Limit read buffer chunksize to 16384 on Linux.
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2008 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44
45/**
46 Internal function to close usb device pointer.
47 Sets ftdi->usb_dev to NULL.
48 \internal
49
50 \param ftdi pointer to ftdi_context
51
52 \retval none
53*/
54static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
55{
56 if (ftdi->usb_dev)
57 {
58 libusb_close (ftdi->usb_dev);
59 ftdi->usb_dev = NULL;
60 }
61}
62
63/**
64 Initializes a ftdi_context.
65
66 \param ftdi pointer to ftdi_context
67
68 \retval 0: all fine
69 \retval -1: couldn't allocate read buffer
70
71 \remark This should be called before all functions
72*/
73int ftdi_init(struct ftdi_context *ftdi)
74{
75 ftdi->usb_dev = NULL;
76 ftdi->usb_read_timeout = 5000;
77 ftdi->usb_write_timeout = 5000;
78
79 ftdi->type = TYPE_BM; /* chip type */
80 ftdi->baudrate = -1;
81 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
82
83 ftdi->readbuffer = NULL;
84 ftdi->readbuffer_offset = 0;
85 ftdi->readbuffer_remaining = 0;
86 ftdi->writebuffer_chunksize = 4096;
87 ftdi->max_packet_size = 0;
88
89 ftdi->interface = 0;
90 ftdi->index = 0;
91 ftdi->in_ep = 0x02;
92 ftdi->out_ep = 0x81;
93 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
94
95 ftdi->error_str = NULL;
96
97 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
98
99 /* All fine. Now allocate the readbuffer */
100 return ftdi_read_data_set_chunksize(ftdi, 4096);
101}
102
103/**
104 Allocate and initialize a new ftdi_context
105
106 \return a pointer to a new ftdi_context, or NULL on failure
107*/
108struct ftdi_context *ftdi_new(void)
109{
110 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
111
112 if (ftdi == NULL)
113 {
114 return NULL;
115 }
116
117 if (ftdi_init(ftdi) != 0)
118 {
119 free(ftdi);
120 return NULL;
121 }
122
123 return ftdi;
124}
125
126/**
127 Open selected channels on a chip, otherwise use first channel.
128
129 \param ftdi pointer to ftdi_context
130 \param interface Interface to use for FT2232C/2232H/4232H chips.
131
132 \retval 0: all fine
133 \retval -1: unknown interface
134*/
135int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
136{
137 switch (interface)
138 {
139 case INTERFACE_ANY:
140 case INTERFACE_A:
141 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
142 break;
143 case INTERFACE_B:
144 ftdi->interface = 1;
145 ftdi->index = INTERFACE_B;
146 ftdi->in_ep = 0x04;
147 ftdi->out_ep = 0x83;
148 break;
149 case INTERFACE_C:
150 ftdi->interface = 2;
151 ftdi->index = INTERFACE_C;
152 ftdi->in_ep = 0x06;
153 ftdi->out_ep = 0x85;
154 break;
155 case INTERFACE_D:
156 ftdi->interface = 3;
157 ftdi->index = INTERFACE_D;
158 ftdi->in_ep = 0x08;
159 ftdi->out_ep = 0x87;
160 break;
161 default:
162 ftdi_error_return(-1, "Unknown interface");
163 }
164 return 0;
165}
166
167/**
168 Deinitializes a ftdi_context.
169
170 \param ftdi pointer to ftdi_context
171*/
172void ftdi_deinit(struct ftdi_context *ftdi)
173{
174 ftdi_usb_close_internal (ftdi);
175
176 if (ftdi->readbuffer != NULL)
177 {
178 free(ftdi->readbuffer);
179 ftdi->readbuffer = NULL;
180 }
181}
182
183/**
184 Deinitialize and free an ftdi_context.
185
186 \param ftdi pointer to ftdi_context
187*/
188void ftdi_free(struct ftdi_context *ftdi)
189{
190 ftdi_deinit(ftdi);
191 free(ftdi);
192}
193
194/**
195 Use an already open libusb device.
196
197 \param ftdi pointer to ftdi_context
198 \param usb libusb libusb_device_handle to use
199*/
200void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
201{
202 ftdi->usb_dev = usb;
203}
204
205
206/**
207 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
208 needs to be deallocated by ftdi_list_free() after use.
209
210 \param ftdi pointer to ftdi_context
211 \param devlist Pointer where to store list of found devices
212 \param vendor Vendor ID to search for
213 \param product Product ID to search for
214
215 \retval >0: number of devices found
216 \retval -3: out of memory
217 \retval -4: libusb_init() failed
218 \retval -5: libusb_get_device_list() failed
219 \retval -6: libusb_get_device_descriptor() failed
220*/
221int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
222{
223 struct ftdi_device_list **curdev;
224 libusb_device *dev;
225 libusb_device **devs;
226 int count = 0;
227 int i = 0;
228
229 if (libusb_init(NULL) < 0)
230 ftdi_error_return(-4, "libusb_init() failed");
231
232 if (libusb_get_device_list(NULL, &devs) < 0)
233 ftdi_error_return(-5, "libusb_get_device_list() failed");
234
235 curdev = devlist;
236 *curdev = NULL;
237
238 while ((dev = devs[i++]) != NULL)
239 {
240 struct libusb_device_descriptor desc;
241
242 if (libusb_get_device_descriptor(dev, &desc) < 0)
243 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
244
245 if (desc.idVendor == vendor && desc.idProduct == product)
246 {
247 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
248 if (!*curdev)
249 ftdi_error_return(-3, "out of memory");
250
251 (*curdev)->next = NULL;
252 (*curdev)->dev = dev;
253
254 curdev = &(*curdev)->next;
255 count++;
256 }
257 }
258
259 return count;
260}
261
262/**
263 Frees a usb device list.
264
265 \param devlist USB device list created by ftdi_usb_find_all()
266*/
267void ftdi_list_free(struct ftdi_device_list **devlist)
268{
269 struct ftdi_device_list *curdev, *next;
270
271 for (curdev = *devlist; curdev != NULL;)
272 {
273 next = curdev->next;
274 free(curdev);
275 curdev = next;
276 }
277
278 *devlist = NULL;
279}
280
281/**
282 Frees a usb device list.
283
284 \param devlist USB device list created by ftdi_usb_find_all()
285*/
286void ftdi_list_free2(struct ftdi_device_list *devlist)
287{
288 ftdi_list_free(&devlist);
289}
290
291/**
292 Return device ID strings from the usb device.
293
294 The parameters manufacturer, description and serial may be NULL
295 or pointer to buffers to store the fetched strings.
296
297 \note Use this function only in combination with ftdi_usb_find_all()
298 as it closes the internal "usb_dev" after use.
299
300 \param ftdi pointer to ftdi_context
301 \param dev libusb usb_dev to use
302 \param manufacturer Store manufacturer string here if not NULL
303 \param mnf_len Buffer size of manufacturer string
304 \param description Store product description string here if not NULL
305 \param desc_len Buffer size of product description string
306 \param serial Store serial string here if not NULL
307 \param serial_len Buffer size of serial string
308
309 \retval 0: all fine
310 \retval -1: wrong arguments
311 \retval -4: unable to open device
312 \retval -7: get product manufacturer failed
313 \retval -8: get product description failed
314 \retval -9: get serial number failed
315 \retval -11: libusb_get_device_descriptor() failed
316*/
317int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
318 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
319{
320 struct libusb_device_descriptor desc;
321
322 if ((ftdi==NULL) || (dev==NULL))
323 return -1;
324
325 if (libusb_open(dev, &ftdi->usb_dev) < 0)
326 ftdi_error_return(-4, "libusb_open() failed");
327
328 if (libusb_get_device_descriptor(dev, &desc) < 0)
329 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
330
331 if (manufacturer != NULL)
332 {
333 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
334 {
335 ftdi_usb_close_internal (ftdi);
336 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
337 }
338 }
339
340 if (description != NULL)
341 {
342 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
343 {
344 ftdi_usb_close_internal (ftdi);
345 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
346 }
347 }
348
349 if (serial != NULL)
350 {
351 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
352 {
353 ftdi_usb_close_internal (ftdi);
354 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
355 }
356 }
357
358 ftdi_usb_close_internal (ftdi);
359
360 return 0;
361}
362
363/**
364 * Internal function to determine the maximum packet size.
365 * \param ftdi pointer to ftdi_context
366 * \param dev libusb usb_dev to use
367 * \retval Maximum packet size for this device
368 */
369static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
370{
371 struct libusb_device_descriptor desc;
372 struct libusb_config_descriptor *config0;
373 unsigned int packet_size;
374
375 // Determine maximum packet size. Init with default value.
