYPE_BM; /* chip type */
94 ftdi->baudrate = -1;
95 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
96
97 ftdi->readbuffer = NULL;
98 ftdi->readbuffer_offset = 0;
99 ftdi->readbuffer_remaining = 0;
100 ftdi->writebuffer_chunksize = 4096;
101 ftdi->max_packet_size = 0;
102 ftdi->error_str = NULL;
103 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
104
105 if (libusb_init(&ftdi->usb_ctx) < 0)
106 ftdi_error_return(-3, "libusb_init() failed");
107
108 ftdi_set_interface(ftdi, INTERFACE_ANY);
109 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
110
111 if (eeprom == 0)
112 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
113 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
114 ftdi->eeprom = eeprom;
115
116 /* All fine. Now allocate the readbuffer */
117 return ftdi_read_data_set_chunksize(ftdi, 4096);
118}
119
120/**
121 Allocate and initialize a new ftdi_context
122
123 \return a pointer to a new ftdi_context, or NULL on failure
124*/
125struct ftdi_context *ftdi_new(void)
126{
127 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
128
129 if (ftdi == NULL)
130 {
131 return NULL;
132 }
133
134 if (ftdi_init(ftdi) != 0)
135 {
136 free(ftdi);
137 return NULL;
138 }
139
140 return ftdi;
141}
142
143/**
144 Open selected channels on a chip, otherwise use first channel.
145
146 \param ftdi pointer to ftdi_context
147 \param interface Interface to use for FT2232C/2232H/4232H chips.
148
149 \retval 0: all fine
150 \retval -1: unknown interface
151 \retval -2: USB device unavailable
152 \retval -3: Device already open, interface can't be set in that state
153*/
154int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
155{
156 if (ftdi == NULL)
157 ftdi_error_return(-2, "USB device unavailable");
158
159 if (ftdi->usb_dev != NULL)
160 {
161 int check_interface = interface;
162 if (check_interface == INTERFACE_ANY)
163 check_interface = INTERFACE_A;
164
165 if (ftdi->index != check_interface)
166 ftdi_error_return(-3, "Interface can not be changed on an already open device");
167 }
168
169 switch (interface)
170 {
171 case INTERFACE_ANY:
172 case INTERFACE_A:
173 ftdi->interface = 0;
174 ftdi->index = INTERFACE_A;
175 ftdi->in_ep = 0x02;
176 ftdi->out_ep = 0x81;
177 break;
178 case INTERFACE_B:
179 ftdi->interface = 1;
180 ftdi->index = INTERFACE_B;
181 ftdi->in_ep = 0x04;
182 ftdi->out_ep = 0x83;
183 break;
184 case INTERFACE_C:
185 ftdi->interface = 2;
186 ftdi->index = INTERFACE_C;
187 ftdi->in_ep = 0x06;
188 ftdi->out_ep = 0x85;
189 break;
190 case INTERFACE_D:
191 ftdi->interface = 3;
192 ftdi->index = INTERFACE_D;
193 ftdi->in_ep = 0x08;
194 ftdi->out_ep = 0x87;
195 break;
196 default:
197 ftdi_error_return(-1, "Unknown interface");
198 }
199 return 0;
200}
201
202/**
203 Deinitializes a ftdi_context.
204
205 \param ftdi pointer to ftdi_context
206*/
207void ftdi_deinit(struct ftdi_context *ftdi)
208{
209 if (ftdi == NULL)
210 return;
211
212 ftdi_usb_close_internal (ftdi);
213
214 if (ftdi->readbuffer != NULL)
215 {
216 free(ftdi->readbuffer);
217 ftdi->readbuffer = NULL;
218 }
219
220 if (ftdi->eeprom != NULL)
221 {
222 if (ftdi->eeprom->manufacturer != 0)
223 {
224 free(ftdi->eeprom->manufacturer);
225 ftdi->eeprom->manufacturer = 0;
226 }
227 if (ftdi->eeprom->product != 0)
228 {
229 free(ftdi->eeprom->product);
230 ftdi->eeprom->product = 0;
231 }
232 if (ftdi->eeprom->serial != 0)
233 {
234 free(ftdi->eeprom->serial);
235 ftdi->eeprom->serial = 0;
236 }
237 free(ftdi->eeprom);
238 ftdi->eeprom = NULL;
239 }
240
241 if (ftdi->usb_ctx)
242 {
243 libusb_exit(ftdi->usb_ctx);
244 ftdi->usb_ctx = NULL;
245 }
246}
247
248/**
249 Deinitialize and free an ftdi_context.
250
251 \param ftdi pointer to ftdi_context
252*/
253void ftdi_free(struct ftdi_context *ftdi)
254{
255 ftdi_deinit(ftdi);
256 free(ftdi);
257}
258
259/**
260 Use an already open libusb device.
261
262 \param ftdi pointer to ftdi_context
263 \param usb libusb libusb_device_handle to use
264*/
265void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
266{
267 if (ftdi == NULL)
268 return;
269
270 ftdi->usb_dev = usb;
271}
272
273/**
274 * @brief Get libftdi library version
275 *
276 * @return ftdi_version_info Library version information
277 **/
278struct ftdi_version_info ftdi_get_library_version()
279{
280 struct ftdi_version_info ver;
281
282 ver.major = FTDI_MAJOR_VERSION;
283 ver.minor = FTDI_MINOR_VERSION;
284 ver.micro = FTDI_MICRO_VERSION;
285 ver.version_str = FTDI_VERSION_STRING;
286 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
287
288 return ver;
289}
290
291/**
292 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
293 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
294 use. With VID:PID 0:0, search for the default devices
295 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014)
296
297 \param ftdi pointer to ftdi_context
298 \param devlist Pointer where to store list of found devices
299 \param vendor Vendor ID to search for
300 \param product Product ID to search for
301
302 \retval >0: number of devices found
303 \retval -3: out of memory
304 \retval -5: libusb_get_device_list() failed
305 \retval -6: libusb_get_device_descriptor() failed
306*/
307int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
308{
309 struct ftdi_device_list **curdev;
310 libusb_device *dev;
311 libusb_device **devs;
312 int count = 0;
313 int i = 0;
314
315 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
316 ftdi_error_return(-5, "libusb_get_device_list() failed");
317
318 curdev = devlist;
319 *curdev = NULL;
320
321 while ((dev = devs[i++]) != NULL)
322 {
323 struct libusb_device_descriptor desc;
324
325 if (libusb_get_device_descriptor(dev, &desc) < 0)
326 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
327
328 if (((vendor != 0 && product != 0) &&
329 desc.idVendor == vendor && desc.idProduct == product) ||
330 ((vendor == 0 && product == 0) &&
331 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
332 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014)))
333 {
334 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
335 if (!*curdev)
336 ftdi_error_return_free_device_list(-3, "out of memory", devs);
337
338 (*curdev)->next = NULL;
339 (*curdev)->dev = dev;
340 libusb_ref_device(dev);
341 curdev = &(*curdev)->next;
342 count++;
343 }
344 }
345 libusb_free_device_list(devs,1);
346 return count;
347}
348
349/**
350 Frees a usb device list.
351
352 \param devlist USB device list created by ftdi_usb_find_all()
353*/
354void ftdi_list_free(struct ftdi_device_list **devlist)
355{
356 struct ftdi_device_list *curdev, *next;
357
358 for (curdev = *devlist; curdev != NULL;)
359 {
360 next = curdev->next;
361 libusb_unref_device(curdev->dev);
362 free(curdev);
363 curdev = next;
364 }
365
366 *devlist = NULL;
367}
368
369/**
370 Frees a usb device list.
371
372 \param devlist USB device list created by ftdi_usb_find_all()
373*/
374void ftdi_list_free2(struct ftdi_device_list *devlist)
375{
376 ftdi_list_free(&devlist);
377}
378
379/**
380 Return device ID strings from the usb device.
381
382 The parameters manufacturer, description and serial may be NULL
383 or pointer to buffers to store the fetched strings.
384
385 \note Use this function only in combination with ftdi_usb_find_all()
386 as it closes the internal "usb_dev" after use.
387
388 \param ftdi pointer to ftdi_context
389 \param dev libusb usb_dev to use
390 \param manufacturer Store manufacturer string here if not NULL
391 \param mnf_len Buffer size of manufacturer string
392 \param description Store product description string here if not NULL
393 \param desc_len Buffer size of product description string
394 \param serial Store serial string here if not NULL
395 \param serial_len Buffer size of serial string
396
397 \retval 0: all fine
398 \retval -1: wrong arguments
399 \retval -4: unable to open device
400 \retval -7: get product manufacturer failed
401 \retval -8: get product description failed
402 \retval -9: get serial number failed
403 \retval -11: libusb_get_device_descriptor() failed
404*/
405int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
406 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
407{
408 struct libusb_device_descriptor desc;
409
410 if ((ftdi==NULL) || (dev==NULL))
411 return -1;
412
413 if (libusb_open(dev, &ftdi->usb_dev) < 0)
414 ftdi_error_return(-4, "libusb_open() failed");
415
416 if (libusb_get_device_descriptor(dev, &desc) < 0)
417 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
418
419 if (manufacturer != NULL)
420 {
421 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
422 {
423 ftdi_usb_close_internal (ftdi);
424 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
425 }
426 }
427
428 if (description != NULL)
429 {
430 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
431 {
432 ftdi_usb_close_internal (ftdi);
433 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
434 }
435 }
436
437 if (serial != NULL)
438 {
439 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
440 {
441 ftdi_usb_close_internal (ftdi);
442 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
443 }
444 }
445
446 ftdi_usb_close_internal (ftdi);
447
448 return 0;
449}
450
451/**
452 * Internal function to determine the maximum packet size.
453 * \param ftdi pointer to ftdi_context
454 * \param dev libusb usb_dev to use
455 * \retval Maximum packet size for this device
456 */
457static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
458{
459 struct libusb_device_descriptor desc;
460 struct libusb_config_descriptor *config0;
461 unsigned int packet_size;
462
463 // Sanity check
464 if (ftdi == NULL || dev == NULL)
465 return 64;
466
467 // Determine maximum packet size. Init with default value.
468 // New hi-speed devices from FTDI use a packet size of 512 bytes
469 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
470 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
471 packet_size = 512;
472 else
473 packet_size = 64;
474
475 if (libusb_get_device_descriptor(dev, &desc) < 0)
476 return packet_size;
477
478 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
479 return packet_size;
480
481 if (desc.bNumConfigurations > 0)
482 {
483 if (ftdi->interface < config0->bNumInterfaces)
484 {
485 struct libusb_interface interface = config0->interface[ftdi->interface];
486 if (interface.num_altsetting > 0)
487 {
488 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
489 if (descriptor.bNumEndpoints > 0)
490 {
491 packet_size = descriptor.endpoint[0].wMaxPacketSize;
492 }
493 }
494 }
495 }
496
497 libusb_free_config_descriptor (config0);
498 return packet_size;
499}
500
501/**
502 Opens a ftdi device given by an usb_device.
503
504 \param ftdi pointer to ftdi_context
505 \param dev libusb usb_dev to use
506
507 \retval 0: all fine
508 \retval -3: unable to config device
509 \retval -4: unable to open device
510 \retval -5: unable to claim device
511 \retval -6: reset failed
512 \retval -7: set baudrate failed
513 \retval -8: ftdi context invalid
514 \retval -9: libusb_get_device_descriptor() failed
515 \retval -10: libusb_get_config_descriptor() failed
516 \retval -11: libusb_detach_kernel_driver() failed
517 \retval -12: libusb_get_configuration() failed
518*/
519int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
520{
521 struct libusb_device_descriptor desc;
522 struct libusb_config_descriptor *config0;
523 int cfg, cfg0, detach_errno = 0;
524
525 if (ftdi == NULL)
526 ftdi_error_return(-8, "ftdi context invalid");
527
528 if (libusb_open(dev, &ftdi->usb_dev) < 0)
529 ftdi_error_return(-4, "libusb_open() failed");
530
531 if (libusb_get_device_descriptor(dev, &desc) < 0)
532 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
533
534 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
535 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
536 cfg0 = config0->bConfigurationValue;
537 libusb_free_config_descriptor (config0);
538
539 // Try to detach ftdi_sio kernel module.
540 //
541 // The return code is kept in a separate variable and only parsed
542 // if usb_set_configuration() or usb_claim_interface() fails as the
543 // detach operation might be denied and everything still works fine.
544 // Likely scenario is a static ftdi_sio kernel module.
545 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
546 {
547 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
548 detach_errno = errno;
549 }
550
551 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
552 ftdi_error_return(-12, "libusb_get_configuration () failed");
553 // set configuration (needed especially for windows)
554 // tolerate EBUSY: one device with one configuration, but two interfaces
555 // and libftdi sessions to both interfaces (e.g. FT2232)
556 if (desc.bNumConfigurations > 0 && cfg != cfg0)
557 {
558 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
559 {
560 ftdi_usb_close_internal (ftdi);
561 if (detach_errno == EPERM)
562 {
563 ftdi_error_return(-8, "inappropriate permissions on device!");
564 }
565 else
566 {
567 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
568 }
569 }
570 }
571
572 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
573 {
574 ftdi_usb_close_internal (ftdi);
575 if (detach_errno == EPERM)
576 {
577 ftdi_error_return(-8, "inappropriate permissions on device!");
578 }
579 else
580 {
581 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
582 }
583 }
584
585 if (ftdi_usb_reset (ftdi) != 0)
586 {
587 ftdi_usb_close_internal (ftdi);
588 ftdi_error_return(-6, "ftdi_usb_reset failed");
589 }
590
591 // Try to guess chip type
592 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
593 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
594 && desc.iSerialNumber == 0))
595 ftdi->type = TYPE_BM;
596 else if (desc.bcdDevice == 0x200)
597 ftdi->type = TYPE_AM;
598 else if (desc.bcdDevice == 0x500)
599 ftdi->type = TYPE_2232C;
600 else if (desc.bcdDevice == 0x600)
601 ftdi->type = TYPE_R;
602 else if (desc.bcdDevice == 0x700)
603 ftdi->type = TYPE_2232H;
604 else if (desc.bcdDevice == 0x800)
605 ftdi->type = TYPE_4232H;
606 else if (desc.bcdDevice == 0x900)
607 ftdi->type = TYPE_232H;
608
609 // Determine maximum packet size
610 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
611
612 if (ftdi_set_baudrate (ftdi, 9600) != 0)
613 {
614 ftdi_usb_close_internal (ftdi);
615 ftdi_error_return(-7, "set baudrate failed");
616 }
617
618 ftdi_error_return(0, "all fine");
619}
620
621/**
622 Opens the first device with a given vendor and product ids.
623
624 \param ftdi pointer to ftdi_context
625 \param vendor Vendor ID
626 \param product Product ID
627
628 \retval same as ftdi_usb_open_desc()
629*/
630int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
631{
632 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
633}
634
635/**
636 Opens the first device with a given, vendor id, product id,
637 description and serial.
