ftdi_eeprom: the chip type is given by the connected device, we may not change it
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
58 \retval none
59*/
60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
61{
62 if (ftdi && ftdi->usb_dev)
63 {
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
66 if(ftdi->eeprom)
67 ftdi->eeprom->initialized_for_connected_device = 0;
68 }
69}
70
71/**
72 Initializes a ftdi_context.
73
74 \param ftdi pointer to ftdi_context
75
76 \retval 0: all fine
77 \retval -1: couldn't allocate read buffer
78 \retval -2: couldn't allocate struct buffer
79 \retval -3: libusb_init() failed
80
81 \remark This should be called before all functions
82*/
83int ftdi_init(struct ftdi_context *ftdi)
84{
85 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
86 ftdi->usb_ctx = NULL;
87 ftdi->usb_dev = NULL;
88 ftdi->usb_read_timeout = 5000;
89 ftdi->usb_write_timeout = 5000;
90
91 ftdi->type = TYPE_BM; /* chip type */
92 ftdi->baudrate = -1;
93 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
94
95 ftdi->readbuffer = NULL;
96 ftdi->readbuffer_offset = 0;
97 ftdi->readbuffer_remaining = 0;
98 ftdi->writebuffer_chunksize = 4096;
99 ftdi->max_packet_size = 0;
100 ftdi->error_str = NULL;
101 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
102
103 if (libusb_init(&ftdi->usb_ctx) < 0)
104 ftdi_error_return(-3, "libusb_init() failed");
105
106 ftdi_set_interface(ftdi, INTERFACE_ANY);
107 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
108
109 if (eeprom == 0)
110 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
111 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
112 ftdi->eeprom = eeprom;
113
114 /* All fine. Now allocate the readbuffer */
115 return ftdi_read_data_set_chunksize(ftdi, 4096);
116}
117
118/**
119 Allocate and initialize a new ftdi_context
120
121 \return a pointer to a new ftdi_context, or NULL on failure
122*/
123struct ftdi_context *ftdi_new(void)
124{
125 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
126
127 if (ftdi == NULL)
128 {
129 return NULL;
130 }
131
132 if (ftdi_init(ftdi) != 0)
133 {
134 free(ftdi);
135 return NULL;
136 }
137
138 return ftdi;
139}
140
141/**
142 Open selected channels on a chip, otherwise use first channel.
143
144 \param ftdi pointer to ftdi_context
145 \param interface Interface to use for FT2232C/2232H/4232H chips.
146
147 \retval 0: all fine
148 \retval -1: unknown interface
149 \retval -2: USB device unavailable
150*/
151int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
152{
153 if (ftdi == NULL)
154 ftdi_error_return(-2, "USB device unavailable");
155
156 switch (interface)
157 {
158 case INTERFACE_ANY:
159 case INTERFACE_A:
160 ftdi->interface = 0;
161 ftdi->index = INTERFACE_A;
162 ftdi->in_ep = 0x02;
163 ftdi->out_ep = 0x81;
164 break;
165 case INTERFACE_B:
166 ftdi->interface = 1;
167 ftdi->index = INTERFACE_B;
168 ftdi->in_ep = 0x04;
169 ftdi->out_ep = 0x83;
170 break;
171 case INTERFACE_C:
172 ftdi->interface = 2;
173 ftdi->index = INTERFACE_C;
174 ftdi->in_ep = 0x06;
175 ftdi->out_ep = 0x85;
176 break;
177 case INTERFACE_D:
178 ftdi->interface = 3;
179 ftdi->index = INTERFACE_D;
180 ftdi->in_ep = 0x08;
181 ftdi->out_ep = 0x87;
182 break;
183 default:
184 ftdi_error_return(-1, "Unknown interface");
185 }
186 return 0;
187}
188
189/**
190 Deinitializes a ftdi_context.
191
192 \param ftdi pointer to ftdi_context
193*/
194void ftdi_deinit(struct ftdi_context *ftdi)
195{
196 if (ftdi == NULL)
197 return;
198
199 ftdi_usb_close_internal (ftdi);
200
201 if (ftdi->readbuffer != NULL)
202 {
203 free(ftdi->readbuffer);
204 ftdi->readbuffer = NULL;
205 }
206
207 if (ftdi->eeprom != NULL)
208 {
209 if (ftdi->eeprom->manufacturer != 0)
210 {
211 free(ftdi->eeprom->manufacturer);
212 ftdi->eeprom->manufacturer = 0;
213 }
214 if (ftdi->eeprom->product != 0)
215 {
216 free(ftdi->eeprom->product);
217 ftdi->eeprom->product = 0;
218 }
219 if (ftdi->eeprom->serial != 0)
220 {
221 free(ftdi->eeprom->serial);
222 ftdi->eeprom->serial = 0;
223 }
224 free(ftdi->eeprom);
225 ftdi->eeprom = NULL;
226 }
227
228 if (ftdi->usb_ctx)
229 {
230 libusb_exit(ftdi->usb_ctx);
231 ftdi->usb_ctx = NULL;
232 }
233}
234
235/**
236 Deinitialize and free an ftdi_context.
237
238 \param ftdi pointer to ftdi_context
239*/
240void ftdi_free(struct ftdi_context *ftdi)
241{
242 ftdi_deinit(ftdi);
243 free(ftdi);
244}
245
246/**
247 Use an already open libusb device.
248
249 \param ftdi pointer to ftdi_context
250 \param usb libusb libusb_device_handle to use
251*/
252void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
253{
254 if (ftdi == NULL)
255 return;
256
257 ftdi->usb_dev = usb;
258}
259
260
261/**
262 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
263 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
264 use. With VID:PID 0:0, search for the default devices
265 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014)
266
267 \param ftdi pointer to ftdi_context
268 \param devlist Pointer where to store list of found devices
269 \param vendor Vendor ID to search for
270 \param product Product ID to search for
271
272 \retval >0: number of devices found
273 \retval -3: out of memory
274 \retval -5: libusb_get_device_list() failed
275 \retval -6: libusb_get_device_descriptor() failed
276*/
277int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
278{
279 struct ftdi_device_list **curdev;
280 libusb_device *dev;
281 libusb_device **devs;
282 int count = 0;
283 int i = 0;
284
285 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
286 ftdi_error_return(-5, "libusb_get_device_list() failed");
287
288 curdev = devlist;
289 *curdev = NULL;
290
291 while ((dev = devs[i++]) != NULL)
292 {
293 struct libusb_device_descriptor desc;
294
295 if (libusb_get_device_descriptor(dev, &desc) < 0)
296 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
297
298 if (((vendor != 0 && product != 0) &&
299 desc.idVendor == vendor && desc.idProduct == product) ||
300 ((vendor == 0 && product == 0) &&
301 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
302 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014)))
303 {
304 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
305 if (!*curdev)
306 ftdi_error_return_free_device_list(-3, "out of memory", devs);
307
308 (*curdev)->next = NULL;
309 (*curdev)->dev = dev;
310 libusb_ref_device(dev);
311 curdev = &(*curdev)->next;
312 count++;
313 }
314 }
315 libusb_free_device_list(devs,1);
316 return count;
317}
318
319/**
320 Frees a usb device list.
321
322 \param devlist USB device list created by ftdi_usb_find_all()
323*/
324void ftdi_list_free(struct ftdi_device_list **devlist)
325{
326 struct ftdi_device_list *curdev, *next;
327
328 for (curdev = *devlist; curdev != NULL;)
329 {
330 next = curdev->next;
331 libusb_unref_device(curdev->dev);
332 free(curdev);
333 curdev = next;
334 }
335
336 *devlist = NULL;
337}
338
339/**
340 Frees a usb device list.
341
342 \param devlist USB device list created by ftdi_usb_find_all()
343*/
344void ftdi_list_free2(struct ftdi_device_list *devlist)
345{
346 ftdi_list_free(&devlist);
347}
348
349/**
350 Return device ID strings from the usb device.
351
352 The parameters manufacturer, description and serial may be NULL
353 or pointer to buffers to store the fetched strings.
354
355 \note Use this function only in combination with ftdi_usb_find_all()
356 as it closes the internal "usb_dev" after use.
357
358 \param ftdi pointer to ftdi_context
359 \param dev libusb usb_dev to use
360 \param manufacturer Store manufacturer string here if not NULL
361 \param mnf_len Buffer size of manufacturer string
362 \param description Store product description string here if not NULL
363 \param desc_len Buffer size of product description string
364 \param serial Store serial string here if not NULL
365 \param serial_len Buffer size of serial string
366
367 \retval 0: all fine
368 \retval -1: wrong arguments
369 \retval -4: unable to open device
370 \retval -7: get product manufacturer failed
371 \retval -8: get product description failed
372 \retval -9: get serial number failed
373 \retval -11: libusb_get_device_descriptor() failed
374*/
375int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
376 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
377{
378 struct libusb_device_descriptor desc;
379
380 if ((ftdi==NULL) || (dev==NULL))
381 return -1;
382
383 if (libusb_open(dev, &ftdi->usb_dev) < 0)
384 ftdi_error_return(-4, "libusb_open() failed");
385
386 if (libusb_get_device_descriptor(dev, &desc) < 0)
387 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
388
389 if (manufacturer != NULL)
390 {
391 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
392 {
393 ftdi_usb_close_internal (ftdi);
394 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
395 }
396 }
397
398 if (description != NULL)
399 {
400 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
401 {
402 ftdi_usb_close_internal (ftdi);
403 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
404 }
405 }
406
407 if (serial != NULL)
408 {
409 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
410 {
411 ftdi_usb_close_internal (ftdi);
412 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
413 }
414 }
415
416 ftdi_usb_close_internal (ftdi);
417
418 return 0;
419}
420
421/**
422 * Internal function to determine the maximum packet size.
423 * \param ftdi pointer to ftdi_context
424 * \param dev libusb usb_dev to use
425 * \retval Maximum packet size for this device
426 */
427static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
428{
429 struct libusb_device_descriptor desc;
430 struct libusb_config_descriptor *config0;
431 unsigned int packet_size;
432
433 // Sanity check
434 if (ftdi == NULL || dev == NULL)
435 return 64;
436
437 // Determine maximum packet size. Init with default value.
438 // New hi-speed devices from FTDI use a packet size of 512 bytes
439 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
440 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
441 packet_size = 512;
442 else
443 packet_size = 64;
444
445 if (libusb_get_device_descriptor(dev, &desc) < 0)
446 return packet_size;
447
448 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
449 return packet_size;
450
451 if (desc.bNumConfigurations > 0)
452 {
453 if (ftdi->interface < config0->bNumInterfaces)
454 {
455 struct libusb_interface interface = config0->interface[ftdi->interface];
456 if (interface.num_altsetting > 0)
457 {
458 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
459 if (descriptor.bNumEndpoints > 0)
460 {
461 packet_size = descriptor.endpoint[0].wMaxPacketSize;
462 }
463 }
464 }
465 }
466
467 libusb_free_config_descriptor (config0);
468 return packet_size;
469}
470
471/**
472 Opens a ftdi device given by an usb_device.
473
474 \param ftdi pointer to ftdi_context
475 \param dev libusb usb_dev to use
476
477 \retval 0: all fine
478 \retval -3: unable to config device
479 \retval -4: unable to open device
480 \retval -5: unable to claim device
481 \retval -6: reset failed
482 \retval -7: set baudrate failed
483 \retval -8: ftdi context invalid
484 \retval -9: libusb_get_device_descriptor() failed
485 \retval -10: libusb_get_config_descriptor() failed
486 \retval -11: libusb_detach_kernel_driver() failed
487 \retval -12: libusb_get_configuration() failed
488*/
489int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
490{
491 struct libusb_device_descriptor desc;
492 struct libusb_config_descriptor *config0;
493 int cfg, cfg0, detach_errno = 0;
494
495 if (ftdi == NULL)
496 ftdi_error_return(-8, "ftdi context invalid");
497
498 if (libusb_open(dev, &ftdi->usb_dev) < 0)
499 ftdi_error_return(-4, "libusb_open() failed");
500
501 if (libusb_get_device_descriptor(dev, &desc) < 0)
502 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
503
504 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
505 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
506 cfg0 = config0->bConfigurationValue;
507 libusb_free_config_descriptor (config0);
508
509 // Try to detach ftdi_sio kernel module.
510 //
511 // The return code is kept in a separate variable and only parsed
512 // if usb_set_configuration() or usb_claim_interface() fails as the
513 // detach operation might be denied and everything still works fine.
514 // Likely scenario is a static ftdi_sio kernel module.
515 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
516 {
517 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
518 detach_errno = errno;
519 }
520
521 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
522 ftdi_error_return(-12, "libusb_get_configuration () failed");
523 // set configuration (needed especially for windows)
524 // tolerate EBUSY: one device with one configuration, but two interfaces
525 // and libftdi sessions to both interfaces (e.g. FT2232)
526 if (desc.bNumConfigurations > 0 && cfg != cfg0)
527 {
528 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
529 {
530 ftdi_usb_close_internal (ftdi);
531 if (detach_errno == EPERM)
532 {
533 ftdi_error_return(-8, "inappropriate permissions on device!");
534 }
535 else
536 {
537 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
538 }
539 }
540 }
541
542 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
543 {
544 ftdi_usb_close_internal (ftdi);
545 if (detach_errno == EPERM)
546 {
547 ftdi_error_return(-8, "inappropriate permissions on device!");
548 }
549 else
550 {
551 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
552 }
553 }
554
555 if (ftdi_usb_reset (ftdi) != 0)
556 {
557 ftdi_usb_close_internal (ftdi);
558 ftdi_error_return(-6, "ftdi_usb_reset failed");
559 }
560
561 // Try to guess chip type
562 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
563 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
564 && desc.iSerialNumber == 0))
565 ftdi->type = TYPE_BM;
566 else if (desc.bcdDevice == 0x200)
567 ftdi->type = TYPE_AM;
568 else if (desc.bcdDevice == 0x500)
569 ftdi->type = TYPE_2232C;
570 else if (desc.bcdDevice == 0x600)
571 ftdi->type = TYPE_R;
572 else if (desc.bcdDevice == 0x700)
573 ftdi->type = TYPE_2232H;
574 else if (desc.bcdDevice == 0x800)
575 ftdi->type = TYPE_4232H;
576 else if (desc.bcdDevice == 0x900)
577 ftdi->type = TYPE_232H;
578
579 // Determine maximum packet size
580 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
581
582 if (ftdi_set_baudrate (ftdi, 9600) != 0)
583 {
584 ftdi_usb_close_internal (ftdi);
585 ftdi_error_return(-7, "set baudrate failed");
586 }
587
588 ftdi_error_return(0, "all fine");
589}
590
591/**
592 Opens the first device with a given vendor and product ids.
593
594 \param ftdi pointer to ftdi_context
595 \param vendor Vendor ID
596 \param product Product ID
597
598 \retval same as ftdi_usb_open_desc()
599*/
600int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
601{
602 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
603}
604
605/**
606 Opens the first device with a given, vendor id, product id,
607 description and serial.
