Added ftdi_eeprom_set_strings()
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2013 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi_i.h"
38#include "ftdi.h"
39#include "ftdi_version_i.h"
40
41#define ftdi_error_return(code, str) do { \
42 if ( ftdi ) \
43 ftdi->error_str = str; \
44 else \
45 fprintf(stderr, str); \
46 return code; \
47 } while(0);
48
49#define ftdi_error_return_free_device_list(code, str, devs) do { \
50 libusb_free_device_list(devs,1); \
51 ftdi->error_str = str; \
52 return code; \
53 } while(0);
54
55
56/**
57 Internal function to close usb device pointer.
58 Sets ftdi->usb_dev to NULL.
59 \internal
60
61 \param ftdi pointer to ftdi_context
62
63 \retval none
64*/
65static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
66{
67 if (ftdi && ftdi->usb_dev)
68 {
69 libusb_close (ftdi->usb_dev);
70 ftdi->usb_dev = NULL;
71 if(ftdi->eeprom)
72 ftdi->eeprom->initialized_for_connected_device = 0;
73 }
74}
75
76/**
77 Initializes a ftdi_context.
78
79 \param ftdi pointer to ftdi_context
80
81 \retval 0: all fine
82 \retval -1: couldn't allocate read buffer
83 \retval -2: couldn't allocate struct buffer
84 \retval -3: libusb_init() failed
85
86 \remark This should be called before all functions
87*/
88int ftdi_init(struct ftdi_context *ftdi)
89{
90 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
91 ftdi->usb_ctx = NULL;
92 ftdi->usb_dev = NULL;
93 ftdi->usb_read_timeout = 5000;
94 ftdi->usb_write_timeout = 5000;
95
96 ftdi->type = TYPE_BM; /* chip type */
97 ftdi->baudrate = -1;
98 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
99
100 ftdi->readbuffer = NULL;
101 ftdi->readbuffer_offset = 0;
102 ftdi->readbuffer_remaining = 0;
103 ftdi->writebuffer_chunksize = 4096;
104 ftdi->max_packet_size = 0;
105 ftdi->error_str = NULL;
106 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
107
108 if (libusb_init(&ftdi->usb_ctx) < 0)
109 ftdi_error_return(-3, "libusb_init() failed");
110
111 ftdi_set_interface(ftdi, INTERFACE_ANY);
112 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
113
114 if (eeprom == 0)
115 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
116 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
117 ftdi->eeprom = eeprom;
118
119 /* All fine. Now allocate the readbuffer */
120 return ftdi_read_data_set_chunksize(ftdi, 4096);
121}
122
123/**
124 Allocate and initialize a new ftdi_context
125
126 \return a pointer to a new ftdi_context, or NULL on failure
127*/
128struct ftdi_context *ftdi_new(void)
129{
130 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
131
132 if (ftdi == NULL)
133 {
134 return NULL;
135 }
136
137 if (ftdi_init(ftdi) != 0)
138 {
139 free(ftdi);
140 return NULL;
141 }
142
143 return ftdi;
144}
145
146/**
147 Open selected channels on a chip, otherwise use first channel.
148
149 \param ftdi pointer to ftdi_context
150 \param interface Interface to use for FT2232C/2232H/4232H chips.
151
152 \retval 0: all fine
153 \retval -1: unknown interface
154 \retval -2: USB device unavailable
155 \retval -3: Device already open, interface can't be set in that state
156*/
157int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
158{
159 if (ftdi == NULL)
160 ftdi_error_return(-2, "USB device unavailable");
161
162 if (ftdi->usb_dev != NULL)
163 {
164 int check_interface = interface;
165 if (check_interface == INTERFACE_ANY)
166 check_interface = INTERFACE_A;
167
168 if (ftdi->index != check_interface)
169 ftdi_error_return(-3, "Interface can not be changed on an already open device");
170 }
171
172 switch (interface)
173 {
174 case INTERFACE_ANY:
175 case INTERFACE_A:
176 ftdi->interface = 0;
177 ftdi->index = INTERFACE_A;
178 ftdi->in_ep = 0x02;
179 ftdi->out_ep = 0x81;
180 break;
181 case INTERFACE_B:
182 ftdi->interface = 1;
183 ftdi->index = INTERFACE_B;
184 ftdi->in_ep = 0x04;
185 ftdi->out_ep = 0x83;
186 break;
187 case INTERFACE_C:
188 ftdi->interface = 2;
189 ftdi->index = INTERFACE_C;
190 ftdi->in_ep = 0x06;
191 ftdi->out_ep = 0x85;
192 break;
193 case INTERFACE_D:
194 ftdi->interface = 3;
195 ftdi->index = INTERFACE_D;
196 ftdi->in_ep = 0x08;
197 ftdi->out_ep = 0x87;
198 break;
199 default:
200 ftdi_error_return(-1, "Unknown interface");
201 }
202 return 0;
