Fix FT232H eeprom suspend pulldown setting
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2013 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi_i.h"
38#include "ftdi.h"
39#include "ftdi_version_i.h"
40
41#define ftdi_error_return(code, str) do { \
42 if ( ftdi ) \
43 ftdi->error_str = str; \
44 else \
45 fprintf(stderr, str); \
46 return code; \
47 } while(0);
48
49#define ftdi_error_return_free_device_list(code, str, devs) do { \
50 libusb_free_device_list(devs,1); \
51 ftdi->error_str = str; \
52 return code; \
53 } while(0);
54
55
56/**
57 Internal function to close usb device pointer.
58 Sets ftdi->usb_dev to NULL.
59 \internal
60
61 \param ftdi pointer to ftdi_context
62
63 \retval none
64*/
65static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
66{
67 if (ftdi && ftdi->usb_dev)
68 {
69 libusb_close (ftdi->usb_dev);
70 ftdi->usb_dev = NULL;
71 if(ftdi->eeprom)
72 ftdi->eeprom->initialized_for_connected_device = 0;
73 }
74}
75
76/**
77 Initializes a ftdi_context.
78
79 \param ftdi pointer to ftdi_context
80
81 \retval 0: all fine
82 \retval -1: couldn't allocate read buffer
83 \retval -2: couldn't allocate struct buffer
84 \retval -3: libusb_init() failed
85
86 \remark This should be called before all functions
87*/
88int ftdi_init(struct ftdi_context *ftdi)
89{
90 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
91 ftdi->usb_ctx = NULL;
92 ftdi->usb_dev = NULL;
93 ftdi->usb_read_timeout = 5000;
94 ftdi->usb_write_timeout = 5000;
95
96 ftdi->type = TYPE_BM; /* chip type */
97 ftdi->baudrate = -1;
98 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
99
100 ftdi->readbuffer = NULL;
101 ftdi->readbuffer_offset = 0;
102 ftdi->readbuffer_remaining = 0;
103 ftdi->writebuffer_chunksize = 4096;
104 ftdi->max_packet_size = 0;
105 ftdi->error_str = NULL;
106 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
107
108 if (libusb_init(&ftdi->usb_ctx) < 0)
109 ftdi_error_return(-3, "libusb_init() failed");
110
111 ftdi_set_interface(ftdi, INTERFACE_ANY);
112 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
113
114 if (eeprom == 0)
115 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
116 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
117 ftdi->eeprom = eeprom;
118
119 /* All fine. Now allocate the readbuffer */
120 return ftdi_read_data_set_chunksize(ftdi, 4096);
121}
122
123/**
124 Allocate and initialize a new ftdi_context
125
126 \return a pointer to a new ftdi_context, or NULL on failure
127*/
128struct ftdi_context *ftdi_new(void)
129{
130 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
131
132 if (ftdi == NULL)
133 {
134 return NULL;
135 }
136
137 if (ftdi_init(ftdi) != 0)
138 {
139 free(ftdi);
140 return NULL;
141 }
142
143 return ftdi;
144}
145
146/**
147 Open selected channels on a chip, otherwise use first channel.
148
149 \param ftdi pointer to ftdi_context
150 \param interface Interface to use for FT2232C/2232H/4232H chips.
151
152 \retval 0: all fine
153 \retval -1: unknown interface
154 \retval -2: USB device unavailable
155 \retval -3: Device already open, interface can't be set in that state
156*/
157int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
158{
159 if (ftdi == NULL)
160 ftdi_error_return(-2, "USB device unavailable");
161
162 if (ftdi->usb_dev != NULL)
163 {
164 int check_interface = interface;
165 if (check_interface == INTERFACE_ANY)
166 check_interface = INTERFACE_A;
167
168 if (ftdi->index != check_interface)
169 ftdi_error_return(-3, "Interface can not be changed on an already open device");
170 }
171
172 switch (interface)
173 {
174 case INTERFACE_ANY:
175 case INTERFACE_A:
176 ftdi->interface = 0;
177 ftdi->index = INTERFACE_A;
178 ftdi->in_ep = 0x02;
179 ftdi->out_ep = 0x81;
180 break;
181 case INTERFACE_B:
182 ftdi->interface = 1;
183 ftdi->index = INTERFACE_B;
184 ftdi->in_ep = 0x04;
185 ftdi->out_ep = 0x83;
186 break;
187 case INTERFACE_C:
188 ftdi->interface = 2;
189 ftdi->index = INTERFACE_C;
190 ftdi->in_ep = 0x06;
191 ftdi->out_ep = 0x85;
192 break;
193 case INTERFACE_D:
194 ftdi->interface = 3;
195 ftdi->index = INTERFACE_D;
196 ftdi->in_ep = 0x08;
197 ftdi->out_ep = 0x87;
198 break;
199 default:
200 ftdi_error_return(-1, "Unknown interface");
201 }
202 return 0;
203}
204
205/**
206 Deinitializes a ftdi_context.
207
208 \param ftdi pointer to ftdi_context
209*/
210void ftdi_deinit(struct ftdi_context *ftdi)
211{
212 if (ftdi == NULL)
213 return;
214
215 ftdi_usb_close_internal (ftdi);
216
217 if (ftdi->readbuffer != NULL)
218 {
219 free(ftdi->readbuffer);
220 ftdi->readbuffer = NULL;
221 }
222
223 if (ftdi->eeprom != NULL)
224 {
225 if (ftdi->eeprom->manufacturer != 0)
226 {
227 free(ftdi->eeprom->manufacturer);
228 ftdi->eeprom->manufacturer = 0;
229 }
230 if (ftdi->eeprom->product != 0)
231 {
232 free(ftdi->eeprom->product);
233 ftdi->eeprom->product = 0;
234 }
235 if (ftdi->eeprom->serial != 0)
236 {
237 free(ftdi->eeprom->serial);
238 ftdi->eeprom->serial = 0;
239 }
240 free(ftdi->eeprom);
241 ftdi->eeprom = NULL;
242 }
243
244 if (ftdi->usb_ctx)
245 {
246 libusb_exit(ftdi->usb_ctx);
247 ftdi->usb_ctx = NULL;
248 }
249}
250
251/**
252 Deinitialize and free an ftdi_context.
253
254 \param ftdi pointer to ftdi_context
255*/
256void ftdi_free(struct ftdi_context *ftdi)
257{
258 ftdi_deinit(ftdi);
259 free(ftdi);
260}
261
262/**
263 Use an already open libusb device.
264
265 \param ftdi pointer to ftdi_context
266 \param usb libusb libusb_device_handle to use
267*/
268void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
269{
270 if (ftdi == NULL)
271 return;
272
273 ftdi->usb_dev = usb;
274}
275
276/**
277 * @brief Get libftdi library version
278 *
279 * @return ftdi_version_info Library version information
280 **/
281struct ftdi_version_info ftdi_get_library_version()
282{
283 struct ftdi_version_info ver;
284
285 ver.major = FTDI_MAJOR_VERSION;
286 ver.minor = FTDI_MINOR_VERSION;
287 ver.micro = FTDI_MICRO_VERSION;
288 ver.version_str = FTDI_VERSION_STRING;
289 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
290
291 return ver;
292}
293
294/**
295 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
296 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
297 use. With VID:PID 0:0, search for the default devices
298 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014)
299
300 \param ftdi pointer to ftdi_context
301 \param devlist Pointer where to store list of found devices
302 \param vendor Vendor ID to search for
303 \param product Product ID to search for
304
305 \retval >0: number of devices found
306 \retval -3: out of memory
307 \retval -5: libusb_get_device_list() failed
308 \retval -6: libusb_get_device_descriptor() failed
309*/
310int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
311{
312 struct ftdi_device_list **curdev;
313 libusb_device *dev;
314 libusb_device **devs;
315 int count = 0;
316 int i = 0;
317
318 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
319 ftdi_error_return(-5, "libusb_get_device_list() failed");
320
321 curdev = devlist;
322 *curdev = NULL;
323
324 while ((dev = devs[i++]) != NULL)
325 {
326 struct libusb_device_descriptor desc;
327
328 if (libusb_get_device_descriptor(dev, &desc) < 0)
329 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
330
331 if (((vendor != 0 && product != 0) &&
332 desc.idVendor == vendor && desc.idProduct == product) ||
333 ((vendor == 0 && product == 0) &&
334 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
335 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014)))
336 {
337 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
338 if (!*curdev)
339 ftdi_error_return_free_device_list(-3, "out of memory", devs);
340
341 (*curdev)->next = NULL;
342 (*curdev)->dev = dev;
343 libusb_ref_device(dev);
344 curdev = &(*curdev)->next;
345 count++;
346 }
347 }
348 libusb_free_device_list(devs,1);
349 return count;
350}
351
352/**
353 Frees a usb device list.
354
355 \param devlist USB device list created by ftdi_usb_find_all()
356*/
357void ftdi_list_free(struct ftdi_device_list **devlist)
358{
359 struct ftdi_device_list *curdev, *next;
360
361 for (curdev = *devlist; curdev != NULL;)
362 {
363 next = curdev->next;
364 libusb_unref_device(curdev->dev);
365 free(curdev);
366 curdev = next;
367 }
368
369 *devlist = NULL;
370}
371
372/**
373 Frees a usb device list.
374
375 \param devlist USB device list created by ftdi_usb_find_all()
376*/
377void ftdi_list_free2(struct ftdi_device_list *devlist)
378{
379 ftdi_list_free(&devlist);
380}
381
382/**
383 Return device ID strings from the usb device.
384
385 The parameters manufacturer, description and serial may be NULL
386 or pointer to buffers to store the fetched strings.
387
388 \note Use this function only in combination with ftdi_usb_find_all()
389 as it closes the internal "usb_dev" after use.
390
391 \param ftdi pointer to ftdi_context
392 \param dev libusb usb_dev to use
393 \param manufacturer Store manufacturer string here if not NULL
394 \param mnf_len Buffer size of manufacturer string
395 \param description Store product description string here if not NULL
396 \param desc_len Buffer size of product description string
397 \param serial Store serial string here if not NULL
398 \param serial_len Buffer size of serial string
399
400 \retval 0: all fine
401 \retval -1: wrong arguments
402 \retval -4: unable to open device
403 \retval -7: get product manufacturer failed
404 \retval -8: get product description failed
405 \retval -9: get serial number failed
406 \retval -11: libusb_get_device_descriptor() failed
407*/
408int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
409 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
410{
411 struct libusb_device_descriptor desc;
412
413 if ((ftdi==NULL) || (dev==NULL))
414 return -1;
415
416 if (libusb_open(dev, &ftdi->usb_dev) < 0)
417 ftdi_error_return(-4, "libusb_open() failed");
418
419 if (libusb_get_device_descriptor(dev, &desc) < 0)
420 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
421
422 if (manufacturer != NULL)
423 {
424 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
425 {
426 ftdi_usb_close_internal (ftdi);
427 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
428 }
429 }
430
431 if (description != NULL)
432 {
433 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
434 {
435 ftdi_usb_close_internal (ftdi);
436 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
437 }
438 }
439
440 if (serial != NULL)
441 {
442 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
443 {
444 ftdi_usb_close_internal (ftdi);
445 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
446 }
447 }
448
449 ftdi_usb_close_internal (ftdi);
450
451 return 0;
452}
453
454/**
455 * Internal function to determine the maximum packet size.
456 * \param ftdi pointer to ftdi_context
457 * \param dev libusb usb_dev to use
458 * \retval Maximum packet size for this device
459 */
460static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
461{
462 struct libusb_device_descriptor desc;
463 struct libusb_config_descriptor *config0;
464 unsigned int packet_size;
465
466 // Sanity check
467 if (ftdi == NULL || dev == NULL)
468 return 64;
469
470 // Determine maximum packet size. Init with default value.
471 // New hi-speed devices from FTDI use a packet size of 512 bytes
472 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
473 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H || ftdi->type == TYPE_230X)
474 packet_size = 512;
475 else
476 packet_size = 64;
477
478 if (libusb_get_device_descriptor(dev, &desc) < 0)
479 return packet_size;
480
481 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
482 return packet_size;
483
484 if (desc.bNumConfigurations > 0)
485 {
486 if (ftdi->interface < config0->bNumInterfaces)
487 {
488 struct libusb_interface interface = config0->interface[ftdi->interface];
489 if (interface.num_altsetting > 0)
490 {
491 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
492 if (descriptor.bNumEndpoints > 0)
493 {
494 packet_size = descriptor.endpoint[0].wMaxPacketSize;
495 }
496 }
497 }
498 }
499
500 libusb_free_config_descriptor (config0);
501 return packet_size;
502}
503
504/**
505 Opens a ftdi device given by an usb_device.
506
507 \param ftdi pointer to ftdi_context
508 \param dev libusb usb_dev to use
509
510 \retval 0: all fine
511 \retval -3: unable to config device
512 \retval -4: unable to open device
513 \retval -5: unable to claim device
514 \retval -6: reset failed
515 \retval -7: set baudrate failed
516 \retval -8: ftdi context invalid
517 \retval -9: libusb_get_device_descriptor() failed
518 \retval -10: libusb_get_config_descriptor() failed
519 \retval -11: libusb_detach_kernel_driver() failed
520 \retval -12: libusb_get_configuration() failed
521*/
522int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
523{
524 struct libusb_device_descriptor desc;
525 struct libusb_config_descriptor *config0;
526 int cfg, cfg0, detach_errno = 0;
527
528 if (ftdi == NULL)
529 ftdi_error_return(-8, "ftdi context invalid");
530
531 if (libusb_open(dev, &ftdi->usb_dev) < 0)
532 ftdi_error_return(-4, "libusb_open() failed");
533
534 if (libusb_get_device_descriptor(dev, &desc) < 0)
535 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
536
537 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
538 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
539 cfg0 = config0->bConfigurationValue;
540 libusb_free_config_descriptor (config0);
541
542 // Try to detach ftdi_sio kernel module.
543 //
544 // The return code is kept in a separate variable and only parsed
545 // if usb_set_configuration() or usb_claim_interface() fails as the
546 // detach operation might be denied and everything still works fine.
547 // Likely scenario is a static ftdi_sio kernel module.
548 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
549 {
550 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
551 detach_errno = errno;
552 }
553
554 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
555 ftdi_error_return(-12, "libusb_get_configuration () failed");
556 // set configuration (needed especially for windows)
557 // tolerate EBUSY: one device with one configuration, but two interfaces
558 // and libftdi sessions to both interfaces (e.g. FT2232)
559 if (desc.bNumConfigurations > 0 && cfg != cfg0)
560 {
561 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
562 {
563 ftdi_usb_close_internal (ftdi);
564 if (detach_errno == EPERM)
565 {
566 ftdi_error_return(-8, "inappropriate permissions on device!");
567 }
568 else
569 {
570 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
571 }
572 }
573 }
574
575 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
576 {
577 ftdi_usb_close_internal (ftdi);
578 if (detach_errno == EPERM)
579 {
580 ftdi_error_return(-8, "inappropriate permissions on device!");
581 }
582 else
583 {
584 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
585 }
586 }
587
588 if (ftdi_usb_reset (ftdi) != 0)
589 {
590 ftdi_usb_close_internal (ftdi);
591 ftdi_error_return(-6, "ftdi_usb_reset failed");
592 }
593
594 // Try to guess chip type
595 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
596 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
597 && desc.iSerialNumber == 0))
598 ftdi->type = TYPE_BM;
599 else if (desc.bcdDevice == 0x200)
600 ftdi->type = TYPE_AM;
601 else if (desc.bcdDevice == 0x500)
602 ftdi->type = TYPE_2232C;
603 else if (desc.bcdDevice == 0x600)
604 ftdi->type = TYPE_R;
605 else if (desc.bcdDevice == 0x700)
606 ftdi->type = TYPE_2232H;
607 else if (desc.bcdDevice == 0x800)
608 ftdi->type = TYPE_4232H;
609 else if (desc.bcdDevice == 0x900)
610 ftdi->type = TYPE_232H;
611 else if (desc.bcdDevice == 0x1000)
612 ftdi->type = TYPE_230X;
613
614 // Determine maximum packet size
615 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
616
617 if (ftdi_set_baudrate (ftdi, 9600) != 0)
618 {
619 ftdi_usb_close_internal (ftdi);
620 ftdi_error_return(-7, "set baudrate failed");
621 }
622
623 ftdi_error_return(0, "all fine");
624}
625
626/**
627 Opens the first device with a given vendor and product ids.
628
629 \param ftdi pointer to ftdi_context
630 \param vendor Vendor ID
631 \param product Product ID
632
633 \retval same as ftdi_usb_open_desc()
634*/
635int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
636{
637 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
638}
639
640/**
641 Opens the first device with a given, vendor id, product id,
642 description and serial.
