libftdi: (tomj) make async code optional
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2008 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/de/produkte/opensource/ftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <usb.h>
32#include <string.h>
33#include <errno.h>
34
35#include "ftdi.h"
36
37/* stuff needed for async write */
38#ifdef LIBFTDI_LINUX_ASYNC_MODE
39 #include <sys/ioctl.h>
40 #include <sys/time.h>
41 #include <sys/select.h>
42 #include <sys/types.h>
43 #include <unistd.h>
44 #include <linux/usbdevice_fs.h>
45#endif
46
47#define ftdi_error_return(code, str) do { \
48 ftdi->error_str = str; \
49 return code; \
50 } while(0);
51
52
53/**
54 Initializes a ftdi_context.
55
56 \param ftdi pointer to ftdi_context
57
58 \retval 0: all fine
59 \retval -1: couldn't allocate read buffer
60
61 \remark This should be called before all functions
62*/
63int ftdi_init(struct ftdi_context *ftdi)
64{
65 int i;
66
67 ftdi->usb_dev = NULL;
68 ftdi->usb_read_timeout = 5000;
69 ftdi->usb_write_timeout = 5000;
70
71 ftdi->type = TYPE_BM; /* chip type */
72 ftdi->baudrate = -1;
73 ftdi->bitbang_enabled = 0;
74
75 ftdi->readbuffer = NULL;
76 ftdi->readbuffer_offset = 0;
77 ftdi->readbuffer_remaining = 0;
78 ftdi->writebuffer_chunksize = 4096;
79
80 ftdi->interface = 0;
81 ftdi->index = 0;
82 ftdi->in_ep = 0x02;
83 ftdi->out_ep = 0x81;
84 ftdi->bitbang_mode = 1; /* 1: Normal bitbang mode, 2: SPI bitbang mode */
85
86 ftdi->error_str = NULL;
87
88#ifdef LIBFTDI_LINUX_ASYNC_MODE
89 ftdi->async_usb_buffer_size=10;
90 if ((ftdi->async_usb_buffer=malloc(sizeof(struct usbdevfs_urb)*ftdi->async_usb_buffer_size)) == NULL)
91 ftdi_error_return(-1, "out of memory for async usb buffer");
92
93 /* initialize async usb buffer with unused-marker */
94 for (i=0; i < ftdi->async_usb_buffer_size; i++)
95 ((struct usbdevfs_urb*)ftdi->async_usb_buffer)[i].usercontext = FTDI_URB_USERCONTEXT_COOKIE;
96#else
97 ftdi->async_usb_buffer_size=0;
98 ftdi->async_usb_buffer = NULL;
99#endif
100
101 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
102
103 /* All fine. Now allocate the readbuffer */
104 return ftdi_read_data_set_chunksize(ftdi, 4096);
105}
106
107/**
108 Open selected channels on a chip, otherwise use first channel.
109
110 \param ftdi pointer to ftdi_context
111 \param interface Interface to use for FT2232C chips.
112
113 \retval 0: all fine
114 \retval -1: unknown interface
115*/
116int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
117{
118 switch (interface) {
119 case INTERFACE_ANY:
120 case INTERFACE_A:
121 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
122 break;
123 case INTERFACE_B:
124 ftdi->interface = 1;
125 ftdi->index = INTERFACE_B;
126 ftdi->in_ep = 0x04;
127 ftdi->out_ep = 0x83;
128 break;
129 default:
130 ftdi_error_return(-1, "Unknown interface");
131 }
132 return 0;
133}
134
135/**
136 Deinitializes a ftdi_context.
137
138 \param ftdi pointer to ftdi_context
139*/
140void ftdi_deinit(struct ftdi_context *ftdi)
141{
142 if (ftdi->async_usb_buffer != NULL) {
143 free(ftdi->async_usb_buffer);
144 ftdi->async_usb_buffer = NULL;
145 }
146
147 if (ftdi->readbuffer != NULL) {
148 free(ftdi->readbuffer);
149 ftdi->readbuffer = NULL;
150 }
151}
152
153/**
154 Use an already open libusb device.
155
156 \param ftdi pointer to ftdi_context
157 \param usb libusb usb_dev_handle to use
158*/
159void ftdi_set_usbdev (struct ftdi_context *ftdi, usb_dev_handle *usb)
160{
161 ftdi->usb_dev = usb;
162}
163
164
165/**
166 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
167 needs to be deallocated by ftdi_list_free() after use.
168
169 \param ftdi pointer to ftdi_context
170 \param devlist Pointer where to store list of found devices
171 \param vendor Vendor ID to search for
172 \param product Product ID to search for
173
174 \retval >0: number of devices found
175 \retval -1: usb_find_busses() failed
176 \retval -2: usb_find_devices() failed
177 \retval -3: out of memory
178*/
179int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
180{
181 struct ftdi_device_list **curdev;
182 struct usb_bus *bus;
183 struct usb_device *dev;
184 int count = 0;
185
186 usb_init();
187 if (usb_find_busses() < 0)
188 ftdi_error_return(-1, "usb_find_busses() failed");
189 if (usb_find_devices() < 0)
190 ftdi_error_return(-2, "usb_find_devices() failed");
191
192 curdev = devlist;
193 *curdev = NULL;
194 for (bus = usb_busses; bus; bus = bus->next) {
195 for (dev = bus->devices; dev; dev = dev->next) {
196 if (dev->descriptor.idVendor == vendor
197 && dev->descriptor.idProduct == product)
198 {
199 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
200 if (!*curdev)
201 ftdi_error_return(-3, "out of memory");
202
203 (*curdev)->next = NULL;
204 (*curdev)->dev = dev;
205
206 curdev = &(*curdev)->next;
207 count++;
208 }
209 }
210 }
211
212 return count;
213}
214
215/**
216 Frees a usb device list.
217
218 \param devlist USB device list created by ftdi_usb_find_all()
219*/
220void ftdi_list_free(struct ftdi_device_list **devlist)
221{
222 struct ftdi_device_list *curdev, *next;
223
224 for (curdev = *devlist; curdev != NULL;) {
225 next = curdev->next;
226 free(curdev);
227 curdev = next;
228 }
229
230 *devlist = NULL;
231}
232
233/**
234 Return device ID strings from the usb device.
235
236 The parameters manufacturer, description and serial may be NULL
237 or pointer to buffers to store the fetched strings.
