Provide internal eeprom structure buffer with internal byte buffer Purge external...
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2010 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
58 \retval none
59*/
60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
61{
62 if (ftdi && ftdi->usb_dev)
63 {
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
66 }
67}
68
69/**
70 Initializes a ftdi_context.
71
72 \param ftdi pointer to ftdi_context
73
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
76 \retval -2: couldn't allocate struct buffer
77
78 \remark This should be called before all functions
79*/
80int ftdi_init(struct ftdi_context *ftdi)
81{
82 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
83 ftdi->usb_ctx = NULL;
84 ftdi->usb_dev = NULL;
85 ftdi->usb_read_timeout = 5000;
86 ftdi->usb_write_timeout = 5000;
87
88 ftdi->type = TYPE_BM; /* chip type */
89 ftdi->baudrate = -1;
90 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
91
92 ftdi->readbuffer = NULL;
93 ftdi->readbuffer_offset = 0;
94 ftdi->readbuffer_remaining = 0;
95 ftdi->writebuffer_chunksize = 4096;
96 ftdi->max_packet_size = 0;
97
98 ftdi->interface = 0;
99 ftdi->index = 0;
100 ftdi->in_ep = 0x02;
101 ftdi->out_ep = 0x81;
102 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
103
104 ftdi->error_str = NULL;
105
106 if (eeprom == 0)
107 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
108 ftdi->eeprom = eeprom;
109
110 /* All fine. Now allocate the readbuffer */
111 return ftdi_read_data_set_chunksize(ftdi, 4096);
112}
113
114/**
115 Allocate and initialize a new ftdi_context
116
117 \return a pointer to a new ftdi_context, or NULL on failure
118*/
119struct ftdi_context *ftdi_new(void)
120{
121 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
122
123 if (ftdi == NULL)
124 {
125 return NULL;
126 }
127
128 if (ftdi_init(ftdi) != 0)
129 {
130 free(ftdi);
131 return NULL;
132 }
133
134 return ftdi;
135}
136
137/**
138 Open selected channels on a chip, otherwise use first channel.
139
140 \param ftdi pointer to ftdi_context
141 \param interface Interface to use for FT2232C/2232H/4232H chips.
142
143 \retval 0: all fine
144 \retval -1: unknown interface
145 \retval -2: USB device unavailable
146*/
147int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
148{
149 if (ftdi == NULL)
150 ftdi_error_return(-2, "USB device unavailable");
151
152 switch (interface)
153 {
154 case INTERFACE_ANY:
155 case INTERFACE_A:
156 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
157 break;
158 case INTERFACE_B:
159 ftdi->interface = 1;
160 ftdi->index = INTERFACE_B;
161 ftdi->in_ep = 0x04;
162 ftdi->out_ep = 0x83;
163 break;
164 case INTERFACE_C:
165 ftdi->interface = 2;
166 ftdi->index = INTERFACE_C;
167 ftdi->in_ep = 0x06;
168 ftdi->out_ep = 0x85;
169 break;
170 case INTERFACE_D:
171 ftdi->interface = 3;
172 ftdi->index = INTERFACE_D;
173 ftdi->in_ep = 0x08;
174 ftdi->out_ep = 0x87;
175 break;
176 default:
177 ftdi_error_return(-1, "Unknown interface");
178 }
179 return 0;
180}
181
182/**
183 Deinitializes a ftdi_context.
184
185 \param ftdi pointer to ftdi_context
186*/
187void ftdi_deinit(struct ftdi_context *ftdi)
188{
189 if (ftdi == NULL)
190 return;
191
192 ftdi_usb_close_internal (ftdi);
193
194 if (ftdi->readbuffer != NULL)
195 {
196 free(ftdi->readbuffer);
197 ftdi->readbuffer = NULL;
198 }
199
200 if (ftdi->eeprom != NULL)
201 {
202 free(ftdi->eeprom);
203 ftdi->eeprom = NULL;
204 }
205 libusb_exit(ftdi->usb_ctx);
206}
207
208/**
209 Deinitialize and free an ftdi_context.
210
211 \param ftdi pointer to ftdi_context
212*/
213void ftdi_free(struct ftdi_context *ftdi)
214{
215 ftdi_deinit(ftdi);
216 free(ftdi);
217}
218
219/**
220 Use an already open libusb device.
221
222 \param ftdi pointer to ftdi_context
223 \param usb libusb libusb_device_handle to use
224*/
225void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
226{
227 if (ftdi == NULL)
228 return;
229
230 ftdi->usb_dev = usb;
231}
232
233
234/**
235 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
236 needs to be deallocated by ftdi_list_free() after use.
237
238 \param ftdi pointer to ftdi_context
239 \param devlist Pointer where to store list of found devices
240 \param vendor Vendor ID to search for
241 \param product Product ID to search for
242
243 \retval >0: number of devices found
244 \retval -3: out of memory
245 \retval -4: libusb_init() failed
246 \retval -5: libusb_get_device_list() failed
247 \retval -6: libusb_get_device_descriptor() failed
248*/
249int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
250{
251 struct ftdi_device_list **curdev;
252 libusb_device *dev;
253 libusb_device **devs;
254 int count = 0;
255 int i = 0;
256
257 if (libusb_init(&ftdi->usb_ctx) < 0)
258 ftdi_error_return(-4, "libusb_init() failed");
259
260 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
261 ftdi_error_return(-5, "libusb_get_device_list() failed");
262
263 curdev = devlist;
264 *curdev = NULL;
265
266 while ((dev = devs[i++]) != NULL)
267 {
268 struct libusb_device_descriptor desc;
269
270 if (libusb_get_device_descriptor(dev, &desc) < 0)
271 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
272
273 if (desc.idVendor == vendor && desc.idProduct == product)
274 {
275 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
276 if (!*curdev)
277 ftdi_error_return(-3, "out of memory");
278
279 (*curdev)->next = NULL;
280 (*curdev)->dev = dev;
281
282 curdev = &(*curdev)->next;
283 count++;
284 }
285 }
286
287 return count;
288}
289
290/**
291 Frees a usb device list.
292
293 \param devlist USB device list created by ftdi_usb_find_all()
294*/
295void ftdi_list_free(struct ftdi_device_list **devlist)
296{
297 struct ftdi_device_list *curdev, *next;
298
299 for (curdev = *devlist; curdev != NULL;)
300 {
301 next = curdev->next;
302 free(curdev);
303 curdev = next;
304 }
305
306 *devlist = NULL;
307}
308
309/**
310 Frees a usb device list.
311
312 \param devlist USB device list created by ftdi_usb_find_all()
313*/
314void ftdi_list_free2(struct ftdi_device_list *devlist)
315{
316 ftdi_list_free(&devlist);
317}
318
319/**
320 Return device ID strings from the usb device.
321
322 The parameters manufacturer, description and serial may be NULL
323 or pointer to buffers to store the fetched strings.
324
325 \note Use this function only in combination with ftdi_usb_find_all()
326 as it closes the internal "usb_dev" after use.
327
328 \param ftdi pointer to ftdi_context
329 \param dev libusb usb_dev to use
330 \param manufacturer Store manufacturer string here if not NULL
331 \param mnf_len Buffer size of manufacturer string
332 \param description Store product description string here if not NULL
333 \param desc_len Buffer size of product description string
334 \param serial Store serial string here if not NULL
335 \param serial_len Buffer size of serial string
336
337 \retval 0: all fine
338 \retval -1: wrong arguments
339 \retval -4: unable to open device
340 \retval -7: get product manufacturer failed
341 \retval -8: get product description failed
342 \retval -9: get serial number failed
343 \retval -11: libusb_get_device_descriptor() failed
344*/
345int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
346 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
347{
348 struct libusb_device_descriptor desc;
349
350 if ((ftdi==NULL) || (dev==NULL))
351 return -1;
352
353 if (libusb_open(dev, &ftdi->usb_dev) < 0)
354 ftdi_error_return(-4, "libusb_open() failed");
355
356 if (libusb_get_device_descriptor(dev, &desc) < 0)
357 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
358
359 if (manufacturer != NULL)
360 {
361 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
362 {
363 ftdi_usb_close_internal (ftdi);
364 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
365 }
366 }
367
368 if (description != NULL)
369 {
370 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
371 {
372 ftdi_usb_close_internal (ftdi);
373 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
374 }
375 }
376
377 if (serial != NULL)
378 {
379 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
380 {
381 ftdi_usb_close_internal (ftdi);
382 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
383 }
384 }
385
386 ftdi_usb_close_internal (ftdi);
387
388 return 0;
389}
390
391/**
392 * Internal function to determine the maximum packet size.
393 * \param ftdi pointer to ftdi_context
394 * \param dev libusb usb_dev to use
395 * \retval Maximum packet size for this device
396 */
397static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
398{
399 struct libusb_device_descriptor desc;
400 struct libusb_config_descriptor *config0;
401 unsigned int packet_size;
402
403 // Sanity check
404 if (ftdi == NULL || dev == NULL)
405 return 64;
406
407 // Determine maximum packet size. Init with default value.
408 // New hi-speed devices from FTDI use a packet size of 512 bytes
409 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
410 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
411 packet_size = 512;
412 else
413 packet_size = 64;
414
415 if (libusb_get_device_descriptor(dev, &desc) < 0)
416 return packet_size;
417
418 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
419 return packet_size;
420
421 if (desc.bNumConfigurations > 0)
422 {
423 if (ftdi->interface < config0->bNumInterfaces)
424 {
425 struct libusb_interface interface = config0->interface[ftdi->interface];
426 if (interface.num_altsetting > 0)
427 {
428 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
429 if (descriptor.bNumEndpoints > 0)
430 {
431 packet_size = descriptor.endpoint[0].wMaxPacketSize;
432 }
433 }
434 }
435 }
436
437 libusb_free_config_descriptor (config0);
438 return packet_size;
439}
440
441/**
442 Opens a ftdi device given by an usb_device.
443
444 \param ftdi pointer to ftdi_context
445 \param dev libusb usb_dev to use
446
447 \retval 0: all fine
448 \retval -3: unable to config device
449 \retval -4: unable to open device
450 \retval -5: unable to claim device
451 \retval -6: reset failed
452 \retval -7: set baudrate failed
453 \retval -8: ftdi context invalid
454 \retval -9: libusb_get_device_descriptor() failed
455 \retval -10: libusb_get_config_descriptor() failed
456 \retval -11: libusb_etach_kernel_driver() failed
457 \retval -12: libusb_get_configuration() failed
458*/
459int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
460{
461 struct libusb_device_descriptor desc;
462 struct libusb_config_descriptor *config0;
463 int cfg, cfg0, detach_errno = 0;
464
465 if (ftdi == NULL)
466 ftdi_error_return(-8, "ftdi context invalid");
467
468 if (libusb_open(dev, &ftdi->usb_dev) < 0)
469 ftdi_error_return(-4, "libusb_open() failed");
470
471 if (libusb_get_device_descriptor(dev, &desc) < 0)
472 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
473
474 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
475 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
476 cfg0 = config0->bConfigurationValue;
477 libusb_free_config_descriptor (config0);
478
479 // Try to detach ftdi_sio kernel module.
480 //
481 // The return code is kept in a separate variable and only parsed
482 // if usb_set_configuration() or usb_claim_interface() fails as the
483 // detach operation might be denied and everything still works fine.
484 // Likely scenario is a static ftdi_sio kernel module.
