Only try ftdi_usb_open_dev if devices found
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
58 \retval none
59*/
60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
61{
62 if (ftdi && ftdi->usb_dev)
63 {
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
66 }
67}
68
69/**
70 Initializes a ftdi_context.
71
72 \param ftdi pointer to ftdi_context
73
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
76 \retval -2: couldn't allocate struct buffer
77 \retval -3: libusb_init() failed
78
79 \remark This should be called before all functions
80*/
81int ftdi_init(struct ftdi_context *ftdi)
82{
83 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
84 ftdi->usb_ctx = NULL;
85 ftdi->usb_dev = NULL;
86 ftdi->usb_read_timeout = 5000;
87 ftdi->usb_write_timeout = 5000;
88
89 ftdi->type = TYPE_BM; /* chip type */
90 ftdi->baudrate = -1;
91 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
92
93 ftdi->readbuffer = NULL;
94 ftdi->readbuffer_offset = 0;
95 ftdi->readbuffer_remaining = 0;
96 ftdi->writebuffer_chunksize = 4096;
97 ftdi->max_packet_size = 0;
98 ftdi->error_str = NULL;
99 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
100
101 if (libusb_init(&ftdi->usb_ctx) < 0)
102 ftdi_error_return(-3, "libusb_init() failed");
103
104 ftdi_set_interface(ftdi, INTERFACE_ANY);
105 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
106
107 if (eeprom == 0)
108 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
109 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
110 ftdi->eeprom = eeprom;
111
112 /* All fine. Now allocate the readbuffer */
113 return ftdi_read_data_set_chunksize(ftdi, 4096);
114}
115
116/**
117 Allocate and initialize a new ftdi_context
118
119 \return a pointer to a new ftdi_context, or NULL on failure
120*/
121struct ftdi_context *ftdi_new(void)
122{
123 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
124
125 if (ftdi == NULL)
126 {
127 return NULL;
128 }
129
130 if (ftdi_init(ftdi) != 0)
131 {
132 free(ftdi);
133 return NULL;
134 }
135
136 return ftdi;
137}
138
139/**
140 Open selected channels on a chip, otherwise use first channel.
141
142 \param ftdi pointer to ftdi_context
143 \param interface Interface to use for FT2232C/2232H/4232H chips.
144
145 \retval 0: all fine
146 \retval -1: unknown interface
147 \retval -2: USB device unavailable
148*/
149int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
150{
151 if (ftdi == NULL)
152 ftdi_error_return(-2, "USB device unavailable");
153
154 switch (interface)
155 {
156 case INTERFACE_ANY:
157 case INTERFACE_A:
158 ftdi->interface = 0;
159 ftdi->index = INTERFACE_A;
160 ftdi->in_ep = 0x02;
161 ftdi->out_ep = 0x81;
162 break;
163 case INTERFACE_B:
164 ftdi->interface = 1;
165 ftdi->index = INTERFACE_B;
166 ftdi->in_ep = 0x04;
167 ftdi->out_ep = 0x83;
168 break;
169 case INTERFACE_C:
170 ftdi->interface = 2;
171 ftdi->index = INTERFACE_C;
172 ftdi->in_ep = 0x06;
173 ftdi->out_ep = 0x85;
174 break;
175 case INTERFACE_D:
176 ftdi->interface = 3;
177 ftdi->index = INTERFACE_D;
178 ftdi->in_ep = 0x08;
179 ftdi->out_ep = 0x87;
180 break;
181 default:
182 ftdi_error_return(-1, "Unknown interface");
183 }
184 return 0;
185}
186
187/**
188 Deinitializes a ftdi_context.
189
190 \param ftdi pointer to ftdi_context
191*/
192void ftdi_deinit(struct ftdi_context *ftdi)
193{
194 if (ftdi == NULL)
195 return;
196
197 ftdi_usb_close_internal (ftdi);
198
199 if (ftdi->readbuffer != NULL)
200 {
201 free(ftdi->readbuffer);
202 ftdi->readbuffer = NULL;
203 }
204
205 if (ftdi->eeprom != NULL)
206 {
207 if (ftdi->eeprom->manufacturer != 0)
208 {
209 free(ftdi->eeprom->manufacturer);
210 ftdi->eeprom->manufacturer = 0;
211 }
212 if (ftdi->eeprom->product != 0)
213 {
214 free(ftdi->eeprom->product);
215 ftdi->eeprom->product = 0;
216 }
217 if (ftdi->eeprom->serial != 0)
218 {
219 free(ftdi->eeprom->serial);
220 ftdi->eeprom->serial = 0;
221 }
222 free(ftdi->eeprom);
223 ftdi->eeprom = NULL;
224 }
225
226 if (ftdi->usb_ctx)
227 {
228 libusb_exit(ftdi->usb_ctx);
229 ftdi->usb_ctx = NULL;
230 }
231}
232
233/**
234 Deinitialize and free an ftdi_context.
235
236 \param ftdi pointer to ftdi_context
237*/
238void ftdi_free(struct ftdi_context *ftdi)
239{
240 ftdi_deinit(ftdi);
241 free(ftdi);
242}
243
244/**
245 Use an already open libusb device.
246
247 \param ftdi pointer to ftdi_context
248 \param usb libusb libusb_device_handle to use
249*/
250void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
251{
252 if (ftdi == NULL)
253 return;
254
255 ftdi->usb_dev = usb;
256}
257
258
259/**
260 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
261 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
262 use. With VID:PID 0:0, search for the default devices
263 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014)
264
265 \param ftdi pointer to ftdi_context
266 \param devlist Pointer where to store list of found devices
267 \param vendor Vendor ID to search for
268 \param product Product ID to search for
269
270 \retval >0: number of devices found
271 \retval -3: out of memory
272 \retval -5: libusb_get_device_list() failed
273 \retval -6: libusb_get_device_descriptor() failed
274*/
275int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
276{
277 struct ftdi_device_list **curdev;
278 libusb_device *dev;
279 libusb_device **devs;
280 int count = 0;
281 int i = 0;
282
283 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
284 ftdi_error_return(-5, "libusb_get_device_list() failed");
285
286 curdev = devlist;
287 *curdev = NULL;
288
289 while ((dev = devs[i++]) != NULL)
290 {
291 struct libusb_device_descriptor desc;
292
293 if (libusb_get_device_descriptor(dev, &desc) < 0)
294 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
295
296 if (((vendor != 0 && product != 0) &&
297 desc.idVendor == vendor && desc.idProduct == product) ||
298 ((vendor == 0 && product == 0) &&
299 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
300 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014)))
301 {
302 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
303 if (!*curdev)
304 ftdi_error_return_free_device_list(-3, "out of memory", devs);
305
306 (*curdev)->next = NULL;
307 (*curdev)->dev = dev;
308 libusb_ref_device(dev);
309 curdev = &(*curdev)->next;
310 count++;
311 }
312 }
313 libusb_free_device_list(devs,1);
314 return count;
315}
316
317/**
318 Frees a usb device list.
319
320 \param devlist USB device list created by ftdi_usb_find_all()
321*/
322void ftdi_list_free(struct ftdi_device_list **devlist)
323{
324 struct ftdi_device_list *curdev, *next;
325
326 for (curdev = *devlist; curdev != NULL;)
327 {
328 next = curdev->next;
329 libusb_unref_device(curdev->dev);
330 free(curdev);
331 curdev = next;
332 }
333
334 *devlist = NULL;
335}
336
337/**
338 Frees a usb device list.
339
340 \param devlist USB device list created by ftdi_usb_find_all()
341*/
342void ftdi_list_free2(struct ftdi_device_list *devlist)
343{
344 ftdi_list_free(&devlist);
345}
346
347/**
348 Return device ID strings from the usb device.
349
350 The parameters manufacturer, description and serial may be NULL
351 or pointer to buffers to store the fetched strings.
352
353 \note Use this function only in combination with ftdi_usb_find_all()
354 as it closes the internal "usb_dev" after use.
355
356 \param ftdi pointer to ftdi_context
357 \param dev libusb usb_dev to use
358 \param manufacturer Store manufacturer string here if not NULL
359 \param mnf_len Buffer size of manufacturer string
360 \param description Store product description string here if not NULL
361 \param desc_len Buffer size of product description string
362 \param serial Store serial string here if not NULL
363 \param serial_len Buffer size of serial string
364
365 \retval 0: all fine
366 \retval -1: wrong arguments
367 \retval -4: unable to open device
368 \retval -7: get product manufacturer failed
369 \retval -8: get product description failed
370 \retval -9: get serial number failed
371 \retval -11: libusb_get_device_descriptor() failed
372*/
373int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
374 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
375{
376 struct libusb_device_descriptor desc;
377
378 if ((ftdi==NULL) || (dev==NULL))
379 return -1;
380
381 if (libusb_open(dev, &ftdi->usb_dev) < 0)
382 ftdi_error_return(-4, "libusb_open() failed");
383
384 if (libusb_get_device_descriptor(dev, &desc) < 0)
385 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
386
387 if (manufacturer != NULL)
388 {
389 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
390 {
391 ftdi_usb_close_internal (ftdi);
392 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
393 }
394 }
395
396 if (description != NULL)
397 {
398 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
399 {
400 ftdi_usb_close_internal (ftdi);
401 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
402 }
403 }
404
405 if (serial != NULL)
406 {
407 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
408 {
409 ftdi_usb_close_internal (ftdi);
410 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
411 }
412 }
413
414 ftdi_usb_close_internal (ftdi);
415
416 return 0;
417}
418
419/**
420 * Internal function to determine the maximum packet size.
421 * \param ftdi pointer to ftdi_context
422 * \param dev libusb usb_dev to use
423 * \retval Maximum packet size for this device
424 */
425static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
426{
427 struct libusb_device_descriptor desc;
428 struct libusb_config_descriptor *config0;
429 unsigned int packet_size;
430
431 // Sanity check
432 if (ftdi == NULL || dev == NULL)
433 return 64;
434
435 // Determine maximum packet size. Init with default value.
436 // New hi-speed devices from FTDI use a packet size of 512 bytes
437 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
438 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
439 packet_size = 512;
440 else
441 packet_size = 64;
442
443 if (libusb_get_device_descriptor(dev, &desc) < 0)
444 return packet_size;
445
446 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
447 return packet_size;
448
449 if (desc.bNumConfigurations > 0)
450 {
451 if (ftdi->interface < config0->bNumInterfaces)
452 {
453 struct libusb_interface interface = config0->interface[ftdi->interface];
454 if (interface.num_altsetting > 0)
455 {
456 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
457 if (descriptor.bNumEndpoints > 0)
458 {
459 packet_size = descriptor.endpoint[0].wMaxPacketSize;
460 }
461 }
462 }
463 }
464
465 libusb_free_config_descriptor (config0);
466 return packet_size;
467}
468
469/**
470 Opens a ftdi device given by an usb_device.
471
472 \param ftdi pointer to ftdi_context
473 \param dev libusb usb_dev to use
474
475 \retval 0: all fine
476 \retval -3: unable to config device
477 \retval -4: unable to open device
478 \retval -5: unable to claim device
479 \retval -6: reset failed
480 \retval -7: set baudrate failed
481 \retval -8: ftdi context invalid
482 \retval -9: libusb_get_device_descriptor() failed
483 \retval -10: libusb_get_config_descriptor() failed
484 \retval -11: libusb_detach_kernel_driver() failed
485 \retval -12: libusb_get_configuration() failed
486*/
487int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
488{
489 struct libusb_device_descriptor desc;
490 struct libusb_config_descriptor *config0;
491 int cfg, cfg0, detach_errno = 0;
492
493 if (ftdi == NULL)
494 ftdi_error_return(-8, "ftdi context invalid");
495
496 if (libusb_open(dev, &ftdi->usb_dev) < 0)
497 ftdi_error_return(-4, "libusb_open() failed");
498
499 if (libusb_get_device_descriptor(dev, &desc) < 0)
500 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
501
502 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
503 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
504 cfg0 = config0->bConfigurationValue;
505 libusb_free_config_descriptor (config0);
506
507 // Try to detach ftdi_sio kernel module.
508 //
509 // The return code is kept in a separate variable and only parsed
510 // if usb_set_configuration() or usb_claim_interface() fails as the
511 // detach operation might be denied and everything still works fine.
512 // Likely scenario is a static ftdi_sio kernel module.
513 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
514 {
515 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
516 detach_errno = errno;
517 }
518
519 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
520 ftdi_error_return(-12, "libusb_get_configuration () failed");
521 // set configuration (needed especially for windows)
522 // tolerate EBUSY: one device with one configuration, but two interfaces
523 // and libftdi sessions to both interfaces (e.g. FT2232)
524 if (desc.bNumConfigurations > 0 && cfg != cfg0)
525 {
526 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
527 {
528 ftdi_usb_close_internal (ftdi);
529 if (detach_errno == EPERM)
530 {
531 ftdi_error_return(-8, "inappropriate permissions on device!");
532 }
533 else
534 {
535 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
536 }
537 }
538 }
539
540 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
541 {
542 ftdi_usb_close_internal (ftdi);
543 if (detach_errno == EPERM)
544 {
545 ftdi_error_return(-8, "inappropriate permissions on device!");
546 }
547 else
548 {
549 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
550 }
551 }
552
553 if (ftdi_usb_reset (ftdi) != 0)
554 {
555 ftdi_usb_close_internal (ftdi);
556 ftdi_error_return(-6, "ftdi_usb_reset failed");
557 }
558
559 // Try to guess chip type
560 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
561 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
562 && desc.iSerialNumber == 0))
563 ftdi->type = TYPE_BM;
564 else if (desc.bcdDevice == 0x200)
565 ftdi->type = TYPE_AM;
566 else if (desc.bcdDevice == 0x500)
567 ftdi->type = TYPE_2232C;
568 else if (desc.bcdDevice == 0x600)
569 ftdi->type = TYPE_R;
570 else if (desc.bcdDevice == 0x700)
571 ftdi->type = TYPE_2232H;
572 else if (desc.bcdDevice == 0x800)
573 ftdi->type = TYPE_4232H;
574 else if (desc.bcdDevice == 0x900)
575 ftdi->type = TYPE_232H;
576
577 // Determine maximum packet size
578 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
579
580 if (ftdi_set_baudrate (ftdi, 9600) != 0)
581 {
582 ftdi_usb_close_internal (ftdi);
583 ftdi_error_return(-7, "set baudrate failed");
584 }
585
586 ftdi_error_return(0, "all fine");
587}
588
589/**
590 Opens the first device with a given vendor and product ids.
591
592 \param ftdi pointer to ftdi_context
593 \param vendor Vendor ID
594 \param product Product ID
595
596 \retval same as ftdi_usb_open_desc()
597*/
598int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
599{
600 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
601}
602
603/**
604 Opens the first device with a given, vendor id, product id,
605 description and serial.
