libftdi: (tomj) extended FT2232C support
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17#include <usb.h>
18#include <string.h>
19#include <sys/utsname.h>
20
21#include "ftdi.h"
22
23#define ftdi_error_return(code, str) do { \
24 ftdi->error_str = str; \
25 return code; \
26 } while(0);
27
28
29/* ftdi_init return codes:
30 0: all fine
31 -1: couldn't allocate read buffer
32*/
33int ftdi_init(struct ftdi_context *ftdi)
34{
35 ftdi->usb_dev = NULL;
36 ftdi->usb_read_timeout = 5000;
37 ftdi->usb_write_timeout = 5000;
38
39 ftdi->type = TYPE_BM; /* chip type */
40 ftdi->baudrate = -1;
41 ftdi->bitbang_enabled = 0;
42
43 ftdi->readbuffer = NULL;
44 ftdi->readbuffer_offset = 0;
45 ftdi->readbuffer_remaining = 0;
46 ftdi->writebuffer_chunksize = 4096;
47
48 ftdi->interface = 0;
49 ftdi->index = 0;
50 ftdi->in_ep = 0x02;
51 ftdi->out_ep = 0x81;
52 ftdi->bitbang_mode = 1; /* 1: Normal bitbang mode, 2: SPI bitbang mode */
53
54 ftdi->error_str = NULL;
55
56 /* All fine. Now allocate the readbuffer */
57 return ftdi_read_data_set_chunksize(ftdi, 4096);
58}
59/* ftdi_select_interface
60 Call after ftdi_init
61 Open selected channels on a chip, otherwise use first channel
62 0: all fine
63 1: unknown interface
64*/
65int ftdi_select_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
66{
67 switch (interface) {
68 case INTERFACE_ANY:
69 case INTERFACE_A:
70 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip*/
71 break;
72 case INTERFACE_B:
73 ftdi->interface = 1;
74 ftdi->index = INTERFACE_B;
75 ftdi->in_ep = 0x04;
76 ftdi->out_ep = 0x83;
77 break;
78 default:
79 ftdi_error_return(-1, "Unknown interface");
80 }
81 return 0;
82}
83
84void ftdi_deinit(struct ftdi_context *ftdi)
85{
86 if (ftdi->readbuffer != NULL) {
87 free(ftdi->readbuffer);
88 ftdi->readbuffer = NULL;
89 }
90}
91
92
93void ftdi_set_usbdev (struct ftdi_context *ftdi, usb_dev_handle *usb)
94{
95 ftdi->usb_dev = usb;
96}
97
98
99/* ftdi_usb_open return codes:
100 0: all fine
101 -1: usb_find_busses() failed
102 -2: usb_find_devices() failed
103 -3: usb device not found
104 -4: unable to open device
105 -5: unable to claim device
106 -6: reset failed
107 -7: set baudrate failed
108 -8: get product description failed
109 -9: get serial number failed
110 -10: unable to close device
111*/
112int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
113{
114 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
115}
116
117int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
118 const char* description, const char* serial)
119{
120 struct usb_bus *bus;
121 struct usb_device *dev;
122 char string[256];
123
124 usb_init();
125
126 if (usb_find_busses() < 0)
127 ftdi_error_return(-1, "usb_find_busses() failed");
128
129 if (usb_find_devices() < 0)
130 ftdi_error_return(-2,"usb_find_devices() failed");
131
132 for (bus = usb_busses; bus; bus = bus->next) {
133 for (dev = bus->devices; dev; dev = dev->next) {
134 if (dev->descriptor.idVendor == vendor
135 && dev->descriptor.idProduct == product) {
136 if (!(ftdi->usb_dev = usb_open(dev)))
137 ftdi_error_return(-4, "usb_open() failed");
138
139 if (description != NULL) {
140 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, string, sizeof(string)) <= 0) {
141 usb_close (ftdi->usb_dev);
142 ftdi_error_return(-8, "unable to fetch product description");
143 }
144 if (strncmp(string, description, sizeof(string)) != 0) {
145 if (usb_close (ftdi->usb_dev) < 0)
146 ftdi_error_return(-10, "product description not matching");
147 continue;
148 }
149 }
150 if (serial != NULL) {
151 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, string, sizeof(string)) <= 0) {
152 usb_close (ftdi->usb_dev);
153 ftdi_error_return(-9, "unable to fetch serial number");
154 }
155 if (strncmp(string, serial, sizeof(string)) != 0) {
156 ftdi->error_str = "serial number not matching\n";
157 if (usb_close (ftdi->usb_dev) != 0)
158 ftdi_error_return(-10, "unable to fetch serial number");
