Add TYPE_230X to baudrate test code
[libftdi] / test / baudrate.cpp
... / ...
CommitLineData
1/**@file
2@brief Test baudrate calculator code
3
4@author Thomas Jarosch and Uwe Bonnes
5*/
6
7/***************************************************************************
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU Lesser General Public License *
11 * version 2.1 as published by the Free Software Foundation; *
12 * *
13 ***************************************************************************/
14
15#include <ftdi.h>
16
17#define BOOST_TEST_DYN_LINK
18#include <boost/test/unit_test.hpp>
19#include <boost/foreach.hpp>
20#include <vector>
21#include <map>
22#include <math.h>
23
24using namespace std;
25
26extern "C" int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
27 unsigned short *value, unsigned short *index);
28
29/// Basic initialization of libftdi for every test
30class BaseFTDIFixture
31{
32protected:
33 ftdi_context *ftdi;
34
35public:
36 BaseFTDIFixture()
37 : ftdi(NULL)
38 {
39 ftdi = ftdi_new();
40 }
41
42 virtual ~BaseFTDIFixture()
43 {
44 delete ftdi;
45 ftdi = NULL;
46 }
47};
48
49BOOST_FIXTURE_TEST_SUITE(Baudrate, BaseFTDIFixture)
50
51/// Helper class to store the convert_baudrate_UT_export result
52struct calc_result
53{
54 int actual_baudrate;
55 unsigned short divisor;
56 unsigned short fractional_bits;
57 unsigned short clock;
58
59 calc_result(int actual, unsigned short my_divisor, unsigned short my_fractional_bits, unsigned short my_clock)
60 : actual_baudrate(actual)
61 , divisor(my_divisor)
62 , fractional_bits(my_fractional_bits)
63 , clock(my_clock)
64 {
65 }
66
67 calc_result()
68 : actual_baudrate(0)
69 , divisor(0)
70 , fractional_bits(0)
71 , clock(0)
72 {
73 }
74};
75
76/**
77 * @brief Test convert_baudrate code against a list of baud rates
78 *
79 * @param baudrates Baudrates to check
80 **/
81static void test_baudrates(ftdi_context *ftdi, const map<int, calc_result> &baudrates)
82{
83 typedef std::pair<int, calc_result> baudrate_type;
84 BOOST_FOREACH(const baudrate_type &baudrate, baudrates)
85 {
86 unsigned short calc_value = 0, calc_index = 0;
87 int calc_baudrate = convert_baudrate_UT_export(baudrate.first, ftdi, &calc_value, &calc_index);
88
89 const calc_result *res = &baudrate.second;
90
91 unsigned short divisor = calc_value & 0x3fff;
92 unsigned short fractional_bits = (calc_value >> 14);
93 unsigned short clock = (calc_index & 0x200) ? 120 : 48;
94
95 switch (ftdi->type)
96 {
97 case TYPE_232H:
98 case TYPE_2232H:
99 case TYPE_4232H:
100 fractional_bits |= (calc_index & 0x100) ? 4 : 0;
101 break;
102 case TYPE_R:
103 case TYPE_2232C:
104 case TYPE_BM:
105 case TYPE_230X:
106 fractional_bits |= (calc_index & 0x001) ? 4 : 0;
107 break;
108 default:;
109 }
110
111 // Aid debugging since this test is a generic function
112 BOOST_CHECK_MESSAGE(res->actual_baudrate == calc_baudrate && res->divisor == divisor && res->fractional_bits == fractional_bits
113 && res->clock == clock,
114 "\n\nERROR: baudrate calculation failed for --" << baudrate.first << " baud--. Details below: ");
115
116 BOOST_CHECK_EQUAL(res->actual_baudrate, calc_baudrate);
117 BOOST_CHECK_EQUAL(res->divisor, divisor);
118 BOOST_CHECK_EQUAL(res->fractional_bits, fractional_bits);
119 BOOST_CHECK_EQUAL(res->clock, clock);
120 }
121}
122
123BOOST_AUTO_TEST_CASE(TypeAMFixedBaudrates)
124{
125 ftdi->type = TYPE_AM;
126
127 map<int, calc_result> baudrates;
128 baudrates[183] = calc_result(183, 16383, 0, 48);
129 baudrates[300] = calc_result(300, 10000, 0, 48);
130 baudrates[600] = calc_result(600, 5000, 0, 48);
131 baudrates[1200] = calc_result(1200, 2500, 0, 48);
132 baudrates[2400] = calc_result(2400, 1250, 0, 48);
