Update baudrate unit test to show divisor/fractional bits/clock (suggested by Uwe)
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
58 \retval none
59*/
60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
61{
62 if (ftdi && ftdi->usb_dev)
63 {
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
66 if(ftdi->eeprom)
67 ftdi->eeprom->initialized_for_connected_device = 0;
68 }
69}
70
71/**
72 Initializes a ftdi_context.
73
74 \param ftdi pointer to ftdi_context
75
76 \retval 0: all fine
77 \retval -1: couldn't allocate read buffer
78 \retval -2: couldn't allocate struct buffer
79 \retval -3: libusb_init() failed
80
81 \remark This should be called before all functions
82*/
83int ftdi_init(struct ftdi_context *ftdi)
84{
85 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
86 ftdi->usb_ctx = NULL;
87 ftdi->usb_dev = NULL;
88 ftdi->usb_read_timeout = 5000;
89 ftdi->usb_write_timeout = 5000;
90
91 ftdi->type = TYPE_BM; /* chip type */
92 ftdi->baudrate = -1;
93 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
94
95 ftdi->readbuffer = NULL;
96 ftdi->readbuffer_offset = 0;
97 ftdi->readbuffer_remaining = 0;
98 ftdi->writebuffer_chunksize = 4096;
99 ftdi->max_packet_size = 0;
100 ftdi->error_str = NULL;
101 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
102
103 if (libusb_init(&ftdi->usb_ctx) < 0)
104 ftdi_error_return(-3, "libusb_init() failed");
105
106 ftdi_set_interface(ftdi, INTERFACE_ANY);
107 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
108
109 if (eeprom == 0)
110 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
111 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
112 ftdi->eeprom = eeprom;
113
114 /* All fine. Now allocate the readbuffer */
115 return ftdi_read_data_set_chunksize(ftdi, 4096);
116}
117
118/**
119 Allocate and initialize a new ftdi_context
120
121 \return a pointer to a new ftdi_context, or NULL on failure
122*/
123struct ftdi_context *ftdi_new(void)
124{
125 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
126
127 if (ftdi == NULL)
128 {
129 return NULL;
130 }
131
132 if (ftdi_init(ftdi) != 0)
133 {
134 free(ftdi);
135 return NULL;
136 }
137
138 return ftdi;
139}
140
141/**
142 Open selected channels on a chip, otherwise use first channel.
143
144 \param ftdi pointer to ftdi_context
145 \param interface Interface to use for FT2232C/2232H/4232H chips.
146
147 \retval 0: all fine
148 \retval -1: unknown interface
149 \retval -2: USB device unavailable
150*/
151int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
152{
153 if (ftdi == NULL)
154 ftdi_error_return(-2, "USB device unavailable");
155
156 switch (interface)
157 {
158 case INTERFACE_ANY:
159 case INTERFACE_A:
160 ftdi->interface = 0;
161 ftdi->index = INTERFACE_A;
162 ftdi->in_ep = 0x02;
163 ftdi->out_ep = 0x81;
164 break;
165 case INTERFACE_B:
166 ftdi->interface = 1;
167 ftdi->index = INTERFACE_B;
168 ftdi->in_ep = 0x04;
169 ftdi->out_ep = 0x83;
170 break;
171 case INTERFACE_C:
172 ftdi->interface = 2;
173 ftdi->index = INTERFACE_C;
174 ftdi->in_ep = 0x06;
175 ftdi->out_ep = 0x85;
176 break;
177 case INTERFACE_D:
178 ftdi->interface = 3;
179 ftdi->index = INTERFACE_D;
180 ftdi->in_ep = 0x08;
181 ftdi->out_ep = 0x87;
182 break;
183 default:
184 ftdi_error_return(-1, "Unknown interface");
185 }
186 return 0;
187}
188
189/**
190 Deinitializes a ftdi_context.
191
192 \param ftdi pointer to ftdi_context
193*/
194void ftdi_deinit(struct ftdi_context *ftdi)
195{
196 if (ftdi == NULL)
197 return;
198
199 ftdi_usb_close_internal (ftdi);
200
201 if (ftdi->readbuffer != NULL)
202 {
203 free(ftdi->readbuffer);
204 ftdi->readbuffer = NULL;
205 }
206
207 if (ftdi->eeprom != NULL)
208 {
209 if (ftdi->eeprom->manufacturer != 0)
210 {
211 free(ftdi->eeprom->manufacturer);
212 ftdi->eeprom->manufacturer = 0;
213 }
214 if (ftdi->eeprom->product != 0)
215 {
216 free(ftdi->eeprom->product);
217 ftdi->eeprom->product = 0;
218 }
219 if (ftdi->eeprom->serial != 0)
220 {
221 free(ftdi->eeprom->serial);
222 ftdi->eeprom->serial = 0;
223 }
224 free(ftdi->eeprom);
225 ftdi->eeprom = NULL;
226 }
227
228 if (ftdi->usb_ctx)
229 {
230 libusb_exit(ftdi->usb_ctx);
231 ftdi->usb_ctx = NULL;
232 }
233}
234
235/**
236 Deinitialize and free an ftdi_context.
237
238 \param ftdi pointer to ftdi_context
239*/
240void ftdi_free(struct ftdi_context *ftdi)
241{
242 ftdi_deinit(ftdi);
243 free(ftdi);
244}
245
246/**
247 Use an already open libusb device.
248
249 \param ftdi pointer to ftdi_context
250 \param usb libusb libusb_device_handle to use
251*/
252void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
253{
254 if (ftdi == NULL)
255 return;
256
257 ftdi->usb_dev = usb;
258}
259
260
261/**
262 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
263 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
264 use. With VID:PID 0:0, search for the default devices
265 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014)
266
267 \param ftdi pointer to ftdi_context
268 \param devlist Pointer where to store list of found devices
269 \param vendor Vendor ID to search for
270 \param product Product ID to search for
271
272 \retval >0: number of devices found
273 \retval -3: out of memory
274 \retval -5: libusb_get_device_list() failed
275 \retval -6: libusb_get_device_descriptor() failed
276*/
277int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
278{
279 struct ftdi_device_list **curdev;
280 libusb_device *dev;
281 libusb_device **devs;
282 int count = 0;
283 int i = 0;
284
285 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
286 ftdi_error_return(-5, "libusb_get_device_list() failed");
287
288 curdev = devlist;
289 *curdev = NULL;
290
291 while ((dev = devs[i++]) != NULL)
292 {
293 struct libusb_device_descriptor desc;
294
295 if (libusb_get_device_descriptor(dev, &desc) < 0)
296 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
297
298 if (((vendor != 0 && product != 0) &&
299 desc.idVendor == vendor && desc.idProduct == product) ||
300 ((vendor == 0 && product == 0) &&
301 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
302 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014)))
303 {
304 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
305 if (!*curdev)
306 ftdi_error_return_free_device_list(-3, "out of memory", devs);
307
308 (*curdev)->next = NULL;
309 (*curdev)->dev = dev;
310 libusb_ref_device(dev);
311 curdev = &(*curdev)->next;
312 count++;
313 }
314 }
315 libusb_free_device_list(devs,1);
316 return count;
317}
318
319/**
320 Frees a usb device list.
321
322 \param devlist USB device list created by ftdi_usb_find_all()
323*/
324void ftdi_list_free(struct ftdi_device_list **devlist)
325{
326 struct ftdi_device_list *curdev, *next;
327
328 for (curdev = *devlist; curdev != NULL;)
329 {
330 next = curdev->next;
331 libusb_unref_device(curdev->dev);
332 free(curdev);
333 curdev = next;
334 }
335
336 *devlist = NULL;
337}
338
339/**
340 Frees a usb device list.
341
342 \param devlist USB device list created by ftdi_usb_find_all()
343*/
344void ftdi_list_free2(struct ftdi_device_list *devlist)
345{
346 ftdi_list_free(&devlist);
347}
348
349/**
350 Return device ID strings from the usb device.
351
352 The parameters manufacturer, description and serial may be NULL
353 or pointer to buffers to store the fetched strings.
354
355 \note Use this function only in combination with ftdi_usb_find_all()
356 as it closes the internal "usb_dev" after use.
357
358 \param ftdi pointer to ftdi_context
359 \param dev libusb usb_dev to use
360 \param manufacturer Store manufacturer string here if not NULL
361 \param mnf_len Buffer size of manufacturer string
362 \param description Store product description string here if not NULL
363 \param desc_len Buffer size of product description string
364 \param serial Store serial string here if not NULL
365 \param serial_len Buffer size of serial string
366
367 \retval 0: all fine
368 \retval -1: wrong arguments
369 \retval -4: unable to open device
370 \retval -7: get product manufacturer failed
371 \retval -8: get product description failed
372 \retval -9: get serial number failed
373 \retval -11: libusb_get_device_descriptor() failed
374*/
375int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
376 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
377{
378 struct libusb_device_descriptor desc;
379
380 if ((ftdi==NULL) || (dev==NULL))
381 return -1;
382
383 if (libusb_open(dev, &ftdi->usb_dev) < 0)
384 ftdi_error_return(-4, "libusb_open() failed");
385
386 if (libusb_get_device_descriptor(dev, &desc) < 0)
387 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
388
389 if (manufacturer != NULL)
390 {
391 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
392 {
393 ftdi_usb_close_internal (ftdi);
394 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
395 }
396 }
397
398 if (description != NULL)
399 {
400 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
401 {
402 ftdi_usb_close_internal (ftdi);
403 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
404 }
405 }
406
407 if (serial != NULL)
408 {
409 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
410 {
411 ftdi_usb_close_internal (ftdi);
412 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
413 }
414 }
415
416 ftdi_usb_close_internal (ftdi);
417
418 return 0;
419}
420
421/**
422 * Internal function to determine the maximum packet size.
423 * \param ftdi pointer to ftdi_context
424 * \param dev libusb usb_dev to use
425 * \retval Maximum packet size for this device
426 */
427static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
428{
429 struct libusb_device_descriptor desc;
430 struct libusb_config_descriptor *config0;
431 unsigned int packet_size;
432
433 // Sanity check
434 if (ftdi == NULL || dev == NULL)
435 return 64;
436
437 // Determine maximum packet size. Init with default value.
438 // New hi-speed devices from FTDI use a packet size of 512 bytes
439 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
440 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
441 packet_size = 512;
442 else
443 packet_size = 64;
444
445 if (libusb_get_device_descriptor(dev, &desc) < 0)
446 return packet_size;
447
448 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
449 return packet_size;
450
451 if (desc.bNumConfigurations > 0)
452 {
453 if (ftdi->interface < config0->bNumInterfaces)
454 {
455 struct libusb_interface interface = config0->interface[ftdi->interface];
456 if (interface.num_altsetting > 0)
457 {
458 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
459 if (descriptor.bNumEndpoints > 0)
460 {
461 packet_size = descriptor.endpoint[0].wMaxPacketSize;
462 }
463 }
464 }
465 }
466
467 libusb_free_config_descriptor (config0);
468 return packet_size;
469}
470
471/**
472 Opens a ftdi device given by an usb_device.
473
474 \param ftdi pointer to ftdi_context
475 \param dev libusb usb_dev to use
476
477 \retval 0: all fine
478 \retval -3: unable to config device
479 \retval -4: unable to open device
480 \retval -5: unable to claim device
481 \retval -6: reset failed
482 \retval -7: set baudrate failed
483 \retval -8: ftdi context invalid
484 \retval -9: libusb_get_device_descriptor() failed
485 \retval -10: libusb_get_config_descriptor() failed
486 \retval -11: libusb_detach_kernel_driver() failed
487 \retval -12: libusb_get_configuration() failed
488*/
489int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
490{
491 struct libusb_device_descriptor desc;
492 struct libusb_config_descriptor *config0;
493 int cfg, cfg0, detach_errno = 0;
494
495 if (ftdi == NULL)
496 ftdi_error_return(-8, "ftdi context invalid");
497
498 if (libusb_open(dev, &ftdi->usb_dev) < 0)
499 ftdi_error_return(-4, "libusb_open() failed");
500
501 if (libusb_get_device_descriptor(dev, &desc) < 0)
502 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
503
504 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
505 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
506 cfg0 = config0->bConfigurationValue;
507 libusb_free_config_descriptor (config0);
508
509 // Try to detach ftdi_sio kernel module.
510 //
511 // The return code is kept in a separate variable and only parsed
512 // if usb_set_configuration() or usb_claim_interface() fails as the
513 // detach operation might be denied and everything still works fine.
514 // Likely scenario is a static ftdi_sio kernel module.
515 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
516 {
517 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
518 detach_errno = errno;
519 }
520
521 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
522 ftdi_error_return(-12, "libusb_get_configuration () failed");
523 // set configuration (needed especially for windows)
524 // tolerate EBUSY: one device with one configuration, but two interfaces
525 // and libftdi sessions to both interfaces (e.g. FT2232)
526 if (desc.bNumConfigurations > 0 && cfg != cfg0)
527 {
528 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
529 {
530 ftdi_usb_close_internal (ftdi);
531 if (detach_errno == EPERM)
532 {
533 ftdi_error_return(-8, "inappropriate permissions on device!");
534 }
535 else
536 {
537 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
538 }
539 }
540 }
541
542 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
543 {
544 ftdi_usb_close_internal (ftdi);
545 if (detach_errno == EPERM)
546 {
547 ftdi_error_return(-8, "inappropriate permissions on device!");
548 }
549 else
550 {
551 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
552 }
553 }
554
555 if (ftdi_usb_reset (ftdi) != 0)
556 {
557 ftdi_usb_close_internal (ftdi);
558 ftdi_error_return(-6, "ftdi_usb_reset failed");
559 }
560
561 // Try to guess chip type
562 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
563 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
564 && desc.iSerialNumber == 0))
565 ftdi->type = TYPE_BM;
566 else if (desc.bcdDevice == 0x200)
567 ftdi->type = TYPE_AM;
568 else if (desc.bcdDevice == 0x500)
569 ftdi->type = TYPE_2232C;
570 else if (desc.bcdDevice == 0x600)
571 ftdi->type = TYPE_R;
572 else if (desc.bcdDevice == 0x700)
573 ftdi->type = TYPE_2232H;
574 else if (desc.bcdDevice == 0x800)
575 ftdi->type = TYPE_4232H;
576 else if (desc.bcdDevice == 0x900)
577 ftdi->type = TYPE_232H;
578
579 // Determine maximum packet size
580 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
581
582 if (ftdi_set_baudrate (ftdi, 9600) != 0)
583 {
584 ftdi_usb_close_internal (ftdi);
585 ftdi_error_return(-7, "set baudrate failed");
586 }
587
588 ftdi_error_return(0, "all fine");
589}
590
591/**
592 Opens the first device with a given vendor and product ids.
593
594 \param ftdi pointer to ftdi_context
595 \param vendor Vendor ID
596 \param product Product ID
597
598 \retval same as ftdi_usb_open_desc()
599*/
600int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
601{
602 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
603}
604
605/**
606 Opens the first device with a given, vendor id, product id,
607 description and serial.