643
644 \param ftdi pointer to ftdi_context
645 \param vendor Vendor ID
646 \param product Product ID
647 \param description Description to search for. Use NULL if not needed.
648 \param serial Serial to search for. Use NULL if not needed.
649
650 \retval 0: all fine
651 \retval -3: usb device not found
652 \retval -4: unable to open device
653 \retval -5: unable to claim device
654 \retval -6: reset failed
655 \retval -7: set baudrate failed
656 \retval -8: get product description failed
657 \retval -9: get serial number failed
658 \retval -12: libusb_get_device_list() failed
659 \retval -13: libusb_get_device_descriptor() failed
660*/
661int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
662 const char* description, const char* serial)
663{
664 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
665}
666
667/**
668 Opens the index-th device with a given, vendor id, product id,
669 description and serial.
670
671 \param ftdi pointer to ftdi_context
672 \param vendor Vendor ID
673 \param product Product ID
674 \param description Description to search for. Use NULL if not needed.
675 \param serial Serial to search for. Use NULL if not needed.
676 \param index Number of matching device to open if there are more than one, starts with 0.
677
678 \retval 0: all fine
679 \retval -1: usb_find_busses() failed
680 \retval -2: usb_find_devices() failed
681 \retval -3: usb device not found
682 \retval -4: unable to open device
683 \retval -5: unable to claim device
684 \retval -6: reset failed
685 \retval -7: set baudrate failed
686 \retval -8: get product description failed
687 \retval -9: get serial number failed
688 \retval -10: unable to close device
689 \retval -11: ftdi context invalid
690*/
691int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
692 const char* description, const char* serial, unsigned int index)
693{
694 libusb_device *dev;
695 libusb_device **devs;
696 char string[256];
697 int i = 0;
698
699 if (ftdi == NULL)
700 ftdi_error_return(-11, "ftdi context invalid");
701
702 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
703 ftdi_error_return(-12, "libusb_get_device_list() failed");
704
705 while ((dev = devs[i++]) != NULL)
706 {
707 struct libusb_device_descriptor desc;
708 int res;
709
710 if (libusb_get_device_descriptor(dev, &desc) < 0)
711 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
712
713 if (desc.idVendor == vendor && desc.idProduct == product)
714 {
715 if (libusb_open(dev, &ftdi->usb_dev) < 0)
716 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
717
718 if (description != NULL)
719 {
720 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
721 {
722 ftdi_usb_close_internal (ftdi);
723 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
724 }
725 if (strncmp(string, description, sizeof(string)) != 0)
726 {
727 ftdi_usb_close_internal (ftdi);
728 continue;
729 }
730 }
731 if (serial != NULL)
732 {
733 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
734 {
735 ftdi_usb_close_internal (ftdi);
736 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
737 }
738 if (strncmp(string, serial, sizeof(string)) != 0)
739 {
740 ftdi_usb_close_internal (ftdi);
741 continue;
742 }
743 }
744
745 ftdi_usb_close_internal (ftdi);
746
747 if (index > 0)
748 {
749 index--;
750 continue;
751 }
752
753 res = ftdi_usb_open_dev(ftdi, dev);
754 libusb_free_device_list(devs,1);
755 return res;
756 }
757 }
758
759 // device not found
760 ftdi_error_return_free_device_list(-3, "device not found", devs);
761}
762
763/**
764 Opens the ftdi-device described by a description-string.
765 Intended to be used for parsing a device-description given as commandline argument.
766
767 \param ftdi pointer to ftdi_context
768 \param description NULL-terminated description-string, using this format:
769 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
770 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
771 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
772 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
773
774 \note The description format may be extended in later versions.
775
776 \retval 0: all fine
777 \retval -2: libusb_get_device_list() failed
778 \retval -3: usb device not found
779 \retval -4: unable to open device
780 \retval -5: unable to claim device
781 \retval -6: reset failed
782 \retval -7: set baudrate failed
783 \retval -8: get product description failed
784 \retval -9: get serial number failed
785 \retval -10: unable to close device
786 \retval -11: illegal description format
787 \retval -12: ftdi context invalid
788*/
789int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
790{
791 if (ftdi == NULL)
792 ftdi_error_return(-12, "ftdi context invalid");
793
794 if (description[0] == 0 || description[1] != ':')
795 ftdi_error_return(-11, "illegal description format");
796
797 if (description[0] == 'd')
798 {
799 libusb_device *dev;
800 libusb_device **devs;
801 unsigned int bus_number, device_address;
802 int i = 0;
803
804 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
805 ftdi_error_return(-2, "libusb_get_device_list() failed");
806
807 /* XXX: This doesn't handle symlinks/odd paths/etc... */
808 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
809 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
810
811 while ((dev = devs[i++]) != NULL)
812 {
813 int ret;
814 if (bus_number == libusb_get_bus_number (dev)
815 && device_address == libusb_get_device_address (dev))
816 {
817 ret = ftdi_usb_open_dev(ftdi, dev);
818 libusb_free_device_list(devs,1);
819 return ret;
820 }
821 }
822
823 // device not found
824 ftdi_error_return_free_device_list(-3, "device not found", devs);
825 }
826 else if (description[0] == 'i' || description[0] == 's')
827 {
828 unsigned int vendor;
829 unsigned int product;
830 unsigned int index=0;
831 const char *serial=NULL;
832 const char *startp, *endp;
833
834 errno=0;
835 startp=description+2;
836 vendor=strtoul((char*)startp,(char**)&endp,0);
837 if (*endp != ':' || endp == startp || errno != 0)
838 ftdi_error_return(-11, "illegal description format");
839
840 startp=endp+1;
841 product=strtoul((char*)startp,(char**)&endp,0);
842 if (endp == startp || errno != 0)
843 ftdi_error_return(-11, "illegal description format");
844
845 if (description[0] == 'i' && *endp != 0)
846 {
847 /* optional index field in i-mode */
848 if (*endp != ':')
849 ftdi_error_return(-11, "illegal description format");
850
851 startp=endp+1;
852 index=strtoul((char*)startp,(char**)&endp,0);
853 if (*endp != 0 || endp == startp || errno != 0)
854 ftdi_error_return(-11, "illegal description format");
855 }
856 if (description[0] == 's')
857 {
858 if (*endp != ':')
859 ftdi_error_return(-11, "illegal description format");
860
861 /* rest of the description is the serial */
862 serial=endp+1;
863 }
864
865 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
866 }
867 else
868 {
869 ftdi_error_return(-11, "illegal description format");
870 }
871}
872
873/**
874 Resets the ftdi device.
875
876 \param ftdi pointer to ftdi_context
877
878 \retval 0: all fine
879 \retval -1: FTDI reset failed
880 \retval -2: USB device unavailable
881*/
882int ftdi_usb_reset(struct ftdi_context *ftdi)
883{
884 if (ftdi == NULL || ftdi->usb_dev == NULL)
885 ftdi_error_return(-2, "USB device unavailable");
886
887 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
888 SIO_RESET_REQUEST, SIO_RESET_SIO,
889 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
890 ftdi_error_return(-1,"FTDI reset failed");
891
892 // Invalidate data in the readbuffer
893 ftdi->readbuffer_offset = 0;
894 ftdi->readbuffer_remaining = 0;
895
896 return 0;
897}
898
899/**
900 Clears the read buffer on the chip and the internal read buffer.
901
902 \param ftdi pointer to ftdi_context
903
904 \retval 0: all fine
905 \retval -1: read buffer purge failed
906 \retval -2: USB device unavailable
907*/
908int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
909{
910 if (ftdi == NULL || ftdi->usb_dev == NULL)
911 ftdi_error_return(-2, "USB device unavailable");
912
913 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
914 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
915 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
916 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
917
918 // Invalidate data in the readbuffer
919 ftdi->readbuffer_offset = 0;
920 ftdi->readbuffer_remaining = 0;
921
922 return 0;
923}
924
925/**
926 Clears the write buffer on the chip.
927
928 \param ftdi pointer to ftdi_context
929
930 \retval 0: all fine
931 \retval -1: write buffer purge failed
932 \retval -2: USB device unavailable
933*/
934int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
935{
936 if (ftdi == NULL || ftdi->usb_dev == NULL)
937 ftdi_error_return(-2, "USB device unavailable");
938
939 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
940 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
941 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
942 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
943
944 return 0;
945}
946
947/**
948 Clears the buffers on the chip and the internal read buffer.
949
950 \param ftdi pointer to ftdi_context
951
952 \retval 0: all fine
953 \retval -1: read buffer purge failed
954 \retval -2: write buffer purge failed
955 \retval -3: USB device unavailable
956*/
957int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
958{
959 int result;
960
961 if (ftdi == NULL || ftdi->usb_dev == NULL)
962 ftdi_error_return(-3, "USB device unavailable");
963
964 result = ftdi_usb_purge_rx_buffer(ftdi);
965 if (result < 0)
966 return -1;
967
968 result = ftdi_usb_purge_tx_buffer(ftdi);
969 if (result < 0)
970 return -2;
971
972 return 0;
973}
974
975
976
977/**
978 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
979
980 \param ftdi pointer to ftdi_context
981
982 \retval 0: all fine
983 \retval -1: usb_release failed
984 \retval -3: ftdi context invalid
985*/
986int ftdi_usb_close(struct ftdi_context *ftdi)
987{
988 int rtn = 0;
989
990 if (ftdi == NULL)
991 ftdi_error_return(-3, "ftdi context invalid");
992
993 if (ftdi->usb_dev != NULL)
994 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
995 rtn = -1;
996
997 ftdi_usb_close_internal (ftdi);
998
999 return rtn;
1000}
1001
1002/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
1003 to encoded divisor and the achievable baudrate
1004 Function is only used internally
1005 \internal
1006
1007 See AN120
1008 clk/1 -> 0
1009 clk/1.5 -> 1
1010 clk/2 -> 2
1011 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1012 The fractional part has frac_code encoding
1013*/
1014static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1015
1016{
1017 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1018 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1019 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
1020 int divisor, best_divisor, best_baud, best_baud_diff;
1021 divisor = 24000000 / baudrate;
1022 int i;
1023
1024 // Round down to supported fraction (AM only)
1025 divisor -= am_adjust_dn[divisor & 7];
1026
1027 // Try this divisor and the one above it (because division rounds down)
1028 best_divisor = 0;
1029 best_baud = 0;
1030 best_baud_diff = 0;
1031 for (i = 0; i < 2; i++)
1032 {
1033 int try_divisor = divisor + i;
1034 int baud_estimate;
1035 int baud_diff;
1036
1037 // Round up to supported divisor value
1038 if (try_divisor <= 8)
1039 {
1040 // Round up to minimum supported divisor
1041 try_divisor = 8;
1042 }
1043 else if (divisor < 16)
1044 {
1045 // AM doesn't support divisors 9 through 15 inclusive
1046 try_divisor = 16;
1047 }
1048 else
1049 {
1050 // Round up to supported fraction (AM only)
1051 try_divisor += am_adjust_up[try_divisor & 7];
1052 if (try_divisor > 0x1FFF8)
1053 {
1054 // Round down to maximum supported divisor value (for AM)
1055 try_divisor = 0x1FFF8;
1056 }
1057 }
1058 // Get estimated baud rate (to nearest integer)
1059 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1060 // Get absolute difference from requested baud rate
1061 if (baud_estimate < baudrate)
1062 {
1063 baud_diff = baudrate - baud_estimate;
1064 }
1065 else
1066 {
1067 baud_diff = baud_estimate - baudrate;
1068 }
1069 if (i == 0 || baud_diff < best_baud_diff)
1070 {
1071 // Closest to requested baud rate so far
1072 best_divisor = try_divisor;
1073 best_baud = baud_estimate;
1074 best_baud_diff = baud_diff;
1075 if (baud_diff == 0)
1076 {
1077 // Spot on! No point trying
1078 break;
1079 }
1080 }
1081 }
1082 // Encode the best divisor value
1083 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1084 // Deal with special cases for encoded value
1085 if (*encoded_divisor == 1)
1086 {
1087 *encoded_divisor = 0; // 3000000 baud
1088 }
1089 else if (*encoded_divisor == 0x4001)
1090 {
1091 *encoded_divisor = 1; // 2000000 baud (BM only)
1092 }
1093 return best_baud;
1094}
1095
1096/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1097 to encoded divisor and the achievable baudrate
1098 Function is only used internally
1099 \internal
1100
1101 See AN120
1102 clk/1 -> 0
1103 clk/1.5 -> 1
1104 clk/2 -> 2
1105 From /2, 0.125 steps may be taken.
1106 The fractional part has frac_code encoding
1107
1108 value[13:0] of value is the divisor
1109 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1110
1111 H Type have all features above with
1112 {index[8],value[15:14]} is the encoded subdivisor
1113
1114 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
1115 {index[0],value[15:14]} is the encoded subdivisor
1116
1117 AM Type chips have only four fractional subdivisors at value[15:14]
1118 for subdivisors 0, 0.5, 0.25, 0.125
1119*/
1120static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor)
1121{
1122 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1123 int best_baud = 0;
1124 int divisor, best_divisor;
1125 if (baudrate >= clk/clk_div)
1126 {
1127 *encoded_divisor = 0;
1128 best_baud = clk/clk_div;
1129 }
1130 else if (baudrate >= clk/(clk_div + clk_div/2))
1131 {
1132 *encoded_divisor = 1;
1133 best_baud = clk/(clk_div + clk_div/2);
1134 }
1135 else if (baudrate >= clk/(2*clk_div))
1136 {
1137 *encoded_divisor = 2;
1138 best_baud = clk/(2*clk_div);
1139 }
1140 else
1141 {
1142 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1143 divisor = clk*16/clk_div / baudrate;
1144 if (divisor & 1) /* Decide if to round up or down*/
1145 best_divisor = divisor /2 +1;
1146 else
1147 best_divisor = divisor/2;
1148 if(best_divisor > 0x20000)
1149 best_divisor = 0x1ffff;
1150 best_baud = clk*16/clk_div/best_divisor;
1151 if (best_baud & 1) /* Decide if to round up or down*/
1152 best_baud = best_baud /2 +1;
1153 else
1154 best_baud = best_baud /2;
1155 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1156 }
1157 return best_baud;
1158}
1159/**
1160 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1161 Function is only used internally
1162 \internal
1163*/
1164static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1165 unsigned short *value, unsigned short *index)
1166{
1167 int best_baud;
1168 unsigned long encoded_divisor;
1169
1170 if (baudrate <= 0)
1171 {
1172 // Return error
1173 return -1;
1174 }
1175
1176#define H_CLK 120000000
1177#define C_CLK 48000000
1178 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H) || (ftdi->type == TYPE_230X))
1179 {
1180 if(baudrate*10 > H_CLK /0x3fff)
1181 {
1182 /* On H Devices, use 12 000 000 Baudrate when possible
1183 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
1184 three fractional bits and a 120 MHz clock
1185 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1186 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1187 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1188 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1189 }
1190 else
1191 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1192 }
1193 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R ))
1194 {
1195 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1196 }
1197 else
1198 {
1199 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
1200 }
1201 // Split into "value" and "index" values
1202 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1203 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H || ftdi->type == TYPE_230X)
1204 {
1205 *index = (unsigned short)(encoded_divisor >> 8);
1206 *index &= 0xFF00;
1207 *index |= ftdi->index;
1208 }
1209 else
1210 *index = (unsigned short)(encoded_divisor >> 16);
1211
1212 // Return the nearest baud rate
1213 return best_baud;
1214}
1215
1216/**
1217 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1218 * Do not use, it's only for the unit test framework
1219 **/
1220int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1221 unsigned short *value, unsigned short *index)
1222{
1223 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1224}
1225
1226/**
1227 Sets the chip baud rate
1228
1229 \param ftdi pointer to ftdi_context
1230 \param baudrate baud rate to set
1231
1232 \retval 0: all fine
1233 \retval -1: invalid baudrate
1234 \retval -2: setting baudrate failed
1235 \retval -3: USB device unavailable
1236*/
1237int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1238{
1239 unsigned short value, index;
1240 int actual_baudrate;
1241
1242 if (ftdi == NULL || ftdi->usb_dev == NULL)
1243 ftdi_error_return(-3, "USB device unavailable");
1244
1245 if (ftdi->bitbang_enabled)
1246 {
1247 baudrate = baudrate*4;
1248 }
1249
1250 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1251 if (actual_baudrate <= 0)
1252 ftdi_error_return (-1, "Silly baudrate <= 0.");
1253
1254 // Check within tolerance (about 5%)
1255 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1256 || ((actual_baudrate < baudrate)
1257 ? (actual_baudrate * 21 < baudrate * 20)
1258 : (baudrate * 21 < actual_baudrate * 20)))
1259 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1260
1261 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1262 SIO_SET_BAUDRATE_REQUEST, value,
1263 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1264 ftdi_error_return (-2, "Setting new baudrate failed");
1265
1266 ftdi->baudrate = baudrate;
1267 return 0;
1268}
1269
1270/**
1271 Set (RS232) line characteristics.
1272 The break type can only be set via ftdi_set_line_property2()
1273 and defaults to "off".