608
609 \param ftdi pointer to ftdi_context
610 \param vendor Vendor ID
611 \param product Product ID
612 \param description Description to search for. Use NULL if not needed.
613 \param serial Serial to search for. Use NULL if not needed.
614
615 \retval 0: all fine
616 \retval -3: usb device not found
617 \retval -4: unable to open device
618 \retval -5: unable to claim device
619 \retval -6: reset failed
620 \retval -7: set baudrate failed
621 \retval -8: get product description failed
622 \retval -9: get serial number failed
623 \retval -12: libusb_get_device_list() failed
624 \retval -13: libusb_get_device_descriptor() failed
625*/
626int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
627 const char* description, const char* serial)
628{
629 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
630}
631
632/**
633 Opens the index-th device with a given, vendor id, product id,
634 description and serial.
635
636 \param ftdi pointer to ftdi_context
637 \param vendor Vendor ID
638 \param product Product ID
639 \param description Description to search for. Use NULL if not needed.
640 \param serial Serial to search for. Use NULL if not needed.
641 \param index Number of matching device to open if there are more than one, starts with 0.
642
643 \retval 0: all fine
644 \retval -1: usb_find_busses() failed
645 \retval -2: usb_find_devices() failed
646 \retval -3: usb device not found
647 \retval -4: unable to open device
648 \retval -5: unable to claim device
649 \retval -6: reset failed
650 \retval -7: set baudrate failed
651 \retval -8: get product description failed
652 \retval -9: get serial number failed
653 \retval -10: unable to close device
654 \retval -11: ftdi context invalid
655*/
656int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
657 const char* description, const char* serial, unsigned int index)
658{
659 libusb_device *dev;
660 libusb_device **devs;
661 char string[256];
662 int i = 0;
663
664 if (ftdi == NULL)
665 ftdi_error_return(-11, "ftdi context invalid");
666
667 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
668 ftdi_error_return(-12, "libusb_get_device_list() failed");
669
670 while ((dev = devs[i++]) != NULL)
671 {
672 struct libusb_device_descriptor desc;
673 int res;
674
675 if (libusb_get_device_descriptor(dev, &desc) < 0)
676 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
677
678 if (desc.idVendor == vendor && desc.idProduct == product)
679 {
680 if (libusb_open(dev, &ftdi->usb_dev) < 0)
681 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
682
683 if (description != NULL)
684 {
685 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
686 {
687 ftdi_usb_close_internal (ftdi);
688 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
689 }
690 if (strncmp(string, description, sizeof(string)) != 0)
691 {
692 ftdi_usb_close_internal (ftdi);
693 continue;
694 }
695 }
696 if (serial != NULL)
697 {
698 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
699 {
700 ftdi_usb_close_internal (ftdi);
701 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
702 }
703 if (strncmp(string, serial, sizeof(string)) != 0)
704 {
705 ftdi_usb_close_internal (ftdi);
706 continue;
707 }
708 }
709
710 ftdi_usb_close_internal (ftdi);
711
712 if (index > 0)
713 {
714 index--;
715 continue;
716 }
717
718 res = ftdi_usb_open_dev(ftdi, dev);
719 libusb_free_device_list(devs,1);
720 return res;
721 }
722 }
723
724 // device not found
725 ftdi_error_return_free_device_list(-3, "device not found", devs);
726}
727
728/**
729 Opens the ftdi-device described by a description-string.
730 Intended to be used for parsing a device-description given as commandline argument.
731
732 \param ftdi pointer to ftdi_context
733 \param description NULL-terminated description-string, using this format:
734 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
735 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
736 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
737 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
738
739 \note The description format may be extended in later versions.
740
741 \retval 0: all fine
742 \retval -2: libusb_get_device_list() failed
743 \retval -3: usb device not found
744 \retval -4: unable to open device
745 \retval -5: unable to claim device
746 \retval -6: reset failed
747 \retval -7: set baudrate failed
748 \retval -8: get product description failed
749 \retval -9: get serial number failed
750 \retval -10: unable to close device
751 \retval -11: illegal description format
752 \retval -12: ftdi context invalid
753*/
754int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
755{
756 if (ftdi == NULL)
757 ftdi_error_return(-12, "ftdi context invalid");
758
759 if (description[0] == 0 || description[1] != ':')
760 ftdi_error_return(-11, "illegal description format");
761
762 if (description[0] == 'd')
763 {
764 libusb_device *dev;
765 libusb_device **devs;
766 unsigned int bus_number, device_address;
767 int i = 0;
768
769 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
770 ftdi_error_return(-2, "libusb_get_device_list() failed");
771
772 /* XXX: This doesn't handle symlinks/odd paths/etc... */
773 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
774 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
775
776 while ((dev = devs[i++]) != NULL)
777 {
778 int ret;
779 if (bus_number == libusb_get_bus_number (dev)
780 && device_address == libusb_get_device_address (dev))
781 {
782 ret = ftdi_usb_open_dev(ftdi, dev);
783 libusb_free_device_list(devs,1);
784 return ret;
785 }
786 }
787
788 // device not found
789 ftdi_error_return_free_device_list(-3, "device not found", devs);
790 }
791 else if (description[0] == 'i' || description[0] == 's')
792 {
793 unsigned int vendor;
794 unsigned int product;
795 unsigned int index=0;
796 const char *serial=NULL;
797 const char *startp, *endp;
798
799 errno=0;
800 startp=description+2;
801 vendor=strtoul((char*)startp,(char**)&endp,0);
802 if (*endp != ':' || endp == startp || errno != 0)
803 ftdi_error_return(-11, "illegal description format");
804
805 startp=endp+1;
806 product=strtoul((char*)startp,(char**)&endp,0);
807 if (endp == startp || errno != 0)
808 ftdi_error_return(-11, "illegal description format");
809
810 if (description[0] == 'i' && *endp != 0)
811 {
812 /* optional index field in i-mode */
813 if (*endp != ':')
814 ftdi_error_return(-11, "illegal description format");
815
816 startp=endp+1;
817 index=strtoul((char*)startp,(char**)&endp,0);
818 if (*endp != 0 || endp == startp || errno != 0)
819 ftdi_error_return(-11, "illegal description format");
820 }
821 if (description[0] == 's')
822 {
823 if (*endp != ':')
824 ftdi_error_return(-11, "illegal description format");
825
826 /* rest of the description is the serial */
827 serial=endp+1;
828 }
829
830 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
831 }
832 else
833 {
834 ftdi_error_return(-11, "illegal description format");
835 }
836}
837
838/**
839 Resets the ftdi device.
840
841 \param ftdi pointer to ftdi_context
842
843 \retval 0: all fine
844 \retval -1: FTDI reset failed
845 \retval -2: USB device unavailable
846*/
847int ftdi_usb_reset(struct ftdi_context *ftdi)
848{
849 if (ftdi == NULL || ftdi->usb_dev == NULL)
850 ftdi_error_return(-2, "USB device unavailable");
851
852 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
853 SIO_RESET_REQUEST, SIO_RESET_SIO,
854 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
855 ftdi_error_return(-1,"FTDI reset failed");
856
857 // Invalidate data in the readbuffer
858 ftdi->readbuffer_offset = 0;
859 ftdi->readbuffer_remaining = 0;
860
861 return 0;
862}
863
864/**
865 Clears the read buffer on the chip and the internal read buffer.
866
867 \param ftdi pointer to ftdi_context
868
869 \retval 0: all fine
870 \retval -1: read buffer purge failed
871 \retval -2: USB device unavailable
872*/
873int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
874{
875 if (ftdi == NULL || ftdi->usb_dev == NULL)
876 ftdi_error_return(-2, "USB device unavailable");
877
878 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
879 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
880 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
881 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
882
883 // Invalidate data in the readbuffer
884 ftdi->readbuffer_offset = 0;
885 ftdi->readbuffer_remaining = 0;
886
887 return 0;
888}
889
890/**
891 Clears the write buffer on the chip.
892
893 \param ftdi pointer to ftdi_context
894
895 \retval 0: all fine
896 \retval -1: write buffer purge failed
897 \retval -2: USB device unavailable
898*/
899int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
900{
901 if (ftdi == NULL || ftdi->usb_dev == NULL)
902 ftdi_error_return(-2, "USB device unavailable");
903
904 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
905 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
906 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
907 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
908
909 return 0;
910}
911
912/**
913 Clears the buffers on the chip and the internal read buffer.
914
915 \param ftdi pointer to ftdi_context
916
917 \retval 0: all fine
918 \retval -1: read buffer purge failed
919 \retval -2: write buffer purge failed
920 \retval -3: USB device unavailable
921*/
922int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
923{
924 int result;
925
926 if (ftdi == NULL || ftdi->usb_dev == NULL)
927 ftdi_error_return(-3, "USB device unavailable");
928
929 result = ftdi_usb_purge_rx_buffer(ftdi);
930 if (result < 0)
931 return -1;
932
933 result = ftdi_usb_purge_tx_buffer(ftdi);
934 if (result < 0)
935 return -2;
936
937 return 0;
938}
939
940
941
942/**
943 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
944
945 \param ftdi pointer to ftdi_context
946
947 \retval 0: all fine
948 \retval -1: usb_release failed
949 \retval -3: ftdi context invalid
950*/
951int ftdi_usb_close(struct ftdi_context *ftdi)
952{
953 int rtn = 0;
954
955 if (ftdi == NULL)
956 ftdi_error_return(-3, "ftdi context invalid");
957
958 if (ftdi->usb_dev != NULL)
959 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
960 rtn = -1;
961
962 ftdi_usb_close_internal (ftdi);
963
964 return rtn;
965}
966
967/**
968 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
969 Function is only used internally
970 \internal
971*/
972static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
973 unsigned short *value, unsigned short *index)
974{
975 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
976 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
977 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
978 int divisor, best_divisor, best_baud, best_baud_diff;
979 unsigned long encoded_divisor;
980 int i;
981
982 if (baudrate <= 0)
983 {
984 // Return error
985 return -1;
986 }
987
988 divisor = 24000000 / baudrate;
989
990 if (ftdi->type == TYPE_AM)
991 {
992 // Round down to supported fraction (AM only)
993 divisor -= am_adjust_dn[divisor & 7];
994 }
995
996 // Try this divisor and the one above it (because division rounds down)
997 best_divisor = 0;
998 best_baud = 0;
999 best_baud_diff = 0;
1000 for (i = 0; i < 2; i++)
1001 {
1002 int try_divisor = divisor + i;
1003 int baud_estimate;
1004 int baud_diff;
1005
1006 // Round up to supported divisor value
1007 if (try_divisor <= 8)
1008 {
1009 // Round up to minimum supported divisor
1010 try_divisor = 8;
1011 }
1012 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1013 {
1014 // BM doesn't support divisors 9 through 11 inclusive
1015 try_divisor = 12;
1016 }
1017 else if (divisor < 16)
1018 {
1019 // AM doesn't support divisors 9 through 15 inclusive
1020 try_divisor = 16;
1021 }
1022 else
1023 {
1024 if (ftdi->type == TYPE_AM)
1025 {
1026 // Round up to supported fraction (AM only)
1027 try_divisor += am_adjust_up[try_divisor & 7];
1028 if (try_divisor > 0x1FFF8)
1029 {
1030 // Round down to maximum supported divisor value (for AM)
1031 try_divisor = 0x1FFF8;
1032 }
1033 }
1034 else
1035 {
1036 if (try_divisor > 0x1FFFF)
1037 {
1038 // Round down to maximum supported divisor value (for BM)
1039 try_divisor = 0x1FFFF;
1040 }
1041 }
1042 }
1043 // Get estimated baud rate (to nearest integer)
1044 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1045 // Get absolute difference from requested baud rate
1046 if (baud_estimate < baudrate)
1047 {
1048 baud_diff = baudrate - baud_estimate;
1049 }
1050 else
1051 {
1052 baud_diff = baud_estimate - baudrate;
1053 }
1054 if (i == 0 || baud_diff < best_baud_diff)
1055 {
1056 // Closest to requested baud rate so far
1057 best_divisor = try_divisor;
1058 best_baud = baud_estimate;
1059 best_baud_diff = baud_diff;
1060 if (baud_diff == 0)
1061 {
1062 // Spot on! No point trying
1063 break;
1064 }
1065 }
1066 }
1067 // Encode the best divisor value
1068 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1069 // Deal with special cases for encoded value
1070 if (encoded_divisor == 1)
1071 {
1072 encoded_divisor = 0; // 3000000 baud
1073 }
1074 else if (encoded_divisor == 0x4001)
1075 {
1076 encoded_divisor = 1; // 2000000 baud (BM only)
1077 }
1078 // Split into "value" and "index" values
1079 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1080 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
1081 {
1082 *index = (unsigned short)(encoded_divisor >> 8);
1083 *index &= 0xFF00;
1084 *index |= ftdi->index;
1085 }
1086 else
1087 *index = (unsigned short)(encoded_divisor >> 16);
1088
1089 // Return the nearest baud rate
1090 return best_baud;
1091}
1092
1093/**
1094 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1095 * Do not use, it's only for the unit test framework
1096 **/
1097int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1098 unsigned short *value, unsigned short *index)
1099{
1100 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1101}
1102
1103/**
1104 Sets the chip baud rate
1105
1106 \param ftdi pointer to ftdi_context
1107 \param baudrate baud rate to set
1108
1109 \retval 0: all fine
1110 \retval -1: invalid baudrate
1111 \retval -2: setting baudrate failed
1112 \retval -3: USB device unavailable
1113*/
1114int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1115{
1116 unsigned short value, index;
1117 int actual_baudrate;
1118
1119 if (ftdi == NULL || ftdi->usb_dev == NULL)
1120 ftdi_error_return(-3, "USB device unavailable");
1121
1122 if (ftdi->bitbang_enabled)
1123 {
1124 baudrate = baudrate*4;
1125 }
1126
1127 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1128 if (actual_baudrate <= 0)
1129 ftdi_error_return (-1, "Silly baudrate <= 0.");
1130
1131 // Check within tolerance (about 5%)
1132 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1133 || ((actual_baudrate < baudrate)
1134 ? (actual_baudrate * 21 < baudrate * 20)
1135 : (baudrate * 21 < actual_baudrate * 20)))
1136 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1137
1138 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1139 SIO_SET_BAUDRATE_REQUEST, value,
1140 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1141 ftdi_error_return (-2, "Setting new baudrate failed");
1142
1143 ftdi->baudrate = baudrate;
1144 return 0;
1145}
1146
1147/**
1148 Set (RS232) line characteristics.
1149 The break type can only be set via ftdi_set_line_property2()
1150 and defaults to "off".