485 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
486 detach_errno = errno;
487
488 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
489 ftdi_error_return(-12, "libusb_get_configuration () failed");
490 // set configuration (needed especially for windows)
491 // tolerate EBUSY: one device with one configuration, but two interfaces
492 // and libftdi sessions to both interfaces (e.g. FT2232)
493 if (desc.bNumConfigurations > 0 && cfg != cfg0)
494 {
495 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
496 {
497 ftdi_usb_close_internal (ftdi);
498 if(detach_errno == EPERM)
499 {
500 ftdi_error_return(-8, "inappropriate permissions on device!");
501 }
502 else
503 {
504 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
505 }
506 }
507 }
508
509 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
510 {
511 ftdi_usb_close_internal (ftdi);
512 if(detach_errno == EPERM)
513 {
514 ftdi_error_return(-8, "inappropriate permissions on device!");
515 }
516 else
517 {
518 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
519 }
520 }
521
522 if (ftdi_usb_reset (ftdi) != 0)
523 {
524 ftdi_usb_close_internal (ftdi);
525 ftdi_error_return(-6, "ftdi_usb_reset failed");
526 }
527
528 // Try to guess chip type
529 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
530 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
531 && desc.iSerialNumber == 0))
532 ftdi->type = TYPE_BM;
533 else if (desc.bcdDevice == 0x200)
534 ftdi->type = TYPE_AM;
535 else if (desc.bcdDevice == 0x500)
536 ftdi->type = TYPE_2232C;
537 else if (desc.bcdDevice == 0x600)
538 ftdi->type = TYPE_R;
539 else if (desc.bcdDevice == 0x700)
540 ftdi->type = TYPE_2232H;
541 else if (desc.bcdDevice == 0x800)
542 ftdi->type = TYPE_4232H;
543
544 // Set default interface on dual/quad type chips
545 switch(ftdi->type)
546 {
547 case TYPE_2232C:
548 case TYPE_2232H:
549 case TYPE_4232H:
550 if (!ftdi->index)
551 ftdi->index = INTERFACE_A;
552 break;
553 default:
554 break;
555 }
556
557 // Determine maximum packet size
558 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
559
560 if (ftdi_set_baudrate (ftdi, 9600) != 0)
561 {
562 ftdi_usb_close_internal (ftdi);
563 ftdi_error_return(-7, "set baudrate failed");
564 }
565
566 ftdi_error_return(0, "all fine");
567}
568
569/**
570 Opens the first device with a given vendor and product ids.
571
572 \param ftdi pointer to ftdi_context
573 \param vendor Vendor ID
574 \param product Product ID
575
576 \retval same as ftdi_usb_open_desc()
577*/
578int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
579{
580 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
581}
582
583/**
584 Opens the first device with a given, vendor id, product id,
585 description and serial.
586
587 \param ftdi pointer to ftdi_context
588 \param vendor Vendor ID
589 \param product Product ID
590 \param description Description to search for. Use NULL if not needed.
591 \param serial Serial to search for. Use NULL if not needed.
592
593 \retval 0: all fine
594 \retval -3: usb device not found
595 \retval -4: unable to open device
596 \retval -5: unable to claim device
597 \retval -6: reset failed
598 \retval -7: set baudrate failed
599 \retval -8: get product description failed
600 \retval -9: get serial number failed
601 \retval -11: libusb_init() failed
602 \retval -12: libusb_get_device_list() failed
603 \retval -13: libusb_get_device_descriptor() failed
604*/
605int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
606 const char* description, const char* serial)
607{
608 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
609}
610
611/**
612 Opens the index-th device with a given, vendor id, product id,
613 description and serial.
614
615 \param ftdi pointer to ftdi_context
616 \param vendor Vendor ID
617 \param product Product ID
618 \param description Description to search for. Use NULL if not needed.
619 \param serial Serial to search for. Use NULL if not needed.
620 \param index Number of matching device to open if there are more than one, starts with 0.
621
622 \retval 0: all fine
623 \retval -1: usb_find_busses() failed
624 \retval -2: usb_find_devices() failed
625 \retval -3: usb device not found
626 \retval -4: unable to open device
627 \retval -5: unable to claim device
628 \retval -6: reset failed
629 \retval -7: set baudrate failed
630 \retval -8: get product description failed
631 \retval -9: get serial number failed
632 \retval -10: unable to close device
633 \retval -11: ftdi context invalid
634*/
635int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
636 const char* description, const char* serial, unsigned int index)
637{
638 libusb_device *dev;
639 libusb_device **devs;
640 char string[256];
641 int i = 0;
642
643 if (libusb_init(&ftdi->usb_ctx) < 0)
644 ftdi_error_return(-11, "libusb_init() failed");
645
646 if (ftdi == NULL)
647 ftdi_error_return(-11, "ftdi context invalid");
648
649 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
650 ftdi_error_return(-12, "libusb_get_device_list() failed");
651
652 while ((dev = devs[i++]) != NULL)
653 {
654 struct libusb_device_descriptor desc;
655 int res;
656
657 if (libusb_get_device_descriptor(dev, &desc) < 0)
658 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
659
660 if (desc.idVendor == vendor && desc.idProduct == product)
661 {
662 if (libusb_open(dev, &ftdi->usb_dev) < 0)
663 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
664
665 if (description != NULL)
666 {
667 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
668 {
669 libusb_close (ftdi->usb_dev);
670 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
671 }
672 if (strncmp(string, description, sizeof(string)) != 0)
673 {
674 libusb_close (ftdi->usb_dev);
675 continue;
676 }
677 }
678 if (serial != NULL)
679 {
680 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
681 {
682 ftdi_usb_close_internal (ftdi);
683 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
684 }
685 if (strncmp(string, serial, sizeof(string)) != 0)
686 {
687 ftdi_usb_close_internal (ftdi);
688 continue;
689 }
690 }
691
692 ftdi_usb_close_internal (ftdi);
693
694 if (index > 0)
695 {
696 index--;
697 continue;
698 }
699
700 res = ftdi_usb_open_dev(ftdi, dev);
701 libusb_free_device_list(devs,1);
702 return res;
703 }
704 }
705
706 // device not found
707 ftdi_error_return_free_device_list(-3, "device not found", devs);
708}
709
710/**
711 Opens the ftdi-device described by a description-string.
712 Intended to be used for parsing a device-description given as commandline argument.
713
714 \param ftdi pointer to ftdi_context
715 \param description NULL-terminated description-string, using this format:
716 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
717 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
718 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
719 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
720
721 \note The description format may be extended in later versions.
722
723 \retval 0: all fine
724 \retval -1: libusb_init() failed
725 \retval -2: libusb_get_device_list() failed
726 \retval -3: usb device not found
727 \retval -4: unable to open device
728 \retval -5: unable to claim device
729 \retval -6: reset failed
730 \retval -7: set baudrate failed
731 \retval -8: get product description failed
732 \retval -9: get serial number failed
733 \retval -10: unable to close device
734 \retval -11: illegal description format
735 \retval -12: ftdi context invalid
736*/
737int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
738{
739 if (ftdi == NULL)
740 ftdi_error_return(-12, "ftdi context invalid");
741
742 if (description[0] == 0 || description[1] != ':')
743 ftdi_error_return(-11, "illegal description format");
744
745 if (description[0] == 'd')
746 {
747 libusb_device *dev;
748 libusb_device **devs;
749 unsigned int bus_number, device_address;
750 int i = 0;
751
752 if (libusb_init (&ftdi->usb_ctx) < 0)
753 ftdi_error_return(-1, "libusb_init() failed");
754
755 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
756 ftdi_error_return(-2, "libusb_get_device_list() failed");
757
758 /* XXX: This doesn't handle symlinks/odd paths/etc... */
759 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
760 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
761
762 while ((dev = devs[i++]) != NULL)
763 {
764 int ret;
765 if (bus_number == libusb_get_bus_number (dev)
766 && device_address == libusb_get_device_address (dev))
767 {
768 ret = ftdi_usb_open_dev(ftdi, dev);
769 libusb_free_device_list(devs,1);
770 return ret;
771 }
772 }
773
774 // device not found
775 ftdi_error_return_free_device_list(-3, "device not found", devs);
776 }
777 else if (description[0] == 'i' || description[0] == 's')
778 {
779 unsigned int vendor;
780 unsigned int product;
781 unsigned int index=0;
782 const char *serial=NULL;
783 const char *startp, *endp;
784
785 errno=0;
786 startp=description+2;
787 vendor=strtoul((char*)startp,(char**)&endp,0);
788 if (*endp != ':' || endp == startp || errno != 0)
789 ftdi_error_return(-11, "illegal description format");
790
791 startp=endp+1;
792 product=strtoul((char*)startp,(char**)&endp,0);
793 if (endp == startp || errno != 0)
794 ftdi_error_return(-11, "illegal description format");
795
796 if (description[0] == 'i' && *endp != 0)
797 {
798 /* optional index field in i-mode */
799 if (*endp != ':')
800 ftdi_error_return(-11, "illegal description format");
801
802 startp=endp+1;
803 index=strtoul((char*)startp,(char**)&endp,0);
804 if (*endp != 0 || endp == startp || errno != 0)
805 ftdi_error_return(-11, "illegal description format");
806 }
807 if (description[0] == 's')
808 {
809 if (*endp != ':')
810 ftdi_error_return(-11, "illegal description format");
811
812 /* rest of the description is the serial */
813 serial=endp+1;
814 }
815
816 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
817 }
818 else
819 {
820 ftdi_error_return(-11, "illegal description format");
821 }
822}
823
824/**
825 Resets the ftdi device.
826
827 \param ftdi pointer to ftdi_context
828
829 \retval 0: all fine
830 \retval -1: FTDI reset failed
831 \retval -2: USB device unavailable
832*/
833int ftdi_usb_reset(struct ftdi_context *ftdi)
834{
835 if (ftdi == NULL || ftdi->usb_dev == NULL)
836 ftdi_error_return(-2, "USB device unavailable");
837
838 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
839 SIO_RESET_REQUEST, SIO_RESET_SIO,
840 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
841 ftdi_error_return(-1,"FTDI reset failed");
842
843 // Invalidate data in the readbuffer
844 ftdi->readbuffer_offset = 0;
845 ftdi->readbuffer_remaining = 0;
846
847 return 0;
848}
849
850/**
851 Clears the read buffer on the chip and the internal read buffer.
852
853 \param ftdi pointer to ftdi_context
854
855 \retval 0: all fine
856 \retval -1: read buffer purge failed
857 \retval -2: USB device unavailable
858*/
859int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
860{
861 if (ftdi == NULL || ftdi->usb_dev == NULL)
862 ftdi_error_return(-2, "USB device unavailable");
863
864 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
865 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
866 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
867 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
868
869 // Invalidate data in the readbuffer
870 ftdi->readbuffer_offset = 0;
871 ftdi->readbuffer_remaining = 0;
872
873 return 0;
874}
875
876/**
877 Clears the write buffer on the chip.
878
879 \param ftdi pointer to ftdi_context
880
881 \retval 0: all fine
882 \retval -1: write buffer purge failed
883 \retval -2: USB device unavailable
884*/
885int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
886{
887 if (ftdi == NULL || ftdi->usb_dev == NULL)
888 ftdi_error_return(-2, "USB device unavailable");
889
890 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
891 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
892 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
893 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
894
895 return 0;