638
639 \param ftdi pointer to ftdi_context
640 \param vendor Vendor ID
641 \param product Product ID
642 \param description Description to search for. Use NULL if not needed.
643 \param serial Serial to search for. Use NULL if not needed.
644
645 \retval 0: all fine
646 \retval -3: usb device not found
647 \retval -4: unable to open device
648 \retval -5: unable to claim device
649 \retval -6: reset failed
650 \retval -7: set baudrate failed
651 \retval -8: get product description failed
652 \retval -9: get serial number failed
653 \retval -12: libusb_get_device_list() failed
654 \retval -13: libusb_get_device_descriptor() failed
655*/
656int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
657 const char* description, const char* serial)
658{
659 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
660}
661
662/**
663 Opens the index-th device with a given, vendor id, product id,
664 description and serial.
665
666 \param ftdi pointer to ftdi_context
667 \param vendor Vendor ID
668 \param product Product ID
669 \param description Description to search for. Use NULL if not needed.
670 \param serial Serial to search for. Use NULL if not needed.
671 \param index Number of matching device to open if there are more than one, starts with 0.
672
673 \retval 0: all fine
674 \retval -1: usb_find_busses() failed
675 \retval -2: usb_find_devices() failed
676 \retval -3: usb device not found
677 \retval -4: unable to open device
678 \retval -5: unable to claim device
679 \retval -6: reset failed
680 \retval -7: set baudrate failed
681 \retval -8: get product description failed
682 \retval -9: get serial number failed
683 \retval -10: unable to close device
684 \retval -11: ftdi context invalid
685*/
686int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
687 const char* description, const char* serial, unsigned int index)
688{
689 libusb_device *dev;
690 libusb_device **devs;
691 char string[256];
692 int i = 0;
693
694 if (ftdi == NULL)
695 ftdi_error_return(-11, "ftdi context invalid");
696
697 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
698 ftdi_error_return(-12, "libusb_get_device_list() failed");
699
700 while ((dev = devs[i++]) != NULL)
701 {
702 struct libusb_device_descriptor desc;
703 int res;
704
705 if (libusb_get_device_descriptor(dev, &desc) < 0)
706 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
707
708 if (desc.idVendor == vendor && desc.idProduct == product)
709 {
710 if (libusb_open(dev, &ftdi->usb_dev) < 0)
711 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
712
713 if (description != NULL)
714 {
715 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
716 {
717 ftdi_usb_close_internal (ftdi);
718 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
719 }
720 if (strncmp(string, description, sizeof(string)) != 0)
721 {
722 ftdi_usb_close_internal (ftdi);
723 continue;
724 }
725 }
726 if (serial != NULL)
727 {
728 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
729 {
730 ftdi_usb_close_internal (ftdi);
731 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
732 }
733 if (strncmp(string, serial, sizeof(string)) != 0)
734 {
735 ftdi_usb_close_internal (ftdi);
736 continue;
737 }
738 }
739
740 ftdi_usb_close_internal (ftdi);
741
742 if (index > 0)
743 {
744 index--;
745 continue;
746 }
747
748 res = ftdi_usb_open_dev(ftdi, dev);
749 libusb_free_device_list(devs,1);
750 return res;
751 }
752 }
753
754 // device not found
755 ftdi_error_return_free_device_list(-3, "device not found", devs);
756}
757
758/**
759 Opens the ftdi-device described by a description-string.
760 Intended to be used for parsing a device-description given as commandline argument.
761
762 \param ftdi pointer to ftdi_context
763 \param description NULL-terminated description-string, using this format:
764 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
765 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
766 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
767 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
768
769 \note The description format may be extended in later versions.
770
771 \retval 0: all fine
772 \retval -2: libusb_get_device_list() failed
773 \retval -3: usb device not found
774 \retval -4: unable to open device
775 \retval -5: unable to claim device
776 \retval -6: reset failed
777 \retval -7: set baudrate failed
778 \retval -8: get product description failed
779 \retval -9: get serial number failed
780 \retval -10: unable to close device
781 \retval -11: illegal description format
782 \retval -12: ftdi context invalid
783*/
784int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
785{
786 if (ftdi == NULL)
787 ftdi_error_return(-12, "ftdi context invalid");
788
789 if (description[0] == 0 || description[1] != ':')
790 ftdi_error_return(-11, "illegal description format");
791
792 if (description[0] == 'd')
793 {
794 libusb_device *dev;
795 libusb_device **devs;
796 unsigned int bus_number, device_address;
797 int i = 0;
798
799 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
800 ftdi_error_return(-2, "libusb_get_device_list() failed");
801
802 /* XXX: This doesn't handle symlinks/odd paths/etc... */
803 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
804 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
805
806 while ((dev = devs[i++]) != NULL)
807 {
808 int ret;
809 if (bus_number == libusb_get_bus_number (dev)
810 && device_address == libusb_get_device_address (dev))
811 {
812 ret = ftdi_usb_open_dev(ftdi, dev);
813 libusb_free_device_list(devs,1);
814 return ret;
815 }
816 }
817
818 // device not found
819 ftdi_error_return_free_device_list(-3, "device not found", devs);
820 }
821 else if (description[0] == 'i' || description[0] == 's')
822 {
823 unsigned int vendor;
824 unsigned int product;
825 unsigned int index=0;
826 const char *serial=NULL;
827 const char *startp, *endp;
828
829 errno=0;
830 startp=description+2;
831 vendor=strtoul((char*)startp,(char**)&endp,0);
832 if (*endp != ':' || endp == startp || errno != 0)
833 ftdi_error_return(-11, "illegal description format");
834
835 startp=endp+1;
836 product=strtoul((char*)startp,(char**)&endp,0);
837 if (endp == startp || errno != 0)
838 ftdi_error_return(-11, "illegal description format");
839
840 if (description[0] == 'i' && *endp != 0)
841 {
842 /* optional index field in i-mode */
843 if (*endp != ':')
844 ftdi_error_return(-11, "illegal description format");
845
846 startp=endp+1;
847 index=strtoul((char*)startp,(char**)&endp,0);
848 if (*endp != 0 || endp == startp || errno != 0)
849 ftdi_error_return(-11, "illegal description format");
850 }
851 if (description[0] == 's')
852 {
853 if (*endp != ':')
854 ftdi_error_return(-11, "illegal description format");
855
856 /* rest of the description is the serial */
857 serial=endp+1;
858 }
859
860 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
861 }
862 else
863 {
864 ftdi_error_return(-11, "illegal description format");
865 }
866}
867
868/**
869 Resets the ftdi device.
870
871 \param ftdi pointer to ftdi_context
872
873 \retval 0: all fine
874 \retval -1: FTDI reset failed
875 \retval -2: USB device unavailable
876*/
877int ftdi_usb_reset(struct ftdi_context *ftdi)
878{
879 if (ftdi == NULL || ftdi->usb_dev == NULL)
880 ftdi_error_return(-2, "USB device unavailable");
881
882 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
883 SIO_RESET_REQUEST, SIO_RESET_SIO,
884 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
885 ftdi_error_return(-1,"FTDI reset failed");
886
887 // Invalidate data in the readbuffer
888 ftdi->readbuffer_offset = 0;
889 ftdi->readbuffer_remaining = 0;
890
891 return 0;
892}
893
894/**
895 Clears the read buffer on the chip and the internal read buffer.
896
897 \param ftdi pointer to ftdi_context
898
899 \retval 0: all fine
900 \retval -1: read buffer purge failed
901 \retval -2: USB device unavailable
902*/
903int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
904{
905 if (ftdi == NULL || ftdi->usb_dev == NULL)
906 ftdi_error_return(-2, "USB device unavailable");
907
908 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
909 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
910 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
911 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
912
913 // Invalidate data in the readbuffer
914 ftdi->readbuffer_offset = 0;
915 ftdi->readbuffer_remaining = 0;
916
917 return 0;
918}
919
920/**
921 Clears the write buffer on the chip.
922
923 \param ftdi pointer to ftdi_context
924
925 \retval 0: all fine
926 \retval -1: write buffer purge failed
927 \retval -2: USB device unavailable
928*/
929int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
930{
931 if (ftdi == NULL || ftdi->usb_dev == NULL)
932 ftdi_error_return(-2, "USB device unavailable");
933
934 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
935 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
936 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
937 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
938
939 return 0;
940}
941
942/**
943 Clears the buffers on the chip and the internal read buffer.
944
945 \param ftdi pointer to ftdi_context
946
947 \retval 0: all fine
948 \retval -1: read buffer purge failed
949 \retval -2: write buffer purge failed
950 \retval -3: USB device unavailable
951*/
952int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
953{
954 int result;
955
956 if (ftdi == NULL || ftdi->usb_dev == NULL)
957 ftdi_error_return(-3, "USB device unavailable");
958
959 result = ftdi_usb_purge_rx_buffer(ftdi);
960 if (result < 0)
961 return -1;
962
963 result = ftdi_usb_purge_tx_buffer(ftdi);
964 if (result < 0)
965 return -2;
966
967 return 0;
968}
969
970
971
972/**
973 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
974
975 \param ftdi pointer to ftdi_context
976
977 \retval 0: all fine
978 \retval -1: usb_release failed
979 \retval -3: ftdi context invalid
980*/
981int ftdi_usb_close(struct ftdi_context *ftdi)
982{
983 int rtn = 0;
984
985 if (ftdi == NULL)
986 ftdi_error_return(-3, "ftdi context invalid");
987
988 if (ftdi->usb_dev != NULL)
989 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
990 rtn = -1;
991
992 ftdi_usb_close_internal (ftdi);
993
994 return rtn;
995}
996
997/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
998 to encoded divisor and the achievable baudrate
999 Function is only used internally
1000 \internal
1001
1002 See AN120
1003 clk/1 -> 0
1004 clk/1.5 -> 1
1005 clk/2 -> 2
1006 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1007 The fractional part has frac_code encoding
1008*/
1009static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1010
1011{
1012 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1013 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1014 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
1015 int divisor, best_divisor, best_baud, best_baud_diff;
1016 divisor = 24000000 / baudrate;
1017 int i;
1018
1019 // Round down to supported fraction (AM only)
1020 divisor -= am_adjust_dn[divisor & 7];
1021
1022 // Try this divisor and the one above it (because division rounds down)
1023 best_divisor = 0;
1024 best_baud = 0;
1025 best_baud_diff = 0;
1026 for (i = 0; i < 2; i++)
1027 {
1028 int try_divisor = divisor + i;
1029 int baud_estimate;
1030 int baud_diff;
1031
1032 // Round up to supported divisor value
1033 if (try_divisor <= 8)
1034 {
1035 // Round up to minimum supported divisor
1036 try_divisor = 8;
1037 }
1038 else if (divisor < 16)
1039 {
1040 // AM doesn't support divisors 9 through 15 inclusive
1041 try_divisor = 16;
1042 }
1043 else
1044 {
1045 // Round up to supported fraction (AM only)
1046 try_divisor += am_adjust_up[try_divisor & 7];
1047 if (try_divisor > 0x1FFF8)
1048 {
1049 // Round down to maximum supported divisor value (for AM)
1050 try_divisor = 0x1FFF8;
1051 }
1052 }
1053 // Get estimated baud rate (to nearest integer)
1054 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1055 // Get absolute difference from requested baud rate
1056 if (baud_estimate < baudrate)
1057 {
1058 baud_diff = baudrate - baud_estimate;
1059 }
1060 else
1061 {
1062 baud_diff = baud_estimate - baudrate;
1063 }
1064 if (i == 0 || baud_diff < best_baud_diff)
1065 {
1066 // Closest to requested baud rate so far
1067 best_divisor = try_divisor;
1068 best_baud = baud_estimate;
1069 best_baud_diff = baud_diff;
1070 if (baud_diff == 0)
1071 {
1072 // Spot on! No point trying
1073 break;
1074 }
1075 }
1076 }
1077 // Encode the best divisor value
1078 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1079 // Deal with special cases for encoded value
1080 if (*encoded_divisor == 1)
1081 {
1082 *encoded_divisor = 0; // 3000000 baud
1083 }
1084 else if (*encoded_divisor == 0x4001)
1085 {
1086 *encoded_divisor = 1; // 2000000 baud (BM only)
1087 }
1088 return best_baud;
1089}
1090
1091/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1092 to encoded divisor and the achievable baudrate
