Call ftdi_usb_close_internal and not usb_close when descriptor doesn't match
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
58 \retval none
59*/
60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
61{
62 if (ftdi && ftdi->usb_dev)
63 {
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
66 }
67}
68
69/**
70 Initializes a ftdi_context.
71
72 \param ftdi pointer to ftdi_context
73
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
76 \retval -2: couldn't allocate struct buffer
77
78 \remark This should be called before all functions
79*/
80int ftdi_init(struct ftdi_context *ftdi)
81{
82 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
83 ftdi->usb_ctx = NULL;
84 ftdi->usb_dev = NULL;
85 ftdi->usb_read_timeout = 5000;
86 ftdi->usb_write_timeout = 5000;
87
88 ftdi->type = TYPE_BM; /* chip type */
89 ftdi->baudrate = -1;
90 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
91
92 ftdi->readbuffer = NULL;
93 ftdi->readbuffer_offset = 0;
94 ftdi->readbuffer_remaining = 0;
95 ftdi->writebuffer_chunksize = 4096;
96 ftdi->max_packet_size = 0;
97
98 ftdi_set_interface(ftdi, INTERFACE_ANY);
99 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
100
101 ftdi->error_str = NULL;
102
103 if (eeprom == 0)
104 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
105 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
106 ftdi->eeprom = eeprom;
107
108 /* All fine. Now allocate the readbuffer */
109 return ftdi_read_data_set_chunksize(ftdi, 4096);
110}
111
112/**
113 Allocate and initialize a new ftdi_context
114
115 \return a pointer to a new ftdi_context, or NULL on failure
116*/
117struct ftdi_context *ftdi_new(void)
118{
119 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
120
121 if (ftdi == NULL)
122 {
123 return NULL;
124 }
125
126 if (ftdi_init(ftdi) != 0)
127 {
128 free(ftdi);
129 return NULL;
130 }
131
132 return ftdi;
133}
134
135/**
136 Open selected channels on a chip, otherwise use first channel.
137
138 \param ftdi pointer to ftdi_context
139 \param interface Interface to use for FT2232C/2232H/4232H chips.
140
141 \retval 0: all fine
142 \retval -1: unknown interface
143 \retval -2: USB device unavailable
144*/
145int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
146{
147 if (ftdi == NULL)
148 ftdi_error_return(-2, "USB device unavailable");
149
150 switch (interface)
151 {
152 case INTERFACE_ANY:
153 case INTERFACE_A:
154 ftdi->interface = 0;
155 ftdi->index = INTERFACE_A;
156 ftdi->in_ep = 0x02;
157 ftdi->out_ep = 0x81;
158 break;
159 case INTERFACE_B:
160 ftdi->interface = 1;
161 ftdi->index = INTERFACE_B;
162 ftdi->in_ep = 0x04;
163 ftdi->out_ep = 0x83;
164 break;
165 case INTERFACE_C:
166 ftdi->interface = 2;
167 ftdi->index = INTERFACE_C;
168 ftdi->in_ep = 0x06;
169 ftdi->out_ep = 0x85;
170 break;
171 case INTERFACE_D:
172 ftdi->interface = 3;
173 ftdi->index = INTERFACE_D;
174 ftdi->in_ep = 0x08;
175 ftdi->out_ep = 0x87;
176 break;
177 default:
178 ftdi_error_return(-1, "Unknown interface");
179 }
180 return 0;
181}
182
183/**
184 Deinitializes a ftdi_context.
185
186 \param ftdi pointer to ftdi_context
187*/
188void ftdi_deinit(struct ftdi_context *ftdi)
189{
190 if (ftdi == NULL)
191 return;
192
193 ftdi_usb_close_internal (ftdi);
194
195 if (ftdi->readbuffer != NULL)
196 {
197 free(ftdi->readbuffer);
198 ftdi->readbuffer = NULL;
199 }
200
201 if (ftdi->eeprom != NULL)
202 {
203 if (ftdi->eeprom->manufacturer != 0)
204 {
205 free(ftdi->eeprom->manufacturer);
206 ftdi->eeprom->manufacturer = 0;
207 }
208 if (ftdi->eeprom->product != 0)
209 {
210 free(ftdi->eeprom->product);
211 ftdi->eeprom->product = 0;
212 }
213 if (ftdi->eeprom->serial != 0)
214 {
215 free(ftdi->eeprom->serial);
216 ftdi->eeprom->serial = 0;
217 }
218 free(ftdi->eeprom);
219 ftdi->eeprom = NULL;
220 }
221 libusb_exit(ftdi->usb_ctx);
222}
223
224/**
225 Deinitialize and free an ftdi_context.
226
227 \param ftdi pointer to ftdi_context
228*/
229void ftdi_free(struct ftdi_context *ftdi)
230{
231 ftdi_deinit(ftdi);
232 free(ftdi);
233}
234
235/**
236 Use an already open libusb device.
237
238 \param ftdi pointer to ftdi_context
239 \param usb libusb libusb_device_handle to use
240*/
241void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
242{
243 if (ftdi == NULL)
244 return;
245
246 ftdi->usb_dev = usb;
247}
248
249
250/**
251 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
252 needs to be deallocated by ftdi_list_free() after use.
253
254 \param ftdi pointer to ftdi_context
255 \param devlist Pointer where to store list of found devices
256 \param vendor Vendor ID to search for
257 \param product Product ID to search for
258
259 \retval >0: number of devices found
260 \retval -3: out of memory
261 \retval -4: libusb_init() failed
262 \retval -5: libusb_get_device_list() failed
263 \retval -6: libusb_get_device_descriptor() failed
264*/
265int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
266{
267 struct ftdi_device_list **curdev;
268 libusb_device *dev;
269 libusb_device **devs;
270 int count = 0;
271 int i = 0;
272
273 if (libusb_init(&ftdi->usb_ctx) < 0)
274 ftdi_error_return(-4, "libusb_init() failed");
275
276 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
277 ftdi_error_return(-5, "libusb_get_device_list() failed");
278
279 curdev = devlist;
280 *curdev = NULL;
281
282 while ((dev = devs[i++]) != NULL)
283 {
284 struct libusb_device_descriptor desc;
285
286 if (libusb_get_device_descriptor(dev, &desc) < 0)
287 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
288
289 if (desc.idVendor == vendor && desc.idProduct == product)
290 {
291 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
292 if (!*curdev)
293 ftdi_error_return(-3, "out of memory");
294
295 (*curdev)->next = NULL;
296 (*curdev)->dev = dev;
297
298 curdev = &(*curdev)->next;
299 count++;
300 }
301 }
302
303 return count;
304}
305
306/**
307 Frees a usb device list.
308
309 \param devlist USB device list created by ftdi_usb_find_all()
310*/
311void ftdi_list_free(struct ftdi_device_list **devlist)
312{
313 struct ftdi_device_list *curdev, *next;
314
315 for (curdev = *devlist; curdev != NULL;)
316 {
317 next = curdev->next;
318 free(curdev);
319 curdev = next;
320 }
321
322 *devlist = NULL;
323}
324
325/**
326 Frees a usb device list.
327
328 \param devlist USB device list created by ftdi_usb_find_all()
329*/
330void ftdi_list_free2(struct ftdi_device_list *devlist)
331{
332 ftdi_list_free(&devlist);
333}
334
335/**
336 Return device ID strings from the usb device.
337
338 The parameters manufacturer, description and serial may be NULL
339 or pointer to buffers to store the fetched strings.
340
341 \note Use this function only in combination with ftdi_usb_find_all()
342 as it closes the internal "usb_dev" after use.
343
344 \param ftdi pointer to ftdi_context
345 \param dev libusb usb_dev to use
346 \param manufacturer Store manufacturer string here if not NULL
347 \param mnf_len Buffer size of manufacturer string
348 \param description Store product description string here if not NULL
349 \param desc_len Buffer size of product description string
350 \param serial Store serial string here if not NULL
351 \param serial_len Buffer size of serial string
352
353 \retval 0: all fine
354 \retval -1: wrong arguments
355 \retval -4: unable to open device
356 \retval -7: get product manufacturer failed
357 \retval -8: get product description failed
358 \retval -9: get serial number failed
359 \retval -11: libusb_get_device_descriptor() failed
360*/
361int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
362 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
363{
364 struct libusb_device_descriptor desc;
365
366 if ((ftdi==NULL) || (dev==NULL))
367 return -1;
368
369 if (libusb_open(dev, &ftdi->usb_dev) < 0)
370 ftdi_error_return(-4, "libusb_open() failed");
371
372 if (libusb_get_device_descriptor(dev, &desc) < 0)
373 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
374
375 if (manufacturer != NULL)
376 {
377 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
378 {
379 ftdi_usb_close_internal (ftdi);
380 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
381 }
382 }
383
384 if (description != NULL)
385 {
386 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
387 {
388 ftdi_usb_close_internal (ftdi);
389 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
390 }
391 }
392
393 if (serial != NULL)
394 {
395 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
396 {
397 ftdi_usb_close_internal (ftdi);
398 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
399 }
400 }
401
402 ftdi_usb_close_internal (ftdi);
403
404 return 0;
405}
406
407/**
408 * Internal function to determine the maximum packet size.
409 * \param ftdi pointer to ftdi_context
410 * \param dev libusb usb_dev to use
411 * \retval Maximum packet size for this device
412 */
413static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
414{
415 struct libusb_device_descriptor desc;
416 struct libusb_config_descriptor *config0;
417 unsigned int packet_size;
418
419 // Sanity check
420 if (ftdi == NULL || dev == NULL)
421 return 64;
422
423 // Determine maximum packet size. Init with default value.
424 // New hi-speed devices from FTDI use a packet size of 512 bytes
425 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
426 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
427 packet_size = 512;
428 else
429 packet_size = 64;
430
431 if (libusb_get_device_descriptor(dev, &desc) < 0)
432 return packet_size;
433
434 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
435 return packet_size;
436
437 if (desc.bNumConfigurations > 0)
438 {
439 if (ftdi->interface < config0->bNumInterfaces)
440 {
441 struct libusb_interface interface = config0->interface[ftdi->interface];
442 if (interface.num_altsetting > 0)
443 {
444 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
445 if (descriptor.bNumEndpoints > 0)
446 {
447 packet_size = descriptor.endpoint[0].wMaxPacketSize;
448 }
449 }
450 }
451 }
452
453 libusb_free_config_descriptor (config0);
454 return packet_size;
455}
456
457/**
458 Opens a ftdi device given by an usb_device.
459
460 \param ftdi pointer to ftdi_context
461 \param dev libusb usb_dev to use
462
463 \retval 0: all fine
464 \retval -3: unable to config device
465 \retval -4: unable to open device
466 \retval -5: unable to claim device
467 \retval -6: reset failed
468 \retval -7: set baudrate failed
469 \retval -8: ftdi context invalid
470 \retval -9: libusb_get_device_descriptor() failed
471 \retval -10: libusb_get_config_descriptor() failed
472 \retval -11: libusb_etach_kernel_driver() failed
473 \retval -12: libusb_get_configuration() failed
474*/
475int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
476{
477 struct libusb_device_descriptor desc;
478 struct libusb_config_descriptor *config0;
479 int cfg, cfg0, detach_errno = 0;
480
481 if (ftdi == NULL)
482 ftdi_error_return(-8, "ftdi context invalid");
483
484 if (libusb_open(dev, &ftdi->usb_dev) < 0)
485 ftdi_error_return(-4, "libusb_open() failed");
486
487 if (libusb_get_device_descriptor(dev, &desc) < 0)
488 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
489
490 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
491 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
492 cfg0 = config0->bConfigurationValue;
493 libusb_free_config_descriptor (config0);
494
495 // Try to detach ftdi_sio kernel module.
496 //
497 // The return code is kept in a separate variable and only parsed
498 // if usb_set_configuration() or usb_claim_interface() fails as the
499 // detach operation might be denied and everything still works fine.
500 // Likely scenario is a static ftdi_sio kernel module.