896}
897
898/**
899 Clears the buffers on the chip and the internal read buffer.
900
901 \param ftdi pointer to ftdi_context
902
903 \retval 0: all fine
904 \retval -1: read buffer purge failed
905 \retval -2: write buffer purge failed
906 \retval -3: USB device unavailable
907*/
908int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
909{
910 int result;
911
912 if (ftdi == NULL || ftdi->usb_dev == NULL)
913 ftdi_error_return(-3, "USB device unavailable");
914
915 result = ftdi_usb_purge_rx_buffer(ftdi);
916 if (result < 0)
917 return -1;
918
919 result = ftdi_usb_purge_tx_buffer(ftdi);
920 if (result < 0)
921 return -2;
922
923 return 0;
924}
925
926
927
928/**
929 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
930
931 \param ftdi pointer to ftdi_context
932
933 \retval 0: all fine
934 \retval -1: usb_release failed
935 \retval -3: ftdi context invalid
936*/
937int ftdi_usb_close(struct ftdi_context *ftdi)
938{
939 int rtn = 0;
940
941 if (ftdi == NULL)
942 ftdi_error_return(-3, "ftdi context invalid");
943
944 if (ftdi->usb_dev != NULL)
945 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
946 rtn = -1;
947
948 ftdi_usb_close_internal (ftdi);
949
950 return rtn;
951}
952
953/**
954 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
955 Function is only used internally
956 \internal
957*/
958static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
959 unsigned short *value, unsigned short *index)
960{
961 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
962 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
963 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
964 int divisor, best_divisor, best_baud, best_baud_diff;
965 unsigned long encoded_divisor;
966 int i;
967
968 if (baudrate <= 0)
969 {
970 // Return error
971 return -1;
972 }
973
974 divisor = 24000000 / baudrate;
975
976 if (ftdi->type == TYPE_AM)
977 {
978 // Round down to supported fraction (AM only)
979 divisor -= am_adjust_dn[divisor & 7];
980 }
981
982 // Try this divisor and the one above it (because division rounds down)
983 best_divisor = 0;
984 best_baud = 0;
985 best_baud_diff = 0;
986 for (i = 0; i < 2; i++)
987 {
988 int try_divisor = divisor + i;
989 int baud_estimate;
990 int baud_diff;
991
992 // Round up to supported divisor value
993 if (try_divisor <= 8)
994 {
995 // Round up to minimum supported divisor
996 try_divisor = 8;
997 }
998 else if (ftdi->type != TYPE_AM && try_divisor < 12)
999 {
1000 // BM doesn't support divisors 9 through 11 inclusive
1001 try_divisor = 12;
1002 }
1003 else if (divisor < 16)
1004 {
1005 // AM doesn't support divisors 9 through 15 inclusive
1006 try_divisor = 16;
1007 }
1008 else
1009 {
1010 if (ftdi->type == TYPE_AM)
1011 {
1012 // Round up to supported fraction (AM only)
1013 try_divisor += am_adjust_up[try_divisor & 7];
1014 if (try_divisor > 0x1FFF8)
1015 {
1016 // Round down to maximum supported divisor value (for AM)
1017 try_divisor = 0x1FFF8;
1018 }
1019 }
1020 else
1021 {
1022 if (try_divisor > 0x1FFFF)
1023 {
1024 // Round down to maximum supported divisor value (for BM)
1025 try_divisor = 0x1FFFF;
1026 }
1027 }
1028 }
1029 // Get estimated baud rate (to nearest integer)
1030 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1031 // Get absolute difference from requested baud rate
1032 if (baud_estimate < baudrate)
1033 {
1034 baud_diff = baudrate - baud_estimate;
1035 }
1036 else
1037 {
1038 baud_diff = baud_estimate - baudrate;
1039 }
1040 if (i == 0 || baud_diff < best_baud_diff)
1041 {
1042 // Closest to requested baud rate so far
1043 best_divisor = try_divisor;
1044 best_baud = baud_estimate;
1045 best_baud_diff = baud_diff;
1046 if (baud_diff == 0)
1047 {
1048 // Spot on! No point trying
1049 break;
1050 }
1051 }
1052 }
1053 // Encode the best divisor value
1054 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1055 // Deal with special cases for encoded value
1056 if (encoded_divisor == 1)
1057 {
1058 encoded_divisor = 0; // 3000000 baud
1059 }
1060 else if (encoded_divisor == 0x4001)
1061 {
1062 encoded_divisor = 1; // 2000000 baud (BM only)
1063 }
1064 // Split into "value" and "index" values
1065 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1066 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1067 {
1068 *index = (unsigned short)(encoded_divisor >> 8);
1069 *index &= 0xFF00;
1070 *index |= ftdi->index;
1071 }
1072 else
1073 *index = (unsigned short)(encoded_divisor >> 16);
1074
1075 // Return the nearest baud rate
1076 return best_baud;
1077}
1078
1079/**
1080 Sets the chip baud rate
1081
1082 \param ftdi pointer to ftdi_context
1083 \param baudrate baud rate to set
1084
1085 \retval 0: all fine
1086 \retval -1: invalid baudrate
1087 \retval -2: setting baudrate failed
1088 \retval -3: USB device unavailable
1089*/
1090int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1091{
1092 unsigned short value, index;
1093 int actual_baudrate;
1094
1095 if (ftdi == NULL || ftdi->usb_dev == NULL)
1096 ftdi_error_return(-3, "USB device unavailable");
1097
1098 if (ftdi->bitbang_enabled)
1099 {
1100 baudrate = baudrate*4;
1101 }
1102
1103 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1104 if (actual_baudrate <= 0)
1105 ftdi_error_return (-1, "Silly baudrate <= 0.");
1106
1107 // Check within tolerance (about 5%)
1108 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1109 || ((actual_baudrate < baudrate)
1110 ? (actual_baudrate * 21 < baudrate * 20)
1111 : (baudrate * 21 < actual_baudrate * 20)))
1112 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1113
1114 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1115 SIO_SET_BAUDRATE_REQUEST, value,
1116 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1117 ftdi_error_return (-2, "Setting new baudrate failed");
1118
1119 ftdi->baudrate = baudrate;
1120 return 0;
1121}
1122
1123/**
1124 Set (RS232) line characteristics.
1125 The break type can only be set via ftdi_set_line_property2()
1126 and defaults to "off".
1127
1128 \param ftdi pointer to ftdi_context
1129 \param bits Number of bits
1130 \param sbit Number of stop bits
1131 \param parity Parity mode
1132
1133 \retval 0: all fine
1134 \retval -1: Setting line property failed
1135*/
1136int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1137 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1138{
1139 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1140}
1141
1142/**
1143 Set (RS232) line characteristics
1144
1145 \param ftdi pointer to ftdi_context
1146 \param bits Number of bits
1147 \param sbit Number of stop bits
1148 \param parity Parity mode
1149 \param break_type Break type
1150
1151 \retval 0: all fine
1152 \retval -1: Setting line property failed
1153 \retval -2: USB device unavailable
1154*/
1155int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1156 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1157 enum ftdi_break_type break_type)
1158{
1159 unsigned short value = bits;
1160
1161 if (ftdi == NULL || ftdi->usb_dev == NULL)
1162 ftdi_error_return(-2, "USB device unavailable");
1163
1164 switch (parity)
1165 {
1166 case NONE:
1167 value |= (0x00 << 8);
1168 break;
1169 case ODD:
1170 value |= (0x01 << 8);
1171 break;
1172 case EVEN:
1173 value |= (0x02 << 8);
1174 break;
1175 case MARK:
1176 value |= (0x03 << 8);
1177 break;
1178 case SPACE:
1179 value |= (0x04 << 8);
1180 break;
1181 }
1182
1183 switch (sbit)
1184 {
1185 case STOP_BIT_1:
1186 value |= (0x00 << 11);
1187 break;
1188 case STOP_BIT_15:
1189 value |= (0x01 << 11);
1190 break;
1191 case STOP_BIT_2:
1192 value |= (0x02 << 11);
1193 break;
1194 }
1195
1196 switch (break_type)
1197 {
1198 case BREAK_OFF:
1199 value |= (0x00 << 14);
1200 break;
1201 case BREAK_ON:
1202 value |= (0x01 << 14);
1203 break;
1204 }
1205
1206 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1207 SIO_SET_DATA_REQUEST, value,
1208 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1209 ftdi_error_return (-1, "Setting new line property failed");
1210
1211 return 0;
1212}
1213
1214/**
1215 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1216
1217 \param ftdi pointer to ftdi_context
1218 \param buf Buffer with the data
1219 \param size Size of the buffer
1220
1221 \retval -666: USB device unavailable
1222 \retval <0: error code from usb_bulk_write()
1223 \retval >0: number of bytes written
1224*/
1225int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1226{
1227 int offset = 0;
1228 int actual_length;
1229
1230 if (ftdi == NULL || ftdi->usb_dev == NULL)
1231 ftdi_error_return(-666, "USB device unavailable");
1232
1233 while (offset < size)
1234 {
1235 int write_size = ftdi->writebuffer_chunksize;
1236
1237 if (offset+write_size > size)
1238 write_size = size-offset;
1239
1240 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1241 ftdi_error_return(-1, "usb bulk write failed");
1242
1243 offset += actual_length;
1244 }
1245
1246 return offset;
1247}
1248
1249static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1250{
1251 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1252 struct ftdi_context *ftdi = tc->ftdi;
1253 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1254
1255 packet_size = ftdi->max_packet_size;
1256
1257 actual_length = transfer->actual_length;
1258
1259 if (actual_length > 2)
1260 {
1261 // skip FTDI status bytes.
1262 // Maybe stored in the future to enable modem use
1263 num_of_chunks = actual_length / packet_size;
1264 chunk_remains = actual_length % packet_size;
1265 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1266
1267 ftdi->readbuffer_offset += 2;
1268 actual_length -= 2;
1269
1270 if (actual_length > packet_size - 2)
1271 {
1272 for (i = 1; i < num_of_chunks; i++)
1273 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1274 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1275 packet_size - 2);
1276 if (chunk_remains > 2)
1277 {
1278 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1279 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1280 chunk_remains-2);
1281 actual_length -= 2*num_of_chunks;
1282 }
1283 else
1284 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1285 }
1286
1287 if (actual_length > 0)
1288 {
1289 // data still fits in buf?
1290 if (tc->offset + actual_length <= tc->size)
1291 {
1292 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1293 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1294 tc->offset += actual_length;
1295
1296 ftdi->readbuffer_offset = 0;
1297 ftdi->readbuffer_remaining = 0;
1298
1299 /* Did we read exactly the right amount of bytes? */
1300 if (tc->offset == tc->size)
1301 {
1302 //printf("read_data exact rem %d offset %d\n",
1303 //ftdi->readbuffer_remaining, offset);
1304 tc->completed = 1;
1305 return;
1306 }
1307 }
1308 else
1309 {
1310 // only copy part of the data or size <= readbuffer_chunksize
1311 int part_size = tc->size - tc->offset;
1312 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1313 tc->offset += part_size;
1314
1315 ftdi->readbuffer_offset += part_size;
1316 ftdi->readbuffer_remaining = actual_length - part_size;
1317
1318 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1319 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1320 tc->completed = 1;
1321 return;
1322 }
1323 }
1324 }
1325 ret = libusb_submit_transfer (transfer);
1326 if (ret < 0)
1327 tc->completed = 1;
1328}
1329
1330
1331static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1332{
1333 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1334 struct ftdi_context *ftdi = tc->ftdi;
1335
1336 tc->offset += transfer->actual_length;
1337
1338 if (tc->offset == tc->size)
1339 {
1340 tc->completed = 1;
1341 }
1342 else
1343 {
1344 int write_size = ftdi->writebuffer_chunksize;
1345 int ret;
1346
1347 if (tc->offset + write_size > tc->size)
1348 write_size = tc->size - tc->offset;
1349
1350 transfer->length = write_size;
1351 transfer->buffer = tc->buf + tc->offset;
1352 ret = libusb_submit_transfer (transfer);
1353 if (ret < 0)
1354 tc->completed = 1;
1355 }
1356}
1357
1358
1359/**
1360 Writes data to the chip. Does not wait for completion of the transfer
1361 nor does it make sure that the transfer was successful.