1274
1275 \param ftdi pointer to ftdi_context
1276 \param bits Number of bits
1277 \param sbit Number of stop bits
1278 \param parity Parity mode
1279
1280 \retval 0: all fine
1281 \retval -1: Setting line property failed
1282*/
1283int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1284 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1285{
1286 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1287}
1288
1289/**
1290 Set (RS232) line characteristics
1291
1292 \param ftdi pointer to ftdi_context
1293 \param bits Number of bits
1294 \param sbit Number of stop bits
1295 \param parity Parity mode
1296 \param break_type Break type
1297
1298 \retval 0: all fine
1299 \retval -1: Setting line property failed
1300 \retval -2: USB device unavailable
1301*/
1302int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1303 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1304 enum ftdi_break_type break_type)
1305{
1306 unsigned short value = bits;
1307
1308 if (ftdi == NULL || ftdi->usb_dev == NULL)
1309 ftdi_error_return(-2, "USB device unavailable");
1310
1311 switch (parity)
1312 {
1313 case NONE:
1314 value |= (0x00 << 8);
1315 break;
1316 case ODD:
1317 value |= (0x01 << 8);
1318 break;
1319 case EVEN:
1320 value |= (0x02 << 8);
1321 break;
1322 case MARK:
1323 value |= (0x03 << 8);
1324 break;
1325 case SPACE:
1326 value |= (0x04 << 8);
1327 break;
1328 }
1329
1330 switch (sbit)
1331 {
1332 case STOP_BIT_1:
1333 value |= (0x00 << 11);
1334 break;
1335 case STOP_BIT_15:
1336 value |= (0x01 << 11);
1337 break;
1338 case STOP_BIT_2:
1339 value |= (0x02 << 11);
1340 break;
1341 }
1342
1343 switch (break_type)
1344 {
1345 case BREAK_OFF:
1346 value |= (0x00 << 14);
1347 break;
1348 case BREAK_ON:
1349 value |= (0x01 << 14);
1350 break;
1351 }
1352
1353 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1354 SIO_SET_DATA_REQUEST, value,
1355 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1356 ftdi_error_return (-1, "Setting new line property failed");
1357
1358 return 0;
1359}
1360
1361/**
1362 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1363
1364 \param ftdi pointer to ftdi_context
1365 \param buf Buffer with the data
1366 \param size Size of the buffer
1367
1368 \retval -666: USB device unavailable
1369 \retval <0: error code from usb_bulk_write()
1370 \retval >0: number of bytes written
1371*/
1372int ftdi_write_data(struct ftdi_context *ftdi, const unsigned char *buf, int size)
1373{
1374 int offset = 0;
1375 int actual_length;
1376
1377 if (ftdi == NULL || ftdi->usb_dev == NULL)
1378 ftdi_error_return(-666, "USB device unavailable");
1379
1380 while (offset < size)
1381 {
1382 int write_size = ftdi->writebuffer_chunksize;
1383
1384 if (offset+write_size > size)
1385 write_size = size-offset;
1386
1387 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, (unsigned char *)buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1388 ftdi_error_return(-1, "usb bulk write failed");
1389
1390 offset += actual_length;
1391 }
1392
1393 return offset;
1394}
1395
1396static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1397{
1398 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1399 struct ftdi_context *ftdi = tc->ftdi;
1400 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1401
1402 packet_size = ftdi->max_packet_size;
1403
1404 actual_length = transfer->actual_length;
1405
1406 if (actual_length > 2)
1407 {
1408 // skip FTDI status bytes.
1409 // Maybe stored in the future to enable modem use
1410 num_of_chunks = actual_length / packet_size;
1411 chunk_remains = actual_length % packet_size;
1412 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1413
1414 ftdi->readbuffer_offset += 2;
1415 actual_length -= 2;
1416
1417 if (actual_length > packet_size - 2)
1418 {
1419 for (i = 1; i < num_of_chunks; i++)
1420 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1421 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1422 packet_size - 2);
1423 if (chunk_remains > 2)
1424 {
1425 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1426 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1427 chunk_remains-2);
1428 actual_length -= 2*num_of_chunks;
1429 }
1430 else
1431 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1432 }
1433
1434 if (actual_length > 0)
1435 {
1436 // data still fits in buf?
1437 if (tc->offset + actual_length <= tc->size)
1438 {
1439 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1440 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1441 tc->offset += actual_length;
1442
1443 ftdi->readbuffer_offset = 0;
1444 ftdi->readbuffer_remaining = 0;
1445
1446 /* Did we read exactly the right amount of bytes? */
1447 if (tc->offset == tc->size)
1448 {
1449 //printf("read_data exact rem %d offset %d\n",
1450 //ftdi->readbuffer_remaining, offset);
1451 tc->completed = 1;
1452 return;
1453 }
1454 }
1455 else
1456 {
1457 // only copy part of the data or size <= readbuffer_chunksize
1458 int part_size = tc->size - tc->offset;
1459 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1460 tc->offset += part_size;
1461
1462 ftdi->readbuffer_offset += part_size;
1463 ftdi->readbuffer_remaining = actual_length - part_size;
1464
1465 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1466 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1467 tc->completed = 1;
1468 return;
1469 }
1470 }
1471 }
1472 ret = libusb_submit_transfer (transfer);
1473 if (ret < 0)
1474 tc->completed = 1;
1475}
1476
1477
1478static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1479{
1480 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1481 struct ftdi_context *ftdi = tc->ftdi;
1482
1483 tc->offset += transfer->actual_length;
1484
1485 if (tc->offset == tc->size)
1486 {
1487 tc->completed = 1;
1488 }
1489 else
1490 {
1491 int write_size = ftdi->writebuffer_chunksize;
1492 int ret;
1493
1494 if (tc->offset + write_size > tc->size)
1495 write_size = tc->size - tc->offset;
1496
1497 transfer->length = write_size;
1498 transfer->buffer = tc->buf + tc->offset;
1499 ret = libusb_submit_transfer (transfer);
1500 if (ret < 0)
1501 tc->completed = 1;
1502 }
1503}
1504
1505
1506/**
1507 Writes data to the chip. Does not wait for completion of the transfer
1508 nor does it make sure that the transfer was successful.
1509
1510 Use libusb 1.0 asynchronous API.
1511
1512 \param ftdi pointer to ftdi_context
1513 \param buf Buffer with the data
1514 \param size Size of the buffer
1515
1516 \retval NULL: Some error happens when submit transfer
1517 \retval !NULL: Pointer to a ftdi_transfer_control
1518*/
1519
1520struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1521{
1522 struct ftdi_transfer_control *tc;
1523 struct libusb_transfer *transfer;
1524 int write_size, ret;
1525
1526 if (ftdi == NULL || ftdi->usb_dev == NULL)
1527 return NULL;
1528
1529 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1530 if (!tc)
1531 return NULL;
1532
1533 transfer = libusb_alloc_transfer(0);
1534 if (!transfer)
1535 {
1536 free(tc);
1537 return NULL;
1538 }
1539
1540 tc->ftdi = ftdi;
1541 tc->completed = 0;
1542 tc->buf = buf;
1543 tc->size = size;
1544 tc->offset = 0;
1545
1546 if (size < (int)ftdi->writebuffer_chunksize)
1547 write_size = size;
1548 else
1549 write_size = ftdi->writebuffer_chunksize;
1550
1551 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1552 write_size, ftdi_write_data_cb, tc,
1553 ftdi->usb_write_timeout);
1554 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1555
1556 ret = libusb_submit_transfer(transfer);
1557 if (ret < 0)
1558 {
1559 libusb_free_transfer(transfer);
1560 free(tc);
1561 return NULL;
1562 }
1563 tc->transfer = transfer;
1564
1565 return tc;
1566}
1567
1568/**
1569 Reads data from the chip. Does not wait for completion of the transfer
1570 nor does it make sure that the transfer was successful.
1571
1572 Use libusb 1.0 asynchronous API.
1573
1574 \param ftdi pointer to ftdi_context
1575 \param buf Buffer with the data
1576 \param size Size of the buffer
1577
1578 \retval NULL: Some error happens when submit transfer
1579 \retval !NULL: Pointer to a ftdi_transfer_control
1580*/
1581
1582struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1583{
1584 struct ftdi_transfer_control *tc;
1585 struct libusb_transfer *transfer;
1586 int ret;
1587
1588 if (ftdi == NULL || ftdi->usb_dev == NULL)
1589 return NULL;
1590
1591 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1592 if (!tc)
1593 return NULL;
1594
1595 tc->ftdi = ftdi;
1596 tc->buf = buf;
1597 tc->size = size;
1598
1599 if (size <= (int)ftdi->readbuffer_remaining)
1600 {
1601 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1602
1603 // Fix offsets
1604 ftdi->readbuffer_remaining -= size;
1605 ftdi->readbuffer_offset += size;
1606
1607 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1608
1609 tc->completed = 1;
1610 tc->offset = size;
1611 tc->transfer = NULL;
1612 return tc;
1613 }
1614
1615 tc->completed = 0;
1616 if (ftdi->readbuffer_remaining != 0)
1617 {
1618 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1619
1620 tc->offset = ftdi->readbuffer_remaining;
1621 }
1622 else
1623 tc->offset = 0;
1624
1625 transfer = libusb_alloc_transfer(0);
1626 if (!transfer)
1627 {
1628 free (tc);
1629 return NULL;
1630 }
1631
1632 ftdi->readbuffer_remaining = 0;
1633 ftdi->readbuffer_offset = 0;
1634
1635 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1636 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1637
1638 ret = libusb_submit_transfer(transfer);
1639 if (ret < 0)
1640 {
1641 libusb_free_transfer(transfer);
1642 free (tc);
1643 return NULL;
1644 }
1645 tc->transfer = transfer;
1646
1647 return tc;
1648}
1649
1650/**
1651 Wait for completion of the transfer.
1652
1653 Use libusb 1.0 asynchronous API.
1654
1655 \param tc pointer to ftdi_transfer_control
1656
1657 \retval < 0: Some error happens
1658 \retval >= 0: Data size transferred
1659*/
1660
1661int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1662{
1663 int ret;
1664
1665 while (!tc->completed)
1666 {
1667 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1668 if (ret < 0)
1669 {
1670 if (ret == LIBUSB_ERROR_INTERRUPTED)
1671 continue;
1672 libusb_cancel_transfer(tc->transfer);
1673 while (!tc->completed)
1674 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1675 break;
1676 libusb_free_transfer(tc->transfer);
1677 free (tc);
1678 return ret;
1679 }
1680 }
1681
1682 ret = tc->offset;
1683 /**
1684 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1685 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1686 **/
1687 if (tc->transfer)
1688 {
1689 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1690 ret = -1;
1691 libusb_free_transfer(tc->transfer);
1692 }
1693 free(tc);
1694 return ret;
1695}
1696
1697/**
1698 Configure write buffer chunk size.
1699 Default is 4096.
1700
1701 \param ftdi pointer to ftdi_context
1702 \param chunksize Chunk size
1703
1704 \retval 0: all fine
1705 \retval -1: ftdi context invalid
1706*/
1707int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1708{
1709 if (ftdi == NULL)
1710 ftdi_error_return(-1, "ftdi context invalid");
1711
1712 ftdi->writebuffer_chunksize = chunksize;
1713 return 0;
1714}
1715
1716/**
1717 Get write buffer chunk size.
1718
1719 \param ftdi pointer to ftdi_context
1720 \param chunksize Pointer to store chunk size in
1721
1722 \retval 0: all fine
1723 \retval -1: ftdi context invalid
1724*/
1725int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1726{
1727 if (ftdi == NULL)
1728 ftdi_error_return(-1, "ftdi context invalid");
1729
1730 *chunksize = ftdi->writebuffer_chunksize;
1731 return 0;
1732}
1733
1734/**
1735 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1736
1737 Automatically strips the two modem status bytes transfered during every read.
1738
1739 \param ftdi pointer to ftdi_context
1740 \param buf Buffer to store data in
1741 \param size Size of the buffer
1742
1743 \retval -666: USB device unavailable
1744 \retval <0: error code from libusb_bulk_transfer()
1745 \retval 0: no data was available
1746 \retval >0: number of bytes read
1747
1748*/
1749int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1750{
1751 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1752 int packet_size = ftdi->max_packet_size;
1753 int actual_length = 1;
1754
1755 if (ftdi == NULL || ftdi->usb_dev == NULL)
1756 ftdi_error_return(-666, "USB device unavailable");
1757
1758 // Packet size sanity check (avoid division by zero)
1759 if (packet_size == 0)
1760 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1761
1762 // everything we want is still in the readbuffer?
1763 if (size <= (int)ftdi->readbuffer_remaining)
1764 {
1765 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1766
1767 // Fix offsets
1768 ftdi->readbuffer_remaining -= size;
1769 ftdi->readbuffer_offset += size;
1770
1771 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1772
1773 return size;
1774 }
1775 // something still in the readbuffer, but not enough to satisfy 'size'?
1776 if (ftdi->readbuffer_remaining != 0)
1777 {
1778 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1779
1780 // Fix offset
1781 offset += ftdi->readbuffer_remaining;
1782 }
1783 // do the actual USB read
1784 while (offset < size && actual_length > 0)
1785 {
1786 ftdi->readbuffer_remaining = 0;
1787 ftdi->readbuffer_offset = 0;
1788 /* returns how much received */
1789 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1790 if (ret < 0)
1791 ftdi_error_return(ret, "usb bulk read failed");
1792
1793 if (actual_length > 2)
1794 {
1795 // skip FTDI status bytes.
1796 // Maybe stored in the future to enable modem use
1797 num_of_chunks = actual_length / packet_size;
1798 chunk_remains = actual_length % packet_size;
1799 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1800
1801 ftdi->readbuffer_offset += 2;
1802 actual_length -= 2;
1803
1804 if (actual_length > packet_size - 2)
1805 {
1806 for (i = 1; i < num_of_chunks; i++)
1807 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1808 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1809 packet_size - 2);
1810 if (chunk_remains > 2)
1811 {
1812 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1813 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1814 chunk_remains-2);
1815 actual_length -= 2*num_of_chunks;
1816 }
1817 else
1818 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1819 }
1820 }
1821 else if (actual_length <= 2)
1822 {
1823 // no more data to read?
1824 return offset;
1825 }
1826 if (actual_length > 0)
1827 {
1828 // data still fits in buf?