376 // New hi-speed devices from FTDI use a packet size of 512 bytes
377 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
378 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
379 packet_size = 512;
380 else
381 packet_size = 64;
382
383 if (libusb_get_device_descriptor(dev, &desc) < 0)
384 return packet_size;
385
386 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
387 return packet_size;
388
389 if (desc.bNumConfigurations > 0)
390 {
391 if (ftdi->interface < config0->bNumInterfaces)
392 {
393 struct libusb_interface interface = config0->interface[ftdi->interface];
394 if (interface.num_altsetting > 0)
395 {
396 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
397 if (descriptor.bNumEndpoints > 0)
398 {
399 packet_size = descriptor.endpoint[0].wMaxPacketSize;
400 }
401 }
402 }
403 }
404
405 libusb_free_config_descriptor (config0);
406 return packet_size;
407}
408
409/**
410 Opens a ftdi device given by an usb_device.
411
412 \param ftdi pointer to ftdi_context
413 \param dev libusb usb_dev to use
414
415 \retval 0: all fine
416 \retval -3: unable to config device
417 \retval -4: unable to open device
418 \retval -5: unable to claim device
419 \retval -6: reset failed
420 \retval -7: set baudrate failed
421 \retval -9: libusb_get_device_descriptor() failed
422 \retval -10: libusb_get_config_descriptor() failed
423 \retval -11: libusb_etach_kernel_driver() failed
424 \retval -12: libusb_get_configuration() failed
425*/
426int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
427{
428 struct libusb_device_descriptor desc;
429 struct libusb_config_descriptor *config0;
430 int cfg, cfg0;
431
432 if (libusb_open(dev, &ftdi->usb_dev) < 0)
433 ftdi_error_return(-4, "libusb_open() failed");
434
435 if (libusb_get_device_descriptor(dev, &desc) < 0)
436 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
437
438 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
439 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
440 cfg0 = config0->bConfigurationValue;
441 libusb_free_config_descriptor (config0);
442
443#ifdef LIBUSB_HAS_GET_DRIVER_NP
444 // Try to detach ftdi_sio kernel module.
445 // Returns ENODATA if driver is not loaded.
446 //
447 // The return code is kept in a separate variable and only parsed
448 // if usb_set_configuration() or usb_claim_interface() fails as the
449 // detach operation might be denied and everything still works fine.
450 // Likely scenario is a static ftdi_sio kernel module.
451 ret = libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface);
452 if (ret < 0 && ret != LIBUSB_ERROR_NOT_FOUND)
453 ftdi_error_return(-11, "libusb_detach_kernel_driver () failed");
454#endif
455
456 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
457 ftdi_error_return(-12, "libusb_get_configuration () failed");
458
459 // set configuration (needed especially for windows)
460 // tolerate EBUSY: one device with one configuration, but two interfaces
461 // and libftdi sessions to both interfaces (e.g. FT2232)
462 if (desc.bNumConfigurations > 0 && cfg != cfg0)
463 {
464 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
465 {
466 ftdi_usb_close_internal (ftdi);
467 ftdi_error_return(-3, "unable to set usb configuration. Make sure ftdi_sio is unloaded!");
468 }
469 }
470
471 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
472 {
473 ftdi_usb_close_internal (ftdi);
474 ftdi_error_return(-5, "unable to claim usb device. Make sure ftdi_sio is unloaded!");
475 }
476
477 if (ftdi_usb_reset (ftdi) != 0)
478 {
479 ftdi_usb_close_internal (ftdi);
480 ftdi_error_return(-6, "ftdi_usb_reset failed");
481 }
482
483 // Try to guess chip type
484 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
485 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
486 && desc.iSerialNumber == 0))
487 ftdi->type = TYPE_BM;
488 else if (desc.bcdDevice == 0x200)
489 ftdi->type = TYPE_AM;
490 else if (desc.bcdDevice == 0x500)
491 ftdi->type = TYPE_2232C;
492 else if (desc.bcdDevice == 0x600)
493 ftdi->type = TYPE_R;
494 else if (desc.bcdDevice == 0x700)
495 ftdi->type = TYPE_2232H;
496 else if (desc.bcdDevice == 0x800)
497 ftdi->type = TYPE_4232H;
498
499 // Set default interface on dual/quad type chips
500 switch(ftdi->type)
501 {
502 case TYPE_2232C:
503 case TYPE_2232H:
504 case TYPE_4232H:
505 if (!ftdi->index)
506 ftdi->index = INTERFACE_A;
507 break;
508 default:
509 break;
510 }
511
512 // Determine maximum packet size
513 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
514
515 if (ftdi_set_baudrate (ftdi, 9600) != 0)
516 {
517 ftdi_usb_close_internal (ftdi);
518 ftdi_error_return(-7, "set baudrate failed");
519 }
520
521 ftdi_error_return(0, "all fine");
522}
523
524/**
525 Opens the first device with a given vendor and product ids.
526
527 \param ftdi pointer to ftdi_context
528 \param vendor Vendor ID
529 \param product Product ID
530
531 \retval same as ftdi_usb_open_desc()
532*/
533int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
534{
535 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
536}
537
538/**
539 Opens the first device with a given, vendor id, product id,
540 description and serial.
541
542 \param ftdi pointer to ftdi_context
543 \param vendor Vendor ID
544 \param product Product ID
545 \param description Description to search for. Use NULL if not needed.
546 \param serial Serial to search for. Use NULL if not needed.
547
548 \retval 0: all fine
549 \retval -3: usb device not found
550 \retval -4: unable to open device
551 \retval -5: unable to claim device
552 \retval -6: reset failed
553 \retval -7: set baudrate failed
554 \retval -8: get product description failed
555 \retval -9: get serial number failed
556 \retval -11: libusb_init() failed
557 \retval -12: libusb_get_device_list() failed
558 \retval -13: libusb_get_device_descriptor() failed
559*/
560int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
561 const char* description, const char* serial)
562{
563 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
564}
565
566/**
567 Opens the index-th device with a given, vendor id, product id,
568 description and serial.
569
570 \param ftdi pointer to ftdi_context
571 \param vendor Vendor ID
572 \param product Product ID
573 \param description Description to search for. Use NULL if not needed.
574 \param serial Serial to search for. Use NULL if not needed.
575 \param index Number of matching device to open if there are more than one, starts with 0.
576
577 \retval 0: all fine
578 \retval -1: usb_find_busses() failed
579 \retval -2: usb_find_devices() failed
580 \retval -3: usb device not found
581 \retval -4: unable to open device
582 \retval -5: unable to claim device
583 \retval -6: reset failed
584 \retval -7: set baudrate failed
585 \retval -8: get product description failed
586 \retval -9: get serial number failed
587 \retval -10: unable to close device
588*/
589int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
590 const char* description, const char* serial, unsigned int index)
591{
592 libusb_device *dev;
593 libusb_device **devs;
594 char string[256];
595 int i = 0;
596
597 if (libusb_init(NULL) < 0)
598 ftdi_error_return(-11, "libusb_init() failed");
599
600 if (libusb_get_device_list(NULL, &devs) < 0)
601 ftdi_error_return(-12, "libusb_get_device_list() failed");
602
603 while ((dev = devs[i++]) != NULL)
604 {
605 struct libusb_device_descriptor desc;
606
607 if (libusb_get_device_descriptor(dev, &desc) < 0)
608 ftdi_error_return(-13, "libusb_get_device_descriptor() failed");
609
610 if (desc.idVendor == vendor && desc.idProduct == product)
611 {
612 if (libusb_open(dev, &ftdi->usb_dev) < 0)
613 ftdi_error_return(-4, "usb_open() failed");
614
615 if (description != NULL)
616 {
617 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
618 {
619 libusb_close (ftdi->usb_dev);
620 ftdi_error_return(-8, "unable to fetch product description");
621 }
622 if (strncmp(string, description, sizeof(string)) != 0)
623 {
624 libusb_close (ftdi->usb_dev);
625 continue;
626 }
627 }
628 if (serial != NULL)
629 {
630 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
631 {
632 ftdi_usb_close_internal (ftdi);
633 ftdi_error_return(-9, "unable to fetch serial number");
634 }
635 if (strncmp(string, serial, sizeof(string)) != 0)
636 {
637 ftdi_usb_close_internal (ftdi);
638 continue;
639 }
640 }
641
642 ftdi_usb_close_internal (ftdi);
643
644 if (index > 0)
645 {
646 index--;
647 continue;
648 }
649
650 return ftdi_usb_open_dev(ftdi, dev);
651 }
652 }
653
654 // device not found
655 ftdi_error_return(-3, "device not found");
656}
657
658/**
659 Opens the ftdi-device described by a description-string.
660 Intended to be used for parsing a device-description given as commandline argument.
661
662 \param ftdi pointer to ftdi_context
663 \param description NULL-terminated description-string, using this format:
664 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
665 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
666 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
667 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
668
669 \note The description format may be extended in later versions.