1093 Function is only used internally
1094 \internal
1095
1096 See AN120
1097 clk/1 -> 0
1098 clk/1.5 -> 1
1099 clk/2 -> 2
1100 From /2, 0.125 steps may be taken.
1101 The fractional part has frac_code encoding
1102
1103 value[13:0] of value is the divisor
1104 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1105
1106 H Type have all features above with
1107 {index[8],value[15:14]} is the encoded subdivisor
1108
1109 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
1110 {index[0],value[15:14]} is the encoded subdivisor
1111
1112 AM Type chips have only four fractional subdivisors at value[15:14]
1113 for subdivisors 0, 0.5, 0.25, 0.125
1114*/
1115static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor)
1116{
1117 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1118 int best_baud = 0;
1119 int divisor, best_divisor;
1120 if (baudrate >= clk/clk_div)
1121 {
1122 *encoded_divisor = 0;
1123 best_baud = clk/clk_div;
1124 }
1125 else if (baudrate >= clk/(clk_div + clk_div/2))
1126 {
1127 *encoded_divisor = 1;
1128 best_baud = clk/(clk_div + clk_div/2);
1129 }
1130 else if (baudrate >= clk/(2*clk_div))
1131 {
1132 *encoded_divisor = 2;
1133 best_baud = clk/(2*clk_div);
1134 }
1135 else
1136 {
1137 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1138 divisor = clk*16/clk_div / baudrate;
1139 if (divisor & 1) /* Decide if to round up or down*/
1140 best_divisor = divisor /2 +1;
1141 else
1142 best_divisor = divisor/2;
1143 if(best_divisor > 0x20000)
1144 best_divisor = 0x1ffff;
1145 best_baud = clk*16/clk_div/best_divisor;
1146 if (best_baud & 1) /* Decide if to round up or down*/
1147 best_baud = best_baud /2 +1;
1148 else
1149 best_baud = best_baud /2;
1150 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1151 }
1152 return best_baud;
1153}
1154/**
1155 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1156 Function is only used internally
1157 \internal
1158*/
1159static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1160 unsigned short *value, unsigned short *index)
1161{
1162 int best_baud;
1163 unsigned long encoded_divisor;
1164
1165 if (baudrate <= 0)
1166 {
1167 // Return error
1168 return -1;
1169 }
1170
1171#define H_CLK 120000000
1172#define C_CLK 48000000
1173 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H ))
1174 {
1175 if(baudrate*10 > H_CLK /0x3fff)
1176 {
1177 /* On H Devices, use 12 000 000 Baudrate when possible
1178 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
1179 three fractional bits and a 120 MHz clock
1180 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1181 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1182 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1183 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1184 }
1185 else
1186 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1187 }
1188 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R ))
1189 {
1190 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1191 }
1192 else
1193 {
1194 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
1195 }
1196 // Split into "value" and "index" values
1197 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1198 if (ftdi->type == TYPE_2232H ||
1199 ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
1200 {
1201 *index = (unsigned short)(encoded_divisor >> 8);
1202 *index &= 0xFF00;
1203 *index |= ftdi->index;
1204 }
1205 else
1206 *index = (unsigned short)(encoded_divisor >> 16);
1207
1208 // Return the nearest baud rate
1209 return best_baud;
1210}
1211
1212/**
1213 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1214 * Do not use, it's only for the unit test framework
1215 **/
1216int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1217 unsigned short *value, unsigned short *index)
1218{
1219 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1220}
1221
1222/**
1223 Sets the chip baud rate
1224
1225 \param ftdi pointer to ftdi_context
1226 \param baudrate baud rate to set
1227
1228 \retval 0: all fine
1229 \retval -1: invalid baudrate
1230 \retval -2: setting baudrate failed
1231 \retval -3: USB device unavailable
1232*/
1233int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1234{
1235 unsigned short value, index;
1236 int actual_baudrate;
1237
1238 if (ftdi == NULL || ftdi->usb_dev == NULL)
1239 ftdi_error_return(-3, "USB device unavailable");
1240
1241 if (ftdi->bitbang_enabled)
1242 {
1243 baudrate = baudrate*4;
1244 }
1245
1246 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1247 if (actual_baudrate <= 0)
1248 ftdi_error_return (-1, "Silly baudrate <= 0.");
1249
1250 // Check within tolerance (about 5%)
1251 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1252 || ((actual_baudrate < baudrate)
1253 ? (actual_baudrate * 21 < baudrate * 20)
1254 : (baudrate * 21 < actual_baudrate * 20)))
1255 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1256
1257 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1258 SIO_SET_BAUDRATE_REQUEST, value,
1259 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1260 ftdi_error_return (-2, "Setting new baudrate failed");
1261
1262 ftdi->baudrate = baudrate;
1263 return 0;
1264}
1265
1266/**
1267 Set (RS232) line characteristics.
1268 The break type can only be set via ftdi_set_line_property2()
1269 and defaults to "off".
1270
1271 \param ftdi pointer to ftdi_context
1272 \param bits Number of bits
1273 \param sbit Number of stop bits
1274 \param parity Parity mode
1275
1276 \retval 0: all fine
1277 \retval -1: Setting line property failed
1278*/
1279int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1280 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1281{
1282 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1283}
1284
1285/**
1286 Set (RS232) line characteristics
1287
1288 \param ftdi pointer to ftdi_context
1289 \param bits Number of bits
1290 \param sbit Number of stop bits
1291 \param parity Parity mode
1292 \param break_type Break type
1293
1294 \retval 0: all fine
1295 \retval -1: Setting line property failed
1296 \retval -2: USB device unavailable
1297*/
1298int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1299 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1300 enum ftdi_break_type break_type)
1301{
1302 unsigned short value = bits;
1303
1304 if (ftdi == NULL || ftdi->usb_dev == NULL)
1305 ftdi_error_return(-2, "USB device unavailable");
1306
1307 switch (parity)
1308 {
1309 case NONE:
1310 value |= (0x00 << 8);
1311 break;
1312 case ODD:
1313 value |= (0x01 << 8);
1314 break;
1315 case EVEN:
1316 value |= (0x02 << 8);
1317 break;
1318 case MARK:
1319 value |= (0x03 << 8);
1320 break;
1321 case SPACE:
1322 value |= (0x04 << 8);
1323 break;
1324 }
1325
1326 switch (sbit)
1327 {
1328 case STOP_BIT_1:
1329 value |= (0x00 << 11);
1330 break;
1331 case STOP_BIT_15:
1332 value |= (0x01 << 11);
1333 break;
1334 case STOP_BIT_2:
1335 value |= (0x02 << 11);
1336 break;
1337 }
1338
1339 switch (break_type)
1340 {
1341 case BREAK_OFF:
1342 value |= (0x00 << 14);
1343 break;
1344 case BREAK_ON:
1345 value |= (0x01 << 14);
1346 break;
1347 }
1348
1349 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1350 SIO_SET_DATA_REQUEST, value,
1351 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1352 ftdi_error_return (-1, "Setting new line property failed");
1353
1354 return 0;
1355}
1356
1357/**
1358 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1359
1360 \param ftdi pointer to ftdi_context
1361 \param buf Buffer with the data
1362 \param size Size of the buffer
1363
1364 \retval -666: USB device unavailable
1365 \retval <0: error code from usb_bulk_write()
1366 \retval >0: number of bytes written
1367*/
1368int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1369{
1370 int offset = 0;
1371 int actual_length;
1372
1373 if (ftdi == NULL || ftdi->usb_dev == NULL)
1374 ftdi_error_return(-666, "USB device unavailable");
1375
1376 while (offset < size)
1377 {
1378 int write_size = ftdi->writebuffer_chunksize;
1379
1380 if (offset+write_size > size)
1381 write_size = size-offset;
1382
1383 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1384 ftdi_error_return(-1, "usb bulk write failed");
1385
1386 offset += actual_length;
1387 }
1388
1389 return offset;
1390}
1391
1392static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1393{
1394 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1395 struct ftdi_context *ftdi = tc->ftdi;
1396 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1397
1398 packet_size = ftdi->max_packet_size;
1399
1400 actual_length = transfer->actual_length;
1401
1402 if (actual_length > 2)
1403 {
1404 // skip FTDI status bytes.
1405 // Maybe stored in the future to enable modem use
1406 num_of_chunks = actual_length / packet_size;
1407 chunk_remains = actual_length % packet_size;
1408 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1409
1410 ftdi->readbuffer_offset += 2;
1411 actual_length -= 2;
1412
1413 if (actual_length > packet_size - 2)
1414 {
1415 for (i = 1; i < num_of_chunks; i++)
1416 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1417 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1418 packet_size - 2);
1419 if (chunk_remains > 2)
1420 {
1421 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1422 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1423 chunk_remains-2);
1424 actual_length -= 2*num_of_chunks;
1425 }
1426 else
1427 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1428 }
1429
1430 if (actual_length > 0)
1431 {
1432 // data still fits in buf?
1433 if (tc->offset + actual_length <= tc->size)
1434 {
1435 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1436 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1437 tc->offset += actual_length;
1438
1439 ftdi->readbuffer_offset = 0;
1440 ftdi->readbuffer_remaining = 0;
1441
1442 /* Did we read exactly the right amount of bytes? */
1443 if (tc->offset == tc->size)
1444 {
1445 //printf("read_data exact rem %d offset %d\n",
1446 //ftdi->readbuffer_remaining, offset);
1447 tc->completed = 1;
1448 return;
1449 }
1450 }
1451 else
1452 {
1453 // only copy part of the data or size <= readbuffer_chunksize
1454 int part_size = tc->size - tc->offset;
1455 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1456 tc->offset += part_size;
1457
1458 ftdi->readbuffer_offset += part_size;
1459 ftdi->readbuffer_remaining = actual_length - part_size;
1460
1461 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1462 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1463 tc->completed = 1;
1464 return;
1465 }
1466 }
1467 }
1468 ret = libusb_submit_transfer (transfer);
1469 if (ret < 0)
1470 tc->completed = 1;
1471}
1472
1473
1474static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1475{
1476 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1477 struct ftdi_context *ftdi = tc->ftdi;
1478
1479 tc->offset += transfer->actual_length;
1480
1481 if (tc->offset == tc->size)
1482 {
1483 tc->completed = 1;
1484 }
1485 else
1486 {
1487 int write_size = ftdi->writebuffer_chunksize;
1488 int ret;
1489
1490 if (tc->offset + write_size > tc->size)
1491 write_size = tc->size - tc->offset;
1492
1493 transfer->length = write_size;
1494 transfer->buffer = tc->buf + tc->offset;
1495 ret = libusb_submit_transfer (transfer);
1496 if (ret < 0)
1497 tc->completed = 1;
1498 }
1499}
1500
1501
1502/**
1503 Writes data to the chip. Does not wait for completion of the transfer
1504 nor does it make sure that the transfer was successful.
1505
1506 Use libusb 1.0 asynchronous API.
1507
1508 \param ftdi pointer to ftdi_context
1509 \param buf Buffer with the data
1510 \param size Size of the buffer
1511
1512 \retval NULL: Some error happens when submit transfer
1513 \retval !NULL: Pointer to a ftdi_transfer_control
1514*/
1515
1516struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1517{
1518 struct ftdi_transfer_control *tc;
1519 struct libusb_transfer *transfer;
1520 int write_size, ret;
1521
1522 if (ftdi == NULL || ftdi->usb_dev == NULL)
1523 return NULL;
1524
1525 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1526 if (!tc)
1527 return NULL;
1528
1529 transfer = libusb_alloc_transfer(0);
1530 if (!transfer)
1531 {
1532 free(tc);
1533 return NULL;
1534 }
1535
1536 tc->ftdi = ftdi;
1537 tc->completed = 0;
1538 tc->buf = buf;
1539 tc->size = size;
1540 tc->offset = 0;
1541
1542 if (size < ftdi->writebuffer_chunksize)
1543 write_size = size;
1544 else
1545 write_size = ftdi->writebuffer_chunksize;
1546
1547 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1548 write_size, ftdi_write_data_cb, tc,
1549 ftdi->usb_write_timeout);
1550 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1551
1552 ret = libusb_submit_transfer(transfer);
1553 if (ret < 0)
1554 {
1555 libusb_free_transfer(transfer);
1556 free(tc);
1557 return NULL;
1558 }
1559 tc->transfer = transfer;
1560
1561 return tc;
1562}
1563
1564/**
1565 Reads data from the chip. Does not wait for completion of the transfer
1566 nor does it make sure that the transfer was successful.
1567
1568 Use libusb 1.0 asynchronous API.
1569
1570 \param ftdi pointer to ftdi_context
1571 \param buf Buffer with the data
1572 \param size Size of the buffer
1573
1574 \retval NULL: Some error happens when submit transfer
1575 \retval !NULL: Pointer to a ftdi_transfer_control
1576*/
1577
1578struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1579{
1580 struct ftdi_transfer_control *tc;
1581 struct libusb_transfer *transfer;
1582 int ret;
1583
1584 if (ftdi == NULL || ftdi->usb_dev == NULL)
1585 return NULL;
1586
1587 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1588 if (!tc)
1589 return NULL;
1590
1591 tc->ftdi = ftdi;
1592 tc->buf = buf;
1593 tc->size = size;
1594
1595 if (size <= ftdi->readbuffer_remaining)
1596 {
1597 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1598
1599 // Fix offsets
1600 ftdi->readbuffer_remaining -= size;
1601 ftdi->readbuffer_offset += size;
1602
1603 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1604
1605 tc->completed = 1;
1606 tc->offset = size;
1607 tc->transfer = NULL;
1608 return tc;
1609 }
1610
1611 tc->completed = 0;
1612 if (ftdi->readbuffer_remaining != 0)
1613 {
1614 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1615
1616 tc->offset = ftdi->readbuffer_remaining;
1617 }
1618 else
1619 tc->offset = 0;
1620
1621 transfer = libusb_alloc_transfer(0);
1622 if (!transfer)
1623 {
1624 free (tc);
1625 return NULL;
1626 }
1627
1628 ftdi->readbuffer_remaining = 0;
1629 ftdi->readbuffer_offset = 0;
1630
1631 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1632 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1633
1634 ret = libusb_submit_transfer(transfer);
1635 if (ret < 0)
1636 {
1637 libusb_free_transfer(transfer);
1638 free (tc);
1639 return NULL;
1640 }
1641 tc->transfer = transfer;
1642
1643 return tc;
1644}
1645
1646/**
1647 Wait for completion of the transfer.
1648
1649 Use libusb 1.0 asynchronous API.
1650
1651 \param tc pointer to ftdi_transfer_control
1652
1653 \retval < 0: Some error happens
1654 \retval >= 0: Data size transferred
1655*/
1656
1657int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1658{
1659 int ret;
1660
1661 while (!tc->completed)
1662 {
1663 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1664 if (ret < 0)
1665 {
1666 if (ret == LIBUSB_ERROR_INTERRUPTED)
1667 continue;
1668 libusb_cancel_transfer(tc->transfer);
1669 while (!tc->completed)
1670 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1671 break;
1672 libusb_free_transfer(tc->transfer);
1673 free (tc);
1674 return ret;
1675 }
1676 }
1677
1678 ret = tc->offset;
1679 /**
1680 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1681 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1682 **/
1683 if (tc->transfer)
1684 {
1685 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1686 ret = -1;
1687 libusb_free_transfer(tc->transfer);
1688 }
1689 free(tc);
1690 return ret;
1691}
1692
1693/**
1694 Configure write buffer chunk size.
1695 Default is 4096.
1696
1697 \param ftdi pointer to ftdi_context
1698 \param chunksize Chunk size
1699
1700 \retval 0: all fine
1701 \retval -1: ftdi context invalid
1702*/
1703int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1704{
1705 if (ftdi == NULL)
1706 ftdi_error_return(-1, "ftdi context invalid");
1707
1708 ftdi->writebuffer_chunksize = chunksize;
1709 return 0;
1710}
1711
1712/**
1713 Get write buffer chunk size.
1714
1715 \param ftdi pointer to ftdi_context
1716 \param chunksize Pointer to store chunk size in
1717
1718 \retval 0: all fine
1719 \retval -1: ftdi context invalid
1720*/
1721int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1722{
1723 if (ftdi == NULL)
1724 ftdi_error_return(-1, "ftdi context invalid");
1725
1726 *chunksize = ftdi->writebuffer_chunksize;
1727 return 0;
1728}
1729
1730/**
1731 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1732
1733 Automatically strips the two modem status bytes transfered during every read.
1734
1735 \param ftdi pointer to ftdi_context
1736 \param buf Buffer to store data in
1737 \param size Size of the buffer
1738
1739 \retval -666: USB device unavailable
1740 \retval <0: error code from libusb_bulk_transfer()
1741 \retval 0: no data was available
1742 \retval >0: number of bytes read
1743
1744*/
1745int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1746{
1747 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1748 int packet_size = ftdi->max_packet_size;
1749 int actual_length = 1;
1750
1751 if (ftdi == NULL || ftdi->usb_dev == NULL)
1752 ftdi_error_return(-666, "USB device unavailable");
1753
1754 // Packet size sanity check (avoid division by zero)
1755 if (packet_size == 0)
1756 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1757
1758 // everything we want is still in the readbuffer?