501 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
502 detach_errno = errno;
503
504 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
505 ftdi_error_return(-12, "libusb_get_configuration () failed");
506 // set configuration (needed especially for windows)
507 // tolerate EBUSY: one device with one configuration, but two interfaces
508 // and libftdi sessions to both interfaces (e.g. FT2232)
509 if (desc.bNumConfigurations > 0 && cfg != cfg0)
510 {
511 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
512 {
513 ftdi_usb_close_internal (ftdi);
514 if (detach_errno == EPERM)
515 {
516 ftdi_error_return(-8, "inappropriate permissions on device!");
517 }
518 else
519 {
520 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
521 }
522 }
523 }
524
525 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
526 {
527 ftdi_usb_close_internal (ftdi);
528 if (detach_errno == EPERM)
529 {
530 ftdi_error_return(-8, "inappropriate permissions on device!");
531 }
532 else
533 {
534 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
535 }
536 }
537
538 if (ftdi_usb_reset (ftdi) != 0)
539 {
540 ftdi_usb_close_internal (ftdi);
541 ftdi_error_return(-6, "ftdi_usb_reset failed");
542 }
543
544 // Try to guess chip type
545 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
546 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
547 && desc.iSerialNumber == 0))
548 ftdi->type = TYPE_BM;
549 else if (desc.bcdDevice == 0x200)
550 ftdi->type = TYPE_AM;
551 else if (desc.bcdDevice == 0x500)
552 ftdi->type = TYPE_2232C;
553 else if (desc.bcdDevice == 0x600)
554 ftdi->type = TYPE_R;
555 else if (desc.bcdDevice == 0x700)
556 ftdi->type = TYPE_2232H;
557 else if (desc.bcdDevice == 0x800)
558 ftdi->type = TYPE_4232H;
559
560 // Determine maximum packet size
561 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
562
563 if (ftdi_set_baudrate (ftdi, 9600) != 0)
564 {
565 ftdi_usb_close_internal (ftdi);
566 ftdi_error_return(-7, "set baudrate failed");
567 }
568
569 ftdi_error_return(0, "all fine");
570}
571
572/**
573 Opens the first device with a given vendor and product ids.
574
575 \param ftdi pointer to ftdi_context
576 \param vendor Vendor ID
577 \param product Product ID
578
579 \retval same as ftdi_usb_open_desc()
580*/
581int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
582{
583 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
584}
585
586/**
587 Opens the first device with a given, vendor id, product id,
588 description and serial.
589
590 \param ftdi pointer to ftdi_context
591 \param vendor Vendor ID
592 \param product Product ID
593 \param description Description to search for. Use NULL if not needed.
594 \param serial Serial to search for. Use NULL if not needed.
595
596 \retval 0: all fine
597 \retval -3: usb device not found
598 \retval -4: unable to open device
599 \retval -5: unable to claim device
600 \retval -6: reset failed
601 \retval -7: set baudrate failed
602 \retval -8: get product description failed
603 \retval -9: get serial number failed
604 \retval -11: libusb_init() failed
605 \retval -12: libusb_get_device_list() failed
606 \retval -13: libusb_get_device_descriptor() failed
607*/
608int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
609 const char* description, const char* serial)
610{
611 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
612}
613
614/**
615 Opens the index-th device with a given, vendor id, product id,
616 description and serial.
617
618 \param ftdi pointer to ftdi_context
619 \param vendor Vendor ID
620 \param product Product ID
621 \param description Description to search for. Use NULL if not needed.
622 \param serial Serial to search for. Use NULL if not needed.
623 \param index Number of matching device to open if there are more than one, starts with 0.
624
625 \retval 0: all fine
626 \retval -1: usb_find_busses() failed
627 \retval -2: usb_find_devices() failed
628 \retval -3: usb device not found
629 \retval -4: unable to open device
630 \retval -5: unable to claim device
631 \retval -6: reset failed
632 \retval -7: set baudrate failed
633 \retval -8: get product description failed
634 \retval -9: get serial number failed
635 \retval -10: unable to close device
636 \retval -11: ftdi context invalid
637*/
638int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
639 const char* description, const char* serial, unsigned int index)
640{
641 libusb_device *dev;
642 libusb_device **devs;
643 char string[256];
644 int i = 0;
645
646 if (ftdi == NULL)
647 ftdi_error_return(-11, "ftdi context invalid");
648
649 if (libusb_init(&ftdi->usb_ctx) < 0)
650 ftdi_error_return(-11, "libusb_init() failed");
651
652 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
653 ftdi_error_return(-12, "libusb_get_device_list() failed");
654
655 while ((dev = devs[i++]) != NULL)
656 {
657 struct libusb_device_descriptor desc;
658 int res;
659
660 if (libusb_get_device_descriptor(dev, &desc) < 0)
661 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
662
663 if (desc.idVendor == vendor && desc.idProduct == product)
664 {
665 if (libusb_open(dev, &ftdi->usb_dev) < 0)
666 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
667
668 if (description != NULL)
669 {
670 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
671 {
672 ftdi_usb_close_internal (ftdi);
673 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
674 }
675 if (strncmp(string, description, sizeof(string)) != 0)
676 {
677 ftdi_usb_close_internal (ftdi);
678 continue;
679 }
680 }
681 if (serial != NULL)
682 {
683 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
684 {
685 ftdi_usb_close_internal (ftdi);
686 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
687 }
688 if (strncmp(string, serial, sizeof(string)) != 0)
689 {
690 ftdi_usb_close_internal (ftdi);
691 continue;
692 }
693 }
694
695 ftdi_usb_close_internal (ftdi);
696
697 if (index > 0)
698 {
699 index--;
700 continue;
701 }
702
703 res = ftdi_usb_open_dev(ftdi, dev);
704 libusb_free_device_list(devs,1);
705 return res;
706 }
707 }
708
709 // device not found
710 ftdi_error_return_free_device_list(-3, "device not found", devs);
711}
712
713/**
714 Opens the ftdi-device described by a description-string.
715 Intended to be used for parsing a device-description given as commandline argument.
716
717 \param ftdi pointer to ftdi_context
718 \param description NULL-terminated description-string, using this format:
719 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
720 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
721 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
722 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
723
724 \note The description format may be extended in later versions.
725
726 \retval 0: all fine
727 \retval -1: libusb_init() failed
728 \retval -2: libusb_get_device_list() failed
729 \retval -3: usb device not found
730 \retval -4: unable to open device
731 \retval -5: unable to claim device
732 \retval -6: reset failed
733 \retval -7: set baudrate failed
734 \retval -8: get product description failed
735 \retval -9: get serial number failed
736 \retval -10: unable to close device
737 \retval -11: illegal description format
738 \retval -12: ftdi context invalid
739*/
740int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
741{
742 if (ftdi == NULL)
743 ftdi_error_return(-12, "ftdi context invalid");
744
745 if (description[0] == 0 || description[1] != ':')
746 ftdi_error_return(-11, "illegal description format");
747
748 if (description[0] == 'd')
749 {
750 libusb_device *dev;
751 libusb_device **devs;
752 unsigned int bus_number, device_address;
753 int i = 0;
754
755 if (libusb_init (&ftdi->usb_ctx) < 0)
756 ftdi_error_return(-1, "libusb_init() failed");
757
758 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
759 ftdi_error_return(-2, "libusb_get_device_list() failed");
760
761 /* XXX: This doesn't handle symlinks/odd paths/etc... */
762 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
763 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
764
765 while ((dev = devs[i++]) != NULL)
766 {
767 int ret;
768 if (bus_number == libusb_get_bus_number (dev)
769 && device_address == libusb_get_device_address (dev))
770 {
771 ret = ftdi_usb_open_dev(ftdi, dev);
772 libusb_free_device_list(devs,1);
773 return ret;
774 }
775 }
776
777 // device not found
778 ftdi_error_return_free_device_list(-3, "device not found", devs);
779 }
780 else if (description[0] == 'i' || description[0] == 's')
781 {
782 unsigned int vendor;
783 unsigned int product;
784 unsigned int index=0;
785 const char *serial=NULL;
786 const char *startp, *endp;
787
788 errno=0;
789 startp=description+2;
790 vendor=strtoul((char*)startp,(char**)&endp,0);
791 if (*endp != ':' || endp == startp || errno != 0)
792 ftdi_error_return(-11, "illegal description format");
793
794 startp=endp+1;
795 product=strtoul((char*)startp,(char**)&endp,0);
796 if (endp == startp || errno != 0)
797 ftdi_error_return(-11, "illegal description format");
798
799 if (description[0] == 'i' && *endp != 0)
800 {
801 /* optional index field in i-mode */
802 if (*endp != ':')
803 ftdi_error_return(-11, "illegal description format");
804
805 startp=endp+1;
806 index=strtoul((char*)startp,(char**)&endp,0);
807 if (*endp != 0 || endp == startp || errno != 0)
808 ftdi_error_return(-11, "illegal description format");
809 }
810 if (description[0] == 's')
811 {
812 if (*endp != ':')
813 ftdi_error_return(-11, "illegal description format");
814
815 /* rest of the description is the serial */
816 serial=endp+1;
817 }
818
819 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
820 }
821 else
822 {
823 ftdi_error_return(-11, "illegal description format");
824 }
825}
826
827/**
828 Resets the ftdi device.
829
830 \param ftdi pointer to ftdi_context
831
832 \retval 0: all fine
833 \retval -1: FTDI reset failed
834 \retval -2: USB device unavailable
835*/
836int ftdi_usb_reset(struct ftdi_context *ftdi)
837{
838 if (ftdi == NULL || ftdi->usb_dev == NULL)
839 ftdi_error_return(-2, "USB device unavailable");
840
841 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
842 SIO_RESET_REQUEST, SIO_RESET_SIO,
843 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
844 ftdi_error_return(-1,"FTDI reset failed");
845
846 // Invalidate data in the readbuffer
847 ftdi->readbuffer_offset = 0;
848 ftdi->readbuffer_remaining = 0;
849
850 return 0;
851}
852
853/**
854 Clears the read buffer on the chip and the internal read buffer.
855
856 \param ftdi pointer to ftdi_context
857
858 \retval 0: all fine
859 \retval -1: read buffer purge failed
860 \retval -2: USB device unavailable
861*/
862int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
863{
864 if (ftdi == NULL || ftdi->usb_dev == NULL)
865 ftdi_error_return(-2, "USB device unavailable");
866
867 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
868 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
869 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
870 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
871
872 // Invalidate data in the readbuffer
873 ftdi->readbuffer_offset = 0;
874 ftdi->readbuffer_remaining = 0;
875
876 return 0;
877}
878
879/**
880 Clears the write buffer on the chip.
881
882 \param ftdi pointer to ftdi_context
883
884 \retval 0: all fine
885 \retval -1: write buffer purge failed
886 \retval -2: USB device unavailable
887*/
888int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
889{
890 if (ftdi == NULL || ftdi->usb_dev == NULL)
891 ftdi_error_return(-2, "USB device unavailable");
892
893 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
894 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
895 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
896 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
897
898 return 0;