1362
1363 Use libusb 1.0 asynchronous API.
1364
1365 \param ftdi pointer to ftdi_context
1366 \param buf Buffer with the data
1367 \param size Size of the buffer
1368
1369 \retval NULL: Some error happens when submit transfer
1370 \retval !NULL: Pointer to a ftdi_transfer_control
1371*/
1372
1373struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1374{
1375 struct ftdi_transfer_control *tc;
1376 struct libusb_transfer *transfer = libusb_alloc_transfer(0);
1377 int write_size, ret;
1378
1379 if (ftdi == NULL || ftdi->usb_dev == NULL)
1380 {
1381 libusb_free_transfer(transfer);
1382 return NULL;
1383 }
1384
1385 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1386
1387 if (!tc || !transfer)
1388 return NULL;
1389
1390 tc->ftdi = ftdi;
1391 tc->completed = 0;
1392 tc->buf = buf;
1393 tc->size = size;
1394 tc->offset = 0;
1395
1396 if (size < ftdi->writebuffer_chunksize)
1397 write_size = size;
1398 else
1399 write_size = ftdi->writebuffer_chunksize;
1400
1401 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1402 write_size, ftdi_write_data_cb, tc,
1403 ftdi->usb_write_timeout);
1404 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1405
1406 ret = libusb_submit_transfer(transfer);
1407 if (ret < 0)
1408 {
1409 libusb_free_transfer(transfer);
1410 tc->completed = 1;
1411 tc->transfer = NULL;
1412 return NULL;
1413 }
1414 tc->transfer = transfer;
1415
1416 return tc;
1417}
1418
1419/**
1420 Reads data from the chip. Does not wait for completion of the transfer
1421 nor does it make sure that the transfer was successful.
1422
1423 Use libusb 1.0 asynchronous API.
1424
1425 \param ftdi pointer to ftdi_context
1426 \param buf Buffer with the data
1427 \param size Size of the buffer
1428
1429 \retval NULL: Some error happens when submit transfer
1430 \retval !NULL: Pointer to a ftdi_transfer_control
1431*/
1432
1433struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1434{
1435 struct ftdi_transfer_control *tc;
1436 struct libusb_transfer *transfer;
1437 int ret;
1438
1439 if (ftdi == NULL || ftdi->usb_dev == NULL)
1440 return NULL;
1441
1442 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1443 if (!tc)
1444 return NULL;
1445
1446 tc->ftdi = ftdi;
1447 tc->buf = buf;
1448 tc->size = size;
1449
1450 if (size <= ftdi->readbuffer_remaining)
1451 {
1452 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1453
1454 // Fix offsets
1455 ftdi->readbuffer_remaining -= size;
1456 ftdi->readbuffer_offset += size;
1457
1458 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1459
1460 tc->completed = 1;
1461 tc->offset = size;
1462 tc->transfer = NULL;
1463 return tc;
1464 }
1465
1466 tc->completed = 0;
1467 if (ftdi->readbuffer_remaining != 0)
1468 {
1469 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1470
1471 tc->offset = ftdi->readbuffer_remaining;
1472 }
1473 else
1474 tc->offset = 0;
1475
1476 transfer = libusb_alloc_transfer(0);
1477 if (!transfer)
1478 {
1479 free (tc);
1480 return NULL;
1481 }
1482
1483 ftdi->readbuffer_remaining = 0;
1484 ftdi->readbuffer_offset = 0;
1485
1486 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1487 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1488
1489 ret = libusb_submit_transfer(transfer);
1490 if (ret < 0)
1491 {
1492 libusb_free_transfer(transfer);
1493 free (tc);
1494 return NULL;
1495 }
1496 tc->transfer = transfer;
1497
1498 return tc;
1499}
1500
1501/**
1502 Wait for completion of the transfer.
1503
1504 Use libusb 1.0 asynchronous API.
1505
1506 \param tc pointer to ftdi_transfer_control
1507
1508 \retval < 0: Some error happens
1509 \retval >= 0: Data size transferred
1510*/
1511
1512int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1513{
1514 int ret;
1515
1516 while (!tc->completed)
1517 {
1518 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1519 if (ret < 0)
1520 {
1521 if (ret == LIBUSB_ERROR_INTERRUPTED)
1522 continue;
1523 libusb_cancel_transfer(tc->transfer);
1524 while (!tc->completed)
1525 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1526 break;
1527 libusb_free_transfer(tc->transfer);
1528 free (tc);
1529 return ret;
1530 }
1531 }
1532
1533 ret = tc->offset;
1534 /**
1535 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1536 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1537 **/
1538 if (tc->transfer)
1539 {
1540 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1541 ret = -1;
1542 libusb_free_transfer(tc->transfer);
1543 }
1544 free(tc);
1545 return ret;
1546}
1547
1548/**
1549 Configure write buffer chunk size.
1550 Default is 4096.
1551
1552 \param ftdi pointer to ftdi_context
1553 \param chunksize Chunk size
1554
1555 \retval 0: all fine
1556 \retval -1: ftdi context invalid
1557*/
1558int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1559{
1560 if (ftdi == NULL)
1561 ftdi_error_return(-1, "ftdi context invalid");
1562
1563 ftdi->writebuffer_chunksize = chunksize;
1564 return 0;
1565}
1566
1567/**
1568 Get write buffer chunk size.
1569
1570 \param ftdi pointer to ftdi_context
1571 \param chunksize Pointer to store chunk size in
1572
1573 \retval 0: all fine
1574 \retval -1: ftdi context invalid
1575*/
1576int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1577{
1578 if (ftdi == NULL)
1579 ftdi_error_return(-1, "ftdi context invalid");
1580
1581 *chunksize = ftdi->writebuffer_chunksize;
1582 return 0;
1583}
1584
1585/**
1586 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1587
1588 Automatically strips the two modem status bytes transfered during every read.
1589
1590 \param ftdi pointer to ftdi_context
1591 \param buf Buffer to store data in
1592 \param size Size of the buffer
1593
1594 \retval -666: USB device unavailable
1595 \retval <0: error code from libusb_bulk_transfer()
1596 \retval 0: no data was available
1597 \retval >0: number of bytes read
1598
1599*/
1600int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1601{
1602 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1603 int packet_size = ftdi->max_packet_size;
1604 int actual_length = 1;
1605
1606 if (ftdi == NULL || ftdi->usb_dev == NULL)
1607 ftdi_error_return(-666, "USB device unavailable");
1608
1609 // Packet size sanity check (avoid division by zero)
1610 if (packet_size == 0)
1611 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1612
1613 // everything we want is still in the readbuffer?
1614 if (size <= ftdi->readbuffer_remaining)
1615 {
1616 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1617
1618 // Fix offsets
1619 ftdi->readbuffer_remaining -= size;
1620 ftdi->readbuffer_offset += size;
1621
1622 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1623
1624 return size;
1625 }
1626 // something still in the readbuffer, but not enough to satisfy 'size'?
1627 if (ftdi->readbuffer_remaining != 0)
1628 {
1629 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1630
1631 // Fix offset
1632 offset += ftdi->readbuffer_remaining;
1633 }
1634 // do the actual USB read
1635 while (offset < size && actual_length > 0)
1636 {
1637 ftdi->readbuffer_remaining = 0;
1638 ftdi->readbuffer_offset = 0;
1639 /* returns how much received */
1640 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1641 if (ret < 0)
1642 ftdi_error_return(ret, "usb bulk read failed");
1643
1644 if (actual_length > 2)
1645 {
1646 // skip FTDI status bytes.
1647 // Maybe stored in the future to enable modem use
1648 num_of_chunks = actual_length / packet_size;
1649 chunk_remains = actual_length % packet_size;
1650 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1651
1652 ftdi->readbuffer_offset += 2;
1653 actual_length -= 2;
1654
1655 if (actual_length > packet_size - 2)
1656 {
1657 for (i = 1; i < num_of_chunks; i++)
1658 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1659 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1660 packet_size - 2);
1661 if (chunk_remains > 2)
1662 {
1663 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1664 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1665 chunk_remains-2);
1666 actual_length -= 2*num_of_chunks;
1667 }
1668 else
1669 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1670 }
1671 }
1672 else if (actual_length <= 2)
1673 {
1674 // no more data to read?
1675 return offset;
1676 }
1677 if (actual_length > 0)
1678 {
1679 // data still fits in buf?
1680 if (offset+actual_length <= size)
1681 {
1682 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1683 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1684 offset += actual_length;
1685
1686 /* Did we read exactly the right amount of bytes? */
1687 if (offset == size)
1688 //printf("read_data exact rem %d offset %d\n",
1689 //ftdi->readbuffer_remaining, offset);
1690 return offset;
1691 }
1692 else
1693 {
1694 // only copy part of the data or size <= readbuffer_chunksize
1695 int part_size = size-offset;
1696 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1697
1698 ftdi->readbuffer_offset += part_size;
1699 ftdi->readbuffer_remaining = actual_length-part_size;
1700 offset += part_size;
1701
1702 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1703 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1704
1705 return offset;
1706 }
1707 }
1708 }
1709 // never reached
1710 return -127;
1711}
1712
1713/**
1714 Configure read buffer chunk size.
1715 Default is 4096.
1716
1717 Automatically reallocates the buffer.
1718
1719 \param ftdi pointer to ftdi_context
1720 \param chunksize Chunk size
1721
1722 \retval 0: all fine
1723 \retval -1: ftdi context invalid
1724*/
1725int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1726{
1727 unsigned char *new_buf;
1728
1729 if (ftdi == NULL)
1730 ftdi_error_return(-1, "ftdi context invalid");
1731
1732 // Invalidate all remaining data
1733 ftdi->readbuffer_offset = 0;
1734 ftdi->readbuffer_remaining = 0;
1735#ifdef __linux__
1736 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1737 which is defined in libusb-1.0. Otherwise, each USB read request will
1738 be divided into multiple URBs. This will cause issues on Linux kernel
1739 older than 2.6.32. */
1740 if (chunksize > 16384)
1741 chunksize = 16384;
1742#endif
1743
1744 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1745 ftdi_error_return(-1, "out of memory for readbuffer");
1746
1747 ftdi->readbuffer = new_buf;
1748 ftdi->readbuffer_chunksize = chunksize;
1749
1750 return 0;
1751}
1752
1753/**
1754 Get read buffer chunk size.
1755
1756 \param ftdi pointer to ftdi_context
1757 \param chunksize Pointer to store chunk size in
1758
1759 \retval 0: all fine
1760 \retval -1: FTDI context invalid
1761*/
1762int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1763{
1764 if (ftdi == NULL)
1765 ftdi_error_return(-1, "FTDI context invalid");
1766
1767 *chunksize = ftdi->readbuffer_chunksize;
1768 return 0;
1769}
1770
1771
1772/**
1773 Enable bitbang mode.
1774
1775 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1776
1777 \param ftdi pointer to ftdi_context
1778 \param bitmask Bitmask to configure lines.