608
609 \param ftdi pointer to ftdi_context
610 \param vendor Vendor ID
611 \param product Product ID
612 \param description Description to search for. Use NULL if not needed.
613 \param serial Serial to search for. Use NULL if not needed.
614
615 \retval 0: all fine
616 \retval -3: usb device not found
617 \retval -4: unable to open device
618 \retval -5: unable to claim device
619 \retval -6: reset failed
620 \retval -7: set baudrate failed
621 \retval -8: get product description failed
622 \retval -9: get serial number failed
623 \retval -12: libusb_get_device_list() failed
624 \retval -13: libusb_get_device_descriptor() failed
625*/
626int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
627 const char* description, const char* serial)
628{
629 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
630}
631
632/**
633 Opens the index-th device with a given, vendor id, product id,
634 description and serial.
635
636 \param ftdi pointer to ftdi_context
637 \param vendor Vendor ID
638 \param product Product ID
639 \param description Description to search for. Use NULL if not needed.
640 \param serial Serial to search for. Use NULL if not needed.
641 \param index Number of matching device to open if there are more than one, starts with 0.
642
643 \retval 0: all fine
644 \retval -1: usb_find_busses() failed
645 \retval -2: usb_find_devices() failed
646 \retval -3: usb device not found
647 \retval -4: unable to open device
648 \retval -5: unable to claim device
649 \retval -6: reset failed
650 \retval -7: set baudrate failed
651 \retval -8: get product description failed
652 \retval -9: get serial number failed
653 \retval -10: unable to close device
654 \retval -11: ftdi context invalid
655*/
656int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
657 const char* description, const char* serial, unsigned int index)
658{
659 libusb_device *dev;
660 libusb_device **devs;
661 char string[256];
662 int i = 0;
663
664 if (ftdi == NULL)
665 ftdi_error_return(-11, "ftdi context invalid");
666
667 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
668 ftdi_error_return(-12, "libusb_get_device_list() failed");
669
670 while ((dev = devs[i++]) != NULL)
671 {
672 struct libusb_device_descriptor desc;
673 int res;
674
675 if (libusb_get_device_descriptor(dev, &desc) < 0)
676 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
677
678 if (desc.idVendor == vendor && desc.idProduct == product)
679 {
680 if (libusb_open(dev, &ftdi->usb_dev) < 0)
681 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
682
683 if (description != NULL)
684 {
685 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
686 {
687 ftdi_usb_close_internal (ftdi);
688 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
689 }
690 if (strncmp(string, description, sizeof(string)) != 0)
691 {
692 ftdi_usb_close_internal (ftdi);
693 continue;
694 }
695 }
696 if (serial != NULL)
697 {
698 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
699 {
700 ftdi_usb_close_internal (ftdi);
701 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
702 }
703 if (strncmp(string, serial, sizeof(string)) != 0)
704 {
705 ftdi_usb_close_internal (ftdi);
706 continue;
707 }
708 }
709
710 ftdi_usb_close_internal (ftdi);
711
712 if (index > 0)
713 {
714 index--;
715 continue;
716 }
717
718 res = ftdi_usb_open_dev(ftdi, dev);
719 libusb_free_device_list(devs,1);
720 return res;
721 }
722 }
723
724 // device not found
725 ftdi_error_return_free_device_list(-3, "device not found", devs);
726}
727
728/**
729 Opens the ftdi-device described by a description-string.
730 Intended to be used for parsing a device-description given as commandline argument.
731
732 \param ftdi pointer to ftdi_context
733 \param description NULL-terminated description-string, using this format:
734 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
735 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
736 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
737 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
738
739 \note The description format may be extended in later versions.
740
741 \retval 0: all fine
742 \retval -2: libusb_get_device_list() failed
743 \retval -3: usb device not found
744 \retval -4: unable to open device
745 \retval -5: unable to claim device
746 \retval -6: reset failed
747 \retval -7: set baudrate failed
748 \retval -8: get product description failed
749 \retval -9: get serial number failed
750 \retval -10: unable to close device
751 \retval -11: illegal description format
752 \retval -12: ftdi context invalid
753*/
754int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
755{
756 if (ftdi == NULL)
757 ftdi_error_return(-12, "ftdi context invalid");
758
759 if (description[0] == 0 || description[1] != ':')
760 ftdi_error_return(-11, "illegal description format");
761
762 if (description[0] == 'd')
763 {
764 libusb_device *dev;
765 libusb_device **devs;
766 unsigned int bus_number, device_address;
767 int i = 0;
768
769 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
770 ftdi_error_return(-2, "libusb_get_device_list() failed");
771
772 /* XXX: This doesn't handle symlinks/odd paths/etc... */
773 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
774 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
775
776 while ((dev = devs[i++]) != NULL)
777 {
778 int ret;
779 if (bus_number == libusb_get_bus_number (dev)
780 && device_address == libusb_get_device_address (dev))
781 {
782 ret = ftdi_usb_open_dev(ftdi, dev);
783 libusb_free_device_list(devs,1);
784 return ret;
785 }
786 }
787
788 // device not found
789 ftdi_error_return_free_device_list(-3, "device not found", devs);
790 }
791 else if (description[0] == 'i' || description[0] == 's')
792 {
793 unsigned int vendor;
794 unsigned int product;
795 unsigned int index=0;
796 const char *serial=NULL;
797 const char *startp, *endp;
798
799 errno=0;
800 startp=description+2;
801 vendor=strtoul((char*)startp,(char**)&endp,0);
802 if (*endp != ':' || endp == startp || errno != 0)
803 ftdi_error_return(-11, "illegal description format");
804
805 startp=endp+1;
806 product=strtoul((char*)startp,(char**)&endp,0);
807 if (endp == startp || errno != 0)
808 ftdi_error_return(-11, "illegal description format");
809
810 if (description[0] == 'i' && *endp != 0)
811 {
812 /* optional index field in i-mode */
813 if (*endp != ':')
814 ftdi_error_return(-11, "illegal description format");
815
816 startp=endp+1;
817 index=strtoul((char*)startp,(char**)&endp,0);
818 if (*endp != 0 || endp == startp || errno != 0)
819 ftdi_error_return(-11, "illegal description format");
820 }
821 if (description[0] == 's')
822 {
823 if (*endp != ':')
824 ftdi_error_return(-11, "illegal description format");
825
826 /* rest of the description is the serial */
827 serial=endp+1;
828 }
829
830 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
831 }
832 else
833 {
834 ftdi_error_return(-11, "illegal description format");
835 }
836}
837
838/**
839 Resets the ftdi device.
840
841 \param ftdi pointer to ftdi_context
842
843 \retval 0: all fine
844 \retval -1: FTDI reset failed
845 \retval -2: USB device unavailable
846*/
847int ftdi_usb_reset(struct ftdi_context *ftdi)
848{
849 if (ftdi == NULL || ftdi->usb_dev == NULL)
850 ftdi_error_return(-2, "USB device unavailable");
851
852 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
853 SIO_RESET_REQUEST, SIO_RESET_SIO,
854 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
855 ftdi_error_return(-1,"FTDI reset failed");
856
857 // Invalidate data in the readbuffer
858 ftdi->readbuffer_offset = 0;
859 ftdi->readbuffer_remaining = 0;
860
861 return 0;
862}
863
864/**
865 Clears the read buffer on the chip and the internal read buffer.
866
867 \param ftdi pointer to ftdi_context
868
869 \retval 0: all fine
870 \retval -1: read buffer purge failed
871 \retval -2: USB device unavailable
872*/
873int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
874{
875 if (ftdi == NULL || ftdi->usb_dev == NULL)
876 ftdi_error_return(-2, "USB device unavailable");
877
878 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
879 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
880 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
881 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
882
883 // Invalidate data in the readbuffer
884 ftdi->readbuffer_offset = 0;
885 ftdi->readbuffer_remaining = 0;
886
887 return 0;
888}
889
890/**
891 Clears the write buffer on the chip.
892
893 \param ftdi pointer to ftdi_context
894
895 \retval 0: all fine
896 \retval -1: write buffer purge failed
897 \retval -2: USB device unavailable
898*/
899int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
900{
901 if (ftdi == NULL || ftdi->usb_dev == NULL)
902 ftdi_error_return(-2, "USB device unavailable");
903
904 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
905 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
906 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
907 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
908
909 return 0;
910}
911
912/**
913 Clears the buffers on the chip and the internal read buffer.
914
915 \param ftdi pointer to ftdi_context
916
917 \retval 0: all fine
918 \retval -1: read buffer purge failed
919 \retval -2: write buffer purge failed
920 \retval -3: USB device unavailable
921*/
922int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
923{
924 int result;
925
926 if (ftdi == NULL || ftdi->usb_dev == NULL)
927 ftdi_error_return(-3, "USB device unavailable");
928
929 result = ftdi_usb_purge_rx_buffer(ftdi);
930 if (result < 0)
931 return -1;
932
933 result = ftdi_usb_purge_tx_buffer(ftdi);
934 if (result < 0)
935 return -2;
936
937 return 0;
938}
939
940
941
942/**
943 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
944
945 \param ftdi pointer to ftdi_context
946
947 \retval 0: all fine
948 \retval -1: usb_release failed
949 \retval -3: ftdi context invalid
950*/
951int ftdi_usb_close(struct ftdi_context *ftdi)
952{
953 int rtn = 0;
954
955 if (ftdi == NULL)
956 ftdi_error_return(-3, "ftdi context invalid");
957
958 if (ftdi->usb_dev != NULL)
959 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
960 rtn = -1;
961
962 ftdi_usb_close_internal (ftdi);
963
964 return rtn;
965}
966
967/**
968 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
969 Function is only used internally
970 \internal
971*/
972static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
973 unsigned short *value, unsigned short *index)
974{
975 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
976 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
977 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
978 int divisor, best_divisor, best_baud, best_baud_diff;
979 unsigned long encoded_divisor;
980 int i;
981
982 if (baudrate <= 0)
983 {
984 // Return error
985 return -1;
986 }
987
988 divisor = 24000000 / baudrate;
989
990 if (ftdi->type == TYPE_AM)
991 {
992 // Round down to supported fraction (AM only)
993 divisor -= am_adjust_dn[divisor & 7];
994 }
995
996 // Try this divisor and the one above it (because division rounds down)
997 best_divisor = 0;
998 best_baud = 0;
999 best_baud_diff = 0;
1000 for (i = 0; i < 2; i++)
1001 {
1002 int try_divisor = divisor + i;
1003 int baud_estimate;
1004 int baud_diff;
1005
1006 // Round up to supported divisor value
1007 if (try_divisor <= 8)
1008 {
1009 // Round up to minimum supported divisor
1010 try_divisor = 8;
1011 }
1012 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1013 {
1014 // BM doesn't support divisors 9 through 11 inclusive
1015 try_divisor = 12;
1016 }
1017 else if (divisor < 16)
1018 {
1019 // AM doesn't support divisors 9 through 15 inclusive
1020 try_divisor = 16;
1021 }
1022 else
1023 {
1024 if (ftdi->type == TYPE_AM)
1025 {
1026 // Round up to supported fraction (AM only)
1027 try_divisor += am_adjust_up[try_divisor & 7];
1028 if (try_divisor > 0x1FFF8)
1029 {
1030 // Round down to maximum supported divisor value (for AM)
1031 try_divisor = 0x1FFF8;
1032 }
1033 }
1034 else
1035 {
1036 if (try_divisor > 0x1FFFF)
1037 {
1038 // Round down to maximum supported divisor value (for BM)
1039 try_divisor = 0x1FFFF;
1040 }
1041 }
1042 }
1043 // Get estimated baud rate (to nearest integer)
1044 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1045 // Get absolute difference from requested baud rate
1046 if (baud_estimate < baudrate)
1047 {
1048 baud_diff = baudrate - baud_estimate;
1049 }
1050 else
1051 {
1052 baud_diff = baud_estimate - baudrate;
1053 }
1054 if (i == 0 || baud_diff < best_baud_diff)
1055 {
1056 // Closest to requested baud rate so far
1057 best_divisor = try_divisor;
1058 best_baud = baud_estimate;
1059 best_baud_diff = baud_diff;
1060 if (baud_diff == 0)
1061 {
1062 // Spot on! No point trying
1063 break;
1064 }
1065 }
1066 }
1067 // Encode the best divisor value
1068 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1069 // Deal with special cases for encoded value
1070 if (encoded_divisor == 1)
1071 {
1072 encoded_divisor = 0; // 3000000 baud
1073 }
1074 else if (encoded_divisor == 0x4001)
1075 {
1076 encoded_divisor = 1; // 2000000 baud (BM only)
1077 }
1078 // Split into "value" and "index" values
1079 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1080 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
1081 {
1082 *index = (unsigned short)(encoded_divisor >> 8);
1083 *index &= 0xFF00;
1084 *index |= ftdi->index;
1085 }
1086 else
1087 *index = (unsigned short)(encoded_divisor >> 16);
1088
1089 // Return the nearest baud rate
1090 return best_baud;
1091}
1092
1093/**
1094 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1095 * Do not use, it's only for the unit test framework
1096 **/
1097int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1098 unsigned short *value, unsigned short *index)
1099{
1100 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1101}
1102
1103/**
1104 Sets the chip baud rate
1105
1106 \param ftdi pointer to ftdi_context
1107 \param baudrate baud rate to set
1108
1109 \retval 0: all fine
1110 \retval -1: invalid baudrate
1111 \retval -2: setting baudrate failed
1112 \retval -3: USB device unavailable
1113*/
1114int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1115{
1116 unsigned short value, index;
1117 int actual_baudrate;
1118
1119 if (ftdi == NULL || ftdi->usb_dev == NULL)
1120 ftdi_error_return(-3, "USB device unavailable");
1121
1122 if (ftdi->bitbang_enabled)
1123 {
1124 baudrate = baudrate*4;
1125 }
1126
1127 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1128 if (actual_baudrate <= 0)
1129 ftdi_error_return (-1, "Silly baudrate <= 0.");
1130
1131 // Check within tolerance (about 5%)
1132 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1133 || ((actual_baudrate < baudrate)
1134 ? (actual_baudrate * 21 < baudrate * 20)
1135 : (baudrate * 21 < actual_baudrate * 20)))
1136 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1137
1138 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1139 SIO_SET_BAUDRATE_REQUEST, value,
1140 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1141 ftdi_error_return (-2, "Setting new baudrate failed");
1142
1143 ftdi->baudrate = baudrate;
1144 return 0;
1145}
1146
1147/**
1148 Set (RS232) line characteristics.
1149 The break type can only be set via ftdi_set_line_property2()
1150 and defaults to "off".