1829 if (offset+actual_length <= size)
1830 {
1831 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1832 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1833 offset += actual_length;
1834
1835 /* Did we read exactly the right amount of bytes? */
1836 if (offset == size)
1837 //printf("read_data exact rem %d offset %d\n",
1838 //ftdi->readbuffer_remaining, offset);
1839 return offset;
1840 }
1841 else
1842 {
1843 // only copy part of the data or size <= readbuffer_chunksize
1844 int part_size = size-offset;
1845 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1846
1847 ftdi->readbuffer_offset += part_size;
1848 ftdi->readbuffer_remaining = actual_length-part_size;
1849 offset += part_size;
1850
1851 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1852 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1853
1854 return offset;
1855 }
1856 }
1857 }
1858 // never reached
1859 return -127;
1860}
1861
1862/**
1863 Configure read buffer chunk size.
1864 Default is 4096.
1865
1866 Automatically reallocates the buffer.
1867
1868 \param ftdi pointer to ftdi_context
1869 \param chunksize Chunk size
1870
1871 \retval 0: all fine
1872 \retval -1: ftdi context invalid
1873*/
1874int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1875{
1876 unsigned char *new_buf;
1877
1878 if (ftdi == NULL)
1879 ftdi_error_return(-1, "ftdi context invalid");
1880
1881 // Invalidate all remaining data
1882 ftdi->readbuffer_offset = 0;
1883 ftdi->readbuffer_remaining = 0;
1884#ifdef __linux__
1885 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1886 which is defined in libusb-1.0. Otherwise, each USB read request will
1887 be divided into multiple URBs. This will cause issues on Linux kernel
1888 older than 2.6.32. */
1889 if (chunksize > 16384)
1890 chunksize = 16384;
1891#endif
1892
1893 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1894 ftdi_error_return(-1, "out of memory for readbuffer");
1895
1896 ftdi->readbuffer = new_buf;
1897 ftdi->readbuffer_chunksize = chunksize;
1898
1899 return 0;
1900}
1901
1902/**
1903 Get read buffer chunk size.
1904
1905 \param ftdi pointer to ftdi_context
1906 \param chunksize Pointer to store chunk size in
1907
1908 \retval 0: all fine
1909 \retval -1: FTDI context invalid
1910*/
1911int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1912{
1913 if (ftdi == NULL)
1914 ftdi_error_return(-1, "FTDI context invalid");
1915
1916 *chunksize = ftdi->readbuffer_chunksize;
1917 return 0;
1918}
1919
1920/**
1921 Enable/disable bitbang modes.
1922
1923 \param ftdi pointer to ftdi_context
1924 \param bitmask Bitmask to configure lines.
1925 HIGH/ON value configures a line as output.
1926 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1927
1928 \retval 0: all fine
1929 \retval -1: can't enable bitbang mode
1930 \retval -2: USB device unavailable
1931*/
1932int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1933{
1934 unsigned short usb_val;
1935
1936 if (ftdi == NULL || ftdi->usb_dev == NULL)
1937 ftdi_error_return(-2, "USB device unavailable");
1938
1939 usb_val = bitmask; // low byte: bitmask
1940 usb_val |= (mode << 8);
1941 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1942 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
1943
1944 ftdi->bitbang_mode = mode;
1945 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1946 return 0;
1947}
1948
1949/**
1950 Disable bitbang mode.
1951
1952 \param ftdi pointer to ftdi_context
1953
1954 \retval 0: all fine
1955 \retval -1: can't disable bitbang mode
1956 \retval -2: USB device unavailable
1957*/
1958int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1959{
1960 if (ftdi == NULL || ftdi->usb_dev == NULL)
1961 ftdi_error_return(-2, "USB device unavailable");
1962
1963 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1964 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1965
1966 ftdi->bitbang_enabled = 0;
1967 return 0;
1968}
1969
1970
1971/**
1972 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1973
1974 \param ftdi pointer to ftdi_context
1975 \param pins Pointer to store pins into
1976
1977 \retval 0: all fine
1978 \retval -1: read pins failed
1979 \retval -2: USB device unavailable
1980*/
1981int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1982{
1983 if (ftdi == NULL || ftdi->usb_dev == NULL)
1984 ftdi_error_return(-2, "USB device unavailable");
1985
1986 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1987 ftdi_error_return(-1, "read pins failed");
1988
1989 return 0;
1990}
1991
1992/**
1993 Set latency timer
1994
1995 The FTDI chip keeps data in the internal buffer for a specific
1996 amount of time if the buffer is not full yet to decrease
1997 load on the usb bus.
1998
1999 \param ftdi pointer to ftdi_context
2000 \param latency Value between 1 and 255
2001
2002 \retval 0: all fine
2003 \retval -1: latency out of range
2004 \retval -2: unable to set latency timer
2005 \retval -3: USB device unavailable
2006*/
2007int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2008{
2009 unsigned short usb_val;
2010
2011 if (latency < 1)
2012 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
2013
2014 if (ftdi == NULL || ftdi->usb_dev == NULL)
2015 ftdi_error_return(-3, "USB device unavailable");
2016
2017 usb_val = latency;
2018 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2019 ftdi_error_return(-2, "unable to set latency timer");
2020
2021 return 0;
2022}
2023
2024/**
2025 Get latency timer
2026
2027 \param ftdi pointer to ftdi_context
2028 \param latency Pointer to store latency value in
2029
2030 \retval 0: all fine
2031 \retval -1: unable to get latency timer
2032 \retval -2: USB device unavailable
2033*/
2034int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2035{
2036 unsigned short usb_val;
2037
2038 if (ftdi == NULL || ftdi->usb_dev == NULL)
2039 ftdi_error_return(-2, "USB device unavailable");
2040
2041 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
2042 ftdi_error_return(-1, "reading latency timer failed");
2043
2044 *latency = (unsigned char)usb_val;
2045 return 0;
2046}
2047
2048/**
2049 Poll modem status information
2050
2051 This function allows the retrieve the two status bytes of the device.
2052 The device sends these bytes also as a header for each read access
2053 where they are discarded by ftdi_read_data(). The chip generates
2054 the two stripped status bytes in the absence of data every 40 ms.
2055
2056 Layout of the first byte:
2057 - B0..B3 - must be 0
2058 - B4 Clear to send (CTS)
2059 0 = inactive
2060 1 = active
2061 - B5 Data set ready (DTS)
2062 0 = inactive
2063 1 = active
2064 - B6 Ring indicator (RI)
2065 0 = inactive
2066 1 = active
2067 - B7 Receive line signal detect (RLSD)
2068 0 = inactive
2069 1 = active
2070
2071 Layout of the second byte:
2072 - B0 Data ready (DR)
2073 - B1 Overrun error (OE)
2074 - B2 Parity error (PE)
2075 - B3 Framing error (FE)
2076 - B4 Break interrupt (BI)
2077 - B5 Transmitter holding register (THRE)
2078 - B6 Transmitter empty (TEMT)
2079 - B7 Error in RCVR FIFO
2080
2081 \param ftdi pointer to ftdi_context
2082 \param status Pointer to store status information in. Must be two bytes.
2083
2084 \retval 0: all fine
2085 \retval -1: unable to retrieve status information
2086 \retval -2: USB device unavailable
2087*/
2088int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2089{
2090 char usb_val[2];
2091
2092 if (ftdi == NULL || ftdi->usb_dev == NULL)
2093 ftdi_error_return(-2, "USB device unavailable");
2094
2095 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
2096 ftdi_error_return(-1, "getting modem status failed");
2097
2098 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
2099
2100 return 0;
2101}
2102
2103/**
2104 Set flowcontrol for ftdi chip
2105
2106 \param ftdi pointer to ftdi_context
2107 \param flowctrl flow control to use. should be
2108 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2109
2110 \retval 0: all fine
2111 \retval -1: set flow control failed
2112 \retval -2: USB device unavailable
2113*/
2114int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2115{
2116 if (ftdi == NULL || ftdi->usb_dev == NULL)
2117 ftdi_error_return(-2, "USB device unavailable");
2118
2119 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2120 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2121 NULL, 0, ftdi->usb_write_timeout) < 0)
2122 ftdi_error_return(-1, "set flow control failed");
2123
2124 return 0;
2125}
2126
2127/**
2128 Set dtr line
2129
2130 \param ftdi pointer to ftdi_context
2131 \param state state to set line to (1 or 0)
2132
2133 \retval 0: all fine
2134 \retval -1: set dtr failed
2135 \retval -2: USB device unavailable
2136*/
2137int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2138{
2139 unsigned short usb_val;
2140
2141 if (ftdi == NULL || ftdi->usb_dev == NULL)
2142 ftdi_error_return(-2, "USB device unavailable");
2143
2144 if (state)
2145 usb_val = SIO_SET_DTR_HIGH;
2146 else
2147 usb_val = SIO_SET_DTR_LOW;
2148
2149 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2150 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2151 NULL, 0, ftdi->usb_write_timeout) < 0)
2152 ftdi_error_return(-1, "set dtr failed");
2153
2154 return 0;
2155}
2156
2157/**
2158 Set rts line
2159
2160 \param ftdi pointer to ftdi_context
2161 \param state state to set line to (1 or 0)
2162
2163 \retval 0: all fine
2164 \retval -1: set rts failed
2165 \retval -2: USB device unavailable
2166*/
2167int ftdi_setrts(struct ftdi_context *ftdi, int state)
2168{
2169 unsigned short usb_val;
2170
2171 if (ftdi == NULL || ftdi->usb_dev == NULL)
2172 ftdi_error_return(-2, "USB device unavailable");
2173
2174 if (state)
2175 usb_val = SIO_SET_RTS_HIGH;
2176 else
2177 usb_val = SIO_SET_RTS_LOW;
2178
2179 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2180 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2181 NULL, 0, ftdi->usb_write_timeout) < 0)
2182 ftdi_error_return(-1, "set of rts failed");
2183
2184 return 0;
2185}
2186
2187/**
2188 Set dtr and rts line in one pass
2189
2190 \param ftdi pointer to ftdi_context
2191 \param dtr DTR state to set line to (1 or 0)
2192 \param rts RTS state to set line to (1 or 0)
2193
2194 \retval 0: all fine
2195 \retval -1: set dtr/rts failed
2196 \retval -2: USB device unavailable
2197 */
2198int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2199{
2200 unsigned short usb_val;
2201
2202 if (ftdi == NULL || ftdi->usb_dev == NULL)
2203 ftdi_error_return(-2, "USB device unavailable");
2204
2205 if (dtr)
2206 usb_val = SIO_SET_DTR_HIGH;
2207 else
2208 usb_val = SIO_SET_DTR_LOW;
2209
2210 if (rts)
2211 usb_val |= SIO_SET_RTS_HIGH;
2212 else
2213 usb_val |= SIO_SET_RTS_LOW;
2214
2215 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2216 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2217 NULL, 0, ftdi->usb_write_timeout) < 0)
2218 ftdi_error_return(-1, "set of rts/dtr failed");
2219
2220 return 0;
2221}
2222
2223/**
2224 Set the special event character
2225
2226 \param ftdi pointer to ftdi_context
2227 \param eventch Event character
2228 \param enable 0 to disable the event character, non-zero otherwise
2229
2230 \retval 0: all fine
2231 \retval -1: unable to set event character
2232 \retval -2: USB device unavailable
2233*/
2234int ftdi_set_event_char(struct ftdi_context *ftdi,
2235 unsigned char eventch, unsigned char enable)
2236{
2237 unsigned short usb_val;
2238
2239 if (ftdi == NULL || ftdi->usb_dev == NULL)
2240 ftdi_error_return(-2, "USB device unavailable");
2241
2242 usb_val = eventch;
2243 if (enable)
2244 usb_val |= 1 << 8;
2245
2246 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2247 ftdi_error_return(-1, "setting event character failed");
2248
2249 return 0;
2250}
2251
2252/**
2253 Set error character
2254
2255 \param ftdi pointer to ftdi_context
2256 \param errorch Error character
2257 \param enable 0 to disable the error character, non-zero otherwise
2258
2259 \retval 0: all fine
2260 \retval -1: unable to set error character
2261 \retval -2: USB device unavailable
2262*/
2263int ftdi_set_error_char(struct ftdi_context *ftdi,
2264 unsigned char errorch, unsigned char enable)
2265{
2266 unsigned short usb_val;
2267
2268 if (ftdi == NULL || ftdi->usb_dev == NULL)
2269 ftdi_error_return(-2, "USB device unavailable");
2270
2271 usb_val = errorch;
2272 if (enable)
2273 usb_val |= 1 << 8;
2274
2275 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2276 ftdi_error_return(-1, "setting error character failed");
2277
2278 return 0;
2279}
2280
2281/**
2282 Init eeprom with default values for the connected device
2283 \param ftdi pointer to ftdi_context
2284 \param manufacturer String to use as Manufacturer
2285 \param product String to use as Product description
2286 \param serial String to use as Serial number description
2287
2288 \retval 0: all fine
2289 \retval -1: No struct ftdi_context
2290 \retval -2: No struct ftdi_eeprom
2291 \retval -3: No connected device or device not yet opened
2292*/
2293int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2294 char * product, char * serial)
2295{
2296 struct ftdi_eeprom *eeprom;
2297
2298 if (ftdi == NULL)
2299 ftdi_error_return(-1, "No struct ftdi_context");
2300
2301 if (ftdi->eeprom == NULL)
2302 ftdi_error_return(-2,"No struct ftdi_eeprom");
2303
2304 eeprom = ftdi->eeprom;
2305 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2306
2307 if (ftdi->usb_dev == NULL)
2308 ftdi_error_return(-3, "No connected device or device not yet opened");
2309
2310 eeprom->vendor_id = 0x0403;
2311 eeprom->use_serial = 1;
2312 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2313 (ftdi->type == TYPE_R))
2314 eeprom->product_id = 0x6001;
2315 else if (ftdi->type == TYPE_4232H)
2316 eeprom->product_id = 0x6011;
2317 else if (ftdi->type == TYPE_232H)
2318 eeprom->product_id = 0x6014;
2319 else if (ftdi->type == TYPE_230X)
2320 eeprom->product_id = 0x6015;
2321 else
2322 eeprom->product_id = 0x6010;
2323
2324 if (ftdi->type == TYPE_AM)
2325 eeprom->usb_version = 0x0101;
2326 else
2327 eeprom->usb_version = 0x0200;
2328 eeprom->max_power = 100;
2329
2330 if (eeprom->manufacturer)
2331 free (eeprom->manufacturer);
2332 eeprom->manufacturer = NULL;
2333 if (manufacturer)
2334 {
2335 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2336 if (eeprom->manufacturer)
2337 strcpy(eeprom->manufacturer, manufacturer);
2338 }
2339
2340 if (eeprom->product)
2341 free (eeprom->product);
2342 eeprom->product = NULL;
2343 if(product)
2344 {
2345 eeprom->product = malloc(strlen(product)+1);
2346 if (eeprom->product)
2347 strcpy(eeprom->product, product);
2348 }
2349 else
2350 {
2351 const char* default_product;
2352 switch(ftdi->type)
2353 {
2354 case TYPE_AM: default_product = "AM"; break;
2355 case TYPE_BM: default_product = "BM"; break;
2356 case TYPE_2232C: default_product = "Dual RS232"; break;
2357 case TYPE_R: default_product = "FT232R USB UART"; break;
2358 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2359 case TYPE_4232H: default_product = "FT4232H"; break;
2360 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2361 case TYPE_230X: default_product = "FT230X Basic UART"; break;
2362 default:
2363 ftdi_error_return(-3, "Unknown chip type");
2364 }
2365 eeprom->product = malloc(strlen(default_product) +1);
2366 if (eeprom->product)
2367 strcpy(eeprom->product, default_product);
2368 }
2369
2370 if (eeprom->serial)
2371 free (eeprom->serial);
2372 eeprom->serial = NULL;
2373 if (serial)
2374 {
2375 eeprom->serial = malloc(strlen(serial)+1);
2376 if (eeprom->serial)
2377 strcpy(eeprom->serial, serial);
2378 }
2379
2380 if (ftdi->type == TYPE_R)
2381 {
2382 eeprom->max_power = 90;
2383 eeprom->size = 0x80;
2384 eeprom->cbus_function[0] = CBUS_TXLED;
2385 eeprom->cbus_function[1] = CBUS_RXLED;
2386 eeprom->cbus_function[2] = CBUS_TXDEN;
2387 eeprom->cbus_function[3] = CBUS_PWREN;
2388 eeprom->cbus_function[4] = CBUS_SLEEP;
2389 }
2390 else if (ftdi->type == TYPE_230X)
2391 {
2392 eeprom->max_power = 90;
2393 eeprom->size = 0x100;
2394 eeprom->cbus_function[0] = CBUSH_TXDEN;
2395 eeprom->cbus_function[1] = CBUSH_RXLED;
2396 eeprom->cbus_function[2] = CBUSH_TXLED;
2397 eeprom->cbus_function[3] = CBUSH_SLEEP;
2398 }
2399 else
2400 {
2401 if(ftdi->type == TYPE_232H)
2402 {
2403 int i;
2404 for (i=0; i<10; i++)
2405 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2406 }
2407 eeprom->size = -1;
2408 }
2409 switch (ftdi->type)
2410 {
2411 case TYPE_AM:
2412 eeprom->release_number = 0x0200;
2413 break;
2414 case TYPE_BM:
2415 eeprom->release_number = 0x0400;
2416 break;
2417 case TYPE_2232C:
2418 eeprom->release_number = 0x0500;
2419 break;
2420 case TYPE_R:
2421 eeprom->release_number = 0x0600;
2422 break;
2423 case TYPE_2232H:
2424 eeprom->release_number = 0x0700;
2425 break;
2426 case TYPE_4232H:
2427 eeprom->release_number = 0x0800;
2428 break;
2429 case TYPE_232H:
2430 eeprom->release_number = 0x0900;
2431 break;
2432 case TYPE_230X:
2433 eeprom->release_number = 0x1000;
2434 break;
2435 default:
2436 eeprom->release_number = 0x00;
2437 }
2438 return 0;
2439}
2440
2441int ftdi_eeprom_set_strings(struct ftdi_context *ftdi, char * manufacturer,
2442 char * product, char * serial)
2443{
2444 struct ftdi_eeprom *eeprom;
2445
2446 if (ftdi == NULL)
2447 ftdi_error_return(-1, "No struct ftdi_context");
2448
2449 if (ftdi->eeprom == NULL)
2450 ftdi_error_return(-2,"No struct ftdi_eeprom");
2451
2452 eeprom = ftdi->eeprom;
2453
2454 if (ftdi->usb_dev == NULL)
2455 ftdi_error_return(-3, "No connected device or device not yet opened");
2456
2457 if (manufacturer)
2458 {
2459 if (eeprom->manufacturer)
2460 free (eeprom->manufacturer);
2461 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2462 if (eeprom->manufacturer)
2463 strcpy(eeprom->manufacturer, manufacturer);
2464 }
2465
2466 if(product)
2467 {
2468 if (eeprom->product)
2469 free (eeprom->product);
2470 eeprom->product = malloc(strlen(product)+1);
2471 if (eeprom->product)
2472 strcpy(eeprom->product, product);
2473 }
2474
2475 if (serial)
2476 {
2477 if (eeprom->serial)
2478 free (eeprom->serial);
2479 eeprom->serial = malloc(strlen(serial)+1);
2480 if (eeprom->serial)
2481 {
2482 strcpy(eeprom->serial, serial);
2483 eeprom->use_serial = 1;
2484 }
2485 }
2486 return 0;
2487}
2488
2489
2490/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2491void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2492{
2493 int i;
2494 for(i=0; i<5; i++)
2495 {
2496 int mode_low, mode_high;
2497 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2498 mode_low = CBUSH_TRISTATE;
2499 else
2500 mode_low = eeprom->cbus_function[2*i];
2501 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2502 mode_high = CBUSH_TRISTATE;
2503 else
2504 mode_high = eeprom->cbus_function[2*i+1];
2505
2506 output[0x18+i] = (mode_high <<4) | mode_low;
2507 }
2508}
2509/* Return the bits for the encoded EEPROM Structure of a requested Mode
2510 *
2511 */
2512static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2513{
2514 switch (chip)
2515 {
2516 case TYPE_2232H:
2517 case TYPE_2232C:
2518 {
2519 switch (type)
2520 {
2521 case CHANNEL_IS_UART: return 0;
2522 case CHANNEL_IS_FIFO: return 0x01;
2523 case CHANNEL_IS_OPTO: return 0x02;
2524 case CHANNEL_IS_CPU : return 0x04;
2525 default: return 0;
2526 }
2527 }
2528 case TYPE_232H:
2529 {
2530 switch (type)
2531 {
2532 case CHANNEL_IS_UART : return 0;
2533 case CHANNEL_IS_FIFO : return 0x01;
2534 case CHANNEL_IS_OPTO : return 0x02;
2535 case CHANNEL_IS_CPU : return 0x04;
2536 case CHANNEL_IS_FT1284 : return 0x08;
2537 default: return 0;
2538 }
2539 }
2540 case TYPE_230X: /* FT230X is only UART */
2541 default: return 0;
2542 }
2543 return 0;