1779 HIGH/ON value configures a line as output.
1780
1781 \retval 0: all fine
1782 \retval -1: can't enable bitbang mode
1783 \retval -2: USB device unavailable
1784*/
1785int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1786{
1787 unsigned short usb_val;
1788
1789 if (ftdi == NULL || ftdi->usb_dev == NULL)
1790 ftdi_error_return(-2, "USB device unavailable");
1791
1792 usb_val = bitmask; // low byte: bitmask
1793 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1794 usb_val |= (ftdi->bitbang_mode << 8);
1795
1796 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1797 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1798 NULL, 0, ftdi->usb_write_timeout) < 0)
1799 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1800
1801 ftdi->bitbang_enabled = 1;
1802 return 0;
1803}
1804
1805/**
1806 Disable bitbang mode.
1807
1808 \param ftdi pointer to ftdi_context
1809
1810 \retval 0: all fine
1811 \retval -1: can't disable bitbang mode
1812 \retval -2: USB device unavailable
1813*/
1814int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1815{
1816 if (ftdi == NULL || ftdi->usb_dev == NULL)
1817 ftdi_error_return(-2, "USB device unavailable");
1818
1819 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1820 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1821
1822 ftdi->bitbang_enabled = 0;
1823 return 0;
1824}
1825
1826/**
1827 Enable/disable bitbang modes.
1828
1829 \param ftdi pointer to ftdi_context
1830 \param bitmask Bitmask to configure lines.
1831 HIGH/ON value configures a line as output.
1832 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1833
1834 \retval 0: all fine
1835 \retval -1: can't enable bitbang mode
1836 \retval -2: USB device unavailable
1837*/
1838int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1839{
1840 unsigned short usb_val;
1841
1842 if (ftdi == NULL || ftdi->usb_dev == NULL)
1843 ftdi_error_return(-2, "USB device unavailable");
1844
1845 usb_val = bitmask; // low byte: bitmask
1846 usb_val |= (mode << 8);
1847 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1848 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1849
1850 ftdi->bitbang_mode = mode;
1851 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1852 return 0;
1853}
1854
1855/**
1856 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1857
1858 \param ftdi pointer to ftdi_context
1859 \param pins Pointer to store pins into
1860
1861 \retval 0: all fine
1862 \retval -1: read pins failed
1863 \retval -2: USB device unavailable
1864*/
1865int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1866{
1867 if (ftdi == NULL || ftdi->usb_dev == NULL)
1868 ftdi_error_return(-2, "USB device unavailable");
1869
1870 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1871 ftdi_error_return(-1, "read pins failed");
1872
1873 return 0;
1874}
1875
1876/**
1877 Set latency timer
1878
1879 The FTDI chip keeps data in the internal buffer for a specific
1880 amount of time if the buffer is not full yet to decrease
1881 load on the usb bus.
1882
1883 \param ftdi pointer to ftdi_context
1884 \param latency Value between 1 and 255
1885
1886 \retval 0: all fine
1887 \retval -1: latency out of range
1888 \retval -2: unable to set latency timer
1889 \retval -3: USB device unavailable
1890*/
1891int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1892{
1893 unsigned short usb_val;
1894
1895 if (latency < 1)
1896 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1897
1898 if (ftdi == NULL || ftdi->usb_dev == NULL)
1899 ftdi_error_return(-3, "USB device unavailable");
1900
1901 usb_val = latency;
1902 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1903 ftdi_error_return(-2, "unable to set latency timer");
1904
1905 return 0;
1906}
1907
1908/**
1909 Get latency timer
1910
1911 \param ftdi pointer to ftdi_context
1912 \param latency Pointer to store latency value in
1913
1914 \retval 0: all fine
1915 \retval -1: unable to get latency timer
1916 \retval -2: USB device unavailable
1917*/
1918int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1919{
1920 unsigned short usb_val;
1921
1922 if (ftdi == NULL || ftdi->usb_dev == NULL)
1923 ftdi_error_return(-2, "USB device unavailable");
1924
1925 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1926 ftdi_error_return(-1, "reading latency timer failed");
1927
1928 *latency = (unsigned char)usb_val;
1929 return 0;
1930}
1931
1932/**
1933 Poll modem status information
1934
1935 This function allows the retrieve the two status bytes of the device.
1936 The device sends these bytes also as a header for each read access
1937 where they are discarded by ftdi_read_data(). The chip generates
1938 the two stripped status bytes in the absence of data every 40 ms.
1939
1940 Layout of the first byte:
1941 - B0..B3 - must be 0
1942 - B4 Clear to send (CTS)
1943 0 = inactive
1944 1 = active
1945 - B5 Data set ready (DTS)
1946 0 = inactive
1947 1 = active
1948 - B6 Ring indicator (RI)
1949 0 = inactive
1950 1 = active
1951 - B7 Receive line signal detect (RLSD)
1952 0 = inactive
1953 1 = active
1954
1955 Layout of the second byte:
1956 - B0 Data ready (DR)
1957 - B1 Overrun error (OE)
1958 - B2 Parity error (PE)
1959 - B3 Framing error (FE)
1960 - B4 Break interrupt (BI)
1961 - B5 Transmitter holding register (THRE)
1962 - B6 Transmitter empty (TEMT)
1963 - B7 Error in RCVR FIFO
1964
1965 \param ftdi pointer to ftdi_context
1966 \param status Pointer to store status information in. Must be two bytes.
1967
1968 \retval 0: all fine
1969 \retval -1: unable to retrieve status information
1970 \retval -2: USB device unavailable
1971*/
1972int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1973{
1974 char usb_val[2];
1975
1976 if (ftdi == NULL || ftdi->usb_dev == NULL)
1977 ftdi_error_return(-2, "USB device unavailable");
1978
1979 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1980 ftdi_error_return(-1, "getting modem status failed");
1981
1982 *status = (usb_val[1] << 8) | usb_val[0];
1983
1984 return 0;
1985}
1986
1987/**
1988 Set flowcontrol for ftdi chip
1989
1990 \param ftdi pointer to ftdi_context
1991 \param flowctrl flow control to use. should be
1992 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
1993
1994 \retval 0: all fine
1995 \retval -1: set flow control failed
1996 \retval -2: USB device unavailable
1997*/
1998int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1999{
2000 if (ftdi == NULL || ftdi->usb_dev == NULL)
2001 ftdi_error_return(-2, "USB device unavailable");
2002
2003 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2004 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2005 NULL, 0, ftdi->usb_write_timeout) < 0)
2006 ftdi_error_return(-1, "set flow control failed");
2007
2008 return 0;
2009}
2010
2011/**
2012 Set dtr line
2013
2014 \param ftdi pointer to ftdi_context
2015 \param state state to set line to (1 or 0)
2016
2017 \retval 0: all fine
2018 \retval -1: set dtr failed
2019 \retval -2: USB device unavailable
2020*/
2021int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2022{
2023 unsigned short usb_val;
2024
2025 if (ftdi == NULL || ftdi->usb_dev == NULL)
2026 ftdi_error_return(-2, "USB device unavailable");
2027
2028 if (state)
2029 usb_val = SIO_SET_DTR_HIGH;
2030 else
2031 usb_val = SIO_SET_DTR_LOW;
2032
2033 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2034 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2035 NULL, 0, ftdi->usb_write_timeout) < 0)
2036 ftdi_error_return(-1, "set dtr failed");
2037
2038 return 0;
2039}
2040
2041/**
2042 Set rts line
2043
2044 \param ftdi pointer to ftdi_context
2045 \param state state to set line to (1 or 0)
2046
2047 \retval 0: all fine
2048 \retval -1: set rts failed
2049 \retval -2: USB device unavailable
2050*/
2051int ftdi_setrts(struct ftdi_context *ftdi, int state)
2052{
2053 unsigned short usb_val;
2054
2055 if (ftdi == NULL || ftdi->usb_dev == NULL)
2056 ftdi_error_return(-2, "USB device unavailable");
2057
2058 if (state)
2059 usb_val = SIO_SET_RTS_HIGH;
2060 else
2061 usb_val = SIO_SET_RTS_LOW;
2062
2063 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2064 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2065 NULL, 0, ftdi->usb_write_timeout) < 0)
2066 ftdi_error_return(-1, "set of rts failed");
2067
2068 return 0;
2069}
2070
2071/**
2072 Set dtr and rts line in one pass
2073
2074 \param ftdi pointer to ftdi_context
2075 \param dtr DTR state to set line to (1 or 0)
2076 \param rts RTS state to set line to (1 or 0)
2077
2078 \retval 0: all fine
2079 \retval -1: set dtr/rts failed
2080 \retval -2: USB device unavailable
2081 */
2082int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2083{
2084 unsigned short usb_val;
2085
2086 if (ftdi == NULL || ftdi->usb_dev == NULL)
2087 ftdi_error_return(-2, "USB device unavailable");
2088
2089 if (dtr)
2090 usb_val = SIO_SET_DTR_HIGH;
2091 else
2092 usb_val = SIO_SET_DTR_LOW;
2093
2094 if (rts)
2095 usb_val |= SIO_SET_RTS_HIGH;
2096 else
2097 usb_val |= SIO_SET_RTS_LOW;
2098
2099 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2100 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2101 NULL, 0, ftdi->usb_write_timeout) < 0)
2102 ftdi_error_return(-1, "set of rts/dtr failed");
2103
2104 return 0;
2105}
2106
2107/**
2108 Set the special event character
2109
2110 \param ftdi pointer to ftdi_context
2111 \param eventch Event character
2112 \param enable 0 to disable the event character, non-zero otherwise
2113
2114 \retval 0: all fine
2115 \retval -1: unable to set event character
2116 \retval -2: USB device unavailable
2117*/
2118int ftdi_set_event_char(struct ftdi_context *ftdi,
2119 unsigned char eventch, unsigned char enable)
2120{
2121 unsigned short usb_val;
2122
2123 if (ftdi == NULL || ftdi->usb_dev == NULL)
2124 ftdi_error_return(-2, "USB device unavailable");
2125
2126 usb_val = eventch;
2127 if (enable)
2128 usb_val |= 1 << 8;
2129
2130 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2131 ftdi_error_return(-1, "setting event character failed");
2132
2133 return 0;
2134}
2135
2136/**
2137 Set error character
2138
2139 \param ftdi pointer to ftdi_context
2140 \param errorch Error character
2141 \param enable 0 to disable the error character, non-zero otherwise
2142
2143 \retval 0: all fine
2144 \retval -1: unable to set error character
2145 \retval -2: USB device unavailable
2146*/
2147int ftdi_set_error_char(struct ftdi_context *ftdi,
2148 unsigned char errorch, unsigned char enable)
2149{
2150 unsigned short usb_val;
2151
2152 if (ftdi == NULL || ftdi->usb_dev == NULL)
2153 ftdi_error_return(-2, "USB device unavailable");
2154
2155 usb_val = errorch;
2156 if (enable)
2157 usb_val |= 1 << 8;
2158
2159 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2160 ftdi_error_return(-1, "setting error character failed");
2161
2162 return 0;