1151
1152 \param ftdi pointer to ftdi_context
1153 \param bits Number of bits
1154 \param sbit Number of stop bits
1155 \param parity Parity mode
1156
1157 \retval 0: all fine
1158 \retval -1: Setting line property failed
1159*/
1160int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1161 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1162{
1163 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1164}
1165
1166/**
1167 Set (RS232) line characteristics
1168
1169 \param ftdi pointer to ftdi_context
1170 \param bits Number of bits
1171 \param sbit Number of stop bits
1172 \param parity Parity mode
1173 \param break_type Break type
1174
1175 \retval 0: all fine
1176 \retval -1: Setting line property failed
1177 \retval -2: USB device unavailable
1178*/
1179int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1180 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1181 enum ftdi_break_type break_type)
1182{
1183 unsigned short value = bits;
1184
1185 if (ftdi == NULL || ftdi->usb_dev == NULL)
1186 ftdi_error_return(-2, "USB device unavailable");
1187
1188 switch (parity)
1189 {
1190 case NONE:
1191 value |= (0x00 << 8);
1192 break;
1193 case ODD:
1194 value |= (0x01 << 8);
1195 break;
1196 case EVEN:
1197 value |= (0x02 << 8);
1198 break;
1199 case MARK:
1200 value |= (0x03 << 8);
1201 break;
1202 case SPACE:
1203 value |= (0x04 << 8);
1204 break;
1205 }
1206
1207 switch (sbit)
1208 {
1209 case STOP_BIT_1:
1210 value |= (0x00 << 11);
1211 break;
1212 case STOP_BIT_15:
1213 value |= (0x01 << 11);
1214 break;
1215 case STOP_BIT_2:
1216 value |= (0x02 << 11);
1217 break;
1218 }
1219
1220 switch (break_type)
1221 {
1222 case BREAK_OFF:
1223 value |= (0x00 << 14);
1224 break;
1225 case BREAK_ON:
1226 value |= (0x01 << 14);
1227 break;
1228 }
1229
1230 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1231 SIO_SET_DATA_REQUEST, value,
1232 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1233 ftdi_error_return (-1, "Setting new line property failed");
1234
1235 return 0;
1236}
1237
1238/**
1239 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1240
1241 \param ftdi pointer to ftdi_context
1242 \param buf Buffer with the data
1243 \param size Size of the buffer
1244
1245 \retval -666: USB device unavailable
1246 \retval <0: error code from usb_bulk_write()
1247 \retval >0: number of bytes written
1248*/
1249int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1250{
1251 int offset = 0;
1252 int actual_length;
1253
1254 if (ftdi == NULL || ftdi->usb_dev == NULL)
1255 ftdi_error_return(-666, "USB device unavailable");
1256
1257 while (offset < size)
1258 {
1259 int write_size = ftdi->writebuffer_chunksize;
1260
1261 if (offset+write_size > size)
1262 write_size = size-offset;
1263
1264 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1265 ftdi_error_return(-1, "usb bulk write failed");
1266
1267 offset += actual_length;
1268 }
1269
1270 return offset;
1271}
1272
1273static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1274{
1275 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1276 struct ftdi_context *ftdi = tc->ftdi;
1277 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1278
1279 packet_size = ftdi->max_packet_size;
1280
1281 actual_length = transfer->actual_length;
1282
1283 if (actual_length > 2)
1284 {
1285 // skip FTDI status bytes.
1286 // Maybe stored in the future to enable modem use
1287 num_of_chunks = actual_length / packet_size;
1288 chunk_remains = actual_length % packet_size;
1289 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1290
1291 ftdi->readbuffer_offset += 2;
1292 actual_length -= 2;
1293
1294 if (actual_length > packet_size - 2)
1295 {
1296 for (i = 1; i < num_of_chunks; i++)
1297 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1298 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1299 packet_size - 2);
1300 if (chunk_remains > 2)
1301 {
1302 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1303 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1304 chunk_remains-2);
1305 actual_length -= 2*num_of_chunks;
1306 }
1307 else
1308 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1309 }
1310
1311 if (actual_length > 0)
1312 {
1313 // data still fits in buf?
1314 if (tc->offset + actual_length <= tc->size)
1315 {
1316 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1317 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1318 tc->offset += actual_length;
1319
1320 ftdi->readbuffer_offset = 0;
1321 ftdi->readbuffer_remaining = 0;
1322
1323 /* Did we read exactly the right amount of bytes? */
1324 if (tc->offset == tc->size)
1325 {
1326 //printf("read_data exact rem %d offset %d\n",
1327 //ftdi->readbuffer_remaining, offset);
1328 tc->completed = 1;
1329 return;
1330 }
1331 }
1332 else
1333 {
1334 // only copy part of the data or size <= readbuffer_chunksize
1335 int part_size = tc->size - tc->offset;
1336 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1337 tc->offset += part_size;
1338
1339 ftdi->readbuffer_offset += part_size;
1340 ftdi->readbuffer_remaining = actual_length - part_size;
1341
1342 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1343 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1344 tc->completed = 1;
1345 return;
1346 }
1347 }
1348 }
1349 ret = libusb_submit_transfer (transfer);
1350 if (ret < 0)
1351 tc->completed = 1;
1352}
1353
1354
1355static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1356{
1357 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1358 struct ftdi_context *ftdi = tc->ftdi;
1359
1360 tc->offset += transfer->actual_length;
1361
1362 if (tc->offset == tc->size)
1363 {
1364 tc->completed = 1;
1365 }
1366 else
1367 {
1368 int write_size = ftdi->writebuffer_chunksize;
1369 int ret;
1370
1371 if (tc->offset + write_size > tc->size)
1372 write_size = tc->size - tc->offset;
1373
1374 transfer->length = write_size;
1375 transfer->buffer = tc->buf + tc->offset;
1376 ret = libusb_submit_transfer (transfer);
1377 if (ret < 0)
1378 tc->completed = 1;
1379 }
1380}
1381
1382
1383/**
1384 Writes data to the chip. Does not wait for completion of the transfer
1385 nor does it make sure that the transfer was successful.
1386
1387 Use libusb 1.0 asynchronous API.
1388
1389 \param ftdi pointer to ftdi_context
1390 \param buf Buffer with the data
1391 \param size Size of the buffer
1392
1393 \retval NULL: Some error happens when submit transfer
1394 \retval !NULL: Pointer to a ftdi_transfer_control
1395*/
1396
1397struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1398{
1399 struct ftdi_transfer_control *tc;
1400 struct libusb_transfer *transfer;
1401 int write_size, ret;
1402
1403 if (ftdi == NULL || ftdi->usb_dev == NULL)
1404 return NULL;
1405
1406 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1407 if (!tc)
1408 return NULL;
1409
1410 transfer = libusb_alloc_transfer(0);
1411 if (!transfer)
1412 {
1413 free(tc);
1414 return NULL;
1415 }
1416
1417 tc->ftdi = ftdi;
1418 tc->completed = 0;
1419 tc->buf = buf;
1420 tc->size = size;
1421 tc->offset = 0;
1422
1423 if (size < ftdi->writebuffer_chunksize)
1424 write_size = size;
1425 else
1426 write_size = ftdi->writebuffer_chunksize;
1427
1428 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1429 write_size, ftdi_write_data_cb, tc,
1430 ftdi->usb_write_timeout);
1431 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1432
1433 ret = libusb_submit_transfer(transfer);
1434 if (ret < 0)
1435 {
1436 libusb_free_transfer(transfer);
1437 free(tc);
1438 return NULL;
1439 }
1440 tc->transfer = transfer;
1441
1442 return tc;
1443}
1444
1445/**
1446 Reads data from the chip. Does not wait for completion of the transfer
1447 nor does it make sure that the transfer was successful.
1448
1449 Use libusb 1.0 asynchronous API.
1450
1451 \param ftdi pointer to ftdi_context
1452 \param buf Buffer with the data
1453 \param size Size of the buffer
1454
1455 \retval NULL: Some error happens when submit transfer
1456 \retval !NULL: Pointer to a ftdi_transfer_control
1457*/
1458
1459struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1460{
1461 struct ftdi_transfer_control *tc;
1462 struct libusb_transfer *transfer;
1463 int ret;
1464
1465 if (ftdi == NULL || ftdi->usb_dev == NULL)
1466 return NULL;
1467
1468 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1469 if (!tc)
1470 return NULL;
1471
1472 tc->ftdi = ftdi;
1473 tc->buf = buf;
1474 tc->size = size;
1475
1476 if (size <= ftdi->readbuffer_remaining)
1477 {
1478 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1479
1480 // Fix offsets
1481 ftdi->readbuffer_remaining -= size;
1482 ftdi->readbuffer_offset += size;
1483
1484 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1485
1486 tc->completed = 1;
1487 tc->offset = size;
1488 tc->transfer = NULL;
1489 return tc;
1490 }
1491
1492 tc->completed = 0;
1493 if (ftdi->readbuffer_remaining != 0)
1494 {
1495 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1496
1497 tc->offset = ftdi->readbuffer_remaining;
1498 }
1499 else
1500 tc->offset = 0;
1501
1502 transfer = libusb_alloc_transfer(0);
1503 if (!transfer)
1504 {
1505 free (tc);
1506 return NULL;
1507 }
1508
1509 ftdi->readbuffer_remaining = 0;
1510 ftdi->readbuffer_offset = 0;
1511
1512 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1513 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1514
1515 ret = libusb_submit_transfer(transfer);
1516 if (ret < 0)
1517 {
1518 libusb_free_transfer(transfer);
1519 free (tc);
1520 return NULL;
1521 }
1522 tc->transfer = transfer;
1523
1524 return tc;
1525}
1526
1527/**
1528 Wait for completion of the transfer.
1529
1530 Use libusb 1.0 asynchronous API.
1531
1532 \param tc pointer to ftdi_transfer_control
1533
1534 \retval < 0: Some error happens
1535 \retval >= 0: Data size transferred
1536*/
1537
1538int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1539{
1540 int ret;
1541
1542 while (!tc->completed)
1543 {
1544 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1545 if (ret < 0)
1546 {
1547 if (ret == LIBUSB_ERROR_INTERRUPTED)
1548 continue;
1549 libusb_cancel_transfer(tc->transfer);
1550 while (!tc->completed)
1551 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1552 break;
1553 libusb_free_transfer(tc->transfer);
1554 free (tc);
1555 return ret;
1556 }
1557 }
1558
1559 ret = tc->offset;
1560 /**
1561 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1562 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1563 **/
1564 if (tc->transfer)
1565 {
1566 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1567 ret = -1;
1568 libusb_free_transfer(tc->transfer);
1569 }
1570 free(tc);
1571 return ret;
1572}
1573
1574/**
1575 Configure write buffer chunk size.
1576 Default is 4096.
1577
1578 \param ftdi pointer to ftdi_context
1579 \param chunksize Chunk size
1580
1581 \retval 0: all fine
1582 \retval -1: ftdi context invalid
1583*/
1584int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1585{
1586 if (ftdi == NULL)
1587 ftdi_error_return(-1, "ftdi context invalid");
1588
1589 ftdi->writebuffer_chunksize = chunksize;
1590 return 0;
1591}
1592
1593/**
1594 Get write buffer chunk size.
1595
1596 \param ftdi pointer to ftdi_context
1597 \param chunksize Pointer to store chunk size in
1598
1599 \retval 0: all fine
1600 \retval -1: ftdi context invalid
1601*/
1602int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1603{
1604 if (ftdi == NULL)
1605 ftdi_error_return(-1, "ftdi context invalid");
1606
1607 *chunksize = ftdi->writebuffer_chunksize;
1608 return 0;
1609}
1610
1611/**
1612 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1613
1614 Automatically strips the two modem status bytes transfered during every read.
1615
1616 \param ftdi pointer to ftdi_context
1617 \param buf Buffer to store data in
1618 \param size Size of the buffer
1619
1620 \retval -666: USB device unavailable
1621 \retval <0: error code from libusb_bulk_transfer()
1622 \retval 0: no data was available
1623 \retval >0: number of bytes read
1624
1625*/
1626int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1627{
1628 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1629 int packet_size = ftdi->max_packet_size;
1630 int actual_length = 1;
1631
1632 if (ftdi == NULL || ftdi->usb_dev == NULL)
1633 ftdi_error_return(-666, "USB device unavailable");
1634
1635 // Packet size sanity check (avoid division by zero)
1636 if (packet_size == 0)
1637 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1638
1639 // everything we want is still in the readbuffer?
1640 if (size <= ftdi->readbuffer_remaining)
1641 {
1642 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1643
1644 // Fix offsets
1645 ftdi->readbuffer_remaining -= size;
1646 ftdi->readbuffer_offset += size;
1647
1648 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1649
1650 return size;
1651 }
1652 // something still in the readbuffer, but not enough to satisfy 'size'?
1653 if (ftdi->readbuffer_remaining != 0)
1654 {
1655 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1656
1657 // Fix offset
1658 offset += ftdi->readbuffer_remaining;
1659 }
1660 // do the actual USB read
1661 while (offset < size && actual_length > 0)
1662 {
1663 ftdi->readbuffer_remaining = 0;
1664 ftdi->readbuffer_offset = 0;
1665 /* returns how much received */
1666 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1667 if (ret < 0)
1668 ftdi_error_return(ret, "usb bulk read failed");
1669
1670 if (actual_length > 2)
1671 {
1672 // skip FTDI status bytes.