159 continue;
160 }
161 }
162
163 if (usb_claim_interface(ftdi->usb_dev, ftdi->interface) != 0) {
164 usb_close (ftdi->usb_dev);
165 ftdi_error_return(-5, "unable to claim usb device. Make sure ftdi_sio is unloaded!");
166 }
167
168 if (ftdi_usb_reset (ftdi) != 0) {
169 usb_close (ftdi->usb_dev);
170 ftdi_error_return(-6, "ftdi_usb_reset failed");
171 }
172
173 if (ftdi_set_baudrate (ftdi, 9600) != 0) {
174 usb_close (ftdi->usb_dev);
175 ftdi_error_return(-7, "set baudrate failed");
176 }
177
178 // Try to guess chip type
179 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
180 if (dev->descriptor.bcdDevice == 0x400 || (dev->descriptor.bcdDevice == 0x200
181 && dev->descriptor.iSerialNumber == 0))
182 ftdi->type = TYPE_BM;
183 else if (dev->descriptor.bcdDevice == 0x200)
184 ftdi->type = TYPE_AM;
185 else if (dev->descriptor.bcdDevice == 0x500) {
186 ftdi->type = TYPE_2232C;
187 if (!ftdi->index)
188 ftdi->index = INTERFACE_A;
189 }
190 ftdi_error_return(0, "all fine");
191 }
192 }
193 }
194
195 // device not found
196 ftdi_error_return(-3, "device not found");
197}
198
199
200int ftdi_usb_reset(struct ftdi_context *ftdi)
201{
202#if defined(__linux__)
203 struct utsname kernelver;
204 int k_major, k_minor, k_myver;
205#endif
206
207 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
208 ftdi_error_return(-1,"FTDI reset failed");
209
210#if defined(__linux__)
211 /* Kernel 2.6 (maybe higher versions, too) need an additional usb_reset */
212 if (uname(&kernelver) == 0 && sscanf(kernelver.release, "%d.%d", &k_major, &k_minor) == 2) {
213 k_myver = k_major*10 + k_minor;
214
215 if (k_myver >= 26 && usb_reset(ftdi->usb_dev) != 0)
216 ftdi_error_return(-2, "USB reset failed");
217 }
218#endif
219
220 // Invalidate data in the readbuffer
221 ftdi->readbuffer_offset = 0;
222 ftdi->readbuffer_remaining = 0;
223
224 return 0;
225}
226
227int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
228{
229 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 1, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
230 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
231
232 // Invalidate data in the readbuffer
233 ftdi->readbuffer_offset = 0;
234 ftdi->readbuffer_remaining = 0;
235
236 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 2, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
237 ftdi_error_return(-2, "FTDI purge of TX buffer failed");
238
239 return 0;
240}
241
242/* ftdi_usb_close return codes
243 0: all fine
244 -1: usb_release failed
245 -2: usb_close failed
246*/
247int ftdi_usb_close(struct ftdi_context *ftdi)
248{
249 int rtn = 0;
250
251 if (usb_release_interface(ftdi->usb_dev, ftdi->interface) != 0)
252 rtn = -1;
253
254 if (usb_close (ftdi->usb_dev) != 0)
255 rtn = -2;
256
257 return rtn;
258}
259
260
261/*
262 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
263 Function is only used internally
264*/
265static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
266 unsigned short *value, unsigned short *index)
267{
268 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
269 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
270 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
271 int divisor, best_divisor, best_baud, best_baud_diff;
272 unsigned long encoded_divisor;
273 int i;
274
275 if (baudrate <= 0) {
276 // Return error
277 return -1;
278 }
279
280 divisor = 24000000 / baudrate;
281
282 if (ftdi->type == TYPE_AM) {
283 // Round down to supported fraction (AM only)
284 divisor -= am_adjust_dn[divisor & 7];
285 }
286
287 // Try this divisor and the one above it (because division rounds down)
288 best_divisor = 0;
289 best_baud = 0;
290 best_baud_diff = 0;
291 for (i = 0; i < 2; i++) {
292 int try_divisor = divisor + i;
293 int baud_estimate;
294 int baud_diff;
295
296 // Round up to supported divisor value
297 if (try_divisor <= 8) {
298 // Round up to minimum supported divisor
299 try_divisor = 8;