670
671 \retval 0: all fine
672 \retval -1: libusb_init() failed
673 \retval -2: libusb_get_device_list() failed
674 \retval -3: usb device not found
675 \retval -4: unable to open device
676 \retval -5: unable to claim device
677 \retval -6: reset failed
678 \retval -7: set baudrate failed
679 \retval -8: get product description failed
680 \retval -9: get serial number failed
681 \retval -10: unable to close device
682 \retval -11: illegal description format
683*/
684int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
685{
686 if (description[0] == 0 || description[1] != ':')
687 ftdi_error_return(-11, "illegal description format");
688
689 if (description[0] == 'd')
690 {
691 libusb_device *dev;
692 libusb_device **devs;
693 unsigned int bus_number, device_address;
694 int i = 0;
695
696 if (libusb_init (NULL) < 0)
697 ftdi_error_return(-1, "libusb_init() failed");
698
699 if (libusb_get_device_list(NULL, &devs) < 0)
700 ftdi_error_return(-2, "libusb_get_device_list() failed");
701
702 /* XXX: This doesn't handle symlinks/odd paths/etc... */
703 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
704 ftdi_error_return(-11, "illegal description format");
705
706 while ((dev = devs[i++]) != NULL)
707 {
708 if (bus_number == libusb_get_bus_number (dev)
709 && device_address == libusb_get_device_address (dev))
710 return ftdi_usb_open_dev(ftdi, dev);
711 }
712
713 // device not found
714 ftdi_error_return(-3, "device not found");
715 }
716 else if (description[0] == 'i' || description[0] == 's')
717 {
718 unsigned int vendor;
719 unsigned int product;
720 unsigned int index=0;
721 const char *serial=NULL;
722 const char *startp, *endp;
723
724 errno=0;
725 startp=description+2;
726 vendor=strtoul((char*)startp,(char**)&endp,0);
727 if (*endp != ':' || endp == startp || errno != 0)
728 ftdi_error_return(-11, "illegal description format");
729
730 startp=endp+1;
731 product=strtoul((char*)startp,(char**)&endp,0);
732 if (endp == startp || errno != 0)
733 ftdi_error_return(-11, "illegal description format");
734
735 if (description[0] == 'i' && *endp != 0)
736 {
737 /* optional index field in i-mode */
738 if (*endp != ':')
739 ftdi_error_return(-11, "illegal description format");
740
741 startp=endp+1;
742 index=strtoul((char*)startp,(char**)&endp,0);
743 if (*endp != 0 || endp == startp || errno != 0)
744 ftdi_error_return(-11, "illegal description format");
745 }
746 if (description[0] == 's')
747 {
748 if (*endp != ':')
749 ftdi_error_return(-11, "illegal description format");
750
751 /* rest of the description is the serial */
752 serial=endp+1;
753 }
754
755 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
756 }
757 else
758 {
759 ftdi_error_return(-11, "illegal description format");
760 }
761}
762
763/**
764 Resets the ftdi device.
765
766 \param ftdi pointer to ftdi_context
767
768 \retval 0: all fine
769 \retval -1: FTDI reset failed
770*/
771int ftdi_usb_reset(struct ftdi_context *ftdi)
772{
773 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
774 SIO_RESET_REQUEST, SIO_RESET_SIO,
775 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
776 ftdi_error_return(-1,"FTDI reset failed");
777
778 // Invalidate data in the readbuffer
779 ftdi->readbuffer_offset = 0;
780 ftdi->readbuffer_remaining = 0;
781
782 return 0;
783}
784
785/**
786 Clears the read buffer on the chip and the internal read buffer.
787
788 \param ftdi pointer to ftdi_context
789
790 \retval 0: all fine
791 \retval -1: read buffer purge failed
792*/
793int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
794{
795 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
796 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
797 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
798 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
799
800 // Invalidate data in the readbuffer
801 ftdi->readbuffer_offset = 0;
802 ftdi->readbuffer_remaining = 0;
803
804 return 0;
805}
806
807/**
808 Clears the write buffer on the chip.
809
810 \param ftdi pointer to ftdi_context
811
812 \retval 0: all fine
813 \retval -1: write buffer purge failed
814*/
815int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
816{
817 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
818 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
819 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
820 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
821
822 return 0;
823}
824
825/**
826 Clears the buffers on the chip and the internal read buffer.
827
828 \param ftdi pointer to ftdi_context
829
830 \retval 0: all fine
831 \retval -1: read buffer purge failed
832 \retval -2: write buffer purge failed
833*/
834int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
835{
836 int result;
837
838 result = ftdi_usb_purge_rx_buffer(ftdi);
839 if (result < 0)
840 return -1;
841
842 result = ftdi_usb_purge_tx_buffer(ftdi);
843 if (result < 0)
844 return -2;
845
846 return 0;
847}
848
849
850
851/**
852 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
853
854 \param ftdi pointer to ftdi_context
855
856 \retval 0: all fine
857 \retval -1: usb_release failed
858*/
859int ftdi_usb_close(struct ftdi_context *ftdi)
860{
861 int rtn = 0;
862
863 if (ftdi->usb_dev != NULL)
864 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
865 rtn = -1;
866
867 ftdi_usb_close_internal (ftdi);
868
869 return rtn;
870}
871
872/**
873 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
874 Function is only used internally
875 \internal
876*/
877static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
878 unsigned short *value, unsigned short *index)
879{
880 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
881 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
882 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
883 int divisor, best_divisor, best_baud, best_baud_diff;
884 unsigned long encoded_divisor;
885 int i;
886
887 if (baudrate <= 0)
888 {
889 // Return error
890 return -1;
891 }
892
893 divisor = 24000000 / baudrate;
894
895 if (ftdi->type == TYPE_AM)
896 {
897 // Round down to supported fraction (AM only)
898 divisor -= am_adjust_dn[divisor & 7];
899 }
900
901 // Try this divisor and the one above it (because division rounds down)
902 best_divisor = 0;
903 best_baud = 0;
904 best_baud_diff = 0;
905 for (i = 0; i < 2; i++)
906 {
907 int try_divisor = divisor + i;
908 int baud_estimate;
909 int baud_diff;
910
911 // Round up to supported divisor value
912 if (try_divisor <= 8)
913 {
914 // Round up to minimum supported divisor
915 try_divisor = 8;
916 }
917 else if (ftdi->type != TYPE_AM && try_divisor < 12)
918 {
919 // BM doesn't support divisors 9 through 11 inclusive
920 try_divisor = 12;
921 }
922 else if (divisor < 16)
923 {
924 // AM doesn't support divisors 9 through 15 inclusive
925 try_divisor = 16;
926 }
927 else
928 {
929 if (ftdi->type == TYPE_AM)
930 {
931 // Round up to supported fraction (AM only)
932 try_divisor += am_adjust_up[try_divisor & 7];
933 if (try_divisor > 0x1FFF8)
934 {
935 // Round down to maximum supported divisor value (for AM)
936 try_divisor = 0x1FFF8;
937 }
938 }
939 else
940 {
941 if (try_divisor > 0x1FFFF)
942 {
943 // Round down to maximum supported divisor value (for BM)
944 try_divisor = 0x1FFFF;
945 }
946 }
947 }
948 // Get estimated baud rate (to nearest integer)
949 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
950 // Get absolute difference from requested baud rate
951 if (baud_estimate < baudrate)
952 {
953 baud_diff = baudrate - baud_estimate;
954 }
955 else
956 {
957 baud_diff = baud_estimate - baudrate;
958 }
959 if (i == 0 || baud_diff < best_baud_diff)
960 {
961 // Closest to requested baud rate so far
962 best_divisor = try_divisor;
963 best_baud = baud_estimate;
964 best_baud_diff = baud_diff;
965 if (baud_diff == 0)
966 {
967 // Spot on! No point trying
968 break;
969 }
970 }
971 }
972 // Encode the best divisor value
973 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
974 // Deal with special cases for encoded value
975 if (encoded_divisor == 1)
976 {
977 encoded_divisor = 0; // 3000000 baud
978 }
979 else if (encoded_divisor == 0x4001)
980 {
981 encoded_divisor = 1; // 2000000 baud (BM only)
982 }
983 // Split into "value" and "index" values
984 *value = (unsigned short)(encoded_divisor & 0xFFFF);
985 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
986 {
987 *index = (unsigned short)(encoded_divisor >> 8);
988 *index &= 0xFF00;
989 *index |= ftdi->index;
990 }
991 else
992 *index = (unsigned short)(encoded_divisor >> 16);
993
994 // Return the nearest baud rate
995 return best_baud;
996}
997
998/**
999 Sets the chip baud rate
1000
1001 \param ftdi pointer to ftdi_context
1002 \param baudrate baud rate to set
1003
1004 \retval 0: all fine
1005 \retval -1: invalid baudrate
1006 \retval -2: setting baudrate failed
1007*/
1008int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1009{
1010 unsigned short value, index;
1011 int actual_baudrate;
1012
1013 if (ftdi->bitbang_enabled)
1014 {
1015 baudrate = baudrate*4;
1016 }
1017
1018 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1019 if (actual_baudrate <= 0)
1020 ftdi_error_return (-1, "Silly baudrate <= 0.");
1021
1022 // Check within tolerance (about 5%)
1023 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1024 || ((actual_baudrate < baudrate)
1025 ? (actual_baudrate * 21 < baudrate * 20)
1026 : (baudrate * 21 < actual_baudrate * 20)))
1027 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1028
1029 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1030 SIO_SET_BAUDRATE_REQUEST, value,
1031 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1032 ftdi_error_return (-2, "Setting new baudrate failed");
1033
1034 ftdi->baudrate = baudrate;
1035 return 0;
1036}
1037
1038/**
1039 Set (RS232) line characteristics.
1040 The break type can only be set via ftdi_set_line_property2()
1041 and defaults to "off".