899}
900
901/**
902 Clears the buffers on the chip and the internal read buffer.
903
904 \param ftdi pointer to ftdi_context
905
906 \retval 0: all fine
907 \retval -1: read buffer purge failed
908 \retval -2: write buffer purge failed
909 \retval -3: USB device unavailable
910*/
911int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
912{
913 int result;
914
915 if (ftdi == NULL || ftdi->usb_dev == NULL)
916 ftdi_error_return(-3, "USB device unavailable");
917
918 result = ftdi_usb_purge_rx_buffer(ftdi);
919 if (result < 0)
920 return -1;
921
922 result = ftdi_usb_purge_tx_buffer(ftdi);
923 if (result < 0)
924 return -2;
925
926 return 0;
927}
928
929
930
931/**
932 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
933
934 \param ftdi pointer to ftdi_context
935
936 \retval 0: all fine
937 \retval -1: usb_release failed
938 \retval -3: ftdi context invalid
939*/
940int ftdi_usb_close(struct ftdi_context *ftdi)
941{
942 int rtn = 0;
943
944 if (ftdi == NULL)
945 ftdi_error_return(-3, "ftdi context invalid");
946
947 if (ftdi->usb_dev != NULL)
948 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
949 rtn = -1;
950
951 ftdi_usb_close_internal (ftdi);
952
953 return rtn;
954}
955
956/**
957 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
958 Function is only used internally
959 \internal
960*/
961static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
962 unsigned short *value, unsigned short *index)
963{
964 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
965 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
966 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
967 int divisor, best_divisor, best_baud, best_baud_diff;
968 unsigned long encoded_divisor;
969 int i;
970
971 if (baudrate <= 0)
972 {
973 // Return error
974 return -1;
975 }
976
977 divisor = 24000000 / baudrate;
978
979 if (ftdi->type == TYPE_AM)
980 {
981 // Round down to supported fraction (AM only)
982 divisor -= am_adjust_dn[divisor & 7];
983 }
984
985 // Try this divisor and the one above it (because division rounds down)
986 best_divisor = 0;
987 best_baud = 0;
988 best_baud_diff = 0;
989 for (i = 0; i < 2; i++)
990 {
991 int try_divisor = divisor + i;
992 int baud_estimate;
993 int baud_diff;
994
995 // Round up to supported divisor value
996 if (try_divisor <= 8)
997 {
998 // Round up to minimum supported divisor
999 try_divisor = 8;
1000 }
1001 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1002 {
1003 // BM doesn't support divisors 9 through 11 inclusive
1004 try_divisor = 12;
1005 }
1006 else if (divisor < 16)
1007 {
1008 // AM doesn't support divisors 9 through 15 inclusive
1009 try_divisor = 16;
1010 }
1011 else
1012 {
1013 if (ftdi->type == TYPE_AM)
1014 {
1015 // Round up to supported fraction (AM only)
1016 try_divisor += am_adjust_up[try_divisor & 7];
1017 if (try_divisor > 0x1FFF8)
1018 {
1019 // Round down to maximum supported divisor value (for AM)
1020 try_divisor = 0x1FFF8;
1021 }
1022 }
1023 else
1024 {
1025 if (try_divisor > 0x1FFFF)
1026 {
1027 // Round down to maximum supported divisor value (for BM)
1028 try_divisor = 0x1FFFF;
1029 }
1030 }
1031 }
1032 // Get estimated baud rate (to nearest integer)
1033 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1034 // Get absolute difference from requested baud rate
1035 if (baud_estimate < baudrate)
1036 {
1037 baud_diff = baudrate - baud_estimate;
1038 }
1039 else
1040 {
1041 baud_diff = baud_estimate - baudrate;
1042 }
1043 if (i == 0 || baud_diff < best_baud_diff)
1044 {
1045 // Closest to requested baud rate so far
1046 best_divisor = try_divisor;
1047 best_baud = baud_estimate;
1048 best_baud_diff = baud_diff;
1049 if (baud_diff == 0)
1050 {
1051 // Spot on! No point trying
1052 break;
1053 }
1054 }
1055 }
1056 // Encode the best divisor value
1057 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1058 // Deal with special cases for encoded value
1059 if (encoded_divisor == 1)
1060 {
1061 encoded_divisor = 0; // 3000000 baud
1062 }
1063 else if (encoded_divisor == 0x4001)
1064 {
1065 encoded_divisor = 1; // 2000000 baud (BM only)
1066 }
1067 // Split into "value" and "index" values
1068 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1069 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1070 {
1071 *index = (unsigned short)(encoded_divisor >> 8);
1072 *index &= 0xFF00;
1073 *index |= ftdi->index;
1074 }
1075 else
1076 *index = (unsigned short)(encoded_divisor >> 16);
1077
1078 // Return the nearest baud rate
1079 return best_baud;
1080}
1081
1082/**
1083 Sets the chip baud rate
1084
1085 \param ftdi pointer to ftdi_context
1086 \param baudrate baud rate to set
1087
1088 \retval 0: all fine
1089 \retval -1: invalid baudrate
1090 \retval -2: setting baudrate failed
1091 \retval -3: USB device unavailable
1092*/
1093int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1094{
1095 unsigned short value, index;
1096 int actual_baudrate;
1097
1098 if (ftdi == NULL || ftdi->usb_dev == NULL)
1099 ftdi_error_return(-3, "USB device unavailable");
1100
1101 if (ftdi->bitbang_enabled)
1102 {
1103 baudrate = baudrate*4;
1104 }
1105
1106 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1107 if (actual_baudrate <= 0)
1108 ftdi_error_return (-1, "Silly baudrate <= 0.");
1109
1110 // Check within tolerance (about 5%)
1111 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1112 || ((actual_baudrate < baudrate)
1113 ? (actual_baudrate * 21 < baudrate * 20)
1114 : (baudrate * 21 < actual_baudrate * 20)))
1115 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1116
1117 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1118 SIO_SET_BAUDRATE_REQUEST, value,
1119 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1120 ftdi_error_return (-2, "Setting new baudrate failed");
1121
1122 ftdi->baudrate = baudrate;
1123 return 0;
1124}
1125
1126/**
1127 Set (RS232) line characteristics.
1128 The break type can only be set via ftdi_set_line_property2()
1129 and defaults to "off".
1130
1131 \param ftdi pointer to ftdi_context
1132 \param bits Number of bits
1133 \param sbit Number of stop bits
1134 \param parity Parity mode
1135
1136 \retval 0: all fine
1137 \retval -1: Setting line property failed
1138*/
1139int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1140 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1141{
1142 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1143}
1144
1145/**
1146 Set (RS232) line characteristics
1147
1148 \param ftdi pointer to ftdi_context
1149 \param bits Number of bits
1150 \param sbit Number of stop bits
1151 \param parity Parity mode
1152 \param break_type Break type
1153
1154 \retval 0: all fine
1155 \retval -1: Setting line property failed
1156 \retval -2: USB device unavailable
1157*/
1158int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1159 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1160 enum ftdi_break_type break_type)
1161{
1162 unsigned short value = bits;
1163
1164 if (ftdi == NULL || ftdi->usb_dev == NULL)
1165 ftdi_error_return(-2, "USB device unavailable");
1166
1167 switch (parity)
1168 {
1169 case NONE:
1170 value |= (0x00 << 8);
1171 break;
1172 case ODD:
1173 value |= (0x01 << 8);
1174 break;
1175 case EVEN:
1176 value |= (0x02 << 8);
1177 break;
1178 case MARK:
1179 value |= (0x03 << 8);
1180 break;
1181 case SPACE:
1182 value |= (0x04 << 8);
1183 break;
1184 }
1185
1186 switch (sbit)
1187 {
1188 case STOP_BIT_1:
1189 value |= (0x00 << 11);
1190 break;
1191 case STOP_BIT_15:
1192 value |= (0x01 << 11);
1193 break;
1194 case STOP_BIT_2:
1195 value |= (0x02 << 11);
1196 break;
1197 }
1198
1199 switch (break_type)
1200 {
1201 case BREAK_OFF:
1202 value |= (0x00 << 14);
1203 break;
1204 case BREAK_ON:
1205 value |= (0x01 << 14);
1206 break;
1207 }
1208
1209 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1210 SIO_SET_DATA_REQUEST, value,
1211 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1212 ftdi_error_return (-1, "Setting new line property failed");
1213
1214 return 0;
1215}
1216
1217/**
1218 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1219
1220 \param ftdi pointer to ftdi_context
1221 \param buf Buffer with the data
1222 \param size Size of the buffer
1223
1224 \retval -666: USB device unavailable
1225 \retval <0: error code from usb_bulk_write()
1226 \retval >0: number of bytes written
1227*/
1228int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1229{
1230 int offset = 0;
1231 int actual_length;
1232
1233 if (ftdi == NULL || ftdi->usb_dev == NULL)
1234 ftdi_error_return(-666, "USB device unavailable");
1235
1236 while (offset < size)
1237 {
1238 int write_size = ftdi->writebuffer_chunksize;
1239
1240 if (offset+write_size > size)
1241 write_size = size-offset;
1242
1243 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1244 ftdi_error_return(-1, "usb bulk write failed");
1245
1246 offset += actual_length;
1247 }
1248
1249 return offset;
1250}
1251
1252static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1253{
1254 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1255 struct ftdi_context *ftdi = tc->ftdi;
1256 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1257
1258 packet_size = ftdi->max_packet_size;
1259
1260 actual_length = transfer->actual_length;
1261
1262 if (actual_length > 2)
1263 {
1264 // skip FTDI status bytes.
1265 // Maybe stored in the future to enable modem use
1266 num_of_chunks = actual_length / packet_size;
1267 chunk_remains = actual_length % packet_size;
1268 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1269
1270 ftdi->readbuffer_offset += 2;
1271 actual_length -= 2;
1272
1273 if (actual_length > packet_size - 2)
1274 {
1275 for (i = 1; i < num_of_chunks; i++)
1276 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1277 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1278 packet_size - 2);
1279 if (chunk_remains > 2)
1280 {
1281 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1282 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1283 chunk_remains-2);
1284 actual_length -= 2*num_of_chunks;
1285 }
1286 else
1287 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1288 }
1289
1290 if (actual_length > 0)
1291 {
1292 // data still fits in buf?
1293 if (tc->offset + actual_length <= tc->size)
1294 {
1295 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1296 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1297 tc->offset += actual_length;
1298
1299 ftdi->readbuffer_offset = 0;
1300 ftdi->readbuffer_remaining = 0;
1301
1302 /* Did we read exactly the right amount of bytes? */
1303 if (tc->offset == tc->size)
1304 {
1305 //printf("read_data exact rem %d offset %d\n",
1306 //ftdi->readbuffer_remaining, offset);
1307 tc->completed = 1;
1308 return;
1309 }
1310 }
1311 else
1312 {
1313 // only copy part of the data or size <= readbuffer_chunksize
1314 int part_size = tc->size - tc->offset;
1315 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1316 tc->offset += part_size;
1317
1318 ftdi->readbuffer_offset += part_size;
1319 ftdi->readbuffer_remaining = actual_length - part_size;
1320
1321 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1322 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1323 tc->completed = 1;
1324 return;
1325 }
1326 }
1327 }
1328 ret = libusb_submit_transfer (transfer);
1329 if (ret < 0)
1330 tc->completed = 1;
1331}
1332
1333
1334static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1335{
1336 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1337 struct ftdi_context *ftdi = tc->ftdi;
1338
1339 tc->offset += transfer->actual_length;
1340
1341 if (tc->offset == tc->size)
1342 {
1343 tc->completed = 1;
1344 }
1345 else
1346 {
1347 int write_size = ftdi->writebuffer_chunksize;
1348 int ret;
1349
1350 if (tc->offset + write_size > tc->size)
1351 write_size = tc->size - tc->offset;
1352
1353 transfer->length = write_size;
1354 transfer->buffer = tc->buf + tc->offset;
1355 ret = libusb_submit_transfer (transfer);
1356 if (ret < 0)
1357 tc->completed = 1;
1358 }
1359}
1360
1361
1362/**
1363 Writes data to the chip. Does not wait for completion of the transfer
1364 nor does it make sure that the transfer was successful.
1365
1366 Use libusb 1.0 asynchronous API.
1367
1368 \param ftdi pointer to ftdi_context
1369 \param buf Buffer with the data
1370 \param size Size of the buffer
1371
1372 \retval NULL: Some error happens when submit transfer
1373 \retval !NULL: Pointer to a ftdi_transfer_control
1374*/
1375
1376struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1377{
1378 struct ftdi_transfer_control *tc;
1379 struct libusb_transfer *transfer;
1380 int write_size, ret;
1381
1382 if (ftdi == NULL || ftdi->usb_dev == NULL)
1383 return NULL;
1384
1385 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1386 if (!tc)
1387 return NULL;
1388
1389 transfer = libusb_alloc_transfer(0);
1390 if (!transfer)
1391 {
1392 free(tc);
1393 return NULL;
1394 }
1395
1396 tc->ftdi = ftdi;
1397 tc->completed = 0;
1398 tc->buf = buf;
1399 tc->size = size;
1400 tc->offset = 0;
1401
1402 if (size < ftdi->writebuffer_chunksize)
1403 write_size = size;
1404 else
1405 write_size = ftdi->writebuffer_chunksize;
1406
1407 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1408 write_size, ftdi_write_data_cb, tc,
1409 ftdi->usb_write_timeout);
1410 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1411
1412 ret = libusb_submit_transfer(transfer);
1413 if (ret < 0)
1414 {
1415 libusb_free_transfer(transfer);
1416 free(tc);
1417 return NULL;
1418 }
1419 tc->transfer = transfer;
1420
1421 return tc;
1422}
1423
1424/**
1425 Reads data from the chip. Does not wait for completion of the transfer
1426 nor does it make sure that the transfer was successful.
1427
1428 Use libusb 1.0 asynchronous API.
1429
1430 \param ftdi pointer to ftdi_context
1431 \param buf Buffer with the data
1432 \param size Size of the buffer
1433
1434 \retval NULL: Some error happens when submit transfer
1435 \retval !NULL: Pointer to a ftdi_transfer_control
1436*/
1437
1438struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1439{
1440 struct ftdi_transfer_control *tc;
1441 struct libusb_transfer *transfer;
1442 int ret;
1443
1444 if (ftdi == NULL || ftdi->usb_dev == NULL)
1445 return NULL;
1446
1447 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1448 if (!tc)
1449 return NULL;
1450
1451 tc->ftdi = ftdi;
1452 tc->buf = buf;
1453 tc->size = size;
1454
1455 if (size <= ftdi->readbuffer_remaining)
1456 {
1457 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1458
1459 // Fix offsets
1460 ftdi->readbuffer_remaining -= size;
1461 ftdi->readbuffer_offset += size;
1462
1463 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1464
1465 tc->completed = 1;
1466 tc->offset = size;
1467 tc->transfer = NULL;
1468 return tc;
1469 }
1470
1471 tc->completed = 0;
1472 if (ftdi->readbuffer_remaining != 0)
1473 {
1474 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1475
1476 tc->offset = ftdi->readbuffer_remaining;
1477 }
1478 else
1479 tc->offset = 0;
1480
1481 transfer = libusb_alloc_transfer(0);
1482 if (!transfer)
1483 {
1484 free (tc);
1485 return NULL;
1486 }
1487
1488 ftdi->readbuffer_remaining = 0;
1489 ftdi->readbuffer_offset = 0;
1490
1491 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1492 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1493
1494 ret = libusb_submit_transfer(transfer);
1495 if (ret < 0)
1496 {
1497 libusb_free_transfer(transfer);
1498 free (tc);
1499 return NULL;
1500 }
1501 tc->transfer = transfer;
1502
1503 return tc;
