Next try to get the encoding/decoding for the different FT2232/FT232H chip modes...
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
58 \retval none
59*/
60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
61{
62 if (ftdi && ftdi->usb_dev)
63 {
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
66 }
67}
68
69/**
70 Initializes a ftdi_context.
71
72 \param ftdi pointer to ftdi_context
73
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
76 \retval -2: couldn't allocate struct buffer
77 \retval -3: libusb_init() failed
78
79 \remark This should be called before all functions
80*/
81int ftdi_init(struct ftdi_context *ftdi)
82{
83 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
84 ftdi->usb_ctx = NULL;
85 ftdi->usb_dev = NULL;
86 ftdi->usb_read_timeout = 5000;
87 ftdi->usb_write_timeout = 5000;
88
89 ftdi->type = TYPE_BM; /* chip type */
90 ftdi->baudrate = -1;
91 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
92
93 ftdi->readbuffer = NULL;
94 ftdi->readbuffer_offset = 0;
95 ftdi->readbuffer_remaining = 0;
96 ftdi->writebuffer_chunksize = 4096;
97 ftdi->max_packet_size = 0;
98 ftdi->error_str = NULL;
99 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
100
101 if (libusb_init(&ftdi->usb_ctx) < 0)
102 ftdi_error_return(-3, "libusb_init() failed");
103
104 ftdi_set_interface(ftdi, INTERFACE_ANY);
105 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
106
107 if (eeprom == 0)
108 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
109 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
110 ftdi->eeprom = eeprom;
111
112 /* All fine. Now allocate the readbuffer */
113 return ftdi_read_data_set_chunksize(ftdi, 4096);
114}
115
116/**
117 Allocate and initialize a new ftdi_context
118
119 \return a pointer to a new ftdi_context, or NULL on failure
120*/
121struct ftdi_context *ftdi_new(void)
122{
123 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
124
125 if (ftdi == NULL)
126 {
127 return NULL;
128 }
129
130 if (ftdi_init(ftdi) != 0)
131 {
132 free(ftdi);
133 return NULL;
134 }
135
136 return ftdi;
137}
138
139/**
140 Open selected channels on a chip, otherwise use first channel.
141
142 \param ftdi pointer to ftdi_context
143 \param interface Interface to use for FT2232C/2232H/4232H chips.
144
145 \retval 0: all fine
146 \retval -1: unknown interface
147 \retval -2: USB device unavailable
148*/
149int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
150{
151 if (ftdi == NULL)
152 ftdi_error_return(-2, "USB device unavailable");
153
154 switch (interface)
155 {
156 case INTERFACE_ANY:
157 case INTERFACE_A:
158 ftdi->interface = 0;
159 ftdi->index = INTERFACE_A;
160 ftdi->in_ep = 0x02;
161 ftdi->out_ep = 0x81;
162 break;
163 case INTERFACE_B:
164 ftdi->interface = 1;
165 ftdi->index = INTERFACE_B;
166 ftdi->in_ep = 0x04;
167 ftdi->out_ep = 0x83;
168 break;
169 case INTERFACE_C:
170 ftdi->interface = 2;
171 ftdi->index = INTERFACE_C;
172 ftdi->in_ep = 0x06;
173 ftdi->out_ep = 0x85;
174 break;
175 case INTERFACE_D:
176 ftdi->interface = 3;
177 ftdi->index = INTERFACE_D;
178 ftdi->in_ep = 0x08;
179 ftdi->out_ep = 0x87;
180 break;
181 default:
182 ftdi_error_return(-1, "Unknown interface");
183 }
184 return 0;
185}
186
187/**
188 Deinitializes a ftdi_context.
189
190 \param ftdi pointer to ftdi_context
191*/
192void ftdi_deinit(struct ftdi_context *ftdi)
193{
194 if (ftdi == NULL)
195 return;
196
197 ftdi_usb_close_internal (ftdi);
198
199 if (ftdi->readbuffer != NULL)
200 {
201 free(ftdi->readbuffer);
202 ftdi->readbuffer = NULL;
203 }
204
205 if (ftdi->eeprom != NULL)
206 {
207 if (ftdi->eeprom->manufacturer != 0)
208 {
209 free(ftdi->eeprom->manufacturer);
210 ftdi->eeprom->manufacturer = 0;
211 }
212 if (ftdi->eeprom->product != 0)
213 {
214 free(ftdi->eeprom->product);
215 ftdi->eeprom->product = 0;
216 }
217 if (ftdi->eeprom->serial != 0)
218 {
219 free(ftdi->eeprom->serial);
220 ftdi->eeprom->serial = 0;
221 }
222 free(ftdi->eeprom);
223 ftdi->eeprom = NULL;
224 }
225
226 if (ftdi->usb_ctx)
227 {
228 libusb_exit(ftdi->usb_ctx);
229 ftdi->usb_ctx = NULL;
230 }
231}
232
233/**
234 Deinitialize and free an ftdi_context.
235
236 \param ftdi pointer to ftdi_context
237*/
238void ftdi_free(struct ftdi_context *ftdi)
239{
240 ftdi_deinit(ftdi);
241 free(ftdi);
242}
243
244/**
245 Use an already open libusb device.
246
247 \param ftdi pointer to ftdi_context
248 \param usb libusb libusb_device_handle to use
249*/
250void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
251{
252 if (ftdi == NULL)
253 return;
254
255 ftdi->usb_dev = usb;
256}
257
258
259/**
260 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
261 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
262 use. With VID:PID 0:0, search for the default devices
263 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014)
264
265 \param ftdi pointer to ftdi_context
266 \param devlist Pointer where to store list of found devices
267 \param vendor Vendor ID to search for
268 \param product Product ID to search for
269
270 \retval >0: number of devices found
271 \retval -3: out of memory
272 \retval -5: libusb_get_device_list() failed
273 \retval -6: libusb_get_device_descriptor() failed
274*/
275int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
276{
277 struct ftdi_device_list **curdev;
278 libusb_device *dev;
279 libusb_device **devs;
280 int count = 0;
281 int i = 0;
282
283 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
284 ftdi_error_return(-5, "libusb_get_device_list() failed");
285
286 curdev = devlist;
287 *curdev = NULL;
288
289 while ((dev = devs[i++]) != NULL)
290 {
291 struct libusb_device_descriptor desc;
292
293 if (libusb_get_device_descriptor(dev, &desc) < 0)
294 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
295
296 if (((vendor != 0 && product != 0) &&
297 desc.idVendor == vendor && desc.idProduct == product) ||
298 ((vendor == 0 && product == 0) &&
299 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
300 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014)))
301 {
302 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
303 if (!*curdev)
304 ftdi_error_return_free_device_list(-3, "out of memory", devs);
305
306 (*curdev)->next = NULL;
307 (*curdev)->dev = dev;
308 libusb_ref_device(dev);
309 curdev = &(*curdev)->next;
310 count++;
311 }
312 }
313 libusb_free_device_list(devs,1);
314 return count;
315}
316
317/**
318 Frees a usb device list.
319
320 \param devlist USB device list created by ftdi_usb_find_all()
321*/
322void ftdi_list_free(struct ftdi_device_list **devlist)
323{
324 struct ftdi_device_list *curdev, *next;
325
326 for (curdev = *devlist; curdev != NULL;)
327 {
328 next = curdev->next;
329 libusb_unref_device(curdev->dev);
330 free(curdev);
331 curdev = next;
332 }
333
334 *devlist = NULL;
335}
336
337/**
338 Frees a usb device list.
339
340 \param devlist USB device list created by ftdi_usb_find_all()
341*/
342void ftdi_list_free2(struct ftdi_device_list *devlist)
343{
344 ftdi_list_free(&devlist);
345}
346
347/**
348 Return device ID strings from the usb device.
349
350 The parameters manufacturer, description and serial may be NULL
351 or pointer to buffers to store the fetched strings.
352
353 \note Use this function only in combination with ftdi_usb_find_all()
354 as it closes the internal "usb_dev" after use.
355
356 \param ftdi pointer to ftdi_context
357 \param dev libusb usb_dev to use
358 \param manufacturer Store manufacturer string here if not NULL
359 \param mnf_len Buffer size of manufacturer string
360 \param description Store product description string here if not NULL
361 \param desc_len Buffer size of product description string
362 \param serial Store serial string here if not NULL
363 \param serial_len Buffer size of serial string
364
365 \retval 0: all fine
366 \retval -1: wrong arguments
367 \retval -4: unable to open device
368 \retval -7: get product manufacturer failed
369 \retval -8: get product description failed
370 \retval -9: get serial number failed
371 \retval -11: libusb_get_device_descriptor() failed
372*/
373int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
374 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
375{
376 struct libusb_device_descriptor desc;
377
378 if ((ftdi==NULL) || (dev==NULL))
379 return -1;
380
381 if (libusb_open(dev, &ftdi->usb_dev) < 0)
382 ftdi_error_return(-4, "libusb_open() failed");
383
384 if (libusb_get_device_descriptor(dev, &desc) < 0)
385 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
386
387 if (manufacturer != NULL)
388 {
389 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
390 {
391 ftdi_usb_close_internal (ftdi);
392 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
393 }
394 }
395
396 if (description != NULL)
397 {
398 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
399 {
400 ftdi_usb_close_internal (ftdi);
401 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
402 }
403 }
404
405 if (serial != NULL)
406 {
407 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
408 {
409 ftdi_usb_close_internal (ftdi);
410 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
411 }
412 }
413
414 ftdi_usb_close_internal (ftdi);
415
416 return 0;
417}
418
419/**
420 * Internal function to determine the maximum packet size.
421 * \param ftdi pointer to ftdi_context
422 * \param dev libusb usb_dev to use
423 * \retval Maximum packet size for this device
424 */
425static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
426{
427 struct libusb_device_descriptor desc;
428 struct libusb_config_descriptor *config0;
429 unsigned int packet_size;
430
431 // Sanity check
432 if (ftdi == NULL || dev == NULL)
433 return 64;
434
435 // Determine maximum packet size. Init with default value.
436 // New hi-speed devices from FTDI use a packet size of 512 bytes
437 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
438 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
439 packet_size = 512;
440 else
441 packet_size = 64;
442
443 if (libusb_get_device_descriptor(dev, &desc) < 0)
444 return packet_size;
445
446 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
447 return packet_size;
448
449 if (desc.bNumConfigurations > 0)
450 {
451 if (ftdi->interface < config0->bNumInterfaces)
452 {
453 struct libusb_interface interface = config0->interface[ftdi->interface];
454 if (interface.num_altsetting > 0)
455 {
456 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
457 if (descriptor.bNumEndpoints > 0)
458 {
459 packet_size = descriptor.endpoint[0].wMaxPacketSize;
460 }
461 }
462 }
463 }
464
465 libusb_free_config_descriptor (config0);
466 return packet_size;
467}
468
469/**
470 Opens a ftdi device given by an usb_device.
471
472 \param ftdi pointer to ftdi_context
473 \param dev libusb usb_dev to use
474
475 \retval 0: all fine
476 \retval -3: unable to config device
477 \retval -4: unable to open device
478 \retval -5: unable to claim device
479 \retval -6: reset failed
480 \retval -7: set baudrate failed
481 \retval -8: ftdi context invalid
482 \retval -9: libusb_get_device_descriptor() failed
483 \retval -10: libusb_get_config_descriptor() failed
484 \retval -11: libusb_detach_kernel_driver() failed
485 \retval -12: libusb_get_configuration() failed
486*/
487int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
488{
489 struct libusb_device_descriptor desc;
490 struct libusb_config_descriptor *config0;
491 int cfg, cfg0, detach_errno = 0;
492
493 if (ftdi == NULL)
494 ftdi_error_return(-8, "ftdi context invalid");
495
496 if (libusb_open(dev, &ftdi->usb_dev) < 0)
497 ftdi_error_return(-4, "libusb_open() failed");
498
499 if (libusb_get_device_descriptor(dev, &desc) < 0)
500 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
501
502 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
503 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
504 cfg0 = config0->bConfigurationValue;
505 libusb_free_config_descriptor (config0);
506
507 // Try to detach ftdi_sio kernel module.
508 //
509 // The return code is kept in a separate variable and only parsed
510 // if usb_set_configuration() or usb_claim_interface() fails as the
511 // detach operation might be denied and everything still works fine.
512 // Likely scenario is a static ftdi_sio kernel module.
513 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
514 {
515 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
516 detach_errno = errno;
517 }
518
519 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
520 ftdi_error_return(-12, "libusb_get_configuration () failed");
521 // set configuration (needed especially for windows)
522 // tolerate EBUSY: one device with one configuration, but two interfaces
523 // and libftdi sessions to both interfaces (e.g. FT2232)
524 if (desc.bNumConfigurations > 0 && cfg != cfg0)
525 {
526 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
527 {
528 ftdi_usb_close_internal (ftdi);
529 if (detach_errno == EPERM)
530 {
531 ftdi_error_return(-8, "inappropriate permissions on device!");
532 }
533 else
534 {
535 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
536 }
537 }
538 }
539
540 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
541 {
542 ftdi_usb_close_internal (ftdi);
543 if (detach_errno == EPERM)
544 {
545 ftdi_error_return(-8, "inappropriate permissions on device!");
546 }
547 else
548 {
549 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
550 }
551 }
552
553 if (ftdi_usb_reset (ftdi) != 0)
554 {
555 ftdi_usb_close_internal (ftdi);
556 ftdi_error_return(-6, "ftdi_usb_reset failed");
557 }
558
559 // Try to guess chip type
560 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
561 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
562 && desc.iSerialNumber == 0))
563 ftdi->type = TYPE_BM;
564 else if (desc.bcdDevice == 0x200)
565 ftdi->type = TYPE_AM;
566 else if (desc.bcdDevice == 0x500)
567 ftdi->type = TYPE_2232C;
568 else if (desc.bcdDevice == 0x600)
569 ftdi->type = TYPE_R;
570 else if (desc.bcdDevice == 0x700)
571 ftdi->type = TYPE_2232H;
572 else if (desc.bcdDevice == 0x800)
573 ftdi->type = TYPE_4232H;
574 else if (desc.bcdDevice == 0x900)
575 ftdi->type = TYPE_232H;
576
577 // Determine maximum packet size
578 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
579
580 if (ftdi_set_baudrate (ftdi, 9600) != 0)
581 {
582 ftdi_usb_close_internal (ftdi);
583 ftdi_error_return(-7, "set baudrate failed");
584 }
585
586 ftdi_error_return(0, "all fine");
587}
588
589/**
590 Opens the first device with a given vendor and product ids.
591
592 \param ftdi pointer to ftdi_context
593 \param vendor Vendor ID
594 \param product Product ID
595
596 \retval same as ftdi_usb_open_desc()
597*/
598int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
599{
600 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
601}
602
603/**
604 Opens the first device with a given, vendor id, product id,
605 description and serial.