203}
204
205/**
206 Deinitializes a ftdi_context.
207
208 \param ftdi pointer to ftdi_context
209*/
210void ftdi_deinit(struct ftdi_context *ftdi)
211{
212 if (ftdi == NULL)
213 return;
214
215 ftdi_usb_close_internal (ftdi);
216
217 if (ftdi->readbuffer != NULL)
218 {
219 free(ftdi->readbuffer);
220 ftdi->readbuffer = NULL;
221 }
222
223 if (ftdi->eeprom != NULL)
224 {
225 if (ftdi->eeprom->manufacturer != 0)
226 {
227 free(ftdi->eeprom->manufacturer);
228 ftdi->eeprom->manufacturer = 0;
229 }
230 if (ftdi->eeprom->product != 0)
231 {
232 free(ftdi->eeprom->product);
233 ftdi->eeprom->product = 0;
234 }
235 if (ftdi->eeprom->serial != 0)
236 {
237 free(ftdi->eeprom->serial);
238 ftdi->eeprom->serial = 0;
239 }
240 free(ftdi->eeprom);
241 ftdi->eeprom = NULL;
242 }
243
244 if (ftdi->usb_ctx)
245 {
246 libusb_exit(ftdi->usb_ctx);
247 ftdi->usb_ctx = NULL;
248 }
249}
250
251/**
252 Deinitialize and free an ftdi_context.
253
254 \param ftdi pointer to ftdi_context
255*/
256void ftdi_free(struct ftdi_context *ftdi)
257{
258 ftdi_deinit(ftdi);
259 free(ftdi);
260}
261
262/**
263 Use an already open libusb device.
264
265 \param ftdi pointer to ftdi_context
266 \param usb libusb libusb_device_handle to use
267*/
268void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
269{
270 if (ftdi == NULL)
271 return;
272
273 ftdi->usb_dev = usb;
274}
275
276/**
277 * @brief Get libftdi library version
278 *
279 * @return ftdi_version_info Library version information
280 **/
281struct ftdi_version_info ftdi_get_library_version()
282{
283 struct ftdi_version_info ver;
284
285 ver.major = FTDI_MAJOR_VERSION;
286 ver.minor = FTDI_MINOR_VERSION;
287 ver.micro = FTDI_MICRO_VERSION;
288 ver.version_str = FTDI_VERSION_STRING;
289 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
290
291 return ver;
292}
293
294/**
295 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
296 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
297 use. With VID:PID 0:0, search for the default devices
298 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014)
299
300 \param ftdi pointer to ftdi_context
301 \param devlist Pointer where to store list of found devices
302 \param vendor Vendor ID to search for
303 \param product Product ID to search for
304
305 \retval >0: number of devices found
306 \retval -3: out of memory
307 \retval -5: libusb_get_device_list() failed
308 \retval -6: libusb_get_device_descriptor() failed
309*/
310int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
311{
312 struct ftdi_device_list **curdev;
313 libusb_device *dev;
314 libusb_device **devs;
315 int count = 0;
316 int i = 0;
317
318 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
319 ftdi_error_return(-5, "libusb_get_device_list() failed");
320
321 curdev = devlist;
322 *curdev = NULL;
323
324 while ((dev = devs[i++]) != NULL)
325 {
326 struct libusb_device_descriptor desc;
327
328 if (libusb_get_device_descriptor(dev, &desc) < 0)
329 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
330
331 if (((vendor != 0 && product != 0) &&
332 desc.idVendor == vendor && desc.idProduct == product) ||
333 ((vendor == 0 && product == 0) &&
334 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
335 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014)))
336 {
337 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
338 if (!*curdev)
339 ftdi_error_return_free_device_list(-3, "out of memory", devs);
340
341 (*curdev)->next = NULL;
342 (*curdev)->dev = dev;
343 libusb_ref_device(dev);
344 curdev = &(*curdev)->next;
345 count++;
346 }
347 }
348 libusb_free_device_list(devs,1);
349 return count;
350}
351
352/**
353 Frees a usb device list.
354
355 \param devlist USB device list created by ftdi_usb_find_all()
356*/
357void ftdi_list_free(struct ftdi_device_list **devlist)
358{
359 struct ftdi_device_list *curdev, *next;
360
361 for (curdev = *devlist; curdev != NULL;)
362 {
363 next = curdev->next;
364 libusb_unref_device(curdev->dev);
365 free(curdev);
366 curdev = next;
367 }
368
369 *devlist = NULL;
370}
371
372/**
373 Frees a usb device list.
374
375 \param devlist USB device list created by ftdi_usb_find_all()
376*/
377void ftdi_list_free2(struct ftdi_device_list *devlist)
378{
379 ftdi_list_free(&devlist);
380}
381
382/**
383 Return device ID strings from the usb device.
384
385 The parameters manufacturer, description and serial may be NULL
386 or pointer to buffers to store the fetched strings.