1504}
1505
1506/**
1507 Wait for completion of the transfer.
1508
1509 Use libusb 1.0 asynchronous API.
1510
1511 \param tc pointer to ftdi_transfer_control
1512
1513 \retval < 0: Some error happens
1514 \retval >= 0: Data size transferred
1515*/
1516
1517int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1518{
1519 int ret;
1520
1521 while (!tc->completed)
1522 {
1523 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1524 if (ret < 0)
1525 {
1526 if (ret == LIBUSB_ERROR_INTERRUPTED)
1527 continue;
1528 libusb_cancel_transfer(tc->transfer);
1529 while (!tc->completed)
1530 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1531 break;
1532 libusb_free_transfer(tc->transfer);
1533 free (tc);
1534 return ret;
1535 }
1536 }
1537
1538 ret = tc->offset;
1539 /**
1540 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1541 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1542 **/
1543 if (tc->transfer)
1544 {
1545 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1546 ret = -1;
1547 libusb_free_transfer(tc->transfer);
1548 }
1549 free(tc);
1550 return ret;
1551}
1552
1553/**
1554 Configure write buffer chunk size.
1555 Default is 4096.
1556
1557 \param ftdi pointer to ftdi_context
1558 \param chunksize Chunk size
1559
1560 \retval 0: all fine
1561 \retval -1: ftdi context invalid
1562*/
1563int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1564{
1565 if (ftdi == NULL)
1566 ftdi_error_return(-1, "ftdi context invalid");
1567
1568 ftdi->writebuffer_chunksize = chunksize;
1569 return 0;
1570}
1571
1572/**
1573 Get write buffer chunk size.
1574
1575 \param ftdi pointer to ftdi_context
1576 \param chunksize Pointer to store chunk size in
1577
1578 \retval 0: all fine
1579 \retval -1: ftdi context invalid
1580*/
1581int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1582{
1583 if (ftdi == NULL)
1584 ftdi_error_return(-1, "ftdi context invalid");
1585
1586 *chunksize = ftdi->writebuffer_chunksize;
1587 return 0;
1588}
1589
1590/**
1591 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1592
1593 Automatically strips the two modem status bytes transfered during every read.
1594
1595 \param ftdi pointer to ftdi_context
1596 \param buf Buffer to store data in
1597 \param size Size of the buffer
1598
1599 \retval -666: USB device unavailable
1600 \retval <0: error code from libusb_bulk_transfer()
1601 \retval 0: no data was available
1602 \retval >0: number of bytes read
1603
1604*/
1605int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1606{
1607 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1608 int packet_size = ftdi->max_packet_size;
1609 int actual_length = 1;
1610
1611 if (ftdi == NULL || ftdi->usb_dev == NULL)
1612 ftdi_error_return(-666, "USB device unavailable");
1613
1614 // Packet size sanity check (avoid division by zero)
1615 if (packet_size == 0)
1616 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1617
1618 // everything we want is still in the readbuffer?
1619 if (size <= ftdi->readbuffer_remaining)
1620 {
1621 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1622
1623 // Fix offsets
1624 ftdi->readbuffer_remaining -= size;
1625 ftdi->readbuffer_offset += size;
1626
1627 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1628
1629 return size;
1630 }
1631 // something still in the readbuffer, but not enough to satisfy 'size'?
1632 if (ftdi->readbuffer_remaining != 0)
1633 {
1634 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1635
1636 // Fix offset
1637 offset += ftdi->readbuffer_remaining;
1638 }
1639 // do the actual USB read
1640 while (offset < size && actual_length > 0)
1641 {
1642 ftdi->readbuffer_remaining = 0;
1643 ftdi->readbuffer_offset = 0;
1644 /* returns how much received */
1645 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1646 if (ret < 0)
1647 ftdi_error_return(ret, "usb bulk read failed");
1648
1649 if (actual_length > 2)
1650 {
1651 // skip FTDI status bytes.
1652 // Maybe stored in the future to enable modem use
1653 num_of_chunks = actual_length / packet_size;
1654 chunk_remains = actual_length % packet_size;
1655 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1656
1657 ftdi->readbuffer_offset += 2;
1658 actual_length -= 2;
1659
1660 if (actual_length > packet_size - 2)
1661 {
1662 for (i = 1; i < num_of_chunks; i++)
1663 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1664 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1665 packet_size - 2);
1666 if (chunk_remains > 2)
1667 {
1668 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1669 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1670 chunk_remains-2);
1671 actual_length -= 2*num_of_chunks;
1672 }
1673 else
1674 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1675 }
1676 }
1677 else if (actual_length <= 2)
1678 {
1679 // no more data to read?
1680 return offset;
1681 }
1682 if (actual_length > 0)
1683 {
1684 // data still fits in buf?
1685 if (offset+actual_length <= size)
1686 {
1687 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1688 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1689 offset += actual_length;
1690
1691 /* Did we read exactly the right amount of bytes? */
1692 if (offset == size)
1693 //printf("read_data exact rem %d offset %d\n",
1694 //ftdi->readbuffer_remaining, offset);
1695 return offset;
1696 }
1697 else
1698 {
1699 // only copy part of the data or size <= readbuffer_chunksize
1700 int part_size = size-offset;
1701 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1702
1703 ftdi->readbuffer_offset += part_size;
1704 ftdi->readbuffer_remaining = actual_length-part_size;
1705 offset += part_size;
1706
1707 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1708 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1709
1710 return offset;
1711 }
1712 }
1713 }
1714 // never reached
1715 return -127;
1716}
1717
1718/**
1719 Configure read buffer chunk size.
1720 Default is 4096.
1721
1722 Automatically reallocates the buffer.
1723
1724 \param ftdi pointer to ftdi_context
1725 \param chunksize Chunk size
1726
1727 \retval 0: all fine
1728 \retval -1: ftdi context invalid
1729*/
1730int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1731{
1732 unsigned char *new_buf;
1733
1734 if (ftdi == NULL)
1735 ftdi_error_return(-1, "ftdi context invalid");
1736
1737 // Invalidate all remaining data
1738 ftdi->readbuffer_offset = 0;
1739 ftdi->readbuffer_remaining = 0;
1740#ifdef __linux__
1741 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1742 which is defined in libusb-1.0. Otherwise, each USB read request will
1743 be divided into multiple URBs. This will cause issues on Linux kernel
1744 older than 2.6.32. */
1745 if (chunksize > 16384)
1746 chunksize = 16384;
1747#endif
1748
1749 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1750 ftdi_error_return(-1, "out of memory for readbuffer");
1751
1752 ftdi->readbuffer = new_buf;
1753 ftdi->readbuffer_chunksize = chunksize;
1754
1755 return 0;
1756}
1757
1758/**
1759 Get read buffer chunk size.
1760
1761 \param ftdi pointer to ftdi_context
1762 \param chunksize Pointer to store chunk size in
1763
1764 \retval 0: all fine
1765 \retval -1: FTDI context invalid
1766*/
1767int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1768{
1769 if (ftdi == NULL)
1770 ftdi_error_return(-1, "FTDI context invalid");
1771
1772 *chunksize = ftdi->readbuffer_chunksize;
1773 return 0;
1774}
1775
1776
1777/**
1778 Enable bitbang mode.
1779
1780 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1781
1782 \param ftdi pointer to ftdi_context
1783 \param bitmask Bitmask to configure lines.
1784 HIGH/ON value configures a line as output.
1785
1786 \retval 0: all fine
1787 \retval -1: can't enable bitbang mode
1788 \retval -2: USB device unavailable
1789*/
1790int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1791{
1792 unsigned short usb_val;
1793
1794 if (ftdi == NULL || ftdi->usb_dev == NULL)
1795 ftdi_error_return(-2, "USB device unavailable");
1796
1797 usb_val = bitmask; // low byte: bitmask
1798 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1799 usb_val |= (ftdi->bitbang_mode << 8);
1800
1801 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1802 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1803 NULL, 0, ftdi->usb_write_timeout) < 0)
1804 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1805
1806 ftdi->bitbang_enabled = 1;
1807 return 0;
1808}
1809
1810/**
1811 Disable bitbang mode.
1812
1813 \param ftdi pointer to ftdi_context
1814
1815 \retval 0: all fine
1816 \retval -1: can't disable bitbang mode
1817 \retval -2: USB device unavailable
1818*/
1819int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1820{
1821 if (ftdi == NULL || ftdi->usb_dev == NULL)
1822 ftdi_error_return(-2, "USB device unavailable");
1823
1824 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1825 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1826
1827 ftdi->bitbang_enabled = 0;
1828 return 0;
1829}
1830
1831/**
1832 Enable/disable bitbang modes.
1833
1834 \param ftdi pointer to ftdi_context
1835 \param bitmask Bitmask to configure lines.
1836 HIGH/ON value configures a line as output.
1837 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1838
1839 \retval 0: all fine
1840 \retval -1: can't enable bitbang mode
1841 \retval -2: USB device unavailable
1842*/
1843int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1844{
1845 unsigned short usb_val;
1846
1847 if (ftdi == NULL || ftdi->usb_dev == NULL)
1848 ftdi_error_return(-2, "USB device unavailable");
1849
1850 usb_val = bitmask; // low byte: bitmask
1851 usb_val |= (mode << 8);
1852 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1853 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1854
1855 ftdi->bitbang_mode = mode;
1856 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1857 return 0;
1858}
1859
1860/**
1861 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1862
1863 \param ftdi pointer to ftdi_context
1864 \param pins Pointer to store pins into
1865
1866 \retval 0: all fine
1867 \retval -1: read pins failed
1868 \retval -2: USB device unavailable
1869*/
1870int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1871{
1872 if (ftdi == NULL || ftdi->usb_dev == NULL)
1873 ftdi_error_return(-2, "USB device unavailable");
1874
1875 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1876 ftdi_error_return(-1, "read pins failed");
1877
1878 return 0;
1879}
1880
1881/**
1882 Set latency timer
1883
1884 The FTDI chip keeps data in the internal buffer for a specific
1885 amount of time if the buffer is not full yet to decrease
1886 load on the usb bus.
1887
1888 \param ftdi pointer to ftdi_context
1889 \param latency Value between 1 and 255
1890
1891 \retval 0: all fine
1892 \retval -1: latency out of range
1893 \retval -2: unable to set latency timer
1894 \retval -3: USB device unavailable
1895*/
1896int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1897{
1898 unsigned short usb_val;
1899
1900 if (latency < 1)
1901 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1902
1903 if (ftdi == NULL || ftdi->usb_dev == NULL)
1904 ftdi_error_return(-3, "USB device unavailable");
1905
1906 usb_val = latency;
1907 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1908 ftdi_error_return(-2, "unable to set latency timer");
1909
1910 return 0;
1911}
1912
1913/**
1914 Get latency timer
1915
1916 \param ftdi pointer to ftdi_context
1917 \param latency Pointer to store latency value in
1918
1919 \retval 0: all fine
1920 \retval -1: unable to get latency timer
1921 \retval -2: USB device unavailable
1922*/
1923int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1924{
1925 unsigned short usb_val;
1926
1927 if (ftdi == NULL || ftdi->usb_dev == NULL)
1928 ftdi_error_return(-2, "USB device unavailable");
1929
1930 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1931 ftdi_error_return(-1, "reading latency timer failed");
1932
1933 *latency = (unsigned char)usb_val;
1934 return 0;
1935}
1936
1937/**
1938 Poll modem status information
1939
1940 This function allows the retrieve the two status bytes of the device.
1941 The device sends these bytes also as a header for each read access
1942 where they are discarded by ftdi_read_data(). The chip generates
1943 the two stripped status bytes in the absence of data every 40 ms.
1944
1945 Layout of the first byte:
1946 - B0..B3 - must be 0
1947 - B4 Clear to send (CTS)
1948 0 = inactive
1949 1 = active
1950 - B5 Data set ready (DTS)
1951 0 = inactive
1952 1 = active
1953 - B6 Ring indicator (RI)
1954 0 = inactive
1955 1 = active
1956 - B7 Receive line signal detect (RLSD)
1957 0 = inactive
1958 1 = active
1959
1960 Layout of the second byte:
1961 - B0 Data ready (DR)
1962 - B1 Overrun error (OE)
1963 - B2 Parity error (PE)
1964 - B3 Framing error (FE)
1965 - B4 Break interrupt (BI)
1966 - B5 Transmitter holding register (THRE)
1967 - B6 Transmitter empty (TEMT)
1968 - B7 Error in RCVR FIFO
1969
1970 \param ftdi pointer to ftdi_context
1971 \param status Pointer to store status information in. Must be two bytes.