1151
1152 \param ftdi pointer to ftdi_context
1153 \param bits Number of bits
1154 \param sbit Number of stop bits
1155 \param parity Parity mode
1156
1157 \retval 0: all fine
1158 \retval -1: Setting line property failed
1159*/
1160int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1161 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1162{
1163 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1164}
1165
1166/**
1167 Set (RS232) line characteristics
1168
1169 \param ftdi pointer to ftdi_context
1170 \param bits Number of bits
1171 \param sbit Number of stop bits
1172 \param parity Parity mode
1173 \param break_type Break type
1174
1175 \retval 0: all fine
1176 \retval -1: Setting line property failed
1177 \retval -2: USB device unavailable
1178*/
1179int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1180 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1181 enum ftdi_break_type break_type)
1182{
1183 unsigned short value = bits;
1184
1185 if (ftdi == NULL || ftdi->usb_dev == NULL)
1186 ftdi_error_return(-2, "USB device unavailable");
1187
1188 switch (parity)
1189 {
1190 case NONE:
1191 value |= (0x00 << 8);
1192 break;
1193 case ODD:
1194 value |= (0x01 << 8);
1195 break;
1196 case EVEN:
1197 value |= (0x02 << 8);
1198 break;
1199 case MARK:
1200 value |= (0x03 << 8);
1201 break;
1202 case SPACE:
1203 value |= (0x04 << 8);
1204 break;
1205 }
1206
1207 switch (sbit)
1208 {
1209 case STOP_BIT_1:
1210 value |= (0x00 << 11);
1211 break;
1212 case STOP_BIT_15:
1213 value |= (0x01 << 11);
1214 break;
1215 case STOP_BIT_2:
1216 value |= (0x02 << 11);
1217 break;
1218 }
1219
1220 switch (break_type)
1221 {
1222 case BREAK_OFF:
1223 value |= (0x00 << 14);
1224 break;
1225 case BREAK_ON:
1226 value |= (0x01 << 14);
1227 break;
1228 }
1229
1230 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1231 SIO_SET_DATA_REQUEST, value,
1232 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1233 ftdi_error_return (-1, "Setting new line property failed");
1234
1235 return 0;
1236}
1237
1238/**
1239 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1240
1241 \param ftdi pointer to ftdi_context
1242 \param buf Buffer with the data
1243 \param size Size of the buffer
1244
1245 \retval -666: USB device unavailable
1246 \retval <0: error code from usb_bulk_write()
1247 \retval >0: number of bytes written
1248*/
1249int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1250{
1251 int offset = 0;
1252 int actual_length;
1253
1254 if (ftdi == NULL || ftdi->usb_dev == NULL)
1255 ftdi_error_return(-666, "USB device unavailable");
1256
1257 while (offset < size)
1258 {
1259 int write_size = ftdi->writebuffer_chunksize;
1260
1261 if (offset+write_size > size)
1262 write_size = size-offset;
1263
1264 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1265 ftdi_error_return(-1, "usb bulk write failed");
1266
1267 offset += actual_length;
1268 }
1269
1270 return offset;
1271}
1272
1273static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1274{
1275 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1276 struct ftdi_context *ftdi = tc->ftdi;
1277 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1278
1279 packet_size = ftdi->max_packet_size;
1280
1281 actual_length = transfer->actual_length;
1282
1283 if (actual_length > 2)
1284 {
1285 // skip FTDI status bytes.
1286 // Maybe stored in the future to enable modem use
1287 num_of_chunks = actual_length / packet_size;
1288 chunk_remains = actual_length % packet_size;
1289 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1290
1291 ftdi->readbuffer_offset += 2;
1292 actual_length -= 2;
1293
1294 if (actual_length > packet_size - 2)
1295 {
1296 for (i = 1; i < num_of_chunks; i++)
1297 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1298 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1299 packet_size - 2);
1300 if (chunk_remains > 2)
1301 {
1302 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1303 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1304 chunk_remains-2);
1305 actual_length -= 2*num_of_chunks;
1306 }
1307 else
1308 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1309 }
1310
1311 if (actual_length > 0)
1312 {
1313 // data still fits in buf?
1314 if (tc->offset + actual_length <= tc->size)
1315 {
1316 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1317 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1318 tc->offset += actual_length;
1319
1320 ftdi->readbuffer_offset = 0;
1321 ftdi->readbuffer_remaining = 0;
1322
1323 /* Did we read exactly the right amount of bytes? */
1324 if (tc->offset == tc->size)
1325 {
1326 //printf("read_data exact rem %d offset %d\n",
1327 //ftdi->readbuffer_remaining, offset);
1328 tc->completed = 1;
1329 return;
1330 }
1331 }
1332 else
1333 {
1334 // only copy part of the data or size <= readbuffer_chunksize
1335 int part_size = tc->size - tc->offset;
1336 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1337 tc->offset += part_size;
1338
1339 ftdi->readbuffer_offset += part_size;
1340 ftdi->readbuffer_remaining = actual_length - part_size;
1341
1342 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1343 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1344 tc->completed = 1;
1345 return;
1346 }
1347 }
1348 }
1349 ret = libusb_submit_transfer (transfer);
1350 if (ret < 0)
1351 tc->completed = 1;
1352}
1353
1354
1355static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1356{
1357 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1358 struct ftdi_context *ftdi = tc->ftdi;
1359
1360 tc->offset += transfer->actual_length;
1361
1362 if (tc->offset == tc->size)
1363 {
1364 tc->completed = 1;
1365 }
1366 else
1367 {
1368 int write_size = ftdi->writebuffer_chunksize;
1369 int ret;
1370
1371 if (tc->offset + write_size > tc->size)
1372 write_size = tc->size - tc->offset;
1373
1374 transfer->length = write_size;
1375 transfer->buffer = tc->buf + tc->offset;
1376 ret = libusb_submit_transfer (transfer);
1377 if (ret < 0)
1378 tc->completed = 1;
1379 }
1380}
1381
1382
1383/**
1384 Writes data to the chip. Does not wait for completion of the transfer
1385 nor does it make sure that the transfer was successful.
1386
1387 Use libusb 1.0 asynchronous API.
1388
1389 \param ftdi pointer to ftdi_context
1390 \param buf Buffer with the data
1391 \param size Size of the buffer
1392
1393 \retval NULL: Some error happens when submit transfer
1394 \retval !NULL: Pointer to a ftdi_transfer_control
1395*/
1396
1397struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1398{
1399 struct ftdi_transfer_control *tc;
1400 struct libusb_transfer *transfer;
1401 int write_size, ret;
1402
1403 if (ftdi == NULL || ftdi->usb_dev == NULL)
1404 return NULL;
1405
1406 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1407 if (!tc)
1408 return NULL;
1409
1410 transfer = libusb_alloc_transfer(0);
1411 if (!transfer)
1412 {
1413 free(tc);
1414 return NULL;
1415 }
1416
1417 tc->ftdi = ftdi;
1418 tc->completed = 0;
1419 tc->buf = buf;
1420 tc->size = size;
1421 tc->offset = 0;
1422
1423 if (size < ftdi->writebuffer_chunksize)
1424 write_size = size;
1425 else
1426 write_size = ftdi->writebuffer_chunksize;
1427
1428 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1429 write_size, ftdi_write_data_cb, tc,
1430 ftdi->usb_write_timeout);
1431 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1432
1433 ret = libusb_submit_transfer(transfer);
1434 if (ret < 0)
1435 {
1436 libusb_free_transfer(transfer);
1437 free(tc);
1438 return NULL;
1439 }
1440 tc->transfer = transfer;
1441
1442 return tc;
1443}
1444
1445/**
1446 Reads data from the chip. Does not wait for completion of the transfer
1447 nor does it make sure that the transfer was successful.
1448
1449 Use libusb 1.0 asynchronous API.
1450
1451 \param ftdi pointer to ftdi_context
1452 \param buf Buffer with the data
1453 \param size Size of the buffer
1454
1455 \retval NULL: Some error happens when submit transfer
1456 \retval !NULL: Pointer to a ftdi_transfer_control
1457*/
1458
1459struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1460{
1461 struct ftdi_transfer_control *tc;
1462 struct libusb_transfer *transfer;
1463 int ret;
1464
1465 if (ftdi == NULL || ftdi->usb_dev == NULL)
1466 return NULL;
1467
1468 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1469 if (!tc)
1470 return NULL;
1471
1472 tc->ftdi = ftdi;
1473 tc->buf = buf;
1474 tc->size = size;
1475
1476 if (size <= ftdi->readbuffer_remaining)
1477 {
1478 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1479
1480 // Fix offsets
1481 ftdi->readbuffer_remaining -= size;
1482 ftdi->readbuffer_offset += size;
1483
1484 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1485
1486 tc->completed = 1;
1487 tc->offset = size;
1488 tc->transfer = NULL;
1489 return tc;
1490 }
1491
1492 tc->completed = 0;
1493 if (ftdi->readbuffer_remaining != 0)
1494 {
1495 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1496
1497 tc->offset = ftdi->readbuffer_remaining;
1498 }
1499 else
1500 tc->offset = 0;
1501
1502 transfer = libusb_alloc_transfer(0);
1503 if (!transfer)
1504 {
1505 free (tc);
1506 return NULL;
1507 }
1508
1509 ftdi->readbuffer_remaining = 0;
1510 ftdi->readbuffer_offset = 0;
1511
1512 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1513 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1514
1515 ret = libusb_submit_transfer(transfer);
1516 if (ret < 0)
1517 {
1518 libusb_free_transfer(transfer);
1519 free (tc);
1520 return NULL;
1521 }
1522 tc->transfer = transfer;
1523
1524 return tc;
1525}
1526
1527/**
1528 Wait for completion of the transfer.
1529
1530 Use libusb 1.0 asynchronous API.
1531
1532 \param tc pointer to ftdi_transfer_control
1533
1534 \retval < 0: Some error happens
1535 \retval >= 0: Data size transferred
1536*/
1537
1538int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1539{
1540 int ret;
1541
1542 while (!tc->completed)
1543 {
1544 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1545 if (ret < 0)
1546 {
1547 if (ret == LIBUSB_ERROR_INTERRUPTED)
1548 continue;
1549 libusb_cancel_transfer(tc->transfer);
1550 while (!tc->completed)
1551 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1552 break;
1553 libusb_free_transfer(tc->transfer);
1554 free (tc);
1555 return ret;
1556 }
1557 }
1558
1559 ret = tc->offset;
1560 /**
1561 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1562 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1563 **/
1564 if (tc->transfer)
1565 {
1566 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1567 ret = -1;
1568 libusb_free_transfer(tc->transfer);
1569 }
1570 free(tc);
1571 return ret;
1572}
1573
1574/**
1575 Configure write buffer chunk size.
1576 Default is 4096.
1577
1578 \param ftdi pointer to ftdi_context
1579 \param chunksize Chunk size
1580
1581 \retval 0: all fine
1582 \retval -1: ftdi context invalid
1583*/
1584int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1585{
1586 if (ftdi == NULL)
1587 ftdi_error_return(-1, "ftdi context invalid");
1588
1589 ftdi->writebuffer_chunksize = chunksize;
1590 return 0;
1591}
1592
1593/**
1594 Get write buffer chunk size.
1595
1596 \param ftdi pointer to ftdi_context
1597 \param chunksize Pointer to store chunk size in
1598
1599 \retval 0: all fine
1600 \retval -1: ftdi context invalid
1601*/
1602int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1603{
1604 if (ftdi == NULL)
1605 ftdi_error_return(-1, "ftdi context invalid");
1606
1607 *chunksize = ftdi->writebuffer_chunksize;
1608 return 0;
1609}
1610
1611/**
1612 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1613
1614 Automatically strips the two modem status bytes transfered during every read.
1615
1616 \param ftdi pointer to ftdi_context
1617 \param buf Buffer to store data in
1618 \param size Size of the buffer
1619
1620 \retval -666: USB device unavailable
1621 \retval <0: error code from libusb_bulk_transfer()
1622 \retval 0: no data was available
1623 \retval >0: number of bytes read
1624
1625*/
1626int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1627{
1628 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1629 int packet_size = ftdi->max_packet_size;
1630 int actual_length = 1;
1631
1632 if (ftdi == NULL || ftdi->usb_dev == NULL)
1633 ftdi_error_return(-666, "USB device unavailable");
1634
1635 // Packet size sanity check (avoid division by zero)
1636 if (packet_size == 0)
1637 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1638
1639 // everything we want is still in the readbuffer?
1640 if (size <= ftdi->readbuffer_remaining)
1641 {
1642 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1643
1644 // Fix offsets
1645 ftdi->readbuffer_remaining -= size;
1646 ftdi->readbuffer_offset += size;
1647
1648 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1649
1650 return size;
1651 }
1652 // something still in the readbuffer, but not enough to satisfy 'size'?