1042
1043 \param ftdi pointer to ftdi_context
1044 \param bits Number of bits
1045 \param sbit Number of stop bits
1046 \param parity Parity mode
1047
1048 \retval 0: all fine
1049 \retval -1: Setting line property failed
1050*/
1051int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1052 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1053{
1054 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1055}
1056
1057/**
1058 Set (RS232) line characteristics
1059
1060 \param ftdi pointer to ftdi_context
1061 \param bits Number of bits
1062 \param sbit Number of stop bits
1063 \param parity Parity mode
1064 \param break_type Break type
1065
1066 \retval 0: all fine
1067 \retval -1: Setting line property failed
1068*/
1069int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1070 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1071 enum ftdi_break_type break_type)
1072{
1073 unsigned short value = bits;
1074
1075 switch (parity)
1076 {
1077 case NONE:
1078 value |= (0x00 << 8);
1079 break;
1080 case ODD:
1081 value |= (0x01 << 8);
1082 break;
1083 case EVEN:
1084 value |= (0x02 << 8);
1085 break;
1086 case MARK:
1087 value |= (0x03 << 8);
1088 break;
1089 case SPACE:
1090 value |= (0x04 << 8);
1091 break;
1092 }
1093
1094 switch (sbit)
1095 {
1096 case STOP_BIT_1:
1097 value |= (0x00 << 11);
1098 break;
1099 case STOP_BIT_15:
1100 value |= (0x01 << 11);
1101 break;
1102 case STOP_BIT_2:
1103 value |= (0x02 << 11);
1104 break;
1105 }
1106
1107 switch (break_type)
1108 {
1109 case BREAK_OFF:
1110 value |= (0x00 << 14);
1111 break;
1112 case BREAK_ON:
1113 value |= (0x01 << 14);
1114 break;
1115 }
1116
1117 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1118 SIO_SET_DATA_REQUEST, value,
1119 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1120 ftdi_error_return (-1, "Setting new line property failed");
1121
1122 return 0;
1123}
1124
1125/**
1126 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1127
1128 \param ftdi pointer to ftdi_context
1129 \param buf Buffer with the data
1130 \param size Size of the buffer
1131
1132 \retval <0: error code from usb_bulk_write()
1133 \retval >0: number of bytes written
1134*/
1135int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1136{
1137 int offset = 0;
1138 int actual_length;
1139
1140 while (offset < size)
1141 {
1142 int write_size = ftdi->writebuffer_chunksize;
1143
1144 if (offset+write_size > size)
1145 write_size = size-offset;
1146
1147 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1148 ftdi_error_return(-1, "usb bulk write failed");
1149
1150 offset += actual_length;
1151 }
1152
1153 return offset;
1154}
1155
1156#ifdef LIBFTDI_LINUX_ASYNC_MODE
1157#ifdef USB_CLASS_PTP
1158#error LIBFTDI_LINUX_ASYNC_MODE is not compatible with libusb-compat-0.1!
1159#endif
1160static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1161{
1162 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1163 struct ftdi_context *ftdi = tc->ftdi;
1164 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1165
1166 // New hi-speed devices from FTDI use a packet size of 512 bytes
1167 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1168 packet_size = 512;
1169 else
1170 packet_size = 64;
1171
1172 actual_length = transfer->actual_length;
1173
1174 if (actual_length > 2)
1175 {
1176 // skip FTDI status bytes.
1177 // Maybe stored in the future to enable modem use
1178 num_of_chunks = actual_length / packet_size;
1179 chunk_remains = actual_length % packet_size;
1180 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1181
1182 ftdi->readbuffer_offset += 2;
1183 actual_length -= 2;
1184
1185 if (actual_length > packet_size - 2)
1186 {
1187 for (i = 1; i < num_of_chunks; i++)
1188 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1189 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1190 packet_size - 2);
1191 if (chunk_remains > 2)
1192 {
1193 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1194 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1195 chunk_remains-2);
1196 actual_length -= 2*num_of_chunks;
1197 }
1198 else
1199 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1200 }
1201
1202 if (actual_length > 0)
1203 {
1204 // data still fits in buf?
1205 if (tc->offset + actual_length <= tc->size)
1206 {
1207 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1208 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1209 tc->offset += actual_length;
1210
1211 ftdi->readbuffer_offset = 0;
1212 ftdi->readbuffer_remaining = 0;
1213
1214 /* Did we read exactly the right amount of bytes? */
1215 if (tc->offset == tc->size)
1216 {
1217 //printf("read_data exact rem %d offset %d\n",
1218 //ftdi->readbuffer_remaining, offset);
1219 tc->completed = 1;
1220 return;
1221 }
1222 }
1223 else
1224 {
1225 // only copy part of the data or size <= readbuffer_chunksize
1226 int part_size = tc->size - tc->offset;
1227 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1228 tc->offset += part_size;
1229
1230 ftdi->readbuffer_offset += part_size;
1231 ftdi->readbuffer_remaining = actual_length - part_size;
1232
1233 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1234 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1235 tc->completed = 1;
1236 return;
1237 }
1238 }
1239 }
1240 ret = libusb_submit_transfer (transfer);
1241 if (ret < 0)
1242 tc->completed = 1;
1243}
1244
1245
1246static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1247{
1248 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1249 struct ftdi_context *ftdi = tc->ftdi;
1250
1251 tc->offset = transfer->actual_length;
1252
1253 if (tc->offset == tc->size)
1254 {
1255 tc->completed = 1;
1256 }
1257 else
1258 {
1259 int write_size = ftdi->writebuffer_chunksize;
1260 int ret;
1261
1262 if (tc->offset + write_size > tc->size)
1263 write_size = tc->size - tc->offset;
1264
1265 transfer->length = write_size;
1266 transfer->buffer = tc->buf + tc->offset;
1267 ret = libusb_submit_transfer (transfer);
1268 if (ret < 0)
1269 tc->completed = 1;
1270 }
1271}
1272
1273
1274/**
1275 Writes data to the chip. Does not wait for completion of the transfer
1276 nor does it make sure that the transfer was successful.
1277
1278 Use libusb 1.0 Asynchronous API.
1279 Only available if compiled with --with-async-mode.
1280
1281 \param ftdi pointer to ftdi_context
1282 \param buf Buffer with the data
1283 \param size Size of the buffer
1284
1285 \retval NULL: Some error happens when submit transfer
1286 \retval !NULL: Pointer to a ftdi_transfer_control
1287*/
1288
1289struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1290{
1291 struct ftdi_transfer_control *tc;
1292 struct libusb_transfer *transfer = libusb_alloc_transfer(0);
1293 int write_size, ret;
1294
1295 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1296
1297 if (!tc || !transfer)
1298 return NULL;
1299
1300 tc->ftdi = ftdi;
1301 tc->completed = 0;
1302 tc->buf = buf;
1303 tc->size = size;
1304 tc->offset = 0;
1305
1306 if (size < ftdi->writebuffer_chunksize)
1307 write_size = size;
1308 else
1309 write_size = ftdi->writebuffer_chunksize;
1310
1311 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf, write_size, ftdi_write_data_cb, tc, ftdi->usb_write_timeout);
1312 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1313
1314 ret = libusb_submit_transfer(transfer);
1315 if (ret < 0)
1316 {
1317 libusb_free_transfer(transfer);
1318 tc->completed = 1;
1319 tc->transfer = NULL;
1320 return NULL;
1321 }
1322 tc->transfer = transfer;
1323
1324 return tc;
1325}
1326
1327/**
1328 Reads data from the chip. Does not wait for completion of the transfer
1329 nor does it make sure that the transfer was successful.