1972
1973 \retval 0: all fine
1974 \retval -1: unable to retrieve status information
1975 \retval -2: USB device unavailable
1976*/
1977int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1978{
1979 char usb_val[2];
1980
1981 if (ftdi == NULL || ftdi->usb_dev == NULL)
1982 ftdi_error_return(-2, "USB device unavailable");
1983
1984 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1985 ftdi_error_return(-1, "getting modem status failed");
1986
1987 *status = (usb_val[1] << 8) | usb_val[0];
1988
1989 return 0;
1990}
1991
1992/**
1993 Set flowcontrol for ftdi chip
1994
1995 \param ftdi pointer to ftdi_context
1996 \param flowctrl flow control to use. should be
1997 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
1998
1999 \retval 0: all fine
2000 \retval -1: set flow control failed
2001 \retval -2: USB device unavailable
2002*/
2003int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2004{
2005 if (ftdi == NULL || ftdi->usb_dev == NULL)
2006 ftdi_error_return(-2, "USB device unavailable");
2007
2008 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2009 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2010 NULL, 0, ftdi->usb_write_timeout) < 0)
2011 ftdi_error_return(-1, "set flow control failed");
2012
2013 return 0;
2014}
2015
2016/**
2017 Set dtr line
2018
2019 \param ftdi pointer to ftdi_context
2020 \param state state to set line to (1 or 0)
2021
2022 \retval 0: all fine
2023 \retval -1: set dtr failed
2024 \retval -2: USB device unavailable
2025*/
2026int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2027{
2028 unsigned short usb_val;
2029
2030 if (ftdi == NULL || ftdi->usb_dev == NULL)
2031 ftdi_error_return(-2, "USB device unavailable");
2032
2033 if (state)
2034 usb_val = SIO_SET_DTR_HIGH;
2035 else
2036 usb_val = SIO_SET_DTR_LOW;
2037
2038 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2039 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2040 NULL, 0, ftdi->usb_write_timeout) < 0)
2041 ftdi_error_return(-1, "set dtr failed");
2042
2043 return 0;
2044}
2045
2046/**
2047 Set rts line
2048
2049 \param ftdi pointer to ftdi_context
2050 \param state state to set line to (1 or 0)
2051
2052 \retval 0: all fine
2053 \retval -1: set rts failed
2054 \retval -2: USB device unavailable
2055*/
2056int ftdi_setrts(struct ftdi_context *ftdi, int state)
2057{
2058 unsigned short usb_val;
2059
2060 if (ftdi == NULL || ftdi->usb_dev == NULL)
2061 ftdi_error_return(-2, "USB device unavailable");
2062
2063 if (state)
2064 usb_val = SIO_SET_RTS_HIGH;
2065 else
2066 usb_val = SIO_SET_RTS_LOW;
2067
2068 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2069 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2070 NULL, 0, ftdi->usb_write_timeout) < 0)
2071 ftdi_error_return(-1, "set of rts failed");
2072
2073 return 0;
2074}
2075
2076/**
2077 Set dtr and rts line in one pass
2078
2079 \param ftdi pointer to ftdi_context
2080 \param dtr DTR state to set line to (1 or 0)
2081 \param rts RTS state to set line to (1 or 0)
2082
2083 \retval 0: all fine
2084 \retval -1: set dtr/rts failed
2085 \retval -2: USB device unavailable
2086 */
2087int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2088{
2089 unsigned short usb_val;
2090
2091 if (ftdi == NULL || ftdi->usb_dev == NULL)
2092 ftdi_error_return(-2, "USB device unavailable");
2093
2094 if (dtr)
2095 usb_val = SIO_SET_DTR_HIGH;
2096 else
2097 usb_val = SIO_SET_DTR_LOW;
2098
2099 if (rts)
2100 usb_val |= SIO_SET_RTS_HIGH;
2101 else
2102 usb_val |= SIO_SET_RTS_LOW;
2103
2104 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2105 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2106 NULL, 0, ftdi->usb_write_timeout) < 0)
2107 ftdi_error_return(-1, "set of rts/dtr failed");
2108
2109 return 0;
2110}
2111
2112/**
2113 Set the special event character
2114
2115 \param ftdi pointer to ftdi_context
2116 \param eventch Event character
2117 \param enable 0 to disable the event character, non-zero otherwise
2118
2119 \retval 0: all fine
2120 \retval -1: unable to set event character
2121 \retval -2: USB device unavailable
2122*/
2123int ftdi_set_event_char(struct ftdi_context *ftdi,
2124 unsigned char eventch, unsigned char enable)
2125{
2126 unsigned short usb_val;
2127
2128 if (ftdi == NULL || ftdi->usb_dev == NULL)
2129 ftdi_error_return(-2, "USB device unavailable");
2130
2131 usb_val = eventch;
2132 if (enable)
2133 usb_val |= 1 << 8;
2134
2135 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2136 ftdi_error_return(-1, "setting event character failed");
2137
2138 return 0;
2139}
2140
2141/**
2142 Set error character
2143
2144 \param ftdi pointer to ftdi_context
2145 \param errorch Error character
2146 \param enable 0 to disable the error character, non-zero otherwise
2147
2148 \retval 0: all fine
2149 \retval -1: unable to set error character
2150 \retval -2: USB device unavailable
2151*/
2152int ftdi_set_error_char(struct ftdi_context *ftdi,
2153 unsigned char errorch, unsigned char enable)
2154{
2155 unsigned short usb_val;
2156
2157 if (ftdi == NULL || ftdi->usb_dev == NULL)
2158 ftdi_error_return(-2, "USB device unavailable");
2159
2160 usb_val = errorch;
2161 if (enable)
2162 usb_val |= 1 << 8;
2163
2164 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2165 ftdi_error_return(-1, "setting error character failed");
2166
2167 return 0;
2168}
2169
2170/**
2171 Init eeprom with default values.
2172 \param ftdi pointer to ftdi_context
2173 \param manufacturer String to use as Manufacturer
2174 \param product String to use as Product description
2175 \param serial String to use as Serial number description
2176
2177 \retval 0: all fine
2178 \retval -1: No struct ftdi_context
2179 \retval -2: No struct ftdi_eeprom
2180*/
2181int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2182 char * product, char * serial)
2183{
2184 struct ftdi_eeprom *eeprom;
2185
2186 if (ftdi == NULL)
2187 ftdi_error_return(-1, "No struct ftdi_context");
2188
2189 if (ftdi->eeprom == NULL)
2190 ftdi_error_return(-2,"No struct ftdi_eeprom");
2191
2192 eeprom = ftdi->eeprom;
2193 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2194
2195 eeprom->vendor_id = 0x0403;
2196 eeprom->use_serial = USE_SERIAL_NUM;
2197 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2198 (ftdi->type == TYPE_R))
2199 eeprom->product_id = 0x6001;
2200 else
2201 eeprom->product_id = 0x6010;
2202 if (ftdi->type == TYPE_AM)
2203 eeprom->usb_version = 0x0101;
2204 else
2205 eeprom->usb_version = 0x0200;
2206 eeprom->max_power = 100;
2207
2208 if (eeprom->manufacturer)
2209 free (eeprom->manufacturer);
2210 eeprom->manufacturer = NULL;
2211 if (manufacturer)
2212 {
2213 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2214 if (eeprom->manufacturer)
2215 strcpy(eeprom->manufacturer, manufacturer);
2216 }
2217
2218 if (eeprom->product)
2219 free (eeprom->product);
2220 eeprom->product = NULL;
2221 {
2222 eeprom->product = malloc(strlen(product)+1);
2223 if (eeprom->product)
2224 strcpy(eeprom->product, product);
2225 }
2226
2227 if (eeprom->serial)
2228 free (eeprom->serial);
2229 eeprom->serial = NULL;
2230 if (serial)
2231 {
2232 eeprom->serial = malloc(strlen(serial)+1);
2233 if (eeprom->serial)
2234 strcpy(eeprom->serial, serial);
2235 }
2236
2237
2238 if (ftdi->type == TYPE_R)
2239 {
2240 eeprom->max_power = 90;
2241 eeprom->size = 0x80;
2242 eeprom->cbus_function[0] = CBUS_TXLED;
2243 eeprom->cbus_function[1] = CBUS_RXLED;
2244 eeprom->cbus_function[2] = CBUS_TXDEN;
2245 eeprom->cbus_function[3] = CBUS_PWREN;
2246 eeprom->cbus_function[4] = CBUS_SLEEP;
2247 }
2248 else
2249 eeprom->size = -1;
2250 return 0;
2251}
2252
2253/**
2254 Build binary buffer from ftdi_eeprom structure.
2255 Output is suitable for ftdi_write_eeprom().
2256
2257 \param ftdi pointer to ftdi_context
2258
2259 \retval >=0: size of eeprom user area in bytes
2260 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2261 \retval -2: Invalid eeprom or ftdi pointer
2262 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2263 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2264 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2265 \retval -6: No connected EEPROM or EEPROM Type unknown
2266*/
2267int ftdi_eeprom_build(struct ftdi_context *ftdi)
2268{
2269 unsigned char i, j, eeprom_size_mask;
2270 unsigned short checksum, value;
2271 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2272 int user_area_size;
2273 struct ftdi_eeprom *eeprom;
2274 unsigned char * output;
2275
2276 if (ftdi == NULL)
2277 ftdi_error_return(-2,"No context");
2278 if (ftdi->eeprom == NULL)
2279 ftdi_error_return(-2,"No eeprom structure");
2280
2281 eeprom= ftdi->eeprom;
2282 output = eeprom->buf;
2283
2284 if (eeprom->chip == -1)
2285 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2286
2287 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2288 eeprom->size = 0x100;
2289 else
2290 eeprom->size = 0x80;
2291
2292 if (eeprom->manufacturer != NULL)
2293 manufacturer_size = strlen(eeprom->manufacturer);
2294 if (eeprom->product != NULL)
2295 product_size = strlen(eeprom->product);
2296 if (eeprom->serial != NULL)
2297 serial_size = strlen(eeprom->serial);
2298
2299 // eeprom size check
2300 switch (ftdi->type)
2301 {
2302 case TYPE_AM:
2303 case TYPE_BM:
2304 user_area_size = 96; // base size for strings (total of 48 characters)
2305 break;
2306 case TYPE_2232C:
2307 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2308 break;
2309 case TYPE_R:
2310 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2311 break;
2312 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2313 case TYPE_4232H:
2314 user_area_size = 86;
2315 break;
2316 default:
2317 user_area_size = 0;
2318 break;
2319 }
2320 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2321
2322 if (user_area_size < 0)
2323 ftdi_error_return(-1,"eeprom size exceeded");
2324
2325 // empty eeprom
2326 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2327
2328 // Bytes and Bits set for all Types
2329
2330 // Addr 02: Vendor ID
2331 output[0x02] = eeprom->vendor_id;
2332 output[0x03] = eeprom->vendor_id >> 8;
2333
2334 // Addr 04: Product ID
2335 output[0x04] = eeprom->product_id;
2336 output[0x05] = eeprom->product_id >> 8;
2337
2338 // Addr 06: Device release number (0400h for BM features)
2339 output[0x06] = 0x00;
2340 switch (ftdi->type)
2341 {
2342 case TYPE_AM:
2343 output[0x07] = 0x02;
2344 break;
2345 case TYPE_BM:
2346 output[0x07] = 0x04;
2347 break;
2348 case TYPE_2232C:
2349 output[0x07] = 0x05;
2350 break;
2351 case TYPE_R:
2352 output[0x07] = 0x06;
2353 break;
2354 case TYPE_2232H:
2355 output[0x07] = 0x07;
2356 break;
2357 case TYPE_4232H:
2358 output[0x07] = 0x08;
2359 break;
2360 default:
2361 output[0x07] = 0x00;
2362 }
2363
2364 // Addr 08: Config descriptor
2365 // Bit 7: always 1
2366 // Bit 6: 1 if this device is self powered, 0 if bus powered
2367 // Bit 5: 1 if this device uses remote wakeup
2368 // Bit 4-0: reserved - 0
2369 j = 0x80;
2370 if (eeprom->self_powered == 1)
2371 j |= 0x40;
2372 if (eeprom->remote_wakeup == 1)
2373 j |= 0x20;
2374 output[0x08] = j;
2375
2376 // Addr 09: Max power consumption: max power = value * 2 mA
2377 output[0x09] = eeprom->max_power>>1;
2378
2379 if (ftdi->type != TYPE_AM)
2380 {
2381 // Addr 0A: Chip configuration
2382 // Bit 7: 0 - reserved
2383 // Bit 6: 0 - reserved
2384 // Bit 5: 0 - reserved
2385 // Bit 4: 1 - Change USB version
2386 // Bit 3: 1 - Use the serial number string
2387 // Bit 2: 1 - Enable suspend pull downs for lower power
2388 // Bit 1: 1 - Out EndPoint is Isochronous
2389 // Bit 0: 1 - In EndPoint is Isochronous
2390 //
2391 j = 0;
2392 if (eeprom->in_is_isochronous == 1)
2393 j = j | 1;
2394 if (eeprom->out_is_isochronous == 1)
2395 j = j | 2;
2396 output[0x0A] = j;
2397 }
2398