1653 if (ftdi->readbuffer_remaining != 0)
1654 {
1655 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1656
1657 // Fix offset
1658 offset += ftdi->readbuffer_remaining;
1659 }
1660 // do the actual USB read
1661 while (offset < size && actual_length > 0)
1662 {
1663 ftdi->readbuffer_remaining = 0;
1664 ftdi->readbuffer_offset = 0;
1665 /* returns how much received */
1666 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1667 if (ret < 0)
1668 ftdi_error_return(ret, "usb bulk read failed");
1669
1670 if (actual_length > 2)
1671 {
1672 // skip FTDI status bytes.
1673 // Maybe stored in the future to enable modem use
1674 num_of_chunks = actual_length / packet_size;
1675 chunk_remains = actual_length % packet_size;
1676 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1677
1678 ftdi->readbuffer_offset += 2;
1679 actual_length -= 2;
1680
1681 if (actual_length > packet_size - 2)
1682 {
1683 for (i = 1; i < num_of_chunks; i++)
1684 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1685 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1686 packet_size - 2);
1687 if (chunk_remains > 2)
1688 {
1689 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1690 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1691 chunk_remains-2);
1692 actual_length -= 2*num_of_chunks;
1693 }
1694 else
1695 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1696 }
1697 }
1698 else if (actual_length <= 2)
1699 {
1700 // no more data to read?
1701 return offset;
1702 }
1703 if (actual_length > 0)
1704 {
1705 // data still fits in buf?
1706 if (offset+actual_length <= size)
1707 {
1708 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1709 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1710 offset += actual_length;
1711
1712 /* Did we read exactly the right amount of bytes? */
1713 if (offset == size)
1714 //printf("read_data exact rem %d offset %d\n",
1715 //ftdi->readbuffer_remaining, offset);
1716 return offset;
1717 }
1718 else
1719 {
1720 // only copy part of the data or size <= readbuffer_chunksize
1721 int part_size = size-offset;
1722 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1723
1724 ftdi->readbuffer_offset += part_size;
1725 ftdi->readbuffer_remaining = actual_length-part_size;
1726 offset += part_size;
1727
1728 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1729 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1730
1731 return offset;
1732 }
1733 }
1734 }
1735 // never reached
1736 return -127;
1737}
1738
1739/**
1740 Configure read buffer chunk size.
1741 Default is 4096.
1742
1743 Automatically reallocates the buffer.
1744
1745 \param ftdi pointer to ftdi_context
1746 \param chunksize Chunk size
1747
1748 \retval 0: all fine
1749 \retval -1: ftdi context invalid
1750*/
1751int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1752{
1753 unsigned char *new_buf;
1754
1755 if (ftdi == NULL)
1756 ftdi_error_return(-1, "ftdi context invalid");
1757
1758 // Invalidate all remaining data
1759 ftdi->readbuffer_offset = 0;
1760 ftdi->readbuffer_remaining = 0;
1761#ifdef __linux__
1762 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1763 which is defined in libusb-1.0. Otherwise, each USB read request will
1764 be divided into multiple URBs. This will cause issues on Linux kernel
1765 older than 2.6.32. */
1766 if (chunksize > 16384)
1767 chunksize = 16384;
1768#endif
1769
1770 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1771 ftdi_error_return(-1, "out of memory for readbuffer");
1772
1773 ftdi->readbuffer = new_buf;
1774 ftdi->readbuffer_chunksize = chunksize;
1775
1776 return 0;
1777}
1778
1779/**
1780 Get read buffer chunk size.
1781
1782 \param ftdi pointer to ftdi_context
1783 \param chunksize Pointer to store chunk size in
1784
1785 \retval 0: all fine
1786 \retval -1: FTDI context invalid
1787*/
1788int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1789{
1790 if (ftdi == NULL)
1791 ftdi_error_return(-1, "FTDI context invalid");
1792
1793 *chunksize = ftdi->readbuffer_chunksize;
1794 return 0;
1795}
1796
1797
1798/**
1799 Enable bitbang mode.
1800
1801 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1802
1803 \param ftdi pointer to ftdi_context
1804 \param bitmask Bitmask to configure lines.
1805 HIGH/ON value configures a line as output.
1806
1807 \retval 0: all fine
1808 \retval -1: can't enable bitbang mode
1809 \retval -2: USB device unavailable
1810*/
1811int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1812{
1813 unsigned short usb_val;
1814
1815 if (ftdi == NULL || ftdi->usb_dev == NULL)
1816 ftdi_error_return(-2, "USB device unavailable");
1817
1818 usb_val = bitmask; // low byte: bitmask
1819 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1820 usb_val |= (ftdi->bitbang_mode << 8);
1821
1822 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1823 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1824 NULL, 0, ftdi->usb_write_timeout) < 0)
1825 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1826
1827 ftdi->bitbang_enabled = 1;
1828 return 0;
1829}
1830
1831/**
1832 Disable bitbang mode.
1833
1834 \param ftdi pointer to ftdi_context
1835
1836 \retval 0: all fine
1837 \retval -1: can't disable bitbang mode
1838 \retval -2: USB device unavailable
1839*/
1840int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1841{
1842 if (ftdi == NULL || ftdi->usb_dev == NULL)
1843 ftdi_error_return(-2, "USB device unavailable");
1844
1845 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1846 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1847
1848 ftdi->bitbang_enabled = 0;
1849 return 0;
1850}
1851
1852/**
1853 Enable/disable bitbang modes.
1854
1855 \param ftdi pointer to ftdi_context
1856 \param bitmask Bitmask to configure lines.
1857 HIGH/ON value configures a line as output.
1858 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1859
1860 \retval 0: all fine
1861 \retval -1: can't enable bitbang mode
1862 \retval -2: USB device unavailable
1863*/
1864int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1865{
1866 unsigned short usb_val;
1867
1868 if (ftdi == NULL || ftdi->usb_dev == NULL)
1869 ftdi_error_return(-2, "USB device unavailable");
1870
1871 usb_val = bitmask; // low byte: bitmask
1872 usb_val |= (mode << 8);
1873 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1874 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1875
1876 ftdi->bitbang_mode = mode;
1877 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1878 return 0;
1879}
1880
1881/**
1882 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1883
1884 \param ftdi pointer to ftdi_context
1885 \param pins Pointer to store pins into
1886
1887 \retval 0: all fine
1888 \retval -1: read pins failed
1889 \retval -2: USB device unavailable
1890*/
1891int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1892{
1893 if (ftdi == NULL || ftdi->usb_dev == NULL)
1894 ftdi_error_return(-2, "USB device unavailable");
1895
1896 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1897 ftdi_error_return(-1, "read pins failed");
1898
1899 return 0;
1900}
1901
1902/**
1903 Set latency timer
1904
1905 The FTDI chip keeps data in the internal buffer for a specific
1906 amount of time if the buffer is not full yet to decrease
1907 load on the usb bus.
1908
1909 \param ftdi pointer to ftdi_context
1910 \param latency Value between 1 and 255
1911
1912 \retval 0: all fine
1913 \retval -1: latency out of range
1914 \retval -2: unable to set latency timer
1915 \retval -3: USB device unavailable
1916*/
1917int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1918{
1919 unsigned short usb_val;
1920
1921 if (latency < 1)
1922 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1923
1924 if (ftdi == NULL || ftdi->usb_dev == NULL)
1925 ftdi_error_return(-3, "USB device unavailable");
1926
1927 usb_val = latency;
1928 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1929 ftdi_error_return(-2, "unable to set latency timer");
1930
1931 return 0;
1932}
1933
1934/**
1935 Get latency timer
1936
1937 \param ftdi pointer to ftdi_context
1938 \param latency Pointer to store latency value in
1939
1940 \retval 0: all fine
1941 \retval -1: unable to get latency timer
1942 \retval -2: USB device unavailable
1943*/
1944int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1945{
1946 unsigned short usb_val;
1947
1948 if (ftdi == NULL || ftdi->usb_dev == NULL)
1949 ftdi_error_return(-2, "USB device unavailable");
1950
1951 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1952 ftdi_error_return(-1, "reading latency timer failed");
1953
1954 *latency = (unsigned char)usb_val;
1955 return 0;
1956}
1957
1958/**
1959 Poll modem status information
1960
1961 This function allows the retrieve the two status bytes of the device.
1962 The device sends these bytes also as a header for each read access
1963 where they are discarded by ftdi_read_data(). The chip generates
1964 the two stripped status bytes in the absence of data every 40 ms.
1965
1966 Layout of the first byte:
1967 - B0..B3 - must be 0
1968 - B4 Clear to send (CTS)
1969 0 = inactive
1970 1 = active
1971 - B5 Data set ready (DTS)
1972 0 = inactive
1973 1 = active
1974 - B6 Ring indicator (RI)
1975 0 = inactive
1976 1 = active
1977 - B7 Receive line signal detect (RLSD)
1978 0 = inactive
1979 1 = active
1980
1981 Layout of the second byte:
1982 - B0 Data ready (DR)
1983 - B1 Overrun error (OE)
1984 - B2 Parity error (PE)
1985 - B3 Framing error (FE)
1986 - B4 Break interrupt (BI)
1987 - B5 Transmitter holding register (THRE)
1988 - B6 Transmitter empty (TEMT)
1989 - B7 Error in RCVR FIFO
1990
1991 \param ftdi pointer to ftdi_context
1992 \param status Pointer to store status information in. Must be two bytes.
1993
1994 \retval 0: all fine
1995 \retval -1: unable to retrieve status information
1996 \retval -2: USB device unavailable
1997*/
1998int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1999{
2000 char usb_val[2];
2001
2002 if (ftdi == NULL || ftdi->usb_dev == NULL)
2003 ftdi_error_return(-2, "USB device unavailable");
2004
2005 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
2006 ftdi_error_return(-1, "getting modem status failed");
2007
2008 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
2009
2010 return 0;
2011}
2012
2013/**
2014 Set flowcontrol for ftdi chip
2015
2016 \param ftdi pointer to ftdi_context
2017 \param flowctrl flow control to use. should be
2018 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2019
2020 \retval 0: all fine
2021 \retval -1: set flow control failed
2022 \retval -2: USB device unavailable
2023*/
2024int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2025{
2026 if (ftdi == NULL || ftdi->usb_dev == NULL)
2027 ftdi_error_return(-2, "USB device unavailable");
2028
2029 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2030 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2031 NULL, 0, ftdi->usb_write_timeout) < 0)
2032 ftdi_error_return(-1, "set flow control failed");
2033
2034 return 0;
2035}
2036
2037/**
2038 Set dtr line
2039
2040 \param ftdi pointer to ftdi_context
2041 \param state state to set line to (1 or 0)
2042
2043 \retval 0: all fine
2044 \retval -1: set dtr failed
2045 \retval -2: USB device unavailable
2046*/
2047int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2048{
2049 unsigned short usb_val;
2050
2051 if (ftdi == NULL || ftdi->usb_dev == NULL)
2052 ftdi_error_return(-2, "USB device unavailable");
2053
2054 if (state)
2055 usb_val = SIO_SET_DTR_HIGH;
2056 else
2057 usb_val = SIO_SET_DTR_LOW;
2058
2059 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2060 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2061 NULL, 0, ftdi->usb_write_timeout) < 0)
2062 ftdi_error_return(-1, "set dtr failed");
2063
2064 return 0;
2065}
2066
2067/**
2068 Set rts line
2069
2070 \param ftdi pointer to ftdi_context
2071 \param state state to set line to (1 or 0)
2072
2073 \retval 0: all fine
2074 \retval -1: set rts failed
2075 \retval -2: USB device unavailable
2076*/
2077int ftdi_setrts(struct ftdi_context *ftdi, int state)
2078{
2079 unsigned short usb_val;
2080
2081 if (ftdi == NULL || ftdi->usb_dev == NULL)
2082 ftdi_error_return(-2, "USB device unavailable");
2083
2084 if (state)
2085 usb_val = SIO_SET_RTS_HIGH;
2086 else
2087 usb_val = SIO_SET_RTS_LOW;
2088
2089 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2090 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2091 NULL, 0, ftdi->usb_write_timeout) < 0)
2092 ftdi_error_return(-1, "set of rts failed");
2093
2094 return 0;
2095}
2096
2097/**
2098 Set dtr and rts line in one pass
2099
2100 \param ftdi pointer to ftdi_context
2101 \param dtr DTR state to set line to (1 or 0)
2102 \param rts RTS state to set line to (1 or 0)
2103
2104 \retval 0: all fine
2105 \retval -1: set dtr/rts failed
2106 \retval -2: USB device unavailable
2107 */
2108int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2109{
2110 unsigned short usb_val;
2111
2112 if (ftdi == NULL || ftdi->usb_dev == NULL)
2113 ftdi_error_return(-2, "USB device unavailable");
2114
2115 if (dtr)
2116 usb_val = SIO_SET_DTR_HIGH;
2117 else
2118 usb_val = SIO_SET_DTR_LOW;
2119
2120 if (rts)
2121 usb_val |= SIO_SET_RTS_HIGH;