2544}
2545
2546/**
2547 Build binary buffer from ftdi_eeprom structure.
2548 Output is suitable for ftdi_write_eeprom().
2549
2550 \param ftdi pointer to ftdi_context
2551
2552 \retval >=0: size of eeprom user area in bytes
2553 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2554 \retval -2: Invalid eeprom or ftdi pointer
2555 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2556 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2557 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2558 \retval -6: No connected EEPROM or EEPROM Type unknown
2559*/
2560int ftdi_eeprom_build(struct ftdi_context *ftdi)
2561{
2562 unsigned char i, j, eeprom_size_mask;
2563 unsigned short checksum, value;
2564 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2565 int user_area_size;
2566 struct ftdi_eeprom *eeprom;
2567 unsigned char * output;
2568
2569 if (ftdi == NULL)
2570 ftdi_error_return(-2,"No context");
2571 if (ftdi->eeprom == NULL)
2572 ftdi_error_return(-2,"No eeprom structure");
2573
2574 eeprom= ftdi->eeprom;
2575 output = eeprom->buf;
2576
2577 if (eeprom->chip == -1)
2578 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2579
2580 if (eeprom->size == -1)
2581 {
2582 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2583 eeprom->size = 0x100;
2584 else
2585 eeprom->size = 0x80;
2586 }
2587
2588 if (eeprom->manufacturer != NULL)
2589 manufacturer_size = strlen(eeprom->manufacturer);
2590 if (eeprom->product != NULL)
2591 product_size = strlen(eeprom->product);
2592 if (eeprom->serial != NULL)
2593 serial_size = strlen(eeprom->serial);
2594
2595 // eeprom size check
2596 switch (ftdi->type)
2597 {
2598 case TYPE_AM:
2599 case TYPE_BM:
2600 user_area_size = 96; // base size for strings (total of 48 characters)
2601 break;
2602 case TYPE_2232C:
2603 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2604 break;
2605 case TYPE_R:
2606 case TYPE_230X:
2607 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2608 break;
2609 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2610 case TYPE_4232H:
2611 user_area_size = 86;
2612 break;
2613 case TYPE_232H:
2614 user_area_size = 80;
2615 break;
2616 default:
2617 user_area_size = 0;
2618 break;
2619 }
2620 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2621
2622 if (user_area_size < 0)
2623 ftdi_error_return(-1,"eeprom size exceeded");
2624
2625 // empty eeprom
2626 if (ftdi->type == TYPE_230X)
2627 {
2628 /* FT230X have a reserved section in the middle of the MTP,
2629 which cannot be written to, but must be included in the checksum */
2630 memset(ftdi->eeprom->buf, 0, 0x80);
2631 memset((ftdi->eeprom->buf + 0xa0), 0, (FTDI_MAX_EEPROM_SIZE - 0xa0));
2632 }
2633 else
2634 {
2635 memset(ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2636 }
2637
2638 // Bytes and Bits set for all Types
2639
2640 // Addr 02: Vendor ID
2641 output[0x02] = eeprom->vendor_id;
2642 output[0x03] = eeprom->vendor_id >> 8;
2643
2644 // Addr 04: Product ID
2645 output[0x04] = eeprom->product_id;
2646 output[0x05] = eeprom->product_id >> 8;
2647
2648 // Addr 06: Device release number (0400h for BM features)
2649 output[0x06] = eeprom->release_number;
2650 output[0x07] = eeprom->release_number >> 8;
2651
2652 // Addr 08: Config descriptor
2653 // Bit 7: always 1
2654 // Bit 6: 1 if this device is self powered, 0 if bus powered
2655 // Bit 5: 1 if this device uses remote wakeup
2656 // Bit 4-0: reserved - 0
2657 j = 0x80;
2658 if (eeprom->self_powered)
2659 j |= 0x40;
2660 if (eeprom->remote_wakeup)
2661 j |= 0x20;
2662 output[0x08] = j;
2663
2664 // Addr 09: Max power consumption: max power = value * 2 mA
2665 output[0x09] = eeprom->max_power / MAX_POWER_MILLIAMP_PER_UNIT;
2666
2667 if ((ftdi->type != TYPE_AM) && (ftdi->type != TYPE_230X))
2668 {
2669 // Addr 0A: Chip configuration
2670 // Bit 7: 0 - reserved
2671 // Bit 6: 0 - reserved
2672 // Bit 5: 0 - reserved
2673 // Bit 4: 1 - Change USB version
2674 // Bit 3: 1 - Use the serial number string
2675 // Bit 2: 1 - Enable suspend pull downs for lower power
2676 // Bit 1: 1 - Out EndPoint is Isochronous
2677 // Bit 0: 1 - In EndPoint is Isochronous
2678 //
2679 j = 0;
2680 if (eeprom->in_is_isochronous)
2681 j = j | 1;
2682 if (eeprom->out_is_isochronous)
2683 j = j | 2;
2684 output[0x0A] = j;
2685 }
2686
2687 // Dynamic content
2688 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2689 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2690 // 0xa0 (TYPE_232H)
2691 i = 0;
2692 switch (ftdi->type)
2693 {
2694 case TYPE_2232H:
2695 case TYPE_4232H:
2696 i += 2;
2697 case TYPE_R:
2698 i += 2;
2699 case TYPE_2232C:
2700 i += 2;
2701 case TYPE_AM:
2702 case TYPE_BM:
2703 i += 0x94;
2704 break;
2705 case TYPE_232H:
2706 case TYPE_230X:
2707 i = 0xa0;
2708 break;
2709 }
2710 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2711 eeprom_size_mask = eeprom->size -1;
2712
2713 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2714 // Addr 0F: Length of manufacturer string
2715 // Output manufacturer
2716 output[0x0E] = i; // calculate offset
2717 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2718 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2719 for (j = 0; j < manufacturer_size; j++)
2720 {
2721 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2722 output[i & eeprom_size_mask] = 0x00, i++;
2723 }
2724 output[0x0F] = manufacturer_size*2 + 2;
2725
2726 // Addr 10: Offset of the product string + 0x80, calculated later
2727 // Addr 11: Length of product string
2728 output[0x10] = i | 0x80; // calculate offset
2729 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2730 output[i & eeprom_size_mask] = 0x03, i++;
2731 for (j = 0; j < product_size; j++)
2732 {
2733 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2734 output[i & eeprom_size_mask] = 0x00, i++;
2735 }
2736 output[0x11] = product_size*2 + 2;
2737
2738 // Addr 12: Offset of the serial string + 0x80, calculated later
2739 // Addr 13: Length of serial string
2740 output[0x12] = i | 0x80; // calculate offset
2741 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2742 output[i & eeprom_size_mask] = 0x03, i++;
2743 for (j = 0; j < serial_size; j++)
2744 {
2745 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2746 output[i & eeprom_size_mask] = 0x00, i++;
2747 }
2748
2749 // Legacy port name and PnP fields for FT2232 and newer chips
2750 if (ftdi->type > TYPE_BM)
2751 {
2752 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2753 i++;
2754 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2755 i++;
2756 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2757 i++;
2758 }
2759
2760 output[0x13] = serial_size*2 + 2;
2761
2762 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2763 {
2764 if (eeprom->use_serial)
2765 output[0x0A] |= USE_SERIAL_NUM;
2766 else
2767 output[0x0A] &= ~USE_SERIAL_NUM;
2768 }
2769
2770 /* Bytes and Bits specific to (some) types
2771 Write linear, as this allows easier fixing*/
2772 switch (ftdi->type)
2773 {
2774 case TYPE_AM:
2775 break;
2776 case TYPE_BM:
2777 output[0x0C] = eeprom->usb_version & 0xff;
2778 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2779 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2780 output[0x0A] |= USE_USB_VERSION_BIT;
2781 else
2782 output[0x0A] &= ~USE_USB_VERSION_BIT;
2783
2784 break;
2785 case TYPE_2232C:
2786
2787 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
2788 if ( eeprom->channel_a_driver == DRIVER_VCP)
2789 output[0x00] |= DRIVER_VCP;
2790 else
2791 output[0x00] &= ~DRIVER_VCP;
2792
2793 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2794 output[0x00] |= HIGH_CURRENT_DRIVE;
2795 else
2796 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2797
2798 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
2799 if ( eeprom->channel_b_driver == DRIVER_VCP)
2800 output[0x01] |= DRIVER_VCP;
2801 else
2802 output[0x01] &= ~DRIVER_VCP;
2803
2804 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2805 output[0x01] |= HIGH_CURRENT_DRIVE;
2806 else
2807 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2808
2809 if (eeprom->in_is_isochronous)
2810 output[0x0A] |= 0x1;
2811 else
2812 output[0x0A] &= ~0x1;
2813 if (eeprom->out_is_isochronous)
2814 output[0x0A] |= 0x2;
2815 else
2816 output[0x0A] &= ~0x2;
2817 if (eeprom->suspend_pull_downs)
2818 output[0x0A] |= 0x4;
2819 else
2820 output[0x0A] &= ~0x4;
2821 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2822 output[0x0A] |= USE_USB_VERSION_BIT;
2823 else
2824 output[0x0A] &= ~USE_USB_VERSION_BIT;
2825
2826 output[0x0C] = eeprom->usb_version & 0xff;
2827 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2828 output[0x14] = eeprom->chip;
2829 break;
2830 case TYPE_R:
2831 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2832 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2833 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2834
2835 if (eeprom->suspend_pull_downs)
2836 output[0x0A] |= 0x4;
2837 else
2838 output[0x0A] &= ~0x4;
2839 output[0x0B] = eeprom->invert;
2840 output[0x0C] = eeprom->usb_version & 0xff;
2841 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2842
2843 if (eeprom->cbus_function[0] > CBUS_BB)
2844 output[0x14] = CBUS_TXLED;
2845 else
2846 output[0x14] = eeprom->cbus_function[0];
2847
2848 if (eeprom->cbus_function[1] > CBUS_BB)
2849 output[0x14] |= CBUS_RXLED<<4;
2850 else
2851 output[0x14] |= eeprom->cbus_function[1]<<4;
2852
2853 if (eeprom->cbus_function[2] > CBUS_BB)
2854 output[0x15] = CBUS_TXDEN;
2855 else
2856 output[0x15] = eeprom->cbus_function[2];
2857
2858 if (eeprom->cbus_function[3] > CBUS_BB)
2859 output[0x15] |= CBUS_PWREN<<4;
2860 else
2861 output[0x15] |= eeprom->cbus_function[3]<<4;
2862
2863 if (eeprom->cbus_function[4] > CBUS_CLK6)
2864 output[0x16] = CBUS_SLEEP;
2865 else
2866 output[0x16] = eeprom->cbus_function[4];
2867 break;
2868 case TYPE_2232H:
2869 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
2870 if ( eeprom->channel_a_driver == DRIVER_VCP)
2871 output[0x00] |= DRIVER_VCP;
2872 else
2873 output[0x00] &= ~DRIVER_VCP;
2874
2875 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
2876 if ( eeprom->channel_b_driver == DRIVER_VCP)
2877 output[0x01] |= DRIVER_VCP;
2878 else
2879 output[0x01] &= ~DRIVER_VCP;
2880 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2881 output[0x01] |= SUSPEND_DBUS7_BIT;
2882 else
2883 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2884
2885 if (eeprom->suspend_pull_downs)
2886 output[0x0A] |= 0x4;
2887 else
2888 output[0x0A] &= ~0x4;
2889
2890 if (eeprom->group0_drive > DRIVE_16MA)
2891 output[0x0c] |= DRIVE_16MA;
2892 else
2893 output[0x0c] |= eeprom->group0_drive;
2894 if (eeprom->group0_schmitt == IS_SCHMITT)
2895 output[0x0c] |= IS_SCHMITT;
2896 if (eeprom->group0_slew == SLOW_SLEW)
2897 output[0x0c] |= SLOW_SLEW;
2898
2899 if (eeprom->group1_drive > DRIVE_16MA)
2900 output[0x0c] |= DRIVE_16MA<<4;
2901 else
2902 output[0x0c] |= eeprom->group1_drive<<4;
2903 if (eeprom->group1_schmitt == IS_SCHMITT)
2904 output[0x0c] |= IS_SCHMITT<<4;
2905 if (eeprom->group1_slew == SLOW_SLEW)
2906 output[0x0c] |= SLOW_SLEW<<4;
2907
2908 if (eeprom->group2_drive > DRIVE_16MA)
2909 output[0x0d] |= DRIVE_16MA;
2910 else
2911 output[0x0d] |= eeprom->group2_drive;
2912 if (eeprom->group2_schmitt == IS_SCHMITT)
2913 output[0x0d] |= IS_SCHMITT;
2914 if (eeprom->group2_slew == SLOW_SLEW)
2915 output[0x0d] |= SLOW_SLEW;
2916
2917 if (eeprom->group3_drive > DRIVE_16MA)
2918 output[0x0d] |= DRIVE_16MA<<4;
2919 else
2920 output[0x0d] |= eeprom->group3_drive<<4;
2921 if (eeprom->group3_schmitt == IS_SCHMITT)
2922 output[0x0d] |= IS_SCHMITT<<4;
2923 if (eeprom->group3_slew == SLOW_SLEW)
2924 output[0x0d] |= SLOW_SLEW<<4;
2925
2926 output[0x18] = eeprom->chip;
2927
2928 break;
2929 case TYPE_4232H:
2930 if (eeprom->channel_a_driver == DRIVER_VCP)
2931 output[0x00] |= DRIVER_VCP;
2932 else
2933 output[0x00] &= ~DRIVER_VCP;
2934 if (eeprom->channel_b_driver == DRIVER_VCP)
2935 output[0x01] |= DRIVER_VCP;
2936 else
2937 output[0x01] &= ~DRIVER_VCP;
2938 if (eeprom->channel_c_driver == DRIVER_VCP)
2939 output[0x00] |= (DRIVER_VCP << 4);
2940 else
2941 output[0x00] &= ~(DRIVER_VCP << 4);
2942 if (eeprom->channel_d_driver == DRIVER_VCP)
2943 output[0x01] |= (DRIVER_VCP << 4);
2944 else
2945 output[0x01] &= ~(DRIVER_VCP << 4);
2946
2947 if (eeprom->suspend_pull_downs)
2948 output[0x0a] |= 0x4;
2949 else
2950 output[0x0a] &= ~0x4;
2951
2952 if (eeprom->channel_a_rs485enable)
2953 output[0x0b] |= CHANNEL_IS_RS485 << 0;
2954 else
2955 output[0x0b] &= ~(CHANNEL_IS_RS485 << 0);
2956 if (eeprom->channel_b_rs485enable)
2957 output[0x0b] |= CHANNEL_IS_RS485 << 1;
2958 else
2959 output[0x0b] &= ~(CHANNEL_IS_RS485 << 1);
2960 if (eeprom->channel_c_rs485enable)
2961 output[0x0b] |= CHANNEL_IS_RS485 << 2;
2962 else
2963 output[0x0b] &= ~(CHANNEL_IS_RS485 << 2);
2964 if (eeprom->channel_d_rs485enable)
2965 output[0x0b] |= CHANNEL_IS_RS485 << 3;
2966 else
2967 output[0x0b] &= ~(CHANNEL_IS_RS485 << 3);
2968
2969 if (eeprom->group0_drive > DRIVE_16MA)
2970 output[0x0c] |= DRIVE_16MA;
2971 else
2972 output[0x0c] |= eeprom->group0_drive;
2973 if (eeprom->group0_schmitt == IS_SCHMITT)
2974 output[0x0c] |= IS_SCHMITT;
2975 if (eeprom->group0_slew == SLOW_SLEW)
2976 output[0x0c] |= SLOW_SLEW;
2977
2978 if (eeprom->group1_drive > DRIVE_16MA)