1330
1331 Use libusb 1.0 Asynchronous API.
1332 Only available if compiled with --with-async-mode.
1333
1334 \param ftdi pointer to ftdi_context
1335 \param buf Buffer with the data
1336 \param size Size of the buffer
1337
1338 \retval NULL: Some error happens when submit transfer
1339 \retval !NULL: Pointer to a ftdi_transfer_control
1340*/
1341
1342struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1343{
1344 struct ftdi_transfer_control *tc;
1345 struct libusb_transfer *transfer;
1346 int ret;
1347
1348 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1349 if (!tc)
1350 return NULL;
1351
1352 tc->ftdi = ftdi;
1353 tc->buf = buf;
1354 tc->size = size;
1355
1356 if (size <= ftdi->readbuffer_remaining)
1357 {
1358 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1359
1360 // Fix offsets
1361 ftdi->readbuffer_remaining -= size;
1362 ftdi->readbuffer_offset += size;
1363
1364 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1365
1366 tc->completed = 1;
1367 tc->offset = size;
1368 tc->transfer = NULL;
1369 return tc;
1370 }
1371
1372 tc->completed = 0;
1373 if (ftdi->readbuffer_remaining != 0)
1374 {
1375 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1376
1377 tc->offset = ftdi->readbuffer_remaining;
1378 }
1379 else
1380 tc->offset = 0;
1381
1382 transfer = libusb_alloc_transfer(0);
1383 if (!transfer)
1384 {
1385 free (tc);
1386 return NULL;
1387 }
1388
1389 ftdi->readbuffer_remaining = 0;
1390 ftdi->readbuffer_offset = 0;
1391
1392 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1393 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1394
1395 ret = libusb_submit_transfer(transfer);
1396 if (ret < 0)
1397 {
1398 libusb_free_transfer(transfer);
1399 free (tc);
1400 return NULL;
1401 }
1402 tc->transfer = transfer;
1403
1404 return tc;
1405}
1406
1407/**
1408 Wait for completion of the transfer.
1409
1410 Use libusb 1.0 Asynchronous API.
1411 Only available if compiled with --with-async-mode.
1412
1413 \param tc pointer to ftdi_transfer_control
1414
1415 \retval < 0: Some error happens
1416 \retval >= 0: Data size transferred
1417*/
1418
1419int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1420{
1421 int ret;
1422
1423 while (!tc->completed)
1424 {
1425 ret = libusb_handle_events(NULL);
1426 if (ret < 0)
1427 {
1428 if (ret == LIBUSB_ERROR_INTERRUPTED)
1429 continue;
1430 libusb_cancel_transfer(tc->transfer);
1431 while (!tc->completed)
1432 if (libusb_handle_events(NULL) < 0)
1433 break;
1434 libusb_free_transfer(tc->transfer);
1435 free (tc);
1436 tc = NULL;
1437 return ret;
1438 }
1439 }
1440
1441 if (tc->transfer->status == LIBUSB_TRANSFER_COMPLETED)
1442 ret = tc->offset;
1443 else
1444 ret = -1;
1445
1446 libusb_free_transfer(tc->transfer);
1447 free(tc);
1448 return ret;
1449}
1450
1451#endif // LIBFTDI_LINUX_ASYNC_MODE
1452
1453/**
1454 Configure write buffer chunk size.
1455 Default is 4096.
1456
1457 \param ftdi pointer to ftdi_context
1458 \param chunksize Chunk size
1459
1460 \retval 0: all fine
1461*/
1462int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1463{
1464 ftdi->writebuffer_chunksize = chunksize;
1465 return 0;
1466}
1467
1468/**
1469 Get write buffer chunk size.
1470
1471 \param ftdi pointer to ftdi_context
1472 \param chunksize Pointer to store chunk size in
1473
1474 \retval 0: all fine
1475*/
1476int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1477{
1478 *chunksize = ftdi->writebuffer_chunksize;
1479 return 0;
1480}
1481
1482/**
1483 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1484
1485 Automatically strips the two modem status bytes transfered during every read.
1486
1487 \param ftdi pointer to ftdi_context
1488 \param buf Buffer to store data in
1489 \param size Size of the buffer
1490
1491 \retval <0: error code from libusb_bulk_transfer()
1492 \retval 0: no data was available
1493 \retval >0: number of bytes read
1494
1495*/
1496int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1497{
1498 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1499 int packet_size = ftdi->max_packet_size;
1500 int actual_length = 1;
1501
1502 // Packet size sanity check (avoid division by zero)
1503 if (packet_size == 0)
1504 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1505
1506 // everything we want is still in the readbuffer?
1507 if (size <= ftdi->readbuffer_remaining)
1508 {
1509 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1510
1511 // Fix offsets
1512 ftdi->readbuffer_remaining -= size;
1513 ftdi->readbuffer_offset += size;
1514
1515 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1516
1517 return size;
1518 }
1519 // something still in the readbuffer, but not enough to satisfy 'size'?
1520 if (ftdi->readbuffer_remaining != 0)
1521 {
1522 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1523
1524 // Fix offset
1525 offset += ftdi->readbuffer_remaining;
1526 }
1527 // do the actual USB read
1528 while (offset < size && actual_length > 0)
1529 {
1530 ftdi->readbuffer_remaining = 0;
1531 ftdi->readbuffer_offset = 0;
1532 /* returns how much received */
1533 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1534 if (ret < 0)
1535 ftdi_error_return(ret, "usb bulk read failed");
1536
1537 if (actual_length > 2)
1538 {
1539 // skip FTDI status bytes.
1540 // Maybe stored in the future to enable modem use
1541 num_of_chunks = actual_length / packet_size;
1542 chunk_remains = actual_length % packet_size;
1543 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1544
1545 ftdi->readbuffer_offset += 2;
1546 actual_length -= 2;
1547
1548 if (actual_length > packet_size - 2)
1549 {
1550 for (i = 1; i < num_of_chunks; i++)
1551 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1552 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1553 packet_size - 2);
1554 if (chunk_remains > 2)
1555 {
1556 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1557 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1558 chunk_remains-2);
1559 actual_length -= 2*num_of_chunks;
1560 }
1561 else
1562 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1563 }
1564 }
1565 else if (actual_length <= 2)
1566 {
1567 // no more data to read?
1568 return offset;
1569 }
1570 if (actual_length > 0)
1571 {
1572 // data still fits in buf?
1573 if (offset+actual_length <= size)
1574 {
1575 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1576 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1577 offset += actual_length;
1578
1579 /* Did we read exactly the right amount of bytes? */
1580 if (offset == size)
1581 //printf("read_data exact rem %d offset %d\n",
1582 //ftdi->readbuffer_remaining, offset);
1583 return offset;
1584 }
1585 else
1586 {
1587 // only copy part of the data or size <= readbuffer_chunksize
1588 int part_size = size-offset;
1589 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1590
1591 ftdi->readbuffer_offset += part_size;
1592 ftdi->readbuffer_remaining = actual_length-part_size;
1593 offset += part_size;
1594
1595 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1596 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1597
1598 return offset;
1599 }
1600 }
1601 }
1602 // never reached
1603 return -127;
1604}
1605
1606/**
1607 Configure read buffer chunk size.
1608 Default is 4096.
1609
1610 Automatically reallocates the buffer.
1611
1612 \param ftdi pointer to ftdi_context
1613 \param chunksize Chunk size
1614
1615 \retval 0: all fine
1616*/
1617int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1618{
1619 unsigned char *new_buf;
1620
1621 // Invalidate all remaining data
1622 ftdi->readbuffer_offset = 0;
1623 ftdi->readbuffer_remaining = 0;
1624#ifdef __linux__
1625 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1626 which is defined in libusb-1.0. Otherwise, each USB read request will
1627 be devided into multiple URBs. This will cause issues on Linux kernel
1628 older than 2.6.32. */
1629 if (chunksize > 16384)
1630 chunksize = 16384;
1631#endif
1632
1633 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1634 ftdi_error_return(-1, "out of memory for readbuffer");
1635
1636 ftdi->readbuffer = new_buf;
1637 ftdi->readbuffer_chunksize = chunksize;
1638
1639 return 0;
1640}
1641
1642/**
1643 Get read buffer chunk size.
1644
1645 \param ftdi pointer to ftdi_context
1646 \param chunksize Pointer to store chunk size in
1647
1648 \retval 0: all fine
1649*/
1650int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1651{
1652 *chunksize = ftdi->readbuffer_chunksize;
1653 return 0;
1654}
1655
1656
1657/**
1658 Enable bitbang mode.
1659
1660 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1661
1662 \param ftdi pointer to ftdi_context
1663 \param bitmask Bitmask to configure lines.
1664 HIGH/ON value configures a line as output.
1665
1666 \retval 0: all fine
1667 \retval -1: can't enable bitbang mode
1668*/
1669int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1670{
1671 unsigned short usb_val;
1672
1673 usb_val = bitmask; // low byte: bitmask
1674 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1675 usb_val |= (ftdi->bitbang_mode << 8);
1676
1677 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1678 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1679 NULL, 0, ftdi->usb_write_timeout) < 0)
1680 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1681
1682 ftdi->bitbang_enabled = 1;
1683 return 0;
1684}
1685
1686/**
1687 Disable bitbang mode.
1688
1689 \param ftdi pointer to ftdi_context
1690
1691 \retval 0: all fine
1692 \retval -1: can't disable bitbang mode
1693*/
1694int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1695{
1696 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1697 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1698
1699 ftdi->bitbang_enabled = 0;
1700 return 0;
1701}
1702
1703/**
1704 Enable/disable bitbang modes.
1705
1706 \param ftdi pointer to ftdi_context
1707 \param bitmask Bitmask to configure lines.