1759 if (size <= ftdi->readbuffer_remaining)
1760 {
1761 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1762
1763 // Fix offsets
1764 ftdi->readbuffer_remaining -= size;
1765 ftdi->readbuffer_offset += size;
1766
1767 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1768
1769 return size;
1770 }
1771 // something still in the readbuffer, but not enough to satisfy 'size'?
1772 if (ftdi->readbuffer_remaining != 0)
1773 {
1774 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1775
1776 // Fix offset
1777 offset += ftdi->readbuffer_remaining;
1778 }
1779 // do the actual USB read
1780 while (offset < size && actual_length > 0)
1781 {
1782 ftdi->readbuffer_remaining = 0;
1783 ftdi->readbuffer_offset = 0;
1784 /* returns how much received */
1785 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1786 if (ret < 0)
1787 ftdi_error_return(ret, "usb bulk read failed");
1788
1789 if (actual_length > 2)
1790 {
1791 // skip FTDI status bytes.
1792 // Maybe stored in the future to enable modem use
1793 num_of_chunks = actual_length / packet_size;
1794 chunk_remains = actual_length % packet_size;
1795 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1796
1797 ftdi->readbuffer_offset += 2;
1798 actual_length -= 2;
1799
1800 if (actual_length > packet_size - 2)
1801 {
1802 for (i = 1; i < num_of_chunks; i++)
1803 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1804 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1805 packet_size - 2);
1806 if (chunk_remains > 2)
1807 {
1808 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1809 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1810 chunk_remains-2);
1811 actual_length -= 2*num_of_chunks;
1812 }
1813 else
1814 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1815 }
1816 }
1817 else if (actual_length <= 2)
1818 {
1819 // no more data to read?
1820 return offset;
1821 }
1822 if (actual_length > 0)
1823 {
1824 // data still fits in buf?
1825 if (offset+actual_length <= size)
1826 {
1827 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1828 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1829 offset += actual_length;
1830
1831 /* Did we read exactly the right amount of bytes? */
1832 if (offset == size)
1833 //printf("read_data exact rem %d offset %d\n",
1834 //ftdi->readbuffer_remaining, offset);
1835 return offset;
1836 }
1837 else
1838 {
1839 // only copy part of the data or size <= readbuffer_chunksize
1840 int part_size = size-offset;
1841 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1842
1843 ftdi->readbuffer_offset += part_size;
1844 ftdi->readbuffer_remaining = actual_length-part_size;
1845 offset += part_size;
1846
1847 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1848 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1849
1850 return offset;
1851 }
1852 }
1853 }
1854 // never reached
1855 return -127;
1856}
1857
1858/**
1859 Configure read buffer chunk size.
1860 Default is 4096.
1861
1862 Automatically reallocates the buffer.
1863
1864 \param ftdi pointer to ftdi_context
1865 \param chunksize Chunk size
1866
1867 \retval 0: all fine
1868 \retval -1: ftdi context invalid
1869*/
1870int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1871{
1872 unsigned char *new_buf;
1873
1874 if (ftdi == NULL)
1875 ftdi_error_return(-1, "ftdi context invalid");
1876
1877 // Invalidate all remaining data
1878 ftdi->readbuffer_offset = 0;
1879 ftdi->readbuffer_remaining = 0;
1880#ifdef __linux__
1881 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1882 which is defined in libusb-1.0. Otherwise, each USB read request will
1883 be divided into multiple URBs. This will cause issues on Linux kernel
1884 older than 2.6.32. */
1885 if (chunksize > 16384)
1886 chunksize = 16384;
1887#endif
1888
1889 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1890 ftdi_error_return(-1, "out of memory for readbuffer");
1891
1892 ftdi->readbuffer = new_buf;
1893 ftdi->readbuffer_chunksize = chunksize;
1894
1895 return 0;
1896}
1897
1898/**
1899 Get read buffer chunk size.
1900
1901 \param ftdi pointer to ftdi_context
1902 \param chunksize Pointer to store chunk size in
1903
1904 \retval 0: all fine
1905 \retval -1: FTDI context invalid
1906*/
1907int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1908{
1909 if (ftdi == NULL)
1910 ftdi_error_return(-1, "FTDI context invalid");
1911
1912 *chunksize = ftdi->readbuffer_chunksize;
1913 return 0;
1914}
1915
1916/**
1917 Enable/disable bitbang modes.
1918
1919 \param ftdi pointer to ftdi_context
1920 \param bitmask Bitmask to configure lines.
1921 HIGH/ON value configures a line as output.
1922 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1923
1924 \retval 0: all fine
1925 \retval -1: can't enable bitbang mode
1926 \retval -2: USB device unavailable
1927*/
1928int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1929{
1930 unsigned short usb_val;
1931
1932 if (ftdi == NULL || ftdi->usb_dev == NULL)
1933 ftdi_error_return(-2, "USB device unavailable");
1934
1935 usb_val = bitmask; // low byte: bitmask
1936 usb_val |= (mode << 8);
1937 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1938 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
1939
1940 ftdi->bitbang_mode = mode;
1941 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1942 return 0;
1943}
1944
1945/**
1946 Disable bitbang mode.
1947
1948 \param ftdi pointer to ftdi_context
1949
1950 \retval 0: all fine
1951 \retval -1: can't disable bitbang mode
1952 \retval -2: USB device unavailable
1953*/
1954int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1955{
1956 if (ftdi == NULL || ftdi->usb_dev == NULL)
1957 ftdi_error_return(-2, "USB device unavailable");
1958
1959 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1960 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1961
1962 ftdi->bitbang_enabled = 0;
1963 return 0;
1964}
1965
1966
1967/**
1968 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1969
1970 \param ftdi pointer to ftdi_context
1971 \param pins Pointer to store pins into
1972
1973 \retval 0: all fine
1974 \retval -1: read pins failed
1975 \retval -2: USB device unavailable
1976*/
1977int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1978{
1979 if (ftdi == NULL || ftdi->usb_dev == NULL)
1980 ftdi_error_return(-2, "USB device unavailable");
1981
1982 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1983 ftdi_error_return(-1, "read pins failed");
1984
1985 return 0;
1986}
1987
1988/**
1989 Set latency timer
1990
1991 The FTDI chip keeps data in the internal buffer for a specific
1992 amount of time if the buffer is not full yet to decrease
1993 load on the usb bus.
1994
1995 \param ftdi pointer to ftdi_context
1996 \param latency Value between 1 and 255
1997
1998 \retval 0: all fine
1999 \retval -1: latency out of range
2000 \retval -2: unable to set latency timer
2001 \retval -3: USB device unavailable
2002*/
2003int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2004{
2005 unsigned short usb_val;
2006
2007 if (latency < 1)
2008 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
2009
2010 if (ftdi == NULL || ftdi->usb_dev == NULL)
2011 ftdi_error_return(-3, "USB device unavailable");
2012
2013 usb_val = latency;
2014 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2015 ftdi_error_return(-2, "unable to set latency timer");
2016
2017 return 0;
2018}
2019
2020/**
2021 Get latency timer
2022
2023 \param ftdi pointer to ftdi_context
2024 \param latency Pointer to store latency value in
2025
2026 \retval 0: all fine
2027 \retval -1: unable to get latency timer
2028 \retval -2: USB device unavailable
2029*/
2030int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2031{
2032 unsigned short usb_val;
2033
2034 if (ftdi == NULL || ftdi->usb_dev == NULL)
2035 ftdi_error_return(-2, "USB device unavailable");
2036
2037 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
2038 ftdi_error_return(-1, "reading latency timer failed");
2039
2040 *latency = (unsigned char)usb_val;
2041 return 0;
2042}
2043
2044/**
2045 Poll modem status information
2046
2047 This function allows the retrieve the two status bytes of the device.
2048 The device sends these bytes also as a header for each read access
2049 where they are discarded by ftdi_read_data(). The chip generates
2050 the two stripped status bytes in the absence of data every 40 ms.
2051
2052 Layout of the first byte:
2053 - B0..B3 - must be 0
2054 - B4 Clear to send (CTS)
2055 0 = inactive
2056 1 = active
2057 - B5 Data set ready (DTS)
2058 0 = inactive
2059 1 = active
2060 - B6 Ring indicator (RI)
2061 0 = inactive
2062 1 = active
2063 - B7 Receive line signal detect (RLSD)
2064 0 = inactive
2065 1 = active
2066
2067 Layout of the second byte:
2068 - B0 Data ready (DR)
2069 - B1 Overrun error (OE)
2070 - B2 Parity error (PE)
2071 - B3 Framing error (FE)
2072 - B4 Break interrupt (BI)
2073 - B5 Transmitter holding register (THRE)
2074 - B6 Transmitter empty (TEMT)
2075 - B7 Error in RCVR FIFO
2076
2077 \param ftdi pointer to ftdi_context
2078 \param status Pointer to store status information in. Must be two bytes.
2079
2080 \retval 0: all fine
2081 \retval -1: unable to retrieve status information
2082 \retval -2: USB device unavailable
2083*/
2084int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2085{
2086 char usb_val[2];
2087
2088 if (ftdi == NULL || ftdi->usb_dev == NULL)
2089 ftdi_error_return(-2, "USB device unavailable");
2090
2091 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
2092 ftdi_error_return(-1, "getting modem status failed");
2093
2094 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
2095
2096 return 0;
2097}
2098
2099/**
2100 Set flowcontrol for ftdi chip
2101
2102 \param ftdi pointer to ftdi_context
2103 \param flowctrl flow control to use. should be
2104 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2105
2106 \retval 0: all fine
2107 \retval -1: set flow control failed
2108 \retval -2: USB device unavailable
2109*/
2110int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2111{
2112 if (ftdi == NULL || ftdi->usb_dev == NULL)
2113 ftdi_error_return(-2, "USB device unavailable");
2114
2115 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2116 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2117 NULL, 0, ftdi->usb_write_timeout) < 0)
2118 ftdi_error_return(-1, "set flow control failed");
2119
2120 return 0;
2121}
2122
2123/**
2124 Set dtr line
2125
2126 \param ftdi pointer to ftdi_context
2127 \param state state to set line to (1 or 0)
2128
2129 \retval 0: all fine
2130 \retval -1: set dtr failed
2131 \retval -2: USB device unavailable
2132*/
2133int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2134{
2135 unsigned short usb_val;
2136
2137 if (ftdi == NULL || ftdi->usb_dev == NULL)
2138 ftdi_error_return(-2, "USB device unavailable");
2139
2140 if (state)
2141 usb_val = SIO_SET_DTR_HIGH;
2142 else
2143 usb_val = SIO_SET_DTR_LOW;
2144
2145 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2146 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2147 NULL, 0, ftdi->usb_write_timeout) < 0)
2148 ftdi_error_return(-1, "set dtr failed");
2149
2150 return 0;
2151}
2152
2153/**
2154 Set rts line
2155
2156 \param ftdi pointer to ftdi_context
2157 \param state state to set line to (1 or 0)
2158
2159 \retval 0: all fine
2160 \retval -1: set rts failed
2161 \retval -2: USB device unavailable
2162*/
2163int ftdi_setrts(struct ftdi_context *ftdi, int state)
2164{
2165 unsigned short usb_val;
2166
2167 if (ftdi == NULL || ftdi->usb_dev == NULL)
2168 ftdi_error_return(-2, "USB device unavailable");
2169
2170 if (state)
2171 usb_val = SIO_SET_RTS_HIGH;
2172 else
2173 usb_val = SIO_SET_RTS_LOW;
2174
2175 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2176 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2177 NULL, 0, ftdi->usb_write_timeout) < 0)
2178 ftdi_error_return(-1, "set of rts failed");
2179
2180 return 0;
2181}
2182
2183/**
2184 Set dtr and rts line in one pass
2185
2186 \param ftdi pointer to ftdi_context
2187 \param dtr DTR state to set line to (1 or 0)
2188 \param rts RTS state to set line to (1 or 0)
2189
2190 \retval 0: all fine
2191 \retval -1: set dtr/rts failed
2192 \retval -2: USB device unavailable
2193 */
2194int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2195{
2196 unsigned short usb_val;
2197
2198 if (ftdi == NULL || ftdi->usb_dev == NULL)
2199 ftdi_error_return(-2, "USB device unavailable");
2200
2201 if (dtr)
2202 usb_val = SIO_SET_DTR_HIGH;
2203 else
2204 usb_val = SIO_SET_DTR_LOW;
2205
2206 if (rts)
2207 usb_val |= SIO_SET_RTS_HIGH;
2208 else
2209 usb_val |= SIO_SET_RTS_LOW;
2210
2211 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2212 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2213 NULL, 0, ftdi->usb_write_timeout) < 0)
2214 ftdi_error_return(-1, "set of rts/dtr failed");
2215
2216 return 0;
2217}
2218
2219/**
2220 Set the special event character
2221
2222 \param ftdi pointer to ftdi_context
2223 \param eventch Event character
2224 \param enable 0 to disable the event character, non-zero otherwise
2225
2226 \retval 0: all fine
2227 \retval -1: unable to set event character
2228 \retval -2: USB device unavailable
2229*/