2979 output[0x0c] |= DRIVE_16MA<<4;
2980 else
2981 output[0x0c] |= eeprom->group1_drive<<4;
2982 if (eeprom->group1_schmitt == IS_SCHMITT)
2983 output[0x0c] |= IS_SCHMITT<<4;
2984 if (eeprom->group1_slew == SLOW_SLEW)
2985 output[0x0c] |= SLOW_SLEW<<4;
2986
2987 if (eeprom->group2_drive > DRIVE_16MA)
2988 output[0x0d] |= DRIVE_16MA;
2989 else
2990 output[0x0d] |= eeprom->group2_drive;
2991 if (eeprom->group2_schmitt == IS_SCHMITT)
2992 output[0x0d] |= IS_SCHMITT;
2993 if (eeprom->group2_slew == SLOW_SLEW)
2994 output[0x0d] |= SLOW_SLEW;
2995
2996 if (eeprom->group3_drive > DRIVE_16MA)
2997 output[0x0d] |= DRIVE_16MA<<4;
2998 else
2999 output[0x0d] |= eeprom->group3_drive<<4;
3000 if (eeprom->group3_schmitt == IS_SCHMITT)
3001 output[0x0d] |= IS_SCHMITT<<4;
3002 if (eeprom->group3_slew == SLOW_SLEW)
3003 output[0x0d] |= SLOW_SLEW<<4;
3004
3005 output[0x18] = eeprom->chip;
3006
3007 break;
3008 case TYPE_232H:
3009 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
3010 if ( eeprom->channel_a_driver == DRIVER_VCP)
3011 output[0x00] |= DRIVER_VCPH;
3012 else
3013 output[0x00] &= ~DRIVER_VCPH;
3014 if (eeprom->powersave)
3015 output[0x01] |= POWER_SAVE_DISABLE_H;
3016 else
3017 output[0x01] &= ~POWER_SAVE_DISABLE_H;
3018
3019 if (eeprom->suspend_pull_downs)
3020 output[0x0a] |= 0x4;
3021 else
3022 output[0x0a] &= ~0x4;
3023
3024 if (eeprom->clock_polarity)
3025 output[0x01] |= FT1284_CLK_IDLE_STATE;
3026 else
3027 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
3028 if (eeprom->data_order)
3029 output[0x01] |= FT1284_DATA_LSB;
3030 else
3031 output[0x01] &= ~FT1284_DATA_LSB;
3032 if (eeprom->flow_control)
3033 output[0x01] |= FT1284_FLOW_CONTROL;
3034 else
3035 output[0x01] &= ~FT1284_FLOW_CONTROL;
3036 if (eeprom->group0_drive > DRIVE_16MA)
3037 output[0x0c] |= DRIVE_16MA;
3038 else
3039 output[0x0c] |= eeprom->group0_drive;
3040 if (eeprom->group0_schmitt == IS_SCHMITT)
3041 output[0x0c] |= IS_SCHMITT;
3042 if (eeprom->group0_slew == SLOW_SLEW)
3043 output[0x0c] |= SLOW_SLEW;
3044
3045 if (eeprom->group1_drive > DRIVE_16MA)
3046 output[0x0d] |= DRIVE_16MA;
3047 else
3048 output[0x0d] |= eeprom->group1_drive;
3049 if (eeprom->group1_schmitt == IS_SCHMITT)
3050 output[0x0d] |= IS_SCHMITT;
3051 if (eeprom->group1_slew == SLOW_SLEW)
3052 output[0x0d] |= SLOW_SLEW;
3053
3054 set_ft232h_cbus(eeprom, output);
3055
3056 output[0x1e] = eeprom->chip;
3057 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
3058 break;
3059 case TYPE_230X:
3060 output[0x00] = 0x80; /* Actually, leave the default value */
3061 output[0x0a] = 0x08; /* Enable USB Serial Number */
3062 output[0x0c] = (0x01) | (0x3 << 4); /* DBUS drive 4mA, CBUS drive 16mA */
3063 for (j = 0; j <= 6; j++)
3064 {
3065 output[0x1a + j] = eeprom->cbus_function[j];
3066 }
3067 break;
3068 }
3069
3070 // calculate checksum
3071 checksum = 0xAAAA;
3072
3073 for (i = 0; i < eeprom->size/2-1; i++)
3074 {
3075 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3076 {
3077 /* FT230X has a user section in the MTP which is not part of the checksum */
3078 i = 0x40;
3079 }
3080 value = output[i*2];
3081 value += output[(i*2)+1] << 8;
3082
3083 checksum = value^checksum;
3084 checksum = (checksum << 1) | (checksum >> 15);
3085 }
3086
3087 output[eeprom->size-2] = checksum;
3088 output[eeprom->size-1] = checksum >> 8;
3089
3090 eeprom->initialized_for_connected_device = 1;
3091 return user_area_size;
3092}
3093/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
3094 * EEPROM structure
3095 *
3096 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
3097 */
3098static unsigned char bit2type(unsigned char bits)
3099{
3100 switch (bits)
3101 {
3102 case 0: return CHANNEL_IS_UART;
3103 case 1: return CHANNEL_IS_FIFO;
3104 case 2: return CHANNEL_IS_OPTO;
3105 case 4: return CHANNEL_IS_CPU;
3106 case 8: return CHANNEL_IS_FT1284;
3107 default:
3108 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
3109 bits);
3110 }
3111 return 0;
3112}
3113/**
3114 Decode binary EEPROM image into an ftdi_eeprom structure.
3115
3116 \param ftdi pointer to ftdi_context
3117 \param verbose Decode EEPROM on stdout
3118
3119 \retval 0: all fine
3120 \retval -1: something went wrong
3121
3122 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
3123 FIXME: Strings are malloc'ed here and should be freed somewhere
3124*/
3125int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
3126{
3127 unsigned char i, j;
3128 unsigned short checksum, eeprom_checksum, value;
3129 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
3130 int eeprom_size;
3131 struct ftdi_eeprom *eeprom;
3132 unsigned char *buf = NULL;
3133
3134 if (ftdi == NULL)
3135 ftdi_error_return(-1,"No context");
3136 if (ftdi->eeprom == NULL)
3137 ftdi_error_return(-1,"No eeprom structure");
3138
3139 eeprom = ftdi->eeprom;
3140 eeprom_size = eeprom->size;
3141 buf = ftdi->eeprom->buf;
3142
3143 // Addr 02: Vendor ID
3144 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
3145
3146 // Addr 04: Product ID
3147 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
3148
3149 // Addr 06: Device release number
3150 eeprom->release_number = buf[0x06] + (buf[0x07]<<8);
3151
3152 // Addr 08: Config descriptor
3153 // Bit 7: always 1
3154 // Bit 6: 1 if this device is self powered, 0 if bus powered
3155 // Bit 5: 1 if this device uses remote wakeup
3156 eeprom->self_powered = buf[0x08] & 0x40;
3157 eeprom->remote_wakeup = buf[0x08] & 0x20;
3158
3159 // Addr 09: Max power consumption: max power = value * 2 mA
3160 eeprom->max_power = MAX_POWER_MILLIAMP_PER_UNIT * buf[0x09];
3161
3162 // Addr 0A: Chip configuration
3163 // Bit 7: 0 - reserved
3164 // Bit 6: 0 - reserved
3165 // Bit 5: 0 - reserved
3166 // Bit 4: 1 - Change USB version on BM and 2232C
3167 // Bit 3: 1 - Use the serial number string
3168 // Bit 2: 1 - Enable suspend pull downs for lower power
3169 // Bit 1: 1 - Out EndPoint is Isochronous
3170 // Bit 0: 1 - In EndPoint is Isochronous
3171 //
3172 eeprom->in_is_isochronous = buf[0x0A]&0x01;
3173 eeprom->out_is_isochronous = buf[0x0A]&0x02;
3174 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
3175 eeprom->use_serial = (buf[0x0A] & USE_SERIAL_NUM)?1:0;
3176 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
3177
3178 // Addr 0C: USB version low byte when 0x0A
3179 // Addr 0D: USB version high byte when 0x0A
3180 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
3181
3182 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3183 // Addr 0F: Length of manufacturer string
3184 manufacturer_size = buf[0x0F]/2;
3185 if (eeprom->manufacturer)
3186 free(eeprom->manufacturer);
3187 if (manufacturer_size > 0)
3188 {
3189 eeprom->manufacturer = malloc(manufacturer_size);
3190 if (eeprom->manufacturer)
3191 {
3192 // Decode manufacturer
3193 i = buf[0x0E] & (eeprom_size -1); // offset
3194 for (j=0; j<manufacturer_size-1; j++)
3195 {
3196 eeprom->manufacturer[j] = buf[2*j+i+2];
3197 }
3198 eeprom->manufacturer[j] = '\0';
3199 }
3200 }
3201 else eeprom->manufacturer = NULL;
3202
3203 // Addr 10: Offset of the product string + 0x80, calculated later
3204 // Addr 11: Length of product string
3205 if (eeprom->product)
3206 free(eeprom->product);
3207 product_size = buf[0x11]/2;
3208 if (product_size > 0)
3209 {
3210 eeprom->product = malloc(product_size);
3211 if (eeprom->product)
3212 {
3213 // Decode product name
3214 i = buf[0x10] & (eeprom_size -1); // offset
3215 for (j=0; j<product_size-1; j++)
3216 {
3217 eeprom->product[j] = buf[2*j+i+2];
3218 }
3219 eeprom->product[j] = '\0';
3220 }
3221 }
3222 else eeprom->product = NULL;
3223
3224 // Addr 12: Offset of the serial string + 0x80, calculated later
3225 // Addr 13: Length of serial string
3226 if (eeprom->serial)
3227 free(eeprom->serial);
3228 serial_size = buf[0x13]/2;
3229 if (serial_size > 0)
3230 {
3231 eeprom->serial = malloc(serial_size);
3232 if (eeprom->serial)
3233 {
3234 // Decode serial
3235 i = buf[0x12] & (eeprom_size -1); // offset
3236 for (j=0; j<serial_size-1; j++)
3237 {
3238 eeprom->serial[j] = buf[2*j+i+2];
3239 }
3240 eeprom->serial[j] = '\0';
3241 }
3242 }
3243 else eeprom->serial = NULL;
3244
3245 // verify checksum
3246 checksum = 0xAAAA;
3247
3248 for (i = 0; i < eeprom_size/2-1; i++)
3249 {
3250 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3251 {
3252 /* FT230X has a user section in the MTP which is not part of the checksum */
3253 i = 0x40;
3254 }
3255 value = buf[i*2];
3256 value += buf[(i*2)+1] << 8;
3257
3258 checksum = value^checksum;
3259 checksum = (checksum << 1) | (checksum >> 15);
3260 }
3261
3262 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3263
3264 if (eeprom_checksum != checksum)
3265 {
3266 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
3267 ftdi_error_return(-1,"EEPROM checksum error");
3268 }
3269
3270 eeprom->channel_a_type = 0;
3271 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
3272 {
3273 eeprom->chip = -1;
3274 }
3275 else if (ftdi->type == TYPE_2232C)
3276 {
3277 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3278 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3279 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
3280 eeprom->channel_b_type = buf[0x01] & 0x7;
3281 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3282 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
3283 eeprom->chip = buf[0x14];
3284 }
3285 else if (ftdi->type == TYPE_R)
3286 {
3287 /* TYPE_R flags D2XX, not VCP as all others*/
3288 eeprom->channel_a_driver = ~buf[0x00] & DRIVER_VCP;
3289 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
3290 if ( (buf[0x01]&0x40) != 0x40)
3291 fprintf(stderr,
3292 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3293 " If this happened with the\n"
3294 " EEPROM programmed by FTDI tools, please report "
3295 "to libftdi@developer.intra2net.com\n");
3296
3297 eeprom->chip = buf[0x16];
3298 // Addr 0B: Invert data lines
3299 // Works only on FT232R, not FT245R, but no way to distinguish
3300 eeprom->invert = buf[0x0B];
3301 // Addr 14: CBUS function: CBUS0, CBUS1
3302 // Addr 15: CBUS function: CBUS2, CBUS3
3303 // Addr 16: CBUS function: CBUS5
3304 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3305 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3306 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3307 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3308 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
3309 }
3310 else if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3311 {
3312 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3313 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3314
3315 if (ftdi->type == TYPE_2232H)
3316 {
3317 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3318 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3319 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
3320 }
3321 else
3322 {
3323 eeprom->channel_c_driver = (buf[0x00] >> 4) & DRIVER_VCP;
3324 eeprom->channel_d_driver = (buf[0x01] >> 4) & DRIVER_VCP;
3325 eeprom->channel_a_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 0);
3326 eeprom->channel_b_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 1);
3327 eeprom->channel_c_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 2);
3328 eeprom->channel_d_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 3);
3329 }
3330
3331 eeprom->chip = buf[0x18];
3332 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3333 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3334 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3335 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3336 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3337 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3338 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3339 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3340 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3341 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3342 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3343 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
3344 }
3345 else if (ftdi->type == TYPE_232H)
3346 {
3347 int i;
3348
3349 eeprom->channel_a_type = buf[0x00] & 0xf;
3350 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
3351 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3352 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3353 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
3354 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
3355 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3356 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3357 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3358 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3359 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3360 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3361
3362 for(i=0; i<5; i++)
3363 {
3364 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3365 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3366 }
3367 eeprom->chip = buf[0x1e];
3368 /*FIXME: Decipher more values*/
3369 }
3370 else if (ftdi->type == TYPE_230X)
3371 {
3372 for(i=0; i<4; i++)
3373 {
3374 eeprom->cbus_function[i] = buf[0x1a + i] & 0xFF;
3375 }
3376 eeprom->group0_drive = buf[0x0c] & 0x03;