606
607 \param ftdi pointer to ftdi_context
608 \param vendor Vendor ID
609 \param product Product ID
610 \param description Description to search for. Use NULL if not needed.
611 \param serial Serial to search for. Use NULL if not needed.
612
613 \retval 0: all fine
614 \retval -3: usb device not found
615 \retval -4: unable to open device
616 \retval -5: unable to claim device
617 \retval -6: reset failed
618 \retval -7: set baudrate failed
619 \retval -8: get product description failed
620 \retval -9: get serial number failed
621 \retval -12: libusb_get_device_list() failed
622 \retval -13: libusb_get_device_descriptor() failed
623*/
624int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
625 const char* description, const char* serial)
626{
627 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
628}
629
630/**
631 Opens the index-th device with a given, vendor id, product id,
632 description and serial.
633
634 \param ftdi pointer to ftdi_context
635 \param vendor Vendor ID
636 \param product Product ID
637 \param description Description to search for. Use NULL if not needed.
638 \param serial Serial to search for. Use NULL if not needed.
639 \param index Number of matching device to open if there are more than one, starts with 0.
640
641 \retval 0: all fine
642 \retval -1: usb_find_busses() failed
643 \retval -2: usb_find_devices() failed
644 \retval -3: usb device not found
645 \retval -4: unable to open device
646 \retval -5: unable to claim device
647 \retval -6: reset failed
648 \retval -7: set baudrate failed
649 \retval -8: get product description failed
650 \retval -9: get serial number failed
651 \retval -10: unable to close device
652 \retval -11: ftdi context invalid
653*/
654int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
655 const char* description, const char* serial, unsigned int index)
656{
657 libusb_device *dev;
658 libusb_device **devs;
659 char string[256];
660 int i = 0;
661
662 if (ftdi == NULL)
663 ftdi_error_return(-11, "ftdi context invalid");
664
665 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
666 ftdi_error_return(-12, "libusb_get_device_list() failed");
667
668 while ((dev = devs[i++]) != NULL)
669 {
670 struct libusb_device_descriptor desc;
671 int res;
672
673 if (libusb_get_device_descriptor(dev, &desc) < 0)
674 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
675
676 if (desc.idVendor == vendor && desc.idProduct == product)
677 {
678 if (libusb_open(dev, &ftdi->usb_dev) < 0)
679 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
680
681 if (description != NULL)
682 {
683 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
684 {
685 ftdi_usb_close_internal (ftdi);
686 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
687 }
688 if (strncmp(string, description, sizeof(string)) != 0)
689 {
690 ftdi_usb_close_internal (ftdi);
691 continue;
692 }
693 }
694 if (serial != NULL)
695 {
696 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
697 {
698 ftdi_usb_close_internal (ftdi);
699 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
700 }
701 if (strncmp(string, serial, sizeof(string)) != 0)
702 {
703 ftdi_usb_close_internal (ftdi);
704 continue;
705 }
706 }
707
708 ftdi_usb_close_internal (ftdi);
709
710 if (index > 0)
711 {
712 index--;
713 continue;
714 }
715
716 res = ftdi_usb_open_dev(ftdi, dev);
717 libusb_free_device_list(devs,1);
718 return res;
719 }
720 }
721
722 // device not found
723 ftdi_error_return_free_device_list(-3, "device not found", devs);
724}
725
726/**
727 Opens the ftdi-device described by a description-string.
728 Intended to be used for parsing a device-description given as commandline argument.
729
730 \param ftdi pointer to ftdi_context
731 \param description NULL-terminated description-string, using this format:
732 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
733 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
734 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
735 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
736
737 \note The description format may be extended in later versions.
738
739 \retval 0: all fine
740 \retval -2: libusb_get_device_list() failed
741 \retval -3: usb device not found
742 \retval -4: unable to open device
743 \retval -5: unable to claim device
744 \retval -6: reset failed
745 \retval -7: set baudrate failed
746 \retval -8: get product description failed
747 \retval -9: get serial number failed
748 \retval -10: unable to close device
749 \retval -11: illegal description format
750 \retval -12: ftdi context invalid
751*/
752int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
753{
754 if (ftdi == NULL)
755 ftdi_error_return(-12, "ftdi context invalid");
756
757 if (description[0] == 0 || description[1] != ':')
758 ftdi_error_return(-11, "illegal description format");
759
760 if (description[0] == 'd')
761 {
762 libusb_device *dev;
763 libusb_device **devs;
764 unsigned int bus_number, device_address;
765 int i = 0;
766
767 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
768 ftdi_error_return(-2, "libusb_get_device_list() failed");
769
770 /* XXX: This doesn't handle symlinks/odd paths/etc... */
771 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
772 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
773
774 while ((dev = devs[i++]) != NULL)
775 {
776 int ret;
777 if (bus_number == libusb_get_bus_number (dev)
778 && device_address == libusb_get_device_address (dev))
779 {
780 ret = ftdi_usb_open_dev(ftdi, dev);
781 libusb_free_device_list(devs,1);
782 return ret;
783 }
784 }
785
786 // device not found
787 ftdi_error_return_free_device_list(-3, "device not found", devs);
788 }
789 else if (description[0] == 'i' || description[0] == 's')
790 {
791 unsigned int vendor;
792 unsigned int product;
793 unsigned int index=0;
794 const char *serial=NULL;
795 const char *startp, *endp;
796
797 errno=0;
798 startp=description+2;
799 vendor=strtoul((char*)startp,(char**)&endp,0);
800 if (*endp != ':' || endp == startp || errno != 0)
801 ftdi_error_return(-11, "illegal description format");
802
803 startp=endp+1;
804 product=strtoul((char*)startp,(char**)&endp,0);
805 if (endp == startp || errno != 0)
806 ftdi_error_return(-11, "illegal description format");
807
808 if (description[0] == 'i' && *endp != 0)
809 {
810 /* optional index field in i-mode */
811 if (*endp != ':')
812 ftdi_error_return(-11, "illegal description format");
813
814 startp=endp+1;
815 index=strtoul((char*)startp,(char**)&endp,0);
816 if (*endp != 0 || endp == startp || errno != 0)
817 ftdi_error_return(-11, "illegal description format");
818 }
819 if (description[0] == 's')
820 {
821 if (*endp != ':')
822 ftdi_error_return(-11, "illegal description format");
823
824 /* rest of the description is the serial */
825 serial=endp+1;
826 }
827
828 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
829 }
830 else
831 {
832 ftdi_error_return(-11, "illegal description format");
833 }
834}
835
836/**
837 Resets the ftdi device.
838
839 \param ftdi pointer to ftdi_context
840
841 \retval 0: all fine
842 \retval -1: FTDI reset failed
843 \retval -2: USB device unavailable
844*/
845int ftdi_usb_reset(struct ftdi_context *ftdi)
846{
847 if (ftdi == NULL || ftdi->usb_dev == NULL)
848 ftdi_error_return(-2, "USB device unavailable");
849
850 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
851 SIO_RESET_REQUEST, SIO_RESET_SIO,
852 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
853 ftdi_error_return(-1,"FTDI reset failed");
854
855 // Invalidate data in the readbuffer
856 ftdi->readbuffer_offset = 0;
857 ftdi->readbuffer_remaining = 0;
858
859 return 0;
860}
861
862/**
863 Clears the read buffer on the chip and the internal read buffer.
864
865 \param ftdi pointer to ftdi_context
866
867 \retval 0: all fine
868 \retval -1: read buffer purge failed
869 \retval -2: USB device unavailable
870*/
871int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
872{
873 if (ftdi == NULL || ftdi->usb_dev == NULL)
874 ftdi_error_return(-2, "USB device unavailable");
875
876 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
877 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
878 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
879 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
880
881 // Invalidate data in the readbuffer
882 ftdi->readbuffer_offset = 0;
883 ftdi->readbuffer_remaining = 0;
884
885 return 0;
886}
887
888/**
889 Clears the write buffer on the chip.
890
891 \param ftdi pointer to ftdi_context
892
893 \retval 0: all fine
894 \retval -1: write buffer purge failed
895 \retval -2: USB device unavailable
896*/
897int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
898{
899 if (ftdi == NULL || ftdi->usb_dev == NULL)
900 ftdi_error_return(-2, "USB device unavailable");
901
902 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
903 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
904 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
905 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
906
907 return 0;
908}
909
910/**
911 Clears the buffers on the chip and the internal read buffer.
912
913 \param ftdi pointer to ftdi_context
914
915 \retval 0: all fine
916 \retval -1: read buffer purge failed
917 \retval -2: write buffer purge failed
918 \retval -3: USB device unavailable
919*/
920int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
921{
922 int result;
923
924 if (ftdi == NULL || ftdi->usb_dev == NULL)
925 ftdi_error_return(-3, "USB device unavailable");
926
927 result = ftdi_usb_purge_rx_buffer(ftdi);
928 if (result < 0)
929 return -1;
930
931 result = ftdi_usb_purge_tx_buffer(ftdi);
932 if (result < 0)
933 return -2;
934
935 return 0;
936}
937
938
939
940/**
941 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
942
943 \param ftdi pointer to ftdi_context
944
945 \retval 0: all fine
946 \retval -1: usb_release failed
947 \retval -3: ftdi context invalid
948*/
949int ftdi_usb_close(struct ftdi_context *ftdi)
950{
951 int rtn = 0;
952
953 if (ftdi == NULL)
954 ftdi_error_return(-3, "ftdi context invalid");
955
956 if (ftdi->usb_dev != NULL)
957 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
958 rtn = -1;
959
960 ftdi_usb_close_internal (ftdi);
961
962 return rtn;
963}
964
965/**
966 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
967 Function is only used internally
968 \internal
969*/
970static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
971 unsigned short *value, unsigned short *index)
972{
973 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
974 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
975 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
976 int divisor, best_divisor, best_baud, best_baud_diff;
977 unsigned long encoded_divisor;
978 int i;
979
980 if (baudrate <= 0)
981 {
982 // Return error
983 return -1;
984 }
985
986 divisor = 24000000 / baudrate;
987
988 if (ftdi->type == TYPE_AM)
989 {
990 // Round down to supported fraction (AM only)
991 divisor -= am_adjust_dn[divisor & 7];
992 }
993
994 // Try this divisor and the one above it (because division rounds down)
995 best_divisor = 0;
996 best_baud = 0;
997 best_baud_diff = 0;
998 for (i = 0; i < 2; i++)
999 {
1000 int try_divisor = divisor + i;
1001 int baud_estimate;
1002 int baud_diff;
1003
1004 // Round up to supported divisor value
1005 if (try_divisor <= 8)
1006 {
1007 // Round up to minimum supported divisor
1008 try_divisor = 8;
1009 }
1010 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1011 {
1012 // BM doesn't support divisors 9 through 11 inclusive
1013 try_divisor = 12;
1014 }
1015 else if (divisor < 16)
1016 {
1017 // AM doesn't support divisors 9 through 15 inclusive
1018 try_divisor = 16;
1019 }
1020 else
1021 {
1022 if (ftdi->type == TYPE_AM)
1023 {
1024 // Round up to supported fraction (AM only)
1025 try_divisor += am_adjust_up[try_divisor & 7];
1026 if (try_divisor > 0x1FFF8)
1027 {
1028 // Round down to maximum supported divisor value (for AM)
1029 try_divisor = 0x1FFF8;
1030 }
1031 }
1032 else
1033 {
1034 if (try_divisor > 0x1FFFF)
1035 {
1036 // Round down to maximum supported divisor value (for BM)
1037 try_divisor = 0x1FFFF;
1038 }
1039 }
1040 }
1041 // Get estimated baud rate (to nearest integer)
1042 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1043 // Get absolute difference from requested baud rate
1044 if (baud_estimate < baudrate)
1045 {
1046 baud_diff = baudrate - baud_estimate;
1047 }
1048 else
1049 {
1050 baud_diff = baud_estimate - baudrate;
1051 }
1052 if (i == 0 || baud_diff < best_baud_diff)
1053 {
1054 // Closest to requested baud rate so far
1055 best_divisor = try_divisor;
1056 best_baud = baud_estimate;
1057 best_baud_diff = baud_diff;
1058 if (baud_diff == 0)
1059 {
1060 // Spot on! No point trying
1061 break;
1062 }
1063 }
1064 }
1065 // Encode the best divisor value
1066 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1067 // Deal with special cases for encoded value
1068 if (encoded_divisor == 1)
1069 {
1070 encoded_divisor = 0; // 3000000 baud
1071 }
1072 else if (encoded_divisor == 0x4001)
1073 {
1074 encoded_divisor = 1; // 2000000 baud (BM only)
1075 }
1076 // Split into "value" and "index" values
1077 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1078 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
1079 {
1080 *index = (unsigned short)(encoded_divisor >> 8);
1081 *index &= 0xFF00;
1082 *index |= ftdi->index;
1083 }
1084 else
1085 *index = (unsigned short)(encoded_divisor >> 16);
1086
1087 // Return the nearest baud rate
1088 return best_baud;
1089}
1090
1091/**
1092 Sets the chip baud rate
1093
1094 \param ftdi pointer to ftdi_context
1095 \param baudrate baud rate to set
1096
1097 \retval 0: all fine
1098 \retval -1: invalid baudrate
1099 \retval -2: setting baudrate failed
1100 \retval -3: USB device unavailable
1101*/
1102int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1103{
1104 unsigned short value, index;
1105 int actual_baudrate;
1106
1107 if (ftdi == NULL || ftdi->usb_dev == NULL)
1108 ftdi_error_return(-3, "USB device unavailable");
1109
1110 if (ftdi->bitbang_enabled)
1111 {
1112 baudrate = baudrate*4;
1113 }
1114
1115 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1116 if (actual_baudrate <= 0)
1117 ftdi_error_return (-1, "Silly baudrate <= 0.");
1118
1119 // Check within tolerance (about 5%)
1120 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1121 || ((actual_baudrate < baudrate)
1122 ? (actual_baudrate * 21 < baudrate * 20)
1123 : (baudrate * 21 < actual_baudrate * 20)))
1124 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1125
1126 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1127 SIO_SET_BAUDRATE_REQUEST, value,
1128 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1129 ftdi_error_return (-2, "Setting new baudrate failed");
1130
1131 ftdi->baudrate = baudrate;
1132 return 0;
1133}
1134
1135/**
1136 Set (RS232) line characteristics.
1137 The break type can only be set via ftdi_set_line_property2()
1138 and defaults to "off".