238
239 \note Use this function only in combination with ftdi_usb_find_all()
240 as it closes the internal "usb_dev" after use.
241
242 \param ftdi pointer to ftdi_context
243 \param dev libusb usb_dev to use
244 \param manufacturer Store manufacturer string here if not NULL
245 \param mnf_len Buffer size of manufacturer string
246 \param description Store product description string here if not NULL
247 \param desc_len Buffer size of product description string
248 \param serial Store serial string here if not NULL
249 \param serial_len Buffer size of serial string
250
251 \retval 0: all fine
252 \retval -1: wrong arguments
253 \retval -4: unable to open device
254 \retval -7: get product manufacturer failed
255 \retval -8: get product description failed
256 \retval -9: get serial number failed
257 \retval -10: unable to close device
258*/
259int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct usb_device * dev,
260 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
261{
262 if ((ftdi==NULL) || (dev==NULL))
263 return -1;
264
265 if (!(ftdi->usb_dev = usb_open(dev)))
266 ftdi_error_return(-4, usb_strerror());
267
268 if (manufacturer != NULL) {
269 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iManufacturer, manufacturer, mnf_len) <= 0) {
270 usb_close (ftdi->usb_dev);
271 ftdi_error_return(-7, usb_strerror());
272 }
273 }
274
275 if (description != NULL) {
276 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, description, desc_len) <= 0) {
277 usb_close (ftdi->usb_dev);
278 ftdi_error_return(-8, usb_strerror());
279 }
280 }
281
282 if (serial != NULL) {
283 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, serial, serial_len) <= 0) {
284 usb_close (ftdi->usb_dev);
285 ftdi_error_return(-9, usb_strerror());
286 }
287 }
288
289 if (usb_close (ftdi->usb_dev) != 0)
290 ftdi_error_return(-10, usb_strerror());
291
292 return 0;
293}
294
295/**
296 Opens a ftdi device given by a usb_device.
297
298 \param ftdi pointer to ftdi_context
299 \param dev libusb usb_dev to use
300
301 \retval 0: all fine
302 \retval -4: unable to open device
303 \retval -5: unable to claim device
304 \retval -6: reset failed
305 \retval -7: set baudrate failed
306*/
307int ftdi_usb_open_dev(struct ftdi_context *ftdi, struct usb_device *dev)
308{
309 int detach_errno = 0;
310 if (!(ftdi->usb_dev = usb_open(dev)))
311 ftdi_error_return(-4, "usb_open() failed");
312
313#ifdef LIBUSB_HAS_GET_DRIVER_NP
314 // Try to detach ftdi_sio kernel module
315 // Returns ENODATA if driver is not loaded
316 if (usb_detach_kernel_driver_np(ftdi->usb_dev, ftdi->interface) != 0 && errno != ENODATA)
317 detach_errno = errno;
318#endif
319
320 if (usb_claim_interface(ftdi->usb_dev, ftdi->interface) != 0) {
321 usb_close (ftdi->usb_dev);
322 if (detach_errno == EPERM) {
323 ftdi_error_return(-8, "inappropriate permissions on device!");
324 } else {
325 ftdi_error_return(-5, "unable to claim usb device. Make sure ftdi_sio is unloaded!");
326 }
327 }
328
329 if (ftdi_usb_reset (ftdi) != 0) {
330 usb_close (ftdi->usb_dev);
331 ftdi_error_return(-6, "ftdi_usb_reset failed");
332 }
333
334 if (ftdi_set_baudrate (ftdi, 9600) != 0) {
335 usb_close (ftdi->usb_dev);
336 ftdi_error_return(-7, "set baudrate failed");
337 }
338
339 // Try to guess chip type
340 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
341 if (dev->descriptor.bcdDevice == 0x400 || (dev->descriptor.bcdDevice == 0x200
342 && dev->descriptor.iSerialNumber == 0))
343 ftdi->type = TYPE_BM;
344 else if (dev->descriptor.bcdDevice == 0x200)
345 ftdi->type = TYPE_AM;
346 else if (dev->descriptor.bcdDevice == 0x500) {
347 ftdi->type = TYPE_2232C;
348 if (!ftdi->index)
349 ftdi->index = INTERFACE_A;
350 } else if (dev->descriptor.bcdDevice == 0x600)
351 ftdi->type = TYPE_R;
352
353 ftdi_error_return(0, "all fine");
354}
355
356/**
357 Opens the first device with a given vendor and product ids.
358
359 \param ftdi pointer to ftdi_context
360 \param vendor Vendor ID
361 \param product Product ID
362
363 \retval same as ftdi_usb_open_desc()
364*/
365int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
366{
367 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
368}
369
370/**
371 Opens the first device with a given, vendor id, product id,
372 description and serial.
373
374 \param ftdi pointer to ftdi_context
375 \param vendor Vendor ID
376 \param product Product ID
377 \param description Description to search for. Use NULL if not needed.
378 \param serial Serial to search for. Use NULL if not needed.
379
380 \retval 0: all fine
381 \retval -1: usb_find_busses() failed
382 \retval -2: usb_find_devices() failed
383 \retval -3: usb device not found
384 \retval -4: unable to open device
385 \retval -5: unable to claim device
386 \retval -6: reset failed
387 \retval -7: set baudrate failed
388 \retval -8: get product description failed
389 \retval -9: get serial number failed
390 \retval -10: unable to close device
391*/
392int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
393 const char* description, const char* serial)
394{
395 struct usb_bus *bus;
396 struct usb_device *dev;
397 char string[256];
398
399 usb_init();
400
401 if (usb_find_busses() < 0)
402 ftdi_error_return(-1, "usb_find_busses() failed");
403 if (usb_find_devices() < 0)
404 ftdi_error_return(-2, "usb_find_devices() failed");
405
406 for (bus = usb_busses; bus; bus = bus->next) {
407 for (dev = bus->devices; dev; dev = dev->next) {
408 if (dev->descriptor.idVendor == vendor
409 && dev->descriptor.idProduct == product) {
410 if (!(ftdi->usb_dev = usb_open(dev)))
411 ftdi_error_return(-4, "usb_open() failed");
412
413 if (description != NULL) {
414 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, string, sizeof(string)) <= 0) {
415 usb_close (ftdi->usb_dev);
416 ftdi_error_return(-8, "unable to fetch product description");
417 }
418 if (strncmp(string, description, sizeof(string)) != 0) {
419 if (usb_close (ftdi->usb_dev) != 0)
420 ftdi_error_return(-10, "unable to close device");
421 continue;
422 }
423 }
424 if (serial != NULL) {
425 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, string, sizeof(string)) <= 0) {
426 usb_close (ftdi->usb_dev);
427 ftdi_error_return(-9, "unable to fetch serial number");
428 }
429 if (strncmp(string, serial, sizeof(string)) != 0) {
430 if (usb_close (ftdi->usb_dev) != 0)
431 ftdi_error_return(-10, "unable to close device");
432 continue;
433 }
434 }
435
436 if (usb_close (ftdi->usb_dev) != 0)
437 ftdi_error_return(-10, "unable to close device");
438
439 return ftdi_usb_open_dev(ftdi, dev);
440 }
441 }
442 }
443
444 // device not found
445 ftdi_error_return(-3, "device not found");