606
607 \param ftdi pointer to ftdi_context
608 \param vendor Vendor ID
609 \param product Product ID
610 \param description Description to search for. Use NULL if not needed.
611 \param serial Serial to search for. Use NULL if not needed.
612
613 \retval 0: all fine
614 \retval -3: usb device not found
615 \retval -4: unable to open device
616 \retval -5: unable to claim device
617 \retval -6: reset failed
618 \retval -7: set baudrate failed
619 \retval -8: get product description failed
620 \retval -9: get serial number failed
621 \retval -12: libusb_get_device_list() failed
622 \retval -13: libusb_get_device_descriptor() failed
623*/
624int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
625 const char* description, const char* serial)
626{
627 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
628}
629
630/**
631 Opens the index-th device with a given, vendor id, product id,
632 description and serial.
633
634 \param ftdi pointer to ftdi_context
635 \param vendor Vendor ID
636 \param product Product ID
637 \param description Description to search for. Use NULL if not needed.
638 \param serial Serial to search for. Use NULL if not needed.
639 \param index Number of matching device to open if there are more than one, starts with 0.
640
641 \retval 0: all fine
642 \retval -1: usb_find_busses() failed
643 \retval -2: usb_find_devices() failed
644 \retval -3: usb device not found
645 \retval -4: unable to open device
646 \retval -5: unable to claim device
647 \retval -6: reset failed
648 \retval -7: set baudrate failed
649 \retval -8: get product description failed
650 \retval -9: get serial number failed
651 \retval -10: unable to close device
652 \retval -11: ftdi context invalid
653*/
654int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
655 const char* description, const char* serial, unsigned int index)
656{
657 libusb_device *dev;
658 libusb_device **devs;
659 char string[256];
660 int i = 0;
661
662 if (ftdi == NULL)
663 ftdi_error_return(-11, "ftdi context invalid");
664
665 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
666 ftdi_error_return(-12, "libusb_get_device_list() failed");
667
668 while ((dev = devs[i++]) != NULL)
669 {
670 struct libusb_device_descriptor desc;
671 int res;
672
673 if (libusb_get_device_descriptor(dev, &desc) < 0)
674 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
675
676 if (desc.idVendor == vendor && desc.idProduct == product)
677 {
678 if (libusb_open(dev, &ftdi->usb_dev) < 0)
679 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
680
681 if (description != NULL)
682 {
683 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
684 {
685 ftdi_usb_close_internal (ftdi);
686 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
687 }
688 if (strncmp(string, description, sizeof(string)) != 0)
689 {
690 ftdi_usb_close_internal (ftdi);
691 continue;
692 }
693 }
694 if (serial != NULL)
695 {
696 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
697 {
698 ftdi_usb_close_internal (ftdi);
699 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
700 }
701 if (strncmp(string, serial, sizeof(string)) != 0)
702 {
703 ftdi_usb_close_internal (ftdi);
704 continue;
705 }
706 }
707
708 ftdi_usb_close_internal (ftdi);
709
710 if (index > 0)
711 {
712 index--;
713 continue;
714 }
715
716 res = ftdi_usb_open_dev(ftdi, dev);
717 libusb_free_device_list(devs,1);
718 return res;
719 }
720 }
721
722 // device not found
723 ftdi_error_return_free_device_list(-3, "device not found", devs);
724}
725
726/**
727 Opens the ftdi-device described by a description-string.
728 Intended to be used for parsing a device-description given as commandline argument.
729
730 \param ftdi pointer to ftdi_context
731 \param description NULL-terminated description-string, using this format:
732 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
733 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
734 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
735 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
736
737 \note The description format may be extended in later versions.
738
739 \retval 0: all fine
740 \retval -2: libusb_get_device_list() failed
741 \retval -3: usb device not found
742 \retval -4: unable to open device
743 \retval -5: unable to claim device
744 \retval -6: reset failed
745 \retval -7: set baudrate failed
746 \retval -8: get product description failed
747 \retval -9: get serial number failed
748 \retval -10: unable to close device
749 \retval -11: illegal description format
750 \retval -12: ftdi context invalid
751*/
752int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
753{
754 if (ftdi == NULL)
755 ftdi_error_return(-12, "ftdi context invalid");
756
757 if (description[0] == 0 || description[1] != ':')
758 ftdi_error_return(-11, "illegal description format");
759
760 if (description[0] == 'd')
761 {
762 libusb_device *dev;
763 libusb_device **devs;
764 unsigned int bus_number, device_address;
765 int i = 0;
766
767 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
768 ftdi_error_return(-2, "libusb_get_device_list() failed");
769
770 /* XXX: This doesn't handle symlinks/odd paths/etc... */
771 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
772 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
773
774 while ((dev = devs[i++]) != NULL)
775 {
776 int ret;
777 if (bus_number == libusb_get_bus_number (dev)
778 && device_address == libusb_get_device_address (dev))
779 {
780 ret = ftdi_usb_open_dev(ftdi, dev);
781 libusb_free_device_list(devs,1);
782 return ret;
783 }
784 }
785
786 // device not found
787 ftdi_error_return_free_device_list(-3, "device not found", devs);
788 }
789 else if (description[0] == 'i' || description[0] == 's')
790 {
791 unsigned int vendor;
792 unsigned int product;
793 unsigned int index=0;
794 const char *serial=NULL;
795 const char *startp, *endp;
796
797 errno=0;
798 startp=description+2;
799 vendor=strtoul((char*)startp,(char**)&endp,0);
800 if (*endp != ':' || endp == startp || errno != 0)
801 ftdi_error_return(-11, "illegal description format");
802
803 startp=endp+1;
804 product=strtoul((char*)startp,(char**)&endp,0);
805 if (endp == startp || errno != 0)
806 ftdi_error_return(-11, "illegal description format");
807
808 if (description[0] == 'i' && *endp != 0)
809 {
810 /* optional index field in i-mode */
811 if (*endp != ':')
812 ftdi_error_return(-11, "illegal description format");
813
814 startp=endp+1;
815 index=strtoul((char*)startp,(char**)&endp,0);
816 if (*endp != 0 || endp == startp || errno != 0)
817 ftdi_error_return(-11, "illegal description format");
818 }
819 if (description[0] == 's')
820 {
821 if (*endp != ':')
822 ftdi_error_return(-11, "illegal description format");
823
824 /* rest of the description is the serial */
825 serial=endp+1;
826 }
827
828 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
829 }
830 else
831 {
832 ftdi_error_return(-11, "illegal description format");
833 }
834}
835
836/**
837 Resets the ftdi device.
838
839 \param ftdi pointer to ftdi_context
840
841 \retval 0: all fine
842 \retval -1: FTDI reset failed
843 \retval -2: USB device unavailable
844*/
845int ftdi_usb_reset(struct ftdi_context *ftdi)
846{
847 if (ftdi == NULL || ftdi->usb_dev == NULL)
848 ftdi_error_return(-2, "USB device unavailable");
849
850 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
851 SIO_RESET_REQUEST, SIO_RESET_SIO,
852 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
853 ftdi_error_return(-1,"FTDI reset failed");
854
855 // Invalidate data in the readbuffer
856 ftdi->readbuffer_offset = 0;
857 ftdi->readbuffer_remaining = 0;
858
859 return 0;
860}
861
862/**
863 Clears the read buffer on the chip and the internal read buffer.
864
865 \param ftdi pointer to ftdi_context
866
867 \retval 0: all fine
868 \retval -1: read buffer purge failed
869 \retval -2: USB device unavailable
870*/
871int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
872{
873 if (ftdi == NULL || ftdi->usb_dev == NULL)
874 ftdi_error_return(-2, "USB device unavailable");
875
876 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
877 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
878 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
879 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
880
881 // Invalidate data in the readbuffer
882 ftdi->readbuffer_offset = 0;
883 ftdi->readbuffer_remaining = 0;
884
885 return 0;
886}
887
888/**
889 Clears the write buffer on the chip.
890
891 \param ftdi pointer to ftdi_context
892
893 \retval 0: all fine
894 \retval -1: write buffer purge failed
895 \retval -2: USB device unavailable
896*/
897int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
898{
899 if (ftdi == NULL || ftdi->usb_dev == NULL)
900 ftdi_error_return(-2, "USB device unavailable");
901
902 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
903 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
904 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
905 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
906
907 return 0;
908}
909
910/**
911 Clears the buffers on the chip and the internal read buffer.
912
913 \param ftdi pointer to ftdi_context
914
915 \retval 0: all fine
916 \retval -1: read buffer purge failed
917 \retval -2: write buffer purge failed
918 \retval -3: USB device unavailable
919*/
920int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
921{
922 int result;
923
924 if (ftdi == NULL || ftdi->usb_dev == NULL)
925 ftdi_error_return(-3, "USB device unavailable");
926
927 result = ftdi_usb_purge_rx_buffer(ftdi);
928 if (result < 0)
929 return -1;
930
931 result = ftdi_usb_purge_tx_buffer(ftdi);
932 if (result < 0)
933 return -2;
934
935 return 0;
936}
937
938
939
940/**
941 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
942
943 \param ftdi pointer to ftdi_context
944
945 \retval 0: all fine
946 \retval -1: usb_release failed
947 \retval -3: ftdi context invalid
948*/
949int ftdi_usb_close(struct ftdi_context *ftdi)
950{
951 int rtn = 0;
952
953 if (ftdi == NULL)
954 ftdi_error_return(-3, "ftdi context invalid");
955
956 if (ftdi->usb_dev != NULL)
957 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
958 rtn = -1;
959
960 ftdi_usb_close_internal (ftdi);
961
962 return rtn;
963}
964
965/**
966 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
967 Function is only used internally
968 \internal
969*/
970static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
971 unsigned short *value, unsigned short *index)
972{
973 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
974 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
975 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
976 int divisor, best_divisor, best_baud, best_baud_diff;
977 unsigned long encoded_divisor;
978 int i;
979
980 if (baudrate <= 0)
981 {
982 // Return error
983 return -1;
984 }
985
986 divisor = 24000000 / baudrate;
987
988 if (ftdi->type == TYPE_AM)
989 {
990 // Round down to supported fraction (AM only)
991 divisor -= am_adjust_dn[divisor & 7];
992 }
993
994 // Try this divisor and the one above it (because division rounds down)
995 best_divisor = 0;
996 best_baud = 0;
997 best_baud_diff = 0;
998 for (i = 0; i < 2; i++)
999 {
1000 int try_divisor = divisor + i;
1001 int baud_estimate;
1002 int baud_diff;
1003
1004 // Round up to supported divisor value
1005 if (try_divisor <= 8)
1006 {
1007 // Round up to minimum supported divisor
1008 try_divisor = 8;
1009 }
1010 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1011 {
1012 // BM doesn't support divisors 9 through 11 inclusive
1013 try_divisor = 12;
1014 }
1015 else if (divisor < 16)
1016 {
1017 // AM doesn't support divisors 9 through 15 inclusive
1018 try_divisor = 16;
1019 }
1020 else
1021 {
1022 if (ftdi->type == TYPE_AM)
1023 {
1024 // Round up to supported fraction (AM only)
1025 try_divisor += am_adjust_up[try_divisor & 7];
1026 if (try_divisor > 0x1FFF8)
1027 {
1028 // Round down to maximum supported divisor value (for AM)
1029 try_divisor = 0x1FFF8;
1030 }
1031 }
1032 else
1033 {
1034 if (try_divisor > 0x1FFFF)
1035 {
1036 // Round down to maximum supported divisor value (for BM)
1037 try_divisor = 0x1FFFF;
1038 }
1039 }
1040 }
1041 // Get estimated baud rate (to nearest integer)
1042 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1043 // Get absolute difference from requested baud rate
1044 if (baud_estimate < baudrate)
1045 {
1046 baud_diff = baudrate - baud_estimate;
1047 }
1048 else
1049 {
1050 baud_diff = baud_estimate - baudrate;
1051 }
1052 if (i == 0 || baud_diff < best_baud_diff)
1053 {
1054 // Closest to requested baud rate so far
1055 best_divisor = try_divisor;
1056 best_baud = baud_estimate;
1057 best_baud_diff = baud_diff;
1058 if (baud_diff == 0)
1059 {
1060 // Spot on! No point trying
1061 break;
1062 }
1063 }
1064 }
1065 // Encode the best divisor value
1066 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1067 // Deal with special cases for encoded value
1068 if (encoded_divisor == 1)
1069 {
1070 encoded_divisor = 0; // 3000000 baud
1071 }
1072 else if (encoded_divisor == 0x4001)
1073 {
1074 encoded_divisor = 1; // 2000000 baud (BM only)
1075 }
1076 // Split into "value" and "index" values
1077 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1078 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
1079 {
1080 *index = (unsigned short)(encoded_divisor >> 8);
1081 *index &= 0xFF00;
1082 *index |= ftdi->index;
1083 }
1084 else
1085 *index = (unsigned short)(encoded_divisor >> 16);
1086
1087 // Return the nearest baud rate
1088 return best_baud;
1089}
1090
1091/**
1092 Sets the chip baud rate
1093
1094 \param ftdi pointer to ftdi_context
1095 \param baudrate baud rate to set
1096
1097 \retval 0: all fine
1098 \retval -1: invalid baudrate
1099 \retval -2: setting baudrate failed
1100 \retval -3: USB device unavailable
1101*/
1102int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1103{
1104 unsigned short value, index;
1105 int actual_baudrate;
1106
1107 if (ftdi == NULL || ftdi->usb_dev == NULL)
1108 ftdi_error_return(-3, "USB device unavailable");
1109
1110 if (ftdi->bitbang_enabled)
1111 {
1112 baudrate = baudrate*4;
1113 }
1114
1115 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1116 if (actual_baudrate <= 0)
1117 ftdi_error_return (-1, "Silly baudrate <= 0.");
1118
1119 // Check within tolerance (about 5%)
1120 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1121 || ((actual_baudrate < baudrate)
1122 ? (actual_baudrate * 21 < baudrate * 20)
1123 : (baudrate * 21 < actual_baudrate * 20)))
1124 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1125
1126 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1127 SIO_SET_BAUDRATE_REQUEST, value,
1128 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1129 ftdi_error_return (-2, "Setting new baudrate failed");
1130
1131 ftdi->baudrate = baudrate;
1132 return 0;
1133}
1134
1135/**
1136 Set (RS232) line characteristics.
1137 The break type can only be set via ftdi_set_line_property2()
1138 and defaults to "off".