2163}
2164
2165/**
2166 Init eeprom with default values.
2167 \param ftdi pointer to ftdi_context
2168
2169*/
2170void ftdi_eeprom_initdefaults(struct ftdi_context *ftdi)
2171{
2172 struct ftdi_eeprom *eeprom;
2173
2174 if (ftdi == NULL)
2175 return;
2176
2177 if (ftdi->eeprom == NULL)
2178 return;
2179
2180 eeprom = ftdi->eeprom;
2181 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2182
2183 eeprom->vendor_id = 0x0403;
2184 eeprom->use_serial = USE_SERIAL_NUM;
2185 if((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2186 (ftdi->type == TYPE_R))
2187 eeprom->product_id = 0x6001;
2188 else
2189 eeprom->product_id = 0x6010;
2190 if (ftdi->type == TYPE_AM)
2191 eeprom->usb_version = 0x0101;
2192 else
2193 eeprom->usb_version = 0x0200;
2194 eeprom->max_power = 50;
2195
2196 eeprom->manufacturer = NULL;
2197 eeprom->product = NULL;
2198 eeprom->serial = NULL;
2199
2200 if(ftdi->type == TYPE_R)
2201 {
2202 eeprom->max_power = 45;
2203 eeprom->size = 0x80;
2204 eeprom->cbus_function[0] = CBUS_TXLED;
2205 eeprom->cbus_function[1] = CBUS_RXLED;
2206 eeprom->cbus_function[2] = CBUS_TXDEN;
2207 eeprom->cbus_function[3] = CBUS_PWREN;
2208 eeprom->cbus_function[4] = CBUS_SLEEP;
2209 }
2210 else
2211 eeprom->size = -1;
2212}
2213
2214/**
2215 Frees allocated memory in eeprom.
2216
2217 \param ftdi pointer to ftdi_context
2218*/
2219void ftdi_eeprom_free(struct ftdi_context *ftdi)
2220{
2221 if (!ftdi)
2222 return;
2223 if (ftdi->eeprom)
2224 {
2225 struct ftdi_eeprom *eeprom = ftdi->eeprom;
2226
2227 if (eeprom->manufacturer != 0) {
2228 free(eeprom->manufacturer);
2229 eeprom->manufacturer = 0;
2230 }
2231 if (eeprom->product != 0) {
2232 free(eeprom->product);
2233 eeprom->product = 0;
2234 }
2235 if (eeprom->serial != 0) {
2236 free(eeprom->serial);
2237 eeprom->serial = 0;
2238 }
2239 }
2240}
2241
2242/**
2243 Build binary buffer from ftdi_eeprom structure.
2244 Output is suitable for ftdi_write_eeprom().
2245
2246 \param ftdi pointer to ftdi_context
2247
2248 \retval >0: free eeprom size
2249 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2250 \retval -2: Invalid eeprom pointer
2251 \retval -3: Invalid cbus function setting
2252 \retval -4: Chip doesn't support invert
2253 \retval -5: Chip doesn't support high current drive
2254 \retval -6: No connected EEPROM or EEPROM Type unknown
2255*/
2256int ftdi_eeprom_build(struct ftdi_context *ftdi)
2257{
2258 unsigned char i, j, k;
2259 unsigned short checksum, value;
2260 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2261 int size_check;
2262 struct ftdi_eeprom *eeprom;
2263 unsigned char * output;
2264
2265 if (ftdi == NULL)
2266 ftdi_error_return(-2,"No context");
2267 if (ftdi->eeprom == NULL)
2268 ftdi_error_return(-2,"No eeprom structure");
2269
2270 eeprom= ftdi->eeprom;
2271 output = eeprom->buf;
2272
2273 if(eeprom->chip == -1)
2274 ftdi_error_return(-5,"No connected EEPROM or EEPROM Type unknown");
2275
2276 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2277 eeprom->size = 0x100;
2278 else
2279 eeprom->size = 0x80;
2280
2281 if (eeprom->manufacturer != NULL)
2282 manufacturer_size = strlen(eeprom->manufacturer);
2283 if (eeprom->product != NULL)
2284 product_size = strlen(eeprom->product);
2285 if (eeprom->serial != NULL)
2286 serial_size = strlen(eeprom->serial);
2287
2288 size_check = 0x80;
2289 switch(ftdi->type)
2290 {
2291 case TYPE_2232H:
2292 case TYPE_4232H:
2293 size_check -= 4;
2294 case TYPE_R:
2295 size_check -= 4;
2296 case TYPE_2232C:
2297 size_check -= 4;
2298 case TYPE_AM:
2299 case TYPE_BM:
2300 size_check -= 0x14*2;
2301 }
2302
2303 size_check -= manufacturer_size*2;
2304 size_check -= product_size*2;
2305 size_check -= serial_size*2;
2306
2307 /* Space for the string type and pointer bytes */
2308 size_check -= -6;
2309
2310 // eeprom size exceeded?
2311 if (size_check < 0)
2312 return (-1);
2313
2314 // empty eeprom
2315 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2316
2317 // Bytes and Bits set for all Types
2318
2319 // Addr 02: Vendor ID
2320 output[0x02] = eeprom->vendor_id;
2321 output[0x03] = eeprom->vendor_id >> 8;
2322
2323 // Addr 04: Product ID
2324 output[0x04] = eeprom->product_id;
2325 output[0x05] = eeprom->product_id >> 8;
2326
2327 // Addr 06: Device release number (0400h for BM features)
2328 output[0x06] = 0x00;
2329 switch (ftdi->type) {
2330 case TYPE_AM:
2331 output[0x07] = 0x02;
2332 break;
2333 case TYPE_BM:
2334 output[0x07] = 0x04;
2335 break;
2336 case TYPE_2232C:
2337 output[0x07] = 0x05;
2338 break;
2339 case TYPE_R:
2340 output[0x07] = 0x06;
2341 break;
2342 case TYPE_2232H:
2343 output[0x07] = 0x07;
2344 break;
2345 case TYPE_4232H:
2346 output[0x07] = 0x08;
2347 break;
2348 default:
2349 output[0x07] = 0x00;
2350 }
2351
2352 // Addr 08: Config descriptor
2353 // Bit 7: always 1
2354 // Bit 6: 1 if this device is self powered, 0 if bus powered
2355 // Bit 5: 1 if this device uses remote wakeup
2356 // Bit 4: 1 if this device is battery powered
2357 j = 0x80;
2358 if (eeprom->self_powered == 1)
2359 j |= 0x40;
2360 if (eeprom->remote_wakeup == 1)
2361 j |= 0x20;
2362 output[0x08] = j;
2363
2364 // Addr 09: Max power consumption: max power = value * 2 mA
2365 output[0x09] = eeprom->max_power;
2366
2367 if(ftdi->type != TYPE_AM)
2368 {
2369 // Addr 0A: Chip configuration
2370 // Bit 7: 0 - reserved
2371 // Bit 6: 0 - reserved
2372 // Bit 5: 0 - reserved
2373 // Bit 4: 1 - Change USB version
2374 // Bit 3: 1 - Use the serial number string
2375 // Bit 2: 1 - Enable suspend pull downs for lower power
2376 // Bit 1: 1 - Out EndPoint is Isochronous
2377 // Bit 0: 1 - In EndPoint is Isochronous
2378 //
2379 j = 0;
2380 if (eeprom->in_is_isochronous == 1)
2381 j = j | 1;
2382 if (eeprom->out_is_isochronous == 1)
2383 j = j | 2;
2384 output[0x0A] = j;
2385 }
2386
2387 // Dynamic content
2388 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2389 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2390 i = 0;
2391 switch(ftdi->type)
2392 {
2393 case TYPE_2232H:
2394 case TYPE_4232H:
2395 i += 2;
2396 case TYPE_R:
2397 i += 2;
2398 case TYPE_2232C:
2399 i += 2;
2400 case TYPE_AM:
2401 case TYPE_BM:
2402 i += 0x94;
2403 }
2404 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2405 k = eeprom->size -1;
2406
2407 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2408 // Addr 0F: Length of manufacturer string
2409 // Output manufacturer
2410 output[0x0E] = i; // calculate offset
2411 output[i++ & k] = manufacturer_size*2 + 2;
2412 output[i++ & k] = 0x03; // type: string
2413 for (j = 0; j < manufacturer_size; j++)
2414 {
2415 output[i & k] = eeprom->manufacturer[j], i++;
2416 output[i & k] = 0x00, i++;
2417 }
2418 output[0x0F] = manufacturer_size*2 + 2;
2419
2420 // Addr 10: Offset of the product string + 0x80, calculated later
2421 // Addr 11: Length of product string
2422 output[0x10] = i | 0x80; // calculate offset
2423 output[i & k] = product_size*2 + 2, i++;
2424 output[i & k] = 0x03, i++;
2425 for (j = 0; j < product_size; j++)
2426 {
2427 output[i & k] = eeprom->product[j], i++;
2428 output[i & k] = 0x00, i++;
2429 }
2430 output[0x11] = product_size*2 + 2;
2431
2432 // Addr 12: Offset of the serial string + 0x80, calculated later
2433 // Addr 13: Length of serial string
2434 output[0x12] = i | 0x80; // calculate offset
2435 output[i & k] = serial_size*2 + 2, i++;
2436 output[i & k] = 0x03, i++;
2437 for (j = 0; j < serial_size; j++)
2438 {
2439 output[i & k] = eeprom->serial[j], i++;
2440 output[i & k] = 0x00, i++;
2441 }
2442 output[0x13] = serial_size*2 + 2;
2443
2444 /* Fixme: ftd2xx seems to append 0x02, 0x03 and 0x01 for PnP = 0 or 0x00 else */
2445 // calculate checksum
2446
2447 /* Bytes and Bits specific to (some) types
2448 Write linear, as this allows easier fixing*/
2449 switch(ftdi->type)
2450 {
2451 case TYPE_AM:
2452 break;
2453 case TYPE_BM:
2454 output[0x0C] = eeprom->usb_version & 0xff;
2455 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2456 if (eeprom->use_serial == 1)
2457 output[0x0A] |= 0x8;
2458 else
2459 output[0x0A] &= ~0x8;
2460 output[0x14] = eeprom->chip;
2461 break;
2462 case TYPE_2232C:
2463
2464 output[0x00] = (eeprom->channel_a_type);
2465 if ( eeprom->channel_a_driver == DRIVER_VCP)
2466 output[0x00] |= DRIVER_VCP;
2467 else
2468 output[0x00] &= ~DRIVER_VCP;
2469
2470 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2471 output[0x00] |= HIGH_CURRENT_DRIVE;
2472 else
2473 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2474
2475 output[0x01] = (eeprom->channel_b_type);
2476 if ( eeprom->channel_b_driver == DRIVER_VCP)
2477 output[0x01] |= DRIVER_VCP;
2478 else
2479 output[0x01] &= ~DRIVER_VCP;
2480
2481 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2482 output[0x01] |= HIGH_CURRENT_DRIVE;
2483 else
2484 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2485
2486 if (eeprom->in_is_isochronous == 1)
2487 output[0x0A] |= 0x1;
2488 else
2489 output[0x0A] &= ~0x1;
2490 if (eeprom->out_is_isochronous == 1)
2491 output[0x0A] |= 0x2;
2492 else
2493 output[0x0A] &= ~0x2;
2494 if (eeprom->suspend_pull_downs == 1)
2495 output[0x0A] |= 0x4;
2496 else
2497 output[0x0A] &= ~0x4;
2498 if (eeprom->use_serial == USE_SERIAL_NUM )
2499 output[0x0A] |= USE_SERIAL_NUM;
2500 else
2501 output[0x0A] &= ~0x8;
2502 output[0x0C] = eeprom->usb_version & 0xff;
2503 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2504 output[0x14] = eeprom->chip;
2505 break;
2506 case TYPE_R:
2507 if(eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2508 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2509 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2510
2511 if (eeprom->suspend_pull_downs == 1)
2512 output[0x0A] |= 0x4;
2513 else
2514 output[0x0A] &= ~0x4;
2515 if (eeprom->use_serial == USE_SERIAL_NUM)
2516 output[0x0A] |= USE_SERIAL_NUM;
2517 else
2518 output[0x0A] &= ~0x8;
2519 output[0x0B] = eeprom->invert;
2520 output[0x0C] = eeprom->usb_version & 0xff;
2521 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2522
2523 if(eeprom->cbus_function[0] > CBUS_BB)
2524 output[0x14] = CBUS_TXLED;
2525 else
2526 output[0x14] = eeprom->cbus_function[0];
2527
2528 if(eeprom->cbus_function[1] > CBUS_BB)
2529 output[0x14] |= CBUS_RXLED<<4;
2530 else
2531 output[0x14] |= eeprom->cbus_function[1]<<4;
2532
2533 if(eeprom->cbus_function[2] > CBUS_BB)
2534 output[0x15] = CBUS_TXDEN;
2535 else