2122 else
2123 usb_val |= SIO_SET_RTS_LOW;
2124
2125 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2126 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2127 NULL, 0, ftdi->usb_write_timeout) < 0)
2128 ftdi_error_return(-1, "set of rts/dtr failed");
2129
2130 return 0;
2131}
2132
2133/**
2134 Set the special event character
2135
2136 \param ftdi pointer to ftdi_context
2137 \param eventch Event character
2138 \param enable 0 to disable the event character, non-zero otherwise
2139
2140 \retval 0: all fine
2141 \retval -1: unable to set event character
2142 \retval -2: USB device unavailable
2143*/
2144int ftdi_set_event_char(struct ftdi_context *ftdi,
2145 unsigned char eventch, unsigned char enable)
2146{
2147 unsigned short usb_val;
2148
2149 if (ftdi == NULL || ftdi->usb_dev == NULL)
2150 ftdi_error_return(-2, "USB device unavailable");
2151
2152 usb_val = eventch;
2153 if (enable)
2154 usb_val |= 1 << 8;
2155
2156 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2157 ftdi_error_return(-1, "setting event character failed");
2158
2159 return 0;
2160}
2161
2162/**
2163 Set error character
2164
2165 \param ftdi pointer to ftdi_context
2166 \param errorch Error character
2167 \param enable 0 to disable the error character, non-zero otherwise
2168
2169 \retval 0: all fine
2170 \retval -1: unable to set error character
2171 \retval -2: USB device unavailable
2172*/
2173int ftdi_set_error_char(struct ftdi_context *ftdi,
2174 unsigned char errorch, unsigned char enable)
2175{
2176 unsigned short usb_val;
2177
2178 if (ftdi == NULL || ftdi->usb_dev == NULL)
2179 ftdi_error_return(-2, "USB device unavailable");
2180
2181 usb_val = errorch;
2182 if (enable)
2183 usb_val |= 1 << 8;
2184
2185 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2186 ftdi_error_return(-1, "setting error character failed");
2187
2188 return 0;
2189}
2190
2191/**
2192 Init eeprom with default values for the connected device
2193 \param ftdi pointer to ftdi_context
2194 \param manufacturer String to use as Manufacturer
2195 \param product String to use as Product description
2196 \param serial String to use as Serial number description
2197
2198 \retval 0: all fine
2199 \retval -1: No struct ftdi_context
2200 \retval -2: No struct ftdi_eeprom
2201 \retval -3: No connected device or device not yet opened
2202*/
2203int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2204 char * product, char * serial)
2205{
2206 struct ftdi_eeprom *eeprom;
2207
2208 if (ftdi == NULL)
2209 ftdi_error_return(-1, "No struct ftdi_context");
2210
2211 if (ftdi->eeprom == NULL)
2212 ftdi_error_return(-2,"No struct ftdi_eeprom");
2213
2214 eeprom = ftdi->eeprom;
2215 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2216
2217 if (ftdi->usb_dev == NULL)
2218 ftdi_error_return(-3, "No connected device or device not yet opened");
2219
2220 eeprom->vendor_id = 0x0403;
2221 eeprom->use_serial = USE_SERIAL_NUM;
2222 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2223 (ftdi->type == TYPE_R))
2224 eeprom->product_id = 0x6001;
2225 else if (ftdi->type == TYPE_4232H)
2226 eeprom->product_id = 0x6011;
2227 else if (ftdi->type == TYPE_232H)
2228 eeprom->product_id = 0x6014;
2229 else
2230 eeprom->product_id = 0x6010;
2231 if (ftdi->type == TYPE_AM)
2232 eeprom->usb_version = 0x0101;
2233 else
2234 eeprom->usb_version = 0x0200;
2235 eeprom->max_power = 100;
2236
2237 if (eeprom->manufacturer)
2238 free (eeprom->manufacturer);
2239 eeprom->manufacturer = NULL;
2240 if (manufacturer)
2241 {
2242 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2243 if (eeprom->manufacturer)
2244 strcpy(eeprom->manufacturer, manufacturer);
2245 }
2246
2247 if (eeprom->product)
2248 free (eeprom->product);
2249 eeprom->product = NULL;
2250 if(product)
2251 {
2252 eeprom->product = malloc(strlen(product)+1);
2253 if (eeprom->product)
2254 strcpy(eeprom->product, product);
2255 }
2256
2257 if (eeprom->serial)
2258 free (eeprom->serial);
2259 eeprom->serial = NULL;
2260 if (serial)
2261 {
2262 eeprom->serial = malloc(strlen(serial)+1);
2263 if (eeprom->serial)
2264 strcpy(eeprom->serial, serial);
2265 }
2266
2267
2268 if (ftdi->type == TYPE_R)
2269 {
2270 eeprom->max_power = 90;
2271 eeprom->size = 0x80;
2272 eeprom->cbus_function[0] = CBUS_TXLED;
2273 eeprom->cbus_function[1] = CBUS_RXLED;
2274 eeprom->cbus_function[2] = CBUS_TXDEN;
2275 eeprom->cbus_function[3] = CBUS_PWREN;
2276 eeprom->cbus_function[4] = CBUS_SLEEP;
2277 }
2278 else
2279 {
2280 if(ftdi->type == TYPE_232H)
2281 {
2282 int i;
2283 for (i=0; i<10; i++)
2284 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2285 }
2286 eeprom->size = -1;
2287 }
2288 eeprom->initialized_for_connected_device = 1;
2289 return 0;
2290}
2291/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2292void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2293{
2294 int i;
2295 for(i=0; i<5;i++)
2296 {
2297 int mode_low, mode_high;
2298 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2299 mode_low = CBUSH_TRISTATE;
2300 else
2301 mode_low = eeprom->cbus_function[2*i];
2302 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2303 mode_high = CBUSH_TRISTATE;
2304 else
2305 mode_high = eeprom->cbus_function[2*i];
2306
2307 output[0x18+i] = mode_high <<4 | mode_low;
2308 }
2309}
2310/* Return the bits for the encoded EEPROM Structure of a requested Mode
2311 *
2312 */
2313static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2314{
2315 switch (chip)
2316 {
2317 case TYPE_2232H:
2318 case TYPE_2232C:
2319 {
2320 switch (type)
2321 {
2322 case CHANNEL_IS_UART: return 0;
2323 case CHANNEL_IS_FIFO: return 0x01;
2324 case CHANNEL_IS_OPTO: return 0x02;
2325 case CHANNEL_IS_CPU : return 0x04;
2326 default: return 0;
2327 }
2328 }
2329 case TYPE_232H:
2330 {
2331 switch (type)
2332 {
2333 case CHANNEL_IS_UART : return 0;
2334 case CHANNEL_IS_FIFO : return 0x01;
2335 case CHANNEL_IS_OPTO : return 0x02;
2336 case CHANNEL_IS_CPU : return 0x04;
2337 case CHANNEL_IS_FT1284 : return 0x08;
2338 default: return 0;
2339 }
2340 }
2341 default: return 0;
2342 }
2343 return 0;
2344}
2345
2346/**
2347 Build binary buffer from ftdi_eeprom structure.
2348 Output is suitable for ftdi_write_eeprom().
2349
2350 \param ftdi pointer to ftdi_context
2351
2352 \retval >=0: size of eeprom user area in bytes
2353 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2354 \retval -2: Invalid eeprom or ftdi pointer
2355 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2356 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2357 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2358 \retval -6: No connected EEPROM or EEPROM Type unknown
2359*/
2360int ftdi_eeprom_build(struct ftdi_context *ftdi)
2361{
2362 unsigned char i, j, eeprom_size_mask;
2363 unsigned short checksum, value;
2364 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2365 int user_area_size;
2366 struct ftdi_eeprom *eeprom;
2367 unsigned char * output;
2368
2369 if (ftdi == NULL)
2370 ftdi_error_return(-2,"No context");
2371 if (ftdi->eeprom == NULL)
2372 ftdi_error_return(-2,"No eeprom structure");
2373
2374 eeprom= ftdi->eeprom;
2375 output = eeprom->buf;
2376
2377 if (eeprom->chip == -1)
2378 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2379
2380 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2381 eeprom->size = 0x100;
2382 else
2383 eeprom->size = 0x80;
2384
2385 if (eeprom->manufacturer != NULL)
2386 manufacturer_size = strlen(eeprom->manufacturer);
2387 if (eeprom->product != NULL)
2388 product_size = strlen(eeprom->product);
2389 if (eeprom->serial != NULL)
2390 serial_size = strlen(eeprom->serial);
2391
2392 // eeprom size check
2393 switch (ftdi->type)
2394 {
2395 case TYPE_AM:
2396 case TYPE_BM:
2397 user_area_size = 96; // base size for strings (total of 48 characters)
2398 break;
2399 case TYPE_2232C:
2400 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2401 break;
2402 case TYPE_R:
2403 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2404 break;
2405 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2406 case TYPE_4232H:
2407 user_area_size = 86;
2408 break;
2409 case TYPE_232H:
2410 user_area_size = 80;
2411 break;
2412 default:
2413 user_area_size = 0;
2414 break;
2415 }
2416 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2417
2418 if (user_area_size < 0)
2419 ftdi_error_return(-1,"eeprom size exceeded");
2420
2421 // empty eeprom
2422 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2423
2424 // Bytes and Bits set for all Types
2425
2426 // Addr 02: Vendor ID
2427 output[0x02] = eeprom->vendor_id;
2428 output[0x03] = eeprom->vendor_id >> 8;
2429
2430 // Addr 04: Product ID
2431 output[0x04] = eeprom->product_id;
2432 output[0x05] = eeprom->product_id >> 8;
2433
2434 // Addr 06: Device release number (0400h for BM features)
2435 output[0x06] = 0x00;
2436 switch (ftdi->type)
2437 {
2438 case TYPE_AM:
2439 output[0x07] = 0x02;
2440 break;
2441 case TYPE_BM:
2442 output[0x07] = 0x04;
2443 break;
2444 case TYPE_2232C:
2445 output[0x07] = 0x05;
2446 break;
2447 case TYPE_R:
2448 output[0x07] = 0x06;
2449 break;
2450 case TYPE_2232H:
2451 output[0x07] = 0x07;
2452 break;
2453 case TYPE_4232H:
2454 output[0x07] = 0x08;
2455 break;
2456 case TYPE_232H:
2457 output[0x07] = 0x09;
2458 break;
2459 default:
2460 output[0x07] = 0x00;
2461 }
2462
2463 // Addr 08: Config descriptor
2464 // Bit 7: always 1
2465 // Bit 6: 1 if this device is self powered, 0 if bus powered
2466 // Bit 5: 1 if this device uses remote wakeup
2467 // Bit 4-0: reserved - 0
2468 j = 0x80;
2469 if (eeprom->self_powered == 1)
2470 j |= 0x40;
2471 if (eeprom->remote_wakeup == 1)
2472 j |= 0x20;
2473 output[0x08] = j;
2474
2475 // Addr 09: Max power consumption: max power = value * 2 mA
2476 output[0x09] = eeprom->max_power>>1;
2477
2478 if (ftdi->type != TYPE_AM)
2479 {
2480 // Addr 0A: Chip configuration
2481 // Bit 7: 0 - reserved
2482 // Bit 6: 0 - reserved
2483 // Bit 5: 0 - reserved
2484 // Bit 4: 1 - Change USB version
2485 // Bit 3: 1 - Use the serial number string
2486 // Bit 2: 1 - Enable suspend pull downs for lower power
2487 // Bit 1: 1 - Out EndPoint is Isochronous
2488 // Bit 0: 1 - In EndPoint is Isochronous
2489 //
2490 j = 0;
2491 if (eeprom->in_is_isochronous == 1)
2492 j = j | 1;
2493 if (eeprom->out_is_isochronous == 1)
2494 j = j | 2;
2495 output[0x0A] = j;
2496 }
2497
2498 // Dynamic content
2499 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2500 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2501 // 0xa0 (TYPE_232H)
2502 i = 0;
2503 switch (ftdi->type)
2504 {
2505 case TYPE_232H:
2506 i += 2;
2507 case TYPE_2232H:
2508 case TYPE_4232H:
2509 i += 2;
2510 case TYPE_R:
2511 i += 2;
2512 case TYPE_2232C:
2513 i += 2;
2514 case TYPE_AM:
2515 case TYPE_BM:
2516 i += 0x94;
2517 }
2518 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2519 eeprom_size_mask = eeprom->size -1;
2520
2521 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2522 // Addr 0F: Length of manufacturer string
2523 // Output manufacturer
2524 output[0x0E] = i; // calculate offset
2525 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2526 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2527 for (j = 0; j < manufacturer_size; j++)
2528 {
2529 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2530 output[i & eeprom_size_mask] = 0x00, i++;
2531 }
2532 output[0x0F] = manufacturer_size*2 + 2;
2533
2534 // Addr 10: Offset of the product string + 0x80, calculated later
2535 // Addr 11: Length of product string
2536 output[0x10] = i | 0x80; // calculate offset
2537 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2538 output[i & eeprom_size_mask] = 0x03, i++;
2539 for (j = 0; j < product_size; j++)
2540 {
2541 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2542 output[i & eeprom_size_mask] = 0x00, i++;
2543 }
2544 output[0x11] = product_size*2 + 2;
2545
2546 // Addr 12: Offset of the serial string + 0x80, calculated later
2547 // Addr 13: Length of serial string
2548 output[0x12] = i | 0x80; // calculate offset
2549 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2550 output[i & eeprom_size_mask] = 0x03, i++;
2551 for (j = 0; j < serial_size; j++)
2552 {
2553 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2554 output[i & eeprom_size_mask] = 0x00, i++;
2555 }
2556
2557 // Legacy port name and PnP fields for FT2232 and newer chips
2558 if (ftdi->type > TYPE_BM)
2559 {
2560 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2561 i++;
2562 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2563 i++;
2564 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2565 i++;
2566 }
2567
2568 output[0x13] = serial_size*2 + 2;
2569
2570 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2571 {
2572 if (eeprom->use_serial == USE_SERIAL_NUM )
2573 output[0x0A] |= USE_SERIAL_NUM;
2574 else
2575 output[0x0A] &= ~USE_SERIAL_NUM;
2576 }
2577
2578 /* Bytes and Bits specific to (some) types
2579 Write linear, as this allows easier fixing*/
2580 switch (ftdi->type)
2581 {
2582 case TYPE_AM:
2583 break;
2584 case TYPE_BM:
2585 output[0x0C] = eeprom->usb_version & 0xff;
2586 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2587 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2588 output[0x0A] |= USE_USB_VERSION_BIT;