446}
447
448/**
449 Resets the ftdi device.
450
451 \param ftdi pointer to ftdi_context
452
453 \retval 0: all fine
454 \retval -1: FTDI reset failed
455*/
456int ftdi_usb_reset(struct ftdi_context *ftdi)
457{
458 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
459 ftdi_error_return(-1,"FTDI reset failed");
460
461 // Invalidate data in the readbuffer
462 ftdi->readbuffer_offset = 0;
463 ftdi->readbuffer_remaining = 0;
464
465 return 0;
466}
467
468/**
469 Clears the buffers on the chip.
470
471 \param ftdi pointer to ftdi_context
472
473 \retval 0: all fine
474 \retval -1: write buffer purge failed
475 \retval -2: read buffer purge failed
476*/
477int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
478{
479 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 1, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
480 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
481
482 // Invalidate data in the readbuffer
483 ftdi->readbuffer_offset = 0;
484 ftdi->readbuffer_remaining = 0;
485
486 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 2, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
487 ftdi_error_return(-2, "FTDI purge of TX buffer failed");
488
489 return 0;
490}
491
492/**
493 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
494
495 \param ftdi pointer to ftdi_context
496
497 \retval 0: all fine
498 \retval -1: usb_release failed
499 \retval -2: usb_close failed
500*/
501int ftdi_usb_close(struct ftdi_context *ftdi)
502{
503 int rtn = 0;
504
505#ifdef LIBFTDI_LINUX_ASYNC_MODE
506 /* try to release some kernel resources */
507 ftdi_async_complete(ftdi,1);
508#endif
509
510 if (usb_release_interface(ftdi->usb_dev, ftdi->interface) != 0)
511 rtn = -1;
512
513 if (usb_close (ftdi->usb_dev) != 0)
514 rtn = -2;
515
516 return rtn;
517}
518
519/*
520 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
521 Function is only used internally
522 \internal
523*/
524static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
525 unsigned short *value, unsigned short *index)
526{
527 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
528 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
529 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
530 int divisor, best_divisor, best_baud, best_baud_diff;
531 unsigned long encoded_divisor;
532 int i;
533
534 if (baudrate <= 0) {
535 // Return error
536 return -1;
537 }
538
539 divisor = 24000000 / baudrate;
540
541 if (ftdi->type == TYPE_AM) {
542 // Round down to supported fraction (AM only)
543 divisor -= am_adjust_dn[divisor & 7];
544 }
545
546 // Try this divisor and the one above it (because division rounds down)
547 best_divisor = 0;
548 best_baud = 0;
549 best_baud_diff = 0;
550 for (i = 0; i < 2; i++) {
551 int try_divisor = divisor + i;
552 int baud_estimate;
553 int baud_diff;
554
555 // Round up to supported divisor value
556 if (try_divisor <= 8) {
557 // Round up to minimum supported divisor
558 try_divisor = 8;
559 } else if (ftdi->type != TYPE_AM && try_divisor < 12) {
560 // BM doesn't support divisors 9 through 11 inclusive
561 try_divisor = 12;
562 } else if (divisor < 16) {
563 // AM doesn't support divisors 9 through 15 inclusive
564 try_divisor = 16;
565 } else {
566 if (ftdi->type == TYPE_AM) {
567 // Round up to supported fraction (AM only)
568 try_divisor += am_adjust_up[try_divisor & 7];
569 if (try_divisor > 0x1FFF8) {
570 // Round down to maximum supported divisor value (for AM)
571 try_divisor = 0x1FFF8;
572 }
573 } else {
574 if (try_divisor > 0x1FFFF) {
575 // Round down to maximum supported divisor value (for BM)
576 try_divisor = 0x1FFFF;
577 }
578 }
579 }
580 // Get estimated baud rate (to nearest integer)
581 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
582 // Get absolute difference from requested baud rate
583 if (baud_estimate < baudrate) {
584 baud_diff = baudrate - baud_estimate;
585 } else {
586 baud_diff = baud_estimate - baudrate;
587 }
588 if (i == 0 || baud_diff < best_baud_diff) {
589 // Closest to requested baud rate so far
590 best_divisor = try_divisor;
591 best_baud = baud_estimate;
592 best_baud_diff = baud_diff;
593 if (baud_diff == 0) {
594 // Spot on! No point trying
595 break;
596 }
597 }
598 }
599 // Encode the best divisor value
600 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
601 // Deal with special cases for encoded value
602 if (encoded_divisor == 1) {
603 encoded_divisor = 0; // 3000000 baud
604 } else if (encoded_divisor == 0x4001) {
605 encoded_divisor = 1; // 2000000 baud (BM only)
606 }
607 // Split into "value" and "index" values
608 *value = (unsigned short)(encoded_divisor & 0xFFFF);
609 if(ftdi->type == TYPE_2232C) {
610 *index = (unsigned short)(encoded_divisor >> 8);
611 *index &= 0xFF00;
612 *index |= ftdi->index;
613 }
614 else
615 *index = (unsigned short)(encoded_divisor >> 16);
616
617 // Return the nearest baud rate
618 return best_baud;
619}
620
621/**
622 Sets the chip baud rate
623
624 \param ftdi pointer to ftdi_context
625 \param baudrate baud rate to set
626
627 \retval 0: all fine
628 \retval -1: invalid baudrate
629 \retval -2: setting baudrate failed
630*/
631int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
632{
633 unsigned short value, index;
634 int actual_baudrate;
635
636 if (ftdi->bitbang_enabled) {
637 baudrate = baudrate*4;
638 }
639
640 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