1139
1140 \param ftdi pointer to ftdi_context
1141 \param bits Number of bits
1142 \param sbit Number of stop bits
1143 \param parity Parity mode
1144
1145 \retval 0: all fine
1146 \retval -1: Setting line property failed
1147*/
1148int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1149 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1150{
1151 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1152}
1153
1154/**
1155 Set (RS232) line characteristics
1156
1157 \param ftdi pointer to ftdi_context
1158 \param bits Number of bits
1159 \param sbit Number of stop bits
1160 \param parity Parity mode
1161 \param break_type Break type
1162
1163 \retval 0: all fine
1164 \retval -1: Setting line property failed
1165 \retval -2: USB device unavailable
1166*/
1167int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1168 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1169 enum ftdi_break_type break_type)
1170{
1171 unsigned short value = bits;
1172
1173 if (ftdi == NULL || ftdi->usb_dev == NULL)
1174 ftdi_error_return(-2, "USB device unavailable");
1175
1176 switch (parity)
1177 {
1178 case NONE:
1179 value |= (0x00 << 8);
1180 break;
1181 case ODD:
1182 value |= (0x01 << 8);
1183 break;
1184 case EVEN:
1185 value |= (0x02 << 8);
1186 break;
1187 case MARK:
1188 value |= (0x03 << 8);
1189 break;
1190 case SPACE:
1191 value |= (0x04 << 8);
1192 break;
1193 }
1194
1195 switch (sbit)
1196 {
1197 case STOP_BIT_1:
1198 value |= (0x00 << 11);
1199 break;
1200 case STOP_BIT_15:
1201 value |= (0x01 << 11);
1202 break;
1203 case STOP_BIT_2:
1204 value |= (0x02 << 11);
1205 break;
1206 }
1207
1208 switch (break_type)
1209 {
1210 case BREAK_OFF:
1211 value |= (0x00 << 14);
1212 break;
1213 case BREAK_ON:
1214 value |= (0x01 << 14);
1215 break;
1216 }
1217
1218 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1219 SIO_SET_DATA_REQUEST, value,
1220 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1221 ftdi_error_return (-1, "Setting new line property failed");
1222
1223 return 0;
1224}
1225
1226/**
1227 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1228
1229 \param ftdi pointer to ftdi_context
1230 \param buf Buffer with the data
1231 \param size Size of the buffer
1232
1233 \retval -666: USB device unavailable
1234 \retval <0: error code from usb_bulk_write()
1235 \retval >0: number of bytes written
1236*/
1237int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1238{
1239 int offset = 0;
1240 int actual_length;
1241
1242 if (ftdi == NULL || ftdi->usb_dev == NULL)
1243 ftdi_error_return(-666, "USB device unavailable");
1244
1245 while (offset < size)
1246 {
1247 int write_size = ftdi->writebuffer_chunksize;
1248
1249 if (offset+write_size > size)
1250 write_size = size-offset;
1251
1252 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1253 ftdi_error_return(-1, "usb bulk write failed");
1254
1255 offset += actual_length;
1256 }
1257
1258 return offset;
1259}
1260
1261static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1262{
1263 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1264 struct ftdi_context *ftdi = tc->ftdi;
1265 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1266
1267 packet_size = ftdi->max_packet_size;
1268
1269 actual_length = transfer->actual_length;
1270
1271 if (actual_length > 2)
1272 {
1273 // skip FTDI status bytes.
1274 // Maybe stored in the future to enable modem use
1275 num_of_chunks = actual_length / packet_size;
1276 chunk_remains = actual_length % packet_size;
1277 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1278
1279 ftdi->readbuffer_offset += 2;
1280 actual_length -= 2;
1281
1282 if (actual_length > packet_size - 2)
1283 {
1284 for (i = 1; i < num_of_chunks; i++)
1285 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1286 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1287 packet_size - 2);
1288 if (chunk_remains > 2)
1289 {
1290 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1291 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1292 chunk_remains-2);
1293 actual_length -= 2*num_of_chunks;
1294 }
1295 else
1296 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1297 }
1298
1299 if (actual_length > 0)
1300 {
1301 // data still fits in buf?
1302 if (tc->offset + actual_length <= tc->size)
1303 {
1304 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1305 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1306 tc->offset += actual_length;
1307
1308 ftdi->readbuffer_offset = 0;
1309 ftdi->readbuffer_remaining = 0;
1310
1311 /* Did we read exactly the right amount of bytes? */
1312 if (tc->offset == tc->size)
1313 {
1314 //printf("read_data exact rem %d offset %d\n",
1315 //ftdi->readbuffer_remaining, offset);
1316 tc->completed = 1;
1317 return;
1318 }
1319 }
1320 else
1321 {
1322 // only copy part of the data or size <= readbuffer_chunksize
1323 int part_size = tc->size - tc->offset;
1324 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1325 tc->offset += part_size;
1326
1327 ftdi->readbuffer_offset += part_size;
1328 ftdi->readbuffer_remaining = actual_length - part_size;
1329
1330 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1331 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1332 tc->completed = 1;
1333 return;
1334 }
1335 }
1336 }
1337 ret = libusb_submit_transfer (transfer);
1338 if (ret < 0)
1339 tc->completed = 1;
1340}
1341
1342
1343static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1344{
1345 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1346 struct ftdi_context *ftdi = tc->ftdi;
1347
1348 tc->offset += transfer->actual_length;
1349
1350 if (tc->offset == tc->size)
1351 {
1352 tc->completed = 1;
1353 }
1354 else
1355 {
1356 int write_size = ftdi->writebuffer_chunksize;
1357 int ret;
1358
1359 if (tc->offset + write_size > tc->size)
1360 write_size = tc->size - tc->offset;
1361
1362 transfer->length = write_size;
1363 transfer->buffer = tc->buf + tc->offset;
1364 ret = libusb_submit_transfer (transfer);
1365 if (ret < 0)
1366 tc->completed = 1;
1367 }
1368}
1369
1370
1371/**
1372 Writes data to the chip. Does not wait for completion of the transfer
1373 nor does it make sure that the transfer was successful.
1374
1375 Use libusb 1.0 asynchronous API.
1376
1377 \param ftdi pointer to ftdi_context
1378 \param buf Buffer with the data
1379 \param size Size of the buffer
1380
1381 \retval NULL: Some error happens when submit transfer
1382 \retval !NULL: Pointer to a ftdi_transfer_control
1383*/
1384
1385struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1386{
1387 struct ftdi_transfer_control *tc;
1388 struct libusb_transfer *transfer;
1389 int write_size, ret;
1390
1391 if (ftdi == NULL || ftdi->usb_dev == NULL)
1392 return NULL;
1393
1394 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1395 if (!tc)
1396 return NULL;
1397
1398 transfer = libusb_alloc_transfer(0);
1399 if (!transfer)
1400 {
1401 free(tc);
1402 return NULL;
1403 }
1404
1405 tc->ftdi = ftdi;
1406 tc->completed = 0;
1407 tc->buf = buf;
1408 tc->size = size;
1409 tc->offset = 0;
1410
1411 if (size < ftdi->writebuffer_chunksize)
1412 write_size = size;
1413 else
1414 write_size = ftdi->writebuffer_chunksize;
1415
1416 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1417 write_size, ftdi_write_data_cb, tc,
1418 ftdi->usb_write_timeout);
1419 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1420
1421 ret = libusb_submit_transfer(transfer);
1422 if (ret < 0)
1423 {
1424 libusb_free_transfer(transfer);
1425 free(tc);
1426 return NULL;
1427 }
1428 tc->transfer = transfer;
1429
1430 return tc;
1431}
1432
1433/**
1434 Reads data from the chip. Does not wait for completion of the transfer
1435 nor does it make sure that the transfer was successful.
1436
1437 Use libusb 1.0 asynchronous API.
1438
1439 \param ftdi pointer to ftdi_context
1440 \param buf Buffer with the data
1441 \param size Size of the buffer
1442
1443 \retval NULL: Some error happens when submit transfer
1444 \retval !NULL: Pointer to a ftdi_transfer_control
1445*/
1446
1447struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1448{
1449 struct ftdi_transfer_control *tc;
1450 struct libusb_transfer *transfer;
1451 int ret;
1452
1453 if (ftdi == NULL || ftdi->usb_dev == NULL)
1454 return NULL;
1455
1456 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1457 if (!tc)
1458 return NULL;
1459
1460 tc->ftdi = ftdi;
1461 tc->buf = buf;
1462 tc->size = size;
1463
1464 if (size <= ftdi->readbuffer_remaining)
1465 {
1466 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1467
1468 // Fix offsets
1469 ftdi->readbuffer_remaining -= size;
1470 ftdi->readbuffer_offset += size;
1471
1472 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1473
1474 tc->completed = 1;
1475 tc->offset = size;
1476 tc->transfer = NULL;
1477 return tc;
1478 }
1479
1480 tc->completed = 0;
1481 if (ftdi->readbuffer_remaining != 0)
1482 {
1483 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1484
1485 tc->offset = ftdi->readbuffer_remaining;
1486 }
1487 else
1488 tc->offset = 0;
1489
1490 transfer = libusb_alloc_transfer(0);
1491 if (!transfer)
1492 {
1493 free (tc);
1494 return NULL;
1495 }
1496
1497 ftdi->readbuffer_remaining = 0;
1498 ftdi->readbuffer_offset = 0;
1499
1500 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1501 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1502
1503 ret = libusb_submit_transfer(transfer);
1504 if (ret < 0)
1505 {
1506 libusb_free_transfer(transfer);
1507 free (tc);
1508 return NULL;
1509 }
1510 tc->transfer = transfer;
1511
1512 return tc;
1513}
1514
1515/**
1516 Wait for completion of the transfer.
1517
1518 Use libusb 1.0 asynchronous API.
1519
1520 \param tc pointer to ftdi_transfer_control
1521
1522 \retval < 0: Some error happens
1523 \retval >= 0: Data size transferred
1524*/
1525
1526int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1527{
1528 int ret;
1529
1530 while (!tc->completed)
1531 {
1532 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1533 if (ret < 0)
1534 {
1535 if (ret == LIBUSB_ERROR_INTERRUPTED)
1536 continue;
1537 libusb_cancel_transfer(tc->transfer);
1538 while (!tc->completed)
1539 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1540 break;
1541 libusb_free_transfer(tc->transfer);
1542 free (tc);
1543 return ret;
1544 }
1545 }
1546
1547 ret = tc->offset;
1548 /**
1549 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1550 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1551 **/
1552 if (tc->transfer)
1553 {
1554 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1555 ret = -1;
1556 libusb_free_transfer(tc->transfer);
1557 }
1558 free(tc);
1559 return ret;
1560}
1561
1562/**
1563 Configure write buffer chunk size.
1564 Default is 4096.
1565
1566 \param ftdi pointer to ftdi_context
1567 \param chunksize Chunk size
1568
1569 \retval 0: all fine
1570 \retval -1: ftdi context invalid
1571*/
1572int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1573{
1574 if (ftdi == NULL)
1575 ftdi_error_return(-1, "ftdi context invalid");
1576
1577 ftdi->writebuffer_chunksize = chunksize;
1578 return 0;
1579}
1580
1581/**
1582 Get write buffer chunk size.
1583
1584 \param ftdi pointer to ftdi_context
1585 \param chunksize Pointer to store chunk size in
1586
1587 \retval 0: all fine
1588 \retval -1: ftdi context invalid
1589*/
1590int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1591{
1592 if (ftdi == NULL)
1593 ftdi_error_return(-1, "ftdi context invalid");
1594
1595 *chunksize = ftdi->writebuffer_chunksize;
1596 return 0;
1597}
1598
1599/**
1600 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1601
1602 Automatically strips the two modem status bytes transfered during every read.
1603
1604 \param ftdi pointer to ftdi_context
1605 \param buf Buffer to store data in
1606 \param size Size of the buffer
1607
1608 \retval -666: USB device unavailable
1609 \retval <0: error code from libusb_bulk_transfer()
1610 \retval 0: no data was available
1611 \retval >0: number of bytes read
1612
1613*/
1614int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1615{
1616 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1617 int packet_size = ftdi->max_packet_size;
1618 int actual_length = 1;
1619
1620 if (ftdi == NULL || ftdi->usb_dev == NULL)
1621 ftdi_error_return(-666, "USB device unavailable");
1622
1623 // Packet size sanity check (avoid division by zero)
1624 if (packet_size == 0)
1625 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1626
1627 // everything we want is still in the readbuffer?
1628 if (size <= ftdi->readbuffer_remaining)
1629 {
1630 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1631
1632 // Fix offsets
1633 ftdi->readbuffer_remaining -= size;
1634 ftdi->readbuffer_offset += size;
1635
1636 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1637
1638 return size;
1639 }
1640 // something still in the readbuffer, but not enough to satisfy 'size'?