300 } else if (ftdi->type != TYPE_AM && try_divisor < 12) {
301 // BM doesn't support divisors 9 through 11 inclusive
302 try_divisor = 12;
303 } else if (divisor < 16) {
304 // AM doesn't support divisors 9 through 15 inclusive
305 try_divisor = 16;
306 } else {
307 if (ftdi->type == TYPE_AM) {
308 // Round up to supported fraction (AM only)
309 try_divisor += am_adjust_up[try_divisor & 7];
310 if (try_divisor > 0x1FFF8) {
311 // Round down to maximum supported divisor value (for AM)
312 try_divisor = 0x1FFF8;
313 }
314 } else {
315 if (try_divisor > 0x1FFFF) {
316 // Round down to maximum supported divisor value (for BM)
317 try_divisor = 0x1FFFF;
318 }
319 }
320 }
321 // Get estimated baud rate (to nearest integer)
322 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
323 // Get absolute difference from requested baud rate
324 if (baud_estimate < baudrate) {
325 baud_diff = baudrate - baud_estimate;
326 } else {
327 baud_diff = baud_estimate - baudrate;
328 }
329 if (i == 0 || baud_diff < best_baud_diff) {
330 // Closest to requested baud rate so far
331 best_divisor = try_divisor;
332 best_baud = baud_estimate;
333 best_baud_diff = baud_diff;
334 if (baud_diff == 0) {
335 // Spot on! No point trying
336 break;
337 }
338 }
339 }
340 // Encode the best divisor value
341 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
342 // Deal with special cases for encoded value
343 if (encoded_divisor == 1) {
344 encoded_divisor = 0; // 3000000 baud
345 } else if (encoded_divisor == 0x4001) {
346 encoded_divisor = 1; // 2000000 baud (BM only)
347 }
348 // Split into "value" and "index" values
349 *value = (unsigned short)(encoded_divisor & 0xFFFF);
350 if(ftdi->type == TYPE_2232C) {
351 *index = (unsigned short)(encoded_divisor >> 8);
352 *index &= 0xFF00;
353 *index |= ftdi->interface;
354 }
355 else
356 *index = (unsigned short)(encoded_divisor >> 16);
357
358 // Return the nearest baud rate
359 return best_baud;
360}
361
362/*
363 ftdi_set_baudrate return codes:
364 0: all fine
365 -1: invalid baudrate
366 -2: setting baudrate failed
367*/
368int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
369{
370 unsigned short value, index;
371 int actual_baudrate;
372
373 if (ftdi->bitbang_enabled) {
374 baudrate = baudrate*4;
375 }
376
377 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
378 if (actual_baudrate <= 0)
379 ftdi_error_return (-1, "Silly baudrate <= 0.");
380
381 // Check within tolerance (about 5%)
382 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
383 || ((actual_baudrate < baudrate)
384 ? (actual_baudrate * 21 < baudrate * 20)
385 : (baudrate * 21 < actual_baudrate * 20)))
386 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
387
388 if (usb_control_msg(ftdi->usb_dev, 0x40, 3, value, index, NULL, 0, ftdi->usb_write_timeout) != 0)
389 ftdi_error_return (-2, "Setting new baudrate failed");
390
391 ftdi->baudrate = baudrate;
392 return 0;
393}
394
395
396int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
397{
398 int ret;
399 int offset = 0;
400 int total_written = 0;
401
402 while (offset < size) {
403 int write_size = ftdi->writebuffer_chunksize;
404
405 if (offset+write_size > size)
406 write_size = size-offset;
407
408 ret = usb_bulk_write(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, ftdi->usb_write_timeout);
409 if (ret < 0)
410 ftdi_error_return(ret, "usb bulk write failed");
411
412 total_written += ret;
413 offset += write_size;
414 }
415
416 return total_written;
417}
418
419
420int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
421{
422 ftdi->writebuffer_chunksize = chunksize;
423 return 0;
424}
425
426
427int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
428{
429 *chunksize = ftdi->writebuffer_chunksize;
430 return 0;
431}
432
433
434int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
435{
436 int offset = 0, ret = 1, i, num_of_chunks, chunk_remains;
437
438 // everything we want is still in the readbuffer?