641 if (actual_baudrate <= 0)
642 ftdi_error_return (-1, "Silly baudrate <= 0.");
643
644 // Check within tolerance (about 5%)
645 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
646 || ((actual_baudrate < baudrate)
647 ? (actual_baudrate * 21 < baudrate * 20)
648 : (baudrate * 21 < actual_baudrate * 20)))
649 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
650
651 if (usb_control_msg(ftdi->usb_dev, 0x40, 3, value, index, NULL, 0, ftdi->usb_write_timeout) != 0)
652 ftdi_error_return (-2, "Setting new baudrate failed");
653
654 ftdi->baudrate = baudrate;
655 return 0;
656}
657
658/**
659 Set (RS232) line characteristics by Alain Abbas
660
661 \param ftdi pointer to ftdi_context
662 \param bits Number of bits
663 \param sbit Number of stop bits
664 \param parity Parity mode
665
666 \retval 0: all fine
667 \retval -1: Setting line property failed
668*/
669int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
670 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
671{
672 unsigned short value = bits;
673
674 switch(parity) {
675 case NONE:
676 value |= (0x00 << 8);
677 break;
678 case ODD:
679 value |= (0x01 << 8);
680 break;
681 case EVEN:
682 value |= (0x02 << 8);
683 break;
684 case MARK:
685 value |= (0x03 << 8);
686 break;
687 case SPACE:
688 value |= (0x04 << 8);
689 break;
690 }
691
692 switch(sbit) {
693 case STOP_BIT_1:
694 value |= (0x00 << 11);
695 break;
696 case STOP_BIT_15:
697 value |= (0x01 << 11);
698 break;
699 case STOP_BIT_2:
700 value |= (0x02 << 11);
701 break;
702 }
703
704 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x04, value, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
705 ftdi_error_return (-1, "Setting new line property failed");
706
707 return 0;
708}
709
710/**
711 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
712
713 \param ftdi pointer to ftdi_context
714 \param buf Buffer with the data
715 \param size Size of the buffer
716
717 \retval <0: error code from usb_bulk_write()
718 \retval >0: number of bytes written
719*/
720int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
721{
722 int ret;
723 int offset = 0;
724 int total_written = 0;
725
726 while (offset < size) {
727 int write_size = ftdi->writebuffer_chunksize;
728
729 if (offset+write_size > size)
730 write_size = size-offset;
731
732 ret = usb_bulk_write(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, ftdi->usb_write_timeout);
733 if (ret < 0)
734 ftdi_error_return(ret, "usb bulk write failed");
735
736 total_written += ret;
737 offset += write_size;
738 }
739
740 return total_written;
741}
742
743#ifdef LIBFTDI_LINUX_ASYNC_MODE
744/* this is strongly dependent on libusb using the same struct layout. If libusb
745 changes in some later version this may break horribly (this is for libusb 0.1.12) */
746struct usb_dev_handle {
747 int fd;
748 // some other stuff coming here we don't need
749};
750
751/**
752 Check for pending async urbs
753 \internal
754*/
755static int _usb_get_async_urbs_pending(struct ftdi_context *ftdi)
756{
757 struct usbdevfs_urb *urb;
758 int pending=0;
759 int i;
760
761 for (i=0; i < ftdi->async_usb_buffer_size; i++) {
762 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
763 if (urb->usercontext != FTDI_URB_USERCONTEXT_COOKIE)
764 pending++;
765 }
766
767 return pending;
768}
769
770/**
771 Wait until one or more async URBs are completed by the kernel and mark their
772 positions in the async-buffer as unused
773
774 \param ftdi pointer to ftdi_context
775 \param wait_for_more if != 0 wait for more than one write to complete
776 \param timeout_msec max milliseconds to wait
777
778 \internal
779*/
780static void _usb_async_cleanup(struct ftdi_context *ftdi, int wait_for_more, int timeout_msec)
781{
782 struct timeval tv;
783 struct usbdevfs_urb *urb=NULL;
784 int ret;
785 fd_set writefds;
786 int keep_going=0;
787
788 FD_ZERO(&writefds);
789 FD_SET(ftdi->usb_dev->fd, &writefds);
790
791 /* init timeout only once, select writes time left after call */
792 tv.tv_sec = timeout_msec / 1000;
793 tv.tv_usec = (timeout_msec % 1000) * 1000;
794
795 do {
796 while (_usb_get_async_urbs_pending(ftdi)
797 && (ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_REAPURBNDELAY, &urb)) == -1
798 && errno == EAGAIN)
799 {
800 if (keep_going && !wait_for_more) {
801 /* don't wait if repeating only for keep_going */
802 keep_going=0;
803 break;
804 }
805
806 /* wait for timeout msec or something written ready */
807 select(ftdi->usb_dev->fd+1, NULL, &writefds, NULL, &tv);
808 }
809
810 if (ret == 0 && urb != NULL) {
811 /* got a free urb, mark it */
812 urb->usercontext = FTDI_URB_USERCONTEXT_COOKIE;
813
814 /* try to get more urbs that are ready now, but don't wait anymore */
815 urb=NULL;
816 keep_going=1;
817 } else {
818 /* no more urbs waiting */
819 keep_going=0;
820 }
821 } while (keep_going);
822}
823
824/**
825 Wait until one or more async URBs are completed by the kernel and mark their
826 positions in the async-buffer as unused.
827
828 \param ftdi pointer to ftdi_context
829 \param wait_for_more if != 0 wait for more than one write to complete (until write timeout)
830*/
831void ftdi_async_complete(struct ftdi_context *ftdi, int wait_for_more)
832{
833 _usb_async_cleanup(ftdi,wait_for_more,ftdi->usb_write_timeout);
834}
835
836/**
837 Stupid libusb does not offer async writes nor does it allow
838 access to its fd - so we need some hacks here.