1641 if (ftdi->readbuffer_remaining != 0)
1642 {
1643 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1644
1645 // Fix offset
1646 offset += ftdi->readbuffer_remaining;
1647 }
1648 // do the actual USB read
1649 while (offset < size && actual_length > 0)
1650 {
1651 ftdi->readbuffer_remaining = 0;
1652 ftdi->readbuffer_offset = 0;
1653 /* returns how much received */
1654 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1655 if (ret < 0)
1656 ftdi_error_return(ret, "usb bulk read failed");
1657
1658 if (actual_length > 2)
1659 {
1660 // skip FTDI status bytes.
1661 // Maybe stored in the future to enable modem use
1662 num_of_chunks = actual_length / packet_size;
1663 chunk_remains = actual_length % packet_size;
1664 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1665
1666 ftdi->readbuffer_offset += 2;
1667 actual_length -= 2;
1668
1669 if (actual_length > packet_size - 2)
1670 {
1671 for (i = 1; i < num_of_chunks; i++)
1672 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1673 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1674 packet_size - 2);
1675 if (chunk_remains > 2)
1676 {
1677 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1678 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1679 chunk_remains-2);
1680 actual_length -= 2*num_of_chunks;
1681 }
1682 else
1683 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1684 }
1685 }
1686 else if (actual_length <= 2)
1687 {
1688 // no more data to read?
1689 return offset;
1690 }
1691 if (actual_length > 0)
1692 {
1693 // data still fits in buf?
1694 if (offset+actual_length <= size)
1695 {
1696 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1697 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1698 offset += actual_length;
1699
1700 /* Did we read exactly the right amount of bytes? */
1701 if (offset == size)
1702 //printf("read_data exact rem %d offset %d\n",
1703 //ftdi->readbuffer_remaining, offset);
1704 return offset;
1705 }
1706 else
1707 {
1708 // only copy part of the data or size <= readbuffer_chunksize
1709 int part_size = size-offset;
1710 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1711
1712 ftdi->readbuffer_offset += part_size;
1713 ftdi->readbuffer_remaining = actual_length-part_size;
1714 offset += part_size;
1715
1716 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1717 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1718
1719 return offset;
1720 }
1721 }
1722 }
1723 // never reached
1724 return -127;
1725}
1726
1727/**
1728 Configure read buffer chunk size.
1729 Default is 4096.
1730
1731 Automatically reallocates the buffer.
1732
1733 \param ftdi pointer to ftdi_context
1734 \param chunksize Chunk size
1735
1736 \retval 0: all fine
1737 \retval -1: ftdi context invalid
1738*/
1739int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1740{
1741 unsigned char *new_buf;
1742
1743 if (ftdi == NULL)
1744 ftdi_error_return(-1, "ftdi context invalid");
1745
1746 // Invalidate all remaining data
1747 ftdi->readbuffer_offset = 0;
1748 ftdi->readbuffer_remaining = 0;
1749#ifdef __linux__
1750 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1751 which is defined in libusb-1.0. Otherwise, each USB read request will
1752 be divided into multiple URBs. This will cause issues on Linux kernel
1753 older than 2.6.32. */
1754 if (chunksize > 16384)
1755 chunksize = 16384;
1756#endif
1757
1758 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1759 ftdi_error_return(-1, "out of memory for readbuffer");
1760
1761 ftdi->readbuffer = new_buf;
1762 ftdi->readbuffer_chunksize = chunksize;
1763
1764 return 0;
1765}
1766
1767/**
1768 Get read buffer chunk size.
1769
1770 \param ftdi pointer to ftdi_context
1771 \param chunksize Pointer to store chunk size in
1772
1773 \retval 0: all fine
1774 \retval -1: FTDI context invalid
1775*/
1776int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1777{
1778 if (ftdi == NULL)
1779 ftdi_error_return(-1, "FTDI context invalid");
1780
1781 *chunksize = ftdi->readbuffer_chunksize;
1782 return 0;
1783}
1784
1785
1786/**
1787 Enable bitbang mode.
1788
1789 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1790
1791 \param ftdi pointer to ftdi_context
1792 \param bitmask Bitmask to configure lines.
1793 HIGH/ON value configures a line as output.
1794
1795 \retval 0: all fine
1796 \retval -1: can't enable bitbang mode
1797 \retval -2: USB device unavailable
1798*/
1799int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1800{
1801 unsigned short usb_val;
1802
1803 if (ftdi == NULL || ftdi->usb_dev == NULL)
1804 ftdi_error_return(-2, "USB device unavailable");
1805
1806 usb_val = bitmask; // low byte: bitmask
1807 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1808 usb_val |= (ftdi->bitbang_mode << 8);
1809
1810 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1811 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1812 NULL, 0, ftdi->usb_write_timeout) < 0)
1813 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1814
1815 ftdi->bitbang_enabled = 1;
1816 return 0;
1817}
1818
1819/**
1820 Disable bitbang mode.
1821
1822 \param ftdi pointer to ftdi_context
1823
1824 \retval 0: all fine
1825 \retval -1: can't disable bitbang mode
1826 \retval -2: USB device unavailable
1827*/
1828int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1829{
1830 if (ftdi == NULL || ftdi->usb_dev == NULL)
1831 ftdi_error_return(-2, "USB device unavailable");
1832
1833 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1834 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1835
1836 ftdi->bitbang_enabled = 0;
1837 return 0;
1838}
1839
1840/**
1841 Enable/disable bitbang modes.
1842
1843 \param ftdi pointer to ftdi_context
1844 \param bitmask Bitmask to configure lines.
1845 HIGH/ON value configures a line as output.
1846 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1847
1848 \retval 0: all fine
1849 \retval -1: can't enable bitbang mode
1850 \retval -2: USB device unavailable
1851*/
1852int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1853{
1854 unsigned short usb_val;
1855
1856 if (ftdi == NULL || ftdi->usb_dev == NULL)
1857 ftdi_error_return(-2, "USB device unavailable");
1858
1859 usb_val = bitmask; // low byte: bitmask
1860 usb_val |= (mode << 8);
1861 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1862 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1863
1864 ftdi->bitbang_mode = mode;
1865 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1866 return 0;
1867}
1868
1869/**
1870 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1871
1872 \param ftdi pointer to ftdi_context
1873 \param pins Pointer to store pins into
1874
1875 \retval 0: all fine
1876 \retval -1: read pins failed
1877 \retval -2: USB device unavailable
1878*/
1879int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1880{
1881 if (ftdi == NULL || ftdi->usb_dev == NULL)
1882 ftdi_error_return(-2, "USB device unavailable");
1883
1884 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1885 ftdi_error_return(-1, "read pins failed");
1886
1887 return 0;
1888}
1889
1890/**
1891 Set latency timer
1892
1893 The FTDI chip keeps data in the internal buffer for a specific
1894 amount of time if the buffer is not full yet to decrease
1895 load on the usb bus.
1896
1897 \param ftdi pointer to ftdi_context
1898 \param latency Value between 1 and 255
1899
1900 \retval 0: all fine
1901 \retval -1: latency out of range
1902 \retval -2: unable to set latency timer
1903 \retval -3: USB device unavailable
1904*/
1905int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1906{
1907 unsigned short usb_val;
1908
1909 if (latency < 1)
1910 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1911
1912 if (ftdi == NULL || ftdi->usb_dev == NULL)
1913 ftdi_error_return(-3, "USB device unavailable");
1914
1915 usb_val = latency;
1916 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1917 ftdi_error_return(-2, "unable to set latency timer");
1918
1919 return 0;
1920}
1921
1922/**
1923 Get latency timer
1924
1925 \param ftdi pointer to ftdi_context
1926 \param latency Pointer to store latency value in
1927
1928 \retval 0: all fine
1929 \retval -1: unable to get latency timer
1930 \retval -2: USB device unavailable
1931*/
1932int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1933{
1934 unsigned short usb_val;
1935
1936 if (ftdi == NULL || ftdi->usb_dev == NULL)
1937 ftdi_error_return(-2, "USB device unavailable");
1938
1939 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1940 ftdi_error_return(-1, "reading latency timer failed");
1941
1942 *latency = (unsigned char)usb_val;
1943 return 0;
1944}
1945
1946/**
1947 Poll modem status information
1948
1949 This function allows the retrieve the two status bytes of the device.
1950 The device sends these bytes also as a header for each read access
1951 where they are discarded by ftdi_read_data(). The chip generates
1952 the two stripped status bytes in the absence of data every 40 ms.
1953
1954 Layout of the first byte:
1955 - B0..B3 - must be 0
1956 - B4 Clear to send (CTS)
1957 0 = inactive
1958 1 = active
1959 - B5 Data set ready (DTS)
1960 0 = inactive
1961 1 = active
1962 - B6 Ring indicator (RI)
1963 0 = inactive
1964 1 = active
1965 - B7 Receive line signal detect (RLSD)
1966 0 = inactive
1967 1 = active
1968
1969 Layout of the second byte:
1970 - B0 Data ready (DR)
1971 - B1 Overrun error (OE)
1972 - B2 Parity error (PE)
1973 - B3 Framing error (FE)
1974 - B4 Break interrupt (BI)
1975 - B5 Transmitter holding register (THRE)
1976 - B6 Transmitter empty (TEMT)
1977 - B7 Error in RCVR FIFO
1978
1979 \param ftdi pointer to ftdi_context
1980 \param status Pointer to store status information in. Must be two bytes.
1981
1982 \retval 0: all fine
1983 \retval -1: unable to retrieve status information
1984 \retval -2: USB device unavailable
1985*/
1986int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1987{
1988 char usb_val[2];
1989
1990 if (ftdi == NULL || ftdi->usb_dev == NULL)
1991 ftdi_error_return(-2, "USB device unavailable");
1992
1993 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1994 ftdi_error_return(-1, "getting modem status failed");
1995
1996 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
1997
1998 return 0;
1999}
2000
2001/**
2002 Set flowcontrol for ftdi chip
2003
2004 \param ftdi pointer to ftdi_context
2005 \param flowctrl flow control to use. should be
2006 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2007
2008 \retval 0: all fine
2009 \retval -1: set flow control failed
2010 \retval -2: USB device unavailable
2011*/
2012int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2013{
2014 if (ftdi == NULL || ftdi->usb_dev == NULL)
2015 ftdi_error_return(-2, "USB device unavailable");
2016
2017 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2018 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2019 NULL, 0, ftdi->usb_write_timeout) < 0)
2020 ftdi_error_return(-1, "set flow control failed");
2021
2022 return 0;
2023}
2024
2025/**
2026 Set dtr line
2027
2028 \param ftdi pointer to ftdi_context
2029 \param state state to set line to (1 or 0)
2030
2031 \retval 0: all fine
2032 \retval -1: set dtr failed
2033 \retval -2: USB device unavailable
2034*/
2035int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2036{
2037 unsigned short usb_val;
2038
2039 if (ftdi == NULL || ftdi->usb_dev == NULL)
2040 ftdi_error_return(-2, "USB device unavailable");
2041
2042 if (state)
2043 usb_val = SIO_SET_DTR_HIGH;
2044 else
2045 usb_val = SIO_SET_DTR_LOW;
2046
2047 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2048 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2049 NULL, 0, ftdi->usb_write_timeout) < 0)
2050 ftdi_error_return(-1, "set dtr failed");
2051
2052 return 0;
2053}
2054
2055/**
2056 Set rts line
2057
2058 \param ftdi pointer to ftdi_context
2059 \param state state to set line to (1 or 0)
2060
2061 \retval 0: all fine
2062 \retval -1: set rts failed
2063 \retval -2: USB device unavailable
2064*/
2065int ftdi_setrts(struct ftdi_context *ftdi, int state)
2066{
2067 unsigned short usb_val;
2068
2069 if (ftdi == NULL || ftdi->usb_dev == NULL)
2070 ftdi_error_return(-2, "USB device unavailable");
2071
2072 if (state)
2073 usb_val = SIO_SET_RTS_HIGH;
2074 else
2075 usb_val = SIO_SET_RTS_LOW;
2076
2077 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2078 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2079 NULL, 0, ftdi->usb_write_timeout) < 0)
2080 ftdi_error_return(-1, "set of rts failed");
2081
2082 return 0;
2083}
2084
2085/**
2086 Set dtr and rts line in one pass
2087
2088 \param ftdi pointer to ftdi_context
2089 \param dtr DTR state to set line to (1 or 0)
2090 \param rts RTS state to set line to (1 or 0)
2091
2092 \retval 0: all fine
2093 \retval -1: set dtr/rts failed
2094 \retval -2: USB device unavailable
2095 */
2096int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2097{
2098 unsigned short usb_val;
2099
2100 if (ftdi == NULL || ftdi->usb_dev == NULL)
2101 ftdi_error_return(-2, "USB device unavailable");
2102
2103 if (dtr)
2104 usb_val = SIO_SET_DTR_HIGH;
2105 else
2106 usb_val = SIO_SET_DTR_LOW;
2107
2108 if (rts)
2109 usb_val |= SIO_SET_RTS_HIGH;
2110 else
2111 usb_val |= SIO_SET_RTS_LOW;
2112
2113 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2114 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2115 NULL, 0, ftdi->usb_write_timeout) < 0)
2116 ftdi_error_return(-1, "set of rts/dtr failed");
2117
2118 return 0;
2119}
2120
2121/**
2122 Set the special event character
2123
2124 \param ftdi pointer to ftdi_context
2125 \param eventch Event character
2126 \param enable 0 to disable the event character, non-zero otherwise
2127
2128 \retval 0: all fine
2129 \retval -1: unable to set event character
2130 \retval -2: USB device unavailable
2131*/
2132int ftdi_set_event_char(struct ftdi_context *ftdi,
2133 unsigned char eventch, unsigned char enable)
2134{
2135 unsigned short usb_val;
2136
2137 if (ftdi == NULL || ftdi->usb_dev == NULL)
2138 ftdi_error_return(-2, "USB device unavailable");
2139
2140 usb_val = eventch;
2141 if (enable)
2142 usb_val |= 1 << 8;
2143
2144 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2145 ftdi_error_return(-1, "setting event character failed");
2146
2147 return 0;
2148}
2149
2150/**
2151 Set error character
2152
2153 \param ftdi pointer to ftdi_context
2154 \param errorch Error character
2155 \param enable 0 to disable the error character, non-zero otherwise
2156
2157 \retval 0: all fine
2158 \retval -1: unable to set error character
2159 \retval -2: USB device unavailable
2160*/
2161int ftdi_set_error_char(struct ftdi_context *ftdi,
2162 unsigned char errorch, unsigned char enable)
2163{
2164 unsigned short usb_val;
2165
2166 if (ftdi == NULL || ftdi->usb_dev == NULL)
2167 ftdi_error_return(-2, "USB device unavailable");
2168
2169 usb_val = errorch;
2170 if (enable)
2171 usb_val |= 1 << 8;
2172
2173 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2174 ftdi_error_return(-1, "setting error character failed");
2175
2176 return 0;