2399 // Dynamic content
2400 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2401 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2402 i = 0;
2403 switch (ftdi->type)
2404 {
2405 case TYPE_2232H:
2406 case TYPE_4232H:
2407 i += 2;
2408 case TYPE_R:
2409 i += 2;
2410 case TYPE_2232C:
2411 i += 2;
2412 case TYPE_AM:
2413 case TYPE_BM:
2414 i += 0x94;
2415 }
2416 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2417 eeprom_size_mask = eeprom->size -1;
2418
2419 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2420 // Addr 0F: Length of manufacturer string
2421 // Output manufacturer
2422 output[0x0E] = i; // calculate offset
2423 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2424 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2425 for (j = 0; j < manufacturer_size; j++)
2426 {
2427 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2428 output[i & eeprom_size_mask] = 0x00, i++;
2429 }
2430 output[0x0F] = manufacturer_size*2 + 2;
2431
2432 // Addr 10: Offset of the product string + 0x80, calculated later
2433 // Addr 11: Length of product string
2434 output[0x10] = i | 0x80; // calculate offset
2435 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2436 output[i & eeprom_size_mask] = 0x03, i++;
2437 for (j = 0; j < product_size; j++)
2438 {
2439 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2440 output[i & eeprom_size_mask] = 0x00, i++;
2441 }
2442 output[0x11] = product_size*2 + 2;
2443
2444 // Addr 12: Offset of the serial string + 0x80, calculated later
2445 // Addr 13: Length of serial string
2446 output[0x12] = i | 0x80; // calculate offset
2447 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2448 output[i & eeprom_size_mask] = 0x03, i++;
2449 for (j = 0; j < serial_size; j++)
2450 {
2451 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2452 output[i & eeprom_size_mask] = 0x00, i++;
2453 }
2454
2455 // Legacy port name and PnP fields for FT2232 and newer chips
2456 if (ftdi->type > TYPE_BM)
2457 {
2458 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2459 i++;
2460 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2461 i++;
2462 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2463 i++;
2464 }
2465
2466 output[0x13] = serial_size*2 + 2;
2467
2468 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2469 {
2470 if (eeprom->use_serial == USE_SERIAL_NUM )
2471 output[0x0A] |= USE_SERIAL_NUM;
2472 else
2473 output[0x0A] &= ~USE_SERIAL_NUM;
2474 }
2475
2476 /* Bytes and Bits specific to (some) types
2477 Write linear, as this allows easier fixing*/
2478 switch (ftdi->type)
2479 {
2480 case TYPE_AM:
2481 break;
2482 case TYPE_BM:
2483 output[0x0C] = eeprom->usb_version & 0xff;
2484 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2485 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2486 output[0x0A] |= USE_USB_VERSION_BIT;
2487 else
2488 output[0x0A] &= ~USE_USB_VERSION_BIT;
2489
2490 break;
2491 case TYPE_2232C:
2492
2493 output[0x00] = (eeprom->channel_a_type);
2494 if ( eeprom->channel_a_driver == DRIVER_VCP)
2495 output[0x00] |= DRIVER_VCP;
2496 else
2497 output[0x00] &= ~DRIVER_VCP;
2498
2499 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2500 output[0x00] |= HIGH_CURRENT_DRIVE;
2501 else
2502 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2503
2504 output[0x01] = (eeprom->channel_b_type);
2505 if ( eeprom->channel_b_driver == DRIVER_VCP)
2506 output[0x01] |= DRIVER_VCP;
2507 else
2508 output[0x01] &= ~DRIVER_VCP;
2509
2510 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2511 output[0x01] |= HIGH_CURRENT_DRIVE;
2512 else
2513 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2514
2515 if (eeprom->in_is_isochronous == 1)
2516 output[0x0A] |= 0x1;
2517 else
2518 output[0x0A] &= ~0x1;
2519 if (eeprom->out_is_isochronous == 1)
2520 output[0x0A] |= 0x2;
2521 else
2522 output[0x0A] &= ~0x2;
2523 if (eeprom->suspend_pull_downs == 1)
2524 output[0x0A] |= 0x4;
2525 else
2526 output[0x0A] &= ~0x4;
2527 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2528 output[0x0A] |= USE_USB_VERSION_BIT;
2529 else
2530 output[0x0A] &= ~USE_USB_VERSION_BIT;
2531
2532 output[0x0C] = eeprom->usb_version & 0xff;
2533 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2534 output[0x14] = eeprom->chip;
2535 break;
2536 case TYPE_R:
2537 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2538 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2539 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2540
2541 if (eeprom->suspend_pull_downs == 1)
2542 output[0x0A] |= 0x4;
2543 else
2544 output[0x0A] &= ~0x4;
2545 output[0x0B] = eeprom->invert;
2546 output[0x0C] = eeprom->usb_version & 0xff;
2547 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2548
2549 if (eeprom->cbus_function[0] > CBUS_BB)
2550 output[0x14] = CBUS_TXLED;
2551 else
2552 output[0x14] = eeprom->cbus_function[0];
2553
2554 if (eeprom->cbus_function[1] > CBUS_BB)
2555 output[0x14] |= CBUS_RXLED<<4;
2556 else
2557 output[0x14] |= eeprom->cbus_function[1]<<4;
2558
2559 if (eeprom->cbus_function[2] > CBUS_BB)
2560 output[0x15] = CBUS_TXDEN;
2561 else
2562 output[0x15] = eeprom->cbus_function[2];
2563
2564 if (eeprom->cbus_function[3] > CBUS_BB)
2565 output[0x15] |= CBUS_PWREN<<4;
2566 else
2567 output[0x15] |= eeprom->cbus_function[3]<<4;
2568
2569 if (eeprom->cbus_function[4] > CBUS_CLK6)
2570 output[0x16] = CBUS_SLEEP;
2571 else
2572 output[0x16] = eeprom->cbus_function[4];
2573 break;
2574 case TYPE_2232H:
2575 output[0x00] = (eeprom->channel_a_type);
2576 if ( eeprom->channel_a_driver == DRIVER_VCP)
2577 output[0x00] |= DRIVER_VCP;
2578 else
2579 output[0x00] &= ~DRIVER_VCP;
2580
2581 output[0x01] = (eeprom->channel_b_type);
2582 if ( eeprom->channel_b_driver == DRIVER_VCP)
2583 output[0x01] |= DRIVER_VCP;
2584 else
2585 output[0x01] &= ~DRIVER_VCP;
2586 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2587 output[0x01] |= SUSPEND_DBUS7_BIT;
2588 else
2589 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2590
2591 if (eeprom->suspend_pull_downs == 1)
2592 output[0x0A] |= 0x4;
2593 else
2594 output[0x0A] &= ~0x4;
2595
2596 if (eeprom->group0_drive > DRIVE_16MA)
2597 output[0x0c] |= DRIVE_16MA;
2598 else
2599 output[0x0c] |= eeprom->group0_drive;
2600 if (eeprom->group0_schmitt == IS_SCHMITT)
2601 output[0x0c] |= IS_SCHMITT;
2602 if (eeprom->group0_slew == SLOW_SLEW)
2603 output[0x0c] |= SLOW_SLEW;
2604
2605 if (eeprom->group1_drive > DRIVE_16MA)
2606 output[0x0c] |= DRIVE_16MA<<4;
2607 else
2608 output[0x0c] |= eeprom->group1_drive<<4;
2609 if (eeprom->group1_schmitt == IS_SCHMITT)
2610 output[0x0c] |= IS_SCHMITT<<4;
2611 if (eeprom->group1_slew == SLOW_SLEW)
2612 output[0x0c] |= SLOW_SLEW<<4;
2613
2614 if (eeprom->group2_drive > DRIVE_16MA)
2615 output[0x0d] |= DRIVE_16MA;
2616 else
2617 output[0x0d] |= eeprom->group2_drive;
2618 if (eeprom->group2_schmitt == IS_SCHMITT)
2619 output[0x0d] |= IS_SCHMITT;
2620 if (eeprom->group2_slew == SLOW_SLEW)
2621 output[0x0d] |= SLOW_SLEW;
2622
2623 if (eeprom->group3_drive > DRIVE_16MA)
2624 output[0x0d] |= DRIVE_16MA<<4;
2625 else
2626 output[0x0d] |= eeprom->group3_drive<<4;
2627 if (eeprom->group3_schmitt == IS_SCHMITT)
2628 output[0x0d] |= IS_SCHMITT<<4;
2629 if (eeprom->group3_slew == SLOW_SLEW)
2630 output[0x0d] |= SLOW_SLEW<<4;
2631
2632 output[0x18] = eeprom->chip;
2633
2634 break;
2635 case TYPE_4232H:
2636 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
2637 }
2638
2639 // calculate checksum
2640 checksum = 0xAAAA;
2641
2642 for (i = 0; i < eeprom->size/2-1; i++)
2643 {
2644 value = output[i*2];
2645 value += output[(i*2)+1] << 8;
2646
2647 checksum = value^checksum;
2648 checksum = (checksum << 1) | (checksum >> 15);
2649 }
2650
2651 output[eeprom->size-2] = checksum;
2652 output[eeprom->size-1] = checksum >> 8;
2653
2654 return user_area_size;
2655}
2656
2657/**
2658 Decode binary EEPROM image into an ftdi_eeprom structure.
2659
2660 \param ftdi pointer to ftdi_context
2661 \param verbose Decode EEPROM on stdout
2662
2663 \retval 0: all fine
2664 \retval -1: something went wrong
2665
2666 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2667 FIXME: Strings are malloc'ed here and should be freed somewhere
2668*/
2669int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2670{
2671 unsigned char i, j;
2672 unsigned short checksum, eeprom_checksum, value;
2673 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2674 int eeprom_size;
2675 struct ftdi_eeprom *eeprom;
2676 unsigned char *buf = ftdi->eeprom->buf;
2677 int release;
2678
2679 if (ftdi == NULL)
2680 ftdi_error_return(-1,"No context");
2681 if (ftdi->eeprom == NULL)
2682 ftdi_error_return(-1,"No eeprom structure");
2683
2684 eeprom = ftdi->eeprom;
2685 eeprom_size = eeprom->size;
2686
2687 // Addr 02: Vendor ID
2688 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2689
2690 // Addr 04: Product ID
2691 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2692
2693 release = buf[0x06] + (buf[0x07]<<8);
2694
2695 // Addr 08: Config descriptor
2696 // Bit 7: always 1
2697 // Bit 6: 1 if this device is self powered, 0 if bus powered
2698 // Bit 5: 1 if this device uses remote wakeup
2699 eeprom->self_powered = buf[0x08] & 0x40;
2700 eeprom->remote_wakeup = buf[0x08] & 0x20;
2701
2702 // Addr 09: Max power consumption: max power = value * 2 mA
2703 eeprom->max_power = buf[0x09];
2704
2705 // Addr 0A: Chip configuration
2706 // Bit 7: 0 - reserved
2707 // Bit 6: 0 - reserved
2708 // Bit 5: 0 - reserved
2709 // Bit 4: 1 - Change USB version on BM and 2232C
2710 // Bit 3: 1 - Use the serial number string
2711 // Bit 2: 1 - Enable suspend pull downs for lower power
2712 // Bit 1: 1 - Out EndPoint is Isochronous
2713 // Bit 0: 1 - In EndPoint is Isochronous
2714 //
2715 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2716 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2717 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2718 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
2719 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
2720
2721 // Addr 0C: USB version low byte when 0x0A
2722 // Addr 0D: USB version high byte when 0x0A
2723 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2724
2725 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2726 // Addr 0F: Length of manufacturer string
2727 manufacturer_size = buf[0x0F]/2;
2728 if (eeprom->manufacturer)
2729 free(eeprom->manufacturer);
2730 if (manufacturer_size > 0)
2731 {
2732 eeprom->manufacturer = malloc(manufacturer_size);
2733 if (eeprom->manufacturer)
2734 {
2735 // Decode manufacturer
2736 i = buf[0x0E] & (eeprom_size -1); // offset
2737 for (j=0;j<manufacturer_size-1;j++)
2738 {
2739 eeprom->manufacturer[j] = buf[2*j+i+2];
2740 }
2741 eeprom->manufacturer[j] = '\0';
2742 }
2743 }
2744 else eeprom->manufacturer = NULL;
2745
2746 // Addr 10: Offset of the product string + 0x80, calculated later
2747 // Addr 11: Length of product string
2748 if (eeprom->product)
2749 free(eeprom->product);
2750 product_size = buf[0x11]/2;
2751 if (product_size > 0)
2752 {
2753 eeprom->product = malloc(product_size);
2754 if (eeprom->product)
2755 {
2756 // Decode product name
2757 i = buf[0x10] & (eeprom_size -1); // offset
2758 for (j=0;j<product_size-1;j++)
2759 {
2760 eeprom->product[j] = buf[2*j+i+2];
2761 }
2762 eeprom->product[j] = '\0';
2763 }
2764 }
2765 else eeprom->product = NULL;
2766
2767 // Addr 12: Offset of the serial string + 0x80, calculated later
2768 // Addr 13: Length of serial string
2769 if (eeprom->serial)
2770 free(eeprom->serial);
2771 serial_size = buf[0x13]/2;
2772 if (serial_size > 0)
2773 {
2774 eeprom->serial = malloc(serial_size);
2775 if (eeprom->serial)
2776 {
2777 // Decode serial
2778 i = buf[0x12] & (eeprom_size -1); // offset
2779 for (j=0;j<serial_size-1;j++)
2780 {