839 \internal
840*/
841static int _usb_bulk_write_async(struct ftdi_context *ftdi, int ep, char *bytes, int size)
842{
843 struct usbdevfs_urb *urb;
844 int bytesdone = 0, requested;
845 int ret, i;
846 int cleanup_count;
847
848 do {
849 /* find a free urb buffer we can use */
850 urb=NULL;
851 for (cleanup_count=0; urb==NULL && cleanup_count <= 1; cleanup_count++)
852 {
853 if (i==ftdi->async_usb_buffer_size) {
854 /* wait until some buffers are free */
855 _usb_async_cleanup(ftdi,0,ftdi->usb_write_timeout);
856 }
857
858 for (i=0; i < ftdi->async_usb_buffer_size; i++) {
859 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
860 if (urb->usercontext == FTDI_URB_USERCONTEXT_COOKIE)
861 break; /* found a free urb position */
862 urb=NULL;
863 }
864 }
865
866 /* no free urb position found */
867 if (urb==NULL)
868 return -1;
869
870 requested = size - bytesdone;
871 if (requested > 4096)
872 requested = 4096;
873
874 memset(urb,0,sizeof(urb));
875
876 urb->type = USBDEVFS_URB_TYPE_BULK;
877 urb->endpoint = ep;
878 urb->flags = 0;
879 urb->buffer = bytes + bytesdone;
880 urb->buffer_length = requested;
881 urb->signr = 0;
882 urb->actual_length = 0;
883 urb->number_of_packets = 0;
884 urb->usercontext = 0;
885
886 do {
887 ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_SUBMITURB, urb);
888 } while (ret < 0 && errno == EINTR);
889 if (ret < 0)
890 return ret; /* the caller can read errno to get more info */
891
892 bytesdone += requested;
893 } while (bytesdone < size);
894 return bytesdone;
895}
896
897/**
898 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip.
899 Does not wait for completion of the transfer nor does it make sure that
900 the transfer was successful.
901
902 This function could be extended to use signals and callbacks to inform the
903 caller of completion or error - but this is not done yet, volunteers welcome.
904
905 Works around libusb and directly accesses functions only available on Linux.
906
907 \param ftdi pointer to ftdi_context
908 \param buf Buffer with the data
909 \param size Size of the buffer
910
911 \retval <0: error code from usb_bulk_write()
912 \retval >0: number of bytes written
913*/
914int ftdi_write_data_async(struct ftdi_context *ftdi, unsigned char *buf, int size)
915{
916 int ret;
917 int offset = 0;
918 int total_written = 0;
919
920 while (offset < size) {
921 int write_size = ftdi->writebuffer_chunksize;
922
923 if (offset+write_size > size)
924 write_size = size-offset;
925
926 ret = _usb_bulk_write_async(ftdi, ftdi->in_ep, buf+offset, write_size);
927 if (ret < 0)
928 ftdi_error_return(ret, "usb bulk write async failed");
929
930 total_written += ret;
931 offset += write_size;
932 }
933
934 return total_written;
935}
936#endif // LIBFTDI_LINUX_ASYNC_MODE
937
938/**
939 Configure write buffer chunk size.
940 Default is 4096.
941
942 \param ftdi pointer to ftdi_context
943 \param chunksize Chunk size
944
945 \retval 0: all fine
946*/
947int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
948{
949 ftdi->writebuffer_chunksize = chunksize;
950 return 0;
951}
952
953/**
954 Get write buffer chunk size.
955
956 \param ftdi pointer to ftdi_context
957 \param chunksize Pointer to store chunk size in
958
959 \retval 0: all fine
960*/
961int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
962{
963 *chunksize = ftdi->writebuffer_chunksize;
964 return 0;
965}
966
967/**
968 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
969
970 Automatically strips the two modem status bytes transfered during every read.
971
972 \param ftdi pointer to ftdi_context
973 \param buf Buffer to store data in
974 \param size Size of the buffer
975
976 \retval <0: error code from usb_bulk_read()
977 \retval 0: no data was available
978 \retval >0: number of bytes read
979
980 \remark This function is not useful in bitbang mode.
981 Use ftdi_read_pins() to get the current state of the pins.
982*/
983int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
984{
985 int offset = 0, ret = 1, i, num_of_chunks, chunk_remains;
986
987 // everything we want is still in the readbuffer?
988 if (size <= ftdi->readbuffer_remaining) {
989 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
990
991 // Fix offsets
992 ftdi->readbuffer_remaining -= size;
993 ftdi->readbuffer_offset += size;
994
995 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
996
997 return size;
998 }
999 // something still in the readbuffer, but not enough to satisfy 'size'?
1000 if (ftdi->readbuffer_remaining != 0) {
1001 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1002
1003 // Fix offset
1004 offset += ftdi->readbuffer_remaining;
1005 }
1006 // do the actual USB read
1007 while (offset < size && ret > 0) {
1008 ftdi->readbuffer_remaining = 0;
1009 ftdi->readbuffer_offset = 0;
1010 /* returns how much received */
1011 ret = usb_bulk_read (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi->usb_read_timeout);
1012 if (ret < 0)
1013 ftdi_error_return(ret, "usb bulk read failed");
1014
1015 if (ret > 2) {
1016 // skip FTDI status bytes.
1017 // Maybe stored in the future to enable modem use
1018 num_of_chunks = ret / 64;
1019 chunk_remains = ret % 64;
1020 //printf("ret = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", ret, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1021
1022 ftdi->readbuffer_offset += 2;
1023 ret -= 2;
1024
1025 if (ret > 62) {
1026 for (i = 1; i < num_of_chunks; i++)
1027 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
1028 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
1029 62);
1030 if (chunk_remains > 2) {
1031 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
1032 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
1033 chunk_remains-2);
1034 ret -= 2*num_of_chunks;
1035 } else
1036 ret -= 2*(num_of_chunks-1)+chunk_remains;
1037 }
1038 } else if (ret <= 2) {
1039 // no more data to read?
1040 return offset;
1041 }
1042 if (ret > 0) {
1043 // data still fits in buf?