2177}
2178
2179/**
2180 Init eeprom with default values.
2181 \param ftdi pointer to ftdi_context
2182 \param manufacturer String to use as Manufacturer
2183 \param product String to use as Product description
2184 \param serial String to use as Serial number description
2185
2186 \retval 0: all fine
2187 \retval -1: No struct ftdi_context
2188 \retval -2: No struct ftdi_eeprom
2189*/
2190int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2191 char * product, char * serial)
2192{
2193 struct ftdi_eeprom *eeprom;
2194
2195 if (ftdi == NULL)
2196 ftdi_error_return(-1, "No struct ftdi_context");
2197
2198 if (ftdi->eeprom == NULL)
2199 ftdi_error_return(-2,"No struct ftdi_eeprom");
2200
2201 eeprom = ftdi->eeprom;
2202 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2203
2204 eeprom->vendor_id = 0x0403;
2205 eeprom->use_serial = USE_SERIAL_NUM;
2206 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2207 (ftdi->type == TYPE_R))
2208 eeprom->product_id = 0x6001;
2209 else if (ftdi->type == TYPE_4232H)
2210 eeprom->product_id = 0x6011;
2211 else if (ftdi->type == TYPE_232H)
2212 eeprom->product_id = 0x6014;
2213 else
2214 eeprom->product_id = 0x6010;
2215 if (ftdi->type == TYPE_AM)
2216 eeprom->usb_version = 0x0101;
2217 else
2218 eeprom->usb_version = 0x0200;
2219 eeprom->max_power = 100;
2220
2221 if (eeprom->manufacturer)
2222 free (eeprom->manufacturer);
2223 eeprom->manufacturer = NULL;
2224 if (manufacturer)
2225 {
2226 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2227 if (eeprom->manufacturer)
2228 strcpy(eeprom->manufacturer, manufacturer);
2229 }
2230
2231 if (eeprom->product)
2232 free (eeprom->product);
2233 eeprom->product = NULL;
2234 if(product)
2235 {
2236 eeprom->product = malloc(strlen(product)+1);
2237 if (eeprom->product)
2238 strcpy(eeprom->product, product);
2239 }
2240
2241 if (eeprom->serial)
2242 free (eeprom->serial);
2243 eeprom->serial = NULL;
2244 if (serial)
2245 {
2246 eeprom->serial = malloc(strlen(serial)+1);
2247 if (eeprom->serial)
2248 strcpy(eeprom->serial, serial);
2249 }
2250
2251
2252 if (ftdi->type == TYPE_R)
2253 {
2254 eeprom->max_power = 90;
2255 eeprom->size = 0x80;
2256 eeprom->cbus_function[0] = CBUS_TXLED;
2257 eeprom->cbus_function[1] = CBUS_RXLED;
2258 eeprom->cbus_function[2] = CBUS_TXDEN;
2259 eeprom->cbus_function[3] = CBUS_PWREN;
2260 eeprom->cbus_function[4] = CBUS_SLEEP;
2261 }
2262 else
2263 {
2264 if(ftdi->type == TYPE_232H)
2265 {
2266 int i;
2267 for (i=0; i<10; i++)
2268 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2269 }
2270 eeprom->size = -1;
2271 }
2272 return 0;
2273}
2274/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2275void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2276{
2277 int i;
2278 for(i=0; i<5;i++)
2279 {
2280 int mode_low, mode_high;
2281 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2282 mode_low = CBUSH_TRISTATE;
2283 else
2284 mode_low = eeprom->cbus_function[2*i];
2285 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2286 mode_high = CBUSH_TRISTATE;
2287 else
2288 mode_high = eeprom->cbus_function[2*i];
2289
2290 output[0x18+i] = mode_high <<4 | mode_low;
2291 }
2292}
2293/**
2294 Build binary buffer from ftdi_eeprom structure.
2295 Output is suitable for ftdi_write_eeprom().
2296
2297 \param ftdi pointer to ftdi_context
2298
2299 \retval >=0: size of eeprom user area in bytes
2300 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2301 \retval -2: Invalid eeprom or ftdi pointer
2302 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2303 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2304 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2305 \retval -6: No connected EEPROM or EEPROM Type unknown
2306*/
2307int ftdi_eeprom_build(struct ftdi_context *ftdi)
2308{
2309 unsigned char i, j, eeprom_size_mask;
2310 unsigned short checksum, value;
2311 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2312 int user_area_size;
2313 struct ftdi_eeprom *eeprom;
2314 unsigned char * output;
2315
2316 if (ftdi == NULL)
2317 ftdi_error_return(-2,"No context");
2318 if (ftdi->eeprom == NULL)
2319 ftdi_error_return(-2,"No eeprom structure");
2320
2321 eeprom= ftdi->eeprom;
2322 output = eeprom->buf;
2323
2324 if (eeprom->chip == -1)
2325 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2326
2327 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2328 eeprom->size = 0x100;
2329 else
2330 eeprom->size = 0x80;
2331
2332 if (eeprom->manufacturer != NULL)
2333 manufacturer_size = strlen(eeprom->manufacturer);
2334 if (eeprom->product != NULL)
2335 product_size = strlen(eeprom->product);
2336 if (eeprom->serial != NULL)
2337 serial_size = strlen(eeprom->serial);
2338
2339 // eeprom size check
2340 switch (ftdi->type)
2341 {
2342 case TYPE_AM:
2343 case TYPE_BM:
2344 user_area_size = 96; // base size for strings (total of 48 characters)
2345 break;
2346 case TYPE_2232C:
2347 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2348 break;
2349 case TYPE_R:
2350 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2351 break;
2352 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2353 case TYPE_4232H:
2354 user_area_size = 86;
2355 break;
2356 default:
2357 user_area_size = 0;
2358 break;
2359 }
2360 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2361
2362 if (user_area_size < 0)
2363 ftdi_error_return(-1,"eeprom size exceeded");
2364
2365 // empty eeprom
2366 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2367
2368 // Bytes and Bits set for all Types
2369
2370 // Addr 02: Vendor ID
2371 output[0x02] = eeprom->vendor_id;
2372 output[0x03] = eeprom->vendor_id >> 8;
2373
2374 // Addr 04: Product ID
2375 output[0x04] = eeprom->product_id;
2376 output[0x05] = eeprom->product_id >> 8;
2377
2378 // Addr 06: Device release number (0400h for BM features)
2379 output[0x06] = 0x00;
2380 switch (ftdi->type)
2381 {
2382 case TYPE_AM:
2383 output[0x07] = 0x02;
2384 break;
2385 case TYPE_BM:
2386 output[0x07] = 0x04;
2387 break;
2388 case TYPE_2232C:
2389 output[0x07] = 0x05;
2390 break;
2391 case TYPE_R:
2392 output[0x07] = 0x06;
2393 break;
2394 case TYPE_2232H:
2395 output[0x07] = 0x07;
2396 break;
2397 case TYPE_4232H:
2398 output[0x07] = 0x08;
2399 break;
2400 case TYPE_232H:
2401 output[0x07] = 0x09;
2402 break;
2403 default:
2404 output[0x07] = 0x00;
2405 }
2406
2407 // Addr 08: Config descriptor
2408 // Bit 7: always 1
2409 // Bit 6: 1 if this device is self powered, 0 if bus powered
2410 // Bit 5: 1 if this device uses remote wakeup
2411 // Bit 4-0: reserved - 0
2412 j = 0x80;
2413 if (eeprom->self_powered == 1)
2414 j |= 0x40;
2415 if (eeprom->remote_wakeup == 1)
2416 j |= 0x20;
2417 output[0x08] = j;
2418
2419 // Addr 09: Max power consumption: max power = value * 2 mA
2420 output[0x09] = eeprom->max_power>>1;
2421
2422 if (ftdi->type != TYPE_AM)
2423 {
2424 // Addr 0A: Chip configuration
2425 // Bit 7: 0 - reserved
2426 // Bit 6: 0 - reserved
2427 // Bit 5: 0 - reserved
2428 // Bit 4: 1 - Change USB version
2429 // Bit 3: 1 - Use the serial number string
2430 // Bit 2: 1 - Enable suspend pull downs for lower power
2431 // Bit 1: 1 - Out EndPoint is Isochronous
2432 // Bit 0: 1 - In EndPoint is Isochronous
2433 //
2434 j = 0;
2435 if (eeprom->in_is_isochronous == 1)
2436 j = j | 1;
2437 if (eeprom->out_is_isochronous == 1)
2438 j = j | 2;
2439 output[0x0A] = j;
2440 }
2441
2442 // Dynamic content
2443 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2444 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2445 // 0xa0 (TYPE_232H)
2446 i = 0;
2447 switch (ftdi->type)
2448 {
2449 case TYPE_232H:
2450 i += 2;
2451 case TYPE_2232H:
2452 case TYPE_4232H:
2453 i += 2;
2454 case TYPE_R:
2455 i += 2;
2456 case TYPE_2232C:
2457 i += 2;
2458 case TYPE_AM:
2459 case TYPE_BM:
2460 i += 0x94;
2461 }
2462 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2463 eeprom_size_mask = eeprom->size -1;
2464
2465 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2466 // Addr 0F: Length of manufacturer string
2467 // Output manufacturer
2468 output[0x0E] = i; // calculate offset
2469 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2470 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2471 for (j = 0; j < manufacturer_size; j++)
2472 {
2473 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2474 output[i & eeprom_size_mask] = 0x00, i++;
2475 }
2476 output[0x0F] = manufacturer_size*2 + 2;
2477
2478 // Addr 10: Offset of the product string + 0x80, calculated later
2479 // Addr 11: Length of product string
2480 output[0x10] = i | 0x80; // calculate offset
2481 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2482 output[i & eeprom_size_mask] = 0x03, i++;
2483 for (j = 0; j < product_size; j++)
2484 {
2485 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2486 output[i & eeprom_size_mask] = 0x00, i++;
2487 }
2488 output[0x11] = product_size*2 + 2;
2489
2490 // Addr 12: Offset of the serial string + 0x80, calculated later
2491 // Addr 13: Length of serial string
2492 output[0x12] = i | 0x80; // calculate offset
2493 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2494 output[i & eeprom_size_mask] = 0x03, i++;
2495 for (j = 0; j < serial_size; j++)
2496 {
2497 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2498 output[i & eeprom_size_mask] = 0x00, i++;
2499 }
2500
2501 // Legacy port name and PnP fields for FT2232 and newer chips
2502 if (ftdi->type > TYPE_BM)
2503 {
2504 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2505 i++;
2506 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2507 i++;
2508 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2509 i++;
2510 }
2511
2512 output[0x13] = serial_size*2 + 2;
2513
2514 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2515 {
2516 if (eeprom->use_serial == USE_SERIAL_NUM )
2517 output[0x0A] |= USE_SERIAL_NUM;
2518 else
2519 output[0x0A] &= ~USE_SERIAL_NUM;
2520 }
2521
2522 /* Bytes and Bits specific to (some) types
2523 Write linear, as this allows easier fixing*/
2524 switch (ftdi->type)
2525 {
2526 case TYPE_AM:
2527 break;
2528 case TYPE_BM:
2529 output[0x0C] = eeprom->usb_version & 0xff;
2530 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2531 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2532 output[0x0A] |= USE_USB_VERSION_BIT;
2533 else
2534 output[0x0A] &= ~USE_USB_VERSION_BIT;
2535
2536 break;
2537 case TYPE_2232C:
2538
2539 output[0x00] = (eeprom->channel_a_type)?((1<<(eeprom->channel_a_type)) & 0x7):0;
2540 if ( eeprom->channel_a_driver == DRIVER_VCP)
2541 output[0x00] |= DRIVER_VCP;
2542 else
2543 output[0x00] &= ~DRIVER_VCP;
2544
2545 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2546 output[0x00] |= HIGH_CURRENT_DRIVE;
2547 else
2548 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2549
2550 output[0x01] = (eeprom->channel_b_type)?((1<<(eeprom->channel_b_type)) & 0x7):0;
2551 if ( eeprom->channel_b_driver == DRIVER_VCP)
2552 output[0x01] |= DRIVER_VCP;
2553 else
2554 output[0x01] &= ~DRIVER_VCP;
2555
2556 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2557 output[0x01] |= HIGH_CURRENT_DRIVE;
2558 else
2559 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2560
2561 if (eeprom->in_is_isochronous == 1)
2562 output[0x0A] |= 0x1;
2563 else
2564 output[0x0A] &= ~0x1;
2565 if (eeprom->out_is_isochronous == 1)
2566 output[0x0A] |= 0x2;
2567 else
2568 output[0x0A] &= ~0x2;
2569 if (eeprom->suspend_pull_downs == 1)
2570 output[0x0A] |= 0x4;
2571 else
2572 output[0x0A] &= ~0x4;
2573 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2574 output[0x0A] |= USE_USB_VERSION_BIT;
2575 else
2576 output[0x0A] &= ~USE_USB_VERSION_BIT;
2577
2578 output[0x0C] = eeprom->usb_version & 0xff;
2579 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2580 output[0x14] = eeprom->chip;
2581 break;
2582 case TYPE_R:
2583 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2584 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2585 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2586
2587 if (eeprom->suspend_pull_downs == 1)
2588 output[0x0A] |= 0x4;
2589 else
2590 output[0x0A] &= ~0x4;
2591 output[0x0B] = eeprom->invert;
2592 output[0x0C] = eeprom->usb_version & 0xff;
2593 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2594
2595 if (eeprom->cbus_function[0] > CBUS_BB)
2596 output[0x14] = CBUS_TXLED;
2597 else
2598 output[0x14] = eeprom->cbus_function[0];
2599