1673 // Maybe stored in the future to enable modem use
1674 num_of_chunks = actual_length / packet_size;
1675 chunk_remains = actual_length % packet_size;
1676 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1677
1678 ftdi->readbuffer_offset += 2;
1679 actual_length -= 2;
1680
1681 if (actual_length > packet_size - 2)
1682 {
1683 for (i = 1; i < num_of_chunks; i++)
1684 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1685 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1686 packet_size - 2);
1687 if (chunk_remains > 2)
1688 {
1689 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1690 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1691 chunk_remains-2);
1692 actual_length -= 2*num_of_chunks;
1693 }
1694 else
1695 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1696 }
1697 }
1698 else if (actual_length <= 2)
1699 {
1700 // no more data to read?
1701 return offset;
1702 }
1703 if (actual_length > 0)
1704 {
1705 // data still fits in buf?
1706 if (offset+actual_length <= size)
1707 {
1708 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1709 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1710 offset += actual_length;
1711
1712 /* Did we read exactly the right amount of bytes? */
1713 if (offset == size)
1714 //printf("read_data exact rem %d offset %d\n",
1715 //ftdi->readbuffer_remaining, offset);
1716 return offset;
1717 }
1718 else
1719 {
1720 // only copy part of the data or size <= readbuffer_chunksize
1721 int part_size = size-offset;
1722 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1723
1724 ftdi->readbuffer_offset += part_size;
1725 ftdi->readbuffer_remaining = actual_length-part_size;
1726 offset += part_size;
1727
1728 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1729 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1730
1731 return offset;
1732 }
1733 }
1734 }
1735 // never reached
1736 return -127;
1737}
1738
1739/**
1740 Configure read buffer chunk size.
1741 Default is 4096.
1742
1743 Automatically reallocates the buffer.
1744
1745 \param ftdi pointer to ftdi_context
1746 \param chunksize Chunk size
1747
1748 \retval 0: all fine
1749 \retval -1: ftdi context invalid
1750*/
1751int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1752{
1753 unsigned char *new_buf;
1754
1755 if (ftdi == NULL)
1756 ftdi_error_return(-1, "ftdi context invalid");
1757
1758 // Invalidate all remaining data
1759 ftdi->readbuffer_offset = 0;
1760 ftdi->readbuffer_remaining = 0;
1761#ifdef __linux__
1762 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1763 which is defined in libusb-1.0. Otherwise, each USB read request will
1764 be divided into multiple URBs. This will cause issues on Linux kernel
1765 older than 2.6.32. */
1766 if (chunksize > 16384)
1767 chunksize = 16384;
1768#endif
1769
1770 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1771 ftdi_error_return(-1, "out of memory for readbuffer");
1772
1773 ftdi->readbuffer = new_buf;
1774 ftdi->readbuffer_chunksize = chunksize;
1775
1776 return 0;
1777}
1778
1779/**
1780 Get read buffer chunk size.
1781
1782 \param ftdi pointer to ftdi_context
1783 \param chunksize Pointer to store chunk size in
1784
1785 \retval 0: all fine
1786 \retval -1: FTDI context invalid
1787*/
1788int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1789{
1790 if (ftdi == NULL)
1791 ftdi_error_return(-1, "FTDI context invalid");
1792
1793 *chunksize = ftdi->readbuffer_chunksize;
1794 return 0;
1795}
1796
1797
1798/**
1799 Enable bitbang mode.
1800
1801 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1802
1803 \param ftdi pointer to ftdi_context
1804 \param bitmask Bitmask to configure lines.
1805 HIGH/ON value configures a line as output.
1806
1807 \retval 0: all fine
1808 \retval -1: can't enable bitbang mode
1809 \retval -2: USB device unavailable
1810*/
1811int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1812{
1813 unsigned short usb_val;
1814
1815 if (ftdi == NULL || ftdi->usb_dev == NULL)
1816 ftdi_error_return(-2, "USB device unavailable");
1817
1818 usb_val = bitmask; // low byte: bitmask
1819 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1820 usb_val |= (ftdi->bitbang_mode << 8);
1821
1822 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1823 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1824 NULL, 0, ftdi->usb_write_timeout) < 0)
1825 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1826
1827 ftdi->bitbang_enabled = 1;
1828 return 0;
1829}
1830
1831/**
1832 Disable bitbang mode.
1833
1834 \param ftdi pointer to ftdi_context
1835
1836 \retval 0: all fine
1837 \retval -1: can't disable bitbang mode
1838 \retval -2: USB device unavailable
1839*/
1840int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1841{
1842 if (ftdi == NULL || ftdi->usb_dev == NULL)
1843 ftdi_error_return(-2, "USB device unavailable");
1844
1845 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1846 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1847
1848 ftdi->bitbang_enabled = 0;
1849 return 0;
1850}
1851
1852/**
1853 Enable/disable bitbang modes.
1854
1855 \param ftdi pointer to ftdi_context
1856 \param bitmask Bitmask to configure lines.
1857 HIGH/ON value configures a line as output.
1858 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1859
1860 \retval 0: all fine
1861 \retval -1: can't enable bitbang mode
1862 \retval -2: USB device unavailable
1863*/
1864int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1865{
1866 unsigned short usb_val;
1867
1868 if (ftdi == NULL || ftdi->usb_dev == NULL)
1869 ftdi_error_return(-2, "USB device unavailable");
1870
1871 usb_val = bitmask; // low byte: bitmask
1872 usb_val |= (mode << 8);
1873 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1874 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1875
1876 ftdi->bitbang_mode = mode;
1877 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1878 return 0;
1879}
1880
1881/**
1882 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1883
1884 \param ftdi pointer to ftdi_context
1885 \param pins Pointer to store pins into
1886
1887 \retval 0: all fine
1888 \retval -1: read pins failed
1889 \retval -2: USB device unavailable
1890*/
1891int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1892{
1893 if (ftdi == NULL || ftdi->usb_dev == NULL)
1894 ftdi_error_return(-2, "USB device unavailable");
1895
1896 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1897 ftdi_error_return(-1, "read pins failed");
1898
1899 return 0;
1900}
1901
1902/**
1903 Set latency timer
1904
1905 The FTDI chip keeps data in the internal buffer for a specific
1906 amount of time if the buffer is not full yet to decrease
1907 load on the usb bus.
1908
1909 \param ftdi pointer to ftdi_context
1910 \param latency Value between 1 and 255
1911
1912 \retval 0: all fine
1913 \retval -1: latency out of range
1914 \retval -2: unable to set latency timer
1915 \retval -3: USB device unavailable
1916*/
1917int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1918{
1919 unsigned short usb_val;
1920
1921 if (latency < 1)
1922 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1923
1924 if (ftdi == NULL || ftdi->usb_dev == NULL)
1925 ftdi_error_return(-3, "USB device unavailable");
1926
1927 usb_val = latency;
1928 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1929 ftdi_error_return(-2, "unable to set latency timer");
1930
1931 return 0;
1932}
1933
1934/**
1935 Get latency timer
1936
1937 \param ftdi pointer to ftdi_context
1938 \param latency Pointer to store latency value in
1939
1940 \retval 0: all fine
1941 \retval -1: unable to get latency timer
1942 \retval -2: USB device unavailable
1943*/
1944int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1945{
1946 unsigned short usb_val;
1947
1948 if (ftdi == NULL || ftdi->usb_dev == NULL)
1949 ftdi_error_return(-2, "USB device unavailable");
1950
1951 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1952 ftdi_error_return(-1, "reading latency timer failed");
1953
1954 *latency = (unsigned char)usb_val;
1955 return 0;
1956}
1957
1958/**
1959 Poll modem status information
1960
1961 This function allows the retrieve the two status bytes of the device.
1962 The device sends these bytes also as a header for each read access
1963 where they are discarded by ftdi_read_data(). The chip generates
1964 the two stripped status bytes in the absence of data every 40 ms.
1965
1966 Layout of the first byte:
1967 - B0..B3 - must be 0
1968 - B4 Clear to send (CTS)
1969 0 = inactive
1970 1 = active
1971 - B5 Data set ready (DTS)
1972 0 = inactive
1973 1 = active
1974 - B6 Ring indicator (RI)
1975 0 = inactive
1976 1 = active
1977 - B7 Receive line signal detect (RLSD)
1978 0 = inactive
1979 1 = active
1980
1981 Layout of the second byte:
1982 - B0 Data ready (DR)
1983 - B1 Overrun error (OE)
1984 - B2 Parity error (PE)
1985 - B3 Framing error (FE)
1986 - B4 Break interrupt (BI)
1987 - B5 Transmitter holding register (THRE)
1988 - B6 Transmitter empty (TEMT)
1989 - B7 Error in RCVR FIFO
1990
1991 \param ftdi pointer to ftdi_context
1992 \param status Pointer to store status information in. Must be two bytes.
1993
1994 \retval 0: all fine
1995 \retval -1: unable to retrieve status information
1996 \retval -2: USB device unavailable
1997*/
1998int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1999{
2000 char usb_val[2];
2001
2002 if (ftdi == NULL || ftdi->usb_dev == NULL)
2003 ftdi_error_return(-2, "USB device unavailable");
2004
2005 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
2006 ftdi_error_return(-1, "getting modem status failed");
2007
2008 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
2009
2010 return 0;
2011}
2012
2013/**
2014 Set flowcontrol for ftdi chip
2015
2016 \param ftdi pointer to ftdi_context
2017 \param flowctrl flow control to use. should be
2018 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2019
2020 \retval 0: all fine
2021 \retval -1: set flow control failed
2022 \retval -2: USB device unavailable
2023*/
2024int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2025{
2026 if (ftdi == NULL || ftdi->usb_dev == NULL)
2027 ftdi_error_return(-2, "USB device unavailable");
2028
2029 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2030 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2031 NULL, 0, ftdi->usb_write_timeout) < 0)
2032 ftdi_error_return(-1, "set flow control failed");
2033
2034 return 0;
2035}
2036
2037/**
2038 Set dtr line
2039
2040 \param ftdi pointer to ftdi_context
2041 \param state state to set line to (1 or 0)
2042
2043 \retval 0: all fine
2044 \retval -1: set dtr failed
2045 \retval -2: USB device unavailable
2046*/
2047int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2048{
2049 unsigned short usb_val;
2050
2051 if (ftdi == NULL || ftdi->usb_dev == NULL)
2052 ftdi_error_return(-2, "USB device unavailable");
2053
2054 if (state)
2055 usb_val = SIO_SET_DTR_HIGH;
2056 else
2057 usb_val = SIO_SET_DTR_LOW;
2058
2059 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2060 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2061 NULL, 0, ftdi->usb_write_timeout) < 0)
2062 ftdi_error_return(-1, "set dtr failed");
2063
2064 return 0;
2065}
2066
2067/**
2068 Set rts line
2069
2070 \param ftdi pointer to ftdi_context
2071 \param state state to set line to (1 or 0)
2072
2073 \retval 0: all fine
2074 \retval -1: set rts failed
2075 \retval -2: USB device unavailable
2076*/
2077int ftdi_setrts(struct ftdi_context *ftdi, int state)
2078{
2079 unsigned short usb_val;
2080
2081 if (ftdi == NULL || ftdi->usb_dev == NULL)
2082 ftdi_error_return(-2, "USB device unavailable");
2083
2084 if (state)
2085 usb_val = SIO_SET_RTS_HIGH;
2086 else
2087 usb_val = SIO_SET_RTS_LOW;
2088
2089 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2090 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2091 NULL, 0, ftdi->usb_write_timeout) < 0)
2092 ftdi_error_return(-1, "set of rts failed");
2093
2094 return 0;
2095}
2096
2097/**
2098 Set dtr and rts line in one pass
2099
2100 \param ftdi pointer to ftdi_context
2101 \param dtr DTR state to set line to (1 or 0)
2102 \param rts RTS state to set line to (1 or 0)
2103
2104 \retval 0: all fine
2105 \retval -1: set dtr/rts failed
2106 \retval -2: USB device unavailable
2107 */
2108int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2109{
2110 unsigned short usb_val;
2111
2112 if (ftdi == NULL || ftdi->usb_dev == NULL)
2113 ftdi_error_return(-2, "USB device unavailable");
2114
2115 if (dtr)
2116 usb_val = SIO_SET_DTR_HIGH;
2117 else
2118 usb_val = SIO_SET_DTR_LOW;
2119
2120 if (rts)
2121 usb_val |= SIO_SET_RTS_HIGH;
2122 else
2123 usb_val |= SIO_SET_RTS_LOW;
2124
2125 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2126 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2127 NULL, 0, ftdi->usb_write_timeout) < 0)
2128 ftdi_error_return(-1, "set of rts/dtr failed");
2129
2130 return 0;
2131}
2132
2133/**
2134 Set the special event character
2135
2136 \param ftdi pointer to ftdi_context
2137 \param eventch Event character
2138 \param enable 0 to disable the event character, non-zero otherwise
2139
2140 \retval 0: all fine
2141 \retval -1: unable to set event character
2142 \retval -2: USB device unavailable