2589 else
2590 output[0x0A] &= ~USE_USB_VERSION_BIT;
2591
2592 break;
2593 case TYPE_2232C:
2594
2595 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
2596 if ( eeprom->channel_a_driver == DRIVER_VCP)
2597 output[0x00] |= DRIVER_VCP;
2598 else
2599 output[0x00] &= ~DRIVER_VCP;
2600
2601 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2602 output[0x00] |= HIGH_CURRENT_DRIVE;
2603 else
2604 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2605
2606 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
2607 if ( eeprom->channel_b_driver == DRIVER_VCP)
2608 output[0x01] |= DRIVER_VCP;
2609 else
2610 output[0x01] &= ~DRIVER_VCP;
2611
2612 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2613 output[0x01] |= HIGH_CURRENT_DRIVE;
2614 else
2615 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2616
2617 if (eeprom->in_is_isochronous == 1)
2618 output[0x0A] |= 0x1;
2619 else
2620 output[0x0A] &= ~0x1;
2621 if (eeprom->out_is_isochronous == 1)
2622 output[0x0A] |= 0x2;
2623 else
2624 output[0x0A] &= ~0x2;
2625 if (eeprom->suspend_pull_downs == 1)
2626 output[0x0A] |= 0x4;
2627 else
2628 output[0x0A] &= ~0x4;
2629 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2630 output[0x0A] |= USE_USB_VERSION_BIT;
2631 else
2632 output[0x0A] &= ~USE_USB_VERSION_BIT;
2633
2634 output[0x0C] = eeprom->usb_version & 0xff;
2635 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2636 output[0x14] = eeprom->chip;
2637 break;
2638 case TYPE_R:
2639 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2640 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2641 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2642
2643 if (eeprom->suspend_pull_downs == 1)
2644 output[0x0A] |= 0x4;
2645 else
2646 output[0x0A] &= ~0x4;
2647 output[0x0B] = eeprom->invert;
2648 output[0x0C] = eeprom->usb_version & 0xff;
2649 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2650
2651 if (eeprom->cbus_function[0] > CBUS_BB)
2652 output[0x14] = CBUS_TXLED;
2653 else
2654 output[0x14] = eeprom->cbus_function[0];
2655
2656 if (eeprom->cbus_function[1] > CBUS_BB)
2657 output[0x14] |= CBUS_RXLED<<4;
2658 else
2659 output[0x14] |= eeprom->cbus_function[1]<<4;
2660
2661 if (eeprom->cbus_function[2] > CBUS_BB)
2662 output[0x15] = CBUS_TXDEN;
2663 else
2664 output[0x15] = eeprom->cbus_function[2];
2665
2666 if (eeprom->cbus_function[3] > CBUS_BB)
2667 output[0x15] |= CBUS_PWREN<<4;
2668 else
2669 output[0x15] |= eeprom->cbus_function[3]<<4;
2670
2671 if (eeprom->cbus_function[4] > CBUS_CLK6)
2672 output[0x16] = CBUS_SLEEP;
2673 else
2674 output[0x16] = eeprom->cbus_function[4];
2675 break;
2676 case TYPE_2232H:
2677 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
2678 if ( eeprom->channel_a_driver == DRIVER_VCP)
2679 output[0x00] |= DRIVER_VCP;
2680 else
2681 output[0x00] &= ~DRIVER_VCP;
2682
2683 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
2684 if ( eeprom->channel_b_driver == DRIVER_VCP)
2685 output[0x01] |= DRIVER_VCP;
2686 else
2687 output[0x01] &= ~DRIVER_VCP;
2688 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2689 output[0x01] |= SUSPEND_DBUS7_BIT;
2690 else
2691 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2692
2693 if (eeprom->suspend_pull_downs == 1)
2694 output[0x0A] |= 0x4;
2695 else
2696 output[0x0A] &= ~0x4;
2697
2698 if (eeprom->group0_drive > DRIVE_16MA)
2699 output[0x0c] |= DRIVE_16MA;
2700 else
2701 output[0x0c] |= eeprom->group0_drive;
2702 if (eeprom->group0_schmitt == IS_SCHMITT)
2703 output[0x0c] |= IS_SCHMITT;
2704 if (eeprom->group0_slew == SLOW_SLEW)
2705 output[0x0c] |= SLOW_SLEW;
2706
2707 if (eeprom->group1_drive > DRIVE_16MA)
2708 output[0x0c] |= DRIVE_16MA<<4;
2709 else
2710 output[0x0c] |= eeprom->group1_drive<<4;
2711 if (eeprom->group1_schmitt == IS_SCHMITT)
2712 output[0x0c] |= IS_SCHMITT<<4;
2713 if (eeprom->group1_slew == SLOW_SLEW)
2714 output[0x0c] |= SLOW_SLEW<<4;
2715
2716 if (eeprom->group2_drive > DRIVE_16MA)
2717 output[0x0d] |= DRIVE_16MA;
2718 else
2719 output[0x0d] |= eeprom->group2_drive;
2720 if (eeprom->group2_schmitt == IS_SCHMITT)
2721 output[0x0d] |= IS_SCHMITT;
2722 if (eeprom->group2_slew == SLOW_SLEW)
2723 output[0x0d] |= SLOW_SLEW;
2724
2725 if (eeprom->group3_drive > DRIVE_16MA)
2726 output[0x0d] |= DRIVE_16MA<<4;
2727 else
2728 output[0x0d] |= eeprom->group3_drive<<4;
2729 if (eeprom->group3_schmitt == IS_SCHMITT)
2730 output[0x0d] |= IS_SCHMITT<<4;
2731 if (eeprom->group3_slew == SLOW_SLEW)
2732 output[0x0d] |= SLOW_SLEW<<4;
2733
2734 output[0x18] = eeprom->chip;
2735
2736 break;
2737 case TYPE_4232H:
2738 output[0x18] = eeprom->chip;
2739 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
2740 break;
2741 case TYPE_232H:
2742 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
2743 if ( eeprom->channel_a_driver == DRIVER_VCP)
2744 output[0x00] |= DRIVER_VCPH;
2745 else
2746 output[0x00] &= ~DRIVER_VCPH;
2747 if (eeprom->powersave)
2748 output[0x01] |= POWER_SAVE_DISABLE_H;
2749 else
2750 output[0x01] &= ~POWER_SAVE_DISABLE_H;
2751 if (eeprom->clock_polarity)
2752 output[0x01] |= FT1284_CLK_IDLE_STATE;
2753 else
2754 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
2755 if (eeprom->data_order)
2756 output[0x01] |= FT1284_DATA_LSB;
2757 else
2758 output[0x01] &= ~FT1284_DATA_LSB;
2759 if (eeprom->flow_control)
2760 output[0x01] |= FT1284_FLOW_CONTROL;
2761 else
2762 output[0x01] &= ~FT1284_FLOW_CONTROL;
2763 if (eeprom->group0_drive > DRIVE_16MA)
2764 output[0x0c] |= DRIVE_16MA;
2765 else
2766 output[0x0c] |= eeprom->group0_drive;
2767 if (eeprom->group0_schmitt == IS_SCHMITT)
2768 output[0x0c] |= IS_SCHMITT;
2769 if (eeprom->group0_slew == SLOW_SLEW)
2770 output[0x0c] |= SLOW_SLEW;
2771
2772 if (eeprom->group1_drive > DRIVE_16MA)
2773 output[0x0d] |= DRIVE_16MA;
2774 else
2775 output[0x0d] |= eeprom->group1_drive;
2776 if (eeprom->group1_schmitt == IS_SCHMITT)
2777 output[0x0d] |= IS_SCHMITT;
2778 if (eeprom->group1_slew == SLOW_SLEW)
2779 output[0x0d] |= SLOW_SLEW;
2780
2781 set_ft232h_cbus(eeprom, output);
2782
2783 output[0x1e] = eeprom->chip;
2784 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
2785 break;
2786
2787 }
2788
2789 // calculate checksum
2790 checksum = 0xAAAA;
2791
2792 for (i = 0; i < eeprom->size/2-1; i++)
2793 {
2794 value = output[i*2];
2795 value += output[(i*2)+1] << 8;
2796
2797 checksum = value^checksum;
2798 checksum = (checksum << 1) | (checksum >> 15);
2799 }
2800
2801 output[eeprom->size-2] = checksum;
2802 output[eeprom->size-1] = checksum >> 8;
2803
2804 return user_area_size;
2805}
2806/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
2807 * EEPROM structure
2808 *
2809 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
2810 */
2811static unsigned char bit2type(unsigned char bits)
2812{
2813 switch (bits)
2814 {
2815 case 0: return CHANNEL_IS_UART;
2816 case 1: return CHANNEL_IS_FIFO;
2817 case 2: return CHANNEL_IS_OPTO;
2818 case 4: return CHANNEL_IS_CPU;
2819 case 8: return CHANNEL_IS_FT1284;
2820 default:
2821 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
2822 bits);
2823 }
2824 return 0;
2825}
2826/**
2827 Decode binary EEPROM image into an ftdi_eeprom structure.
2828
2829 \param ftdi pointer to ftdi_context
2830 \param verbose Decode EEPROM on stdout
2831
2832 \retval 0: all fine
2833 \retval -1: something went wrong
2834
2835 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2836 FIXME: Strings are malloc'ed here and should be freed somewhere
2837*/
2838int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2839{
2840 unsigned char i, j;
2841 unsigned short checksum, eeprom_checksum, value;
2842 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2843 int eeprom_size;
2844 struct ftdi_eeprom *eeprom;
2845 unsigned char *buf = ftdi->eeprom->buf;
2846 int release;
2847
2848 if (ftdi == NULL)
2849 ftdi_error_return(-1,"No context");
2850 if (ftdi->eeprom == NULL)
2851 ftdi_error_return(-1,"No eeprom structure");
2852
2853 eeprom = ftdi->eeprom;
2854 eeprom_size = eeprom->size;
2855
2856 // Addr 02: Vendor ID
2857 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2858
2859 // Addr 04: Product ID
2860 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2861
2862 release = buf[0x06] + (buf[0x07]<<8);
2863
2864 // Addr 08: Config descriptor
2865 // Bit 7: always 1
2866 // Bit 6: 1 if this device is self powered, 0 if bus powered
2867 // Bit 5: 1 if this device uses remote wakeup
2868 eeprom->self_powered = buf[0x08] & 0x40;
2869 eeprom->remote_wakeup = buf[0x08] & 0x20;
2870
2871 // Addr 09: Max power consumption: max power = value * 2 mA
2872 eeprom->max_power = buf[0x09];
2873
2874 // Addr 0A: Chip configuration
2875 // Bit 7: 0 - reserved
2876 // Bit 6: 0 - reserved
2877 // Bit 5: 0 - reserved
2878 // Bit 4: 1 - Change USB version on BM and 2232C
2879 // Bit 3: 1 - Use the serial number string
2880 // Bit 2: 1 - Enable suspend pull downs for lower power
2881 // Bit 1: 1 - Out EndPoint is Isochronous
2882 // Bit 0: 1 - In EndPoint is Isochronous
2883 //
2884 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2885 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2886 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2887 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
2888 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
2889
2890 // Addr 0C: USB version low byte when 0x0A
2891 // Addr 0D: USB version high byte when 0x0A
2892 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2893
2894 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2895 // Addr 0F: Length of manufacturer string
2896 manufacturer_size = buf[0x0F]/2;
2897 if (eeprom->manufacturer)
2898 free(eeprom->manufacturer);
2899 if (manufacturer_size > 0)
2900 {
2901 eeprom->manufacturer = malloc(manufacturer_size);
2902 if (eeprom->manufacturer)
2903 {
2904 // Decode manufacturer
2905 i = buf[0x0E] & (eeprom_size -1); // offset
2906 for (j=0;j<manufacturer_size-1;j++)
2907 {
2908 eeprom->manufacturer[j] = buf[2*j+i+2];
2909 }
2910 eeprom->manufacturer[j] = '\0';
2911 }
2912 }
2913 else eeprom->manufacturer = NULL;
2914
2915 // Addr 10: Offset of the product string + 0x80, calculated later
2916 // Addr 11: Length of product string
2917 if (eeprom->product)
2918 free(eeprom->product);
2919 product_size = buf[0x11]/2;
2920 if (product_size > 0)
2921 {
2922 eeprom->product = malloc(product_size);
2923 if (eeprom->product)
2924 {
2925 // Decode product name
2926 i = buf[0x10] & (eeprom_size -1); // offset
2927 for (j=0;j<product_size-1;j++)
2928 {
2929 eeprom->product[j] = buf[2*j+i+2];
2930 }
2931 eeprom->product[j] = '\0';
2932 }
2933 }
2934 else eeprom->product = NULL;
2935
2936 // Addr 12: Offset of the serial string + 0x80, calculated later
2937 // Addr 13: Length of serial string
2938 if (eeprom->serial)
2939 free(eeprom->serial);
2940 serial_size = buf[0x13]/2;
2941 if (serial_size > 0)
2942 {
2943 eeprom->serial = malloc(serial_size);
2944 if (eeprom->serial)
2945 {
2946 // Decode serial
2947 i = buf[0x12] & (eeprom_size -1); // offset
2948 for (j=0;j<serial_size-1;j++)
2949 {
2950 eeprom->serial[j] = buf[2*j+i+2];
2951 }
2952 eeprom->serial[j] = '\0';
2953 }
2954 }
2955 else eeprom->serial = NULL;
2956
2957 // verify checksum
2958 checksum = 0xAAAA;
2959
2960 for (i = 0; i < eeprom_size/2-1; i++)
2961 {
2962 value = buf[i*2];
2963 value += buf[(i*2)+1] << 8;
2964
2965 checksum = value^checksum;
2966 checksum = (checksum << 1) | (checksum >> 15);
2967 }
2968
2969 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2970
2971 if (eeprom_checksum != checksum)
2972 {
2973 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2974 ftdi_error_return(-1,"EEPROM checksum error");
2975 }
2976
2977 eeprom->channel_a_type = 0;
2978 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
2979 {
2980 eeprom->chip = -1;
2981 }
2982 else if (ftdi->type == TYPE_2232C)
2983 {
2984 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2985 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2986 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2987 eeprom->channel_b_type = buf[0x01] & 0x7;
2988 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2989 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
2990 eeprom->chip = buf[0x14];
2991 }
2992 else if (ftdi->type == TYPE_R)
2993 {
2994 /* TYPE_R flags D2XX, not VCP as all others*/
2995 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2996 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2997 if ( (buf[0x01]&0x40) != 0x40)
2998 fprintf(stderr,
2999 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3000 " If this happened with the\n"
3001 " EEPROM programmed by FTDI tools, please report "
3002 "to libftdi@developer.intra2net.com\n");
3003
3004 eeprom->chip = buf[0x16];
3005 // Addr 0B: Invert data lines
3006 // Works only on FT232R, not FT245R, but no way to distinguish
3007 eeprom->invert = buf[0x0B];
3008 // Addr 14: CBUS function: CBUS0, CBUS1
3009 // Addr 15: CBUS function: CBUS2, CBUS3
3010 // Addr 16: CBUS function: CBUS5