1708 HIGH/ON value configures a line as output.
1709 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1710
1711 \retval 0: all fine
1712 \retval -1: can't enable bitbang mode
1713*/
1714int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1715{
1716 unsigned short usb_val;
1717
1718 usb_val = bitmask; // low byte: bitmask
1719 usb_val |= (mode << 8);
1720 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1721 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1722
1723 ftdi->bitbang_mode = mode;
1724 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1725 return 0;
1726}
1727
1728/**
1729 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1730
1731 \param ftdi pointer to ftdi_context
1732 \param pins Pointer to store pins into
1733
1734 \retval 0: all fine
1735 \retval -1: read pins failed
1736*/
1737int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1738{
1739 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1740 ftdi_error_return(-1, "read pins failed");
1741
1742 return 0;
1743}
1744
1745/**
1746 Set latency timer
1747
1748 The FTDI chip keeps data in the internal buffer for a specific
1749 amount of time if the buffer is not full yet to decrease
1750 load on the usb bus.
1751
1752 \param ftdi pointer to ftdi_context
1753 \param latency Value between 1 and 255
1754
1755 \retval 0: all fine
1756 \retval -1: latency out of range
1757 \retval -2: unable to set latency timer
1758*/
1759int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1760{
1761 unsigned short usb_val;
1762
1763 if (latency < 1)
1764 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1765
1766 usb_val = latency;
1767 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1768 ftdi_error_return(-2, "unable to set latency timer");
1769
1770 return 0;
1771}
1772
1773/**
1774 Get latency timer
1775
1776 \param ftdi pointer to ftdi_context
1777 \param latency Pointer to store latency value in
1778
1779 \retval 0: all fine
1780 \retval -1: unable to get latency timer
1781*/
1782int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1783{
1784 unsigned short usb_val;
1785 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1786 ftdi_error_return(-1, "reading latency timer failed");
1787
1788 *latency = (unsigned char)usb_val;
1789 return 0;
1790}
1791
1792/**
1793 Poll modem status information
1794
1795 This function allows the retrieve the two status bytes of the device.
1796 The device sends these bytes also as a header for each read access
1797 where they are discarded by ftdi_read_data(). The chip generates
1798 the two stripped status bytes in the absence of data every 40 ms.
1799
1800 Layout of the first byte:
1801 - B0..B3 - must be 0
1802 - B4 Clear to send (CTS)
1803 0 = inactive
1804 1 = active
1805 - B5 Data set ready (DTS)
1806 0 = inactive
1807 1 = active
1808 - B6 Ring indicator (RI)
1809 0 = inactive
1810 1 = active
1811 - B7 Receive line signal detect (RLSD)
1812 0 = inactive
1813 1 = active
1814
1815 Layout of the second byte:
1816 - B0 Data ready (DR)
1817 - B1 Overrun error (OE)
1818 - B2 Parity error (PE)
1819 - B3 Framing error (FE)
1820 - B4 Break interrupt (BI)
1821 - B5 Transmitter holding register (THRE)
1822 - B6 Transmitter empty (TEMT)
1823 - B7 Error in RCVR FIFO
1824
1825 \param ftdi pointer to ftdi_context
1826 \param status Pointer to store status information in. Must be two bytes.
1827
1828 \retval 0: all fine
1829 \retval -1: unable to retrieve status information
1830*/
1831int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1832{
1833 char usb_val[2];
1834
1835 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1836 ftdi_error_return(-1, "getting modem status failed");
1837
1838 *status = (usb_val[1] << 8) | usb_val[0];
1839
1840 return 0;
1841}
1842
1843/**
1844 Set flowcontrol for ftdi chip
1845
1846 \param ftdi pointer to ftdi_context
1847 \param flowctrl flow control to use. should be
1848 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
1849
1850 \retval 0: all fine
1851 \retval -1: set flow control failed
1852*/
1853int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1854{
1855 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1856 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
1857 NULL, 0, ftdi->usb_write_timeout) < 0)
1858 ftdi_error_return(-1, "set flow control failed");
1859
1860 return 0;
1861}
1862
1863/**
1864 Set dtr line
1865
1866 \param ftdi pointer to ftdi_context
1867 \param state state to set line to (1 or 0)
1868
1869 \retval 0: all fine
1870 \retval -1: set dtr failed
1871*/
1872int ftdi_setdtr(struct ftdi_context *ftdi, int state)
1873{
1874 unsigned short usb_val;
1875
1876 if (state)
1877 usb_val = SIO_SET_DTR_HIGH;
1878 else
1879 usb_val = SIO_SET_DTR_LOW;
1880
1881 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1882 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1883 NULL, 0, ftdi->usb_write_timeout) < 0)
1884 ftdi_error_return(-1, "set dtr failed");
1885
1886 return 0;
1887}
1888
1889/**
1890 Set rts line
1891
1892 \param ftdi pointer to ftdi_context
1893 \param state state to set line to (1 or 0)
1894
1895 \retval 0: all fine
1896 \retval -1 set rts failed
1897*/
1898int ftdi_setrts(struct ftdi_context *ftdi, int state)
1899{
1900 unsigned short usb_val;
1901
1902 if (state)
1903 usb_val = SIO_SET_RTS_HIGH;
1904 else
1905 usb_val = SIO_SET_RTS_LOW;
1906
1907 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1908 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1909 NULL, 0, ftdi->usb_write_timeout) < 0)
1910 ftdi_error_return(-1, "set of rts failed");
1911
1912 return 0;
1913}
1914
1915/**
1916 Set dtr and rts line in one pass
1917
1918 \param ftdi pointer to ftdi_context
1919 \param dtr DTR state to set line to (1 or 0)
1920 \param rts RTS state to set line to (1 or 0)
1921
1922 \retval 0: all fine
1923 \retval -1 set dtr/rts failed
1924 */
1925int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
1926{
1927 unsigned short usb_val;
1928
1929 if (dtr)
1930 usb_val = SIO_SET_DTR_HIGH;
1931 else
1932 usb_val = SIO_SET_DTR_LOW;
1933
1934 if (rts)
1935 usb_val |= SIO_SET_RTS_HIGH;
1936 else
1937 usb_val |= SIO_SET_RTS_LOW;
1938
1939 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1940 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1941 NULL, 0, ftdi->usb_write_timeout) < 0)
1942 ftdi_error_return(-1, "set of rts/dtr failed");
1943
1944 return 0;
1945}
1946
1947/**
1948 Set the special event character
1949
1950 \param ftdi pointer to ftdi_context
1951 \param eventch Event character
1952 \param enable 0 to disable the event character, non-zero otherwise
1953
1954 \retval 0: all fine
1955 \retval -1: unable to set event character
1956*/
1957int ftdi_set_event_char(struct ftdi_context *ftdi,
1958 unsigned char eventch, unsigned char enable)
1959{
1960 unsigned short usb_val;
1961
1962 usb_val = eventch;
1963 if (enable)
1964 usb_val |= 1 << 8;
1965
1966 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1967 ftdi_error_return(-1, "setting event character failed");
1968
1969 return 0;
1970}
1971
1972/**
1973 Set error character
1974
1975 \param ftdi pointer to ftdi_context
1976 \param errorch Error character
1977 \param enable 0 to disable the error character, non-zero otherwise
1978
1979 \retval 0: all fine
1980 \retval -1: unable to set error character
1981*/
1982int ftdi_set_error_char(struct ftdi_context *ftdi,
1983 unsigned char errorch, unsigned char enable)
1984{
1985 unsigned short usb_val;
1986
1987 usb_val = errorch;
1988 if (enable)
1989 usb_val |= 1 << 8;
1990
1991 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1992 ftdi_error_return(-1, "setting error character failed");
1993
1994 return 0;
1995}
1996
1997/**
1998 Set the eeprom size
1999
2000 \param ftdi pointer to ftdi_context
2001 \param eeprom Pointer to ftdi_eeprom
2002 \param size
2003
2004*/
2005void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
2006{
2007 ftdi->eeprom_size=size;
2008 eeprom->size=size;
2009}
2010
2011/**
2012 Init eeprom with default values.
2013
2014 \param eeprom Pointer to ftdi_eeprom
2015*/
2016void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
2017{
2018 eeprom->vendor_id = 0x0403;
2019 eeprom->product_id = 0x6001;
2020
2021 eeprom->self_powered = 1;
2022 eeprom->remote_wakeup = 1;
2023 eeprom->BM_type_chip = 1;
2024
2025 eeprom->in_is_isochronous = 0;
2026 eeprom->out_is_isochronous = 0;
2027 eeprom->suspend_pull_downs = 0;
2028
2029 eeprom->use_serial = 0;
2030 eeprom->change_usb_version = 0;
2031 eeprom->usb_version = 0x0200;
2032 eeprom->max_power = 0;
2033
2034 eeprom->manufacturer = NULL;
2035 eeprom->product = NULL;
2036 eeprom->serial = NULL;