2230int ftdi_set_event_char(struct ftdi_context *ftdi,
2231 unsigned char eventch, unsigned char enable)
2232{
2233 unsigned short usb_val;
2234
2235 if (ftdi == NULL || ftdi->usb_dev == NULL)
2236 ftdi_error_return(-2, "USB device unavailable");
2237
2238 usb_val = eventch;
2239 if (enable)
2240 usb_val |= 1 << 8;
2241
2242 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2243 ftdi_error_return(-1, "setting event character failed");
2244
2245 return 0;
2246}
2247
2248/**
2249 Set error character
2250
2251 \param ftdi pointer to ftdi_context
2252 \param errorch Error character
2253 \param enable 0 to disable the error character, non-zero otherwise
2254
2255 \retval 0: all fine
2256 \retval -1: unable to set error character
2257 \retval -2: USB device unavailable
2258*/
2259int ftdi_set_error_char(struct ftdi_context *ftdi,
2260 unsigned char errorch, unsigned char enable)
2261{
2262 unsigned short usb_val;
2263
2264 if (ftdi == NULL || ftdi->usb_dev == NULL)
2265 ftdi_error_return(-2, "USB device unavailable");
2266
2267 usb_val = errorch;
2268 if (enable)
2269 usb_val |= 1 << 8;
2270
2271 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2272 ftdi_error_return(-1, "setting error character failed");
2273
2274 return 0;
2275}
2276
2277/**
2278 Init eeprom with default values for the connected device
2279 \param ftdi pointer to ftdi_context
2280 \param manufacturer String to use as Manufacturer
2281 \param product String to use as Product description
2282 \param serial String to use as Serial number description
2283
2284 \retval 0: all fine
2285 \retval -1: No struct ftdi_context
2286 \retval -2: No struct ftdi_eeprom
2287 \retval -3: No connected device or device not yet opened
2288*/
2289int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2290 char * product, char * serial)
2291{
2292 struct ftdi_eeprom *eeprom;
2293
2294 if (ftdi == NULL)
2295 ftdi_error_return(-1, "No struct ftdi_context");
2296
2297 if (ftdi->eeprom == NULL)
2298 ftdi_error_return(-2,"No struct ftdi_eeprom");
2299
2300 eeprom = ftdi->eeprom;
2301 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2302
2303 if (ftdi->usb_dev == NULL)
2304 ftdi_error_return(-3, "No connected device or device not yet opened");
2305
2306 eeprom->vendor_id = 0x0403;
2307 eeprom->use_serial = 1;
2308 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2309 (ftdi->type == TYPE_R))
2310 eeprom->product_id = 0x6001;
2311 else if (ftdi->type == TYPE_4232H)
2312 eeprom->product_id = 0x6011;
2313 else if (ftdi->type == TYPE_232H)
2314 eeprom->product_id = 0x6014;
2315 else
2316 eeprom->product_id = 0x6010;
2317 if (ftdi->type == TYPE_AM)
2318 eeprom->usb_version = 0x0101;
2319 else
2320 eeprom->usb_version = 0x0200;
2321 eeprom->max_power = 100;
2322
2323 if (eeprom->manufacturer)
2324 free (eeprom->manufacturer);
2325 eeprom->manufacturer = NULL;
2326 if (manufacturer)
2327 {
2328 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2329 if (eeprom->manufacturer)
2330 strcpy(eeprom->manufacturer, manufacturer);
2331 }
2332
2333 if (eeprom->product)
2334 free (eeprom->product);
2335 eeprom->product = NULL;
2336 if(product)
2337 {
2338 eeprom->product = malloc(strlen(product)+1);
2339 if (eeprom->product)
2340 strcpy(eeprom->product, product);
2341 }
2342 else
2343 {
2344 const char* default_product;
2345 switch(ftdi->type)
2346 {
2347 case TYPE_AM: default_product = "AM"; break;
2348 case TYPE_BM: default_product = "BM"; break;
2349 case TYPE_2232C: default_product = "Dual RS232"; break;
2350 case TYPE_R: default_product = "FT232R USB UART"; break;
2351 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2352 case TYPE_4232H: default_product = "FT4232H"; break;
2353 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2354 default:
2355 ftdi_error_return(-3, "Unknown chip type");
2356 }
2357 eeprom->product = malloc(strlen(default_product) +1);
2358 if (eeprom->product)
2359 strcpy(eeprom->product, default_product);
2360 }
2361
2362 if (eeprom->serial)
2363 free (eeprom->serial);
2364 eeprom->serial = NULL;
2365 if (serial)
2366 {
2367 eeprom->serial = malloc(strlen(serial)+1);
2368 if (eeprom->serial)
2369 strcpy(eeprom->serial, serial);
2370 }
2371
2372
2373 if (ftdi->type == TYPE_R)
2374 {
2375 eeprom->max_power = 90;
2376 eeprom->size = 0x80;
2377 eeprom->cbus_function[0] = CBUS_TXLED;
2378 eeprom->cbus_function[1] = CBUS_RXLED;
2379 eeprom->cbus_function[2] = CBUS_TXDEN;
2380 eeprom->cbus_function[3] = CBUS_PWREN;
2381 eeprom->cbus_function[4] = CBUS_SLEEP;
2382 }
2383 else
2384 {
2385 if(ftdi->type == TYPE_232H)
2386 {
2387 int i;
2388 for (i=0; i<10; i++)
2389 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2390 }
2391 eeprom->size = -1;
2392 }
2393 eeprom->initialized_for_connected_device = 1;
2394 return 0;
2395}
2396/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2397void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2398{
2399 int i;
2400 for(i=0; i<5;i++)
2401 {
2402 int mode_low, mode_high;
2403 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2404 mode_low = CBUSH_TRISTATE;
2405 else
2406 mode_low = eeprom->cbus_function[2*i];
2407 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2408 mode_high = CBUSH_TRISTATE;
2409 else
2410 mode_high = eeprom->cbus_function[2*i];
2411
2412 output[0x18+i] = mode_high <<4 | mode_low;
2413 }
2414}
2415/* Return the bits for the encoded EEPROM Structure of a requested Mode
2416 *
2417 */
2418static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2419{
2420 switch (chip)
2421 {
2422 case TYPE_2232H:
2423 case TYPE_2232C:
2424 {
2425 switch (type)
2426 {
2427 case CHANNEL_IS_UART: return 0;
2428 case CHANNEL_IS_FIFO: return 0x01;
2429 case CHANNEL_IS_OPTO: return 0x02;
2430 case CHANNEL_IS_CPU : return 0x04;
2431 default: return 0;
2432 }
2433 }
2434 case TYPE_232H:
2435 {
2436 switch (type)
2437 {
2438 case CHANNEL_IS_UART : return 0;
2439 case CHANNEL_IS_FIFO : return 0x01;
2440 case CHANNEL_IS_OPTO : return 0x02;
2441 case CHANNEL_IS_CPU : return 0x04;
2442 case CHANNEL_IS_FT1284 : return 0x08;
2443 default: return 0;
2444 }
2445 }
2446 default: return 0;
2447 }
2448 return 0;
2449}
2450
2451/**
2452 Build binary buffer from ftdi_eeprom structure.
2453 Output is suitable for ftdi_write_eeprom().
2454
2455 \param ftdi pointer to ftdi_context
2456
2457 \retval >=0: size of eeprom user area in bytes
2458 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2459 \retval -2: Invalid eeprom or ftdi pointer
2460 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2461 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2462 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2463 \retval -6: No connected EEPROM or EEPROM Type unknown
2464*/
2465int ftdi_eeprom_build(struct ftdi_context *ftdi)
2466{
2467 unsigned char i, j, eeprom_size_mask;
2468 unsigned short checksum, value;
2469 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2470 int user_area_size;
2471 struct ftdi_eeprom *eeprom;
2472 unsigned char * output;
2473
2474 if (ftdi == NULL)
2475 ftdi_error_return(-2,"No context");
2476 if (ftdi->eeprom == NULL)
2477 ftdi_error_return(-2,"No eeprom structure");
2478
2479 eeprom= ftdi->eeprom;
2480 output = eeprom->buf;
2481
2482 if (eeprom->chip == -1)
2483 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2484
2485 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2486 eeprom->size = 0x100;
2487 else
2488 eeprom->size = 0x80;
2489
2490 if (eeprom->manufacturer != NULL)
2491 manufacturer_size = strlen(eeprom->manufacturer);
2492 if (eeprom->product != NULL)
2493 product_size = strlen(eeprom->product);
2494 if (eeprom->serial != NULL)
2495 serial_size = strlen(eeprom->serial);
2496
2497 // eeprom size check
2498 switch (ftdi->type)
2499 {
2500 case TYPE_AM:
2501 case TYPE_BM:
2502 user_area_size = 96; // base size for strings (total of 48 characters)
2503 break;
2504 case TYPE_2232C:
2505 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2506 break;
2507 case TYPE_R:
2508 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2509 break;
2510 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2511 case TYPE_4232H:
2512 user_area_size = 86;
2513 break;
2514 case TYPE_232H:
2515 user_area_size = 80;
2516 break;
2517 default:
2518 user_area_size = 0;
2519 break;
2520 }
2521 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2522
2523 if (user_area_size < 0)
2524 ftdi_error_return(-1,"eeprom size exceeded");
2525
2526 // empty eeprom
2527 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2528
2529 // Bytes and Bits set for all Types
2530
2531 // Addr 02: Vendor ID
2532 output[0x02] = eeprom->vendor_id;
2533 output[0x03] = eeprom->vendor_id >> 8;
2534
2535 // Addr 04: Product ID
2536 output[0x04] = eeprom->product_id;
2537 output[0x05] = eeprom->product_id >> 8;
2538
2539 // Addr 06: Device release number (0400h for BM features)
2540 output[0x06] = 0x00;
2541 switch (ftdi->type)
2542 {
2543 case TYPE_AM:
2544 output[0x07] = 0x02;
2545 break;
2546 case TYPE_BM:
2547 output[0x07] = 0x04;
2548 break;
2549 case TYPE_2232C:
2550 output[0x07] = 0x05;
2551 break;
2552 case TYPE_R:
2553 output[0x07] = 0x06;
2554 break;
2555 case TYPE_2232H:
2556 output[0x07] = 0x07;
2557 break;
2558 case TYPE_4232H:
2559 output[0x07] = 0x08;
2560 break;
2561 case TYPE_232H:
2562 output[0x07] = 0x09;
2563 break;
2564 default:
2565 output[0x07] = 0x00;
2566 }
2567
2568 // Addr 08: Config descriptor
2569 // Bit 7: always 1
2570 // Bit 6: 1 if this device is self powered, 0 if bus powered
2571 // Bit 5: 1 if this device uses remote wakeup
2572 // Bit 4-0: reserved - 0
2573 j = 0x80;
2574 if (eeprom->self_powered == 1)
2575 j |= 0x40;
2576 if (eeprom->remote_wakeup == 1)
2577 j |= 0x20;
2578 output[0x08] = j;
2579
2580 // Addr 09: Max power consumption: max power = value * 2 mA
2581 output[0x09] = eeprom->max_power>>1;
2582
2583 if (ftdi->type != TYPE_AM)
2584 {
2585 // Addr 0A: Chip configuration
2586 // Bit 7: 0 - reserved
2587 // Bit 6: 0 - reserved
2588 // Bit 5: 0 - reserved
2589 // Bit 4: 1 - Change USB version
2590 // Bit 3: 1 - Use the serial number string
2591 // Bit 2: 1 - Enable suspend pull downs for lower power
2592 // Bit 1: 1 - Out EndPoint is Isochronous
2593 // Bit 0: 1 - In EndPoint is Isochronous
2594 //
2595 j = 0;
2596 if (eeprom->in_is_isochronous == 1)
2597 j = j | 1;
2598 if (eeprom->out_is_isochronous == 1)
2599 j = j | 2;
2600 output[0x0A] = j;
2601 }
2602
2603 // Dynamic content
2604 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2605 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2606 // 0xa0 (TYPE_232H)
2607 i = 0;
2608 switch (ftdi->type)
2609 {
2610 case TYPE_232H:
2611 i += 2;
2612 case TYPE_2232H:
2613 case TYPE_4232H:
2614 i += 2;
2615 case TYPE_R:
2616 i += 2;
2617 case TYPE_2232C:
2618 i += 2;
2619 case TYPE_AM:
2620 case TYPE_BM:
2621 i += 0x94;
2622 }
2623 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2624 eeprom_size_mask = eeprom->size -1;
2625
2626 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2627 // Addr 0F: Length of manufacturer string
2628 // Output manufacturer
2629 output[0x0E] = i; // calculate offset
2630 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2631 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2632 for (j = 0; j < manufacturer_size; j++)
2633 {
2634 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2635 output[i & eeprom_size_mask] = 0x00, i++;
2636 }
2637 output[0x0F] = manufacturer_size*2 + 2;
2638
2639 // Addr 10: Offset of the product string + 0x80, calculated later
2640 // Addr 11: Length of product string
2641 output[0x10] = i | 0x80; // calculate offset
2642 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2643 output[i & eeprom_size_mask] = 0x03, i++;
2644 for (j = 0; j < product_size; j++)
2645 {
2646 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2647 output[i & eeprom_size_mask] = 0x00, i++;
2648 }
2649 output[0x11] = product_size*2 + 2;
2650
2651 // Addr 12: Offset of the serial string + 0x80, calculated later
2652 // Addr 13: Length of serial string
2653 output[0x12] = i | 0x80; // calculate offset
2654 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2655 output[i & eeprom_size_mask] = 0x03, i++;
2656 for (j = 0; j < serial_size; j++)
2657 {
2658 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2659 output[i & eeprom_size_mask] = 0x00, i++;
2660 }
2661
2662 // Legacy port name and PnP fields for FT2232 and newer chips
2663 if (ftdi->type > TYPE_BM)
2664 {
2665 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2666 i++;
2667 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2668 i++;
2669 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2670 i++;
2671 }
2672
2673 output[0x13] = serial_size*2 + 2;
2674
2675 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2676 {
2677 if (eeprom->use_serial)
2678 output[0x0A] |= USE_SERIAL_NUM;
2679 else
2680 output[0x0A] &= ~USE_SERIAL_NUM;
2681 }
2682
2683 /* Bytes and Bits specific to (some) types
2684 Write linear, as this allows easier fixing*/
2685 switch (ftdi->type)
2686 {
2687 case TYPE_AM:
2688 break;
2689 case TYPE_BM:
2690 output[0x0C] = eeprom->usb_version & 0xff;