439 if (size <= ftdi->readbuffer_remaining) {
440 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
441
442 // Fix offsets
443 ftdi->readbuffer_remaining -= size;
444 ftdi->readbuffer_offset += size;
445
446 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
447
448 return size;
449 }
450 // something still in the readbuffer, but not enough to satisfy 'size'?
451 if (ftdi->readbuffer_remaining != 0) {
452 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
453
454 // Fix offset
455 offset += ftdi->readbuffer_remaining;
456 }
457 // do the actual USB read
458 while (offset < size && ret > 0) {
459 ftdi->readbuffer_remaining = 0;
460 ftdi->readbuffer_offset = 0;
461 /* returns how much received */
462 ret = usb_bulk_read (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi->usb_read_timeout);
463 if (ret < 0)
464 ftdi_error_return(ret, "usb bulk read failed");
465
466 if (ret > 2) {
467 // skip FTDI status bytes.
468 // Maybe stored in the future to enable modem use
469 num_of_chunks = ret / 64;
470 chunk_remains = ret % 64;
471 //printf("ret = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", ret, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
472
473 ftdi->readbuffer_offset += 2;
474 ret -= 2;
475
476 if (ret > 64) {
477 for (i = 1; i < num_of_chunks; i++)
478 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
479 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
480 62);
481 if (chunk_remains > 2) {
482 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
483 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
484 chunk_remains-2);
485 ret -= 2*num_of_chunks;
486 } else
487 ret -= 2*(num_of_chunks-1)+chunk_remains;
488 }
489 } else if (ret <= 2) {
490 // no more data to read?
491 return offset;
492 }
493 if (ret > 0) {
494 // data still fits in buf?
495 if (offset+ret <= size) {
496 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, ret);
497 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
498 offset += ret;
499
500 /* Did we read exactly the right amount of bytes? */
501 if (offset == size)
502 //printf("read_data exact rem %d offset %d\n",
503 //ftdi->readbuffer_remaining, offset);
504 return offset;
505 } else {
506 // only copy part of the data or size <= readbuffer_chunksize
507 int part_size = size-offset;
508 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
509
510 ftdi->readbuffer_offset += part_size;
511 ftdi->readbuffer_remaining = ret-part_size;
512 offset += part_size;
513
514 /* printf("Returning part: %d - size: %d - offset: %d - ret: %d - remaining: %d\n",
515 part_size, size, offset, ret, ftdi->readbuffer_remaining); */
516
517 return offset;
518 }
519 }
520 }
521 // never reached
522 return -127;
523}
524
525
526int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
527{
528 unsigned char *new_buf;
529
530 // Invalidate all remaining data
531 ftdi->readbuffer_offset = 0;
532 ftdi->readbuffer_remaining = 0;
533
534 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
535 ftdi_error_return(-1, "out of memory for readbuffer");
536
537 ftdi->readbuffer = new_buf;
538 ftdi->readbuffer_chunksize = chunksize;
539
540 return 0;
541}
542
543
544int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
545{
546 *chunksize = ftdi->readbuffer_chunksize;
547 return 0;
548}
549
550
551
552int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
553{
554 unsigned short usb_val;
555
556 usb_val = bitmask; // low byte: bitmask
557 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
558 usb_val |= (ftdi->bitbang_mode << 8);
559
560 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
561 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
562
563 ftdi->bitbang_enabled = 1;
564 return 0;
565}
566
567
568int ftdi_disable_bitbang(struct ftdi_context *ftdi)
569{
570 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