1044 if (offset+ret <= size) {
1045 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, ret);
1046 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1047 offset += ret;
1048
1049 /* Did we read exactly the right amount of bytes? */
1050 if (offset == size)
1051 //printf("read_data exact rem %d offset %d\n",
1052 //ftdi->readbuffer_remaining, offset);
1053 return offset;
1054 } else {
1055 // only copy part of the data or size <= readbuffer_chunksize
1056 int part_size = size-offset;
1057 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1058
1059 ftdi->readbuffer_offset += part_size;
1060 ftdi->readbuffer_remaining = ret-part_size;
1061 offset += part_size;
1062
1063 /* printf("Returning part: %d - size: %d - offset: %d - ret: %d - remaining: %d\n",
1064 part_size, size, offset, ret, ftdi->readbuffer_remaining); */
1065
1066 return offset;
1067 }
1068 }
1069 }
1070 // never reached
1071 return -127;
1072}
1073
1074/**
1075 Configure read buffer chunk size.
1076 Default is 4096.
1077
1078 Automatically reallocates the buffer.
1079
1080 \param ftdi pointer to ftdi_context
1081 \param chunksize Chunk size
1082
1083 \retval 0: all fine
1084*/
1085int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1086{
1087 unsigned char *new_buf;
1088
1089 // Invalidate all remaining data
1090 ftdi->readbuffer_offset = 0;
1091 ftdi->readbuffer_remaining = 0;
1092
1093 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1094 ftdi_error_return(-1, "out of memory for readbuffer");
1095
1096 ftdi->readbuffer = new_buf;
1097 ftdi->readbuffer_chunksize = chunksize;
1098
1099 return 0;
1100}
1101
1102/**
1103 Get read buffer chunk size.
1104
1105 \param ftdi pointer to ftdi_context
1106 \param chunksize Pointer to store chunk size in
1107
1108 \retval 0: all fine
1109*/
1110int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1111{
1112 *chunksize = ftdi->readbuffer_chunksize;
1113 return 0;
1114}
1115
1116
1117/**
1118 Enable bitbang mode.
1119
1120 For advanced bitbang modes of the FT2232C chip use ftdi_set_bitmode().
1121
1122 \param ftdi pointer to ftdi_context
1123 \param bitmask Bitmask to configure lines.
1124 HIGH/ON value configures a line as output.
1125
1126 \retval 0: all fine
1127 \retval -1: can't enable bitbang mode
1128*/
1129int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1130{
1131 unsigned short usb_val;
1132
1133 usb_val = bitmask; // low byte: bitmask
1134 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1135 usb_val |= (ftdi->bitbang_mode << 8);
1136
1137 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1138 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1139
1140 ftdi->bitbang_enabled = 1;
1141 return 0;
1142}
1143
1144/**
1145 Disable bitbang mode.
1146
1147 \param ftdi pointer to ftdi_context
1148
1149 \retval 0: all fine
1150 \retval -1: can't disable bitbang mode
1151*/
1152int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1153{
1154 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1155 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1156
1157 ftdi->bitbang_enabled = 0;
1158 return 0;
1159}
1160
1161/**
1162 Enable advanced bitbang mode for FT2232C chips.
1163
1164 \param ftdi pointer to ftdi_context
1165 \param bitmask Bitmask to configure lines.
1166 HIGH/ON value configures a line as output.
1167 \param mode Bitbang mode: 1 for normal mode, 2 for SPI mode
1168
1169 \retval 0: all fine
1170 \retval -1: can't enable bitbang mode
1171*/
1172int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1173{
1174 unsigned short usb_val;
1175
1176 usb_val = bitmask; // low byte: bitmask
1177 usb_val |= (mode << 8);
1178 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1179 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1180
1181 ftdi->bitbang_mode = mode;
1182 ftdi->bitbang_enabled = (mode == BITMODE_BITBANG || mode == BITMODE_SYNCBB)?1:0;
1183 return 0;
1184}
1185
1186/**
1187 Directly read pin state. Useful for bitbang mode.
1188
1189 \param ftdi pointer to ftdi_context
1190 \param pins Pointer to store pins into
1191
1192 \retval 0: all fine
1193 \retval -1: read pins failed
1194*/
1195int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1196{
1197 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0C, 0, ftdi->index, (char *)pins, 1, ftdi->usb_read_timeout) != 1)
1198 ftdi_error_return(-1, "read pins failed");
1199
1200 return 0;
1201}
1202
1203/**
1204 Set latency timer
1205
1206 The FTDI chip keeps data in the internal buffer for a specific
1207 amount of time if the buffer is not full yet to decrease
1208 load on the usb bus.
1209
1210 \param ftdi pointer to ftdi_context
1211 \param latency Value between 1 and 255
1212
1213 \retval 0: all fine
1214 \retval -1: latency out of range
1215 \retval -2: unable to set latency timer
1216*/
1217int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1218{
1219 unsigned short usb_val;
1220
1221 if (latency < 1)
1222 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1223
1224 usb_val = latency;
1225 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x09, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1226 ftdi_error_return(-2, "unable to set latency timer");
1227
1228 return 0;
1229}
1230
1231/**
1232 Get latency timer
1233
1234 \param ftdi pointer to ftdi_context
1235 \param latency Pointer to store latency value in
1236
1237 \retval 0: all fine
1238 \retval -1: unable to get latency timer
1239*/
1240int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1241{
1242 unsigned short usb_val;
1243 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0A, 0, ftdi->index, (char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1244 ftdi_error_return(-1, "reading latency timer failed");
1245
1246 *latency = (unsigned char)usb_val;
1247 return 0;
1248}
1249
1250/**
1251 Set the eeprom size
1252
1253 \param ftdi pointer to ftdi_context
1254 \param eeprom Pointer to ftdi_eeprom
1255 \param size
1256
1257*/
1258void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
1259{
1260 ftdi->eeprom_size=size;
1261 eeprom->size=size;
1262}
1263
1264/**
1265 Init eeprom with default values.
1266
1267 \param eeprom Pointer to ftdi_eeprom
1268*/
1269void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
1270{
1271 eeprom->vendor_id = 0x0403;
1272 eeprom->product_id = 0x6001;
1273
1274 eeprom->self_powered = 1;
1275 eeprom->remote_wakeup = 1;
1276 eeprom->BM_type_chip = 1;
1277
1278 eeprom->in_is_isochronous = 0;
1279 eeprom->out_is_isochronous = 0;
1280 eeprom->suspend_pull_downs = 0;
1281
1282 eeprom->use_serial = 0;
1283 eeprom->change_usb_version = 0;
1284 eeprom->usb_version = 0x0200;
1285 eeprom->max_power = 0;
1286
1287 eeprom->manufacturer = NULL;
1288 eeprom->product = NULL;
1289 eeprom->serial = NULL;