2143*/
2144int ftdi_set_event_char(struct ftdi_context *ftdi,
2145 unsigned char eventch, unsigned char enable)
2146{
2147 unsigned short usb_val;
2148
2149 if (ftdi == NULL || ftdi->usb_dev == NULL)
2150 ftdi_error_return(-2, "USB device unavailable");
2151
2152 usb_val = eventch;
2153 if (enable)
2154 usb_val |= 1 << 8;
2155
2156 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2157 ftdi_error_return(-1, "setting event character failed");
2158
2159 return 0;
2160}
2161
2162/**
2163 Set error character
2164
2165 \param ftdi pointer to ftdi_context
2166 \param errorch Error character
2167 \param enable 0 to disable the error character, non-zero otherwise
2168
2169 \retval 0: all fine
2170 \retval -1: unable to set error character
2171 \retval -2: USB device unavailable
2172*/
2173int ftdi_set_error_char(struct ftdi_context *ftdi,
2174 unsigned char errorch, unsigned char enable)
2175{
2176 unsigned short usb_val;
2177
2178 if (ftdi == NULL || ftdi->usb_dev == NULL)
2179 ftdi_error_return(-2, "USB device unavailable");
2180
2181 usb_val = errorch;
2182 if (enable)
2183 usb_val |= 1 << 8;
2184
2185 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2186 ftdi_error_return(-1, "setting error character failed");
2187
2188 return 0;
2189}
2190
2191/**
2192 Init eeprom with default values for the connected device
2193 \param ftdi pointer to ftdi_context
2194 \param manufacturer String to use as Manufacturer
2195 \param product String to use as Product description
2196 \param serial String to use as Serial number description
2197
2198 \retval 0: all fine
2199 \retval -1: No struct ftdi_context
2200 \retval -2: No struct ftdi_eeprom
2201 \retval -3: No connected device or device not yet opened
2202*/
2203int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2204 char * product, char * serial)
2205{
2206 struct ftdi_eeprom *eeprom;
2207
2208 if (ftdi == NULL)
2209 ftdi_error_return(-1, "No struct ftdi_context");
2210
2211 if (ftdi->eeprom == NULL)
2212 ftdi_error_return(-2,"No struct ftdi_eeprom");
2213
2214 eeprom = ftdi->eeprom;
2215 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2216
2217 if (ftdi->usb_dev == NULL)
2218 ftdi_error_return(-3, "No connected device or device not yet opened");
2219
2220 eeprom->vendor_id = 0x0403;
2221 eeprom->use_serial = 1;
2222 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2223 (ftdi->type == TYPE_R))
2224 eeprom->product_id = 0x6001;
2225 else if (ftdi->type == TYPE_4232H)
2226 eeprom->product_id = 0x6011;
2227 else if (ftdi->type == TYPE_232H)
2228 eeprom->product_id = 0x6014;
2229 else
2230 eeprom->product_id = 0x6010;
2231 if (ftdi->type == TYPE_AM)
2232 eeprom->usb_version = 0x0101;
2233 else
2234 eeprom->usb_version = 0x0200;
2235 eeprom->max_power = 100;
2236
2237 if (eeprom->manufacturer)
2238 free (eeprom->manufacturer);
2239 eeprom->manufacturer = NULL;
2240 if (manufacturer)
2241 {
2242 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2243 if (eeprom->manufacturer)
2244 strcpy(eeprom->manufacturer, manufacturer);
2245 }
2246
2247 if (eeprom->product)
2248 free (eeprom->product);
2249 eeprom->product = NULL;
2250 if(product)
2251 {
2252 eeprom->product = malloc(strlen(product)+1);
2253 if (eeprom->product)
2254 strcpy(eeprom->product, product);
2255 }
2256 else
2257 {
2258 const char* default_product;
2259 switch(ftdi->type)
2260 {
2261 case TYPE_AM: default_product = "AM"; break;
2262 case TYPE_BM: default_product = "BM"; break;
2263 case TYPE_2232C: default_product = "Dual RS232"; break;
2264 case TYPE_R: default_product = "FT232R USB UART"; break;
2265 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2266 case TYPE_4232H: default_product = "FT4232H"; break;
2267 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2268 default:
2269 ftdi_error_return(-3, "Unknown chip type");
2270 }
2271 eeprom->product = malloc(strlen(default_product) +1);
2272 if (eeprom->product)
2273 strcpy(eeprom->product, default_product);
2274 }
2275
2276 if (eeprom->serial)
2277 free (eeprom->serial);
2278 eeprom->serial = NULL;
2279 if (serial)
2280 {
2281 eeprom->serial = malloc(strlen(serial)+1);
2282 if (eeprom->serial)
2283 strcpy(eeprom->serial, serial);
2284 }
2285
2286
2287 if (ftdi->type == TYPE_R)
2288 {
2289 eeprom->max_power = 90;
2290 eeprom->size = 0x80;
2291 eeprom->cbus_function[0] = CBUS_TXLED;
2292 eeprom->cbus_function[1] = CBUS_RXLED;
2293 eeprom->cbus_function[2] = CBUS_TXDEN;
2294 eeprom->cbus_function[3] = CBUS_PWREN;
2295 eeprom->cbus_function[4] = CBUS_SLEEP;
2296 }
2297 else
2298 {
2299 if(ftdi->type == TYPE_232H)
2300 {
2301 int i;
2302 for (i=0; i<10; i++)
2303 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2304 }
2305 eeprom->size = -1;
2306 }
2307 eeprom->initialized_for_connected_device = 1;
2308 return 0;
2309}
2310/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2311void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2312{
2313 int i;
2314 for(i=0; i<5;i++)
2315 {
2316 int mode_low, mode_high;
2317 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2318 mode_low = CBUSH_TRISTATE;
2319 else
2320 mode_low = eeprom->cbus_function[2*i];
2321 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2322 mode_high = CBUSH_TRISTATE;
2323 else
2324 mode_high = eeprom->cbus_function[2*i];
2325
2326 output[0x18+i] = mode_high <<4 | mode_low;
2327 }
2328}
2329/* Return the bits for the encoded EEPROM Structure of a requested Mode
2330 *
2331 */
2332static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2333{
2334 switch (chip)
2335 {
2336 case TYPE_2232H:
2337 case TYPE_2232C:
2338 {
2339 switch (type)
2340 {
2341 case CHANNEL_IS_UART: return 0;
2342 case CHANNEL_IS_FIFO: return 0x01;
2343 case CHANNEL_IS_OPTO: return 0x02;
2344 case CHANNEL_IS_CPU : return 0x04;
2345 default: return 0;
2346 }
2347 }
2348 case TYPE_232H:
2349 {
2350 switch (type)
2351 {
2352 case CHANNEL_IS_UART : return 0;
2353 case CHANNEL_IS_FIFO : return 0x01;
2354 case CHANNEL_IS_OPTO : return 0x02;
2355 case CHANNEL_IS_CPU : return 0x04;
2356 case CHANNEL_IS_FT1284 : return 0x08;
2357 default: return 0;
2358 }
2359 }
2360 default: return 0;
2361 }
2362 return 0;
2363}
2364
2365/**
2366 Build binary buffer from ftdi_eeprom structure.
2367 Output is suitable for ftdi_write_eeprom().
2368
2369 \param ftdi pointer to ftdi_context
2370
2371 \retval >=0: size of eeprom user area in bytes
2372 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2373 \retval -2: Invalid eeprom or ftdi pointer
2374 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2375 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2376 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2377 \retval -6: No connected EEPROM or EEPROM Type unknown
2378*/
2379int ftdi_eeprom_build(struct ftdi_context *ftdi)
2380{
2381 unsigned char i, j, eeprom_size_mask;
2382 unsigned short checksum, value;
2383 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2384 int user_area_size;
2385 struct ftdi_eeprom *eeprom;
2386 unsigned char * output;
2387
2388 if (ftdi == NULL)
2389 ftdi_error_return(-2,"No context");
2390 if (ftdi->eeprom == NULL)
2391 ftdi_error_return(-2,"No eeprom structure");
2392
2393 eeprom= ftdi->eeprom;
2394 output = eeprom->buf;
2395
2396 if (eeprom->chip == -1)
2397 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2398
2399 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2400 eeprom->size = 0x100;
2401 else
2402 eeprom->size = 0x80;
2403
2404 if (eeprom->manufacturer != NULL)
2405 manufacturer_size = strlen(eeprom->manufacturer);
2406 if (eeprom->product != NULL)
2407 product_size = strlen(eeprom->product);
2408 if (eeprom->serial != NULL)
2409 serial_size = strlen(eeprom->serial);
2410
2411 // eeprom size check
2412 switch (ftdi->type)
2413 {
2414 case TYPE_AM:
2415 case TYPE_BM:
2416 user_area_size = 96; // base size for strings (total of 48 characters)
2417 break;
2418 case TYPE_2232C:
2419 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2420 break;
2421 case TYPE_R:
2422 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2423 break;
2424 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2425 case TYPE_4232H:
2426 user_area_size = 86;
2427 break;
2428 case TYPE_232H:
2429 user_area_size = 80;
2430 break;
2431 default:
2432 user_area_size = 0;
2433 break;
2434 }
2435 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2436
2437 if (user_area_size < 0)
2438 ftdi_error_return(-1,"eeprom size exceeded");
2439
2440 // empty eeprom
2441 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2442
2443 // Bytes and Bits set for all Types
2444
2445 // Addr 02: Vendor ID
2446 output[0x02] = eeprom->vendor_id;
2447 output[0x03] = eeprom->vendor_id >> 8;
2448
2449 // Addr 04: Product ID
2450 output[0x04] = eeprom->product_id;
2451 output[0x05] = eeprom->product_id >> 8;
2452
2453 // Addr 06: Device release number (0400h for BM features)
2454 output[0x06] = 0x00;
2455 switch (ftdi->type)
2456 {
2457 case TYPE_AM:
2458 output[0x07] = 0x02;
2459 break;
2460 case TYPE_BM:
2461 output[0x07] = 0x04;
2462 break;
2463 case TYPE_2232C:
2464 output[0x07] = 0x05;
2465 break;
2466 case TYPE_R:
2467 output[0x07] = 0x06;
2468 break;
2469 case TYPE_2232H:
2470 output[0x07] = 0x07;
2471 break;
2472 case TYPE_4232H:
2473 output[0x07] = 0x08;
2474 break;
2475 case TYPE_232H:
2476 output[0x07] = 0x09;
2477 break;
2478 default:
2479 output[0x07] = 0x00;
2480 }
2481
2482 // Addr 08: Config descriptor
2483 // Bit 7: always 1
2484 // Bit 6: 1 if this device is self powered, 0 if bus powered
2485 // Bit 5: 1 if this device uses remote wakeup
2486 // Bit 4-0: reserved - 0
2487 j = 0x80;
2488 if (eeprom->self_powered == 1)
2489 j |= 0x40;
2490 if (eeprom->remote_wakeup == 1)
2491 j |= 0x20;
2492 output[0x08] = j;
2493
2494 // Addr 09: Max power consumption: max power = value * 2 mA
2495 output[0x09] = eeprom->max_power>>1;
2496
2497 if (ftdi->type != TYPE_AM)
2498 {
2499 // Addr 0A: Chip configuration
2500 // Bit 7: 0 - reserved
2501 // Bit 6: 0 - reserved
2502 // Bit 5: 0 - reserved
2503 // Bit 4: 1 - Change USB version
2504 // Bit 3: 1 - Use the serial number string
2505 // Bit 2: 1 - Enable suspend pull downs for lower power
2506 // Bit 1: 1 - Out EndPoint is Isochronous
2507 // Bit 0: 1 - In EndPoint is Isochronous
2508 //
2509 j = 0;
2510 if (eeprom->in_is_isochronous == 1)
2511 j = j | 1;
2512 if (eeprom->out_is_isochronous == 1)
2513 j = j | 2;
2514 output[0x0A] = j;
2515 }
2516
2517 // Dynamic content
2518 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2519 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2520 // 0xa0 (TYPE_232H)
2521 i = 0;
2522 switch (ftdi->type)
2523 {
2524 case TYPE_232H:
2525 i += 2;
2526 case TYPE_2232H:
2527 case TYPE_4232H:
2528 i += 2;
2529 case TYPE_R:
2530 i += 2;
2531 case TYPE_2232C:
2532 i += 2;
2533 case TYPE_AM:
2534 case TYPE_BM:
2535 i += 0x94;
2536 }
2537 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2538 eeprom_size_mask = eeprom->size -1;
2539
2540 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2541 // Addr 0F: Length of manufacturer string
2542 // Output manufacturer
2543 output[0x0E] = i; // calculate offset
2544 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2545 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2546 for (j = 0; j < manufacturer_size; j++)
2547 {
2548 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2549 output[i & eeprom_size_mask] = 0x00, i++;
2550 }
2551 output[0x0F] = manufacturer_size*2 + 2;
2552
2553 // Addr 10: Offset of the product string + 0x80, calculated later
2554 // Addr 11: Length of product string
2555 output[0x10] = i | 0x80; // calculate offset
2556 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2557 output[i & eeprom_size_mask] = 0x03, i++;
2558 for (j = 0; j < product_size; j++)
2559 {
2560 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2561 output[i & eeprom_size_mask] = 0x00, i++;
2562 }
2563 output[0x11] = product_size*2 + 2;
2564
2565 // Addr 12: Offset of the serial string + 0x80, calculated later
2566 // Addr 13: Length of serial string
2567 output[0x12] = i | 0x80; // calculate offset
2568 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2569 output[i & eeprom_size_mask] = 0x03, i++;
2570 for (j = 0; j < serial_size; j++)
2571 {
2572 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2573 output[i & eeprom_size_mask] = 0x00, i++;
2574 }
2575
2576 // Legacy port name and PnP fields for FT2232 and newer chips
2577 if (ftdi->type > TYPE_BM)
2578 {
2579 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2580 i++;
2581 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2582 i++;
2583 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2584 i++;
2585 }
2586
2587 output[0x13] = serial_size*2 + 2;
2588
2589 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2590 {
2591 if (eeprom->use_serial)
2592 output[0x0A] |= USE_SERIAL_NUM;
2593 else
2594 output[0x0A] &= ~USE_SERIAL_NUM;
2595 }
2596
2597 /* Bytes and Bits specific to (some) types
2598 Write linear, as this allows easier fixing*/
2599 switch (ftdi->type)
2600 {
2601 case TYPE_AM:
2602 break;
2603 case TYPE_BM:
2604 output[0x0C] = eeprom->usb_version & 0xff;