2691 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2692 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2693 output[0x0A] |= USE_USB_VERSION_BIT;
2694 else
2695 output[0x0A] &= ~USE_USB_VERSION_BIT;
2696
2697 break;
2698 case TYPE_2232C:
2699
2700 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
2701 if ( eeprom->channel_a_driver == DRIVER_VCP)
2702 output[0x00] |= DRIVER_VCP;
2703 else
2704 output[0x00] &= ~DRIVER_VCP;
2705
2706 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2707 output[0x00] |= HIGH_CURRENT_DRIVE;
2708 else
2709 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2710
2711 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
2712 if ( eeprom->channel_b_driver == DRIVER_VCP)
2713 output[0x01] |= DRIVER_VCP;
2714 else
2715 output[0x01] &= ~DRIVER_VCP;
2716
2717 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2718 output[0x01] |= HIGH_CURRENT_DRIVE;
2719 else
2720 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2721
2722 if (eeprom->in_is_isochronous == 1)
2723 output[0x0A] |= 0x1;
2724 else
2725 output[0x0A] &= ~0x1;
2726 if (eeprom->out_is_isochronous == 1)
2727 output[0x0A] |= 0x2;
2728 else
2729 output[0x0A] &= ~0x2;
2730 if (eeprom->suspend_pull_downs == 1)
2731 output[0x0A] |= 0x4;
2732 else
2733 output[0x0A] &= ~0x4;
2734 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2735 output[0x0A] |= USE_USB_VERSION_BIT;
2736 else
2737 output[0x0A] &= ~USE_USB_VERSION_BIT;
2738
2739 output[0x0C] = eeprom->usb_version & 0xff;
2740 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2741 output[0x14] = eeprom->chip;
2742 break;
2743 case TYPE_R:
2744 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2745 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2746 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2747
2748 if (eeprom->suspend_pull_downs == 1)
2749 output[0x0A] |= 0x4;
2750 else
2751 output[0x0A] &= ~0x4;
2752 output[0x0B] = eeprom->invert;
2753 output[0x0C] = eeprom->usb_version & 0xff;
2754 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2755
2756 if (eeprom->cbus_function[0] > CBUS_BB)
2757 output[0x14] = CBUS_TXLED;
2758 else
2759 output[0x14] = eeprom->cbus_function[0];
2760
2761 if (eeprom->cbus_function[1] > CBUS_BB)
2762 output[0x14] |= CBUS_RXLED<<4;
2763 else
2764 output[0x14] |= eeprom->cbus_function[1]<<4;
2765
2766 if (eeprom->cbus_function[2] > CBUS_BB)
2767 output[0x15] = CBUS_TXDEN;
2768 else
2769 output[0x15] = eeprom->cbus_function[2];
2770
2771 if (eeprom->cbus_function[3] > CBUS_BB)
2772 output[0x15] |= CBUS_PWREN<<4;
2773 else
2774 output[0x15] |= eeprom->cbus_function[3]<<4;
2775
2776 if (eeprom->cbus_function[4] > CBUS_CLK6)
2777 output[0x16] = CBUS_SLEEP;
2778 else
2779 output[0x16] = eeprom->cbus_function[4];
2780 break;
2781 case TYPE_2232H:
2782 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
2783 if ( eeprom->channel_a_driver == DRIVER_VCP)
2784 output[0x00] |= DRIVER_VCP;
2785 else
2786 output[0x00] &= ~DRIVER_VCP;
2787
2788 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
2789 if ( eeprom->channel_b_driver == DRIVER_VCP)
2790 output[0x01] |= DRIVER_VCP;
2791 else
2792 output[0x01] &= ~DRIVER_VCP;
2793 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2794 output[0x01] |= SUSPEND_DBUS7_BIT;
2795 else
2796 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2797
2798 if (eeprom->suspend_pull_downs == 1)
2799 output[0x0A] |= 0x4;
2800 else
2801 output[0x0A] &= ~0x4;
2802
2803 if (eeprom->group0_drive > DRIVE_16MA)
2804 output[0x0c] |= DRIVE_16MA;
2805 else
2806 output[0x0c] |= eeprom->group0_drive;
2807 if (eeprom->group0_schmitt == IS_SCHMITT)
2808 output[0x0c] |= IS_SCHMITT;
2809 if (eeprom->group0_slew == SLOW_SLEW)
2810 output[0x0c] |= SLOW_SLEW;
2811
2812 if (eeprom->group1_drive > DRIVE_16MA)
2813 output[0x0c] |= DRIVE_16MA<<4;
2814 else
2815 output[0x0c] |= eeprom->group1_drive<<4;
2816 if (eeprom->group1_schmitt == IS_SCHMITT)
2817 output[0x0c] |= IS_SCHMITT<<4;
2818 if (eeprom->group1_slew == SLOW_SLEW)
2819 output[0x0c] |= SLOW_SLEW<<4;
2820
2821 if (eeprom->group2_drive > DRIVE_16MA)
2822 output[0x0d] |= DRIVE_16MA;
2823 else
2824 output[0x0d] |= eeprom->group2_drive;
2825 if (eeprom->group2_schmitt == IS_SCHMITT)
2826 output[0x0d] |= IS_SCHMITT;
2827 if (eeprom->group2_slew == SLOW_SLEW)
2828 output[0x0d] |= SLOW_SLEW;
2829
2830 if (eeprom->group3_drive > DRIVE_16MA)
2831 output[0x0d] |= DRIVE_16MA<<4;
2832 else
2833 output[0x0d] |= eeprom->group3_drive<<4;
2834 if (eeprom->group3_schmitt == IS_SCHMITT)
2835 output[0x0d] |= IS_SCHMITT<<4;
2836 if (eeprom->group3_slew == SLOW_SLEW)
2837 output[0x0d] |= SLOW_SLEW<<4;
2838
2839 output[0x18] = eeprom->chip;
2840
2841 break;
2842 case TYPE_4232H:
2843 output[0x18] = eeprom->chip;
2844 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
2845 break;
2846 case TYPE_232H:
2847 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
2848 if ( eeprom->channel_a_driver == DRIVER_VCP)
2849 output[0x00] |= DRIVER_VCPH;
2850 else
2851 output[0x00] &= ~DRIVER_VCPH;
2852 if (eeprom->powersave)
2853 output[0x01] |= POWER_SAVE_DISABLE_H;
2854 else
2855 output[0x01] &= ~POWER_SAVE_DISABLE_H;
2856 if (eeprom->clock_polarity)
2857 output[0x01] |= FT1284_CLK_IDLE_STATE;
2858 else
2859 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
2860 if (eeprom->data_order)
2861 output[0x01] |= FT1284_DATA_LSB;
2862 else
2863 output[0x01] &= ~FT1284_DATA_LSB;
2864 if (eeprom->flow_control)
2865 output[0x01] |= FT1284_FLOW_CONTROL;
2866 else
2867 output[0x01] &= ~FT1284_FLOW_CONTROL;
2868 if (eeprom->group0_drive > DRIVE_16MA)
2869 output[0x0c] |= DRIVE_16MA;
2870 else
2871 output[0x0c] |= eeprom->group0_drive;
2872 if (eeprom->group0_schmitt == IS_SCHMITT)
2873 output[0x0c] |= IS_SCHMITT;
2874 if (eeprom->group0_slew == SLOW_SLEW)
2875 output[0x0c] |= SLOW_SLEW;
2876
2877 if (eeprom->group1_drive > DRIVE_16MA)
2878 output[0x0d] |= DRIVE_16MA;
2879 else
2880 output[0x0d] |= eeprom->group1_drive;
2881 if (eeprom->group1_schmitt == IS_SCHMITT)
2882 output[0x0d] |= IS_SCHMITT;
2883 if (eeprom->group1_slew == SLOW_SLEW)
2884 output[0x0d] |= SLOW_SLEW;
2885
2886 set_ft232h_cbus(eeprom, output);
2887
2888 output[0x1e] = eeprom->chip;
2889 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
2890 break;
2891
2892 }
2893
2894 // calculate checksum
2895 checksum = 0xAAAA;
2896
2897 for (i = 0; i < eeprom->size/2-1; i++)
2898 {
2899 value = output[i*2];
2900 value += output[(i*2)+1] << 8;
2901
2902 checksum = value^checksum;
2903 checksum = (checksum << 1) | (checksum >> 15);
2904 }
2905
2906 output[eeprom->size-2] = checksum;
2907 output[eeprom->size-1] = checksum >> 8;
2908
2909 return user_area_size;
2910}
2911/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
2912 * EEPROM structure
2913 *
2914 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
2915 */
2916static unsigned char bit2type(unsigned char bits)
2917{
2918 switch (bits)
2919 {
2920 case 0: return CHANNEL_IS_UART;
2921 case 1: return CHANNEL_IS_FIFO;
2922 case 2: return CHANNEL_IS_OPTO;
2923 case 4: return CHANNEL_IS_CPU;
2924 case 8: return CHANNEL_IS_FT1284;
2925 default:
2926 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
2927 bits);
2928 }
2929 return 0;
2930}
2931/**
2932 Decode binary EEPROM image into an ftdi_eeprom structure.
2933
2934 \param ftdi pointer to ftdi_context
2935 \param verbose Decode EEPROM on stdout
2936
2937 \retval 0: all fine
2938 \retval -1: something went wrong
2939
2940 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2941 FIXME: Strings are malloc'ed here and should be freed somewhere
2942*/
2943int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2944{
2945 unsigned char i, j;
2946 unsigned short checksum, eeprom_checksum, value;
2947 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2948 int eeprom_size;
2949 struct ftdi_eeprom *eeprom;
2950 unsigned char *buf = ftdi->eeprom->buf;
2951 int release;
2952
2953 if (ftdi == NULL)
2954 ftdi_error_return(-1,"No context");
2955 if (ftdi->eeprom == NULL)
2956 ftdi_error_return(-1,"No eeprom structure");
2957
2958 eeprom = ftdi->eeprom;
2959 eeprom_size = eeprom->size;
2960
2961 // Addr 02: Vendor ID
2962 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2963
2964 // Addr 04: Product ID
2965 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2966
2967 release = buf[0x06] + (buf[0x07]<<8);
2968
2969 // Addr 08: Config descriptor
2970 // Bit 7: always 1
2971 // Bit 6: 1 if this device is self powered, 0 if bus powered
2972 // Bit 5: 1 if this device uses remote wakeup
2973 eeprom->self_powered = buf[0x08] & 0x40;
2974 eeprom->remote_wakeup = buf[0x08] & 0x20;
2975
2976 // Addr 09: Max power consumption: max power = value * 2 mA
2977 eeprom->max_power = buf[0x09];
2978
2979 // Addr 0A: Chip configuration
2980 // Bit 7: 0 - reserved
2981 // Bit 6: 0 - reserved
2982 // Bit 5: 0 - reserved
2983 // Bit 4: 1 - Change USB version on BM and 2232C
2984 // Bit 3: 1 - Use the serial number string
2985 // Bit 2: 1 - Enable suspend pull downs for lower power
2986 // Bit 1: 1 - Out EndPoint is Isochronous
2987 // Bit 0: 1 - In EndPoint is Isochronous
2988 //
2989 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2990 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2991 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2992 eeprom->use_serial = (buf[0x0A] & USE_SERIAL_NUM)?1:0;
2993 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
2994
2995 // Addr 0C: USB version low byte when 0x0A
2996 // Addr 0D: USB version high byte when 0x0A
2997 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2998
2999 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3000 // Addr 0F: Length of manufacturer string
3001 manufacturer_size = buf[0x0F]/2;
3002 if (eeprom->manufacturer)
3003 free(eeprom->manufacturer);
3004 if (manufacturer_size > 0)
3005 {
3006 eeprom->manufacturer = malloc(manufacturer_size);
3007 if (eeprom->manufacturer)
3008 {
3009 // Decode manufacturer
3010 i = buf[0x0E] & (eeprom_size -1); // offset
3011 for (j=0;j<manufacturer_size-1;j++)
3012 {
3013 eeprom->manufacturer[j] = buf[2*j+i+2];
3014 }
3015 eeprom->manufacturer[j] = '\0';
3016 }
3017 }
3018 else eeprom->manufacturer = NULL;
3019
3020 // Addr 10: Offset of the product string + 0x80, calculated later
3021 // Addr 11: Length of product string
3022 if (eeprom->product)
3023 free(eeprom->product);
3024 product_size = buf[0x11]/2;
3025 if (product_size > 0)
3026 {
3027 eeprom->product = malloc(product_size);
3028 if (eeprom->product)
3029 {
3030 // Decode product name
3031 i = buf[0x10] & (eeprom_size -1); // offset
3032 for (j=0;j<product_size-1;j++)
3033 {
3034 eeprom->product[j] = buf[2*j+i+2];
3035 }
3036 eeprom->product[j] = '\0';
3037 }
3038 }
3039 else eeprom->product = NULL;
3040
3041 // Addr 12: Offset of the serial string + 0x80, calculated later
3042 // Addr 13: Length of serial string
3043 if (eeprom->serial)
3044 free(eeprom->serial);
3045 serial_size = buf[0x13]/2;
3046 if (serial_size > 0)
3047 {
3048 eeprom->serial = malloc(serial_size);
3049 if (eeprom->serial)
3050 {
3051 // Decode serial
3052 i = buf[0x12] & (eeprom_size -1); // offset
3053 for (j=0;j<serial_size-1;j++)
3054 {
3055 eeprom->serial[j] = buf[2*j+i+2];
3056 }
3057 eeprom->serial[j] = '\0';
3058 }
3059 }
3060 else eeprom->serial = NULL;
3061
3062 // verify checksum
3063 checksum = 0xAAAA;
3064
3065 for (i = 0; i < eeprom_size/2-1; i++)
3066 {
3067 value = buf[i*2];
3068 value += buf[(i*2)+1] << 8;
3069
3070 checksum = value^checksum;
3071 checksum = (checksum << 1) | (checksum >> 15);
3072 }
3073
3074 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3075
3076 if (eeprom_checksum != checksum)
3077 {
3078 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
3079 ftdi_error_return(-1,"EEPROM checksum error");
3080 }
3081
3082 eeprom->channel_a_type = 0;
3083 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
3084 {
3085 eeprom->chip = -1;
3086 }
3087 else if (ftdi->type == TYPE_2232C)
3088 {
3089 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3090 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3091 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
3092 eeprom->channel_b_type = buf[0x01] & 0x7;
3093 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3094 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
3095 eeprom->chip = buf[0x14];
3096 }
3097 else if (ftdi->type == TYPE_R)
3098 {
3099 /* TYPE_R flags D2XX, not VCP as all others*/
3100 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
3101 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
3102 if ( (buf[0x01]&0x40) != 0x40)
3103 fprintf(stderr,
3104 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3105 " If this happened with the\n"
3106 " EEPROM programmed by FTDI tools, please report "
3107 "to libftdi@developer.intra2net.com\n");
3108
3109 eeprom->chip = buf[0x16];
3110 // Addr 0B: Invert data lines
3111 // Works only on FT232R, not FT245R, but no way to distinguish
3112 eeprom->invert = buf[0x0B];
3113 // Addr 14: CBUS function: CBUS0, CBUS1
3114 // Addr 15: CBUS function: CBUS2, CBUS3
3115 // Addr 16: CBUS function: CBUS5