1290
1291 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
1292}
1293
1294/**
1295 Build binary output from ftdi_eeprom structure.
1296 Output is suitable for ftdi_write_eeprom().
1297
1298 \param eeprom Pointer to ftdi_eeprom
1299 \param output Buffer of 128 bytes to store eeprom image to
1300
1301 \retval >0: used eeprom size
1302 \retval -1: eeprom size (128 bytes) exceeded by custom strings
1303*/
1304int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
1305{
1306 unsigned char i, j;
1307 unsigned short checksum, value;
1308 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
1309 int size_check;
1310
1311 if (eeprom->manufacturer != NULL)
1312 manufacturer_size = strlen(eeprom->manufacturer);
1313 if (eeprom->product != NULL)
1314 product_size = strlen(eeprom->product);
1315 if (eeprom->serial != NULL)
1316 serial_size = strlen(eeprom->serial);
1317
1318 size_check = eeprom->size;
1319 size_check -= 28; // 28 are always in use (fixed)
1320
1321 // Top half of a 256byte eeprom is used just for strings and checksum
1322 // it seems that the FTDI chip will not read these strings from the lower half
1323 // Each string starts with two bytes; offset and type (0x03 for string)
1324 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
1325 if(eeprom->size>=256)size_check = 120;
1326 size_check -= manufacturer_size*2;
1327 size_check -= product_size*2;
1328 size_check -= serial_size*2;
1329
1330 // eeprom size exceeded?
1331 if (size_check < 0)
1332 return (-1);
1333
1334 // empty eeprom
1335 memset (output, 0, eeprom->size);
1336
1337 // Addr 00: Stay 00 00
1338 // Addr 02: Vendor ID
1339 output[0x02] = eeprom->vendor_id;
1340 output[0x03] = eeprom->vendor_id >> 8;
1341
1342 // Addr 04: Product ID
1343 output[0x04] = eeprom->product_id;
1344 output[0x05] = eeprom->product_id >> 8;
1345
1346 // Addr 06: Device release number (0400h for BM features)
1347 output[0x06] = 0x00;
1348
1349 if (eeprom->BM_type_chip == 1)
1350 output[0x07] = 0x04;
1351 else
1352 output[0x07] = 0x02;
1353
1354 // Addr 08: Config descriptor
1355 // Bit 1: remote wakeup if 1
1356 // Bit 0: self powered if 1
1357 //
1358 j = 0;
1359 if (eeprom->self_powered == 1)
1360 j = j | 1;
1361 if (eeprom->remote_wakeup == 1)
1362 j = j | 2;
1363 output[0x08] = j;
1364
1365 // Addr 09: Max power consumption: max power = value * 2 mA
1366 output[0x09] = eeprom->max_power;
1367 ;
1368
1369 // Addr 0A: Chip configuration
1370 // Bit 7: 0 - reserved
1371 // Bit 6: 0 - reserved
1372 // Bit 5: 0 - reserved
1373 // Bit 4: 1 - Change USB version
1374 // Bit 3: 1 - Use the serial number string
1375 // Bit 2: 1 - Enable suspend pull downs for lower power
1376 // Bit 1: 1 - Out EndPoint is Isochronous
1377 // Bit 0: 1 - In EndPoint is Isochronous
1378 //
1379 j = 0;
1380 if (eeprom->in_is_isochronous == 1)
1381 j = j | 1;
1382 if (eeprom->out_is_isochronous == 1)
1383 j = j | 2;
1384 if (eeprom->suspend_pull_downs == 1)
1385 j = j | 4;
1386 if (eeprom->use_serial == 1)
1387 j = j | 8;
1388 if (eeprom->change_usb_version == 1)
1389 j = j | 16;
1390 output[0x0A] = j;
1391
1392 // Addr 0B: reserved
1393 output[0x0B] = 0x00;
1394
1395 // Addr 0C: USB version low byte when 0x0A bit 4 is set
1396 // Addr 0D: USB version high byte when 0x0A bit 4 is set
1397 if (eeprom->change_usb_version == 1) {
1398 output[0x0C] = eeprom->usb_version;
1399 output[0x0D] = eeprom->usb_version >> 8;
1400 }
1401
1402
1403 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
1404 // Addr 0F: Length of manufacturer string
1405 output[0x0F] = manufacturer_size*2 + 2;
1406
1407 // Addr 10: Offset of the product string + 0x80, calculated later
1408 // Addr 11: Length of product string
1409 output[0x11] = product_size*2 + 2;
1410
1411 // Addr 12: Offset of the serial string + 0x80, calculated later
1412 // Addr 13: Length of serial string
1413 output[0x13] = serial_size*2 + 2;
1414
1415 // Dynamic content
1416 i=0x14;
1417 if(eeprom->size>=256) i = 0x80;
1418
1419
1420 // Output manufacturer
1421 output[0x0E] = i | 0x80; // calculate offset
1422 output[i++] = manufacturer_size*2 + 2;
1423 output[i++] = 0x03; // type: string
1424 for (j = 0; j < manufacturer_size; j++) {
1425 output[i] = eeprom->manufacturer[j], i++;
1426 output[i] = 0x00, i++;
1427 }
1428
1429 // Output product name
1430 output[0x10] = i | 0x80; // calculate offset
1431 output[i] = product_size*2 + 2, i++;
1432 output[i] = 0x03, i++;
1433 for (j = 0; j < product_size; j++) {
1434 output[i] = eeprom->product[j], i++;
1435 output[i] = 0x00, i++;
1436 }
1437
1438 // Output serial
1439 output[0x12] = i | 0x80; // calculate offset
1440 output[i] = serial_size*2 + 2, i++;
1441 output[i] = 0x03, i++;
1442 for (j = 0; j < serial_size; j++) {
1443 output[i] = eeprom->serial[j], i++;
1444 output[i] = 0x00, i++;
1445 }
1446
1447 // calculate checksum
1448 checksum = 0xAAAA;
1449
1450 for (i = 0; i < eeprom->size/2-1; i++) {
1451 value = output[i*2];
1452 value += output[(i*2)+1] << 8;
1453
1454 checksum = value^checksum;
1455 checksum = (checksum << 1) | (checksum >> 15);
1456 }
1457
1458 output[eeprom->size-2] = checksum;
1459 output[eeprom->size-1] = checksum >> 8;
1460
1461 return size_check;
1462}
1463
1464/**
1465 Read eeprom
1466
1467 \param ftdi pointer to ftdi_context
1468 \param eeprom Pointer to store eeprom into
1469
1470 \retval 0: all fine
1471 \retval -1: read failed
1472*/
1473int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
1474{
1475 int i;
1476
1477 for (i = 0; i < ftdi->eeprom_size/2; i++) {
1478 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
1479 ftdi_error_return(-1, "reading eeprom failed");
1480 }
1481
1482 return 0;
1483}
1484
1485/*
1486 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
1487 Function is only used internally
1488 \internal
1489*/
1490static unsigned char ftdi_read_chipid_shift(unsigned char value)
1491{
1492 return ((value & 1) << 1) |
1493 ((value & 2) << 5) |
1494 ((value & 4) >> 2) |
1495 ((value & 8) << 4) |
1496 ((value & 16) >> 1) |
1497 ((value & 32) >> 1) |
1498 ((value & 64) >> 4) |
1499 ((value & 128) >> 2);
1500}
1501
1502/**
1503 Read the FTDIChip-ID from R-type devices
1504
1505 \param ftdi pointer to ftdi_context
1506 \param chipid Pointer to store FTDIChip-ID
1507
1508 \retval 0: all fine
1509 \retval -1: read failed
1510*/
1511int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
1512{
1513 unsigned int a = 0, b = 0;
1514
1515 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, 0x43, (char *)&a, 2, ftdi->usb_read_timeout) == 2)
1516 {
1517 a = a << 8 | a >> 8;
1518 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, 0x44, (char *)&b, 2, ftdi->usb_read_timeout) == 2)
1519 {
1520 b = b << 8 | b >> 8;
1521 a = (a << 16) | b;
1522 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
1523 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
1524 *chipid = a ^ 0xa5f0f7d1;
1525 return 0;
1526 }
1527 }
1528
1529 ftdi_error_return(-1, "read of FTDIChip-ID failed");