133 baudrates[4800] = calc_result(4800, 625, 0, 48);
134 baudrates[9600] = calc_result(9600, 312, 1, 48);
135 baudrates[19200] = calc_result(19200, 156, 2, 48);
136 baudrates[38400] = calc_result(38400, 78, 3, 48);
137 baudrates[57600] = calc_result(57554, 52, 3, 48);
138 baudrates[115200] = calc_result(115385, 26, 0, 48);
139 baudrates[230400] = calc_result(230769, 13, 0, 48);
140 baudrates[460800] = calc_result(461538, 6, 1, 48);
141 baudrates[921600] = calc_result(923077, 3, 2, 48);
142 baudrates[1000000] = calc_result(1000000, 3, 0, 48);
143 baudrates[1090512] = calc_result(1000000, 3, 0, 48);
144 baudrates[1090909] = calc_result(1000000, 3, 0, 48);
145 baudrates[1090910] = calc_result(1000000, 3, 0, 48);
146 baudrates[1200000] = calc_result(1200000, 2, 1, 48);
147 baudrates[1333333] = calc_result(1333333, 2, 2, 48);
148 baudrates[1411764] = calc_result(1411765, 2, 3, 48);
149 baudrates[1500000] = calc_result(1500000, 2, 0, 48);
150 baudrates[2000000] = calc_result(1500000, 2, 0, 48);
151 baudrates[3000000] = calc_result(3000000, 0, 0, 48);
152
153 test_baudrates(ftdi, baudrates);
154}
155
156BOOST_AUTO_TEST_CASE(TypeBMFixedBaudrates)
157{
158 // Unify testing of chips behaving the same
159 std::vector<enum ftdi_chip_type> test_types;
160 test_types.push_back(TYPE_BM);
161 test_types.push_back(TYPE_2232C);
162 test_types.push_back(TYPE_R);
163 test_types.push_back(TYPE_230X);
164
165 map<int, calc_result> baudrates;
166 baudrates[183] = calc_result(183, 16383, 7, 48);
167 baudrates[184] = calc_result(184, 16304, 4, 48);
168 baudrates[300] = calc_result(300, 10000, 0, 48);
169 baudrates[600] = calc_result(600, 5000, 0, 48);
170 baudrates[1200] = calc_result(1200, 2500, 0, 48);
171 baudrates[2400] = calc_result(2400, 1250, 0, 48);
172 baudrates[4800] = calc_result(4800, 625, 0, 48);
173 baudrates[9600] = calc_result(9600, 312, 1, 48);
174 baudrates[19200] = calc_result(19200, 156, 2, 48);
175 baudrates[38400] = calc_result(38400, 78, 3, 48);
176 baudrates[57600] = calc_result(57554, 52, 3, 48);
177 baudrates[115200] = calc_result(115385, 26, 0, 48);
178 baudrates[230400] = calc_result(230769, 13, 0, 48);
179 baudrates[460800] = calc_result(461538, 6, 1, 48);
180 baudrates[921600] = calc_result(923077, 3, 2, 48);
181 baudrates[1000000] = calc_result(1000000, 3, 0, 48);
182 baudrates[1050000] = calc_result(1043478, 2, 7, 48);
183 baudrates[1400000] = calc_result(1411765, 2, 3, 48);
184 baudrates[1500000] = calc_result(1500000, 2, 0, 48);
185 baudrates[2000000] = calc_result(2000000, 1, 0, 48);
186 baudrates[3000000] = calc_result(3000000, 0, 0, 48);
187
188 baudrates[(3000000*16/(2*16+15))-1] = calc_result(round(3000000/3.000), 3, 0, 48);
189 baudrates[ 3000000*16/(2*16+15) ] = calc_result(round(3000000/3.000), 3, 0, 48);
190 baudrates[(3000000*16/(2*16+15))+1] = calc_result(round(3000000/2.875), 2, 7, 48);
191 baudrates[ 3000000*16/(2*16+13) ] = calc_result(round(3000000/2.875), 2, 7, 48);
192 baudrates[(3000000*16/(2*16+13))+1] = calc_result(round(3000000/2.750), 2, 6, 48);
193 baudrates[ 3000000*16/(2*16+11) ] = calc_result(round(3000000/2.750), 2, 6, 48);
194 baudrates[(3000000*16/(2*16+11))+1] = calc_result(round(3000000/2.625), 2, 5, 48);
195 baudrates[ 3000000*16/(2*16+ 9) ] = calc_result(round(3000000/2.625), 2, 5, 48);
196 baudrates[(3000000*16/(2*16+ 9))+1] = calc_result(round(3000000/2.500), 2, 1, 48);
197 baudrates[ 3000000*16/(2*16+ 7) ] = calc_result(round(3000000/2.500), 2, 1, 48);
198 baudrates[(3000000*16/(2*16+ 7))+1] = calc_result(round(3000000/2.375), 2, 4, 48);
199 baudrates[ 3000000*16/(2*16+ 5) ] = calc_result(round(3000000/2.375), 2, 4, 48);
200 baudrates[(3000000*16/(2*16+ 5))+1] = calc_result(round(3000000/2.250), 2, 2, 48);