2600 if (eeprom->cbus_function[1] > CBUS_BB)
2601 output[0x14] |= CBUS_RXLED<<4;
2602 else
2603 output[0x14] |= eeprom->cbus_function[1]<<4;
2604
2605 if (eeprom->cbus_function[2] > CBUS_BB)
2606 output[0x15] = CBUS_TXDEN;
2607 else
2608 output[0x15] = eeprom->cbus_function[2];
2609
2610 if (eeprom->cbus_function[3] > CBUS_BB)
2611 output[0x15] |= CBUS_PWREN<<4;
2612 else
2613 output[0x15] |= eeprom->cbus_function[3]<<4;
2614
2615 if (eeprom->cbus_function[4] > CBUS_CLK6)
2616 output[0x16] = CBUS_SLEEP;
2617 else
2618 output[0x16] = eeprom->cbus_function[4];
2619 break;
2620 case TYPE_2232H:
2621 output[0x00] = (eeprom->channel_a_type)?((1<<(eeprom->channel_a_type)) & 0x7):0;
2622 if ( eeprom->channel_a_driver == DRIVER_VCP)
2623 output[0x00] |= DRIVER_VCP;
2624 else
2625 output[0x00] &= ~DRIVER_VCP;
2626
2627 output[0x01] = (eeprom->channel_b_type)?((1<<(eeprom->channel_b_type)) & 0x7):0;
2628 if ( eeprom->channel_b_driver == DRIVER_VCP)
2629 output[0x01] |= DRIVER_VCP;
2630 else
2631 output[0x01] &= ~DRIVER_VCP;
2632 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2633 output[0x01] |= SUSPEND_DBUS7_BIT;
2634 else
2635 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2636
2637 if (eeprom->suspend_pull_downs == 1)
2638 output[0x0A] |= 0x4;
2639 else
2640 output[0x0A] &= ~0x4;
2641
2642 if (eeprom->group0_drive > DRIVE_16MA)
2643 output[0x0c] |= DRIVE_16MA;
2644 else
2645 output[0x0c] |= eeprom->group0_drive;
2646 if (eeprom->group0_schmitt == IS_SCHMITT)
2647 output[0x0c] |= IS_SCHMITT;
2648 if (eeprom->group0_slew == SLOW_SLEW)
2649 output[0x0c] |= SLOW_SLEW;
2650
2651 if (eeprom->group1_drive > DRIVE_16MA)
2652 output[0x0c] |= DRIVE_16MA<<4;
2653 else
2654 output[0x0c] |= eeprom->group1_drive<<4;
2655 if (eeprom->group1_schmitt == IS_SCHMITT)
2656 output[0x0c] |= IS_SCHMITT<<4;
2657 if (eeprom->group1_slew == SLOW_SLEW)
2658 output[0x0c] |= SLOW_SLEW<<4;
2659
2660 if (eeprom->group2_drive > DRIVE_16MA)
2661 output[0x0d] |= DRIVE_16MA;
2662 else
2663 output[0x0d] |= eeprom->group2_drive;
2664 if (eeprom->group2_schmitt == IS_SCHMITT)
2665 output[0x0d] |= IS_SCHMITT;
2666 if (eeprom->group2_slew == SLOW_SLEW)
2667 output[0x0d] |= SLOW_SLEW;
2668
2669 if (eeprom->group3_drive > DRIVE_16MA)
2670 output[0x0d] |= DRIVE_16MA<<4;
2671 else
2672 output[0x0d] |= eeprom->group3_drive<<4;
2673 if (eeprom->group3_schmitt == IS_SCHMITT)
2674 output[0x0d] |= IS_SCHMITT<<4;
2675 if (eeprom->group3_slew == SLOW_SLEW)
2676 output[0x0d] |= SLOW_SLEW<<4;
2677
2678 output[0x18] = eeprom->chip;
2679
2680 break;
2681 case TYPE_4232H:
2682 output[0x18] = eeprom->chip;
2683 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
2684 break;
2685 case TYPE_232H:
2686 output[0x00] = (eeprom->channel_a_type)?((1<<(eeprom->channel_a_type)) & 0xf):0;
2687 if ( eeprom->channel_a_driver == DRIVER_VCP)
2688 output[0x00] |= DRIVER_VCPH;
2689 else
2690 output[0x00] &= ~DRIVER_VCPH;
2691 if (eeprom->powersave)
2692 output[0x01] |= POWER_SAVE_DISABLE_H;
2693 else
2694 output[0x01] &= ~POWER_SAVE_DISABLE_H;
2695 if (eeprom->clock_polarity)
2696 output[0x01] |= FT1284_CLK_IDLE_STATE;
2697 else
2698 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
2699 if (eeprom->data_order)
2700 output[0x01] |= FT1284_DATA_LSB;
2701 else
2702 output[0x01] &= ~FT1284_DATA_LSB;
2703 if (eeprom->flow_control)
2704 output[0x01] |= FT1284_FLOW_CONTROL;
2705 else
2706 output[0x01] &= ~FT1284_FLOW_CONTROL;
2707 if (eeprom->group0_drive > DRIVE_16MA)
2708 output[0x0c] |= DRIVE_16MA;
2709 else
2710 output[0x0c] |= eeprom->group0_drive;
2711 if (eeprom->group0_schmitt == IS_SCHMITT)
2712 output[0x0c] |= IS_SCHMITT;
2713 if (eeprom->group0_slew == SLOW_SLEW)
2714 output[0x0c] |= SLOW_SLEW;
2715
2716 if (eeprom->group1_drive > DRIVE_16MA)
2717 output[0x0d] |= DRIVE_16MA;
2718 else
2719 output[0x0d] |= eeprom->group1_drive;
2720 if (eeprom->group1_schmitt == IS_SCHMITT)
2721 output[0x0d] |= IS_SCHMITT;
2722 if (eeprom->group1_slew == SLOW_SLEW)
2723 output[0x0d] |= SLOW_SLEW;
2724
2725 set_ft232h_cbus(eeprom, output);
2726
2727 output[0x1e] = eeprom->chip;
2728 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
2729 break;
2730
2731 }
2732
2733 // calculate checksum
2734 checksum = 0xAAAA;
2735
2736 for (i = 0; i < eeprom->size/2-1; i++)
2737 {
2738 value = output[i*2];
2739 value += output[(i*2)+1] << 8;
2740
2741 checksum = value^checksum;
2742 checksum = (checksum << 1) | (checksum >> 15);
2743 }
2744
2745 output[eeprom->size-2] = checksum;
2746 output[eeprom->size-1] = checksum >> 8;
2747
2748 return user_area_size;
2749}
2750/* FTD2XX doesn't allow to set multiple bits in the interface mode bitfield*/
2751unsigned char bit2type(unsigned char bits)
2752{
2753 switch (bits)
2754 {
2755 case 0: return 0;
2756 case 1: return 1;
2757 case 2: return 2;
2758 case 4: return 3;
2759 case 8: return 4;
2760 default:
2761 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
2762 bits);
2763 }
2764 return 0;
2765}
2766
2767/**
2768 Decode binary EEPROM image into an ftdi_eeprom structure.
2769
2770 \param ftdi pointer to ftdi_context
2771 \param verbose Decode EEPROM on stdout
2772
2773 \retval 0: all fine
2774 \retval -1: something went wrong
2775
2776 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2777 FIXME: Strings are malloc'ed here and should be freed somewhere
2778*/
2779int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2780{
2781 unsigned char i, j;
2782 unsigned short checksum, eeprom_checksum, value;
2783 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2784 int eeprom_size;
2785 struct ftdi_eeprom *eeprom;
2786 unsigned char *buf = ftdi->eeprom->buf;
2787 int release;
2788
2789 if (ftdi == NULL)
2790 ftdi_error_return(-1,"No context");
2791 if (ftdi->eeprom == NULL)
2792 ftdi_error_return(-1,"No eeprom structure");
2793
2794 eeprom = ftdi->eeprom;
2795 eeprom_size = eeprom->size;
2796
2797 // Addr 02: Vendor ID
2798 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2799
2800 // Addr 04: Product ID
2801 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2802
2803 release = buf[0x06] + (buf[0x07]<<8);
2804
2805 // Addr 08: Config descriptor
2806 // Bit 7: always 1
2807 // Bit 6: 1 if this device is self powered, 0 if bus powered
2808 // Bit 5: 1 if this device uses remote wakeup
2809 eeprom->self_powered = buf[0x08] & 0x40;
2810 eeprom->remote_wakeup = buf[0x08] & 0x20;
2811
2812 // Addr 09: Max power consumption: max power = value * 2 mA
2813 eeprom->max_power = buf[0x09];
2814
2815 // Addr 0A: Chip configuration
2816 // Bit 7: 0 - reserved
2817 // Bit 6: 0 - reserved
2818 // Bit 5: 0 - reserved
2819 // Bit 4: 1 - Change USB version on BM and 2232C
2820 // Bit 3: 1 - Use the serial number string
2821 // Bit 2: 1 - Enable suspend pull downs for lower power
2822 // Bit 1: 1 - Out EndPoint is Isochronous
2823 // Bit 0: 1 - In EndPoint is Isochronous
2824 //
2825 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2826 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2827 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2828 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
2829 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
2830
2831 // Addr 0C: USB version low byte when 0x0A
2832 // Addr 0D: USB version high byte when 0x0A
2833 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2834
2835 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2836 // Addr 0F: Length of manufacturer string
2837 manufacturer_size = buf[0x0F]/2;
2838 if (eeprom->manufacturer)
2839 free(eeprom->manufacturer);
2840 if (manufacturer_size > 0)
2841 {
2842 eeprom->manufacturer = malloc(manufacturer_size);
2843 if (eeprom->manufacturer)
2844 {
2845 // Decode manufacturer
2846 i = buf[0x0E] & (eeprom_size -1); // offset
2847 for (j=0;j<manufacturer_size-1;j++)
2848 {
2849 eeprom->manufacturer[j] = buf[2*j+i+2];
2850 }
2851 eeprom->manufacturer[j] = '\0';
2852 }
2853 }
2854 else eeprom->manufacturer = NULL;
2855
2856 // Addr 10: Offset of the product string + 0x80, calculated later
2857 // Addr 11: Length of product string
2858 if (eeprom->product)
2859 free(eeprom->product);
2860 product_size = buf[0x11]/2;
2861 if (product_size > 0)
2862 {
2863 eeprom->product = malloc(product_size);
2864 if (eeprom->product)
2865 {
2866 // Decode product name
2867 i = buf[0x10] & (eeprom_size -1); // offset
2868 for (j=0;j<product_size-1;j++)
2869 {
2870 eeprom->product[j] = buf[2*j+i+2];
2871 }
2872 eeprom->product[j] = '\0';
2873 }
2874 }
2875 else eeprom->product = NULL;
2876
2877 // Addr 12: Offset of the serial string + 0x80, calculated later
2878 // Addr 13: Length of serial string
2879 if (eeprom->serial)
2880 free(eeprom->serial);
2881 serial_size = buf[0x13]/2;
2882 if (serial_size > 0)
2883 {
2884 eeprom->serial = malloc(serial_size);
2885 if (eeprom->serial)
2886 {
2887 // Decode serial
2888 i = buf[0x12] & (eeprom_size -1); // offset
2889 for (j=0;j<serial_size-1;j++)
2890 {
2891 eeprom->serial[j] = buf[2*j+i+2];
2892 }
2893 eeprom->serial[j] = '\0';
2894 }
2895 }
2896 else eeprom->serial = NULL;
2897
2898 // verify checksum
2899 checksum = 0xAAAA;
2900
2901 for (i = 0; i < eeprom_size/2-1; i++)
2902 {
2903 value = buf[i*2];
2904 value += buf[(i*2)+1] << 8;
2905
2906 checksum = value^checksum;
2907 checksum = (checksum << 1) | (checksum >> 15);
2908 }
2909
2910 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2911
2912 if (eeprom_checksum != checksum)
2913 {
2914 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2915 ftdi_error_return(-1,"EEPROM checksum error");
2916 }
2917
2918 eeprom->channel_a_type = 0;
2919 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
2920 {
2921 eeprom->chip = -1;
2922 }
2923 else if (ftdi->type == TYPE_2232C)
2924 {
2925 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2926 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2927 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2928 eeprom->channel_b_type = buf[0x01] & 0x7;
2929 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2930 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
2931 eeprom->chip = buf[0x14];
2932 }
2933 else if (ftdi->type == TYPE_R)
2934 {
2935 /* TYPE_R flags D2XX, not VCP as all others*/
2936 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2937 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2938 if ( (buf[0x01]&0x40) != 0x40)
2939 fprintf(stderr,
2940 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2941 " If this happened with the\n"
2942 " EEPROM programmed by FTDI tools, please report "
2943 "to libftdi@developer.intra2net.com\n");
2944
2945 eeprom->chip = buf[0x16];
2946 // Addr 0B: Invert data lines
2947 // Works only on FT232R, not FT245R, but no way to distinguish
2948 eeprom->invert = buf[0x0B];
2949 // Addr 14: CBUS function: CBUS0, CBUS1
2950 // Addr 15: CBUS function: CBUS2, CBUS3
2951 // Addr 16: CBUS function: CBUS5
2952 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2953 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2954 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2955 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2956 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
2957 }
2958 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
2959 {
2960 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2961 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2962 eeprom->channel_b_type = buf[0x01] & 0x7;
2963 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2964
2965 if (ftdi->type == TYPE_2232H)
2966 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
2967
2968 eeprom->chip = buf[0x18];
2969 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2970 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2971 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2972 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2973 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2974 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2975 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2976 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2977 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2978 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2979 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2980 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
2981 }
2982 else if (ftdi->type == TYPE_232H)
2983 {
2984 int i;
2985
2986 eeprom->channel_a_type = buf[0x00] & 0xf;