3011 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3012 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3013 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3014 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3015 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
3016 }
3017 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
3018 {
3019 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3020 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3021 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3022 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3023
3024 if (ftdi->type == TYPE_2232H)
3025 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
3026
3027 eeprom->chip = buf[0x18];
3028 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3029 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3030 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3031 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3032 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3033 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3034 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3035 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3036 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3037 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3038 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3039 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
3040 }
3041 else if (ftdi->type == TYPE_232H)
3042 {
3043 int i;
3044
3045 eeprom->channel_a_type = buf[0x00] & 0xf;
3046 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
3047 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3048 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3049 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
3050 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
3051 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3052 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3053 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3054 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3055 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3056 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3057
3058 for(i=0; i<5; i++)
3059 {
3060 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3061 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3062 }
3063 eeprom->chip = buf[0x1e];
3064 /*FIXME: Decipher more values*/
3065 }
3066
3067 if (verbose)
3068 {
3069 char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3070 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3071 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3072 fprintf(stdout, "Release: 0x%04x\n",release);
3073
3074 if (eeprom->self_powered)
3075 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3076 else
3077 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
3078 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3079 if (eeprom->manufacturer)
3080 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3081 if (eeprom->product)
3082 fprintf(stdout, "Product: %s\n",eeprom->product);
3083 if (eeprom->serial)
3084 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3085 fprintf(stdout, "Checksum : %04x\n", checksum);
3086 if (ftdi->type == TYPE_R)
3087 fprintf(stdout, "Internal EEPROM\n");
3088 else if (eeprom->chip >= 0x46)
3089 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3090 if (eeprom->suspend_dbus7)
3091 fprintf(stdout, "Suspend on DBUS7\n");
3092 if (eeprom->suspend_pull_downs)
3093 fprintf(stdout, "Pull IO pins low during suspend\n");
3094 if(eeprom->powersave)
3095 {
3096 if(ftdi->type >= TYPE_232H)
3097 fprintf(stdout,"Enter low power state on ACBUS7\n");
3098 }
3099 if (eeprom->remote_wakeup)
3100 fprintf(stdout, "Enable Remote Wake Up\n");
3101 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3102 if (ftdi->type >= TYPE_2232C)
3103 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3104 channel_mode[eeprom->channel_a_type],
3105 (eeprom->channel_a_driver)?" VCP":"",
3106 (eeprom->high_current_a)?" High Current IO":"");
3107 if (ftdi->type >= TYPE_232H)
3108 {
3109 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3110 (eeprom->clock_polarity)?"HIGH":"LOW",
3111 (eeprom->data_order)?"LSB":"MSB",
3112 (eeprom->flow_control)?"":"No ");
3113 }
3114 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
3115 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3116 channel_mode[eeprom->channel_b_type],
3117 (eeprom->channel_b_driver)?" VCP":"",
3118 (eeprom->high_current_b)?" High Current IO":"");
3119 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3120 eeprom->use_usb_version == USE_USB_VERSION_BIT)
3121 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3122
3123 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3124 {
3125 fprintf(stdout,"%s has %d mA drive%s%s\n",
3126 (ftdi->type == TYPE_2232H)?"AL":"A",
3127 (eeprom->group0_drive+1) *4,
3128 (eeprom->group0_schmitt)?" Schmitt Input":"",
3129 (eeprom->group0_slew)?" Slow Slew":"");
3130 fprintf(stdout,"%s has %d mA drive%s%s\n",
3131 (ftdi->type == TYPE_2232H)?"AH":"B",
3132 (eeprom->group1_drive+1) *4,
3133 (eeprom->group1_schmitt)?" Schmitt Input":"",
3134 (eeprom->group1_slew)?" Slow Slew":"");
3135 fprintf(stdout,"%s has %d mA drive%s%s\n",
3136 (ftdi->type == TYPE_2232H)?"BL":"C",
3137 (eeprom->group2_drive+1) *4,
3138 (eeprom->group2_schmitt)?" Schmitt Input":"",
3139 (eeprom->group2_slew)?" Slow Slew":"");
3140 fprintf(stdout,"%s has %d mA drive%s%s\n",
3141 (ftdi->type == TYPE_2232H)?"BH":"D",
3142 (eeprom->group3_drive+1) *4,
3143 (eeprom->group3_schmitt)?" Schmitt Input":"",
3144 (eeprom->group3_slew)?" Slow Slew":"");
3145 }
3146 else if (ftdi->type == TYPE_232H)
3147 {
3148 int i;
3149 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3150 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3151 "CLK30","CLK15","CLK7_5"
3152 };
3153 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3154 (eeprom->group0_drive+1) *4,
3155 (eeprom->group0_schmitt)?" Schmitt Input":"",
3156 (eeprom->group0_slew)?" Slow Slew":"");
3157 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3158 (eeprom->group1_drive+1) *4,
3159 (eeprom->group1_schmitt)?" Schmitt Input":"",
3160 (eeprom->group1_slew)?" Slow Slew":"");
3161 for (i=0; i<10; i++)
3162 {
3163 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3164 fprintf(stdout,"C%d Function: %s\n", i,
3165 cbush_mux[eeprom->cbus_function[i]]);
3166 }
3167
3168 }
3169
3170 if (ftdi->type == TYPE_R)
3171 {
3172 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3173 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3174 "IOMODE","BB_WR","BB_RD"
3175 };
3176 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3177
3178 if (eeprom->invert)
3179 {
3180 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3181 fprintf(stdout,"Inverted bits:");
3182 for (i=0; i<8; i++)
3183 if ((eeprom->invert & (1<<i)) == (1<<i))
3184 fprintf(stdout," %s",r_bits[i]);
3185 fprintf(stdout,"\n");
3186 }
3187 for (i=0; i<5; i++)
3188 {
3189 if (eeprom->cbus_function[i]<CBUS_BB)
3190 fprintf(stdout,"C%d Function: %s\n", i,
3191 cbus_mux[eeprom->cbus_function[i]]);
3192 else
3193 {
3194 if (i < 4)
3195 /* Running MPROG show that C0..3 have fixed function Synchronous
3196 Bit Bang mode */
3197 fprintf(stdout,"C%d BB Function: %s\n", i,
3198 cbus_BB[i]);
3199 else
3200 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3201 }
3202 }
3203 }
3204 }
3205 return 0;
3206}
3207
3208/**
3209 Get a value from the decoded EEPROM structure
3210
3211 \param ftdi pointer to ftdi_context
3212 \param value_name Enum of the value to query
3213 \param value Pointer to store read value
3214
3215 \retval 0: all fine
3216 \retval -1: Value doesn't exist
3217*/
3218int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3219{
3220 switch (value_name)
3221 {
3222 case VENDOR_ID:
3223 *value = ftdi->eeprom->vendor_id;
3224 break;
3225 case PRODUCT_ID:
3226 *value = ftdi->eeprom->product_id;
3227 break;
3228 case SELF_POWERED:
3229 *value = ftdi->eeprom->self_powered;
3230 break;
3231 case REMOTE_WAKEUP:
3232 *value = ftdi->eeprom->remote_wakeup;
3233 break;
3234 case IS_NOT_PNP:
3235 *value = ftdi->eeprom->is_not_pnp;
3236 break;
3237 case SUSPEND_DBUS7:
3238 *value = ftdi->eeprom->suspend_dbus7;
3239 break;
3240 case IN_IS_ISOCHRONOUS:
3241 *value = ftdi->eeprom->in_is_isochronous;
3242 break;
3243 case OUT_IS_ISOCHRONOUS:
3244 *value = ftdi->eeprom->out_is_isochronous;
3245 break;
3246 case SUSPEND_PULL_DOWNS:
3247 *value = ftdi->eeprom->suspend_pull_downs;
3248 break;
3249 case USE_SERIAL:
3250 *value = ftdi->eeprom->use_serial;
3251 break;
3252 case USB_VERSION:
3253 *value = ftdi->eeprom->usb_version;
3254 break;
3255 case USE_USB_VERSION:
3256 *value = ftdi->eeprom->use_usb_version;
3257 break;
3258 case MAX_POWER:
3259 *value = ftdi->eeprom->max_power;
3260 break;
3261 case CHANNEL_A_TYPE:
3262 *value = ftdi->eeprom->channel_a_type;
3263 break;
3264 case CHANNEL_B_TYPE:
3265 *value = ftdi->eeprom->channel_b_type;
3266 break;
3267 case CHANNEL_A_DRIVER:
3268 *value = ftdi->eeprom->channel_a_driver;
3269 break;
3270 case CHANNEL_B_DRIVER:
3271 *value = ftdi->eeprom->channel_b_driver;
3272 break;
3273 case CBUS_FUNCTION_0:
3274 *value = ftdi->eeprom->cbus_function[0];
3275 break;
3276 case CBUS_FUNCTION_1:
3277 *value = ftdi->eeprom->cbus_function[1];
3278 break;
3279 case CBUS_FUNCTION_2:
3280 *value = ftdi->eeprom->cbus_function[2];
3281 break;
3282 case CBUS_FUNCTION_3:
3283 *value = ftdi->eeprom->cbus_function[3];
3284 break;
3285 case CBUS_FUNCTION_4:
3286 *value = ftdi->eeprom->cbus_function[4];
3287 break;
3288 case CBUS_FUNCTION_5:
3289 *value = ftdi->eeprom->cbus_function[5];
3290 break;
3291 case CBUS_FUNCTION_6:
3292 *value = ftdi->eeprom->cbus_function[6];
3293 break;
3294 case CBUS_FUNCTION_7:
3295 *value = ftdi->eeprom->cbus_function[7];
3296 break;
3297 case CBUS_FUNCTION_8:
3298 *value = ftdi->eeprom->cbus_function[8];
3299 break;
3300 case CBUS_FUNCTION_9:
3301 *value = ftdi->eeprom->cbus_function[8];
3302 break;
3303 case HIGH_CURRENT:
3304 *value = ftdi->eeprom->high_current;
3305 break;
3306 case HIGH_CURRENT_A:
3307 *value = ftdi->eeprom->high_current_a;
3308 break;
3309 case HIGH_CURRENT_B:
3310 *value = ftdi->eeprom->high_current_b;
3311 break;
3312 case INVERT:
3313 *value = ftdi->eeprom->invert;
3314 break;
3315 case GROUP0_DRIVE:
3316 *value = ftdi->eeprom->group0_drive;
3317 break;
3318 case GROUP0_SCHMITT:
3319 *value = ftdi->eeprom->group0_schmitt;
3320 break;
3321 case GROUP0_SLEW:
3322 *value = ftdi->eeprom->group0_slew;
3323 break;
3324 case GROUP1_DRIVE:
3325 *value = ftdi->eeprom->group1_drive;
3326 break;
3327 case GROUP1_SCHMITT:
3328 *value = ftdi->eeprom->group1_schmitt;
3329 break;
3330 case GROUP1_SLEW:
3331 *value = ftdi->eeprom->group1_slew;
3332 break;
3333 case GROUP2_DRIVE:
3334 *value = ftdi->eeprom->group2_drive;
3335 break;
3336 case GROUP2_SCHMITT:
3337 *value = ftdi->eeprom->group2_schmitt;
3338 break;
3339 case GROUP2_SLEW:
3340 *value = ftdi->eeprom->group2_slew;
3341 break;
3342 case GROUP3_DRIVE:
3343 *value = ftdi->eeprom->group3_drive;
3344 break;
3345 case GROUP3_SCHMITT:
3346 *value = ftdi->eeprom->group3_schmitt;
3347 break;
3348 case GROUP3_SLEW:
3349 *value = ftdi->eeprom->group3_slew;
3350 break;
3351 case POWER_SAVE:
3352 *value = ftdi->eeprom->powersave;
3353 break;
3354 case CLOCK_POLARITY:
3355 *value = ftdi->eeprom->clock_polarity;
3356 break;
3357 case DATA_ORDER:
3358 *value = ftdi->eeprom->data_order;
3359 break;
3360 case FLOW_CONTROL:
3361 *value = ftdi->eeprom->flow_control;
3362 break;
3363 case CHIP_TYPE:
3364 *value = ftdi->eeprom->chip;
3365 break;
3366 case CHIP_SIZE:
3367 *value = ftdi->eeprom->size;
3368 break;
3369 default:
3370 ftdi_error_return(-1, "Request for unknown EEPROM value");
3371 }
3372 return 0;
3373}
3374
3375/**
3376 Set a value in the decoded EEPROM Structure
3377 No parameter checking is performed
3378
3379 \param ftdi pointer to ftdi_context
3380 \param value_name Enum of the value to set
3381 \param value to set
3382
3383 \retval 0: all fine
3384 \retval -1: Value doesn't exist
3385 \retval -2: Value not user settable
3386*/
3387int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3388{
3389 switch (value_name)
3390 {
3391 case VENDOR_ID:
3392 ftdi->eeprom->vendor_id = value;
3393 break;
3394 case PRODUCT_ID:
3395 ftdi->eeprom->product_id = value;
3396 break;
3397 case SELF_POWERED:
3398 ftdi->eeprom->self_powered = value;
3399 break;
3400 case REMOTE_WAKEUP:
3401 ftdi->eeprom->remote_wakeup = value;
3402 break;
3403 case IS_NOT_PNP:
3404 ftdi->eeprom->is_not_pnp = value;
3405 break;
3406 case SUSPEND_DBUS7:
3407 ftdi->eeprom->suspend_dbus7 = value;
3408 break;
3409 case IN_IS_ISOCHRONOUS:
3410 ftdi->eeprom->in_is_isochronous = value;
3411 break;
3412 case OUT_IS_ISOCHRONOUS:
3413 ftdi->eeprom->out_is_isochronous = value;
3414 break;
3415 case SUSPEND_PULL_DOWNS:
3416 ftdi->eeprom->suspend_pull_downs = value;
3417 break;
3418 case USE_SERIAL:
3419 ftdi->eeprom->use_serial = value;
3420 break;
3421 case USB_VERSION:
3422 ftdi->eeprom->usb_version = value;
3423 break;
3424 case USE_USB_VERSION:
3425 ftdi->eeprom->use_usb_version = value;
3426 break;
3427 case MAX_POWER:
3428 ftdi->eeprom->max_power = value;
3429 break;