2605 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2606 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2607 output[0x0A] |= USE_USB_VERSION_BIT;
2608 else
2609 output[0x0A] &= ~USE_USB_VERSION_BIT;
2610
2611 break;
2612 case TYPE_2232C:
2613
2614 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
2615 if ( eeprom->channel_a_driver == DRIVER_VCP)
2616 output[0x00] |= DRIVER_VCP;
2617 else
2618 output[0x00] &= ~DRIVER_VCP;
2619
2620 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2621 output[0x00] |= HIGH_CURRENT_DRIVE;
2622 else
2623 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2624
2625 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
2626 if ( eeprom->channel_b_driver == DRIVER_VCP)
2627 output[0x01] |= DRIVER_VCP;
2628 else
2629 output[0x01] &= ~DRIVER_VCP;
2630
2631 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2632 output[0x01] |= HIGH_CURRENT_DRIVE;
2633 else
2634 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2635
2636 if (eeprom->in_is_isochronous == 1)
2637 output[0x0A] |= 0x1;
2638 else
2639 output[0x0A] &= ~0x1;
2640 if (eeprom->out_is_isochronous == 1)
2641 output[0x0A] |= 0x2;
2642 else
2643 output[0x0A] &= ~0x2;
2644 if (eeprom->suspend_pull_downs == 1)
2645 output[0x0A] |= 0x4;
2646 else
2647 output[0x0A] &= ~0x4;
2648 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2649 output[0x0A] |= USE_USB_VERSION_BIT;
2650 else
2651 output[0x0A] &= ~USE_USB_VERSION_BIT;
2652
2653 output[0x0C] = eeprom->usb_version & 0xff;
2654 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2655 output[0x14] = eeprom->chip;
2656 break;
2657 case TYPE_R:
2658 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2659 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2660 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2661
2662 if (eeprom->suspend_pull_downs == 1)
2663 output[0x0A] |= 0x4;
2664 else
2665 output[0x0A] &= ~0x4;
2666 output[0x0B] = eeprom->invert;
2667 output[0x0C] = eeprom->usb_version & 0xff;
2668 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2669
2670 if (eeprom->cbus_function[0] > CBUS_BB)
2671 output[0x14] = CBUS_TXLED;
2672 else
2673 output[0x14] = eeprom->cbus_function[0];
2674
2675 if (eeprom->cbus_function[1] > CBUS_BB)
2676 output[0x14] |= CBUS_RXLED<<4;
2677 else
2678 output[0x14] |= eeprom->cbus_function[1]<<4;
2679
2680 if (eeprom->cbus_function[2] > CBUS_BB)
2681 output[0x15] = CBUS_TXDEN;
2682 else
2683 output[0x15] = eeprom->cbus_function[2];
2684
2685 if (eeprom->cbus_function[3] > CBUS_BB)
2686 output[0x15] |= CBUS_PWREN<<4;
2687 else
2688 output[0x15] |= eeprom->cbus_function[3]<<4;
2689
2690 if (eeprom->cbus_function[4] > CBUS_CLK6)
2691 output[0x16] = CBUS_SLEEP;
2692 else
2693 output[0x16] = eeprom->cbus_function[4];
2694 break;
2695 case TYPE_2232H:
2696 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
2697 if ( eeprom->channel_a_driver == DRIVER_VCP)
2698 output[0x00] |= DRIVER_VCP;
2699 else
2700 output[0x00] &= ~DRIVER_VCP;
2701
2702 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
2703 if ( eeprom->channel_b_driver == DRIVER_VCP)
2704 output[0x01] |= DRIVER_VCP;
2705 else
2706 output[0x01] &= ~DRIVER_VCP;
2707 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2708 output[0x01] |= SUSPEND_DBUS7_BIT;
2709 else
2710 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2711
2712 if (eeprom->suspend_pull_downs == 1)
2713 output[0x0A] |= 0x4;
2714 else
2715 output[0x0A] &= ~0x4;
2716
2717 if (eeprom->group0_drive > DRIVE_16MA)
2718 output[0x0c] |= DRIVE_16MA;
2719 else
2720 output[0x0c] |= eeprom->group0_drive;
2721 if (eeprom->group0_schmitt == IS_SCHMITT)
2722 output[0x0c] |= IS_SCHMITT;
2723 if (eeprom->group0_slew == SLOW_SLEW)
2724 output[0x0c] |= SLOW_SLEW;
2725
2726 if (eeprom->group1_drive > DRIVE_16MA)
2727 output[0x0c] |= DRIVE_16MA<<4;
2728 else
2729 output[0x0c] |= eeprom->group1_drive<<4;
2730 if (eeprom->group1_schmitt == IS_SCHMITT)
2731 output[0x0c] |= IS_SCHMITT<<4;
2732 if (eeprom->group1_slew == SLOW_SLEW)
2733 output[0x0c] |= SLOW_SLEW<<4;
2734
2735 if (eeprom->group2_drive > DRIVE_16MA)
2736 output[0x0d] |= DRIVE_16MA;
2737 else
2738 output[0x0d] |= eeprom->group2_drive;
2739 if (eeprom->group2_schmitt == IS_SCHMITT)
2740 output[0x0d] |= IS_SCHMITT;
2741 if (eeprom->group2_slew == SLOW_SLEW)
2742 output[0x0d] |= SLOW_SLEW;
2743
2744 if (eeprom->group3_drive > DRIVE_16MA)
2745 output[0x0d] |= DRIVE_16MA<<4;
2746 else
2747 output[0x0d] |= eeprom->group3_drive<<4;
2748 if (eeprom->group3_schmitt == IS_SCHMITT)
2749 output[0x0d] |= IS_SCHMITT<<4;
2750 if (eeprom->group3_slew == SLOW_SLEW)
2751 output[0x0d] |= SLOW_SLEW<<4;
2752
2753 output[0x18] = eeprom->chip;
2754
2755 break;
2756 case TYPE_4232H:
2757 output[0x18] = eeprom->chip;
2758 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
2759 break;
2760 case TYPE_232H:
2761 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
2762 if ( eeprom->channel_a_driver == DRIVER_VCP)
2763 output[0x00] |= DRIVER_VCPH;
2764 else
2765 output[0x00] &= ~DRIVER_VCPH;
2766 if (eeprom->powersave)
2767 output[0x01] |= POWER_SAVE_DISABLE_H;
2768 else
2769 output[0x01] &= ~POWER_SAVE_DISABLE_H;
2770 if (eeprom->clock_polarity)
2771 output[0x01] |= FT1284_CLK_IDLE_STATE;
2772 else
2773 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
2774 if (eeprom->data_order)
2775 output[0x01] |= FT1284_DATA_LSB;
2776 else
2777 output[0x01] &= ~FT1284_DATA_LSB;
2778 if (eeprom->flow_control)
2779 output[0x01] |= FT1284_FLOW_CONTROL;
2780 else
2781 output[0x01] &= ~FT1284_FLOW_CONTROL;
2782 if (eeprom->group0_drive > DRIVE_16MA)
2783 output[0x0c] |= DRIVE_16MA;
2784 else
2785 output[0x0c] |= eeprom->group0_drive;
2786 if (eeprom->group0_schmitt == IS_SCHMITT)
2787 output[0x0c] |= IS_SCHMITT;
2788 if (eeprom->group0_slew == SLOW_SLEW)
2789 output[0x0c] |= SLOW_SLEW;
2790
2791 if (eeprom->group1_drive > DRIVE_16MA)
2792 output[0x0d] |= DRIVE_16MA;
2793 else
2794 output[0x0d] |= eeprom->group1_drive;
2795 if (eeprom->group1_schmitt == IS_SCHMITT)
2796 output[0x0d] |= IS_SCHMITT;
2797 if (eeprom->group1_slew == SLOW_SLEW)
2798 output[0x0d] |= SLOW_SLEW;
2799
2800 set_ft232h_cbus(eeprom, output);
2801
2802 output[0x1e] = eeprom->chip;
2803 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
2804 break;
2805
2806 }
2807
2808 // calculate checksum
2809 checksum = 0xAAAA;
2810
2811 for (i = 0; i < eeprom->size/2-1; i++)
2812 {
2813 value = output[i*2];
2814 value += output[(i*2)+1] << 8;
2815
2816 checksum = value^checksum;
2817 checksum = (checksum << 1) | (checksum >> 15);
2818 }
2819
2820 output[eeprom->size-2] = checksum;
2821 output[eeprom->size-1] = checksum >> 8;
2822
2823 return user_area_size;
2824}
2825/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
2826 * EEPROM structure
2827 *
2828 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
2829 */
2830static unsigned char bit2type(unsigned char bits)
2831{
2832 switch (bits)
2833 {
2834 case 0: return CHANNEL_IS_UART;
2835 case 1: return CHANNEL_IS_FIFO;
2836 case 2: return CHANNEL_IS_OPTO;
2837 case 4: return CHANNEL_IS_CPU;
2838 case 8: return CHANNEL_IS_FT1284;
2839 default:
2840 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
2841 bits);
2842 }
2843 return 0;
2844}
2845/**
2846 Decode binary EEPROM image into an ftdi_eeprom structure.
2847
2848 \param ftdi pointer to ftdi_context
2849 \param verbose Decode EEPROM on stdout
2850
2851 \retval 0: all fine
2852 \retval -1: something went wrong
2853
2854 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2855 FIXME: Strings are malloc'ed here and should be freed somewhere
2856*/
2857int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2858{
2859 unsigned char i, j;
2860 unsigned short checksum, eeprom_checksum, value;
2861 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2862 int eeprom_size;
2863 struct ftdi_eeprom *eeprom;
2864 unsigned char *buf = ftdi->eeprom->buf;
2865 int release;
2866
2867 if (ftdi == NULL)
2868 ftdi_error_return(-1,"No context");
2869 if (ftdi->eeprom == NULL)
2870 ftdi_error_return(-1,"No eeprom structure");
2871
2872 eeprom = ftdi->eeprom;
2873 eeprom_size = eeprom->size;
2874
2875 // Addr 02: Vendor ID
2876 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2877
2878 // Addr 04: Product ID
2879 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2880
2881 release = buf[0x06] + (buf[0x07]<<8);
2882
2883 // Addr 08: Config descriptor
2884 // Bit 7: always 1
2885 // Bit 6: 1 if this device is self powered, 0 if bus powered
2886 // Bit 5: 1 if this device uses remote wakeup
2887 eeprom->self_powered = buf[0x08] & 0x40;
2888 eeprom->remote_wakeup = buf[0x08] & 0x20;
2889
2890 // Addr 09: Max power consumption: max power = value * 2 mA
2891 eeprom->max_power = buf[0x09];
2892
2893 // Addr 0A: Chip configuration
2894 // Bit 7: 0 - reserved
2895 // Bit 6: 0 - reserved
2896 // Bit 5: 0 - reserved
2897 // Bit 4: 1 - Change USB version on BM and 2232C
2898 // Bit 3: 1 - Use the serial number string
2899 // Bit 2: 1 - Enable suspend pull downs for lower power
2900 // Bit 1: 1 - Out EndPoint is Isochronous
2901 // Bit 0: 1 - In EndPoint is Isochronous
2902 //
2903 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2904 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2905 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2906 eeprom->use_serial = (buf[0x0A] & USE_SERIAL_NUM)?1:0;
2907 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
2908
2909 // Addr 0C: USB version low byte when 0x0A
2910 // Addr 0D: USB version high byte when 0x0A
2911 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2912
2913 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2914 // Addr 0F: Length of manufacturer string
2915 manufacturer_size = buf[0x0F]/2;
2916 if (eeprom->manufacturer)
2917 free(eeprom->manufacturer);
2918 if (manufacturer_size > 0)
2919 {
2920 eeprom->manufacturer = malloc(manufacturer_size);
2921 if (eeprom->manufacturer)
2922 {
2923 // Decode manufacturer
2924 i = buf[0x0E] & (eeprom_size -1); // offset
2925 for (j=0;j<manufacturer_size-1;j++)
2926 {
2927 eeprom->manufacturer[j] = buf[2*j+i+2];
2928 }
2929 eeprom->manufacturer[j] = '\0';
2930 }
2931 }
2932 else eeprom->manufacturer = NULL;
2933
2934 // Addr 10: Offset of the product string + 0x80, calculated later
2935 // Addr 11: Length of product string
2936 if (eeprom->product)
2937 free(eeprom->product);
2938 product_size = buf[0x11]/2;
2939 if (product_size > 0)
2940 {
2941 eeprom->product = malloc(product_size);
2942 if (eeprom->product)
2943 {
2944 // Decode product name
2945 i = buf[0x10] & (eeprom_size -1); // offset
2946 for (j=0;j<product_size-1;j++)
2947 {
2948 eeprom->product[j] = buf[2*j+i+2];
2949 }
2950 eeprom->product[j] = '\0';
2951 }
2952 }
2953 else eeprom->product = NULL;
2954
2955 // Addr 12: Offset of the serial string + 0x80, calculated later
2956 // Addr 13: Length of serial string
2957 if (eeprom->serial)
2958 free(eeprom->serial);
2959 serial_size = buf[0x13]/2;
2960 if (serial_size > 0)
2961 {
2962 eeprom->serial = malloc(serial_size);
2963 if (eeprom->serial)
2964 {
2965 // Decode serial
2966 i = buf[0x12] & (eeprom_size -1); // offset
2967 for (j=0;j<serial_size-1;j++)
2968 {
2969 eeprom->serial[j] = buf[2*j+i+2];
2970 }
2971 eeprom->serial[j] = '\0';
2972 }
2973 }
2974 else eeprom->serial = NULL;
2975
2976 // verify checksum
2977 checksum = 0xAAAA;
2978
2979 for (i = 0; i < eeprom_size/2-1; i++)
2980 {
2981 value = buf[i*2];
2982 value += buf[(i*2)+1] << 8;
2983
2984 checksum = value^checksum;
2985 checksum = (checksum << 1) | (checksum >> 15);
2986 }
2987
2988 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2989
2990 if (eeprom_checksum != checksum)
2991 {
2992 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2993 ftdi_error_return(-1,"EEPROM checksum error");
2994 }
2995
2996 eeprom->channel_a_type = 0;
2997 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
2998 {
2999 eeprom->chip = -1;
3000 }
3001 else if (ftdi->type == TYPE_2232C)
3002 {
3003 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3004 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3005 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
3006 eeprom->channel_b_type = buf[0x01] & 0x7;
3007 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3008 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
3009 eeprom->chip = buf[0x14];
3010 }
3011 else if (ftdi->type == TYPE_R)
3012 {
3013 /* TYPE_R flags D2XX, not VCP as all others*/
3014 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
3015 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
3016 if ( (buf[0x01]&0x40) != 0x40)
3017 fprintf(stderr,
3018 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3019 " If this happened with the\n"
3020 " EEPROM programmed by FTDI tools, please report "
3021 "to libftdi@developer.intra2net.com\n");
3022
3023 eeprom->chip = buf[0x16];
3024 // Addr 0B: Invert data lines
3025 // Works only on FT232R, not FT245R, but no way to distinguish
3026 eeprom->invert = buf[0x0B];
3027 // Addr 14: CBUS function: CBUS0, CBUS1
3028 // Addr 15: CBUS function: CBUS2, CBUS3
3029 // Addr 16: CBUS function: CBUS5