571 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
572
573 ftdi->bitbang_enabled = 0;
574 return 0;
575}
576
577
578int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
579{
580 unsigned short usb_val;
581
582 usb_val = bitmask; // low byte: bitmask
583 usb_val |= (mode << 8);
584 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
585 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
586
587 ftdi->bitbang_mode = mode;
588 ftdi->bitbang_enabled = (mode == BITMODE_BITBANG || mode == BITMODE_SYNCBB)?1:0;
589 return 0;
590}
591
592int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
593{
594 unsigned short usb_val;
595 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0C, 0, ftdi->index, (char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
596 ftdi_error_return(-1, "read pins failed");
597
598 *pins = (unsigned char)usb_val;
599 return 0;
600}
601
602
603int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
604{
605 unsigned short usb_val;
606
607 if (latency < 1)
608 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
609
610 usb_val = latency;
611 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x09, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
612 ftdi_error_return(-2, "unable to set latency timer");
613
614 return 0;
615}
616
617
618int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
619{
620 unsigned short usb_val;
621 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0A, 0, ftdi->index, (char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
622 ftdi_error_return(-1, "reading latency timer failed");
623
624 *latency = (unsigned char)usb_val;
625 return 0;
626}
627
628
629void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
630{
631 eeprom->vendor_id = 0x0403;
632 eeprom->product_id = 0x6001;
633
634 eeprom->self_powered = 1;
635 eeprom->remote_wakeup = 1;
636 eeprom->BM_type_chip = 1;
637
638 eeprom->in_is_isochronous = 0;
639 eeprom->out_is_isochronous = 0;
640 eeprom->suspend_pull_downs = 0;
641
642 eeprom->use_serial = 0;
643 eeprom->change_usb_version = 0;
644 eeprom->usb_version = 0x0200;
645 eeprom->max_power = 0;
646
647 eeprom->manufacturer = NULL;
648 eeprom->product = NULL;
649 eeprom->serial = NULL;
650}
651
652
653/*
654 ftdi_eeprom_build return codes:
655 positive value: used eeprom size
656 -1: eeprom size (128 bytes) exceeded by custom strings
657*/
658int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
659{
660 unsigned char i, j;
661 unsigned short checksum, value;
662 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
663 int size_check;
664
665 if (eeprom->manufacturer != NULL)
666 manufacturer_size = strlen(eeprom->manufacturer);
667 if (eeprom->product != NULL)
668 product_size = strlen(eeprom->product);
669 if (eeprom->serial != NULL)
670 serial_size = strlen(eeprom->serial);
671
672 size_check = 128; // eeprom is 128 bytes
673 size_check -= 28; // 28 are always in use (fixed)
674 size_check -= manufacturer_size*2;
675 size_check -= product_size*2;
676 size_check -= serial_size*2;
677
678 // eeprom size exceeded?
679 if (size_check < 0)
680 return (-1);
681
682 // empty eeprom
683 memset (output, 0, 128);
684
685 // Addr 00: Stay 00 00
686 // Addr 02: Vendor ID
687 output[0x02] = eeprom->vendor_id;
688 output[0x03] = eeprom->vendor_id >> 8;
689
690 // Addr 04: Product ID
691 output[0x04] = eeprom->product_id;
692 output[0x05] = eeprom->product_id >> 8;
693
694 // Addr 06: Device release number (0400h for BM features)
695 output[0x06] = 0x00;
696
697 if (eeprom->BM_type_chip == 1)
698 output[0x07] = 0x04;
699 else
700 output[0x07] = 0x02;
701
702 // Addr 08: Config descriptor
703 // Bit 1: remote wakeup if 1
704 // Bit 0: self powered if 1
705 //
706 j = 0;
707 if (eeprom->self_powered == 1)
708 j = j | 1;