1139
1140 \param ftdi pointer to ftdi_context
1141 \param bits Number of bits
1142 \param sbit Number of stop bits
1143 \param parity Parity mode
1144
1145 \retval 0: all fine
1146 \retval -1: Setting line property failed
1147*/
1148int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1149 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1150{
1151 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1152}
1153
1154/**
1155 Set (RS232) line characteristics
1156
1157 \param ftdi pointer to ftdi_context
1158 \param bits Number of bits
1159 \param sbit Number of stop bits
1160 \param parity Parity mode
1161 \param break_type Break type
1162
1163 \retval 0: all fine
1164 \retval -1: Setting line property failed
1165 \retval -2: USB device unavailable
1166*/
1167int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1168 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1169 enum ftdi_break_type break_type)
1170{
1171 unsigned short value = bits;
1172
1173 if (ftdi == NULL || ftdi->usb_dev == NULL)
1174 ftdi_error_return(-2, "USB device unavailable");
1175
1176 switch (parity)
1177 {
1178 case NONE:
1179 value |= (0x00 << 8);
1180 break;
1181 case ODD:
1182 value |= (0x01 << 8);
1183 break;
1184 case EVEN:
1185 value |= (0x02 << 8);
1186 break;
1187 case MARK:
1188 value |= (0x03 << 8);
1189 break;
1190 case SPACE:
1191 value |= (0x04 << 8);
1192 break;
1193 }
1194
1195 switch (sbit)
1196 {
1197 case STOP_BIT_1:
1198 value |= (0x00 << 11);
1199 break;
1200 case STOP_BIT_15:
1201 value |= (0x01 << 11);
1202 break;
1203 case STOP_BIT_2:
1204 value |= (0x02 << 11);
1205 break;
1206 }
1207
1208 switch (break_type)
1209 {
1210 case BREAK_OFF:
1211 value |= (0x00 << 14);
1212 break;
1213 case BREAK_ON:
1214 value |= (0x01 << 14);
1215 break;
1216 }
1217
1218 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1219 SIO_SET_DATA_REQUEST, value,
1220 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1221 ftdi_error_return (-1, "Setting new line property failed");
1222
1223 return 0;
1224}
1225
1226/**
1227 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1228
1229 \param ftdi pointer to ftdi_context
1230 \param buf Buffer with the data
1231 \param size Size of the buffer
1232
1233 \retval -666: USB device unavailable
1234 \retval <0: error code from usb_bulk_write()
1235 \retval >0: number of bytes written
1236*/
1237int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1238{
1239 int offset = 0;
1240 int actual_length;
1241
1242 if (ftdi == NULL || ftdi->usb_dev == NULL)
1243 ftdi_error_return(-666, "USB device unavailable");
1244
1245 while (offset < size)
1246 {
1247 int write_size = ftdi->writebuffer_chunksize;
1248
1249 if (offset+write_size > size)
1250 write_size = size-offset;
1251
1252 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1253 ftdi_error_return(-1, "usb bulk write failed");
1254
1255 offset += actual_length;
1256 }
1257
1258 return offset;
1259}
1260
1261static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1262{
1263 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1264 struct ftdi_context *ftdi = tc->ftdi;
1265 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1266
1267 packet_size = ftdi->max_packet_size;
1268
1269 actual_length = transfer->actual_length;
1270
1271 if (actual_length > 2)
1272 {
1273 // skip FTDI status bytes.
1274 // Maybe stored in the future to enable modem use
1275 num_of_chunks = actual_length / packet_size;
1276 chunk_remains = actual_length % packet_size;
1277 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1278
1279 ftdi->readbuffer_offset += 2;
1280 actual_length -= 2;
1281
1282 if (actual_length > packet_size - 2)
1283 {
1284 for (i = 1; i < num_of_chunks; i++)
1285 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1286 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1287 packet_size - 2);
1288 if (chunk_remains > 2)
1289 {
1290 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1291 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1292 chunk_remains-2);
1293 actual_length -= 2*num_of_chunks;
1294 }
1295 else
1296 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1297 }
1298
1299 if (actual_length > 0)
1300 {
1301 // data still fits in buf?
1302 if (tc->offset + actual_length <= tc->size)
1303 {
1304 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1305 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1306 tc->offset += actual_length;
1307
1308 ftdi->readbuffer_offset = 0;
1309 ftdi->readbuffer_remaining = 0;
1310
1311 /* Did we read exactly the right amount of bytes? */
1312 if (tc->offset == tc->size)
1313 {
1314 //printf("read_data exact rem %d offset %d\n",
1315 //ftdi->readbuffer_remaining, offset);
1316 tc->completed = 1;
1317 return;
1318 }
1319 }
1320 else
1321 {
1322 // only copy part of the data or size <= readbuffer_chunksize
1323 int part_size = tc->size - tc->offset;
1324 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1325 tc->offset += part_size;
1326
1327 ftdi->readbuffer_offset += part_size;
1328 ftdi->readbuffer_remaining = actual_length - part_size;
1329
1330 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1331 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1332 tc->completed = 1;
1333 return;
1334 }
1335 }
1336 }
1337 ret = libusb_submit_transfer (transfer);
1338 if (ret < 0)
1339 tc->completed = 1;
1340}
1341
1342
1343static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1344{
1345 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1346 struct ftdi_context *ftdi = tc->ftdi;
1347
1348 tc->offset += transfer->actual_length;
1349
1350 if (tc->offset == tc->size)
1351 {
1352 tc->completed = 1;
1353 }
1354 else
1355 {
1356 int write_size = ftdi->writebuffer_chunksize;
1357 int ret;
1358
1359 if (tc->offset + write_size > tc->size)
1360 write_size = tc->size - tc->offset;
1361
1362 transfer->length = write_size;
1363 transfer->buffer = tc->buf + tc->offset;
1364 ret = libusb_submit_transfer (transfer);
1365 if (ret < 0)
1366 tc->completed = 1;
1367 }
1368}
1369
1370
1371/**
1372 Writes data to the chip. Does not wait for completion of the transfer
1373 nor does it make sure that the transfer was successful.
1374
1375 Use libusb 1.0 asynchronous API.
1376
1377 \param ftdi pointer to ftdi_context
1378 \param buf Buffer with the data
1379 \param size Size of the buffer
1380
1381 \retval NULL: Some error happens when submit transfer
1382 \retval !NULL: Pointer to a ftdi_transfer_control
1383*/
1384
1385struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1386{
1387 struct ftdi_transfer_control *tc;
1388 struct libusb_transfer *transfer;
1389 int write_size, ret;
1390
1391 if (ftdi == NULL || ftdi->usb_dev == NULL)
1392 return NULL;
1393
1394 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1395 if (!tc)
1396 return NULL;
1397
1398 transfer = libusb_alloc_transfer(0);
1399 if (!transfer)
1400 {
1401 free(tc);
1402 return NULL;
1403 }
1404
1405 tc->ftdi = ftdi;
1406 tc->completed = 0;
1407 tc->buf = buf;
1408 tc->size = size;
1409 tc->offset = 0;
1410
1411 if (size < ftdi->writebuffer_chunksize)
1412 write_size = size;
1413 else
1414 write_size = ftdi->writebuffer_chunksize;
1415
1416 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1417 write_size, ftdi_write_data_cb, tc,
1418 ftdi->usb_write_timeout);
1419 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1420
1421 ret = libusb_submit_transfer(transfer);
1422 if (ret < 0)
1423 {
1424 libusb_free_transfer(transfer);
1425 free(tc);
1426 return NULL;
1427 }
1428 tc->transfer = transfer;
1429
1430 return tc;
1431}
1432
1433/**
1434 Reads data from the chip. Does not wait for completion of the transfer
1435 nor does it make sure that the transfer was successful.
1436
1437 Use libusb 1.0 asynchronous API.
1438
1439 \param ftdi pointer to ftdi_context
1440 \param buf Buffer with the data
1441 \param size Size of the buffer
1442
1443 \retval NULL: Some error happens when submit transfer
1444 \retval !NULL: Pointer to a ftdi_transfer_control
1445*/
1446
1447struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1448{
1449 struct ftdi_transfer_control *tc;
1450 struct libusb_transfer *transfer;
1451 int ret;
1452
1453 if (ftdi == NULL || ftdi->usb_dev == NULL)
1454 return NULL;
1455
1456 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1457 if (!tc)
1458 return NULL;
1459
1460 tc->ftdi = ftdi;
1461 tc->buf = buf;
1462 tc->size = size;
1463
1464 if (size <= ftdi->readbuffer_remaining)
1465 {
1466 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1467
1468 // Fix offsets
1469 ftdi->readbuffer_remaining -= size;
1470 ftdi->readbuffer_offset += size;
1471
1472 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1473
1474 tc->completed = 1;
1475 tc->offset = size;
1476 tc->transfer = NULL;
1477 return tc;
1478 }
1479
1480 tc->completed = 0;
1481 if (ftdi->readbuffer_remaining != 0)
1482 {
1483 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1484
1485 tc->offset = ftdi->readbuffer_remaining;
1486 }
1487 else
1488 tc->offset = 0;
1489
1490 transfer = libusb_alloc_transfer(0);
1491 if (!transfer)
1492 {
1493 free (tc);
1494 return NULL;
1495 }
1496
1497 ftdi->readbuffer_remaining = 0;
1498 ftdi->readbuffer_offset = 0;
1499
1500 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1501 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1502
1503 ret = libusb_submit_transfer(transfer);
1504 if (ret < 0)
1505 {
1506 libusb_free_transfer(transfer);
1507 free (tc);
1508 return NULL;
1509 }
1510 tc->transfer = transfer;
1511
1512 return tc;
1513}
1514
1515/**
1516 Wait for completion of the transfer.
1517
1518 Use libusb 1.0 asynchronous API.
1519
1520 \param tc pointer to ftdi_transfer_control
1521
1522 \retval < 0: Some error happens
1523 \retval >= 0: Data size transferred
1524*/
1525
1526int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1527{
1528 int ret;
1529
1530 while (!tc->completed)
1531 {
1532 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1533 if (ret < 0)
1534 {
1535 if (ret == LIBUSB_ERROR_INTERRUPTED)
1536 continue;
1537 libusb_cancel_transfer(tc->transfer);
1538 while (!tc->completed)
1539 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1540 break;
1541 libusb_free_transfer(tc->transfer);
1542 free (tc);
1543 return ret;
1544 }
1545 }
1546
1547 ret = tc->offset;
1548 /**
1549 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1550 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1551 **/
1552 if (tc->transfer)
1553 {
1554 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1555 ret = -1;
1556 libusb_free_transfer(tc->transfer);
1557 }
1558 free(tc);
1559 return ret;
1560}
1561
1562/**
1563 Configure write buffer chunk size.
1564 Default is 4096.
1565
1566 \param ftdi pointer to ftdi_context
1567 \param chunksize Chunk size
1568
1569 \retval 0: all fine
1570 \retval -1: ftdi context invalid
1571*/
1572int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1573{
1574 if (ftdi == NULL)
1575 ftdi_error_return(-1, "ftdi context invalid");
1576
1577 ftdi->writebuffer_chunksize = chunksize;
1578 return 0;
1579}
1580
1581/**
1582 Get write buffer chunk size.
1583
1584 \param ftdi pointer to ftdi_context
1585 \param chunksize Pointer to store chunk size in
1586
1587 \retval 0: all fine
1588 \retval -1: ftdi context invalid
1589*/
1590int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1591{
1592 if (ftdi == NULL)
1593 ftdi_error_return(-1, "ftdi context invalid");
1594
1595 *chunksize = ftdi->writebuffer_chunksize;
1596 return 0;
1597}
1598
1599/**
1600 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1601
1602 Automatically strips the two modem status bytes transfered during every read.
1603
1604 \param ftdi pointer to ftdi_context
1605 \param buf Buffer to store data in
1606 \param size Size of the buffer
1607
1608 \retval -666: USB device unavailable
1609 \retval <0: error code from libusb_bulk_transfer()
1610 \retval 0: no data was available
1611 \retval >0: number of bytes read
1612
1613*/
1614int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1615{
1616 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1617 int packet_size = ftdi->max_packet_size;
1618 int actual_length = 1;
1619
1620 if (ftdi == NULL || ftdi->usb_dev == NULL)
1621 ftdi_error_return(-666, "USB device unavailable");
1622
1623 // Packet size sanity check (avoid division by zero)
1624 if (packet_size == 0)
1625 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1626
1627 // everything we want is still in the readbuffer?
1628 if (size <= ftdi->readbuffer_remaining)
1629 {
1630 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1631
1632 // Fix offsets
1633 ftdi->readbuffer_remaining -= size;
1634 ftdi->readbuffer_offset += size;
1635
1636 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1637
1638 return size;
1639 }
1640 // something still in the readbuffer, but not enough to satisfy 'size'?
1641 if (ftdi->readbuffer_remaining != 0)
1642 {
1643 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1644
1645 // Fix offset
1646 offset += ftdi->readbuffer_remaining;
1647 }
1648 // do the actual USB read
1649 while (offset < size && actual_length > 0)
1650 {
1651 ftdi->readbuffer_remaining = 0;
1652 ftdi->readbuffer_offset = 0;
1653 /* returns how much received */
1654 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1655 if (ret < 0)
1656 ftdi_error_return(ret, "usb bulk read failed");
1657
1658 if (actual_length > 2)
1659 {
1660 // skip FTDI status bytes.