2037
2038 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
2039}
2040
2041/**
2042 Build binary output from ftdi_eeprom structure.
2043 Output is suitable for ftdi_write_eeprom().
2044
2045 \param eeprom Pointer to ftdi_eeprom
2046 \param output Buffer of 128 bytes to store eeprom image to
2047
2048 \retval >0: used eeprom size
2049 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2050*/
2051int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
2052{
2053 unsigned char i, j;
2054 unsigned short checksum, value;
2055 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2056 int size_check;
2057
2058 if (eeprom->manufacturer != NULL)
2059 manufacturer_size = strlen(eeprom->manufacturer);
2060 if (eeprom->product != NULL)
2061 product_size = strlen(eeprom->product);
2062 if (eeprom->serial != NULL)
2063 serial_size = strlen(eeprom->serial);
2064
2065 size_check = eeprom->size;
2066 size_check -= 28; // 28 are always in use (fixed)
2067
2068 // Top half of a 256byte eeprom is used just for strings and checksum
2069 // it seems that the FTDI chip will not read these strings from the lower half
2070 // Each string starts with two bytes; offset and type (0x03 for string)
2071 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
2072 if (eeprom->size>=256)size_check = 120;
2073 size_check -= manufacturer_size*2;
2074 size_check -= product_size*2;
2075 size_check -= serial_size*2;
2076
2077 // eeprom size exceeded?
2078 if (size_check < 0)
2079 return (-1);
2080
2081 // empty eeprom
2082 memset (output, 0, eeprom->size);
2083
2084 // Addr 00: Stay 00 00
2085 // Addr 02: Vendor ID
2086 output[0x02] = eeprom->vendor_id;
2087 output[0x03] = eeprom->vendor_id >> 8;
2088
2089 // Addr 04: Product ID
2090 output[0x04] = eeprom->product_id;
2091 output[0x05] = eeprom->product_id >> 8;
2092
2093 // Addr 06: Device release number (0400h for BM features)
2094 output[0x06] = 0x00;
2095
2096 if (eeprom->BM_type_chip == 1)
2097 output[0x07] = 0x04;
2098 else
2099 output[0x07] = 0x02;
2100
2101 // Addr 08: Config descriptor
2102 // Bit 7: always 1
2103 // Bit 6: 1 if this device is self powered, 0 if bus powered
2104 // Bit 5: 1 if this device uses remote wakeup
2105 // Bit 4: 1 if this device is battery powered
2106 j = 0x80;
2107 if (eeprom->self_powered == 1)
2108 j |= 0x40;
2109 if (eeprom->remote_wakeup == 1)
2110 j |= 0x20;
2111 output[0x08] = j;
2112
2113 // Addr 09: Max power consumption: max power = value * 2 mA
2114 output[0x09] = eeprom->max_power;
2115
2116 // Addr 0A: Chip configuration
2117 // Bit 7: 0 - reserved
2118 // Bit 6: 0 - reserved
2119 // Bit 5: 0 - reserved
2120 // Bit 4: 1 - Change USB version
2121 // Bit 3: 1 - Use the serial number string
2122 // Bit 2: 1 - Enable suspend pull downs for lower power
2123 // Bit 1: 1 - Out EndPoint is Isochronous
2124 // Bit 0: 1 - In EndPoint is Isochronous
2125 //
2126 j = 0;
2127 if (eeprom->in_is_isochronous == 1)
2128 j = j | 1;
2129 if (eeprom->out_is_isochronous == 1)
2130 j = j | 2;
2131 if (eeprom->suspend_pull_downs == 1)
2132 j = j | 4;
2133 if (eeprom->use_serial == 1)
2134 j = j | 8;
2135 if (eeprom->change_usb_version == 1)
2136 j = j | 16;
2137 output[0x0A] = j;
2138
2139 // Addr 0B: reserved
2140 output[0x0B] = 0x00;
2141
2142 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2143 // Addr 0D: USB version high byte when 0x0A bit 4 is set
2144 if (eeprom->change_usb_version == 1)
2145 {
2146 output[0x0C] = eeprom->usb_version;
2147 output[0x0D] = eeprom->usb_version >> 8;
2148 }
2149
2150
2151 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2152 // Addr 0F: Length of manufacturer string
2153 output[0x0F] = manufacturer_size*2 + 2;
2154
2155 // Addr 10: Offset of the product string + 0x80, calculated later
2156 // Addr 11: Length of product string
2157 output[0x11] = product_size*2 + 2;
2158
2159 // Addr 12: Offset of the serial string + 0x80, calculated later
2160 // Addr 13: Length of serial string
2161 output[0x13] = serial_size*2 + 2;
2162
2163 // Dynamic content
2164 i=0x14;
2165 if (eeprom->size>=256) i = 0x80;
2166
2167
2168 // Output manufacturer
2169 output[0x0E] = i | 0x80; // calculate offset
2170 output[i++] = manufacturer_size*2 + 2;
2171 output[i++] = 0x03; // type: string
2172 for (j = 0; j < manufacturer_size; j++)
2173 {
2174 output[i] = eeprom->manufacturer[j], i++;
2175 output[i] = 0x00, i++;
2176 }
2177
2178 // Output product name
2179 output[0x10] = i | 0x80; // calculate offset
2180 output[i] = product_size*2 + 2, i++;
2181 output[i] = 0x03, i++;
2182 for (j = 0; j < product_size; j++)
2183 {
2184 output[i] = eeprom->product[j], i++;
2185 output[i] = 0x00, i++;
2186 }
2187
2188 // Output serial
2189 output[0x12] = i | 0x80; // calculate offset
2190 output[i] = serial_size*2 + 2, i++;
2191 output[i] = 0x03, i++;
2192 for (j = 0; j < serial_size; j++)
2193 {
2194 output[i] = eeprom->serial[j], i++;
2195 output[i] = 0x00, i++;
2196 }
2197
2198 // calculate checksum
2199 checksum = 0xAAAA;
2200
2201 for (i = 0; i < eeprom->size/2-1; i++)
2202 {
2203 value = output[i*2];
2204 value += output[(i*2)+1] << 8;
2205
2206 checksum = value^checksum;
2207 checksum = (checksum << 1) | (checksum >> 15);
2208 }
2209
2210 output[eeprom->size-2] = checksum;
2211 output[eeprom->size-1] = checksum >> 8;
2212
2213 return size_check;
2214}
2215
2216/**
2217 Decode binary EEPROM image into an ftdi_eeprom structure.
2218
2219 \param eeprom Pointer to ftdi_eeprom which will be filled in.
2220 \param buf Buffer of \a size bytes of raw eeprom data
2221 \param size size size of eeprom data in bytes
2222
2223 \retval 0: all fine
2224 \retval -1: something went wrong
2225
2226 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2227 FIXME: Strings are malloc'ed here and should be freed somewhere
2228*/
2229int ftdi_eeprom_decode(struct ftdi_eeprom *eeprom, unsigned char *buf, int size)
2230{
2231 unsigned char i, j;
2232 unsigned short checksum, eeprom_checksum, value;
2233 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2234 int eeprom_size = 128;
2235#if 0
2236 size_check = eeprom->size;
2237 size_check -= 28; // 28 are always in use (fixed)
2238
2239 // Top half of a 256byte eeprom is used just for strings and checksum
2240 // it seems that the FTDI chip will not read these strings from the lower half
2241 // Each string starts with two bytes; offset and type (0x03 for string)
2242 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
2243 if (eeprom->size>=256)size_check = 120;
2244 size_check -= manufacturer_size*2;
2245 size_check -= product_size*2;
2246 size_check -= serial_size*2;
2247
2248 // eeprom size exceeded?