2536 output[0x15] = eeprom->cbus_function[2];
2537
2538 if(eeprom->cbus_function[3] > CBUS_BB)
2539 output[0x15] |= CBUS_PWREN<<4;
2540 else
2541 output[0x15] |= eeprom->cbus_function[3]<<4;
2542
2543 if(eeprom->cbus_function[4] > CBUS_CLK6)
2544 output[0x16] = CBUS_SLEEP;
2545 else
2546 output[0x16] = eeprom->cbus_function[4];
2547 break;
2548 case TYPE_2232H:
2549 output[0x00] = (eeprom->channel_a_type);
2550 if ( eeprom->channel_a_driver == DRIVER_VCP)
2551 output[0x00] |= DRIVER_VCP;
2552 else
2553 output[0x00] &= ~DRIVER_VCP;
2554
2555 output[0x01] = (eeprom->channel_b_type);
2556 if ( eeprom->channel_b_driver == DRIVER_VCP)
2557 output[0x01] |= DRIVER_VCP;
2558 else
2559 output[0x01] &= ~DRIVER_VCP;
2560 if(eeprom->suspend_dbus7 == SUSPEND_DBUS7)
2561 output[0x01] |= SUSPEND_DBUS7;
2562 else
2563 output[0x01] &= ~SUSPEND_DBUS7;
2564
2565 if(eeprom->group0_drive > DRIVE_16MA)
2566 output[0x0c] |= DRIVE_16MA;
2567 else
2568 output[0x0c] |= eeprom->group0_drive;
2569 if (eeprom->group0_schmitt == IS_SCHMITT)
2570 output[0x0c] |= IS_SCHMITT;
2571 if (eeprom->group0_slew == SLOW_SLEW)
2572 output[0x0c] |= SLOW_SLEW;
2573
2574 if(eeprom->group1_drive > DRIVE_16MA)
2575 output[0x0c] |= DRIVE_16MA<<4;
2576 else
2577 output[0x0c] |= eeprom->group1_drive<<4;
2578 if (eeprom->group1_schmitt == IS_SCHMITT)
2579 output[0x0c] |= IS_SCHMITT<<4;
2580 if (eeprom->group1_slew == SLOW_SLEW)
2581 output[0x0c] |= SLOW_SLEW<<4;
2582
2583 if(eeprom->group2_drive > DRIVE_16MA)
2584 output[0x0d] |= DRIVE_16MA;
2585 else
2586 output[0x0d] |= eeprom->group2_drive;
2587 if (eeprom->group2_schmitt == IS_SCHMITT)
2588 output[0x0d] |= IS_SCHMITT;
2589 if (eeprom->group2_slew == SLOW_SLEW)
2590 output[0x0d] |= SLOW_SLEW;
2591
2592 if(eeprom->group3_drive > DRIVE_16MA)
2593 output[0x0d] |= DRIVE_16MA<<4;
2594 else
2595 output[0x0d] |= eeprom->group3_drive<<4;
2596 if (eeprom->group3_schmitt == IS_SCHMITT)
2597 output[0x0d] |= IS_SCHMITT<<4;
2598 if (eeprom->group3_slew == SLOW_SLEW)
2599 output[0x0d] |= SLOW_SLEW<<4;
2600
2601 output[0x18] = eeprom->chip;
2602
2603 break;
2604 }
2605
2606 // calculate checksum
2607 checksum = 0xAAAA;
2608
2609 for (i = 0; i < eeprom->size/2-1; i++)
2610 {
2611 value = output[i*2];
2612 value += output[(i*2)+1] << 8;
2613
2614 checksum = value^checksum;
2615 checksum = (checksum << 1) | (checksum >> 15);
2616 }
2617
2618 output[eeprom->size-2] = checksum;
2619 output[eeprom->size-1] = checksum >> 8;
2620
2621 return size_check;
2622}
2623
2624/**
2625 Decode binary EEPROM image into an ftdi_eeprom structure.
2626
2627 \param ftdi pointer to ftdi_context
2628 \param verbose Decode EEPROM on stdout
2629
2630 \retval 0: all fine
2631 \retval -1: something went wrong
2632
2633 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2634 FIXME: Strings are malloc'ed here and should be freed somewhere
2635*/
2636int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2637{
2638 unsigned char i, j;
2639 unsigned short checksum, eeprom_checksum, value;
2640 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2641 int eeprom_size;
2642 struct ftdi_eeprom *eeprom;
2643 unsigned char *buf = ftdi->eeprom->buf;
2644 int release;
2645
2646 if (ftdi == NULL)
2647 ftdi_error_return(-1,"No context");
2648 if (ftdi->eeprom == NULL)
2649 ftdi_error_return(-1,"No eeprom structure");
2650
2651 eeprom = ftdi->eeprom;
2652 eeprom_size = eeprom->size;
2653
2654 // Addr 02: Vendor ID
2655 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2656
2657 // Addr 04: Product ID
2658 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2659
2660 release = buf[0x06] + (buf[0x07]<<8);
2661
2662 // Addr 08: Config descriptor
2663 // Bit 7: always 1
2664 // Bit 6: 1 if this device is self powered, 0 if bus powered
2665 // Bit 5: 1 if this device uses remote wakeup
2666 // Bit 4: 1 if this device is battery powered
2667 eeprom->self_powered = buf[0x08] & 0x40;
2668 eeprom->remote_wakeup = buf[0x08] & 0x20;;
2669
2670 // Addr 09: Max power consumption: max power = value * 2 mA
2671 eeprom->max_power = buf[0x09];
2672
2673 // Addr 0A: Chip configuration
2674 // Bit 7: 0 - reserved
2675 // Bit 6: 0 - reserved
2676 // Bit 5: 0 - reserved
2677 // Bit 4: 1 - Change USB version
2678 // Not seen on FT2232(D)
2679 // Bit 3: 1 - Use the serial number string
2680 // Bit 2: 1 - Enable suspend pull downs for lower power
2681 // Bit 1: 1 - Out EndPoint is Isochronous
2682 // Bit 0: 1 - In EndPoint is Isochronous
2683 //
2684 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2685 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2686 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2687 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
2688 if(buf[0x0A]&0x10)
2689 fprintf(stderr,
2690 "EEPROM byte[0x0a] Bit 4 unexpected set. If this happened with the EEPROM\n"
2691 "programmed by FTDI tools, please report to libftdi@developer.intra2net.com\n");
2692
2693
2694 // Addr 0C: USB version low byte when 0x0A
2695 // Addr 0D: USB version high byte when 0x0A
2696 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2697
2698 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2699 // Addr 0F: Length of manufacturer string
2700 manufacturer_size = buf[0x0F]/2;
2701 if (manufacturer_size > 0)
2702 {
2703 eeprom->manufacturer = malloc(manufacturer_size);
2704 if (eeprom->manufacturer)
2705 {
2706 // Decode manufacturer
2707 i = buf[0x0E] & (eeprom_size -1); // offset
2708 for (j=0;j<manufacturer_size-1;j++)
2709 {
2710 eeprom->manufacturer[j] = buf[2*j+i+2];
2711 }
2712 eeprom->manufacturer[j] = '\0';
2713 }
2714 }
2715 else eeprom->manufacturer = NULL;
2716
2717 // Addr 10: Offset of the product string + 0x80, calculated later
2718 // Addr 11: Length of product string
2719 product_size = buf[0x11]/2;
2720 if (product_size > 0)
2721 {
2722 eeprom->product = malloc(product_size);
2723 if(eeprom->product)
2724 {
2725 // Decode product name
2726 i = buf[0x10] & (eeprom_size -1); // offset
2727 for (j=0;j<product_size-1;j++)
2728 {
2729 eeprom->product[j] = buf[2*j+i+2];
2730 }
2731 eeprom->product[j] = '\0';
2732 }
2733 }
2734 else eeprom->product = NULL;
2735
2736 // Addr 12: Offset of the serial string + 0x80, calculated later
2737 // Addr 13: Length of serial string
2738 serial_size = buf[0x13]/2;
2739 if (serial_size > 0)
2740 {
2741 eeprom->serial = malloc(serial_size);
2742 if(eeprom->serial)
2743 {
2744 // Decode serial
2745 i = buf[0x12] & (eeprom_size -1); // offset
2746 for (j=0;j<serial_size-1;j++)
2747 {
2748 eeprom->serial[j] = buf[2*j+i+2];
2749 }
2750 eeprom->serial[j] = '\0';
2751 }
2752 }
2753 else eeprom->serial = NULL;
2754
2755 // verify checksum
2756 checksum = 0xAAAA;
2757
2758 for (i = 0; i < eeprom_size/2-1; i++)
2759 {
2760 value = buf[i*2];
2761 value += buf[(i*2)+1] << 8;
2762
2763 checksum = value^checksum;
2764 checksum = (checksum << 1) | (checksum >> 15);
2765 }
2766
2767 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2768
2769 if (eeprom_checksum != checksum)
2770 {
2771 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2772 ftdi_error_return(-1,"EEPROM checksum error");
2773 }
2774
2775 eeprom->channel_a_type = 0;
2776 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
2777 {
2778 eeprom->chip = -1;
2779 }
2780 else if(ftdi->type == TYPE_2232C)
2781 {
2782 eeprom->channel_a_type = buf[0x00] & 0x7;
2783 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2784 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2785 eeprom->channel_b_type = buf[0x01] & 0x7;
2786 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2787 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
2788 eeprom->chip = buf[0x14];
2789 }
2790 else if(ftdi->type == TYPE_R)
2791 {
2792 /* TYPE_R flags D2XX, not VCP as all others*/
2793 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2794 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2795 if( (buf[0x01]&0x40) != 0x40)
2796 fprintf(stderr,
2797 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2798 " If this happened with the\n"
2799 " EEPROM programmed by FTDI tools, please report "
2800 "to libftdi@developer.intra2net.com\n");
2801
2802 eeprom->chip = buf[0x16];
2803 // Addr 0B: Invert data lines
2804 // Works only on FT232R, not FT245R, but no way to distinguish
2805 eeprom->invert = buf[0x0B];
2806 // Addr 14: CBUS function: CBUS0, CBUS1
2807 // Addr 15: CBUS function: CBUS2, CBUS3
2808 // Addr 16: CBUS function: CBUS5
2809 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2810 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2811 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2812 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2813 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
2814 }
2815 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
2816 {
2817 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2818 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2819 eeprom->channel_b_type = buf[0x01] & 0x7;
2820 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2821
2822 if(ftdi->type == TYPE_2232H)
2823 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7;
2824
2825 eeprom->chip = buf[0x18];
2826 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2827 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2828 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2829 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2830 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2831 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2832 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2833 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2834 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2835 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2836 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2837 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
2838 }
2839
2840 if(verbose)
2841 {
2842 char *channel_mode[] = {"UART","245","CPU", "unknown", "OPTO"};
2843 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
2844 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
2845 fprintf(stdout, "Release: 0x%04x\n",release);
2846
2847 if(eeprom->self_powered)
2848 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
2849 else
2850 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
2851 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
2852 if(eeprom->manufacturer)