2781 eeprom->serial[j] = buf[2*j+i+2];
2782 }
2783 eeprom->serial[j] = '\0';
2784 }
2785 }
2786 else eeprom->serial = NULL;
2787
2788 // verify checksum
2789 checksum = 0xAAAA;
2790
2791 for (i = 0; i < eeprom_size/2-1; i++)
2792 {
2793 value = buf[i*2];
2794 value += buf[(i*2)+1] << 8;
2795
2796 checksum = value^checksum;
2797 checksum = (checksum << 1) | (checksum >> 15);
2798 }
2799
2800 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2801
2802 if (eeprom_checksum != checksum)
2803 {
2804 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2805 ftdi_error_return(-1,"EEPROM checksum error");
2806 }
2807
2808 eeprom->channel_a_type = 0;
2809 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
2810 {
2811 eeprom->chip = -1;
2812 }
2813 else if (ftdi->type == TYPE_2232C)
2814 {
2815 eeprom->channel_a_type = buf[0x00] & 0x7;
2816 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2817 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2818 eeprom->channel_b_type = buf[0x01] & 0x7;
2819 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2820 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
2821 eeprom->chip = buf[0x14];
2822 }
2823 else if (ftdi->type == TYPE_R)
2824 {
2825 /* TYPE_R flags D2XX, not VCP as all others*/
2826 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2827 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2828 if ( (buf[0x01]&0x40) != 0x40)
2829 fprintf(stderr,
2830 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2831 " If this happened with the\n"
2832 " EEPROM programmed by FTDI tools, please report "
2833 "to libftdi@developer.intra2net.com\n");
2834
2835 eeprom->chip = buf[0x16];
2836 // Addr 0B: Invert data lines
2837 // Works only on FT232R, not FT245R, but no way to distinguish
2838 eeprom->invert = buf[0x0B];
2839 // Addr 14: CBUS function: CBUS0, CBUS1
2840 // Addr 15: CBUS function: CBUS2, CBUS3
2841 // Addr 16: CBUS function: CBUS5
2842 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2843 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2844 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2845 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2846 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
2847 }
2848 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
2849 {
2850 eeprom->channel_a_type = buf[0x00] & 0x7;
2851 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2852 eeprom->channel_b_type = buf[0x01] & 0x7;
2853 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2854
2855 if (ftdi->type == TYPE_2232H)
2856 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
2857
2858 eeprom->chip = buf[0x18];
2859 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2860 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2861 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2862 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2863 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2864 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2865 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2866 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2867 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2868 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2869 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2870 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
2871 }
2872
2873 if (verbose)
2874 {
2875 char *channel_mode[] = {"UART","245","CPU", "unknown", "OPTO"};
2876 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
2877 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
2878 fprintf(stdout, "Release: 0x%04x\n",release);
2879
2880 if (eeprom->self_powered)
2881 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
2882 else
2883 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
2884 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
2885 if (eeprom->manufacturer)
2886 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
2887 if (eeprom->product)
2888 fprintf(stdout, "Product: %s\n",eeprom->product);
2889 if (eeprom->serial)
2890 fprintf(stdout, "Serial: %s\n",eeprom->serial);
2891 fprintf(stdout, "Checksum : %04x\n", checksum);
2892 if (ftdi->type == TYPE_R)
2893 fprintf(stdout, "Internal EEPROM\n");
2894 else if (eeprom->chip >= 0x46)
2895 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
2896 if (eeprom->suspend_dbus7)
2897 fprintf(stdout, "Suspend on DBUS7\n");
2898 if (eeprom->suspend_pull_downs)
2899 fprintf(stdout, "Pull IO pins low during suspend\n");
2900 if (eeprom->remote_wakeup)
2901 fprintf(stdout, "Enable Remote Wake Up\n");
2902 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
2903 if (ftdi->type >= TYPE_2232C)
2904 fprintf(stdout,"Channel A has Mode %s%s%s\n",
2905 channel_mode[eeprom->channel_a_type],
2906 (eeprom->channel_a_driver)?" VCP":"",
2907 (eeprom->high_current_a)?" High Current IO":"");
2908 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R))
2909 fprintf(stdout,"Channel B has Mode %s%s%s\n",
2910 channel_mode[eeprom->channel_b_type],
2911 (eeprom->channel_b_driver)?" VCP":"",
2912 (eeprom->high_current_b)?" High Current IO":"");
2913 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
2914 eeprom->use_usb_version == USE_USB_VERSION_BIT)
2915 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
2916
2917 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
2918 {
2919 fprintf(stdout,"%s has %d mA drive%s%s\n",
2920 (ftdi->type == TYPE_2232H)?"AL":"A",
2921 (eeprom->group0_drive+1) *4,
2922 (eeprom->group0_schmitt)?" Schmitt Input":"",
2923 (eeprom->group0_slew)?" Slow Slew":"");
2924 fprintf(stdout,"%s has %d mA drive%s%s\n",
2925 (ftdi->type == TYPE_2232H)?"AH":"B",
2926 (eeprom->group1_drive+1) *4,
2927 (eeprom->group1_schmitt)?" Schmitt Input":"",
2928 (eeprom->group1_slew)?" Slow Slew":"");
2929 fprintf(stdout,"%s has %d mA drive%s%s\n",
2930 (ftdi->type == TYPE_2232H)?"BL":"C",
2931 (eeprom->group2_drive+1) *4,
2932 (eeprom->group2_schmitt)?" Schmitt Input":"",
2933 (eeprom->group2_slew)?" Slow Slew":"");
2934 fprintf(stdout,"%s has %d mA drive%s%s\n",
2935 (ftdi->type == TYPE_2232H)?"BH":"D",
2936 (eeprom->group3_drive+1) *4,
2937 (eeprom->group3_schmitt)?" Schmitt Input":"",
2938 (eeprom->group3_slew)?" Slow Slew":"");
2939 }
2940 if (ftdi->type == TYPE_R)
2941 {
2942 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
2943 "SLEEP","CLK48","CLK24","CLK12","CLK6",
2944 "IOMODE","BB_WR","BB_RD"
2945 };
2946 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
2947
2948 if (eeprom->invert)
2949 {
2950 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
2951 fprintf(stdout,"Inverted bits:");
2952 for (i=0; i<8; i++)
2953 if ((eeprom->invert & (1<<i)) == (1<<i))
2954 fprintf(stdout," %s",r_bits[i]);
2955 fprintf(stdout,"\n");
2956 }
2957 for (i=0; i<5; i++)
2958 {
2959 if (eeprom->cbus_function[i]<CBUS_BB)
2960 fprintf(stdout,"C%d Function: %s\n", i,
2961 cbus_mux[eeprom->cbus_function[i]]);
2962 else
2963 {
2964 /* FIXME for Uwe: This results in an access above array bounds.
2965 Also I couldn't find documentation about this mode.
2966 fprintf(stdout,"C%d BB Function: %s\n", i,
2967 cbus_BB[i]);
2968 */
2969 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
2970 (void)cbus_BB;
2971 }
2972 }
2973 }
2974 }
2975 return 0;
2976}
2977
2978/**
2979 Get a value from the decoded EEPROM structure
2980
2981 \param ftdi pointer to ftdi_context
2982 \param value_name Enum of the value to query
2983 \param value Pointer to store read value
2984
2985 \retval 0: all fine
2986 \retval -1: Value doesn't exist
2987*/
2988int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
2989{
2990 switch (value_name)
2991 {
2992 case VENDOR_ID:
2993 *value = ftdi->eeprom->vendor_id;
2994 break;
2995 case PRODUCT_ID:
2996 *value = ftdi->eeprom->product_id;
2997 break;
2998 case SELF_POWERED:
2999 *value = ftdi->eeprom->self_powered;
3000 break;
3001 case REMOTE_WAKEUP:
3002 *value = ftdi->eeprom->remote_wakeup;
3003 break;
3004 case IS_NOT_PNP:
3005 *value = ftdi->eeprom->is_not_pnp;
3006 break;
3007 case SUSPEND_DBUS7:
3008 *value = ftdi->eeprom->suspend_dbus7;
3009 break;
3010 case IN_IS_ISOCHRONOUS:
3011 *value = ftdi->eeprom->in_is_isochronous;
3012 break;
3013 case SUSPEND_PULL_DOWNS:
3014 *value = ftdi->eeprom->suspend_pull_downs;
3015 break;
3016 case USE_SERIAL:
3017 *value = ftdi->eeprom->use_serial;
3018 break;
3019 case USB_VERSION:
3020 *value = ftdi->eeprom->usb_version;
3021 break;
3022 case MAX_POWER:
3023 *value = ftdi->eeprom->max_power;
3024 break;
3025 case CHANNEL_A_TYPE:
3026 *value = ftdi->eeprom->channel_a_type;
3027 break;
3028 case CHANNEL_B_TYPE:
3029 *value = ftdi->eeprom->channel_b_type;
3030 break;
3031 case CHANNEL_A_DRIVER:
3032 *value = ftdi->eeprom->channel_a_driver;
3033 break;
3034 case CHANNEL_B_DRIVER:
3035 *value = ftdi->eeprom->channel_b_driver;
3036 break;
3037 case CBUS_FUNCTION_0:
3038 *value = ftdi->eeprom->cbus_function[0];
3039 break;
3040 case CBUS_FUNCTION_1:
3041 *value = ftdi->eeprom->cbus_function[1];
3042 break;
3043 case CBUS_FUNCTION_2:
3044 *value = ftdi->eeprom->cbus_function[2];
3045 break;
3046 case CBUS_FUNCTION_3:
3047 *value = ftdi->eeprom->cbus_function[3];
3048 break;
3049 case CBUS_FUNCTION_4:
3050 *value = ftdi->eeprom->cbus_function[4];
3051 break;
3052 case HIGH_CURRENT:
3053 *value = ftdi->eeprom->high_current;
3054 break;
3055 case HIGH_CURRENT_A:
3056 *value = ftdi->eeprom->high_current_a;
3057 break;
3058 case HIGH_CURRENT_B:
3059 *value = ftdi->eeprom->high_current_b;
3060 break;
3061 case INVERT:
3062 *value = ftdi->eeprom->invert;
3063 break;
3064 case GROUP0_DRIVE:
3065 *value = ftdi->eeprom->group0_drive;
3066 break;
3067 case GROUP0_SCHMITT:
3068 *value = ftdi->eeprom->group0_schmitt;
3069 break;
3070 case GROUP0_SLEW:
3071 *value = ftdi->eeprom->group0_slew;
3072 break;
3073 case GROUP1_DRIVE:
3074 *value = ftdi->eeprom->group1_drive;
3075 break;
3076 case GROUP1_SCHMITT:
3077 *value = ftdi->eeprom->group1_schmitt;
3078 break;
3079 case GROUP1_SLEW:
3080 *value = ftdi->eeprom->group1_slew;
3081 break;
3082 case GROUP2_DRIVE:
3083 *value = ftdi->eeprom->group2_drive;
3084 break;
3085 case GROUP2_SCHMITT:
3086 *value = ftdi->eeprom->group2_schmitt;
3087 break;
3088 case GROUP2_SLEW:
3089 *value = ftdi->eeprom->group2_slew;
3090 break;
3091 case GROUP3_DRIVE:
3092 *value = ftdi->eeprom->group3_drive;
3093 break;
3094 case GROUP3_SCHMITT:
3095 *value = ftdi->eeprom->group3_schmitt;
3096 break;
3097 case GROUP3_SLEW:
3098 *value = ftdi->eeprom->group3_slew;
3099 break;
3100 case CHIP_TYPE:
3101 *value = ftdi->eeprom->chip;
3102 break;
3103 case CHIP_SIZE:
3104 *value = ftdi->eeprom->size;
3105 break;
3106 default:
3107 ftdi_error_return(-1, "Request for unknown EEPROM value");
3108 }
3109 return 0;
3110}
3111
3112/**
3113 Set a value in the decoded EEPROM Structure
3114 No parameter checking is performed
3115
3116 \param ftdi pointer to ftdi_context
3117 \param value_name Enum of the value to set
3118 \param value to set
3119
3120 \retval 0: all fine
3121 \retval -1: Value doesn't exist
3122 \retval -2: Value not user settable
3123*/
3124int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3125{
3126 switch (value_name)
3127 {
3128 case VENDOR_ID:
3129 ftdi->eeprom->vendor_id = value;
3130 break;
3131 case PRODUCT_ID:
3132 ftdi->eeprom->product_id = value;
3133 break;
3134 case SELF_POWERED:
3135 ftdi->eeprom->self_powered = value;
3136 break;
3137 case REMOTE_WAKEUP:
3138 ftdi->eeprom->remote_wakeup = value;
3139 break;
3140 case IS_NOT_PNP:
3141 ftdi->eeprom->is_not_pnp = value;
3142 break;
3143 case SUSPEND_DBUS7:
3144 ftdi->eeprom->suspend_dbus7 = value;
3145 break;
3146 case IN_IS_ISOCHRONOUS:
3147 ftdi->eeprom->in_is_isochronous = value;
3148 break;
3149 case SUSPEND_PULL_DOWNS:
3150 ftdi->eeprom->suspend_pull_downs = value;