709 if (eeprom->remote_wakeup == 1)
710 j = j | 2;
711 output[0x08] = j;
712
713 // Addr 09: Max power consumption: max power = value * 2 mA
714 output[0x09] = eeprom->max_power;
715 ;
716
717 // Addr 0A: Chip configuration
718 // Bit 7: 0 - reserved
719 // Bit 6: 0 - reserved
720 // Bit 5: 0 - reserved
721 // Bit 4: 1 - Change USB version
722 // Bit 3: 1 - Use the serial number string
723 // Bit 2: 1 - Enable suspend pull downs for lower power
724 // Bit 1: 1 - Out EndPoint is Isochronous
725 // Bit 0: 1 - In EndPoint is Isochronous
726 //
727 j = 0;
728 if (eeprom->in_is_isochronous == 1)
729 j = j | 1;
730 if (eeprom->out_is_isochronous == 1)
731 j = j | 2;
732 if (eeprom->suspend_pull_downs == 1)
733 j = j | 4;
734 if (eeprom->use_serial == 1)
735 j = j | 8;
736 if (eeprom->change_usb_version == 1)
737 j = j | 16;
738 output[0x0A] = j;
739
740 // Addr 0B: reserved
741 output[0x0B] = 0x00;
742
743 // Addr 0C: USB version low byte when 0x0A bit 4 is set
744 // Addr 0D: USB version high byte when 0x0A bit 4 is set
745 if (eeprom->change_usb_version == 1) {
746 output[0x0C] = eeprom->usb_version;
747 output[0x0D] = eeprom->usb_version >> 8;
748 }
749
750
751 // Addr 0E: Offset of the manufacturer string + 0x80
752 output[0x0E] = 0x14 + 0x80;
753
754 // Addr 0F: Length of manufacturer string
755 output[0x0F] = manufacturer_size*2 + 2;
756
757 // Addr 10: Offset of the product string + 0x80, calculated later
758 // Addr 11: Length of product string
759 output[0x11] = product_size*2 + 2;
760
761 // Addr 12: Offset of the serial string + 0x80, calculated later
762 // Addr 13: Length of serial string
763 output[0x13] = serial_size*2 + 2;
764
765 // Dynamic content
766 output[0x14] = manufacturer_size*2 + 2;
767 output[0x15] = 0x03; // type: string
768
769 i = 0x16, j = 0;
770
771 // Output manufacturer
772 for (j = 0; j < manufacturer_size; j++) {
773 output[i] = eeprom->manufacturer[j], i++;
774 output[i] = 0x00, i++;
775 }
776
777 // Output product name
778 output[0x10] = i + 0x80; // calculate offset
779 output[i] = product_size*2 + 2, i++;
780 output[i] = 0x03, i++;
781 for (j = 0; j < product_size; j++) {
782 output[i] = eeprom->product[j], i++;
783 output[i] = 0x00, i++;
784 }
785
786 // Output serial
787 output[0x12] = i + 0x80; // calculate offset
788 output[i] = serial_size*2 + 2, i++;
789 output[i] = 0x03, i++;
790 for (j = 0; j < serial_size; j++) {
791 output[i] = eeprom->serial[j], i++;
792 output[i] = 0x00, i++;
793 }
794
795 // calculate checksum
796 checksum = 0xAAAA;
797
798 for (i = 0; i < 63; i++) {
799 value = output[i*2];
800 value += output[(i*2)+1] << 8;
801
802 checksum = value^checksum;
803 checksum = (checksum << 1) | (checksum >> 15);
804 }
805
806 output[0x7E] = checksum;
807 output[0x7F] = checksum >> 8;
808
809 return size_check;
810}
811
812
813int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
814{
815 int i;
816
817 for (i = 0; i < 64; i++) {
818 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
819 ftdi_error_return(-1, "reading eeprom failed");
820 }
821
822 return 0;
823}
824
825
826int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
827{
828 unsigned short usb_val;
829 int i;
830
831 for (i = 0; i < 64; i++) {
832 usb_val = eeprom[i*2];
833 usb_val += eeprom[(i*2)+1] << 8;
834 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x91, usb_val, i, NULL, 0, ftdi->usb_write_timeout) != 0)
835 ftdi_error_return(-1, "unable to write eeprom");
836 }
837
838 return 0;
839}
840
841
842int ftdi_erase_eeprom(struct ftdi_context *ftdi)
843{
844 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x92, 0, 0, NULL, 0, ftdi->usb_write_timeout) != 0)
845 ftdi_error_return(-1, "unable to erase eeprom");
846
847 return 0;
848}
849
850
851char *ftdi_get_error_string (struct ftdi_context *ftdi)
852{
853 return ftdi->error_str;
854}