2853 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
2854 if(eeprom->product)
2855 fprintf(stdout, "Product: %s\n",eeprom->product);
2856 if(eeprom->serial)
2857 fprintf(stdout, "Serial: %s\n",eeprom->serial);
2858 fprintf(stdout, "Checksum : %04x\n", checksum);
2859 if (ftdi->type == TYPE_R)
2860 fprintf(stdout, "Internal EEPROM\n");
2861 else if (eeprom->chip >= 0x46)
2862 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
2863 if(eeprom->suspend_dbus7)
2864 fprintf(stdout, "Suspend on DBUS7\n");
2865 if(eeprom->suspend_pull_downs)
2866 fprintf(stdout, "Pull IO pins low during suspend\n");
2867 if(eeprom->remote_wakeup)
2868 fprintf(stdout, "Enable Remote Wake Up\n");
2869 if (ftdi->type >= TYPE_2232C)
2870 fprintf(stdout,"Channel A has Mode %s%s%s\n",
2871 channel_mode[eeprom->channel_a_type],
2872 (eeprom->channel_a_driver)?" VCP":"",
2873 (eeprom->high_current_a)?" High Current IO":"");
2874 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R))
2875 fprintf(stdout,"Channel B has Mode %s%s%s\n",
2876 channel_mode[eeprom->channel_b_type],
2877 (eeprom->channel_b_driver)?" VCP":"",
2878 (eeprom->high_current_b)?" High Current IO":"");
2879 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
2880 {
2881 fprintf(stdout,"%s has %d mA drive%s%s\n",
2882 (ftdi->type == TYPE_2232H)?"AL":"A",
2883 (eeprom->group0_drive+1) *4,
2884 (eeprom->group0_schmitt)?" Schmitt Input":"",
2885 (eeprom->group0_slew)?" Slow Slew":"");
2886 fprintf(stdout,"%s has %d mA drive%s%s\n",
2887 (ftdi->type == TYPE_2232H)?"AH":"B",
2888 (eeprom->group1_drive+1) *4,
2889 (eeprom->group1_schmitt)?" Schmitt Input":"",
2890 (eeprom->group1_slew)?" Slow Slew":"");
2891 fprintf(stdout,"%s has %d mA drive%s%s\n",
2892 (ftdi->type == TYPE_2232H)?"BL":"C",
2893 (eeprom->group2_drive+1) *4,
2894 (eeprom->group2_schmitt)?" Schmitt Input":"",
2895 (eeprom->group2_slew)?" Slow Slew":"");
2896 fprintf(stdout,"%s has %d mA drive%s%s\n",
2897 (ftdi->type == TYPE_2232H)?"BH":"D",
2898 (eeprom->group3_drive+1) *4,
2899 (eeprom->group3_schmitt)?" Schmitt Input":"",
2900 (eeprom->group3_slew)?" Slow Slew":"");
2901 }
2902 if (ftdi->type == TYPE_R)
2903 {
2904 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
2905 "SLEEP","CLK48","CLK24","CLK12","CLK6",
2906 "IOMODE","BB_WR","BB_RD"};
2907 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
2908 int i;
2909
2910 if(eeprom->invert)
2911 {
2912 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
2913 fprintf(stdout,"Inverted bits:");
2914 for (i=0; i<8; i++)
2915 if((eeprom->invert & (1<<i)) == (1<<i))
2916 fprintf(stdout," %s",r_bits[i]);
2917 fprintf(stdout,"\n");
2918 }
2919 for(i=0; i<5; i++)
2920 {
2921 if(eeprom->cbus_function[i]<CBUS_BB)
2922 fprintf(stdout,"C%d Function: %s\n", i,
2923 cbus_mux[eeprom->cbus_function[i]]);
2924 else
2925 fprintf(stdout,"C%d BB Function: %s\n", i,
2926 cbus_BB[i]);
2927 }
2928 }
2929 }
2930 return 0;
2931}
2932
2933/**
2934 Read eeprom location
2935
2936 \param ftdi pointer to ftdi_context
2937 \param eeprom_addr Address of eeprom location to be read
2938 \param eeprom_val Pointer to store read eeprom location
2939
2940 \retval 0: all fine
2941 \retval -1: read failed
2942 \retval -2: USB device unavailable
2943*/
2944int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
2945{
2946 if (ftdi == NULL || ftdi->usb_dev == NULL)
2947 ftdi_error_return(-2, "USB device unavailable");
2948
2949 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
2950 ftdi_error_return(-1, "reading eeprom failed");
2951
2952 return 0;
2953}
2954
2955/**
2956 Read eeprom
2957
2958 \param ftdi pointer to ftdi_context
2959
2960 \retval 0: all fine
2961 \retval -1: read failed
2962 \retval -2: USB device unavailable
2963*/
2964int ftdi_read_eeprom(struct ftdi_context *ftdi)
2965{
2966 int i;
2967 unsigned char *buf;
2968
2969 if (ftdi == NULL || ftdi->usb_dev == NULL)
2970 ftdi_error_return(-2, "USB device unavailable");
2971 buf = ftdi->eeprom->buf;
2972
2973 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
2974 {
2975 if (libusb_control_transfer(
2976 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
2977 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
2978 ftdi_error_return(-1, "reading eeprom failed");
2979 }
2980
2981 if (ftdi->type == TYPE_R)
2982 ftdi->eeprom->size = 0x80;
2983 /* Guesses size of eeprom by comparing halves
2984 - will not work with blank eeprom */
2985 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
2986 ftdi->eeprom->size = -1;
2987 else if(memcmp(buf,&buf[0x80],0x80) == 0)
2988 ftdi->eeprom->size = 0x80;
2989 else if(memcmp(buf,&buf[0x40],0x40) == 0)
2990 ftdi->eeprom->size = 0x40;
2991 else
2992 ftdi->eeprom->size = 0x100;
2993 return 0;
2994}
2995
2996/*
2997 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
2998 Function is only used internally
2999 \internal
3000*/
3001static unsigned char ftdi_read_chipid_shift(unsigned char value)
3002{
3003 return ((value & 1) << 1) |
3004 ((value & 2) << 5) |
3005 ((value & 4) >> 2) |
3006 ((value & 8) << 4) |
3007 ((value & 16) >> 1) |
3008 ((value & 32) >> 1) |
3009 ((value & 64) >> 4) |
3010 ((value & 128) >> 2);
3011}
3012
3013/**
3014 Read the FTDIChip-ID from R-type devices
3015
3016 \param ftdi pointer to ftdi_context
3017 \param chipid Pointer to store FTDIChip-ID
3018
3019 \retval 0: all fine
3020 \retval -1: read failed
3021 \retval -2: USB device unavailable
3022*/
3023int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3024{
3025 unsigned int a = 0, b = 0;
3026
3027 if (ftdi == NULL || ftdi->usb_dev == NULL)
3028 ftdi_error_return(-2, "USB device unavailable");
3029
3030 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3031 {
3032 a = a << 8 | a >> 8;
3033 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3034 {
3035 b = b << 8 | b >> 8;
3036 a = (a << 16) | (b & 0xFFFF);
3037 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3038 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3039 *chipid = a ^ 0xa5f0f7d1;
3040 return 0;
3041 }
3042 }
3043
3044 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3045}
3046
3047/**
3048 Write eeprom location
3049
3050 \param ftdi pointer to ftdi_context
3051 \param eeprom_addr Address of eeprom location to be written
3052 \param eeprom_val Value to be written
3053
3054 \retval 0: all fine
3055 \retval -1: read failed
3056 \retval -2: USB device unavailable
3057*/
3058int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr, unsigned short eeprom_val)
3059{
3060 if (ftdi == NULL || ftdi->usb_dev == NULL)
3061 ftdi_error_return(-2, "USB device unavailable");
3062
3063 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3064 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3065 NULL, 0, ftdi->usb_write_timeout) != 0)
3066 ftdi_error_return(-1, "unable to write eeprom");
3067
3068 return 0;
3069}
3070
3071/**
3072 Write eeprom
3073
3074 \param ftdi pointer to ftdi_context
3075
3076 \retval 0: all fine
3077 \retval -1: read failed
3078 \retval -2: USB device unavailable
3079*/
3080int ftdi_write_eeprom(struct ftdi_context *ftdi)
3081{
3082 unsigned short usb_val, status;
3083 int i, ret;
3084 unsigned char *eeprom;
3085
3086 if (ftdi == NULL || ftdi->usb_dev == NULL)
3087 ftdi_error_return(-2, "USB device unavailable");
3088 eeprom = ftdi->eeprom->buf;
3089
3090 /* These commands were traced while running MProg */
3091 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3092 return ret;
3093 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3094 return ret;
3095 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3096 return ret;
3097
3098 for (i = 0; i < ftdi->eeprom->size/2; i++)
3099 {
3100 usb_val = eeprom[i*2];
3101 usb_val += eeprom[(i*2)+1] << 8;
3102 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3103 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3104 NULL, 0, ftdi->usb_write_timeout) < 0)
3105 ftdi_error_return(-1, "unable to write eeprom");
3106 }
3107
3108 return 0;
3109}
3110
3111/**
3112 Erase eeprom
3113
3114 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3115
3116 \param ftdi pointer to ftdi_context
3117
3118 \retval 0: all fine
3119 \retval -1: erase failed
3120 \retval -2: USB device unavailable
3121 \retval -3: Writing magic failed
3122 \retval -4: Read EEPROM failed
3123 \retval -5: Unexpected EEPROM value
3124*/
3125#define MAGIC 0x55aa
3126int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3127{
3128 unsigned short eeprom_value;
3129 if (ftdi == NULL || ftdi->usb_dev == NULL)
3130 ftdi_error_return(-2, "USB device unavailable");
3131
3132 if(ftdi->type == TYPE_R)
3133 {
3134 ftdi->eeprom->chip = 0;
3135 return 0;
3136 }
3137
3138 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3139 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3140 ftdi_error_return(-1, "unable to erase eeprom");
3141
3142
3143 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3144 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3145 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3146 Chip is 93x66 if magic is only read at word position 0xc0*/
3147 if( ftdi_write_eeprom_location(ftdi, 0xc0, MAGIC))
3148 ftdi_error_return(-3, "Writing magic failed");
3149 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3150 ftdi_error_return(-4, "Reading failed failed");
3151 if(eeprom_value == MAGIC)
3152 {
3153 ftdi->eeprom->chip = 0x46;
3154 }
3155 else
3156 {
3157 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3158 ftdi_error_return(-4, "Reading failed failed");
3159 if(eeprom_value == MAGIC)
3160 ftdi->eeprom->chip = 0x56;
3161 else
3162 {
3163 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3164 ftdi_error_return(-4, "Reading failed failed");
3165 if(eeprom_value == MAGIC)
3166 ftdi->eeprom->chip = 0x66;
3167 else
3168 {
3169 ftdi->eeprom->chip = -1;
3170 }
3171 }
3172 }
3173 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3174 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3175 ftdi_error_return(-1, "unable to erase eeprom");
3176 return 0;
3177}
3178
3179/**
3180 Get string representation for last error code
3181
3182 \param ftdi pointer to ftdi_context
3183
3184 \retval Pointer to error string
3185*/
3186char *ftdi_get_error_string (struct ftdi_context *ftdi)
3187{
3188 if (ftdi == NULL)
3189 return "";
3190
3191 return ftdi->error_str;
3192}
3193
3194/* @} end of doxygen libftdi group */