3151 break;
3152 case USE_SERIAL:
3153 ftdi->eeprom->use_serial = value;
3154 break;
3155 case USB_VERSION:
3156 ftdi->eeprom->usb_version = value;
3157 break;
3158 case MAX_POWER:
3159 ftdi->eeprom->max_power = value;
3160 break;
3161 case CHANNEL_A_TYPE:
3162 ftdi->eeprom->channel_a_type = value;
3163 break;
3164 case CHANNEL_B_TYPE:
3165 ftdi->eeprom->channel_b_type = value;
3166 break;
3167 case CHANNEL_A_DRIVER:
3168 ftdi->eeprom->channel_a_driver = value;
3169 break;
3170 case CHANNEL_B_DRIVER:
3171 ftdi->eeprom->channel_b_driver = value;
3172 break;
3173 case CBUS_FUNCTION_0:
3174 ftdi->eeprom->cbus_function[0] = value;
3175 break;
3176 case CBUS_FUNCTION_1:
3177 ftdi->eeprom->cbus_function[1] = value;
3178 break;
3179 case CBUS_FUNCTION_2:
3180 ftdi->eeprom->cbus_function[2] = value;
3181 break;
3182 case CBUS_FUNCTION_3:
3183 ftdi->eeprom->cbus_function[3] = value;
3184 break;
3185 case CBUS_FUNCTION_4:
3186 ftdi->eeprom->cbus_function[4] = value;
3187 break;
3188 case HIGH_CURRENT:
3189 ftdi->eeprom->high_current = value;
3190 break;
3191 case HIGH_CURRENT_A:
3192 ftdi->eeprom->high_current_a = value;
3193 break;
3194 case HIGH_CURRENT_B:
3195 ftdi->eeprom->high_current_b = value;
3196 break;
3197 case INVERT:
3198 ftdi->eeprom->invert = value;
3199 break;
3200 case GROUP0_DRIVE:
3201 ftdi->eeprom->group0_drive = value;
3202 break;
3203 case GROUP0_SCHMITT:
3204 ftdi->eeprom->group0_schmitt = value;
3205 break;
3206 case GROUP0_SLEW:
3207 ftdi->eeprom->group0_slew = value;
3208 break;
3209 case GROUP1_DRIVE:
3210 ftdi->eeprom->group1_drive = value;
3211 break;
3212 case GROUP1_SCHMITT:
3213 ftdi->eeprom->group1_schmitt = value;
3214 break;
3215 case GROUP1_SLEW:
3216 ftdi->eeprom->group1_slew = value;
3217 break;
3218 case GROUP2_DRIVE:
3219 ftdi->eeprom->group2_drive = value;
3220 break;
3221 case GROUP2_SCHMITT:
3222 ftdi->eeprom->group2_schmitt = value;
3223 break;
3224 case GROUP2_SLEW:
3225 ftdi->eeprom->group2_slew = value;
3226 break;
3227 case GROUP3_DRIVE:
3228 ftdi->eeprom->group3_drive = value;
3229 break;
3230 case GROUP3_SCHMITT:
3231 ftdi->eeprom->group3_schmitt = value;
3232 break;
3233 case GROUP3_SLEW:
3234 ftdi->eeprom->group3_slew = value;
3235 break;
3236 case CHIP_TYPE:
3237 ftdi->eeprom->chip = value;
3238 break;
3239 case CHIP_SIZE:
3240 ftdi_error_return(-2, "EEPROM Value can't be changed");
3241 default :
3242 ftdi_error_return(-1, "Request to unknown EEPROM value");
3243 }
3244 return 0;
3245}
3246
3247/** Get the read-only buffer to the binary EEPROM content
3248
3249 \param ftdi pointer to ftdi_context
3250 \param buf buffer to receive EEPROM content
3251 \param size Size of receiving buffer
3252
3253 \retval 0: All fine
3254 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3255 \retval -2: Not enough room to store eeprom
3256*/
3257int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3258{
3259 if (!ftdi || !(ftdi->eeprom))
3260 ftdi_error_return(-1, "No appropriate structure");
3261
3262 if (!buf || size < ftdi->eeprom->size)
3263 ftdi_error_return(-1, "Not enough room to store eeprom");
3264
3265 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3266 if (size > FTDI_MAX_EEPROM_SIZE)
3267 size = FTDI_MAX_EEPROM_SIZE;
3268
3269 memcpy(buf, ftdi->eeprom->buf, size);
3270
3271 return 0;
3272}
3273
3274/**
3275 Read eeprom location
3276
3277 \param ftdi pointer to ftdi_context
3278 \param eeprom_addr Address of eeprom location to be read
3279 \param eeprom_val Pointer to store read eeprom location
3280
3281 \retval 0: all fine
3282 \retval -1: read failed
3283 \retval -2: USB device unavailable
3284*/
3285int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3286{
3287 if (ftdi == NULL || ftdi->usb_dev == NULL)
3288 ftdi_error_return(-2, "USB device unavailable");
3289
3290 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3291 ftdi_error_return(-1, "reading eeprom failed");
3292
3293 return 0;
3294}
3295
3296/**
3297 Read eeprom
3298
3299 \param ftdi pointer to ftdi_context
3300
3301 \retval 0: all fine
3302 \retval -1: read failed
3303 \retval -2: USB device unavailable
3304*/
3305int ftdi_read_eeprom(struct ftdi_context *ftdi)
3306{
3307 int i;
3308 unsigned char *buf;
3309
3310 if (ftdi == NULL || ftdi->usb_dev == NULL)
3311 ftdi_error_return(-2, "USB device unavailable");
3312 buf = ftdi->eeprom->buf;
3313
3314 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
3315 {
3316 if (libusb_control_transfer(
3317 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3318 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
3319 ftdi_error_return(-1, "reading eeprom failed");
3320 }
3321
3322 if (ftdi->type == TYPE_R)
3323 ftdi->eeprom->size = 0x80;
3324 /* Guesses size of eeprom by comparing halves
3325 - will not work with blank eeprom */
3326 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3327 ftdi->eeprom->size = -1;
3328 else if (memcmp(buf,&buf[0x80],0x80) == 0)
3329 ftdi->eeprom->size = 0x80;
3330 else if (memcmp(buf,&buf[0x40],0x40) == 0)
3331 ftdi->eeprom->size = 0x40;
3332 else
3333 ftdi->eeprom->size = 0x100;
3334 return 0;
3335}
3336
3337/*
3338 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3339 Function is only used internally
3340 \internal
3341*/
3342static unsigned char ftdi_read_chipid_shift(unsigned char value)
3343{
3344 return ((value & 1) << 1) |
3345 ((value & 2) << 5) |
3346 ((value & 4) >> 2) |
3347 ((value & 8) << 4) |
3348 ((value & 16) >> 1) |
3349 ((value & 32) >> 1) |
3350 ((value & 64) >> 4) |
3351 ((value & 128) >> 2);
3352}
3353
3354/**
3355 Read the FTDIChip-ID from R-type devices
3356
3357 \param ftdi pointer to ftdi_context
3358 \param chipid Pointer to store FTDIChip-ID
3359
3360 \retval 0: all fine
3361 \retval -1: read failed
3362 \retval -2: USB device unavailable
3363*/
3364int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3365{
3366 unsigned int a = 0, b = 0;
3367
3368 if (ftdi == NULL || ftdi->usb_dev == NULL)
3369 ftdi_error_return(-2, "USB device unavailable");
3370
3371 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3372 {
3373 a = a << 8 | a >> 8;
3374 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3375 {
3376 b = b << 8 | b >> 8;
3377 a = (a << 16) | (b & 0xFFFF);
3378 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3379 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3380 *chipid = a ^ 0xa5f0f7d1;
3381 return 0;
3382 }
3383 }
3384
3385 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3386}
3387
3388/**
3389 Write eeprom location
3390
3391 \param ftdi pointer to ftdi_context
3392 \param eeprom_addr Address of eeprom location to be written
3393 \param eeprom_val Value to be written
3394
3395 \retval 0: all fine
3396 \retval -1: write failed
3397 \retval -2: USB device unavailable
3398 \retval -3: Invalid access to checksum protected area below 0x80
3399 \retval -4: Device can't access unprotected area
3400 \retval -5: Reading chip type failed
3401*/
3402int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3403 unsigned short eeprom_val)
3404{
3405 int chip_type_location;
3406 unsigned short chip_type;
3407
3408 if (ftdi == NULL || ftdi->usb_dev == NULL)
3409 ftdi_error_return(-2, "USB device unavailable");
3410
3411 if (eeprom_addr <0x80)
3412 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3413
3414
3415 switch (ftdi->type)
3416 {
3417 case TYPE_BM:
3418 case TYPE_2232C:
3419 chip_type_location = 0x14;
3420 break;
3421 case TYPE_2232H:
3422 case TYPE_4232H:
3423 chip_type_location = 0x18;
3424 break;
3425 default:
3426 ftdi_error_return(-4, "Device can't access unprotected area");
3427 }
3428
3429 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3430 ftdi_error_return(-5, "Reading failed failed");
3431 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3432 if ((chip_type & 0xff) != 0x66)
3433 {
3434 ftdi_error_return(-6, "EEPROM is not of 93x66");
3435 }
3436
3437 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3438 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3439 NULL, 0, ftdi->usb_write_timeout) != 0)
3440 ftdi_error_return(-1, "unable to write eeprom");
3441
3442 return 0;
3443}
3444
3445/**
3446 Write eeprom
3447
3448 \param ftdi pointer to ftdi_context
3449
3450 \retval 0: all fine
3451 \retval -1: read failed
3452 \retval -2: USB device unavailable
3453*/
3454int ftdi_write_eeprom(struct ftdi_context *ftdi)
3455{
3456 unsigned short usb_val, status;
3457 int i, ret;
3458 unsigned char *eeprom;
3459
3460 if (ftdi == NULL || ftdi->usb_dev == NULL)
3461 ftdi_error_return(-2, "USB device unavailable");
3462 eeprom = ftdi->eeprom->buf;
3463
3464 /* These commands were traced while running MProg */
3465 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3466 return ret;
3467 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3468 return ret;
3469 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3470 return ret;
3471
3472 for (i = 0; i < ftdi->eeprom->size/2; i++)
3473 {
3474 usb_val = eeprom[i*2];
3475 usb_val += eeprom[(i*2)+1] << 8;
3476 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3477 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3478 NULL, 0, ftdi->usb_write_timeout) < 0)
3479 ftdi_error_return(-1, "unable to write eeprom");
3480 }
3481
3482 return 0;
3483}
3484
3485/**
3486 Erase eeprom
3487
3488 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3489
3490 \param ftdi pointer to ftdi_context
3491
3492 \retval 0: all fine
3493 \retval -1: erase failed
3494 \retval -2: USB device unavailable
3495 \retval -3: Writing magic failed
3496 \retval -4: Read EEPROM failed
3497 \retval -5: Unexpected EEPROM value
3498*/
3499#define MAGIC 0x55aa
3500int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3501{
3502 unsigned short eeprom_value;
3503 if (ftdi == NULL || ftdi->usb_dev == NULL)
3504 ftdi_error_return(-2, "USB device unavailable");
3505
3506 if (ftdi->type == TYPE_R)
3507 {
3508 ftdi->eeprom->chip = 0;
3509 return 0;
3510 }
3511
3512 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3513 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3514 ftdi_error_return(-1, "unable to erase eeprom");
3515
3516
3517 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3518 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3519 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3520 Chip is 93x66 if magic is only read at word position 0xc0*/
3521 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3522 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3523 NULL, 0, ftdi->usb_write_timeout) != 0)
3524 ftdi_error_return(-3, "Writing magic failed");
3525 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3526 ftdi_error_return(-4, "Reading failed failed");
3527 if (eeprom_value == MAGIC)
3528 {
3529 ftdi->eeprom->chip = 0x46;
3530 }
3531 else
3532 {
3533 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3534 ftdi_error_return(-4, "Reading failed failed");
3535 if (eeprom_value == MAGIC)
3536 ftdi->eeprom->chip = 0x56;
3537 else
3538 {
3539 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3540 ftdi_error_return(-4, "Reading failed failed");
3541 if (eeprom_value == MAGIC)
3542 ftdi->eeprom->chip = 0x66;
3543 else
3544 {
3545 ftdi->eeprom->chip = -1;
3546 }
3547 }
3548 }
3549 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3550 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3551 ftdi_error_return(-1, "unable to erase eeprom");
3552 return 0;
3553}
3554
3555/**
3556 Get string representation for last error code
3557
3558 \param ftdi pointer to ftdi_context
3559
3560 \retval Pointer to error string
3561*/
3562char *ftdi_get_error_string (struct ftdi_context *ftdi)
3563{
3564 if (ftdi == NULL)
3565 return "";
3566
3567 return ftdi->error_str;
3568}
3569
3570/* @} end of doxygen libftdi group */