1661 // Maybe stored in the future to enable modem use
1662 num_of_chunks = actual_length / packet_size;
1663 chunk_remains = actual_length % packet_size;
1664 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1665
1666 ftdi->readbuffer_offset += 2;
1667 actual_length -= 2;
1668
1669 if (actual_length > packet_size - 2)
1670 {
1671 for (i = 1; i < num_of_chunks; i++)
1672 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1673 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1674 packet_size - 2);
1675 if (chunk_remains > 2)
1676 {
1677 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1678 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1679 chunk_remains-2);
1680 actual_length -= 2*num_of_chunks;
1681 }
1682 else
1683 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1684 }
1685 }
1686 else if (actual_length <= 2)
1687 {
1688 // no more data to read?
1689 return offset;
1690 }
1691 if (actual_length > 0)
1692 {
1693 // data still fits in buf?
1694 if (offset+actual_length <= size)
1695 {
1696 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1697 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1698 offset += actual_length;
1699
1700 /* Did we read exactly the right amount of bytes? */
1701 if (offset == size)
1702 //printf("read_data exact rem %d offset %d\n",
1703 //ftdi->readbuffer_remaining, offset);
1704 return offset;
1705 }
1706 else
1707 {
1708 // only copy part of the data or size <= readbuffer_chunksize
1709 int part_size = size-offset;
1710 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1711
1712 ftdi->readbuffer_offset += part_size;
1713 ftdi->readbuffer_remaining = actual_length-part_size;
1714 offset += part_size;
1715
1716 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1717 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1718
1719 return offset;
1720 }
1721 }
1722 }
1723 // never reached
1724 return -127;
1725}
1726
1727/**
1728 Configure read buffer chunk size.
1729 Default is 4096.
1730
1731 Automatically reallocates the buffer.
1732
1733 \param ftdi pointer to ftdi_context
1734 \param chunksize Chunk size
1735
1736 \retval 0: all fine
1737 \retval -1: ftdi context invalid
1738*/
1739int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1740{
1741 unsigned char *new_buf;
1742
1743 if (ftdi == NULL)
1744 ftdi_error_return(-1, "ftdi context invalid");
1745
1746 // Invalidate all remaining data
1747 ftdi->readbuffer_offset = 0;
1748 ftdi->readbuffer_remaining = 0;
1749#ifdef __linux__
1750 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1751 which is defined in libusb-1.0. Otherwise, each USB read request will
1752 be divided into multiple URBs. This will cause issues on Linux kernel
1753 older than 2.6.32. */
1754 if (chunksize > 16384)
1755 chunksize = 16384;
1756#endif
1757
1758 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1759 ftdi_error_return(-1, "out of memory for readbuffer");
1760
1761 ftdi->readbuffer = new_buf;
1762 ftdi->readbuffer_chunksize = chunksize;
1763
1764 return 0;
1765}
1766
1767/**
1768 Get read buffer chunk size.
1769
1770 \param ftdi pointer to ftdi_context
1771 \param chunksize Pointer to store chunk size in
1772
1773 \retval 0: all fine
1774 \retval -1: FTDI context invalid
1775*/
1776int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1777{
1778 if (ftdi == NULL)
1779 ftdi_error_return(-1, "FTDI context invalid");
1780
1781 *chunksize = ftdi->readbuffer_chunksize;
1782 return 0;
1783}
1784
1785
1786/**
1787 Enable bitbang mode.
1788
1789 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1790
1791 \param ftdi pointer to ftdi_context
1792 \param bitmask Bitmask to configure lines.
1793 HIGH/ON value configures a line as output.
1794
1795 \retval 0: all fine
1796 \retval -1: can't enable bitbang mode
1797 \retval -2: USB device unavailable
1798*/
1799int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1800{
1801 unsigned short usb_val;
1802
1803 if (ftdi == NULL || ftdi->usb_dev == NULL)
1804 ftdi_error_return(-2, "USB device unavailable");
1805
1806 usb_val = bitmask; // low byte: bitmask
1807 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1808 usb_val |= (ftdi->bitbang_mode << 8);
1809
1810 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1811 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1812 NULL, 0, ftdi->usb_write_timeout) < 0)
1813 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1814
1815 ftdi->bitbang_enabled = 1;
1816 return 0;
1817}
1818
1819/**
1820 Disable bitbang mode.
1821
1822 \param ftdi pointer to ftdi_context
1823
1824 \retval 0: all fine
1825 \retval -1: can't disable bitbang mode
1826 \retval -2: USB device unavailable
1827*/
1828int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1829{
1830 if (ftdi == NULL || ftdi->usb_dev == NULL)
1831 ftdi_error_return(-2, "USB device unavailable");
1832
1833 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1834 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1835
1836 ftdi->bitbang_enabled = 0;
1837 return 0;
1838}
1839
1840/**
1841 Enable/disable bitbang modes.
1842
1843 \param ftdi pointer to ftdi_context
1844 \param bitmask Bitmask to configure lines.
1845 HIGH/ON value configures a line as output.
1846 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1847
1848 \retval 0: all fine
1849 \retval -1: can't enable bitbang mode
1850 \retval -2: USB device unavailable
1851*/
1852int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1853{
1854 unsigned short usb_val;
1855
1856 if (ftdi == NULL || ftdi->usb_dev == NULL)
1857 ftdi_error_return(-2, "USB device unavailable");
1858
1859 usb_val = bitmask; // low byte: bitmask
1860 usb_val |= (mode << 8);
1861 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1862 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1863
1864 ftdi->bitbang_mode = mode;
1865 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1866 return 0;
1867}
1868
1869/**
1870 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1871
1872 \param ftdi pointer to ftdi_context
1873 \param pins Pointer to store pins into
1874
1875 \retval 0: all fine
1876 \retval -1: read pins failed
1877 \retval -2: USB device unavailable
1878*/
1879int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1880{
1881 if (ftdi == NULL || ftdi->usb_dev == NULL)
1882 ftdi_error_return(-2, "USB device unavailable");
1883
1884 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1885 ftdi_error_return(-1, "read pins failed");
1886
1887 return 0;
1888}
1889
1890/**
1891 Set latency timer
1892
1893 The FTDI chip keeps data in the internal buffer for a specific
1894 amount of time if the buffer is not full yet to decrease
1895 load on the usb bus.
1896
1897 \param ftdi pointer to ftdi_context
1898 \param latency Value between 1 and 255
1899
1900 \retval 0: all fine
1901 \retval -1: latency out of range
1902 \retval -2: unable to set latency timer
1903 \retval -3: USB device unavailable
1904*/
1905int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1906{
1907 unsigned short usb_val;
1908
1909 if (latency < 1)
1910 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1911
1912 if (ftdi == NULL || ftdi->usb_dev == NULL)
1913 ftdi_error_return(-3, "USB device unavailable");
1914
1915 usb_val = latency;
1916 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1917 ftdi_error_return(-2, "unable to set latency timer");
1918
1919 return 0;
1920}
1921
1922/**
1923 Get latency timer
1924
1925 \param ftdi pointer to ftdi_context
1926 \param latency Pointer to store latency value in
1927
1928 \retval 0: all fine
1929 \retval -1: unable to get latency timer
1930 \retval -2: USB device unavailable
1931*/
1932int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1933{
1934 unsigned short usb_val;
1935
1936 if (ftdi == NULL || ftdi->usb_dev == NULL)
1937 ftdi_error_return(-2, "USB device unavailable");
1938
1939 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1940 ftdi_error_return(-1, "reading latency timer failed");
1941
1942 *latency = (unsigned char)usb_val;
1943 return 0;
1944}
1945
1946/**
1947 Poll modem status information
1948
1949 This function allows the retrieve the two status bytes of the device.
1950 The device sends these bytes also as a header for each read access
1951 where they are discarded by ftdi_read_data(). The chip generates
1952 the two stripped status bytes in the absence of data every 40 ms.
1953
1954 Layout of the first byte:
1955 - B0..B3 - must be 0
1956 - B4 Clear to send (CTS)
1957 0 = inactive
1958 1 = active
1959 - B5 Data set ready (DTS)
1960 0 = inactive
1961 1 = active
1962 - B6 Ring indicator (RI)
1963 0 = inactive
1964 1 = active
1965 - B7 Receive line signal detect (RLSD)
1966 0 = inactive
1967 1 = active
1968
1969 Layout of the second byte:
1970 - B0 Data ready (DR)
1971 - B1 Overrun error (OE)
1972 - B2 Parity error (PE)
1973 - B3 Framing error (FE)
1974 - B4 Break interrupt (BI)
1975 - B5 Transmitter holding register (THRE)
1976 - B6 Transmitter empty (TEMT)
1977 - B7 Error in RCVR FIFO
1978
1979 \param ftdi pointer to ftdi_context
1980 \param status Pointer to store status information in. Must be two bytes.
1981
1982 \retval 0: all fine
1983 \retval -1: unable to retrieve status information
1984 \retval -2: USB device unavailable
1985*/
1986int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1987{
1988 char usb_val[2];
1989
1990 if (ftdi == NULL || ftdi->usb_dev == NULL)
1991 ftdi_error_return(-2, "USB device unavailable");
1992
1993 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1994 ftdi_error_return(-1, "getting modem status failed");
1995
1996 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
1997
1998 return 0;
1999}
2000
2001/**
2002 Set flowcontrol for ftdi chip
2003
2004 \param ftdi pointer to ftdi_context
2005 \param flowctrl flow control to use. should be
2006 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2007
2008 \retval 0: all fine
2009 \retval -1: set flow control failed
2010 \retval -2: USB device unavailable
2011*/
2012int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2013{
2014 if (ftdi == NULL || ftdi->usb_dev == NULL)
2015 ftdi_error_return(-2, "USB device unavailable");
2016
2017 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2018 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2019 NULL, 0, ftdi->usb_write_timeout) < 0)
2020 ftdi_error_return(-1, "set flow control failed");
2021
2022 return 0;
2023}
2024
2025/**
2026 Set dtr line
2027
2028 \param ftdi pointer to ftdi_context
2029 \param state state to set line to (1 or 0)
2030
2031 \retval 0: all fine
2032 \retval -1: set dtr failed
2033 \retval -2: USB device unavailable
2034*/
2035int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2036{
2037 unsigned short usb_val;
2038
2039 if (ftdi == NULL || ftdi->usb_dev == NULL)
2040 ftdi_error_return(-2, "USB device unavailable");
2041
2042 if (state)
2043 usb_val = SIO_SET_DTR_HIGH;
2044 else
2045 usb_val = SIO_SET_DTR_LOW;
2046
2047 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2048 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2049 NULL, 0, ftdi->usb_write_timeout) < 0)
2050 ftdi_error_return(-1, "set dtr failed");
2051
2052 return 0;
2053}
2054
2055/**
2056 Set rts line
2057
2058 \param ftdi pointer to ftdi_context
2059 \param state state to set line to (1 or 0)
2060
2061 \retval 0: all fine
2062 \retval -1: set rts failed
2063 \retval -2: USB device unavailable
2064*/
2065int ftdi_setrts(struct ftdi_context *ftdi, int state)
2066{
2067 unsigned short usb_val;
2068
2069 if (ftdi == NULL || ftdi->usb_dev == NULL)
2070 ftdi_error_return(-2, "USB device unavailable");
2071
2072 if (state)
2073 usb_val = SIO_SET_RTS_HIGH;
2074 else
2075 usb_val = SIO_SET_RTS_LOW;
2076
2077 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2078 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2079 NULL, 0, ftdi->usb_write_timeout) < 0)
2080 ftdi_error_return(-1, "set of rts failed");
2081
2082 return 0;
2083}
2084
2085/**
2086 Set dtr and rts line in one pass
2087
2088 \param ftdi pointer to ftdi_context
2089 \param dtr DTR state to set line to (1 or 0)
2090 \param rts RTS state to set line to (1 or 0)
2091
2092 \retval 0: all fine
2093 \retval -1: set dtr/rts failed
2094 \retval -2: USB device unavailable
2095 */
2096int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2097{
2098 unsigned short usb_val;
2099
2100 if (ftdi == NULL || ftdi->usb_dev == NULL)
2101 ftdi_error_return(-2, "USB device unavailable");
2102
2103 if (dtr)
2104 usb_val = SIO_SET_DTR_HIGH;
2105 else
2106 usb_val = SIO_SET_DTR_LOW;
2107
2108 if (rts)
2109 usb_val |= SIO_SET_RTS_HIGH;
2110 else
2111 usb_val |= SIO_SET_RTS_LOW;
2112
2113 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2114 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2115 NULL, 0, ftdi->usb_write_timeout) < 0)
2116 ftdi_error_return(-1, "set of rts/dtr failed");
2117
2118 return 0;
2119}
2120
2121/**
2122 Set the special event character
2123
2124 \param ftdi pointer to ftdi_context
2125 \param eventch Event character
2126 \param enable 0 to disable the event character, non-zero otherwise
2127
2128 \retval 0: all fine
2129 \retval -1: unable to set event character
2130 \retval -2: USB device unavailable
2131*/
2132int ftdi_set_event_char(struct ftdi_context *ftdi,
2133 unsigned char eventch, unsigned char enable)
2134{
2135 unsigned short usb_val;
2136
2137 if (ftdi == NULL || ftdi->usb_dev == NULL)
2138 ftdi_error_return(-2, "USB device unavailable");
2139
2140 usb_val = eventch;
2141 if (enable)
2142 usb_val |= 1 << 8;
2143
2144 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2145 ftdi_error_return(-1, "setting event character failed");
2146
2147 return 0;
2148}
2149
2150/**
2151 Set error character
2152
2153 \param ftdi pointer to ftdi_context
2154 \param errorch Error character
2155 \param enable 0 to disable the error character, non-zero otherwise
2156
2157 \retval 0: all fine
2158 \retval -1: unable to set error character
2159 \retval -2: USB device unavailable
2160*/
2161int ftdi_set_error_char(struct ftdi_context *ftdi,
2162 unsigned char errorch, unsigned char enable)
2163{
2164 unsigned short usb_val;
2165
2166 if (ftdi == NULL || ftdi->usb_dev == NULL)
2167 ftdi_error_return(-2, "USB device unavailable");
2168
2169 usb_val = errorch;
2170 if (enable)
2171 usb_val |= 1 << 8;
2172
2173 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2174 ftdi_error_return(-1, "setting error character failed");
2175
2176 return 0;