201 baudrates[ 3000000*16/(2*16+ 3) ] = calc_result(round(3000000/2.250), 2, 2, 48);
202 baudrates[(3000000*16/(2*16+ 3))+1] = calc_result(round(3000000/2.125), 2, 3, 48);
203 baudrates[ 3000000*16/(2*16+ 1) ] = calc_result(round(3000000/2.125), 2, 3, 48);
204 baudrates[(3000000*16/(2*16+ 1))+1] = calc_result(round(3000000/2.000), 2, 0, 48);
205
206 BOOST_FOREACH(const enum ftdi_chip_type &test_chip_type, test_types)
207 {
208 ftdi->type = test_chip_type;
209 test_baudrates(ftdi, baudrates);
210 }
211}
212
213BOOST_AUTO_TEST_CASE(TypeHFixedBaudrates)
214{
215 // Unify testing of chips behaving the same
216 std::vector<enum ftdi_chip_type> test_types;
217 test_types.push_back(TYPE_2232H);
218 test_types.push_back(TYPE_4232H);
219 test_types.push_back(TYPE_232H);
220
221 map<int, calc_result> baudrates;
222 baudrates[183] = calc_result(183, 16383, 7, 48);
223 baudrates[184] = calc_result(184, 16304, 4, 48);
224 baudrates[300] = calc_result(300, 10000, 0, 48);
225 baudrates[600] = calc_result(600, 5000, 0, 48);
226 baudrates[1200] = calc_result(1200, 10000, 0, 120);
227 baudrates[2400] = calc_result(2400, 5000, 0, 120);
228 baudrates[4800] = calc_result(4800, 2500, 0, 120);
229 baudrates[9600] = calc_result(9600, 1250, 0, 120);
230 baudrates[19200] = calc_result(19200, 625, 0, 120);
231 baudrates[38400] = calc_result(38400, 312, 1, 120);
232 baudrates[57600] = calc_result(57588, 208, 4, 120);
233 baudrates[115200] = calc_result(115246, 104, 3, 120);
234 baudrates[230400] = calc_result(230216, 52, 3, 120);
235 baudrates[460800] = calc_result(461538, 26, 0, 120);
236 baudrates[921600] = calc_result(923077, 13, 0, 120);
237 baudrates[1000000] = calc_result(1000000, 12, 0, 120);
238 baudrates[1000000] = calc_result(1000000, 12, 0, 120);
239 baudrates[6000000] = calc_result(6000000, 2, 0, 120);
240 baudrates[4173913] = calc_result(4173913, 2, 7, 120);
241 baudrates[8000000] = calc_result(8000000, 1, 0, 120);
242 baudrates[12000000] = calc_result(12000000, 0, 0, 120);
243
244 baudrates[(12000000*16/(2*16+15))-1] = calc_result(round(12000000/3.000), 3, 0, 120);
245 baudrates[ 12000000*16/(2*16+15) ] = calc_result(round(12000000/3.000), 3, 0, 120);
246 baudrates[(12000000*16/(2*16+15))+1] = calc_result(round(12000000/2.875), 2, 7, 120);
247 baudrates[ 12000000*16/(2*16+13) ] = calc_result(round(12000000/2.875), 2, 7, 120);
248 baudrates[(12000000*16/(2*16+13))+1] = calc_result(round(12000000/2.750), 2, 6, 120);
249 baudrates[ 12000000*16/(2*16+11) ] = calc_result(round(12000000/2.750), 2, 6, 120);
250 baudrates[(12000000*16/(2*16+11))+1] = calc_result(round(12000000/2.625), 2, 5, 120);
251 baudrates[ 12000000*16/(2*16+ 9) ] = calc_result(round(12000000/2.625), 2, 5, 120);
252 baudrates[(12000000*16/(2*16+ 9))+1] = calc_result(round(12000000/2.500), 2, 1, 120);
253 baudrates[ 12000000*16/(2*16+ 7) ] = calc_result(round(12000000/2.500), 2, 1, 120);
254 baudrates[(12000000*16/(2*16+ 7))+1] = calc_result(round(12000000/2.375), 2, 4, 120);
255 baudrates[ 12000000*16/(2*16+ 5) ] = calc_result(round(12000000/2.375), 2, 4, 120);
256 baudrates[(12000000*16/(2*16+ 5))+1] = calc_result(round(12000000/2.250), 2, 2, 120);
257 baudrates[ 12000000*16/(2*16+ 3) ] = calc_result(round(12000000/2.250), 2, 2, 120);
258 baudrates[(12000000*16/(2*16+ 3))+1] = calc_result(round(12000000/2.125), 2, 3, 120);
259 baudrates[ 12000000*16/(2*16+ 1) ] = calc_result(round(12000000/2.125), 2, 3, 120);
260 baudrates[(12000000*16/(2*16+ 1))+1] = calc_result(round(12000000/2.000), 2, 0, 120);
261
262 BOOST_FOREACH(const enum ftdi_chip_type &test_chip_type, test_types)
263 {
264 ftdi->type = test_chip_type;
265 test_baudrates(ftdi, baudrates);
266 }
267}
268
269BOOST_AUTO_TEST_SUITE_END()