3377 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3378 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3379 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x03;
3380 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3381 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3382 }
3383
3384 if (verbose)
3385 {
3386 char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3387 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3388 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3389 fprintf(stdout, "Release: 0x%04x\n",eeprom->release_number);
3390
3391 if (eeprom->self_powered)
3392 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3393 else
3394 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power,
3395 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3396 if (eeprom->manufacturer)
3397 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3398 if (eeprom->product)
3399 fprintf(stdout, "Product: %s\n",eeprom->product);
3400 if (eeprom->serial)
3401 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3402 fprintf(stdout, "Checksum : %04x\n", checksum);
3403 if (ftdi->type == TYPE_R)
3404 fprintf(stdout, "Internal EEPROM\n");
3405 else if (eeprom->chip >= 0x46)
3406 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3407 if (eeprom->suspend_dbus7)
3408 fprintf(stdout, "Suspend on DBUS7\n");
3409 if (eeprom->suspend_pull_downs)
3410 fprintf(stdout, "Pull IO pins low during suspend\n");
3411 if(eeprom->powersave)
3412 {
3413 if(ftdi->type >= TYPE_232H)
3414 fprintf(stdout,"Enter low power state on ACBUS7\n");
3415 }
3416 if (eeprom->remote_wakeup)
3417 fprintf(stdout, "Enable Remote Wake Up\n");
3418 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3419 if (ftdi->type >= TYPE_2232C)
3420 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3421 channel_mode[eeprom->channel_a_type],
3422 (eeprom->channel_a_driver)?" VCP":"",
3423 (eeprom->high_current_a)?" High Current IO":"");
3424 if (ftdi->type >= TYPE_232H)
3425 {
3426 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3427 (eeprom->clock_polarity)?"HIGH":"LOW",
3428 (eeprom->data_order)?"LSB":"MSB",
3429 (eeprom->flow_control)?"":"No ");
3430 }
3431 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
3432 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3433 channel_mode[eeprom->channel_b_type],
3434 (eeprom->channel_b_driver)?" VCP":"",
3435 (eeprom->high_current_b)?" High Current IO":"");
3436 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3437 eeprom->use_usb_version == USE_USB_VERSION_BIT)
3438 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3439
3440 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3441 {
3442 fprintf(stdout,"%s has %d mA drive%s%s\n",
3443 (ftdi->type == TYPE_2232H)?"AL":"A",
3444 (eeprom->group0_drive+1) *4,
3445 (eeprom->group0_schmitt)?" Schmitt Input":"",
3446 (eeprom->group0_slew)?" Slow Slew":"");
3447 fprintf(stdout,"%s has %d mA drive%s%s\n",
3448 (ftdi->type == TYPE_2232H)?"AH":"B",
3449 (eeprom->group1_drive+1) *4,
3450 (eeprom->group1_schmitt)?" Schmitt Input":"",
3451 (eeprom->group1_slew)?" Slow Slew":"");
3452 fprintf(stdout,"%s has %d mA drive%s%s\n",
3453 (ftdi->type == TYPE_2232H)?"BL":"C",
3454 (eeprom->group2_drive+1) *4,
3455 (eeprom->group2_schmitt)?" Schmitt Input":"",
3456 (eeprom->group2_slew)?" Slow Slew":"");
3457 fprintf(stdout,"%s has %d mA drive%s%s\n",
3458 (ftdi->type == TYPE_2232H)?"BH":"D",
3459 (eeprom->group3_drive+1) *4,
3460 (eeprom->group3_schmitt)?" Schmitt Input":"",
3461 (eeprom->group3_slew)?" Slow Slew":"");
3462 }
3463 else if (ftdi->type == TYPE_232H)
3464 {
3465 int i;
3466 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3467 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3468 "CLK30","CLK15","CLK7_5"
3469 };
3470 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3471 (eeprom->group0_drive+1) *4,
3472 (eeprom->group0_schmitt)?" Schmitt Input":"",
3473 (eeprom->group0_slew)?" Slow Slew":"");
3474 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3475 (eeprom->group1_drive+1) *4,
3476 (eeprom->group1_schmitt)?" Schmitt Input":"",
3477 (eeprom->group1_slew)?" Slow Slew":"");
3478 for (i=0; i<10; i++)
3479 {
3480 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3481 fprintf(stdout,"C%d Function: %s\n", i,
3482 cbush_mux[eeprom->cbus_function[i]]);
3483 }
3484 }
3485 else if (ftdi->type == TYPE_230X)
3486 {
3487 int i;
3488 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3489 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3490 "CLK24","CLK12","CLK6","BAT_DETECT","BAT_DETECT#",
3491 "I2C_TXE#", "I2C_RXF#", "VBUS_SENSE", "BB_WR#",
3492 "BBRD#", "TIME_STAMP", "AWAKE#",
3493 };
3494 fprintf(stdout,"IOBUS has %d mA drive%s%s\n",
3495 (eeprom->group0_drive+1) *4,
3496 (eeprom->group0_schmitt)?" Schmitt Input":"",
3497 (eeprom->group0_slew)?" Slow Slew":"");
3498 fprintf(stdout,"CBUS has %d mA drive%s%s\n",
3499 (eeprom->group1_drive+1) *4,
3500 (eeprom->group1_schmitt)?" Schmitt Input":"",
3501 (eeprom->group1_slew)?" Slow Slew":"");
3502 for (i=0; i<4; i++)
3503 {
3504 if (eeprom->cbus_function[i]<= CBUSH_AWAKE)
3505 fprintf(stdout,"CBUS%d Function: %s\n", i, cbush_mux[eeprom->cbus_function[i]]);
3506 }
3507 }
3508
3509 if (ftdi->type == TYPE_R)
3510 {
3511 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3512 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3513 "IOMODE","BB_WR","BB_RD"
3514 };
3515 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3516
3517 if (eeprom->invert)
3518 {
3519 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3520 fprintf(stdout,"Inverted bits:");
3521 for (i=0; i<8; i++)
3522 if ((eeprom->invert & (1<<i)) == (1<<i))
3523 fprintf(stdout," %s",r_bits[i]);
3524 fprintf(stdout,"\n");
3525 }
3526 for (i=0; i<5; i++)
3527 {
3528 if (eeprom->cbus_function[i]<CBUS_BB)
3529 fprintf(stdout,"C%d Function: %s\n", i,
3530 cbus_mux[eeprom->cbus_function[i]]);
3531 else
3532 {
3533 if (i < 4)
3534 /* Running MPROG show that C0..3 have fixed function Synchronous
3535 Bit Bang mode */
3536 fprintf(stdout,"C%d BB Function: %s\n", i,
3537 cbus_BB[i]);
3538 else
3539 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3540 }
3541 }
3542 }
3543 }
3544 return 0;
3545}
3546
3547/**
3548 Get a value from the decoded EEPROM structure
3549
3550 \param ftdi pointer to ftdi_context
3551 \param value_name Enum of the value to query
3552 \param value Pointer to store read value
3553
3554 \retval 0: all fine
3555 \retval -1: Value doesn't exist
3556*/
3557int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3558{
3559 switch (value_name)
3560 {
3561 case VENDOR_ID:
3562 *value = ftdi->eeprom->vendor_id;
3563 break;
3564 case PRODUCT_ID:
3565 *value = ftdi->eeprom->product_id;
3566 break;
3567 case RELEASE_NUMBER:
3568 *value = ftdi->eeprom->release_number;
3569 break;
3570 case SELF_POWERED:
3571 *value = ftdi->eeprom->self_powered;
3572 break;
3573 case REMOTE_WAKEUP:
3574 *value = ftdi->eeprom->remote_wakeup;
3575 break;
3576 case IS_NOT_PNP:
3577 *value = ftdi->eeprom->is_not_pnp;
3578 break;
3579 case SUSPEND_DBUS7:
3580 *value = ftdi->eeprom->suspend_dbus7;
3581 break;
3582 case IN_IS_ISOCHRONOUS:
3583 *value = ftdi->eeprom->in_is_isochronous;
3584 break;
3585 case OUT_IS_ISOCHRONOUS:
3586 *value = ftdi->eeprom->out_is_isochronous;
3587 break;
3588 case SUSPEND_PULL_DOWNS:
3589 *value = ftdi->eeprom->suspend_pull_downs;
3590 break;
3591 case USE_SERIAL:
3592 *value = ftdi->eeprom->use_serial;
3593 break;
3594 case USB_VERSION:
3595 *value = ftdi->eeprom->usb_version;
3596 break;
3597 case USE_USB_VERSION:
3598 *value = ftdi->eeprom->use_usb_version;
3599 break;
3600 case MAX_POWER:
3601 *value = ftdi->eeprom->max_power;
3602 break;
3603 case CHANNEL_A_TYPE:
3604 *value = ftdi->eeprom->channel_a_type;
3605 break;
3606 case CHANNEL_B_TYPE:
3607 *value = ftdi->eeprom->channel_b_type;
3608 break;
3609 case CHANNEL_A_DRIVER:
3610 *value = ftdi->eeprom->channel_a_driver;
3611 break;
3612 case CHANNEL_B_DRIVER:
3613 *value = ftdi->eeprom->channel_b_driver;
3614 break;
3615 case CHANNEL_C_DRIVER:
3616 *value = ftdi->eeprom->channel_c_driver;
3617 break;
3618 case CHANNEL_D_DRIVER:
3619 *value = ftdi->eeprom->channel_d_driver;
3620 break;
3621 case CHANNEL_A_RS485:
3622 *value = ftdi->eeprom->channel_a_rs485enable;
3623 break;
3624 case CHANNEL_B_RS485:
3625 *value = ftdi->eeprom->channel_b_rs485enable;
3626 break;
3627 case CHANNEL_C_RS485:
3628 *value = ftdi->eeprom->channel_c_rs485enable;
3629 break;
3630 case CHANNEL_D_RS485:
3631 *value = ftdi->eeprom->channel_d_rs485enable;
3632 break;
3633 case CBUS_FUNCTION_0:
3634 *value = ftdi->eeprom->cbus_function[0];
3635 break;
3636 case CBUS_FUNCTION_1:
3637 *value = ftdi->eeprom->cbus_function[1];
3638 break;
3639 case CBUS_FUNCTION_2:
3640 *value = ftdi->eeprom->cbus_function[2];
3641 break;
3642 case CBUS_FUNCTION_3:
3643 *value = ftdi->eeprom->cbus_function[3];
3644 break;
3645 case CBUS_FUNCTION_4:
3646 *value = ftdi->eeprom->cbus_function[4];
3647 break;
3648 case CBUS_FUNCTION_5:
3649 *value = ftdi->eeprom->cbus_function[5];
3650 break;
3651 case CBUS_FUNCTION_6:
3652 *value = ftdi->eeprom->cbus_function[6];
3653 break;
3654 case CBUS_FUNCTION_7:
3655 *value = ftdi->eeprom->cbus_function[7];
3656 break;
3657 case CBUS_FUNCTION_8:
3658 *value = ftdi->eeprom->cbus_function[8];
3659 break;
3660 case CBUS_FUNCTION_9:
3661 *value = ftdi->eeprom->cbus_function[8];
3662 break;
3663 case HIGH_CURRENT:
3664 *value = ftdi->eeprom->high_current;
3665 break;
3666 case HIGH_CURRENT_A:
3667 *value = ftdi->eeprom->high_current_a;
3668 break;
3669 case HIGH_CURRENT_B:
3670 *value = ftdi->eeprom->high_current_b;
3671 break;
3672 case INVERT:
3673 *value = ftdi->eeprom->invert;
3674 break;
3675 case GROUP0_DRIVE:
3676 *value = ftdi->eeprom->group0_drive;
3677 break;
3678 case GROUP0_SCHMITT:
3679 *value = ftdi->eeprom->group0_schmitt;
3680 break;
3681 case GROUP0_SLEW:
3682 *value = ftdi->eeprom->group0_slew;
3683 break;
3684 case GROUP1_DRIVE:
3685 *value = ftdi->eeprom->group1_drive;
3686 break;
3687 case GROUP1_SCHMITT:
3688 *value = ftdi->eeprom->group1_schmitt;
3689 break;
3690 case GROUP1_SLEW:
3691 *value = ftdi->eeprom->group1_slew;
3692 break;
3693 case GROUP2_DRIVE:
3694 *value = ftdi->eeprom->group2_drive;
3695 break;
3696 case GROUP2_SCHMITT:
3697 *value = ftdi->eeprom->group2_schmitt;
3698 break;
3699 case GROUP2_SLEW:
3700 *value = ftdi->eeprom->group2_slew;
3701 break;
3702 case GROUP3_DRIVE:
3703 *value = ftdi->eeprom->group3_drive;
3704 break;
3705 case GROUP3_SCHMITT:
3706 *value = ftdi->eeprom->group3_schmitt;
3707 break;
3708 case GROUP3_SLEW:
3709 *value = ftdi->eeprom->group3_slew;
3710 break;
3711 case POWER_SAVE:
3712 *value = ftdi->eeprom->powersave;
3713 break;
3714 case CLOCK_POLARITY:
3715 *value = ftdi->eeprom->clock_polarity;
3716 break;
3717 case DATA_ORDER:
3718 *value = ftdi->eeprom->data_order;
3719 break;
3720 case FLOW_CONTROL:
3721 *value = ftdi->eeprom->flow_control;
3722 break;
3723 case CHIP_TYPE:
3724 *value = ftdi->eeprom->chip;
3725 break;
3726 case CHIP_SIZE:
3727 *value = ftdi->eeprom->size;
3728 break;
3729 default:
3730 ftdi_error_return(-1, "Request for unknown EEPROM value");
3731 }
3732 return 0;
3733}
3734
3735/**
3736 Set a value in the decoded EEPROM Structure
3737 No parameter checking is performed
3738
3739 \param ftdi pointer to ftdi_context
3740 \param value_name Enum of the value to set
3741 \param value to set
3742
3743 \retval 0: all fine
3744 \retval -1: Value doesn't exist
3745 \retval -2: Value not user settable
3746*/
3747int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3748{
3749 switch (value_name)
3750 {
3751 case VENDOR_ID:
3752 ftdi->eeprom->vendor_id = value;
3753 break;
3754 case PRODUCT_ID:
3755 ftdi->eeprom->product_id = value;
3756 break;
3757 case RELEASE_NUMBER:
3758 ftdi->eeprom->release_number = value;
3759 break;
3760 case SELF_POWERED:
3761 ftdi->eeprom->self_powered = value;
3762 break;
3763 case REMOTE_WAKEUP:
3764 ftdi->eeprom->remote_wakeup = value;
3765 break;
3766 case IS_NOT_PNP:
3767 ftdi->eeprom->is_not_pnp = value;
3768 break;
3769 case SUSPEND_DBUS7:
3770 ftdi->eeprom->suspend_dbus7 = value;
3771 break;
3772 case IN_IS_ISOCHRONOUS:
3773 ftdi->eeprom->in_is_isochronous = value;
3774 break;
3775 case OUT_IS_ISOCHRONOUS:
3776 ftdi->eeprom->out_is_isochronous = value;
3777 break;
3778 case SUSPEND_PULL_DOWNS:
3779 ftdi->eeprom->suspend_pull_downs = value;
3780 break;
3781 case USE_SERIAL:
3782 ftdi->eeprom->use_serial = value;
3783 break;
3784 case USB_VERSION:
3785 ftdi->eeprom->usb_version = value;
3786 break;
3787 case USE_USB_VERSION:
3788 ftdi->eeprom->use_usb_version = value;
3789 break;
3790 case MAX_POWER:
3791 ftdi->eeprom->max_power = value;
3792 break;
3793 case CHANNEL_A_TYPE:
3794 ftdi->eeprom->channel_a_type = value;
3795 break;
3796 case CHANNEL_B_TYPE:
3797 ftdi->eeprom->channel_b_type = value;
3798 break;
3799 case CHANNEL_A_DRIVER:
3800 ftdi->eeprom->channel_a_driver = value;
3801 break;
3802 case CHANNEL_B_DRIVER:
3803 ftdi->eeprom->channel_b_driver = value;
3804 break;
3805 case CHANNEL_C_DRIVER:
3806 ftdi->eeprom->channel_c_driver = value;
3807 break;
3808 case CHANNEL_D_DRIVER:
3809 ftdi->eeprom->channel_d_driver = value;
3810 break;
3811 case CHANNEL_A_RS485:
3812 ftdi->eeprom->channel_a_rs485enable = value;
3813 break;