2177}
2178
2179/**
2180 Init eeprom with default values.
2181 \param ftdi pointer to ftdi_context
2182 \param manufacturer String to use as Manufacturer
2183 \param product String to use as Product description
2184 \param serial String to use as Serial number description
2185
2186 \retval 0: all fine
2187 \retval -1: No struct ftdi_context
2188 \retval -2: No struct ftdi_eeprom
2189*/
2190int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2191 char * product, char * serial)
2192{
2193 struct ftdi_eeprom *eeprom;
2194
2195 if (ftdi == NULL)
2196 ftdi_error_return(-1, "No struct ftdi_context");
2197
2198 if (ftdi->eeprom == NULL)
2199 ftdi_error_return(-2,"No struct ftdi_eeprom");
2200
2201 eeprom = ftdi->eeprom;
2202 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2203
2204 eeprom->vendor_id = 0x0403;
2205 eeprom->use_serial = USE_SERIAL_NUM;
2206 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2207 (ftdi->type == TYPE_R))
2208 eeprom->product_id = 0x6001;
2209 else if (ftdi->type == TYPE_4232H)
2210 eeprom->product_id = 0x6011;
2211 else if (ftdi->type == TYPE_232H)
2212 eeprom->product_id = 0x6014;
2213 else
2214 eeprom->product_id = 0x6010;
2215 if (ftdi->type == TYPE_AM)
2216 eeprom->usb_version = 0x0101;
2217 else
2218 eeprom->usb_version = 0x0200;
2219 eeprom->max_power = 100;
2220
2221 if (eeprom->manufacturer)
2222 free (eeprom->manufacturer);
2223 eeprom->manufacturer = NULL;
2224 if (manufacturer)
2225 {
2226 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2227 if (eeprom->manufacturer)
2228 strcpy(eeprom->manufacturer, manufacturer);
2229 }
2230
2231 if (eeprom->product)
2232 free (eeprom->product);
2233 eeprom->product = NULL;
2234 if(product)
2235 {
2236 eeprom->product = malloc(strlen(product)+1);
2237 if (eeprom->product)
2238 strcpy(eeprom->product, product);
2239 }
2240
2241 if (eeprom->serial)
2242 free (eeprom->serial);
2243 eeprom->serial = NULL;
2244 if (serial)
2245 {
2246 eeprom->serial = malloc(strlen(serial)+1);
2247 if (eeprom->serial)
2248 strcpy(eeprom->serial, serial);
2249 }
2250
2251
2252 if (ftdi->type == TYPE_R)
2253 {
2254 eeprom->max_power = 90;
2255 eeprom->size = 0x80;
2256 eeprom->cbus_function[0] = CBUS_TXLED;
2257 eeprom->cbus_function[1] = CBUS_RXLED;
2258 eeprom->cbus_function[2] = CBUS_TXDEN;
2259 eeprom->cbus_function[3] = CBUS_PWREN;
2260 eeprom->cbus_function[4] = CBUS_SLEEP;
2261 }
2262 else
2263 {
2264 if(ftdi->type == TYPE_232H)
2265 {
2266 int i;
2267 for (i=0; i<10; i++)
2268 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2269 }
2270 eeprom->size = -1;
2271 }
2272 return 0;
2273}
2274/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2275void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2276{
2277 int i;
2278 for(i=0; i<5;i++)
2279 {
2280 int mode_low, mode_high;
2281 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2282 mode_low = CBUSH_TRISTATE;
2283 else
2284 mode_low = eeprom->cbus_function[2*i];
2285 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2286 mode_high = CBUSH_TRISTATE;
2287 else
2288 mode_high = eeprom->cbus_function[2*i];
2289
2290 output[0x18+i] = mode_high <<4 | mode_low;
2291 }
2292}
2293/* Return the bits for the encoded EEPROM Structure of a requested Mode
2294 *
2295 */
2296static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2297{
2298 switch (chip)
2299 {
2300 case TYPE_2232H:
2301 case TYPE_2232C:
2302 {
2303 switch (type)
2304 {
2305 case CHANNEL_IS_UART: return 0;
2306 case CHANNEL_IS_FIFO: return 0x01;
2307 case CHANNEL_IS_OPTO: return 0x02;
2308 case CHANNEL_IS_CPU : return 0x04;
2309 default: return 0;
2310 }
2311 }
2312 case TYPE_232H:
2313 {
2314 switch (type)
2315 {
2316 case CHANNEL_IS_UART : return 0;
2317 case CHANNEL_IS_FIFO : return 0x01;
2318 case CHANNEL_IS_OPTO : return 0x02;
2319 case CHANNEL_IS_CPU : return 0x04;
2320 case CHANNEL_IS_FT1284 : return 0x08;
2321 default: return 0;
2322 }
2323 }
2324 default: return 0;
2325 }
2326 return 0;
2327}
2328
2329/**
2330 Build binary buffer from ftdi_eeprom structure.
2331 Output is suitable for ftdi_write_eeprom().
2332
2333 \param ftdi pointer to ftdi_context
2334
2335 \retval >=0: size of eeprom user area in bytes
2336 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2337 \retval -2: Invalid eeprom or ftdi pointer
2338 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2339 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2340 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2341 \retval -6: No connected EEPROM or EEPROM Type unknown
2342*/
2343int ftdi_eeprom_build(struct ftdi_context *ftdi)
2344{
2345 unsigned char i, j, eeprom_size_mask;
2346 unsigned short checksum, value;
2347 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2348 int user_area_size;
2349 struct ftdi_eeprom *eeprom;
2350 unsigned char * output;
2351
2352 if (ftdi == NULL)
2353 ftdi_error_return(-2,"No context");
2354 if (ftdi->eeprom == NULL)
2355 ftdi_error_return(-2,"No eeprom structure");
2356
2357 eeprom= ftdi->eeprom;
2358 output = eeprom->buf;
2359
2360 if (eeprom->chip == -1)
2361 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2362
2363 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2364 eeprom->size = 0x100;
2365 else
2366 eeprom->size = 0x80;
2367
2368 if (eeprom->manufacturer != NULL)
2369 manufacturer_size = strlen(eeprom->manufacturer);
2370 if (eeprom->product != NULL)
2371 product_size = strlen(eeprom->product);
2372 if (eeprom->serial != NULL)
2373 serial_size = strlen(eeprom->serial);
2374
2375 // eeprom size check
2376 switch (ftdi->type)
2377 {
2378 case TYPE_AM:
2379 case TYPE_BM:
2380 user_area_size = 96; // base size for strings (total of 48 characters)
2381 break;
2382 case TYPE_2232C:
2383 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2384 break;
2385 case TYPE_R:
2386 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2387 break;
2388 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2389 case TYPE_4232H:
2390 user_area_size = 86;
2391 break;
2392 case TYPE_232H:
2393 user_area_size = 80;
2394 break;
2395 default:
2396 user_area_size = 0;
2397 break;
2398 }
2399 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2400
2401 if (user_area_size < 0)
2402 ftdi_error_return(-1,"eeprom size exceeded");
2403
2404 // empty eeprom
2405 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2406
2407 // Bytes and Bits set for all Types
2408
2409 // Addr 02: Vendor ID
2410 output[0x02] = eeprom->vendor_id;
2411 output[0x03] = eeprom->vendor_id >> 8;
2412
2413 // Addr 04: Product ID
2414 output[0x04] = eeprom->product_id;
2415 output[0x05] = eeprom->product_id >> 8;
2416
2417 // Addr 06: Device release number (0400h for BM features)
2418 output[0x06] = 0x00;
2419 switch (ftdi->type)
2420 {
2421 case TYPE_AM:
2422 output[0x07] = 0x02;
2423 break;
2424 case TYPE_BM:
2425 output[0x07] = 0x04;
2426 break;
2427 case TYPE_2232C:
2428 output[0x07] = 0x05;
2429 break;
2430 case TYPE_R:
2431 output[0x07] = 0x06;
2432 break;
2433 case TYPE_2232H:
2434 output[0x07] = 0x07;
2435 break;
2436 case TYPE_4232H:
2437 output[0x07] = 0x08;
2438 break;
2439 case TYPE_232H:
2440 output[0x07] = 0x09;
2441 break;
2442 default:
2443 output[0x07] = 0x00;
2444 }
2445
2446 // Addr 08: Config descriptor
2447 // Bit 7: always 1
2448 // Bit 6: 1 if this device is self powered, 0 if bus powered
2449 // Bit 5: 1 if this device uses remote wakeup
2450 // Bit 4-0: reserved - 0
2451 j = 0x80;
2452 if (eeprom->self_powered == 1)
2453 j |= 0x40;
2454 if (eeprom->remote_wakeup == 1)
2455 j |= 0x20;
2456 output[0x08] = j;
2457
2458 // Addr 09: Max power consumption: max power = value * 2 mA
2459 output[0x09] = eeprom->max_power>>1;
2460
2461 if (ftdi->type != TYPE_AM)
2462 {
2463 // Addr 0A: Chip configuration
2464 // Bit 7: 0 - reserved
2465 // Bit 6: 0 - reserved
2466 // Bit 5: 0 - reserved
2467 // Bit 4: 1 - Change USB version
2468 // Bit 3: 1 - Use the serial number string
2469 // Bit 2: 1 - Enable suspend pull downs for lower power
2470 // Bit 1: 1 - Out EndPoint is Isochronous
2471 // Bit 0: 1 - In EndPoint is Isochronous
2472 //
2473 j = 0;
2474 if (eeprom->in_is_isochronous == 1)
2475 j = j | 1;
2476 if (eeprom->out_is_isochronous == 1)
2477 j = j | 2;
2478 output[0x0A] = j;
2479 }
2480
2481 // Dynamic content
2482 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2483 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2484 // 0xa0 (TYPE_232H)
2485 i = 0;
2486 switch (ftdi->type)
2487 {
2488 case TYPE_232H:
2489 i += 2;
2490 case TYPE_2232H:
2491 case TYPE_4232H:
2492 i += 2;
2493 case TYPE_R:
2494 i += 2;
2495 case TYPE_2232C:
2496 i += 2;
2497 case TYPE_AM:
2498 case TYPE_BM:
2499 i += 0x94;
2500 }
2501 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2502 eeprom_size_mask = eeprom->size -1;
2503
2504 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2505 // Addr 0F: Length of manufacturer string
2506 // Output manufacturer
2507 output[0x0E] = i; // calculate offset
2508 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2509 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2510 for (j = 0; j < manufacturer_size; j++)
2511 {
2512 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2513 output[i & eeprom_size_mask] = 0x00, i++;
2514 }
2515 output[0x0F] = manufacturer_size*2 + 2;
2516
2517 // Addr 10: Offset of the product string + 0x80, calculated later
2518 // Addr 11: Length of product string
2519 output[0x10] = i | 0x80; // calculate offset
2520 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2521 output[i & eeprom_size_mask] = 0x03, i++;
2522 for (j = 0; j < product_size; j++)
2523 {
2524 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2525 output[i & eeprom_size_mask] = 0x00, i++;
2526 }
2527 output[0x11] = product_size*2 + 2;
2528
2529 // Addr 12: Offset of the serial string + 0x80, calculated later
2530 // Addr 13: Length of serial string
2531 output[0x12] = i | 0x80; // calculate offset
2532 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2533 output[i & eeprom_size_mask] = 0x03, i++;
2534 for (j = 0; j < serial_size; j++)
2535 {
2536 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2537 output[i & eeprom_size_mask] = 0x00, i++;
2538 }
2539
2540 // Legacy port name and PnP fields for FT2232 and newer chips
2541 if (ftdi->type > TYPE_BM)
2542 {
2543 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2544 i++;
2545 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2546 i++;
2547 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2548 i++;
2549 }
2550
2551 output[0x13] = serial_size*2 + 2;
2552
2553 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2554 {
2555 if (eeprom->use_serial == USE_SERIAL_NUM )
2556 output[0x0A] |= USE_SERIAL_NUM;
2557 else
2558 output[0x0A] &= ~USE_SERIAL_NUM;
2559 }
2560
2561 /* Bytes and Bits specific to (some) types
2562 Write linear, as this allows easier fixing*/
2563 switch (ftdi->type)
2564 {
2565 case TYPE_AM:
2566 break;
2567 case TYPE_BM:
2568 output[0x0C] = eeprom->usb_version & 0xff;
2569 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2570 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2571 output[0x0A] |= USE_USB_VERSION_BIT;
2572 else
2573 output[0x0A] &= ~USE_USB_VERSION_BIT;
2574
2575 break;
2576 case TYPE_2232C:
2577
2578 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
2579 if ( eeprom->channel_a_driver == DRIVER_VCP)
2580 output[0x00] |= DRIVER_VCP;
2581 else
2582 output[0x00] &= ~DRIVER_VCP;
2583
2584 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2585 output[0x00] |= HIGH_CURRENT_DRIVE;
2586 else
2587 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2588
2589 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
2590 if ( eeprom->channel_b_driver == DRIVER_VCP)
2591 output[0x01] |= DRIVER_VCP;
2592 else
2593 output[0x01] &= ~DRIVER_VCP;
2594
2595 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2596 output[0x01] |= HIGH_CURRENT_DRIVE;
2597 else
2598 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2599
2600 if (eeprom->in_is_isochronous == 1)
2601 output[0x0A] |= 0x1;
2602 else
2603 output[0x0A] &= ~0x1;
2604 if (eeprom->out_is_isochronous == 1)
2605 output[0x0A] |= 0x2;
2606 else
2607 output[0x0A] &= ~0x2;
2608 if (eeprom->suspend_pull_downs == 1)
2609 output[0x0A] |= 0x4;
2610 else
2611 output[0x0A] &= ~0x4;
2612 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2613 output[0x0A] |= USE_USB_VERSION_BIT;
2614 else
2615 output[0x0A] &= ~USE_USB_VERSION_BIT;
2616
2617 output[0x0C] = eeprom->usb_version & 0xff;
2618 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2619 output[0x14] = eeprom->chip;
2620 break;
2621 case TYPE_R:
2622 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2623 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2624 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2625
2626 if (eeprom->suspend_pull_downs == 1)
2627 output[0x0A] |= 0x4;
2628 else
2629 output[0x0A] &= ~0x4;
2630 output[0x0B] = eeprom->invert;
2631 output[0x0C] = eeprom->usb_version & 0xff;
2632 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2633
2634 if (eeprom->cbus_function[0] > CBUS_BB)
2635 output[0x14] = CBUS_TXLED;
2636 else
2637 output[0x14] = eeprom->cbus_function[0];
2638
2639 if (eeprom->cbus_function[1] > CBUS_BB)
2640 output[0x14] |= CBUS_RXLED<<4;
2641 else
2642 output[0x14] |= eeprom->cbus_function[1]<<4;
2643
2644 if (eeprom->cbus_function[2] > CBUS_BB)
2645 output[0x15] = CBUS_TXDEN;
2646 else
2647 output[0x15] = eeprom->cbus_function[2];
2648
2649 if (eeprom->cbus_function[3] > CBUS_BB)
2650 output[0x15] |= CBUS_PWREN<<4;
2651 else
2652 output[0x15] |= eeprom->cbus_function[3]<<4;
2653
2654 if (eeprom->cbus_function[4] > CBUS_CLK6)
2655 output[0x16] = CBUS_SLEEP;
2656 else
2657 output[0x16] = eeprom->cbus_function[4];
2658 break;
2659 case TYPE_2232H:
2660 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
2661 if ( eeprom->channel_a_driver == DRIVER_VCP)
2662 output[0x00] |= DRIVER_VCP;
2663 else
2664 output[0x00] &= ~DRIVER_VCP;
2665
2666 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
2667 if ( eeprom->channel_b_driver == DRIVER_VCP)
2668 output[0x01] |= DRIVER_VCP;
2669 else
2670 output[0x01] &= ~DRIVER_VCP;
2671 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2672 output[0x01] |= SUSPEND_DBUS7_BIT;
2673 else
2674 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2675
2676 if (eeprom->suspend_pull_downs == 1)
2677 output[0x0A] |= 0x4;
2678 else
2679 output[0x0A] &= ~0x4;
2680
2681 if (eeprom->group0_drive > DRIVE_16MA)
2682 output[0x0c] |= DRIVE_16MA;
2683 else
2684 output[0x0c] |= eeprom->group0_drive;
2685 if (eeprom->group0_schmitt == IS_SCHMITT)
2686 output[0x0c] |= IS_SCHMITT;
2687 if (eeprom->group0_slew == SLOW_SLEW)
2688 output[0x0c] |= SLOW_SLEW;
2689
2690 if (eeprom->group1_drive > DRIVE_16MA)
2691 output[0x0c] |= DRIVE_16MA<<4;
2692 else
2693 output[0x0c] |= eeprom->group1_drive<<4;
2694 if (eeprom->group1_schmitt == IS_SCHMITT)
2695 output[0x0c] |= IS_SCHMITT<<4;
2696 if (eeprom->group1_slew == SLOW_SLEW)
2697 output[0x0c] |= SLOW_SLEW<<4;
2698
2699 if (eeprom->group2_drive > DRIVE_16MA)
2700 output[0x0d] |= DRIVE_16MA;
2701 else
2702 output[0x0d] |= eeprom->group2_drive;
2703 if (eeprom->group2_schmitt == IS_SCHMITT)
2704 output[0x0d] |= IS_SCHMITT;
2705 if (eeprom->group2_slew == SLOW_SLEW)
2706 output[0x0d] |= SLOW_SLEW;
2707
2708 if (eeprom->group3_drive > DRIVE_16MA)
2709 output[0x0d] |= DRIVE_16MA<<4;
2710 else
2711 output[0x0d] |= eeprom->group3_drive<<4;
2712 if (eeprom->group3_schmitt == IS_SCHMITT)
2713 output[0x0d] |= IS_SCHMITT<<4;
2714 if (eeprom->group3_slew == SLOW_SLEW)
2715 output[0x0d] |= SLOW_SLEW<<4;
2716
2717 output[0x18] = eeprom->chip;
2718
2719 break;
2720 case TYPE_4232H:
2721 output[0x18] = eeprom->chip;
2722 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
2723 break;
2724 case TYPE_232H:
2725 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
2726 if ( eeprom->channel_a_driver == DRIVER_VCP)
2727 output[0x00] |= DRIVER_VCPH;
2728 else
2729 output[0x00] &= ~DRIVER_VCPH;
2730 if (eeprom->powersave)
2731 output[0x01] |= POWER_SAVE_DISABLE_H;
2732 else
2733 output[0x01] &= ~POWER_SAVE_DISABLE_H;
2734 if (eeprom->clock_polarity)
2735 output[0x01] |= FT1284_CLK_IDLE_STATE;
2736 else
2737 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
2738 if (eeprom->data_order)
2739 output[0x01] |= FT1284_DATA_LSB;
2740 else
2741 output[0x01] &= ~FT1284_DATA_LSB;
2742 if (eeprom->flow_control)
2743 output[0x01] |= FT1284_FLOW_CONTROL;
2744 else
2745 output[0x01] &= ~FT1284_FLOW_CONTROL;
2746 if (eeprom->group0_drive > DRIVE_16MA)
2747 output[0x0c] |= DRIVE_16MA;
2748 else
2749 output[0x0c] |= eeprom->group0_drive;
2750 if (eeprom->group0_schmitt == IS_SCHMITT)
2751 output[0x0c] |= IS_SCHMITT;
2752 if (eeprom->group0_slew == SLOW_SLEW)
2753 output[0x0c] |= SLOW_SLEW;
2754
2755 if (eeprom->group1_drive > DRIVE_16MA)
2756 output[0x0d] |= DRIVE_16MA;
2757 else
2758 output[0x0d] |= eeprom->group1_drive;
2759 if (eeprom->group1_schmitt == IS_SCHMITT)
2760 output[0x0d] |= IS_SCHMITT;
2761 if (eeprom->group1_slew == SLOW_SLEW)
2762 output[0x0d] |= SLOW_SLEW;
2763
2764 set_ft232h_cbus(eeprom, output);
2765
2766 output[0x1e] = eeprom->chip;
2767 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
2768 break;
2769
2770 }
2771
2772 // calculate checksum
2773 checksum = 0xAAAA;
2774
2775 for (i = 0; i < eeprom->size/2-1; i++)
2776 {
2777 value = output[i*2];
2778 value += output[(i*2)+1] << 8;
2779
2780 checksum = value^checksum;
2781 checksum = (checksum << 1) | (checksum >> 15);
2782 }
2783
2784 output[eeprom->size-2] = checksum;
2785 output[eeprom->size-1] = checksum >> 8;
2786
2787 return user_area_size;
2788}
2789/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
2790 * EEPROM structure
2791 *
2792 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
2793 */
2794static unsigned char bit2type(unsigned char bits)
2795{
2796 switch (bits)
2797 {
2798 case 0: return CHANNEL_IS_UART;
2799 case 1: return CHANNEL_IS_FIFO;
2800 case 2: return CHANNEL_IS_OPTO;
2801 case 4: return CHANNEL_IS_CPU;
2802 case 8: return CHANNEL_IS_FT1284;
2803 default:
2804 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
2805 bits);
2806 }
2807 return 0;
2808}
2809/**
2810 Decode binary EEPROM image into an ftdi_eeprom structure.
2811
2812 \param ftdi pointer to ftdi_context
2813 \param verbose Decode EEPROM on stdout
2814
2815 \retval 0: all fine
2816 \retval -1: something went wrong
2817
2818 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2819 FIXME: Strings are malloc'ed here and should be freed somewhere
2820*/
2821int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2822{
2823 unsigned char i, j;
2824 unsigned short checksum, eeprom_checksum, value;
2825 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2826 int eeprom_size;
2827 struct ftdi_eeprom *eeprom;
2828 unsigned char *buf = ftdi->eeprom->buf;
2829 int release;
2830
2831 if (ftdi == NULL)
2832 ftdi_error_return(-1,"No context");
2833 if (ftdi->eeprom == NULL)
2834 ftdi_error_return(-1,"No eeprom structure");
2835
2836 eeprom = ftdi->eeprom;
2837 eeprom_size = eeprom->size;
2838
2839 // Addr 02: Vendor ID
2840 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2841
2842 // Addr 04: Product ID
2843 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2844
2845 release = buf[0x06] + (buf[0x07]<<8);
2846
2847 // Addr 08: Config descriptor
2848 // Bit 7: always 1
2849 // Bit 6: 1 if this device is self powered, 0 if bus powered
2850 // Bit 5: 1 if this device uses remote wakeup
2851 eeprom->self_powered = buf[0x08] & 0x40;
2852 eeprom->remote_wakeup = buf[0x08] & 0x20;
2853
2854 // Addr 09: Max power consumption: max power = value * 2 mA
2855 eeprom->max_power = buf[0x09];
2856
2857 // Addr 0A: Chip configuration
2858 // Bit 7: 0 - reserved
2859 // Bit 6: 0 - reserved
2860 // Bit 5: 0 - reserved
2861 // Bit 4: 1 - Change USB version on BM and 2232C
2862 // Bit 3: 1 - Use the serial number string
2863 // Bit 2: 1 - Enable suspend pull downs for lower power
2864 // Bit 1: 1 - Out EndPoint is Isochronous
2865 // Bit 0: 1 - In EndPoint is Isochronous
2866 //
2867 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2868 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2869 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2870 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
2871 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
2872
2873 // Addr 0C: USB version low byte when 0x0A
2874 // Addr 0D: USB version high byte when 0x0A
2875 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2876
2877 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2878 // Addr 0F: Length of manufacturer string
2879 manufacturer_size = buf[0x0F]/2;
2880 if (eeprom->manufacturer)
2881 free(eeprom->manufacturer);
2882 if (manufacturer_size > 0)
2883 {
2884 eeprom->manufacturer = malloc(manufacturer_size);
2885 if (eeprom->manufacturer)
2886 {
2887 // Decode manufacturer
2888 i = buf[0x0E] & (eeprom_size -1); // offset
2889 for (j=0;j<manufacturer_size-1;j++)
2890 {
2891 eeprom->manufacturer[j] = buf[2*j+i+2];
2892 }
2893 eeprom->manufacturer[j] = '\0';
2894 }
2895 }
2896 else eeprom->manufacturer = NULL;
2897
2898 // Addr 10: Offset of the product string + 0x80, calculated later
2899 // Addr 11: Length of product string
2900 if (eeprom->product)
2901 free(eeprom->product);
2902 product_size = buf[0x11]/2;
2903 if (product_size > 0)
2904 {
2905 eeprom->product = malloc(product_size);
2906 if (eeprom->product)
2907 {
2908 // Decode product name
2909 i = buf[0x10] & (eeprom_size -1); // offset
2910 for (j=0;j<product_size-1;j++)
2911 {
2912 eeprom->product[j] = buf[2*j+i+2];
2913 }
2914 eeprom->product[j] = '\0';
2915 }
2916 }
2917 else eeprom->product = NULL;
2918
2919 // Addr 12: Offset of the serial string + 0x80, calculated later
2920 // Addr 13: Length of serial string
2921 if (eeprom->serial)
2922 free(eeprom->serial);
2923 serial_size = buf[0x13]/2;
2924 if (serial_size > 0)
2925 {
2926 eeprom->serial = malloc(serial_size);
2927 if (eeprom->serial)
2928 {
2929 // Decode serial
2930 i = buf[0x12] & (eeprom_size -1); // offset
2931 for (j=0;j<serial_size-1;j++)
2932 {
2933 eeprom->serial[j] = buf[2*j+i+2];
2934 }
2935 eeprom->serial[j] = '\0';
2936 }
2937 }
2938 else eeprom->serial = NULL;
2939
2940 // verify checksum
2941 checksum = 0xAAAA;
2942
2943 for (i = 0; i < eeprom_size/2-1; i++)
2944 {
2945 value = buf[i*2];
2946 value += buf[(i*2)+1] << 8;
2947
2948 checksum = value^checksum;
2949 checksum = (checksum << 1) | (checksum >> 15);
2950 }
2951
2952 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2953
2954 if (eeprom_checksum != checksum)
2955 {
2956 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2957 ftdi_error_return(-1,"EEPROM checksum error");
2958 }
2959
2960 eeprom->channel_a_type = 0;
2961 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
2962 {
2963 eeprom->chip = -1;
2964 }
2965 else if (ftdi->type == TYPE_2232C)
2966 {
2967 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2968 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2969 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2970 eeprom->channel_b_type = buf[0x01] & 0x7;
2971 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2972 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
2973 eeprom->chip = buf[0x14];
2974 }
2975 else if (ftdi->type == TYPE_R)
2976 {
2977 /* TYPE_R flags D2XX, not VCP as all others*/
2978 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2979 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2980 if ( (buf[0x01]&0x40) != 0x40)
2981 fprintf(stderr,
2982 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2983 " If this happened with the\n"
2984 " EEPROM programmed by FTDI tools, please report "
2985 "to libftdi@developer.intra2net.com\n");
2986
2987 eeprom->chip = buf[0x16];
2988 // Addr 0B: Invert data lines
2989 // Works only on FT232R, not FT245R, but no way to distinguish
2990 eeprom->invert = buf[0x0B];
2991 // Addr 14: CBUS function: CBUS0, CBUS1
2992 // Addr 15: CBUS function: CBUS2, CBUS3
2993 // Addr 16: CBUS function: CBUS5
2994 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2995 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2996 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2997 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2998 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
2999 }
3000 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
3001 {
3002 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3003 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3004 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3005 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3006
3007 if (ftdi->type == TYPE_2232H)
3008 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
3009
3010 eeprom->chip = buf[0x18];
3011 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3012 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3013 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3014 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3015 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3016 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3017 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3018 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3019 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3020 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3021 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3022 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