2987 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
2988 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
2989 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
2990 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
2991 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
2992 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2993 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2994 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2995 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
2996 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
2997 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
2998
2999 for(i=0; i<5; i++)
3000 {
3001 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3002 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3003 }
3004 eeprom->chip = buf[0x1e];
3005 /*FIXME: Decipher more values*/
3006 }
3007
3008 if (verbose)
3009 {
3010 char *channel_mode[] = {"UART","245","CPU", "OPTO", "FT1284"};
3011 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3012 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3013 fprintf(stdout, "Release: 0x%04x\n",release);
3014
3015 if (eeprom->self_powered)
3016 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3017 else
3018 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
3019 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3020 if (eeprom->manufacturer)
3021 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3022 if (eeprom->product)
3023 fprintf(stdout, "Product: %s\n",eeprom->product);
3024 if (eeprom->serial)
3025 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3026 fprintf(stdout, "Checksum : %04x\n", checksum);
3027 if (ftdi->type == TYPE_R)
3028 fprintf(stdout, "Internal EEPROM\n");
3029 else if (eeprom->chip >= 0x46)
3030 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3031 if (eeprom->suspend_dbus7)
3032 fprintf(stdout, "Suspend on DBUS7\n");
3033 if (eeprom->suspend_pull_downs)
3034 fprintf(stdout, "Pull IO pins low during suspend\n");
3035 if(eeprom->powersave)
3036 {
3037 if(ftdi->type >= TYPE_232H)
3038 fprintf(stdout,"Enter low power state on ACBUS7\n");
3039 }
3040 if (eeprom->remote_wakeup)
3041 fprintf(stdout, "Enable Remote Wake Up\n");
3042 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3043 if (ftdi->type >= TYPE_2232C)
3044 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3045 channel_mode[eeprom->channel_a_type],
3046 (eeprom->channel_a_driver)?" VCP":"",
3047 (eeprom->high_current_a)?" High Current IO":"");
3048 if (ftdi->type >= TYPE_232H)
3049 {
3050 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3051 (eeprom->clock_polarity)?"HIGH":"LOW",
3052 (eeprom->data_order)?"LSB":"MSB",
3053 (eeprom->flow_control)?"":"No ");
3054 }
3055 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
3056 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3057 channel_mode[eeprom->channel_b_type],
3058 (eeprom->channel_b_driver)?" VCP":"",
3059 (eeprom->high_current_b)?" High Current IO":"");
3060 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3061 eeprom->use_usb_version == USE_USB_VERSION_BIT)
3062 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3063
3064 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3065 {
3066 fprintf(stdout,"%s has %d mA drive%s%s\n",
3067 (ftdi->type == TYPE_2232H)?"AL":"A",
3068 (eeprom->group0_drive+1) *4,
3069 (eeprom->group0_schmitt)?" Schmitt Input":"",
3070 (eeprom->group0_slew)?" Slow Slew":"");
3071 fprintf(stdout,"%s has %d mA drive%s%s\n",
3072 (ftdi->type == TYPE_2232H)?"AH":"B",
3073 (eeprom->group1_drive+1) *4,
3074 (eeprom->group1_schmitt)?" Schmitt Input":"",
3075 (eeprom->group1_slew)?" Slow Slew":"");
3076 fprintf(stdout,"%s has %d mA drive%s%s\n",
3077 (ftdi->type == TYPE_2232H)?"BL":"C",
3078 (eeprom->group2_drive+1) *4,
3079 (eeprom->group2_schmitt)?" Schmitt Input":"",
3080 (eeprom->group2_slew)?" Slow Slew":"");
3081 fprintf(stdout,"%s has %d mA drive%s%s\n",
3082 (ftdi->type == TYPE_2232H)?"BH":"D",
3083 (eeprom->group3_drive+1) *4,
3084 (eeprom->group3_schmitt)?" Schmitt Input":"",
3085 (eeprom->group3_slew)?" Slow Slew":"");
3086 }
3087 else if (ftdi->type == TYPE_232H)
3088 {
3089 int i;
3090 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3091 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3092 "CLK30","CLK15","CLK7_5"
3093 };
3094 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3095 (eeprom->group0_drive+1) *4,
3096 (eeprom->group0_schmitt)?" Schmitt Input":"",
3097 (eeprom->group0_slew)?" Slow Slew":"");
3098 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3099 (eeprom->group1_drive+1) *4,
3100 (eeprom->group1_schmitt)?" Schmitt Input":"",
3101 (eeprom->group1_slew)?" Slow Slew":"");
3102 for (i=0; i<10; i++)
3103 {
3104 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3105 fprintf(stdout,"C%d Function: %s\n", i,
3106 cbush_mux[eeprom->cbus_function[i]]);
3107 }
3108
3109 }
3110
3111 if (ftdi->type == TYPE_R)
3112 {
3113 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3114 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3115 "IOMODE","BB_WR","BB_RD"
3116 };
3117 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3118
3119 if (eeprom->invert)
3120 {
3121 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3122 fprintf(stdout,"Inverted bits:");
3123 for (i=0; i<8; i++)
3124 if ((eeprom->invert & (1<<i)) == (1<<i))
3125 fprintf(stdout," %s",r_bits[i]);
3126 fprintf(stdout,"\n");
3127 }
3128 for (i=0; i<5; i++)
3129 {
3130 if (eeprom->cbus_function[i]<CBUS_BB)
3131 fprintf(stdout,"C%d Function: %s\n", i,
3132 cbus_mux[eeprom->cbus_function[i]]);
3133 else
3134 {
3135 if (i < 4)
3136 /* Running MPROG show that C0..3 have fixed function Synchronous
3137 Bit Bang mode */
3138 fprintf(stdout,"C%d BB Function: %s\n", i,
3139 cbus_BB[i]);
3140 else
3141 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3142 }
3143 }
3144 }
3145 }
3146 return 0;
3147}
3148
3149/**
3150 Get a value from the decoded EEPROM structure
3151
3152 \param ftdi pointer to ftdi_context
3153 \param value_name Enum of the value to query
3154 \param value Pointer to store read value
3155
3156 \retval 0: all fine
3157 \retval -1: Value doesn't exist
3158*/
3159int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3160{
3161 switch (value_name)
3162 {
3163 case VENDOR_ID:
3164 *value = ftdi->eeprom->vendor_id;
3165 break;
3166 case PRODUCT_ID:
3167 *value = ftdi->eeprom->product_id;
3168 break;
3169 case SELF_POWERED:
3170 *value = ftdi->eeprom->self_powered;
3171 break;
3172 case REMOTE_WAKEUP:
3173 *value = ftdi->eeprom->remote_wakeup;
3174 break;
3175 case IS_NOT_PNP:
3176 *value = ftdi->eeprom->is_not_pnp;
3177 break;
3178 case SUSPEND_DBUS7:
3179 *value = ftdi->eeprom->suspend_dbus7;
3180 break;
3181 case IN_IS_ISOCHRONOUS:
3182 *value = ftdi->eeprom->in_is_isochronous;
3183 break;
3184 case OUT_IS_ISOCHRONOUS:
3185 *value = ftdi->eeprom->out_is_isochronous;
3186 break;
3187 case SUSPEND_PULL_DOWNS:
3188 *value = ftdi->eeprom->suspend_pull_downs;
3189 break;
3190 case USE_SERIAL:
3191 *value = ftdi->eeprom->use_serial;
3192 break;
3193 case USB_VERSION:
3194 *value = ftdi->eeprom->usb_version;
3195 break;
3196 case USE_USB_VERSION:
3197 *value = ftdi->eeprom->use_usb_version;
3198 break;
3199 case MAX_POWER:
3200 *value = ftdi->eeprom->max_power;
3201 break;
3202 case CHANNEL_A_TYPE:
3203 *value = ftdi->eeprom->channel_a_type;
3204 break;
3205 case CHANNEL_B_TYPE:
3206 *value = ftdi->eeprom->channel_b_type;
3207 break;
3208 case CHANNEL_A_DRIVER:
3209 *value = ftdi->eeprom->channel_a_driver;
3210 break;
3211 case CHANNEL_B_DRIVER:
3212 *value = ftdi->eeprom->channel_b_driver;
3213 break;
3214 case CBUS_FUNCTION_0:
3215 *value = ftdi->eeprom->cbus_function[0];
3216 break;
3217 case CBUS_FUNCTION_1:
3218 *value = ftdi->eeprom->cbus_function[1];
3219 break;
3220 case CBUS_FUNCTION_2:
3221 *value = ftdi->eeprom->cbus_function[2];
3222 break;
3223 case CBUS_FUNCTION_3:
3224 *value = ftdi->eeprom->cbus_function[3];
3225 break;
3226 case CBUS_FUNCTION_4:
3227 *value = ftdi->eeprom->cbus_function[4];
3228 break;
3229 case CBUS_FUNCTION_5:
3230 *value = ftdi->eeprom->cbus_function[5];
3231 break;
3232 case CBUS_FUNCTION_6:
3233 *value = ftdi->eeprom->cbus_function[6];
3234 break;
3235 case CBUS_FUNCTION_7:
3236 *value = ftdi->eeprom->cbus_function[7];
3237 break;
3238 case CBUS_FUNCTION_8:
3239 *value = ftdi->eeprom->cbus_function[8];
3240 break;
3241 case CBUS_FUNCTION_9:
3242 *value = ftdi->eeprom->cbus_function[8];
3243 break;
3244 case HIGH_CURRENT:
3245 *value = ftdi->eeprom->high_current;
3246 break;
3247 case HIGH_CURRENT_A:
3248 *value = ftdi->eeprom->high_current_a;
3249 break;
3250 case HIGH_CURRENT_B:
3251 *value = ftdi->eeprom->high_current_b;
3252 break;
3253 case INVERT:
3254 *value = ftdi->eeprom->invert;
3255 break;
3256 case GROUP0_DRIVE:
3257 *value = ftdi->eeprom->group0_drive;
3258 break;
3259 case GROUP0_SCHMITT:
3260 *value = ftdi->eeprom->group0_schmitt;
3261 break;
3262 case GROUP0_SLEW:
3263 *value = ftdi->eeprom->group0_slew;
3264 break;
3265 case GROUP1_DRIVE:
3266 *value = ftdi->eeprom->group1_drive;
3267 break;
3268 case GROUP1_SCHMITT:
3269 *value = ftdi->eeprom->group1_schmitt;
3270 break;
3271 case GROUP1_SLEW:
3272 *value = ftdi->eeprom->group1_slew;
3273 break;
3274 case GROUP2_DRIVE:
3275 *value = ftdi->eeprom->group2_drive;
3276 break;
3277 case GROUP2_SCHMITT:
3278 *value = ftdi->eeprom->group2_schmitt;
3279 break;
3280 case GROUP2_SLEW:
3281 *value = ftdi->eeprom->group2_slew;
3282 break;
3283 case GROUP3_DRIVE:
3284 *value = ftdi->eeprom->group3_drive;
3285 break;
3286 case GROUP3_SCHMITT:
3287 *value = ftdi->eeprom->group3_schmitt;
3288 break;
3289 case GROUP3_SLEW:
3290 *value = ftdi->eeprom->group3_slew;
3291 break;
3292 case POWER_SAVE:
3293 *value = ftdi->eeprom->powersave;
3294 break;
3295 case CLOCK_POLARITY:
3296 *value = ftdi->eeprom->clock_polarity;
3297 break;
3298 case DATA_ORDER:
3299 *value = ftdi->eeprom->data_order;
3300 break;
3301 case FLOW_CONTROL:
3302 *value = ftdi->eeprom->flow_control;
3303 break;
3304 case CHIP_TYPE:
3305 *value = ftdi->eeprom->chip;
3306 break;
3307 case CHIP_SIZE:
3308 *value = ftdi->eeprom->size;
3309 break;
3310 default:
3311 ftdi_error_return(-1, "Request for unknown EEPROM value");
3312 }
3313 return 0;
3314}
3315
3316/**
3317 Set a value in the decoded EEPROM Structure
3318 No parameter checking is performed
3319
3320 \param ftdi pointer to ftdi_context
3321 \param value_name Enum of the value to set
3322 \param value to set
3323
3324 \retval 0: all fine
3325 \retval -1: Value doesn't exist
3326 \retval -2: Value not user settable
3327*/
3328int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3329{
3330 switch (value_name)
3331 {
3332 case VENDOR_ID:
3333 ftdi->eeprom->vendor_id = value;
3334 break;
3335 case PRODUCT_ID:
3336 ftdi->eeprom->product_id = value;
3337 break;
3338 case SELF_POWERED:
3339 ftdi->eeprom->self_powered = value;
3340 break;
3341 case REMOTE_WAKEUP:
3342 ftdi->eeprom->remote_wakeup = value;
3343 break;
3344 case IS_NOT_PNP:
3345 ftdi->eeprom->is_not_pnp = value;
3346 break;
3347 case SUSPEND_DBUS7:
3348 ftdi->eeprom->suspend_dbus7 = value;
3349 break;
3350 case IN_IS_ISOCHRONOUS:
3351 ftdi->eeprom->in_is_isochronous = value;
3352 break;
3353 case OUT_IS_ISOCHRONOUS:
3354 ftdi->eeprom->out_is_isochronous = value;
3355 break;
3356 case SUSPEND_PULL_DOWNS:
3357 ftdi->eeprom->suspend_pull_downs = value;
3358 break;
3359 case USE_SERIAL:
3360 ftdi->eeprom->use_serial = value;
3361 break;
3362 case USB_VERSION:
3363 ftdi->eeprom->usb_version = value;
3364 break;
3365 case USE_USB_VERSION:
3366 ftdi->eeprom->use_usb_version = value;
3367 break;
3368 case MAX_POWER:
3369 ftdi->eeprom->max_power = value;
3370 break;
3371 case CHANNEL_A_TYPE:
3372 ftdi->eeprom->channel_a_type = value;
3373 break;
3374 case CHANNEL_B_TYPE:
3375 ftdi->eeprom->channel_b_type = value;
3376 break;
3377 case CHANNEL_A_DRIVER:
3378 ftdi->eeprom->channel_a_driver = value;
3379 break;
3380 case CHANNEL_B_DRIVER:
3381 ftdi->eeprom->channel_b_driver = value;
3382 break;
3383 case CBUS_FUNCTION_0:
3384 ftdi->eeprom->cbus_function[0] = value;
3385 break;
3386 case CBUS_FUNCTION_1:
3387 ftdi->eeprom->cbus_function[1] = value;
3388 break;
3389 case CBUS_FUNCTION_2:
3390 ftdi->eeprom->cbus_function[2] = value;
3391 break;
3392 case CBUS_FUNCTION_3:
3393 ftdi->eeprom->cbus_function[3] = value;
3394 break;
3395 case CBUS_FUNCTION_4:
3396 ftdi->eeprom->cbus_function[4] = value;
3397 break;
3398 case CBUS_FUNCTION_5:
3399 ftdi->eeprom->cbus_function[5] = value;
3400 break;
3401 case CBUS_FUNCTION_6:
3402 ftdi->eeprom->cbus_function[6] = value;
3403 break;
3404 case CBUS_FUNCTION_7:
3405 ftdi->eeprom->cbus_function[7] = value;
3406 break;
3407 case CBUS_FUNCTION_8:
3408 ftdi->eeprom->cbus_function[8] = value;
3409 break;
3410 case CBUS_FUNCTION_9:
3411 ftdi->eeprom->cbus_function[9] = value;
3412 break;
3413 case HIGH_CURRENT:
3414 ftdi->eeprom->high_current = value;
3415 break;
3416 case HIGH_CURRENT_A:
3417 ftdi->eeprom->high_current_a = value;
3418 break;
3419 case HIGH_CURRENT_B:
3420 ftdi->eeprom->high_current_b = value;
3421 break;
3422 case INVERT:
3423 ftdi->eeprom->invert = value;
3424 break;
3425 case GROUP0_DRIVE:
3426 ftdi->eeprom->group0_drive = value;
3427 break;
3428 case GROUP0_SCHMITT:
3429 ftdi->eeprom->group0_schmitt = value;
3430 break;
3431 case GROUP0_SLEW:
3432 ftdi->eeprom->group0_slew = value;
3433 break;
3434 case GROUP1_DRIVE:
3435 ftdi->eeprom->group1_drive = value;
3436 break;
3437 case GROUP1_SCHMITT:
3438 ftdi->eeprom->group1_schmitt = value;
3439 break;
3440 case GROUP1_SLEW:
3441 ftdi->eeprom->group1_slew = value;
3442 break;
3443 case GROUP2_DRIVE:
3444 ftdi->eeprom->group2_drive = value;
3445 break;
3446 case GROUP2_SCHMITT:
3447 ftdi->eeprom->group2_schmitt = value;
3448 break;
3449 case GROUP2_SLEW:
3450 ftdi->eeprom->group2_slew = value;
3451 break;
3452 case GROUP3_DRIVE:
3453 ftdi->eeprom->group3_drive = value;
3454 break;
3455 case GROUP3_SCHMITT:
3456 ftdi->eeprom->group3_schmitt = value;
3457 break;
3458 case GROUP3_SLEW:
3459 ftdi->eeprom->group3_slew = value;
3460 break;
3461 case CHIP_TYPE:
3462 ftdi->eeprom->chip = value;
3463 break;
3464 case POWER_SAVE:
3465 ftdi->eeprom->powersave = value;
3466 break;
3467 case CLOCK_POLARITY:
3468 ftdi->eeprom->clock_polarity = value;
3469 break;
3470 case DATA_ORDER:
3471 ftdi->eeprom->data_order = value;
3472 break;
3473 case FLOW_CONTROL:
3474 ftdi->eeprom->flow_control = value;
3475 break;
3476 case CHIP_SIZE:
3477 ftdi_error_return(-2, "EEPROM Value can't be changed");
3478 default :
3479 ftdi_error_return(-1, "Request to unknown EEPROM value");
3480 }
3481 return 0;
3482}
3483
3484/** Get the read-only buffer to the binary EEPROM content
3485
3486 \param ftdi pointer to ftdi_context
3487 \param buf buffer to receive EEPROM content
3488 \param size Size of receiving buffer
3489
3490 \retval 0: All fine
3491 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3492 \retval -2: Not enough room to store eeprom
3493*/
3494int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3495{
3496 if (!ftdi || !(ftdi->eeprom))
3497 ftdi_error_return(-1, "No appropriate structure");
3498
3499 if (!buf || size < ftdi->eeprom->size)
3500 ftdi_error_return(-1, "Not enough room to store eeprom");
3501
3502 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3503 if (size > FTDI_MAX_EEPROM_SIZE)
3504 size = FTDI_MAX_EEPROM_SIZE;
3505
3506 memcpy(buf, ftdi->eeprom->buf, size);
3507
3508 return 0;
3509}
3510
3511/** Set the EEPROM content from the user-supplied prefilled buffer
3512
3513 \param ftdi pointer to ftdi_context
3514 \param buf buffer to read EEPROM content
3515 \param size Size of buffer
3516
3517 \retval 0: All fine
3518 \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing
3519*/
3520int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
3521{
3522 if (!ftdi || !(ftdi->eeprom) || !buf)
3523 ftdi_error_return(-1, "No appropriate structure");
3524
3525 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3526 if (size > FTDI_MAX_EEPROM_SIZE)
3527 size = FTDI_MAX_EEPROM_SIZE;
3528
3529 memcpy(ftdi->eeprom->buf, buf, size);
3530
3531 return 0;
3532}
3533
3534/**
3535 Read eeprom location
3536
3537 \param ftdi pointer to ftdi_context
3538 \param eeprom_addr Address of eeprom location to be read
3539 \param eeprom_val Pointer to store read eeprom location
3540
3541 \retval 0: all fine
3542 \retval -1: read failed
3543 \retval -2: USB device unavailable
3544*/
3545int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3546{
3547 if (ftdi == NULL || ftdi->usb_dev == NULL)
3548 ftdi_error_return(-2, "USB device unavailable");
3549
3550 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3551 ftdi_error_return(-1, "reading eeprom failed");
3552
3553 return 0;
3554}
3555
3556/**
3557 Read eeprom
3558
3559 \param ftdi pointer to ftdi_context
3560
3561 \retval 0: all fine
3562 \retval -1: read failed
3563 \retval -2: USB device unavailable
3564*/
3565int ftdi_read_eeprom(struct ftdi_context *ftdi)
3566{
3567 int i;
3568 unsigned char *buf;
3569
3570 if (ftdi == NULL || ftdi->usb_dev == NULL)
3571 ftdi_error_return(-2, "USB device unavailable");
3572 buf = ftdi->eeprom->buf;
3573
3574 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
3575 {
3576 if (libusb_control_transfer(
3577 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3578 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
3579 ftdi_error_return(-1, "reading eeprom failed");
3580 }
3581
3582 if (ftdi->type == TYPE_R)
3583 ftdi->eeprom->size = 0x80;
3584 /* Guesses size of eeprom by comparing halves
3585 - will not work with blank eeprom */
3586 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3587 ftdi->eeprom->size = -1;
3588 else if (memcmp(buf,&buf[0x80],0x80) == 0)
3589 ftdi->eeprom->size = 0x80;
3590 else if (memcmp(buf,&buf[0x40],0x40) == 0)
3591 ftdi->eeprom->size = 0x40;
3592 else
3593 ftdi->eeprom->size = 0x100;
3594 return 0;
3595}
3596
3597/*
3598 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3599 Function is only used internally
3600 \internal
3601*/
3602static unsigned char ftdi_read_chipid_shift(unsigned char value)
3603{
3604 return ((value & 1) << 1) |
3605 ((value & 2) << 5) |
3606 ((value & 4) >> 2) |
3607 ((value & 8) << 4) |
3608 ((value & 16) >> 1) |
3609 ((value & 32) >> 1) |
3610 ((value & 64) >> 4) |
3611 ((value & 128) >> 2);
3612}
3613
3614/**
3615 Read the FTDIChip-ID from R-type devices
3616
3617 \param ftdi pointer to ftdi_context
3618 \param chipid Pointer to store FTDIChip-ID
3619
3620 \retval 0: all fine
3621 \retval -1: read failed
3622 \retval -2: USB device unavailable
3623*/
3624int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3625{
3626 unsigned int a = 0, b = 0;
3627
3628 if (ftdi == NULL || ftdi->usb_dev == NULL)
3629 ftdi_error_return(-2, "USB device unavailable");
3630
3631 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3632 {
3633 a = a << 8 | a >> 8;
3634 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3635 {
3636 b = b << 8 | b >> 8;
3637 a = (a << 16) | (b & 0xFFFF);
3638 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3639 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3640 *chipid = a ^ 0xa5f0f7d1;
3641 return 0;
3642 }
3643 }
3644
3645 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3646}
3647
3648/**
3649 Write eeprom location
3650
3651 \param ftdi pointer to ftdi_context
3652 \param eeprom_addr Address of eeprom location to be written
3653 \param eeprom_val Value to be written
3654
3655 \retval 0: all fine
3656 \retval -1: write failed
3657 \retval -2: USB device unavailable
3658 \retval -3: Invalid access to checksum protected area below 0x80
3659 \retval -4: Device can't access unprotected area
3660 \retval -5: Reading chip type failed
3661*/
3662int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3663 unsigned short eeprom_val)
3664{
3665 int chip_type_location;
3666 unsigned short chip_type;
3667
3668 if (ftdi == NULL || ftdi->usb_dev == NULL)
3669 ftdi_error_return(-2, "USB device unavailable");
3670
3671 if (eeprom_addr <0x80)
3672 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3673
3674
3675 switch (ftdi->type)
3676 {
3677 case TYPE_BM:
3678 case TYPE_2232C:
3679 chip_type_location = 0x14;
3680 break;
3681 case TYPE_2232H:
3682 case TYPE_4232H:
3683 chip_type_location = 0x18;
3684 break;
3685 case TYPE_232H:
3686 chip_type_location = 0x1e;
3687 break;
3688 default:
3689 ftdi_error_return(-4, "Device can't access unprotected area");
3690 }
3691
3692 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3693 ftdi_error_return(-5, "Reading failed failed");
3694 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3695 if ((chip_type & 0xff) != 0x66)
3696 {
3697 ftdi_error_return(-6, "EEPROM is not of 93x66");
3698 }
3699
3700 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3701 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3702 NULL, 0, ftdi->usb_write_timeout) != 0)
3703 ftdi_error_return(-1, "unable to write eeprom");
3704
3705 return 0;
3706}
3707
3708/**
3709 Write eeprom
3710
3711 \param ftdi pointer to ftdi_context
3712
3713 \retval 0: all fine
3714 \retval -1: read failed
3715 \retval -2: USB device unavailable
3716*/
3717int ftdi_write_eeprom(struct ftdi_context *ftdi)
3718{
3719 unsigned short usb_val, status;
3720 int i, ret;
3721 unsigned char *eeprom;
3722
3723 if (ftdi == NULL || ftdi->usb_dev == NULL)
3724 ftdi_error_return(-2, "USB device unavailable");
3725 eeprom = ftdi->eeprom->buf;
3726
3727 /* These commands were traced while running MProg */
3728 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3729 return ret;
3730 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3731 return ret;
3732 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3733 return ret;
3734
3735 for (i = 0; i < ftdi->eeprom->size/2; i++)
3736 {
3737 usb_val = eeprom[i*2];
3738 usb_val += eeprom[(i*2)+1] << 8;
3739 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3740 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3741 NULL, 0, ftdi->usb_write_timeout) < 0)
3742 ftdi_error_return(-1, "unable to write eeprom");
3743 }
3744
3745 return 0;
3746}
3747
3748/**
3749 Erase eeprom
3750
3751 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3752
3753 \param ftdi pointer to ftdi_context
3754
3755 \retval 0: all fine
3756 \retval -1: erase failed
3757 \retval -2: USB device unavailable
3758 \retval -3: Writing magic failed
3759 \retval -4: Read EEPROM failed
3760 \retval -5: Unexpected EEPROM value
3761*/
3762#define MAGIC 0x55aa
3763int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3764{
3765 unsigned short eeprom_value;
3766 if (ftdi == NULL || ftdi->usb_dev == NULL)
3767 ftdi_error_return(-2, "USB device unavailable");
3768
3769 if (ftdi->type == TYPE_R)
3770 {
3771 ftdi->eeprom->chip = 0;
3772 return 0;
3773 }
3774
3775 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3776 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3777 ftdi_error_return(-1, "unable to erase eeprom");
3778
3779
3780 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3781 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3782 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3783 Chip is 93x66 if magic is only read at word position 0xc0*/
3784 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3785 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3786 NULL, 0, ftdi->usb_write_timeout) != 0)
3787 ftdi_error_return(-3, "Writing magic failed");
3788 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3789 ftdi_error_return(-4, "Reading failed failed");
3790 if (eeprom_value == MAGIC)
3791 {
3792 ftdi->eeprom->chip = 0x46;
3793 }
3794 else
3795 {
3796 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3797 ftdi_error_return(-4, "Reading failed failed");
3798 if (eeprom_value == MAGIC)
3799 ftdi->eeprom->chip = 0x56;
3800 else
3801 {
3802 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3803 ftdi_error_return(-4, "Reading failed failed");
3804 if (eeprom_value == MAGIC)
3805 ftdi->eeprom->chip = 0x66;
3806 else
3807 {
3808 ftdi->eeprom->chip = -1;
3809 }
3810 }
3811 }
3812 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3813 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3814 ftdi_error_return(-1, "unable to erase eeprom");
3815 return 0;
3816}
3817
3818/**
3819 Get string representation for last error code
3820
3821 \param ftdi pointer to ftdi_context
3822
3823 \retval Pointer to error string
3824*/
3825char *ftdi_get_error_string (struct ftdi_context *ftdi)
3826{
3827 if (ftdi == NULL)
3828 return "";
3829
3830 return ftdi->error_str;
3831}
3832
3833/* @} end of doxygen libftdi group */