3030 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3031 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3032 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3033 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3034 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
3035 }
3036 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
3037 {
3038 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3039 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3040 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3041 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3042
3043 if (ftdi->type == TYPE_2232H)
3044 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
3045
3046 eeprom->chip = buf[0x18];
3047 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3048 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3049 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3050 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3051 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3052 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3053 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3054 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3055 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3056 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3057 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3058 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
3059 }
3060 else if (ftdi->type == TYPE_232H)
3061 {
3062 int i;
3063
3064 eeprom->channel_a_type = buf[0x00] & 0xf;
3065 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
3066 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3067 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3068 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
3069 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
3070 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3071 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3072 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3073 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3074 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3075 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3076
3077 for(i=0; i<5; i++)
3078 {
3079 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3080 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3081 }
3082 eeprom->chip = buf[0x1e];
3083 /*FIXME: Decipher more values*/
3084 }
3085
3086 if (verbose)
3087 {
3088 char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3089 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3090 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3091 fprintf(stdout, "Release: 0x%04x\n",release);
3092
3093 if (eeprom->self_powered)
3094 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3095 else
3096 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
3097 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3098 if (eeprom->manufacturer)
3099 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3100 if (eeprom->product)
3101 fprintf(stdout, "Product: %s\n",eeprom->product);
3102 if (eeprom->serial)
3103 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3104 fprintf(stdout, "Checksum : %04x\n", checksum);
3105 if (ftdi->type == TYPE_R)
3106 fprintf(stdout, "Internal EEPROM\n");
3107 else if (eeprom->chip >= 0x46)
3108 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3109 if (eeprom->suspend_dbus7)
3110 fprintf(stdout, "Suspend on DBUS7\n");
3111 if (eeprom->suspend_pull_downs)
3112 fprintf(stdout, "Pull IO pins low during suspend\n");
3113 if(eeprom->powersave)
3114 {
3115 if(ftdi->type >= TYPE_232H)
3116 fprintf(stdout,"Enter low power state on ACBUS7\n");
3117 }
3118 if (eeprom->remote_wakeup)
3119 fprintf(stdout, "Enable Remote Wake Up\n");
3120 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3121 if (ftdi->type >= TYPE_2232C)
3122 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3123 channel_mode[eeprom->channel_a_type],
3124 (eeprom->channel_a_driver)?" VCP":"",
3125 (eeprom->high_current_a)?" High Current IO":"");
3126 if (ftdi->type >= TYPE_232H)
3127 {
3128 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3129 (eeprom->clock_polarity)?"HIGH":"LOW",
3130 (eeprom->data_order)?"LSB":"MSB",
3131 (eeprom->flow_control)?"":"No ");
3132 }
3133 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
3134 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3135 channel_mode[eeprom->channel_b_type],
3136 (eeprom->channel_b_driver)?" VCP":"",
3137 (eeprom->high_current_b)?" High Current IO":"");
3138 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3139 eeprom->use_usb_version == USE_USB_VERSION_BIT)
3140 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3141
3142 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3143 {
3144 fprintf(stdout,"%s has %d mA drive%s%s\n",
3145 (ftdi->type == TYPE_2232H)?"AL":"A",
3146 (eeprom->group0_drive+1) *4,
3147 (eeprom->group0_schmitt)?" Schmitt Input":"",
3148 (eeprom->group0_slew)?" Slow Slew":"");
3149 fprintf(stdout,"%s has %d mA drive%s%s\n",
3150 (ftdi->type == TYPE_2232H)?"AH":"B",
3151 (eeprom->group1_drive+1) *4,
3152 (eeprom->group1_schmitt)?" Schmitt Input":"",
3153 (eeprom->group1_slew)?" Slow Slew":"");
3154 fprintf(stdout,"%s has %d mA drive%s%s\n",
3155 (ftdi->type == TYPE_2232H)?"BL":"C",
3156 (eeprom->group2_drive+1) *4,
3157 (eeprom->group2_schmitt)?" Schmitt Input":"",
3158 (eeprom->group2_slew)?" Slow Slew":"");
3159 fprintf(stdout,"%s has %d mA drive%s%s\n",
3160 (ftdi->type == TYPE_2232H)?"BH":"D",
3161 (eeprom->group3_drive+1) *4,
3162 (eeprom->group3_schmitt)?" Schmitt Input":"",
3163 (eeprom->group3_slew)?" Slow Slew":"");
3164 }
3165 else if (ftdi->type == TYPE_232H)
3166 {
3167 int i;
3168 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3169 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3170 "CLK30","CLK15","CLK7_5"
3171 };
3172 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3173 (eeprom->group0_drive+1) *4,
3174 (eeprom->group0_schmitt)?" Schmitt Input":"",
3175 (eeprom->group0_slew)?" Slow Slew":"");
3176 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3177 (eeprom->group1_drive+1) *4,
3178 (eeprom->group1_schmitt)?" Schmitt Input":"",
3179 (eeprom->group1_slew)?" Slow Slew":"");
3180 for (i=0; i<10; i++)
3181 {
3182 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3183 fprintf(stdout,"C%d Function: %s\n", i,
3184 cbush_mux[eeprom->cbus_function[i]]);
3185 }
3186
3187 }
3188
3189 if (ftdi->type == TYPE_R)
3190 {
3191 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3192 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3193 "IOMODE","BB_WR","BB_RD"
3194 };
3195 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3196
3197 if (eeprom->invert)
3198 {
3199 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3200 fprintf(stdout,"Inverted bits:");
3201 for (i=0; i<8; i++)
3202 if ((eeprom->invert & (1<<i)) == (1<<i))
3203 fprintf(stdout," %s",r_bits[i]);
3204 fprintf(stdout,"\n");
3205 }
3206 for (i=0; i<5; i++)
3207 {
3208 if (eeprom->cbus_function[i]<CBUS_BB)
3209 fprintf(stdout,"C%d Function: %s\n", i,
3210 cbus_mux[eeprom->cbus_function[i]]);
3211 else
3212 {
3213 if (i < 4)
3214 /* Running MPROG show that C0..3 have fixed function Synchronous
3215 Bit Bang mode */
3216 fprintf(stdout,"C%d BB Function: %s\n", i,
3217 cbus_BB[i]);
3218 else
3219 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3220 }
3221 }
3222 }
3223 }
3224 return 0;
3225}
3226
3227/**
3228 Get a value from the decoded EEPROM structure
3229
3230 \param ftdi pointer to ftdi_context
3231 \param value_name Enum of the value to query
3232 \param value Pointer to store read value
3233
3234 \retval 0: all fine
3235 \retval -1: Value doesn't exist
3236*/
3237int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3238{
3239 switch (value_name)
3240 {
3241 case VENDOR_ID:
3242 *value = ftdi->eeprom->vendor_id;
3243 break;
3244 case PRODUCT_ID:
3245 *value = ftdi->eeprom->product_id;
3246 break;
3247 case SELF_POWERED:
3248 *value = ftdi->eeprom->self_powered;
3249 break;
3250 case REMOTE_WAKEUP:
3251 *value = ftdi->eeprom->remote_wakeup;
3252 break;
3253 case IS_NOT_PNP:
3254 *value = ftdi->eeprom->is_not_pnp;
3255 break;
3256 case SUSPEND_DBUS7:
3257 *value = ftdi->eeprom->suspend_dbus7;
3258 break;
3259 case IN_IS_ISOCHRONOUS:
3260 *value = ftdi->eeprom->in_is_isochronous;
3261 break;
3262 case OUT_IS_ISOCHRONOUS:
3263 *value = ftdi->eeprom->out_is_isochronous;
3264 break;
3265 case SUSPEND_PULL_DOWNS:
3266 *value = ftdi->eeprom->suspend_pull_downs;
3267 break;
3268 case USE_SERIAL:
3269 *value = ftdi->eeprom->use_serial;
3270 break;
3271 case USB_VERSION:
3272 *value = ftdi->eeprom->usb_version;
3273 break;
3274 case USE_USB_VERSION:
3275 *value = ftdi->eeprom->use_usb_version;
3276 break;
3277 case MAX_POWER:
3278 *value = ftdi->eeprom->max_power;
3279 break;
3280 case CHANNEL_A_TYPE:
3281 *value = ftdi->eeprom->channel_a_type;
3282 break;
3283 case CHANNEL_B_TYPE:
3284 *value = ftdi->eeprom->channel_b_type;
3285 break;
3286 case CHANNEL_A_DRIVER:
3287 *value = ftdi->eeprom->channel_a_driver;
3288 break;
3289 case CHANNEL_B_DRIVER:
3290 *value = ftdi->eeprom->channel_b_driver;
3291 break;
3292 case CBUS_FUNCTION_0:
3293 *value = ftdi->eeprom->cbus_function[0];
3294 break;
3295 case CBUS_FUNCTION_1:
3296 *value = ftdi->eeprom->cbus_function[1];
3297 break;
3298 case CBUS_FUNCTION_2:
3299 *value = ftdi->eeprom->cbus_function[2];
3300 break;
3301 case CBUS_FUNCTION_3:
3302 *value = ftdi->eeprom->cbus_function[3];
3303 break;
3304 case CBUS_FUNCTION_4:
3305 *value = ftdi->eeprom->cbus_function[4];
3306 break;
3307 case CBUS_FUNCTION_5:
3308 *value = ftdi->eeprom->cbus_function[5];
3309 break;
3310 case CBUS_FUNCTION_6:
3311 *value = ftdi->eeprom->cbus_function[6];
3312 break;
3313 case CBUS_FUNCTION_7:
3314 *value = ftdi->eeprom->cbus_function[7];
3315 break;
3316 case CBUS_FUNCTION_8:
3317 *value = ftdi->eeprom->cbus_function[8];
3318 break;
3319 case CBUS_FUNCTION_9:
3320 *value = ftdi->eeprom->cbus_function[8];
3321 break;
3322 case HIGH_CURRENT:
3323 *value = ftdi->eeprom->high_current;
3324 break;
3325 case HIGH_CURRENT_A:
3326 *value = ftdi->eeprom->high_current_a;
3327 break;
3328 case HIGH_CURRENT_B:
3329 *value = ftdi->eeprom->high_current_b;
3330 break;
3331 case INVERT:
3332 *value = ftdi->eeprom->invert;
3333 break;
3334 case GROUP0_DRIVE:
3335 *value = ftdi->eeprom->group0_drive;
3336 break;
3337 case GROUP0_SCHMITT:
3338 *value = ftdi->eeprom->group0_schmitt;
3339 break;
3340 case GROUP0_SLEW:
3341 *value = ftdi->eeprom->group0_slew;
3342 break;
3343 case GROUP1_DRIVE:
3344 *value = ftdi->eeprom->group1_drive;
3345 break;
3346 case GROUP1_SCHMITT:
3347 *value = ftdi->eeprom->group1_schmitt;
3348 break;
3349 case GROUP1_SLEW:
3350 *value = ftdi->eeprom->group1_slew;
3351 break;
3352 case GROUP2_DRIVE:
3353 *value = ftdi->eeprom->group2_drive;
3354 break;
3355 case GROUP2_SCHMITT:
3356 *value = ftdi->eeprom->group2_schmitt;
3357 break;
3358 case GROUP2_SLEW:
3359 *value = ftdi->eeprom->group2_slew;
3360 break;
3361 case GROUP3_DRIVE:
3362 *value = ftdi->eeprom->group3_drive;
3363 break;
3364 case GROUP3_SCHMITT:
3365 *value = ftdi->eeprom->group3_schmitt;
3366 break;
3367 case GROUP3_SLEW:
3368 *value = ftdi->eeprom->group3_slew;
3369 break;
3370 case POWER_SAVE:
3371 *value = ftdi->eeprom->powersave;
3372 break;
3373 case CLOCK_POLARITY:
3374 *value = ftdi->eeprom->clock_polarity;
3375 break;
3376 case DATA_ORDER:
3377 *value = ftdi->eeprom->data_order;
3378 break;
3379 case FLOW_CONTROL:
3380 *value = ftdi->eeprom->flow_control;
3381 break;
3382 case CHIP_TYPE:
3383 *value = ftdi->eeprom->chip;
3384 break;
3385 case CHIP_SIZE:
3386 *value = ftdi->eeprom->size;
3387 break;
3388 default:
3389 ftdi_error_return(-1, "Request for unknown EEPROM value");
3390 }
3391 return 0;
3392}
3393
3394/**
3395 Set a value in the decoded EEPROM Structure
3396 No parameter checking is performed
3397
3398 \param ftdi pointer to ftdi_context
3399 \param value_name Enum of the value to set
3400 \param value to set
3401
3402 \retval 0: all fine
3403 \retval -1: Value doesn't exist
3404 \retval -2: Value not user settable
3405*/
3406int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3407{
3408 switch (value_name)
3409 {
3410 case VENDOR_ID:
3411 ftdi->eeprom->vendor_id = value;
3412 break;
3413 case PRODUCT_ID:
3414 ftdi->eeprom->product_id = value;
3415 break;
3416 case SELF_POWERED:
3417 ftdi->eeprom->self_powered = value;
3418 break;
3419 case REMOTE_WAKEUP:
3420 ftdi->eeprom->remote_wakeup = value;
3421 break;
3422 case IS_NOT_PNP:
3423 ftdi->eeprom->is_not_pnp = value;
3424 break;
3425 case SUSPEND_DBUS7:
3426 ftdi->eeprom->suspend_dbus7 = value;
3427 break;
3428 case IN_IS_ISOCHRONOUS:
3429 ftdi->eeprom->in_is_isochronous = value;
3430 break;
3431 case OUT_IS_ISOCHRONOUS:
3432 ftdi->eeprom->out_is_isochronous = value;
3433 break;
3434 case SUSPEND_PULL_DOWNS:
3435 ftdi->eeprom->suspend_pull_downs = value;
3436 break;
3437 case USE_SERIAL:
3438 ftdi->eeprom->use_serial = value;
3439 break;
3440 case USB_VERSION:
3441 ftdi->eeprom->usb_version = value;
3442 break;
3443 case USE_USB_VERSION:
3444 ftdi->eeprom->use_usb_version = value;
3445 break;
3446 case MAX_POWER:
3447 ftdi->eeprom->max_power = value;