3023 }
3024 else if (ftdi->type == TYPE_232H)
3025 {
3026 int i;
3027
3028 eeprom->channel_a_type = buf[0x00] & 0xf;
3029 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
3030 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3031 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3032 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
3033 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
3034 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3035 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3036 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3037 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3038 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3039 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3040
3041 for(i=0; i<5; i++)
3042 {
3043 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3044 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3045 }
3046 eeprom->chip = buf[0x1e];
3047 /*FIXME: Decipher more values*/
3048 }
3049
3050 if (verbose)
3051 {
3052 char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3053 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3054 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3055 fprintf(stdout, "Release: 0x%04x\n",release);
3056
3057 if (eeprom->self_powered)
3058 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3059 else
3060 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
3061 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3062 if (eeprom->manufacturer)
3063 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3064 if (eeprom->product)
3065 fprintf(stdout, "Product: %s\n",eeprom->product);
3066 if (eeprom->serial)
3067 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3068 fprintf(stdout, "Checksum : %04x\n", checksum);
3069 if (ftdi->type == TYPE_R)
3070 fprintf(stdout, "Internal EEPROM\n");
3071 else if (eeprom->chip >= 0x46)
3072 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3073 if (eeprom->suspend_dbus7)
3074 fprintf(stdout, "Suspend on DBUS7\n");
3075 if (eeprom->suspend_pull_downs)
3076 fprintf(stdout, "Pull IO pins low during suspend\n");
3077 if(eeprom->powersave)
3078 {
3079 if(ftdi->type >= TYPE_232H)
3080 fprintf(stdout,"Enter low power state on ACBUS7\n");
3081 }
3082 if (eeprom->remote_wakeup)
3083 fprintf(stdout, "Enable Remote Wake Up\n");
3084 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3085 if (ftdi->type >= TYPE_2232C)
3086 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3087 channel_mode[eeprom->channel_a_type],
3088 (eeprom->channel_a_driver)?" VCP":"",
3089 (eeprom->high_current_a)?" High Current IO":"");
3090 if (ftdi->type >= TYPE_232H)
3091 {
3092 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3093 (eeprom->clock_polarity)?"HIGH":"LOW",
3094 (eeprom->data_order)?"LSB":"MSB",
3095 (eeprom->flow_control)?"":"No ");
3096 }
3097 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
3098 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3099 channel_mode[eeprom->channel_b_type],
3100 (eeprom->channel_b_driver)?" VCP":"",
3101 (eeprom->high_current_b)?" High Current IO":"");
3102 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3103 eeprom->use_usb_version == USE_USB_VERSION_BIT)
3104 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3105
3106 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3107 {
3108 fprintf(stdout,"%s has %d mA drive%s%s\n",
3109 (ftdi->type == TYPE_2232H)?"AL":"A",
3110 (eeprom->group0_drive+1) *4,
3111 (eeprom->group0_schmitt)?" Schmitt Input":"",
3112 (eeprom->group0_slew)?" Slow Slew":"");
3113 fprintf(stdout,"%s has %d mA drive%s%s\n",
3114 (ftdi->type == TYPE_2232H)?"AH":"B",
3115 (eeprom->group1_drive+1) *4,
3116 (eeprom->group1_schmitt)?" Schmitt Input":"",
3117 (eeprom->group1_slew)?" Slow Slew":"");
3118 fprintf(stdout,"%s has %d mA drive%s%s\n",
3119 (ftdi->type == TYPE_2232H)?"BL":"C",
3120 (eeprom->group2_drive+1) *4,
3121 (eeprom->group2_schmitt)?" Schmitt Input":"",
3122 (eeprom->group2_slew)?" Slow Slew":"");
3123 fprintf(stdout,"%s has %d mA drive%s%s\n",
3124 (ftdi->type == TYPE_2232H)?"BH":"D",
3125 (eeprom->group3_drive+1) *4,
3126 (eeprom->group3_schmitt)?" Schmitt Input":"",
3127 (eeprom->group3_slew)?" Slow Slew":"");
3128 }
3129 else if (ftdi->type == TYPE_232H)
3130 {
3131 int i;
3132 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3133 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3134 "CLK30","CLK15","CLK7_5"
3135 };
3136 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3137 (eeprom->group0_drive+1) *4,
3138 (eeprom->group0_schmitt)?" Schmitt Input":"",
3139 (eeprom->group0_slew)?" Slow Slew":"");
3140 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3141 (eeprom->group1_drive+1) *4,
3142 (eeprom->group1_schmitt)?" Schmitt Input":"",
3143 (eeprom->group1_slew)?" Slow Slew":"");
3144 for (i=0; i<10; i++)
3145 {
3146 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3147 fprintf(stdout,"C%d Function: %s\n", i,
3148 cbush_mux[eeprom->cbus_function[i]]);
3149 }
3150
3151 }
3152
3153 if (ftdi->type == TYPE_R)
3154 {
3155 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3156 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3157 "IOMODE","BB_WR","BB_RD"
3158 };
3159 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3160
3161 if (eeprom->invert)
3162 {
3163 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3164 fprintf(stdout,"Inverted bits:");
3165 for (i=0; i<8; i++)
3166 if ((eeprom->invert & (1<<i)) == (1<<i))
3167 fprintf(stdout," %s",r_bits[i]);
3168 fprintf(stdout,"\n");
3169 }
3170 for (i=0; i<5; i++)
3171 {
3172 if (eeprom->cbus_function[i]<CBUS_BB)
3173 fprintf(stdout,"C%d Function: %s\n", i,
3174 cbus_mux[eeprom->cbus_function[i]]);
3175 else
3176 {
3177 if (i < 4)
3178 /* Running MPROG show that C0..3 have fixed function Synchronous
3179 Bit Bang mode */
3180 fprintf(stdout,"C%d BB Function: %s\n", i,
3181 cbus_BB[i]);
3182 else
3183 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3184 }
3185 }
3186 }
3187 }
3188 return 0;
3189}
3190
3191/**
3192 Get a value from the decoded EEPROM structure
3193
3194 \param ftdi pointer to ftdi_context
3195 \param value_name Enum of the value to query
3196 \param value Pointer to store read value
3197
3198 \retval 0: all fine
3199 \retval -1: Value doesn't exist
3200*/
3201int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3202{
3203 switch (value_name)
3204 {
3205 case VENDOR_ID:
3206 *value = ftdi->eeprom->vendor_id;
3207 break;
3208 case PRODUCT_ID:
3209 *value = ftdi->eeprom->product_id;
3210 break;
3211 case SELF_POWERED:
3212 *value = ftdi->eeprom->self_powered;
3213 break;
3214 case REMOTE_WAKEUP:
3215 *value = ftdi->eeprom->remote_wakeup;
3216 break;
3217 case IS_NOT_PNP:
3218 *value = ftdi->eeprom->is_not_pnp;
3219 break;
3220 case SUSPEND_DBUS7:
3221 *value = ftdi->eeprom->suspend_dbus7;
3222 break;
3223 case IN_IS_ISOCHRONOUS:
3224 *value = ftdi->eeprom->in_is_isochronous;
3225 break;
3226 case OUT_IS_ISOCHRONOUS:
3227 *value = ftdi->eeprom->out_is_isochronous;
3228 break;
3229 case SUSPEND_PULL_DOWNS:
3230 *value = ftdi->eeprom->suspend_pull_downs;
3231 break;
3232 case USE_SERIAL:
3233 *value = ftdi->eeprom->use_serial;
3234 break;
3235 case USB_VERSION:
3236 *value = ftdi->eeprom->usb_version;
3237 break;
3238 case USE_USB_VERSION:
3239 *value = ftdi->eeprom->use_usb_version;
3240 break;
3241 case MAX_POWER:
3242 *value = ftdi->eeprom->max_power;
3243 break;
3244 case CHANNEL_A_TYPE:
3245 *value = ftdi->eeprom->channel_a_type;
3246 break;
3247 case CHANNEL_B_TYPE:
3248 *value = ftdi->eeprom->channel_b_type;
3249 break;
3250 case CHANNEL_A_DRIVER:
3251 *value = ftdi->eeprom->channel_a_driver;
3252 break;
3253 case CHANNEL_B_DRIVER:
3254 *value = ftdi->eeprom->channel_b_driver;
3255 break;
3256 case CBUS_FUNCTION_0:
3257 *value = ftdi->eeprom->cbus_function[0];
3258 break;
3259 case CBUS_FUNCTION_1:
3260 *value = ftdi->eeprom->cbus_function[1];
3261 break;
3262 case CBUS_FUNCTION_2:
3263 *value = ftdi->eeprom->cbus_function[2];
3264 break;
3265 case CBUS_FUNCTION_3:
3266 *value = ftdi->eeprom->cbus_function[3];
3267 break;
3268 case CBUS_FUNCTION_4:
3269 *value = ftdi->eeprom->cbus_function[4];
3270 break;
3271 case CBUS_FUNCTION_5:
3272 *value = ftdi->eeprom->cbus_function[5];
3273 break;
3274 case CBUS_FUNCTION_6:
3275 *value = ftdi->eeprom->cbus_function[6];
3276 break;
3277 case CBUS_FUNCTION_7:
3278 *value = ftdi->eeprom->cbus_function[7];
3279 break;
3280 case CBUS_FUNCTION_8:
3281 *value = ftdi->eeprom->cbus_function[8];
3282 break;
3283 case CBUS_FUNCTION_9:
3284 *value = ftdi->eeprom->cbus_function[8];
3285 break;
3286 case HIGH_CURRENT:
3287 *value = ftdi->eeprom->high_current;
3288 break;
3289 case HIGH_CURRENT_A:
3290 *value = ftdi->eeprom->high_current_a;
3291 break;
3292 case HIGH_CURRENT_B:
3293 *value = ftdi->eeprom->high_current_b;
3294 break;
3295 case INVERT:
3296 *value = ftdi->eeprom->invert;
3297 break;
3298 case GROUP0_DRIVE:
3299 *value = ftdi->eeprom->group0_drive;
3300 break;
3301 case GROUP0_SCHMITT:
3302 *value = ftdi->eeprom->group0_schmitt;
3303 break;
3304 case GROUP0_SLEW:
3305 *value = ftdi->eeprom->group0_slew;
3306 break;
3307 case GROUP1_DRIVE:
3308 *value = ftdi->eeprom->group1_drive;
3309 break;
3310 case GROUP1_SCHMITT:
3311 *value = ftdi->eeprom->group1_schmitt;
3312 break;
3313 case GROUP1_SLEW:
3314 *value = ftdi->eeprom->group1_slew;
3315 break;
3316 case GROUP2_DRIVE:
3317 *value = ftdi->eeprom->group2_drive;
3318 break;
3319 case GROUP2_SCHMITT:
3320 *value = ftdi->eeprom->group2_schmitt;
3321 break;
3322 case GROUP2_SLEW:
3323 *value = ftdi->eeprom->group2_slew;
3324 break;
3325 case GROUP3_DRIVE:
3326 *value = ftdi->eeprom->group3_drive;
3327 break;
3328 case GROUP3_SCHMITT:
3329 *value = ftdi->eeprom->group3_schmitt;
3330 break;
3331 case GROUP3_SLEW:
3332 *value = ftdi->eeprom->group3_slew;
3333 break;
3334 case POWER_SAVE:
3335 *value = ftdi->eeprom->powersave;
3336 break;
3337 case CLOCK_POLARITY:
3338 *value = ftdi->eeprom->clock_polarity;
3339 break;
3340 case DATA_ORDER:
3341 *value = ftdi->eeprom->data_order;
3342 break;
3343 case FLOW_CONTROL:
3344 *value = ftdi->eeprom->flow_control;
3345 break;
3346 case CHIP_TYPE:
3347 *value = ftdi->eeprom->chip;
3348 break;
3349 case CHIP_SIZE:
3350 *value = ftdi->eeprom->size;
3351 break;
3352 default:
3353 ftdi_error_return(-1, "Request for unknown EEPROM value");
3354 }
3355 return 0;
3356}
3357
3358/**
3359 Set a value in the decoded EEPROM Structure
3360 No parameter checking is performed
3361
3362 \param ftdi pointer to ftdi_context
3363 \param value_name Enum of the value to set
3364 \param value to set
3365
3366 \retval 0: all fine
3367 \retval -1: Value doesn't exist
3368 \retval -2: Value not user settable
3369*/
3370int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3371{
3372 switch (value_name)
3373 {
3374 case VENDOR_ID:
3375 ftdi->eeprom->vendor_id = value;
3376 break;
3377 case PRODUCT_ID:
3378 ftdi->eeprom->product_id = value;
3379 break;
3380 case SELF_POWERED:
3381 ftdi->eeprom->self_powered = value;
3382 break;
3383 case REMOTE_WAKEUP:
3384 ftdi->eeprom->remote_wakeup = value;
3385 break;
3386 case IS_NOT_PNP:
3387 ftdi->eeprom->is_not_pnp = value;
3388 break;
3389 case SUSPEND_DBUS7:
3390 ftdi->eeprom->suspend_dbus7 = value;
3391 break;
3392 case IN_IS_ISOCHRONOUS:
3393 ftdi->eeprom->in_is_isochronous = value;
3394 break;
3395 case OUT_IS_ISOCHRONOUS:
3396 ftdi->eeprom->out_is_isochronous = value;
3397 break;
3398 case SUSPEND_PULL_DOWNS:
3399 ftdi->eeprom->suspend_pull_downs = value;
3400 break;
3401 case USE_SERIAL:
3402 ftdi->eeprom->use_serial = value;
3403 break;
3404 case USB_VERSION:
3405 ftdi->eeprom->usb_version = value;
3406 break;
3407 case USE_USB_VERSION:
3408 ftdi->eeprom->use_usb_version = value;
3409 break;
3410 case MAX_POWER:
3411 ftdi->eeprom->max_power = value;
3412 break;
3413 case CHANNEL_A_TYPE:
3414 ftdi->eeprom->channel_a_type = value;
3415 break;
3416 case CHANNEL_B_TYPE:
3417 ftdi->eeprom->channel_b_type = value;
3418 break;
3419 case CHANNEL_A_DRIVER:
3420 ftdi->eeprom->channel_a_driver = value;
3421 break;
3422 case CHANNEL_B_DRIVER:
3423 ftdi->eeprom->channel_b_driver = value;
3424 break;
3425 case CBUS_FUNCTION_0:
3426 ftdi->eeprom->cbus_function[0] = value;