3814 case CHANNEL_B_RS485:
3815 ftdi->eeprom->channel_b_rs485enable = value;
3816 break;
3817 case CHANNEL_C_RS485:
3818 ftdi->eeprom->channel_c_rs485enable = value;
3819 break;
3820 case CHANNEL_D_RS485:
3821 ftdi->eeprom->channel_d_rs485enable = value;
3822 break;
3823 case CBUS_FUNCTION_0:
3824 ftdi->eeprom->cbus_function[0] = value;
3825 break;
3826 case CBUS_FUNCTION_1:
3827 ftdi->eeprom->cbus_function[1] = value;
3828 break;
3829 case CBUS_FUNCTION_2:
3830 ftdi->eeprom->cbus_function[2] = value;
3831 break;
3832 case CBUS_FUNCTION_3:
3833 ftdi->eeprom->cbus_function[3] = value;
3834 break;
3835 case CBUS_FUNCTION_4:
3836 ftdi->eeprom->cbus_function[4] = value;
3837 break;
3838 case CBUS_FUNCTION_5:
3839 ftdi->eeprom->cbus_function[5] = value;
3840 break;
3841 case CBUS_FUNCTION_6:
3842 ftdi->eeprom->cbus_function[6] = value;
3843 break;
3844 case CBUS_FUNCTION_7:
3845 ftdi->eeprom->cbus_function[7] = value;
3846 break;
3847 case CBUS_FUNCTION_8:
3848 ftdi->eeprom->cbus_function[8] = value;
3849 break;
3850 case CBUS_FUNCTION_9:
3851 ftdi->eeprom->cbus_function[9] = value;
3852 break;
3853 case HIGH_CURRENT:
3854 ftdi->eeprom->high_current = value;
3855 break;
3856 case HIGH_CURRENT_A:
3857 ftdi->eeprom->high_current_a = value;
3858 break;
3859 case HIGH_CURRENT_B:
3860 ftdi->eeprom->high_current_b = value;
3861 break;
3862 case INVERT:
3863 ftdi->eeprom->invert = value;
3864 break;
3865 case GROUP0_DRIVE:
3866 ftdi->eeprom->group0_drive = value;
3867 break;
3868 case GROUP0_SCHMITT:
3869 ftdi->eeprom->group0_schmitt = value;
3870 break;
3871 case GROUP0_SLEW:
3872 ftdi->eeprom->group0_slew = value;
3873 break;
3874 case GROUP1_DRIVE:
3875 ftdi->eeprom->group1_drive = value;
3876 break;
3877 case GROUP1_SCHMITT:
3878 ftdi->eeprom->group1_schmitt = value;
3879 break;
3880 case GROUP1_SLEW:
3881 ftdi->eeprom->group1_slew = value;
3882 break;
3883 case GROUP2_DRIVE:
3884 ftdi->eeprom->group2_drive = value;
3885 break;
3886 case GROUP2_SCHMITT:
3887 ftdi->eeprom->group2_schmitt = value;
3888 break;
3889 case GROUP2_SLEW:
3890 ftdi->eeprom->group2_slew = value;
3891 break;
3892 case GROUP3_DRIVE:
3893 ftdi->eeprom->group3_drive = value;
3894 break;
3895 case GROUP3_SCHMITT:
3896 ftdi->eeprom->group3_schmitt = value;
3897 break;
3898 case GROUP3_SLEW:
3899 ftdi->eeprom->group3_slew = value;
3900 break;
3901 case CHIP_TYPE:
3902 ftdi->eeprom->chip = value;
3903 break;
3904 case POWER_SAVE:
3905 ftdi->eeprom->powersave = value;
3906 break;
3907 case CLOCK_POLARITY:
3908 ftdi->eeprom->clock_polarity = value;
3909 break;
3910 case DATA_ORDER:
3911 ftdi->eeprom->data_order = value;
3912 break;
3913 case FLOW_CONTROL:
3914 ftdi->eeprom->flow_control = value;
3915 break;
3916 case CHIP_SIZE:
3917 ftdi_error_return(-2, "EEPROM Value can't be changed");
3918 default :
3919 ftdi_error_return(-1, "Request to unknown EEPROM value");
3920 }
3921 ftdi->eeprom->initialized_for_connected_device = 0;
3922 return 0;
3923}
3924
3925/** Get the read-only buffer to the binary EEPROM content
3926
3927 \param ftdi pointer to ftdi_context
3928 \param buf buffer to receive EEPROM content
3929 \param size Size of receiving buffer
3930
3931 \retval 0: All fine
3932 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3933 \retval -2: Not enough room to store eeprom
3934*/
3935int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3936{
3937 if (!ftdi || !(ftdi->eeprom))
3938 ftdi_error_return(-1, "No appropriate structure");
3939
3940 if (!buf || size < ftdi->eeprom->size)
3941 ftdi_error_return(-1, "Not enough room to store eeprom");
3942
3943 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3944 if (size > FTDI_MAX_EEPROM_SIZE)
3945 size = FTDI_MAX_EEPROM_SIZE;
3946
3947 memcpy(buf, ftdi->eeprom->buf, size);
3948
3949 return 0;
3950}
3951
3952/** Set the EEPROM content from the user-supplied prefilled buffer
3953
3954 \param ftdi pointer to ftdi_context
3955 \param buf buffer to read EEPROM content
3956 \param size Size of buffer
3957
3958 \retval 0: All fine
3959 \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing
3960*/
3961int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
3962{
3963 if (!ftdi || !(ftdi->eeprom) || !buf)
3964 ftdi_error_return(-1, "No appropriate structure");
3965
3966 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3967 if (size > FTDI_MAX_EEPROM_SIZE)
3968 size = FTDI_MAX_EEPROM_SIZE;
3969
3970 memcpy(ftdi->eeprom->buf, buf, size);
3971
3972 return 0;
3973}
3974
3975/**
3976 Read eeprom location
3977
3978 \param ftdi pointer to ftdi_context
3979 \param eeprom_addr Address of eeprom location to be read
3980 \param eeprom_val Pointer to store read eeprom location
3981
3982 \retval 0: all fine
3983 \retval -1: read failed
3984 \retval -2: USB device unavailable
3985*/
3986int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3987{
3988 if (ftdi == NULL || ftdi->usb_dev == NULL)
3989 ftdi_error_return(-2, "USB device unavailable");
3990
3991 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3992 ftdi_error_return(-1, "reading eeprom failed");
3993
3994 return 0;
3995}
3996
3997/**
3998 Read eeprom
3999
4000 \param ftdi pointer to ftdi_context
4001
4002 \retval 0: all fine
4003 \retval -1: read failed
4004 \retval -2: USB device unavailable
4005*/
4006int ftdi_read_eeprom(struct ftdi_context *ftdi)
4007{
4008 int i;
4009 unsigned char *buf;
4010
4011 if (ftdi == NULL || ftdi->usb_dev == NULL)
4012 ftdi_error_return(-2, "USB device unavailable");
4013 buf = ftdi->eeprom->buf;
4014
4015 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
4016 {
4017 if (libusb_control_transfer(
4018 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
4019 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
4020 ftdi_error_return(-1, "reading eeprom failed");
4021 }
4022
4023 if (ftdi->type == TYPE_R)
4024 ftdi->eeprom->size = 0x80;
4025 /* Guesses size of eeprom by comparing halves
4026 - will not work with blank eeprom */
4027 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
4028 ftdi->eeprom->size = -1;
4029 else if (memcmp(buf,&buf[0x80],0x80) == 0)
4030 ftdi->eeprom->size = 0x80;
4031 else if (memcmp(buf,&buf[0x40],0x40) == 0)
4032 ftdi->eeprom->size = 0x40;
4033 else
4034 ftdi->eeprom->size = 0x100;
4035 return 0;
4036}
4037
4038/*
4039 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
4040 Function is only used internally
4041 \internal
4042*/
4043static unsigned char ftdi_read_chipid_shift(unsigned char value)
4044{
4045 return ((value & 1) << 1) |
4046 ((value & 2) << 5) |
4047 ((value & 4) >> 2) |
4048 ((value & 8) << 4) |
4049 ((value & 16) >> 1) |
4050 ((value & 32) >> 1) |
4051 ((value & 64) >> 4) |
4052 ((value & 128) >> 2);
4053}
4054
4055/**
4056 Read the FTDIChip-ID from R-type devices
4057
4058 \param ftdi pointer to ftdi_context
4059 \param chipid Pointer to store FTDIChip-ID
4060
4061 \retval 0: all fine
4062 \retval -1: read failed
4063 \retval -2: USB device unavailable
4064*/
4065int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
4066{
4067 unsigned int a = 0, b = 0;
4068
4069 if (ftdi == NULL || ftdi->usb_dev == NULL)
4070 ftdi_error_return(-2, "USB device unavailable");
4071
4072 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
4073 {
4074 a = a << 8 | a >> 8;
4075 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
4076 {
4077 b = b << 8 | b >> 8;
4078 a = (a << 16) | (b & 0xFFFF);
4079 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
4080 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
4081 *chipid = a ^ 0xa5f0f7d1;
4082 return 0;
4083 }
4084 }
4085
4086 ftdi_error_return(-1, "read of FTDIChip-ID failed");
4087}
4088
4089/**
4090 Write eeprom location
4091
4092 \param ftdi pointer to ftdi_context
4093 \param eeprom_addr Address of eeprom location to be written
4094 \param eeprom_val Value to be written
4095
4096 \retval 0: all fine
4097 \retval -1: write failed
4098 \retval -2: USB device unavailable
4099 \retval -3: Invalid access to checksum protected area below 0x80
4100 \retval -4: Device can't access unprotected area
4101 \retval -5: Reading chip type failed
4102*/
4103int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
4104 unsigned short eeprom_val)
4105{
4106 int chip_type_location;
4107 unsigned short chip_type;
4108
4109 if (ftdi == NULL || ftdi->usb_dev == NULL)
4110 ftdi_error_return(-2, "USB device unavailable");
4111
4112 if (eeprom_addr <0x80)
4113 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
4114
4115
4116 switch (ftdi->type)
4117 {
4118 case TYPE_BM:
4119 case TYPE_2232C:
4120 chip_type_location = 0x14;
4121 break;
4122 case TYPE_2232H:
4123 case TYPE_4232H:
4124 chip_type_location = 0x18;
4125 break;
4126 case TYPE_232H:
4127 chip_type_location = 0x1e;
4128 break;
4129 default:
4130 ftdi_error_return(-4, "Device can't access unprotected area");
4131 }
4132
4133 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
4134 ftdi_error_return(-5, "Reading failed");
4135 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
4136 if ((chip_type & 0xff) != 0x66)
4137 {
4138 ftdi_error_return(-6, "EEPROM is not of 93x66");
4139 }
4140
4141 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4142 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
4143 NULL, 0, ftdi->usb_write_timeout) != 0)
4144 ftdi_error_return(-1, "unable to write eeprom");
4145
4146 return 0;
4147}
4148
4149/**
4150 Write eeprom
4151
4152 \param ftdi pointer to ftdi_context
4153
4154 \retval 0: all fine
4155 \retval -1: read failed
4156 \retval -2: USB device unavailable
4157 \retval -3: EEPROM not initialized for the connected device;
4158*/
4159int ftdi_write_eeprom(struct ftdi_context *ftdi)
4160{
4161 unsigned short usb_val, status;
4162 int i, ret;
4163 unsigned char *eeprom;
4164
4165 if (ftdi == NULL || ftdi->usb_dev == NULL)
4166 ftdi_error_return(-2, "USB device unavailable");
4167
4168 if(ftdi->eeprom->initialized_for_connected_device == 0)
4169 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
4170
4171 eeprom = ftdi->eeprom->buf;
4172
4173 /* These commands were traced while running MProg */
4174 if ((ret = ftdi_usb_reset(ftdi)) != 0)
4175 return ret;
4176 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
4177 return ret;
4178 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
4179 return ret;
4180
4181 for (i = 0; i < ftdi->eeprom->size/2; i++)
4182 {
4183 /* Do not try to write to reserved area */
4184 if ((ftdi->type == TYPE_230X) && (i == 0x40))
4185 {
4186 i = 0x50;
4187 }
4188 usb_val = eeprom[i*2];
4189 usb_val += eeprom[(i*2)+1] << 8;
4190 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4191 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
4192 NULL, 0, ftdi->usb_write_timeout) < 0)
4193 ftdi_error_return(-1, "unable to write eeprom");
4194 }
4195
4196 return 0;
4197}
4198
4199/**
4200 Erase eeprom
4201
4202 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
4203
4204 \param ftdi pointer to ftdi_context
4205
4206 \retval 0: all fine
4207 \retval -1: erase failed
4208 \retval -2: USB device unavailable
4209 \retval -3: Writing magic failed
4210 \retval -4: Read EEPROM failed
4211 \retval -5: Unexpected EEPROM value
4212*/
4213#define MAGIC 0x55aa
4214int ftdi_erase_eeprom(struct ftdi_context *ftdi)
4215{
4216 unsigned short eeprom_value;
4217 if (ftdi == NULL || ftdi->usb_dev == NULL)
4218 ftdi_error_return(-2, "USB device unavailable");
4219
4220 if (ftdi->type == TYPE_R)
4221 {
4222 ftdi->eeprom->chip = 0;
4223 return 0;
4224 }
4225
4226 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4227 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4228 ftdi_error_return(-1, "unable to erase eeprom");
4229
4230
4231 /* detect chip type by writing 0x55AA as magic at word position 0xc0
4232 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
4233 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
4234 Chip is 93x66 if magic is only read at word position 0xc0*/
4235 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4236 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
4237 NULL, 0, ftdi->usb_write_timeout) != 0)
4238 ftdi_error_return(-3, "Writing magic failed");
4239 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
4240 ftdi_error_return(-4, "Reading failed");
4241 if (eeprom_value == MAGIC)
4242 {
4243 ftdi->eeprom->chip = 0x46;
4244 }
4245 else
4246 {
4247 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
4248 ftdi_error_return(-4, "Reading failed");
4249 if (eeprom_value == MAGIC)
4250 ftdi->eeprom->chip = 0x56;
4251 else
4252 {
4253 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
4254 ftdi_error_return(-4, "Reading failed");
4255 if (eeprom_value == MAGIC)
4256 ftdi->eeprom->chip = 0x66;
4257 else
4258 {
4259 ftdi->eeprom->chip = -1;
4260 }
4261 }
4262 }
4263 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4264 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4265 ftdi_error_return(-1, "unable to erase eeprom");
4266 return 0;
4267}
4268
4269/**
4270 Get string representation for last error code
4271
4272 \param ftdi pointer to ftdi_context
4273
4274 \retval Pointer to error string
4275*/
4276char *ftdi_get_error_string (struct ftdi_context *ftdi)
4277{
4278 if (ftdi == NULL)
4279 return "";
4280
4281 return ftdi->error_str;
4282}
4283
4284/* @} end of doxygen libftdi group */