3430 case CHANNEL_A_TYPE:
3431 ftdi->eeprom->channel_a_type = value;
3432 break;
3433 case CHANNEL_B_TYPE:
3434 ftdi->eeprom->channel_b_type = value;
3435 break;
3436 case CHANNEL_A_DRIVER:
3437 ftdi->eeprom->channel_a_driver = value;
3438 break;
3439 case CHANNEL_B_DRIVER:
3440 ftdi->eeprom->channel_b_driver = value;
3441 break;
3442 case CBUS_FUNCTION_0:
3443 ftdi->eeprom->cbus_function[0] = value;
3444 break;
3445 case CBUS_FUNCTION_1:
3446 ftdi->eeprom->cbus_function[1] = value;
3447 break;
3448 case CBUS_FUNCTION_2:
3449 ftdi->eeprom->cbus_function[2] = value;
3450 break;
3451 case CBUS_FUNCTION_3:
3452 ftdi->eeprom->cbus_function[3] = value;
3453 break;
3454 case CBUS_FUNCTION_4:
3455 ftdi->eeprom->cbus_function[4] = value;
3456 break;
3457 case CBUS_FUNCTION_5:
3458 ftdi->eeprom->cbus_function[5] = value;
3459 break;
3460 case CBUS_FUNCTION_6:
3461 ftdi->eeprom->cbus_function[6] = value;
3462 break;
3463 case CBUS_FUNCTION_7:
3464 ftdi->eeprom->cbus_function[7] = value;
3465 break;
3466 case CBUS_FUNCTION_8:
3467 ftdi->eeprom->cbus_function[8] = value;
3468 break;
3469 case CBUS_FUNCTION_9:
3470 ftdi->eeprom->cbus_function[9] = value;
3471 break;
3472 case HIGH_CURRENT:
3473 ftdi->eeprom->high_current = value;
3474 break;
3475 case HIGH_CURRENT_A:
3476 ftdi->eeprom->high_current_a = value;
3477 break;
3478 case HIGH_CURRENT_B:
3479 ftdi->eeprom->high_current_b = value;
3480 break;
3481 case INVERT:
3482 ftdi->eeprom->invert = value;
3483 break;
3484 case GROUP0_DRIVE:
3485 ftdi->eeprom->group0_drive = value;
3486 break;
3487 case GROUP0_SCHMITT:
3488 ftdi->eeprom->group0_schmitt = value;
3489 break;
3490 case GROUP0_SLEW:
3491 ftdi->eeprom->group0_slew = value;
3492 break;
3493 case GROUP1_DRIVE:
3494 ftdi->eeprom->group1_drive = value;
3495 break;
3496 case GROUP1_SCHMITT:
3497 ftdi->eeprom->group1_schmitt = value;
3498 break;
3499 case GROUP1_SLEW:
3500 ftdi->eeprom->group1_slew = value;
3501 break;
3502 case GROUP2_DRIVE:
3503 ftdi->eeprom->group2_drive = value;
3504 break;
3505 case GROUP2_SCHMITT:
3506 ftdi->eeprom->group2_schmitt = value;
3507 break;
3508 case GROUP2_SLEW:
3509 ftdi->eeprom->group2_slew = value;
3510 break;
3511 case GROUP3_DRIVE:
3512 ftdi->eeprom->group3_drive = value;
3513 break;
3514 case GROUP3_SCHMITT:
3515 ftdi->eeprom->group3_schmitt = value;
3516 break;
3517 case GROUP3_SLEW:
3518 ftdi->eeprom->group3_slew = value;
3519 break;
3520 case CHIP_TYPE:
3521 ftdi->eeprom->chip = value;
3522 break;
3523 case POWER_SAVE:
3524 ftdi->eeprom->powersave = value;
3525 break;
3526 case CLOCK_POLARITY:
3527 ftdi->eeprom->clock_polarity = value;
3528 break;
3529 case DATA_ORDER:
3530 ftdi->eeprom->data_order = value;
3531 break;
3532 case FLOW_CONTROL:
3533 ftdi->eeprom->flow_control = value;
3534 break;
3535 case CHIP_SIZE:
3536 ftdi_error_return(-2, "EEPROM Value can't be changed");
3537 default :
3538 ftdi_error_return(-1, "Request to unknown EEPROM value");
3539 }
3540 return 0;
3541}
3542
3543/** Get the read-only buffer to the binary EEPROM content
3544
3545 \param ftdi pointer to ftdi_context
3546 \param buf buffer to receive EEPROM content
3547 \param size Size of receiving buffer
3548
3549 \retval 0: All fine
3550 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3551 \retval -2: Not enough room to store eeprom
3552*/
3553int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3554{
3555 if (!ftdi || !(ftdi->eeprom))
3556 ftdi_error_return(-1, "No appropriate structure");
3557
3558 if (!buf || size < ftdi->eeprom->size)
3559 ftdi_error_return(-1, "Not enough room to store eeprom");
3560
3561 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3562 if (size > FTDI_MAX_EEPROM_SIZE)
3563 size = FTDI_MAX_EEPROM_SIZE;
3564
3565 memcpy(buf, ftdi->eeprom->buf, size);
3566
3567 return 0;
3568}
3569
3570/** Set the EEPROM content from the user-supplied prefilled buffer
3571
3572 \param ftdi pointer to ftdi_context
3573 \param buf buffer to read EEPROM content
3574 \param size Size of buffer
3575
3576 \retval 0: All fine
3577 \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing
3578*/
3579int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
3580{
3581 if (!ftdi || !(ftdi->eeprom) || !buf)
3582 ftdi_error_return(-1, "No appropriate structure");
3583
3584 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3585 if (size > FTDI_MAX_EEPROM_SIZE)
3586 size = FTDI_MAX_EEPROM_SIZE;
3587
3588 memcpy(ftdi->eeprom->buf, buf, size);
3589
3590 return 0;
3591}
3592
3593/**
3594 Read eeprom location
3595
3596 \param ftdi pointer to ftdi_context
3597 \param eeprom_addr Address of eeprom location to be read
3598 \param eeprom_val Pointer to store read eeprom location
3599
3600 \retval 0: all fine
3601 \retval -1: read failed
3602 \retval -2: USB device unavailable
3603*/
3604int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3605{
3606 if (ftdi == NULL || ftdi->usb_dev == NULL)
3607 ftdi_error_return(-2, "USB device unavailable");
3608
3609 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3610 ftdi_error_return(-1, "reading eeprom failed");
3611
3612 return 0;
3613}
3614
3615/**
3616 Read eeprom
3617
3618 \param ftdi pointer to ftdi_context
3619
3620 \retval 0: all fine
3621 \retval -1: read failed
3622 \retval -2: USB device unavailable
3623*/
3624int ftdi_read_eeprom(struct ftdi_context *ftdi)
3625{
3626 int i;
3627 unsigned char *buf;
3628
3629 if (ftdi == NULL || ftdi->usb_dev == NULL)
3630 ftdi_error_return(-2, "USB device unavailable");
3631 buf = ftdi->eeprom->buf;
3632
3633 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
3634 {
3635 if (libusb_control_transfer(
3636 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3637 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
3638 ftdi_error_return(-1, "reading eeprom failed");
3639 }
3640
3641 if (ftdi->type == TYPE_R)
3642 ftdi->eeprom->size = 0x80;
3643 /* Guesses size of eeprom by comparing halves
3644 - will not work with blank eeprom */
3645 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3646 ftdi->eeprom->size = -1;
3647 else if (memcmp(buf,&buf[0x80],0x80) == 0)
3648 ftdi->eeprom->size = 0x80;
3649 else if (memcmp(buf,&buf[0x40],0x40) == 0)
3650 ftdi->eeprom->size = 0x40;
3651 else
3652 ftdi->eeprom->size = 0x100;
3653 return 0;
3654}
3655
3656/*
3657 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3658 Function is only used internally
3659 \internal
3660*/
3661static unsigned char ftdi_read_chipid_shift(unsigned char value)
3662{
3663 return ((value & 1) << 1) |
3664 ((value & 2) << 5) |
3665 ((value & 4) >> 2) |
3666 ((value & 8) << 4) |
3667 ((value & 16) >> 1) |
3668 ((value & 32) >> 1) |
3669 ((value & 64) >> 4) |
3670 ((value & 128) >> 2);
3671}
3672
3673/**
3674 Read the FTDIChip-ID from R-type devices
3675
3676 \param ftdi pointer to ftdi_context
3677 \param chipid Pointer to store FTDIChip-ID
3678
3679 \retval 0: all fine
3680 \retval -1: read failed
3681 \retval -2: USB device unavailable
3682*/
3683int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3684{
3685 unsigned int a = 0, b = 0;
3686
3687 if (ftdi == NULL || ftdi->usb_dev == NULL)
3688 ftdi_error_return(-2, "USB device unavailable");
3689
3690 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3691 {
3692 a = a << 8 | a >> 8;
3693 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3694 {
3695 b = b << 8 | b >> 8;
3696 a = (a << 16) | (b & 0xFFFF);
3697 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3698 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3699 *chipid = a ^ 0xa5f0f7d1;
3700 return 0;
3701 }
3702 }
3703
3704 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3705}
3706
3707/**
3708 Write eeprom location
3709
3710 \param ftdi pointer to ftdi_context
3711 \param eeprom_addr Address of eeprom location to be written
3712 \param eeprom_val Value to be written
3713
3714 \retval 0: all fine
3715 \retval -1: write failed
3716 \retval -2: USB device unavailable
3717 \retval -3: Invalid access to checksum protected area below 0x80
3718 \retval -4: Device can't access unprotected area
3719 \retval -5: Reading chip type failed
3720*/
3721int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3722 unsigned short eeprom_val)
3723{
3724 int chip_type_location;
3725 unsigned short chip_type;
3726
3727 if (ftdi == NULL || ftdi->usb_dev == NULL)
3728 ftdi_error_return(-2, "USB device unavailable");
3729
3730 if (eeprom_addr <0x80)
3731 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3732
3733
3734 switch (ftdi->type)
3735 {
3736 case TYPE_BM:
3737 case TYPE_2232C:
3738 chip_type_location = 0x14;
3739 break;
3740 case TYPE_2232H:
3741 case TYPE_4232H:
3742 chip_type_location = 0x18;
3743 break;
3744 case TYPE_232H:
3745 chip_type_location = 0x1e;
3746 break;
3747 default:
3748 ftdi_error_return(-4, "Device can't access unprotected area");
3749 }
3750
3751 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3752 ftdi_error_return(-5, "Reading failed failed");
3753 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3754 if ((chip_type & 0xff) != 0x66)
3755 {
3756 ftdi_error_return(-6, "EEPROM is not of 93x66");
3757 }
3758
3759 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3760 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3761 NULL, 0, ftdi->usb_write_timeout) != 0)
3762 ftdi_error_return(-1, "unable to write eeprom");
3763
3764 return 0;
3765}
3766
3767/**
3768 Write eeprom
3769
3770 \param ftdi pointer to ftdi_context
3771
3772 \retval 0: all fine
3773 \retval -1: read failed
3774 \retval -2: USB device unavailable
3775 \retval -3: EEPROM not initialized for the connected device;
3776*/
3777int ftdi_write_eeprom(struct ftdi_context *ftdi)
3778{
3779 unsigned short usb_val, status;
3780 int i, ret;
3781 unsigned char *eeprom;
3782
3783 if (ftdi == NULL || ftdi->usb_dev == NULL)
3784 ftdi_error_return(-2, "USB device unavailable");
3785
3786 if(ftdi->eeprom->initialized_for_connected_device == 0)
3787 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
3788
3789 eeprom = ftdi->eeprom->buf;
3790
3791 /* These commands were traced while running MProg */
3792 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3793 return ret;
3794 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3795 return ret;
3796 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3797 return ret;
3798
3799 for (i = 0; i < ftdi->eeprom->size/2; i++)
3800 {
3801 usb_val = eeprom[i*2];
3802 usb_val += eeprom[(i*2)+1] << 8;
3803 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3804 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3805 NULL, 0, ftdi->usb_write_timeout) < 0)
3806 ftdi_error_return(-1, "unable to write eeprom");
3807 }
3808
3809 return 0;
3810}
3811
3812/**
3813 Erase eeprom
3814
3815 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3816
3817 \param ftdi pointer to ftdi_context
3818
3819 \retval 0: all fine
3820 \retval -1: erase failed
3821 \retval -2: USB device unavailable
3822 \retval -3: Writing magic failed
3823 \retval -4: Read EEPROM failed
3824 \retval -5: Unexpected EEPROM value
3825*/
3826#define MAGIC 0x55aa
3827int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3828{
3829 unsigned short eeprom_value;
3830 if (ftdi == NULL || ftdi->usb_dev == NULL)
3831 ftdi_error_return(-2, "USB device unavailable");
3832
3833 if (ftdi->type == TYPE_R)
3834 {
3835 ftdi->eeprom->chip = 0;
3836 return 0;
3837 }
3838
3839 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3840 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3841 ftdi_error_return(-1, "unable to erase eeprom");
3842
3843
3844 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3845 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3846 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3847 Chip is 93x66 if magic is only read at word position 0xc0*/
3848 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3849 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3850 NULL, 0, ftdi->usb_write_timeout) != 0)
3851 ftdi_error_return(-3, "Writing magic failed");
3852 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3853 ftdi_error_return(-4, "Reading failed failed");
3854 if (eeprom_value == MAGIC)
3855 {
3856 ftdi->eeprom->chip = 0x46;
3857 }
3858 else
3859 {
3860 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3861 ftdi_error_return(-4, "Reading failed failed");
3862 if (eeprom_value == MAGIC)
3863 ftdi->eeprom->chip = 0x56;
3864 else
3865 {
3866 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3867 ftdi_error_return(-4, "Reading failed failed");
3868 if (eeprom_value == MAGIC)
3869 ftdi->eeprom->chip = 0x66;
3870 else
3871 {
3872 ftdi->eeprom->chip = -1;
3873 }
3874 }
3875 }
3876 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3877 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3878 ftdi_error_return(-1, "unable to erase eeprom");
3879 return 0;
3880}
3881
3882/**
3883 Get string representation for last error code
3884
3885 \param ftdi pointer to ftdi_context
3886
3887 \retval Pointer to error string
3888*/
3889char *ftdi_get_error_string (struct ftdi_context *ftdi)
3890{
3891 if (ftdi == NULL)
3892 return "";
3893
3894 return ftdi->error_str;
3895}
3896
3897/* @} end of doxygen libftdi group */