3427 break;
3428 case CBUS_FUNCTION_1:
3429 ftdi->eeprom->cbus_function[1] = value;
3430 break;
3431 case CBUS_FUNCTION_2:
3432 ftdi->eeprom->cbus_function[2] = value;
3433 break;
3434 case CBUS_FUNCTION_3:
3435 ftdi->eeprom->cbus_function[3] = value;
3436 break;
3437 case CBUS_FUNCTION_4:
3438 ftdi->eeprom->cbus_function[4] = value;
3439 break;
3440 case CBUS_FUNCTION_5:
3441 ftdi->eeprom->cbus_function[5] = value;
3442 break;
3443 case CBUS_FUNCTION_6:
3444 ftdi->eeprom->cbus_function[6] = value;
3445 break;
3446 case CBUS_FUNCTION_7:
3447 ftdi->eeprom->cbus_function[7] = value;
3448 break;
3449 case CBUS_FUNCTION_8:
3450 ftdi->eeprom->cbus_function[8] = value;
3451 break;
3452 case CBUS_FUNCTION_9:
3453 ftdi->eeprom->cbus_function[9] = value;
3454 break;
3455 case HIGH_CURRENT:
3456 ftdi->eeprom->high_current = value;
3457 break;
3458 case HIGH_CURRENT_A:
3459 ftdi->eeprom->high_current_a = value;
3460 break;
3461 case HIGH_CURRENT_B:
3462 ftdi->eeprom->high_current_b = value;
3463 break;
3464 case INVERT:
3465 ftdi->eeprom->invert = value;
3466 break;
3467 case GROUP0_DRIVE:
3468 ftdi->eeprom->group0_drive = value;
3469 break;
3470 case GROUP0_SCHMITT:
3471 ftdi->eeprom->group0_schmitt = value;
3472 break;
3473 case GROUP0_SLEW:
3474 ftdi->eeprom->group0_slew = value;
3475 break;
3476 case GROUP1_DRIVE:
3477 ftdi->eeprom->group1_drive = value;
3478 break;
3479 case GROUP1_SCHMITT:
3480 ftdi->eeprom->group1_schmitt = value;
3481 break;
3482 case GROUP1_SLEW:
3483 ftdi->eeprom->group1_slew = value;
3484 break;
3485 case GROUP2_DRIVE:
3486 ftdi->eeprom->group2_drive = value;
3487 break;
3488 case GROUP2_SCHMITT:
3489 ftdi->eeprom->group2_schmitt = value;
3490 break;
3491 case GROUP2_SLEW:
3492 ftdi->eeprom->group2_slew = value;
3493 break;
3494 case GROUP3_DRIVE:
3495 ftdi->eeprom->group3_drive = value;
3496 break;
3497 case GROUP3_SCHMITT:
3498 ftdi->eeprom->group3_schmitt = value;
3499 break;
3500 case GROUP3_SLEW:
3501 ftdi->eeprom->group3_slew = value;
3502 break;
3503 case CHIP_TYPE:
3504 ftdi->eeprom->chip = value;
3505 break;
3506 case POWER_SAVE:
3507 ftdi->eeprom->powersave = value;
3508 break;
3509 case CLOCK_POLARITY:
3510 ftdi->eeprom->clock_polarity = value;
3511 break;
3512 case DATA_ORDER:
3513 ftdi->eeprom->data_order = value;
3514 break;
3515 case FLOW_CONTROL:
3516 ftdi->eeprom->flow_control = value;
3517 break;
3518 case CHIP_SIZE:
3519 ftdi_error_return(-2, "EEPROM Value can't be changed");
3520 default :
3521 ftdi_error_return(-1, "Request to unknown EEPROM value");
3522 }
3523 return 0;
3524}
3525
3526/** Get the read-only buffer to the binary EEPROM content
3527
3528 \param ftdi pointer to ftdi_context
3529 \param buf buffer to receive EEPROM content
3530 \param size Size of receiving buffer
3531
3532 \retval 0: All fine
3533 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3534 \retval -2: Not enough room to store eeprom
3535*/
3536int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3537{
3538 if (!ftdi || !(ftdi->eeprom))
3539 ftdi_error_return(-1, "No appropriate structure");
3540
3541 if (!buf || size < ftdi->eeprom->size)
3542 ftdi_error_return(-1, "Not enough room to store eeprom");
3543
3544 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3545 if (size > FTDI_MAX_EEPROM_SIZE)
3546 size = FTDI_MAX_EEPROM_SIZE;
3547
3548 memcpy(buf, ftdi->eeprom->buf, size);
3549
3550 return 0;
3551}
3552
3553/** Set the EEPROM content from the user-supplied prefilled buffer
3554
3555 \param ftdi pointer to ftdi_context
3556 \param buf buffer to read EEPROM content
3557 \param size Size of buffer
3558
3559 \retval 0: All fine
3560 \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing
3561*/
3562int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
3563{
3564 if (!ftdi || !(ftdi->eeprom) || !buf)
3565 ftdi_error_return(-1, "No appropriate structure");
3566
3567 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3568 if (size > FTDI_MAX_EEPROM_SIZE)
3569 size = FTDI_MAX_EEPROM_SIZE;
3570
3571 memcpy(ftdi->eeprom->buf, buf, size);
3572
3573 return 0;
3574}
3575
3576/**
3577 Read eeprom location
3578
3579 \param ftdi pointer to ftdi_context
3580 \param eeprom_addr Address of eeprom location to be read
3581 \param eeprom_val Pointer to store read eeprom location
3582
3583 \retval 0: all fine
3584 \retval -1: read failed
3585 \retval -2: USB device unavailable
3586*/
3587int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3588{
3589 if (ftdi == NULL || ftdi->usb_dev == NULL)
3590 ftdi_error_return(-2, "USB device unavailable");
3591
3592 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3593 ftdi_error_return(-1, "reading eeprom failed");
3594
3595 return 0;
3596}
3597
3598/**
3599 Read eeprom
3600
3601 \param ftdi pointer to ftdi_context
3602
3603 \retval 0: all fine
3604 \retval -1: read failed
3605 \retval -2: USB device unavailable
3606*/
3607int ftdi_read_eeprom(struct ftdi_context *ftdi)
3608{
3609 int i;
3610 unsigned char *buf;
3611
3612 if (ftdi == NULL || ftdi->usb_dev == NULL)
3613 ftdi_error_return(-2, "USB device unavailable");
3614 buf = ftdi->eeprom->buf;
3615
3616 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
3617 {
3618 if (libusb_control_transfer(
3619 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3620 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
3621 ftdi_error_return(-1, "reading eeprom failed");
3622 }
3623
3624 if (ftdi->type == TYPE_R)
3625 ftdi->eeprom->size = 0x80;
3626 /* Guesses size of eeprom by comparing halves
3627 - will not work with blank eeprom */
3628 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3629 ftdi->eeprom->size = -1;
3630 else if (memcmp(buf,&buf[0x80],0x80) == 0)
3631 ftdi->eeprom->size = 0x80;
3632 else if (memcmp(buf,&buf[0x40],0x40) == 0)
3633 ftdi->eeprom->size = 0x40;
3634 else
3635 ftdi->eeprom->size = 0x100;
3636 return 0;
3637}
3638
3639/*
3640 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3641 Function is only used internally
3642 \internal
3643*/
3644static unsigned char ftdi_read_chipid_shift(unsigned char value)
3645{
3646 return ((value & 1) << 1) |
3647 ((value & 2) << 5) |
3648 ((value & 4) >> 2) |
3649 ((value & 8) << 4) |
3650 ((value & 16) >> 1) |
3651 ((value & 32) >> 1) |
3652 ((value & 64) >> 4) |
3653 ((value & 128) >> 2);
3654}
3655
3656/**
3657 Read the FTDIChip-ID from R-type devices
3658
3659 \param ftdi pointer to ftdi_context
3660 \param chipid Pointer to store FTDIChip-ID
3661
3662 \retval 0: all fine
3663 \retval -1: read failed
3664 \retval -2: USB device unavailable
3665*/
3666int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3667{
3668 unsigned int a = 0, b = 0;
3669
3670 if (ftdi == NULL || ftdi->usb_dev == NULL)
3671 ftdi_error_return(-2, "USB device unavailable");
3672
3673 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3674 {
3675 a = a << 8 | a >> 8;
3676 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3677 {
3678 b = b << 8 | b >> 8;
3679 a = (a << 16) | (b & 0xFFFF);
3680 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3681 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3682 *chipid = a ^ 0xa5f0f7d1;
3683 return 0;
3684 }
3685 }
3686
3687 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3688}
3689
3690/**
3691 Write eeprom location
3692
3693 \param ftdi pointer to ftdi_context
3694 \param eeprom_addr Address of eeprom location to be written
3695 \param eeprom_val Value to be written
3696
3697 \retval 0: all fine
3698 \retval -1: write failed
3699 \retval -2: USB device unavailable
3700 \retval -3: Invalid access to checksum protected area below 0x80
3701 \retval -4: Device can't access unprotected area
3702 \retval -5: Reading chip type failed
3703*/
3704int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3705 unsigned short eeprom_val)
3706{
3707 int chip_type_location;
3708 unsigned short chip_type;
3709
3710 if (ftdi == NULL || ftdi->usb_dev == NULL)
3711 ftdi_error_return(-2, "USB device unavailable");
3712
3713 if (eeprom_addr <0x80)
3714 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3715
3716
3717 switch (ftdi->type)
3718 {
3719 case TYPE_BM:
3720 case TYPE_2232C:
3721 chip_type_location = 0x14;
3722 break;
3723 case TYPE_2232H:
3724 case TYPE_4232H:
3725 chip_type_location = 0x18;
3726 break;
3727 case TYPE_232H:
3728 chip_type_location = 0x1e;
3729 break;
3730 default:
3731 ftdi_error_return(-4, "Device can't access unprotected area");
3732 }
3733
3734 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3735 ftdi_error_return(-5, "Reading failed failed");
3736 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3737 if ((chip_type & 0xff) != 0x66)
3738 {
3739 ftdi_error_return(-6, "EEPROM is not of 93x66");
3740 }
3741
3742 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3743 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3744 NULL, 0, ftdi->usb_write_timeout) != 0)
3745 ftdi_error_return(-1, "unable to write eeprom");
3746
3747 return 0;
3748}
3749
3750/**
3751 Write eeprom
3752
3753 \param ftdi pointer to ftdi_context
3754
3755 \retval 0: all fine
3756 \retval -1: read failed
3757 \retval -2: USB device unavailable
3758*/
3759int ftdi_write_eeprom(struct ftdi_context *ftdi)
3760{
3761 unsigned short usb_val, status;
3762 int i, ret;
3763 unsigned char *eeprom;
3764
3765 if (ftdi == NULL || ftdi->usb_dev == NULL)
3766 ftdi_error_return(-2, "USB device unavailable");
3767 eeprom = ftdi->eeprom->buf;
3768
3769 /* These commands were traced while running MProg */
3770 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3771 return ret;
3772 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3773 return ret;
3774 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3775 return ret;
3776
3777 for (i = 0; i < ftdi->eeprom->size/2; i++)
3778 {
3779 usb_val = eeprom[i*2];
3780 usb_val += eeprom[(i*2)+1] << 8;
3781 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3782 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3783 NULL, 0, ftdi->usb_write_timeout) < 0)
3784 ftdi_error_return(-1, "unable to write eeprom");
3785 }
3786
3787 return 0;
3788}
3789
3790/**
3791 Erase eeprom
3792
3793 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3794
3795 \param ftdi pointer to ftdi_context
3796
3797 \retval 0: all fine
3798 \retval -1: erase failed
3799 \retval -2: USB device unavailable
3800 \retval -3: Writing magic failed
3801 \retval -4: Read EEPROM failed
3802 \retval -5: Unexpected EEPROM value
3803*/
3804#define MAGIC 0x55aa
3805int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3806{
3807 unsigned short eeprom_value;
3808 if (ftdi == NULL || ftdi->usb_dev == NULL)
3809 ftdi_error_return(-2, "USB device unavailable");
3810
3811 if (ftdi->type == TYPE_R)
3812 {
3813 ftdi->eeprom->chip = 0;
3814 return 0;
3815 }
3816
3817 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3818 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3819 ftdi_error_return(-1, "unable to erase eeprom");
3820
3821
3822 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3823 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3824 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3825 Chip is 93x66 if magic is only read at word position 0xc0*/
3826 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3827 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3828 NULL, 0, ftdi->usb_write_timeout) != 0)
3829 ftdi_error_return(-3, "Writing magic failed");
3830 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3831 ftdi_error_return(-4, "Reading failed failed");
3832 if (eeprom_value == MAGIC)
3833 {
3834 ftdi->eeprom->chip = 0x46;
3835 }
3836 else
3837 {
3838 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3839 ftdi_error_return(-4, "Reading failed failed");
3840 if (eeprom_value == MAGIC)
3841 ftdi->eeprom->chip = 0x56;
3842 else
3843 {
3844 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3845 ftdi_error_return(-4, "Reading failed failed");
3846 if (eeprom_value == MAGIC)
3847 ftdi->eeprom->chip = 0x66;
3848 else
3849 {
3850 ftdi->eeprom->chip = -1;
3851 }
3852 }
3853 }
3854 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3855 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3856 ftdi_error_return(-1, "unable to erase eeprom");
3857 return 0;
3858}
3859
3860/**
3861 Get string representation for last error code
3862
3863 \param ftdi pointer to ftdi_context
3864
3865 \retval Pointer to error string
3866*/
3867char *ftdi_get_error_string (struct ftdi_context *ftdi)
3868{
3869 if (ftdi == NULL)
3870 return "";
3871
3872 return ftdi->error_str;
3873}
3874
3875/* @} end of doxygen libftdi group */