3448 break;
3449 case CHANNEL_A_TYPE:
3450 ftdi->eeprom->channel_a_type = value;
3451 break;
3452 case CHANNEL_B_TYPE:
3453 ftdi->eeprom->channel_b_type = value;
3454 break;
3455 case CHANNEL_A_DRIVER:
3456 ftdi->eeprom->channel_a_driver = value;
3457 break;
3458 case CHANNEL_B_DRIVER:
3459 ftdi->eeprom->channel_b_driver = value;
3460 break;
3461 case CBUS_FUNCTION_0:
3462 ftdi->eeprom->cbus_function[0] = value;
3463 break;
3464 case CBUS_FUNCTION_1:
3465 ftdi->eeprom->cbus_function[1] = value;
3466 break;
3467 case CBUS_FUNCTION_2:
3468 ftdi->eeprom->cbus_function[2] = value;
3469 break;
3470 case CBUS_FUNCTION_3:
3471 ftdi->eeprom->cbus_function[3] = value;
3472 break;
3473 case CBUS_FUNCTION_4:
3474 ftdi->eeprom->cbus_function[4] = value;
3475 break;
3476 case CBUS_FUNCTION_5:
3477 ftdi->eeprom->cbus_function[5] = value;
3478 break;
3479 case CBUS_FUNCTION_6:
3480 ftdi->eeprom->cbus_function[6] = value;
3481 break;
3482 case CBUS_FUNCTION_7:
3483 ftdi->eeprom->cbus_function[7] = value;
3484 break;
3485 case CBUS_FUNCTION_8:
3486 ftdi->eeprom->cbus_function[8] = value;
3487 break;
3488 case CBUS_FUNCTION_9:
3489 ftdi->eeprom->cbus_function[9] = value;
3490 break;
3491 case HIGH_CURRENT:
3492 ftdi->eeprom->high_current = value;
3493 break;
3494 case HIGH_CURRENT_A:
3495 ftdi->eeprom->high_current_a = value;
3496 break;
3497 case HIGH_CURRENT_B:
3498 ftdi->eeprom->high_current_b = value;
3499 break;
3500 case INVERT:
3501 ftdi->eeprom->invert = value;
3502 break;
3503 case GROUP0_DRIVE:
3504 ftdi->eeprom->group0_drive = value;
3505 break;
3506 case GROUP0_SCHMITT:
3507 ftdi->eeprom->group0_schmitt = value;
3508 break;
3509 case GROUP0_SLEW:
3510 ftdi->eeprom->group0_slew = value;
3511 break;
3512 case GROUP1_DRIVE:
3513 ftdi->eeprom->group1_drive = value;
3514 break;
3515 case GROUP1_SCHMITT:
3516 ftdi->eeprom->group1_schmitt = value;
3517 break;
3518 case GROUP1_SLEW:
3519 ftdi->eeprom->group1_slew = value;
3520 break;
3521 case GROUP2_DRIVE:
3522 ftdi->eeprom->group2_drive = value;
3523 break;
3524 case GROUP2_SCHMITT:
3525 ftdi->eeprom->group2_schmitt = value;
3526 break;
3527 case GROUP2_SLEW:
3528 ftdi->eeprom->group2_slew = value;
3529 break;
3530 case GROUP3_DRIVE:
3531 ftdi->eeprom->group3_drive = value;
3532 break;
3533 case GROUP3_SCHMITT:
3534 ftdi->eeprom->group3_schmitt = value;
3535 break;
3536 case GROUP3_SLEW:
3537 ftdi->eeprom->group3_slew = value;
3538 break;
3539 case CHIP_TYPE:
3540 ftdi->eeprom->chip = value;
3541 break;
3542 case POWER_SAVE:
3543 ftdi->eeprom->powersave = value;
3544 break;
3545 case CLOCK_POLARITY:
3546 ftdi->eeprom->clock_polarity = value;
3547 break;
3548 case DATA_ORDER:
3549 ftdi->eeprom->data_order = value;
3550 break;
3551 case FLOW_CONTROL:
3552 ftdi->eeprom->flow_control = value;
3553 break;
3554 case CHIP_SIZE:
3555 ftdi_error_return(-2, "EEPROM Value can't be changed");
3556 default :
3557 ftdi_error_return(-1, "Request to unknown EEPROM value");
3558 }
3559 return 0;
3560}
3561
3562/** Get the read-only buffer to the binary EEPROM content
3563
3564 \param ftdi pointer to ftdi_context
3565 \param buf buffer to receive EEPROM content
3566 \param size Size of receiving buffer
3567
3568 \retval 0: All fine
3569 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3570 \retval -2: Not enough room to store eeprom
3571*/
3572int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3573{
3574 if (!ftdi || !(ftdi->eeprom))
3575 ftdi_error_return(-1, "No appropriate structure");
3576
3577 if (!buf || size < ftdi->eeprom->size)
3578 ftdi_error_return(-1, "Not enough room to store eeprom");
3579
3580 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3581 if (size > FTDI_MAX_EEPROM_SIZE)
3582 size = FTDI_MAX_EEPROM_SIZE;
3583
3584 memcpy(buf, ftdi->eeprom->buf, size);
3585
3586 return 0;
3587}
3588
3589/** Set the EEPROM content from the user-supplied prefilled buffer
3590
3591 \param ftdi pointer to ftdi_context
3592 \param buf buffer to read EEPROM content
3593 \param size Size of buffer
3594
3595 \retval 0: All fine
3596 \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing
3597*/
3598int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
3599{
3600 if (!ftdi || !(ftdi->eeprom) || !buf)
3601 ftdi_error_return(-1, "No appropriate structure");
3602
3603 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3604 if (size > FTDI_MAX_EEPROM_SIZE)
3605 size = FTDI_MAX_EEPROM_SIZE;
3606
3607 memcpy(ftdi->eeprom->buf, buf, size);
3608
3609 return 0;
3610}
3611
3612/**
3613 Read eeprom location
3614
3615 \param ftdi pointer to ftdi_context
3616 \param eeprom_addr Address of eeprom location to be read
3617 \param eeprom_val Pointer to store read eeprom location
3618
3619 \retval 0: all fine
3620 \retval -1: read failed
3621 \retval -2: USB device unavailable
3622*/
3623int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3624{
3625 if (ftdi == NULL || ftdi->usb_dev == NULL)
3626 ftdi_error_return(-2, "USB device unavailable");
3627
3628 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3629 ftdi_error_return(-1, "reading eeprom failed");
3630
3631 return 0;
3632}
3633
3634/**
3635 Read eeprom
3636
3637 \param ftdi pointer to ftdi_context
3638
3639 \retval 0: all fine
3640 \retval -1: read failed
3641 \retval -2: USB device unavailable
3642*/
3643int ftdi_read_eeprom(struct ftdi_context *ftdi)
3644{
3645 int i;
3646 unsigned char *buf;
3647
3648 if (ftdi == NULL || ftdi->usb_dev == NULL)
3649 ftdi_error_return(-2, "USB device unavailable");
3650 buf = ftdi->eeprom->buf;
3651
3652 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
3653 {
3654 if (libusb_control_transfer(
3655 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3656 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
3657 ftdi_error_return(-1, "reading eeprom failed");
3658 }
3659
3660 if (ftdi->type == TYPE_R)
3661 ftdi->eeprom->size = 0x80;
3662 /* Guesses size of eeprom by comparing halves
3663 - will not work with blank eeprom */
3664 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3665 ftdi->eeprom->size = -1;
3666 else if (memcmp(buf,&buf[0x80],0x80) == 0)
3667 ftdi->eeprom->size = 0x80;
3668 else if (memcmp(buf,&buf[0x40],0x40) == 0)
3669 ftdi->eeprom->size = 0x40;
3670 else
3671 ftdi->eeprom->size = 0x100;
3672 return 0;
3673}
3674
3675/*
3676 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3677 Function is only used internally
3678 \internal
3679*/
3680static unsigned char ftdi_read_chipid_shift(unsigned char value)
3681{
3682 return ((value & 1) << 1) |
3683 ((value & 2) << 5) |
3684 ((value & 4) >> 2) |
3685 ((value & 8) << 4) |
3686 ((value & 16) >> 1) |
3687 ((value & 32) >> 1) |
3688 ((value & 64) >> 4) |
3689 ((value & 128) >> 2);
3690}
3691
3692/**
3693 Read the FTDIChip-ID from R-type devices
3694
3695 \param ftdi pointer to ftdi_context
3696 \param chipid Pointer to store FTDIChip-ID
3697
3698 \retval 0: all fine
3699 \retval -1: read failed
3700 \retval -2: USB device unavailable
3701*/
3702int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3703{
3704 unsigned int a = 0, b = 0;
3705
3706 if (ftdi == NULL || ftdi->usb_dev == NULL)
3707 ftdi_error_return(-2, "USB device unavailable");
3708
3709 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3710 {
3711 a = a << 8 | a >> 8;
3712 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3713 {
3714 b = b << 8 | b >> 8;
3715 a = (a << 16) | (b & 0xFFFF);
3716 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3717 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3718 *chipid = a ^ 0xa5f0f7d1;
3719 return 0;
3720 }
3721 }
3722
3723 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3724}
3725
3726/**
3727 Write eeprom location
3728
3729 \param ftdi pointer to ftdi_context
3730 \param eeprom_addr Address of eeprom location to be written
3731 \param eeprom_val Value to be written
3732
3733 \retval 0: all fine
3734 \retval -1: write failed
3735 \retval -2: USB device unavailable
3736 \retval -3: Invalid access to checksum protected area below 0x80
3737 \retval -4: Device can't access unprotected area
3738 \retval -5: Reading chip type failed
3739*/
3740int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3741 unsigned short eeprom_val)
3742{
3743 int chip_type_location;
3744 unsigned short chip_type;
3745
3746 if (ftdi == NULL || ftdi->usb_dev == NULL)
3747 ftdi_error_return(-2, "USB device unavailable");
3748
3749 if (eeprom_addr <0x80)
3750 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3751
3752
3753 switch (ftdi->type)
3754 {
3755 case TYPE_BM:
3756 case TYPE_2232C:
3757 chip_type_location = 0x14;
3758 break;
3759 case TYPE_2232H:
3760 case TYPE_4232H:
3761 chip_type_location = 0x18;
3762 break;
3763 case TYPE_232H:
3764 chip_type_location = 0x1e;
3765 break;
3766 default:
3767 ftdi_error_return(-4, "Device can't access unprotected area");
3768 }
3769
3770 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3771 ftdi_error_return(-5, "Reading failed failed");
3772 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3773 if ((chip_type & 0xff) != 0x66)
3774 {
3775 ftdi_error_return(-6, "EEPROM is not of 93x66");
3776 }
3777
3778 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3779 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3780 NULL, 0, ftdi->usb_write_timeout) != 0)
3781 ftdi_error_return(-1, "unable to write eeprom");
3782
3783 return 0;
3784}
3785
3786/**
3787 Write eeprom
3788
3789 \param ftdi pointer to ftdi_context
3790
3791 \retval 0: all fine
3792 \retval -1: read failed
3793 \retval -2: USB device unavailable
3794 \retval -3: EEPROM not initialized for the connected device;
3795*/
3796int ftdi_write_eeprom(struct ftdi_context *ftdi)
3797{
3798 unsigned short usb_val, status;
3799 int i, ret;
3800 unsigned char *eeprom;
3801
3802 if (ftdi == NULL || ftdi->usb_dev == NULL)
3803 ftdi_error_return(-2, "USB device unavailable");
3804
3805 if(ftdi->eeprom->initialized_for_connected_device == 0)
3806 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
3807
3808 eeprom = ftdi->eeprom->buf;
3809
3810 /* These commands were traced while running MProg */
3811 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3812 return ret;
3813 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3814 return ret;
3815 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3816 return ret;
3817
3818 for (i = 0; i < ftdi->eeprom->size/2; i++)
3819 {
3820 usb_val = eeprom[i*2];
3821 usb_val += eeprom[(i*2)+1] << 8;
3822 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3823 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3824 NULL, 0, ftdi->usb_write_timeout) < 0)
3825 ftdi_error_return(-1, "unable to write eeprom");
3826 }
3827
3828 return 0;
3829}
3830
3831/**
3832 Erase eeprom
3833
3834 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3835
3836 \param ftdi pointer to ftdi_context
3837
3838 \retval 0: all fine
3839 \retval -1: erase failed
3840 \retval -2: USB device unavailable
3841 \retval -3: Writing magic failed
3842 \retval -4: Read EEPROM failed
3843 \retval -5: Unexpected EEPROM value
3844*/
3845#define MAGIC 0x55aa
3846int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3847{
3848 unsigned short eeprom_value;
3849 if (ftdi == NULL || ftdi->usb_dev == NULL)
3850 ftdi_error_return(-2, "USB device unavailable");
3851
3852 if (ftdi->type == TYPE_R)
3853 {
3854 ftdi->eeprom->chip = 0;
3855 return 0;
3856 }
3857
3858 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3859 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3860 ftdi_error_return(-1, "unable to erase eeprom");
3861
3862
3863 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3864 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3865 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3866 Chip is 93x66 if magic is only read at word position 0xc0*/
3867 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3868 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3869 NULL, 0, ftdi->usb_write_timeout) != 0)
3870 ftdi_error_return(-3, "Writing magic failed");
3871 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3872 ftdi_error_return(-4, "Reading failed failed");
3873 if (eeprom_value == MAGIC)
3874 {
3875 ftdi->eeprom->chip = 0x46;
3876 }
3877 else
3878 {
3879 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3880 ftdi_error_return(-4, "Reading failed failed");
3881 if (eeprom_value == MAGIC)
3882 ftdi->eeprom->chip = 0x56;
3883 else
3884 {
3885 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3886 ftdi_error_return(-4, "Reading failed failed");
3887 if (eeprom_value == MAGIC)
3888 ftdi->eeprom->chip = 0x66;
3889 else
3890 {
3891 ftdi->eeprom->chip = -1;
3892 }
3893 }
3894 }
3895 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3896 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3897 ftdi_error_return(-1, "unable to erase eeprom");
3898 return 0;
3899}
3900
3901/**
3902 Get string representation for last error code
3903
3904 \param ftdi pointer to ftdi_context
3905
3906 \retval Pointer to error string
3907*/
3908char *ftdi_get_error_string (struct ftdi_context *ftdi)
3909{
3910 if (ftdi == NULL)
3911 return "";
3912
3913 return ftdi->error_str;
3914}
3915
3916/* @} end of doxygen libftdi group */