2249 if (size_check < 0)
2250 return (-1);
2251#endif
2252
2253 // empty eeprom struct
2254 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2255
2256 // Addr 00: Stay 00 00
2257
2258 // Addr 02: Vendor ID
2259 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2260
2261 // Addr 04: Product ID
2262 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2263
2264 value = buf[0x06] + (buf[0x07]<<8);
2265 switch (value)
2266 {
2267 case 0x0400:
2268 eeprom->BM_type_chip = 1;
2269 break;
2270 case 0x0200:
2271 eeprom->BM_type_chip = 0;
2272 break;
2273 default: // Unknown device
2274 eeprom->BM_type_chip = 0;
2275 break;
2276 }
2277
2278 // Addr 08: Config descriptor
2279 // Bit 7: always 1
2280 // Bit 6: 1 if this device is self powered, 0 if bus powered
2281 // Bit 5: 1 if this device uses remote wakeup
2282 // Bit 4: 1 if this device is battery powered
2283 j = buf[0x08];
2284 if (j&0x40) eeprom->self_powered = 1;
2285 if (j&0x20) eeprom->remote_wakeup = 1;
2286
2287 // Addr 09: Max power consumption: max power = value * 2 mA
2288 eeprom->max_power = buf[0x09];
2289
2290 // Addr 0A: Chip configuration
2291 // Bit 7: 0 - reserved
2292 // Bit 6: 0 - reserved
2293 // Bit 5: 0 - reserved
2294 // Bit 4: 1 - Change USB version
2295 // Bit 3: 1 - Use the serial number string
2296 // Bit 2: 1 - Enable suspend pull downs for lower power
2297 // Bit 1: 1 - Out EndPoint is Isochronous
2298 // Bit 0: 1 - In EndPoint is Isochronous
2299 //
2300 j = buf[0x0A];
2301 if (j&0x01) eeprom->in_is_isochronous = 1;
2302 if (j&0x02) eeprom->out_is_isochronous = 1;
2303 if (j&0x04) eeprom->suspend_pull_downs = 1;
2304 if (j&0x08) eeprom->use_serial = 1;
2305 if (j&0x10) eeprom->change_usb_version = 1;
2306
2307 // Addr 0B: reserved
2308
2309 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2310 // Addr 0D: USB version high byte when 0x0A bit 4 is set
2311 if (eeprom->change_usb_version == 1)
2312 {
2313 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2314 }
2315
2316 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2317 // Addr 0F: Length of manufacturer string
2318 manufacturer_size = buf[0x0F]/2;
2319 if (manufacturer_size > 0) eeprom->manufacturer = malloc(manufacturer_size);
2320 else eeprom->manufacturer = NULL;
2321
2322 // Addr 10: Offset of the product string + 0x80, calculated later
2323 // Addr 11: Length of product string
2324 product_size = buf[0x11]/2;
2325 if (product_size > 0) eeprom->product = malloc(product_size);
2326 else eeprom->product = NULL;
2327
2328 // Addr 12: Offset of the serial string + 0x80, calculated later
2329 // Addr 13: Length of serial string
2330 serial_size = buf[0x13]/2;
2331 if (serial_size > 0) eeprom->serial = malloc(serial_size);
2332 else eeprom->serial = NULL;
2333
2334 // Decode manufacturer
2335 i = buf[0x0E] & 0x7f; // offset
2336 for (j=0;j<manufacturer_size-1;j++)
2337 {
2338 eeprom->manufacturer[j] = buf[2*j+i+2];
2339 }
2340 eeprom->manufacturer[j] = '\0';
2341
2342 // Decode product name
2343 i = buf[0x10] & 0x7f; // offset
2344 for (j=0;j<product_size-1;j++)
2345 {
2346 eeprom->product[j] = buf[2*j+i+2];
2347 }
2348 eeprom->product[j] = '\0';
2349
2350 // Decode serial
2351 i = buf[0x12] & 0x7f; // offset
2352 for (j=0;j<serial_size-1;j++)
2353 {
2354 eeprom->serial[j] = buf[2*j+i+2];
2355 }
2356 eeprom->serial[j] = '\0';
2357
2358 // verify checksum
2359 checksum = 0xAAAA;
2360
2361 for (i = 0; i < eeprom_size/2-1; i++)
2362 {
2363 value = buf[i*2];
2364 value += buf[(i*2)+1] << 8;
2365
2366 checksum = value^checksum;
2367 checksum = (checksum << 1) | (checksum >> 15);
2368 }
2369
2370 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2371
2372 if (eeprom_checksum != checksum)
2373 {
2374 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2375 return -1;
2376 }
2377
2378 return 0;
2379}
2380
2381/**
2382 Read eeprom location
2383
2384 \param ftdi pointer to ftdi_context
2385 \param eeprom_addr Address of eeprom location to be read
2386 \param eeprom_val Pointer to store read eeprom location
2387
2388 \retval 0: all fine
2389 \retval -1: read failed
2390*/
2391int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
2392{
2393 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
2394 ftdi_error_return(-1, "reading eeprom failed");
2395
2396 return 0;
2397}
2398
2399/**
2400 Read eeprom
2401
2402 \param ftdi pointer to ftdi_context
2403 \param eeprom Pointer to store eeprom into
2404
2405 \retval 0: all fine
2406 \retval -1: read failed
2407*/
2408int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2409{
2410 int i;
2411
2412 for (i = 0; i < ftdi->eeprom_size/2; i++)
2413 {
2414 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
2415 ftdi_error_return(-1, "reading eeprom failed");
2416 }
2417
2418 return 0;
2419}
2420
2421/*
2422 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
2423 Function is only used internally
2424 \internal
2425*/
2426static unsigned char ftdi_read_chipid_shift(unsigned char value)
2427{
2428 return ((value & 1) << 1) |
2429 ((value & 2) << 5) |
2430 ((value & 4) >> 2) |
2431 ((value & 8) << 4) |
2432 ((value & 16) >> 1) |
2433 ((value & 32) >> 1) |
2434 ((value & 64) >> 4) |
2435 ((value & 128) >> 2);
2436}
2437
2438/**
2439 Read the FTDIChip-ID from R-type devices
2440
2441 \param ftdi pointer to ftdi_context
2442 \param chipid Pointer to store FTDIChip-ID
2443
2444 \retval 0: all fine
2445 \retval -1: read failed
2446*/
2447int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
2448{
2449 unsigned int a = 0, b = 0;
2450
2451 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
2452 {
2453 a = a << 8 | a >> 8;
2454 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
2455 {
2456 b = b << 8 | b >> 8;
2457 a = (a << 16) | (b & 0xFFFF);
2458 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
2459 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
2460 *chipid = a ^ 0xa5f0f7d1;
2461 return 0;
2462 }
2463 }
2464
2465 ftdi_error_return(-1, "read of FTDIChip-ID failed");
2466}
2467
2468/**
2469 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
2470 Call this function then do a write then call again to see if size changes, if so write again.
2471
2472 \param ftdi pointer to ftdi_context
2473 \param eeprom Pointer to store eeprom into
2474 \param maxsize the size of the buffer to read into
2475
2476 \retval size of eeprom
2477*/
2478int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
2479{
2480 int i=0,j,minsize=32;
2481 int size=minsize;
2482
2483 do
2484 {
2485 for (j = 0; i < maxsize/2 && j<size; j++)
2486 {
2487 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,
2488 SIO_READ_EEPROM_REQUEST, 0, i,
2489 eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
2490 ftdi_error_return(-1, "reading eeprom failed");
2491 i++;
2492 }
2493 size*=2;
2494 }
2495 while (size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
2496
2497 return size/2;
2498}
2499
2500/**
2501 Write eeprom location
2502
2503 \param ftdi pointer to ftdi_context
2504 \param eeprom_addr Address of eeprom location to be written
2505 \param eeprom_val Value to be written
2506
2507 \retval 0: all fine
2508 \retval -1: read failed
2509*/
2510int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr, unsigned short eeprom_val)
2511{
2512 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2513 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
2514 NULL, 0, ftdi->usb_write_timeout) != 0)
2515 ftdi_error_return(-1, "unable to write eeprom");
2516
2517 return 0;
2518}
2519
2520/**
2521 Write eeprom
2522
2523 \param ftdi pointer to ftdi_context
2524 \param eeprom Pointer to read eeprom from
2525
2526 \retval 0: all fine
2527 \retval -1: read failed
2528*/
2529int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2530{
2531 unsigned short usb_val, status;
2532 int i, ret;
2533
2534 /* These commands were traced while running MProg */
2535 if ((ret = ftdi_usb_reset(ftdi)) != 0)
2536 return ret;
2537 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
2538 return ret;
2539 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
2540 return ret;
2541
2542 for (i = 0; i < ftdi->eeprom_size/2; i++)
2543 {
2544 usb_val = eeprom[i*2];
2545 usb_val += eeprom[(i*2)+1] << 8;
2546 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2547 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
2548 NULL, 0, ftdi->usb_write_timeout) < 0)
2549 ftdi_error_return(-1, "unable to write eeprom");
2550 }
2551
2552 return 0;
2553}
2554
2555/**
2556 Erase eeprom
2557
2558 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
2559
2560 \param ftdi pointer to ftdi_context
2561
2562 \retval 0: all fine
2563 \retval -1: erase failed
2564*/
2565int ftdi_erase_eeprom(struct ftdi_context *ftdi)
2566{
2567 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST, 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
2568 ftdi_error_return(-1, "unable to erase eeprom");
2569
2570 return 0;
2571}
2572
2573/**
2574 Get string representation for last error code
2575
2576 \param ftdi pointer to ftdi_context
2577
2578 \retval Pointer to error string
2579*/
2580char *ftdi_get_error_string (struct ftdi_context *ftdi)
2581{
2582 return ftdi->error_str;
2583}
2584
2585/* @} end of doxygen libftdi group */