3116 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3117 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3118 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3119 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3120 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
3121 }
3122 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
3123 {
3124 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3125 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3126 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3127 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3128
3129 if (ftdi->type == TYPE_2232H)
3130 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
3131
3132 eeprom->chip = buf[0x18];
3133 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3134 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3135 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3136 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3137 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3138 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3139 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3140 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3141 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3142 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3143 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3144 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
3145 }
3146 else if (ftdi->type == TYPE_232H)
3147 {
3148 int i;
3149
3150 eeprom->channel_a_type = buf[0x00] & 0xf;
3151 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
3152 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3153 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3154 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
3155 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
3156 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3157 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3158 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3159 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3160 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3161 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3162
3163 for(i=0; i<5; i++)
3164 {
3165 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3166 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3167 }
3168 eeprom->chip = buf[0x1e];
3169 /*FIXME: Decipher more values*/
3170 }
3171
3172 if (verbose)
3173 {
3174 char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3175 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3176 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3177 fprintf(stdout, "Release: 0x%04x\n",release);
3178
3179 if (eeprom->self_powered)
3180 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3181 else
3182 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
3183 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3184 if (eeprom->manufacturer)
3185 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3186 if (eeprom->product)
3187 fprintf(stdout, "Product: %s\n",eeprom->product);
3188 if (eeprom->serial)
3189 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3190 fprintf(stdout, "Checksum : %04x\n", checksum);
3191 if (ftdi->type == TYPE_R)
3192 fprintf(stdout, "Internal EEPROM\n");
3193 else if (eeprom->chip >= 0x46)
3194 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3195 if (eeprom->suspend_dbus7)
3196 fprintf(stdout, "Suspend on DBUS7\n");
3197 if (eeprom->suspend_pull_downs)
3198 fprintf(stdout, "Pull IO pins low during suspend\n");
3199 if(eeprom->powersave)
3200 {
3201 if(ftdi->type >= TYPE_232H)
3202 fprintf(stdout,"Enter low power state on ACBUS7\n");
3203 }
3204 if (eeprom->remote_wakeup)
3205 fprintf(stdout, "Enable Remote Wake Up\n");
3206 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3207 if (ftdi->type >= TYPE_2232C)
3208 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3209 channel_mode[eeprom->channel_a_type],
3210 (eeprom->channel_a_driver)?" VCP":"",
3211 (eeprom->high_current_a)?" High Current IO":"");
3212 if (ftdi->type >= TYPE_232H)
3213 {
3214 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3215 (eeprom->clock_polarity)?"HIGH":"LOW",
3216 (eeprom->data_order)?"LSB":"MSB",
3217 (eeprom->flow_control)?"":"No ");
3218 }
3219 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
3220 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3221 channel_mode[eeprom->channel_b_type],
3222 (eeprom->channel_b_driver)?" VCP":"",
3223 (eeprom->high_current_b)?" High Current IO":"");
3224 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3225 eeprom->use_usb_version == USE_USB_VERSION_BIT)
3226 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3227
3228 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3229 {
3230 fprintf(stdout,"%s has %d mA drive%s%s\n",
3231 (ftdi->type == TYPE_2232H)?"AL":"A",
3232 (eeprom->group0_drive+1) *4,
3233 (eeprom->group0_schmitt)?" Schmitt Input":"",
3234 (eeprom->group0_slew)?" Slow Slew":"");
3235 fprintf(stdout,"%s has %d mA drive%s%s\n",
3236 (ftdi->type == TYPE_2232H)?"AH":"B",
3237 (eeprom->group1_drive+1) *4,
3238 (eeprom->group1_schmitt)?" Schmitt Input":"",
3239 (eeprom->group1_slew)?" Slow Slew":"");
3240 fprintf(stdout,"%s has %d mA drive%s%s\n",
3241 (ftdi->type == TYPE_2232H)?"BL":"C",
3242 (eeprom->group2_drive+1) *4,
3243 (eeprom->group2_schmitt)?" Schmitt Input":"",
3244 (eeprom->group2_slew)?" Slow Slew":"");
3245 fprintf(stdout,"%s has %d mA drive%s%s\n",
3246 (ftdi->type == TYPE_2232H)?"BH":"D",
3247 (eeprom->group3_drive+1) *4,
3248 (eeprom->group3_schmitt)?" Schmitt Input":"",
3249 (eeprom->group3_slew)?" Slow Slew":"");
3250 }
3251 else if (ftdi->type == TYPE_232H)
3252 {
3253 int i;
3254 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3255 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3256 "CLK30","CLK15","CLK7_5"
3257 };
3258 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3259 (eeprom->group0_drive+1) *4,
3260 (eeprom->group0_schmitt)?" Schmitt Input":"",
3261 (eeprom->group0_slew)?" Slow Slew":"");
3262 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3263 (eeprom->group1_drive+1) *4,
3264 (eeprom->group1_schmitt)?" Schmitt Input":"",
3265 (eeprom->group1_slew)?" Slow Slew":"");
3266 for (i=0; i<10; i++)
3267 {
3268 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3269 fprintf(stdout,"C%d Function: %s\n", i,
3270 cbush_mux[eeprom->cbus_function[i]]);
3271 }
3272
3273 }
3274
3275 if (ftdi->type == TYPE_R)
3276 {
3277 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3278 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3279 "IOMODE","BB_WR","BB_RD"
3280 };
3281 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3282
3283 if (eeprom->invert)
3284 {
3285 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3286 fprintf(stdout,"Inverted bits:");
3287 for (i=0; i<8; i++)
3288 if ((eeprom->invert & (1<<i)) == (1<<i))
3289 fprintf(stdout," %s",r_bits[i]);
3290 fprintf(stdout,"\n");
3291 }
3292 for (i=0; i<5; i++)
3293 {
3294 if (eeprom->cbus_function[i]<CBUS_BB)
3295 fprintf(stdout,"C%d Function: %s\n", i,
3296 cbus_mux[eeprom->cbus_function[i]]);
3297 else
3298 {
3299 if (i < 4)
3300 /* Running MPROG show that C0..3 have fixed function Synchronous
3301 Bit Bang mode */
3302 fprintf(stdout,"C%d BB Function: %s\n", i,
3303 cbus_BB[i]);
3304 else
3305 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3306 }
3307 }
3308 }
3309 }
3310 return 0;
3311}
3312
3313/**
3314 Get a value from the decoded EEPROM structure
3315
3316 \param ftdi pointer to ftdi_context
3317 \param value_name Enum of the value to query
3318 \param value Pointer to store read value
3319
3320 \retval 0: all fine
3321 \retval -1: Value doesn't exist
3322*/
3323int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3324{
3325 switch (value_name)
3326 {
3327 case VENDOR_ID:
3328 *value = ftdi->eeprom->vendor_id;
3329 break;
3330 case PRODUCT_ID:
3331 *value = ftdi->eeprom->product_id;
3332 break;
3333 case SELF_POWERED:
3334 *value = ftdi->eeprom->self_powered;
3335 break;
3336 case REMOTE_WAKEUP:
3337 *value = ftdi->eeprom->remote_wakeup;
3338 break;
3339 case IS_NOT_PNP:
3340 *value = ftdi->eeprom->is_not_pnp;
3341 break;
3342 case SUSPEND_DBUS7:
3343 *value = ftdi->eeprom->suspend_dbus7;
3344 break;
3345 case IN_IS_ISOCHRONOUS:
3346 *value = ftdi->eeprom->in_is_isochronous;
3347 break;
3348 case OUT_IS_ISOCHRONOUS:
3349 *value = ftdi->eeprom->out_is_isochronous;
3350 break;
3351 case SUSPEND_PULL_DOWNS:
3352 *value = ftdi->eeprom->suspend_pull_downs;
3353 break;
3354 case USE_SERIAL:
3355 *value = ftdi->eeprom->use_serial;
3356 break;
3357 case USB_VERSION:
3358 *value = ftdi->eeprom->usb_version;
3359 break;
3360 case USE_USB_VERSION:
3361 *value = ftdi->eeprom->use_usb_version;
3362 break;
3363 case MAX_POWER:
3364 *value = ftdi->eeprom->max_power;
3365 break;
3366 case CHANNEL_A_TYPE:
3367 *value = ftdi->eeprom->channel_a_type;
3368 break;
3369 case CHANNEL_B_TYPE:
3370 *value = ftdi->eeprom->channel_b_type;
3371 break;
3372 case CHANNEL_A_DRIVER:
3373 *value = ftdi->eeprom->channel_a_driver;
3374 break;
3375 case CHANNEL_B_DRIVER:
3376 *value = ftdi->eeprom->channel_b_driver;
3377 break;
3378 case CBUS_FUNCTION_0:
3379 *value = ftdi->eeprom->cbus_function[0];
3380 break;
3381 case CBUS_FUNCTION_1:
3382 *value = ftdi->eeprom->cbus_function[1];
3383 break;
3384 case CBUS_FUNCTION_2:
3385 *value = ftdi->eeprom->cbus_function[2];
3386 break;
3387 case CBUS_FUNCTION_3:
3388 *value = ftdi->eeprom->cbus_function[3];
3389 break;
3390 case CBUS_FUNCTION_4:
3391 *value = ftdi->eeprom->cbus_function[4];
3392 break;
3393 case CBUS_FUNCTION_5:
3394 *value = ftdi->eeprom->cbus_function[5];
3395 break;
3396 case CBUS_FUNCTION_6:
3397 *value = ftdi->eeprom->cbus_function[6];
3398 break;
3399 case CBUS_FUNCTION_7:
3400 *value = ftdi->eeprom->cbus_function[7];
3401 break;
3402 case CBUS_FUNCTION_8:
3403 *value = ftdi->eeprom->cbus_function[8];
3404 break;
3405 case CBUS_FUNCTION_9:
3406 *value = ftdi->eeprom->cbus_function[8];
3407 break;
3408 case HIGH_CURRENT:
3409 *value = ftdi->eeprom->high_current;
3410 break;
3411 case HIGH_CURRENT_A:
3412 *value = ftdi->eeprom->high_current_a;
3413 break;
3414 case HIGH_CURRENT_B:
3415 *value = ftdi->eeprom->high_current_b;
3416 break;
3417 case INVERT:
3418 *value = ftdi->eeprom->invert;
3419 break;
3420 case GROUP0_DRIVE:
3421 *value = ftdi->eeprom->group0_drive;
3422 break;
3423 case GROUP0_SCHMITT:
3424 *value = ftdi->eeprom->group0_schmitt;
3425 break;
3426 case GROUP0_SLEW:
3427 *value = ftdi->eeprom->group0_slew;
3428 break;
3429 case GROUP1_DRIVE:
3430 *value = ftdi->eeprom->group1_drive;
3431 break;
3432 case GROUP1_SCHMITT:
3433 *value = ftdi->eeprom->group1_schmitt;
3434 break;
3435 case GROUP1_SLEW:
3436 *value = ftdi->eeprom->group1_slew;
3437 break;
3438 case GROUP2_DRIVE:
3439 *value = ftdi->eeprom->group2_drive;
3440 break;
3441 case GROUP2_SCHMITT:
3442 *value = ftdi->eeprom->group2_schmitt;
3443 break;
3444 case GROUP2_SLEW:
3445 *value = ftdi->eeprom->group2_slew;
3446 break;
3447 case GROUP3_DRIVE:
3448 *value = ftdi->eeprom->group3_drive;
3449 break;
3450 case GROUP3_SCHMITT:
3451 *value = ftdi->eeprom->group3_schmitt;
3452 break;
3453 case GROUP3_SLEW:
3454 *value = ftdi->eeprom->group3_slew;
3455 break;
3456 case POWER_SAVE:
3457 *value = ftdi->eeprom->powersave;
3458 break;
3459 case CLOCK_POLARITY:
3460 *value = ftdi->eeprom->clock_polarity;
3461 break;
3462 case DATA_ORDER:
3463 *value = ftdi->eeprom->data_order;
3464 break;
3465 case FLOW_CONTROL:
3466 *value = ftdi->eeprom->flow_control;
3467 break;
3468 case CHIP_TYPE:
3469 *value = ftdi->eeprom->chip;
3470 break;
3471 case CHIP_SIZE:
3472 *value = ftdi->eeprom->size;
3473 break;
3474 default:
3475 ftdi_error_return(-1, "Request for unknown EEPROM value");
3476 }
3477 return 0;
3478}
3479
3480/**
3481 Set a value in the decoded EEPROM Structure
3482 No parameter checking is performed
3483
3484 \param ftdi pointer to ftdi_context
3485 \param value_name Enum of the value to set
3486 \param value to set
3487
3488 \retval 0: all fine
3489 \retval -1: Value doesn't exist
3490 \retval -2: Value not user settable
3491*/
3492int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3493{
3494 switch (value_name)
3495 {
3496 case VENDOR_ID:
3497 ftdi->eeprom->vendor_id = value;
3498 break;
3499 case PRODUCT_ID:
3500 ftdi->eeprom->product_id = value;
3501 break;
3502 case SELF_POWERED:
3503 ftdi->eeprom->self_powered = value;
3504 break;
3505 case REMOTE_WAKEUP:
3506 ftdi->eeprom->remote_wakeup = value;
3507 break;
3508 case IS_NOT_PNP:
3509 ftdi->eeprom->is_not_pnp = value;
3510 break;
3511 case SUSPEND_DBUS7:
3512 ftdi->eeprom->suspend_dbus7 = value;
3513 break;
3514 case IN_IS_ISOCHRONOUS:
3515 ftdi->eeprom->in_is_isochronous = value;
3516 break;
3517 case OUT_IS_ISOCHRONOUS:
3518 ftdi->eeprom->out_is_isochronous = value;
3519 break;
3520 case SUSPEND_PULL_DOWNS:
3521 ftdi->eeprom->suspend_pull_downs = value;
3522 break;
3523 case USE_SERIAL:
3524 ftdi->eeprom->use_serial = value;
3525 break;
3526 case USB_VERSION:
3527 ftdi->eeprom->usb_version = value;
3528 break;
3529 case USE_USB_VERSION:
3530 ftdi->eeprom->use_usb_version = value;
3531 break;
3532 case MAX_POWER:
3533 ftdi->eeprom->max_power = value;