1530}
1531
1532/**
1533 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
1534 Call this function then do a write then call again to see if size changes, if so write again.
1535
1536 \param ftdi pointer to ftdi_context
1537 \param eeprom Pointer to store eeprom into
1538 \param maxsize the size of the buffer to read into
1539
1540 \retval size of eeprom
1541*/
1542int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
1543{
1544 int i=0,j,minsize=32;
1545 int size=minsize;
1546
1547 do{
1548 for (j = 0; i < maxsize/2 && j<size; j++) {
1549 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
1550 ftdi_error_return(-1, "reading eeprom failed");
1551 i++;
1552 }
1553 size*=2;
1554 }while(size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
1555
1556 return size/2;
1557}
1558
1559/**
1560 Write eeprom
1561
1562 \param ftdi pointer to ftdi_context
1563 \param eeprom Pointer to read eeprom from
1564
1565 \retval 0: all fine
1566 \retval -1: read failed
1567*/
1568int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
1569{
1570 unsigned short usb_val;
1571 int i;
1572
1573 for (i = 0; i < ftdi->eeprom_size/2; i++) {
1574 usb_val = eeprom[i*2];
1575 usb_val += eeprom[(i*2)+1] << 8;
1576 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x91, usb_val, i, NULL, 0, ftdi->usb_write_timeout) != 0)
1577 ftdi_error_return(-1, "unable to write eeprom");
1578 }
1579
1580 return 0;
1581}
1582
1583/**
1584 Erase eeprom
1585
1586 \param ftdi pointer to ftdi_context
1587
1588 \retval 0: all fine
1589 \retval -1: erase failed
1590*/
1591int ftdi_erase_eeprom(struct ftdi_context *ftdi)
1592{
1593 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x92, 0, 0, NULL, 0, ftdi->usb_write_timeout) != 0)
1594 ftdi_error_return(-1, "unable to erase eeprom");
1595
1596 return 0;
1597}
1598
1599/**
1600 Get string representation for last error code
1601
1602 \param ftdi pointer to ftdi_context
1603
1604 \retval Pointer to error string
1605*/
1606char *ftdi_get_error_string (struct ftdi_context *ftdi)
1607{
1608 return ftdi->error_str;
1609}
1610
1611/*
1612 Flow control code by Lorenz Moesenlechner (lorenz@hcilab.org)
1613 and Matthias Kranz (matthias@hcilab.org)
1614*/
1615/**
1616 Set flowcontrol for ftdi chip
1617
1618 \param ftdi pointer to ftdi_context
1619 \param flowctrl flow control to use. should be
1620 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
1621
1622 \retval 0: all fine
1623 \retval -1: set flow control failed
1624*/
1625int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1626{
1627 if (usb_control_msg(ftdi->usb_dev, SIO_SET_FLOW_CTRL_REQUEST_TYPE,
1628 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->interface),
1629 NULL, 0, ftdi->usb_write_timeout) != 0)
1630 ftdi_error_return(-1, "set flow control failed");
1631
1632 return 0;
1633}
1634
1635/**
1636 Set dtr line
1637
1638 \param ftdi pointer to ftdi_context
1639 \param state state to set line to (1 or 0)
1640
1641 \retval 0: all fine
1642 \retval -1: set dtr failed
1643*/
1644int ftdi_setdtr(struct ftdi_context *ftdi, int state)
1645{
1646 unsigned short usb_val;
1647
1648 if (state)
1649 usb_val = SIO_SET_DTR_HIGH;
1650 else
1651 usb_val = SIO_SET_DTR_LOW;
1652
1653 if (usb_control_msg(ftdi->usb_dev, SIO_SET_MODEM_CTRL_REQUEST_TYPE,
1654 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->interface,
1655 NULL, 0, ftdi->usb_write_timeout) != 0)
1656 ftdi_error_return(-1, "set dtr failed");
1657
1658 return 0;
1659}
1660
1661/**
1662 Set rts line
1663
1664 \param ftdi pointer to ftdi_context
1665 \param state state to set line to (1 or 0)
1666
1667 \retval 0: all fine
1668 \retval -1 set rts failed
1669*/
1670int ftdi_setrts(struct ftdi_context *ftdi, int state)
1671{
1672 unsigned short usb_val;
1673
1674 if (state)
1675 usb_val = SIO_SET_RTS_HIGH;
1676 else
1677 usb_val = SIO_SET_RTS_LOW;
1678
1679 if (usb_control_msg(ftdi->usb_dev, SIO_SET_MODEM_CTRL_REQUEST_TYPE,
1680 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->interface,
1681 NULL, 0, ftdi->usb_write_timeout) != 0)
1682 ftdi_error_return(-1, "set of rts failed");
1683
1684 return 0;
1685}
1686
1687/* @} end of doxygen libftdi group */