3534 break;
3535 case CHANNEL_A_TYPE:
3536 ftdi->eeprom->channel_a_type = value;
3537 break;
3538 case CHANNEL_B_TYPE:
3539 ftdi->eeprom->channel_b_type = value;
3540 break;
3541 case CHANNEL_A_DRIVER:
3542 ftdi->eeprom->channel_a_driver = value;
3543 break;
3544 case CHANNEL_B_DRIVER:
3545 ftdi->eeprom->channel_b_driver = value;
3546 break;
3547 case CBUS_FUNCTION_0:
3548 ftdi->eeprom->cbus_function[0] = value;
3549 break;
3550 case CBUS_FUNCTION_1:
3551 ftdi->eeprom->cbus_function[1] = value;
3552 break;
3553 case CBUS_FUNCTION_2:
3554 ftdi->eeprom->cbus_function[2] = value;
3555 break;
3556 case CBUS_FUNCTION_3:
3557 ftdi->eeprom->cbus_function[3] = value;
3558 break;
3559 case CBUS_FUNCTION_4:
3560 ftdi->eeprom->cbus_function[4] = value;
3561 break;
3562 case CBUS_FUNCTION_5:
3563 ftdi->eeprom->cbus_function[5] = value;
3564 break;
3565 case CBUS_FUNCTION_6:
3566 ftdi->eeprom->cbus_function[6] = value;
3567 break;
3568 case CBUS_FUNCTION_7:
3569 ftdi->eeprom->cbus_function[7] = value;
3570 break;
3571 case CBUS_FUNCTION_8:
3572 ftdi->eeprom->cbus_function[8] = value;
3573 break;
3574 case CBUS_FUNCTION_9:
3575 ftdi->eeprom->cbus_function[9] = value;
3576 break;
3577 case HIGH_CURRENT:
3578 ftdi->eeprom->high_current = value;
3579 break;
3580 case HIGH_CURRENT_A:
3581 ftdi->eeprom->high_current_a = value;
3582 break;
3583 case HIGH_CURRENT_B:
3584 ftdi->eeprom->high_current_b = value;
3585 break;
3586 case INVERT:
3587 ftdi->eeprom->invert = value;
3588 break;
3589 case GROUP0_DRIVE:
3590 ftdi->eeprom->group0_drive = value;
3591 break;
3592 case GROUP0_SCHMITT:
3593 ftdi->eeprom->group0_schmitt = value;
3594 break;
3595 case GROUP0_SLEW:
3596 ftdi->eeprom->group0_slew = value;
3597 break;
3598 case GROUP1_DRIVE:
3599 ftdi->eeprom->group1_drive = value;
3600 break;
3601 case GROUP1_SCHMITT:
3602 ftdi->eeprom->group1_schmitt = value;
3603 break;
3604 case GROUP1_SLEW:
3605 ftdi->eeprom->group1_slew = value;
3606 break;
3607 case GROUP2_DRIVE:
3608 ftdi->eeprom->group2_drive = value;
3609 break;
3610 case GROUP2_SCHMITT:
3611 ftdi->eeprom->group2_schmitt = value;
3612 break;
3613 case GROUP2_SLEW:
3614 ftdi->eeprom->group2_slew = value;
3615 break;
3616 case GROUP3_DRIVE:
3617 ftdi->eeprom->group3_drive = value;
3618 break;
3619 case GROUP3_SCHMITT:
3620 ftdi->eeprom->group3_schmitt = value;
3621 break;
3622 case GROUP3_SLEW:
3623 ftdi->eeprom->group3_slew = value;
3624 break;
3625 case CHIP_TYPE:
3626 ftdi->eeprom->chip = value;
3627 break;
3628 case POWER_SAVE:
3629 ftdi->eeprom->powersave = value;
3630 break;
3631 case CLOCK_POLARITY:
3632 ftdi->eeprom->clock_polarity = value;
3633 break;
3634 case DATA_ORDER:
3635 ftdi->eeprom->data_order = value;
3636 break;
3637 case FLOW_CONTROL:
3638 ftdi->eeprom->flow_control = value;
3639 break;
3640 case CHIP_SIZE:
3641 ftdi_error_return(-2, "EEPROM Value can't be changed");
3642 default :
3643 ftdi_error_return(-1, "Request to unknown EEPROM value");
3644 }
3645 return 0;
3646}
3647
3648/** Get the read-only buffer to the binary EEPROM content
3649
3650 \param ftdi pointer to ftdi_context
3651 \param buf buffer to receive EEPROM content
3652 \param size Size of receiving buffer
3653
3654 \retval 0: All fine
3655 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3656 \retval -2: Not enough room to store eeprom
3657*/
3658int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3659{
3660 if (!ftdi || !(ftdi->eeprom))
3661 ftdi_error_return(-1, "No appropriate structure");
3662
3663 if (!buf || size < ftdi->eeprom->size)
3664 ftdi_error_return(-1, "Not enough room to store eeprom");
3665
3666 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3667 if (size > FTDI_MAX_EEPROM_SIZE)
3668 size = FTDI_MAX_EEPROM_SIZE;
3669
3670 memcpy(buf, ftdi->eeprom->buf, size);
3671
3672 return 0;
3673}
3674
3675/** Set the EEPROM content from the user-supplied prefilled buffer
3676
3677 \param ftdi pointer to ftdi_context
3678 \param buf buffer to read EEPROM content
3679 \param size Size of buffer
3680
3681 \retval 0: All fine
3682 \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing
3683*/
3684int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
3685{
3686 if (!ftdi || !(ftdi->eeprom) || !buf)
3687 ftdi_error_return(-1, "No appropriate structure");
3688
3689 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3690 if (size > FTDI_MAX_EEPROM_SIZE)
3691 size = FTDI_MAX_EEPROM_SIZE;
3692
3693 memcpy(ftdi->eeprom->buf, buf, size);
3694
3695 return 0;
3696}
3697
3698/**
3699 Read eeprom location
3700
3701 \param ftdi pointer to ftdi_context
3702 \param eeprom_addr Address of eeprom location to be read
3703 \param eeprom_val Pointer to store read eeprom location
3704
3705 \retval 0: all fine
3706 \retval -1: read failed
3707 \retval -2: USB device unavailable
3708*/
3709int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3710{
3711 if (ftdi == NULL || ftdi->usb_dev == NULL)
3712 ftdi_error_return(-2, "USB device unavailable");
3713
3714 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3715 ftdi_error_return(-1, "reading eeprom failed");
3716
3717 return 0;
3718}
3719
3720/**
3721 Read eeprom
3722
3723 \param ftdi pointer to ftdi_context
3724
3725 \retval 0: all fine
3726 \retval -1: read failed
3727 \retval -2: USB device unavailable
3728*/
3729int ftdi_read_eeprom(struct ftdi_context *ftdi)
3730{
3731 int i;
3732 unsigned char *buf;
3733
3734 if (ftdi == NULL || ftdi->usb_dev == NULL)
3735 ftdi_error_return(-2, "USB device unavailable");
3736 buf = ftdi->eeprom->buf;
3737
3738 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
3739 {
3740 if (libusb_control_transfer(
3741 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3742 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
3743 ftdi_error_return(-1, "reading eeprom failed");
3744 }
3745
3746 if (ftdi->type == TYPE_R)
3747 ftdi->eeprom->size = 0x80;
3748 /* Guesses size of eeprom by comparing halves
3749 - will not work with blank eeprom */
3750 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3751 ftdi->eeprom->size = -1;
3752 else if (memcmp(buf,&buf[0x80],0x80) == 0)
3753 ftdi->eeprom->size = 0x80;
3754 else if (memcmp(buf,&buf[0x40],0x40) == 0)
3755 ftdi->eeprom->size = 0x40;
3756 else
3757 ftdi->eeprom->size = 0x100;
3758 return 0;
3759}
3760
3761/*
3762 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3763 Function is only used internally
3764 \internal
3765*/
3766static unsigned char ftdi_read_chipid_shift(unsigned char value)
3767{
3768 return ((value & 1) << 1) |
3769 ((value & 2) << 5) |
3770 ((value & 4) >> 2) |
3771 ((value & 8) << 4) |
3772 ((value & 16) >> 1) |
3773 ((value & 32) >> 1) |
3774 ((value & 64) >> 4) |
3775 ((value & 128) >> 2);
3776}
3777
3778/**
3779 Read the FTDIChip-ID from R-type devices
3780
3781 \param ftdi pointer to ftdi_context
3782 \param chipid Pointer to store FTDIChip-ID
3783
3784 \retval 0: all fine
3785 \retval -1: read failed
3786 \retval -2: USB device unavailable
3787*/
3788int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3789{
3790 unsigned int a = 0, b = 0;
3791
3792 if (ftdi == NULL || ftdi->usb_dev == NULL)
3793 ftdi_error_return(-2, "USB device unavailable");
3794
3795 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3796 {
3797 a = a << 8 | a >> 8;
3798 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3799 {
3800 b = b << 8 | b >> 8;
3801 a = (a << 16) | (b & 0xFFFF);
3802 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3803 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3804 *chipid = a ^ 0xa5f0f7d1;
3805 return 0;
3806 }
3807 }
3808
3809 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3810}
3811
3812/**
3813 Write eeprom location
3814
3815 \param ftdi pointer to ftdi_context
3816 \param eeprom_addr Address of eeprom location to be written
3817 \param eeprom_val Value to be written
3818
3819 \retval 0: all fine
3820 \retval -1: write failed
3821 \retval -2: USB device unavailable
3822 \retval -3: Invalid access to checksum protected area below 0x80
3823 \retval -4: Device can't access unprotected area
3824 \retval -5: Reading chip type failed
3825*/
3826int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3827 unsigned short eeprom_val)
3828{
3829 int chip_type_location;
3830 unsigned short chip_type;
3831
3832 if (ftdi == NULL || ftdi->usb_dev == NULL)
3833 ftdi_error_return(-2, "USB device unavailable");
3834
3835 if (eeprom_addr <0x80)
3836 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3837
3838
3839 switch (ftdi->type)
3840 {
3841 case TYPE_BM:
3842 case TYPE_2232C:
3843 chip_type_location = 0x14;
3844 break;
3845 case TYPE_2232H:
3846 case TYPE_4232H:
3847 chip_type_location = 0x18;
3848 break;
3849 case TYPE_232H:
3850 chip_type_location = 0x1e;
3851 break;
3852 default:
3853 ftdi_error_return(-4, "Device can't access unprotected area");
3854 }
3855
3856 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3857 ftdi_error_return(-5, "Reading failed failed");
3858 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3859 if ((chip_type & 0xff) != 0x66)
3860 {
3861 ftdi_error_return(-6, "EEPROM is not of 93x66");
3862 }
3863
3864 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3865 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3866 NULL, 0, ftdi->usb_write_timeout) != 0)
3867 ftdi_error_return(-1, "unable to write eeprom");
3868
3869 return 0;
3870}
3871
3872/**
3873 Write eeprom
3874
3875 \param ftdi pointer to ftdi_context
3876
3877 \retval 0: all fine
3878 \retval -1: read failed
3879 \retval -2: USB device unavailable
3880 \retval -3: EEPROM not initialized for the connected device;
3881*/
3882int ftdi_write_eeprom(struct ftdi_context *ftdi)
3883{
3884 unsigned short usb_val, status;
3885 int i, ret;
3886 unsigned char *eeprom;
3887
3888 if (ftdi == NULL || ftdi->usb_dev == NULL)
3889 ftdi_error_return(-2, "USB device unavailable");
3890
3891 if(ftdi->eeprom->initialized_for_connected_device == 0)
3892 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
3893
3894 eeprom = ftdi->eeprom->buf;
3895
3896 /* These commands were traced while running MProg */
3897 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3898 return ret;
3899 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3900 return ret;
3901 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3902 return ret;
3903
3904 for (i = 0; i < ftdi->eeprom->size/2; i++)
3905 {
3906 usb_val = eeprom[i*2];
3907 usb_val += eeprom[(i*2)+1] << 8;
3908 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3909 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3910 NULL, 0, ftdi->usb_write_timeout) < 0)
3911 ftdi_error_return(-1, "unable to write eeprom");
3912 }
3913
3914 return 0;
3915}
3916
3917/**
3918 Erase eeprom
3919
3920 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3921
3922 \param ftdi pointer to ftdi_context
3923
3924 \retval 0: all fine
3925 \retval -1: erase failed
3926 \retval -2: USB device unavailable
3927 \retval -3: Writing magic failed
3928 \retval -4: Read EEPROM failed
3929 \retval -5: Unexpected EEPROM value
3930*/
3931#define MAGIC 0x55aa
3932int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3933{
3934 unsigned short eeprom_value;
3935 if (ftdi == NULL || ftdi->usb_dev == NULL)
3936 ftdi_error_return(-2, "USB device unavailable");
3937
3938 if (ftdi->type == TYPE_R)
3939 {
3940 ftdi->eeprom->chip = 0;
3941 return 0;
3942 }
3943
3944 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3945 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3946 ftdi_error_return(-1, "unable to erase eeprom");
3947
3948
3949 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3950 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3951 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3952 Chip is 93x66 if magic is only read at word position 0xc0*/
3953 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3954 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3955 NULL, 0, ftdi->usb_write_timeout) != 0)
3956 ftdi_error_return(-3, "Writing magic failed");
3957 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3958 ftdi_error_return(-4, "Reading failed failed");
3959 if (eeprom_value == MAGIC)
3960 {
3961 ftdi->eeprom->chip = 0x46;
3962 }
3963 else
3964 {
3965 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3966 ftdi_error_return(-4, "Reading failed failed");
3967 if (eeprom_value == MAGIC)
3968 ftdi->eeprom->chip = 0x56;
3969 else
3970 {
3971 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3972 ftdi_error_return(-4, "Reading failed failed");
3973 if (eeprom_value == MAGIC)
3974 ftdi->eeprom->chip = 0x66;
3975 else
3976 {
3977 ftdi->eeprom->chip = -1;
3978 }
3979 }
3980 }
3981 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3982 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3983 ftdi_error_return(-1, "unable to erase eeprom");
3984 return 0;
3985}
3986
3987/**
3988 Get string representation for last error code
3989
3990 \param ftdi pointer to ftdi_context
3991
3992 \retval Pointer to error string
3993*/
3994char *ftdi_get_error_string (struct ftdi_context *ftdi)
3995{
3996 if (ftdi == NULL)
3997 return "";
3998
3999 return ftdi->error_str;
4000}
4001
4002/* @} end of doxygen libftdi group */