387
388 \note Use this function only in combination with ftdi_usb_find_all()
389 as it closes the internal "usb_dev" after use.
390
391 \param ftdi pointer to ftdi_context
392 \param dev libusb usb_dev to use
393 \param manufacturer Store manufacturer string here if not NULL
394 \param mnf_len Buffer size of manufacturer string
395 \param description Store product description string here if not NULL
396 \param desc_len Buffer size of product description string
397 \param serial Store serial string here if not NULL
398 \param serial_len Buffer size of serial string
399
400 \retval 0: all fine
401 \retval -1: wrong arguments
402 \retval -4: unable to open device
403 \retval -7: get product manufacturer failed
404 \retval -8: get product description failed
405 \retval -9: get serial number failed
406 \retval -11: libusb_get_device_descriptor() failed
407*/
408int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
409 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
410{
411 struct libusb_device_descriptor desc;
412
413 if ((ftdi==NULL) || (dev==NULL))
414 return -1;
415
416 if (libusb_open(dev, &ftdi->usb_dev) < 0)
417 ftdi_error_return(-4, "libusb_open() failed");
418
419 if (libusb_get_device_descriptor(dev, &desc) < 0)
420 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
421
422 if (manufacturer != NULL)
423 {
424 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
425 {
426 ftdi_usb_close_internal (ftdi);
427 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
428 }
429 }
430
431 if (description != NULL)
432 {
433 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
434 {
435 ftdi_usb_close_internal (ftdi);
436 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
437 }
438 }
439
440 if (serial != NULL)
441 {
442 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
443 {
444 ftdi_usb_close_internal (ftdi);
445 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
446 }
447 }
448
449 ftdi_usb_close_internal (ftdi);
450
451 return 0;
452}
453
454/**
455 * Internal function to determine the maximum packet size.
456 * \param ftdi pointer to ftdi_context
457 * \param dev libusb usb_dev to use
458 * \retval Maximum packet size for this device
459 */
460static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
461{
462 struct libusb_device_descriptor desc;
463 struct libusb_config_descriptor *config0;
464 unsigned int packet_size;
465
466 // Sanity check
467 if (ftdi == NULL || dev == NULL)
468 return 64;
469
470 // Determine maximum packet size. Init with default value.
471 // New hi-speed devices from FTDI use a packet size of 512 bytes
472 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
473 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
474 packet_size = 512;
475 else
476 packet_size = 64;
477
478 if (libusb_get_device_descriptor(dev, &desc) < 0)
479 return packet_size;
480
481 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
482 return packet_size;
483
484 if (desc.bNumConfigurations > 0)
485 {
486 if (ftdi->interface < config0->bNumInterfaces)
487 {
488 struct libusb_interface interface = config0->interface[ftdi->interface];
489 if (interface.num_altsetting > 0)
490 {
491 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
492 if (descriptor.bNumEndpoints > 0)
493 {
494 packet_size = descriptor.endpoint[0].wMaxPacketSize;
495 }
496 }
497 }
498 }
499
500 libusb_free_config_descriptor (config0);
501 return packet_size;
502}
503
504/**
505 Opens a ftdi device given by an usb_device.
506
507 \param ftdi pointer to ftdi_context
508 \param dev libusb usb_dev to use
509
510 \retval 0: all fine
511 \retval -3: unable to config device
512 \retval -4: unable to open device
513 \retval -5: unable to claim device
514 \retval -6: reset failed
515 \retval -7: set baudrate failed
516 \retval -8: ftdi context invalid
517 \retval -9: libusb_get_device_descriptor() failed
518 \retval -10: libusb_get_config_descriptor() failed
519 \retval -11: libusb_detach_kernel_driver() failed
520 \retval -12: libusb_get_configuration() failed
521*/
522int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
523{
524 struct libusb_device_descriptor desc;
525 struct libusb_config_descriptor *config0;
526 int cfg, cfg0, detach_errno = 0;
527
528 if (ftdi == NULL)
529 ftdi_error_return(-8, "ftdi context invalid");
530
531 if (libusb_open(dev, &ftdi->usb_dev) < 0)
532 ftdi_error_return(-4, "libusb_open() failed");
533
534 if (libusb_get_device_descriptor(dev, &desc) < 0)
535 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
536
537 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
538 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
539 cfg0 = config0->bConfigurationValue;
540 libusb_free_config_descriptor (config0);
541
542 // Try to detach ftdi_sio kernel module.
543 //
544 // The return code is kept in a separate variable and only parsed
545 // if usb_set_configuration() or usb_claim_interface() fails as the
546 // detach operation might be denied and everything still works fine.
547 // Likely scenario is a static ftdi_sio kernel module.
548 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
549 {
550 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
551 detach_errno = errno;
552 }
553
554 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
555 ftdi_error_return(-12, "libusb_get_configuration () failed");
556 // set configuration (needed especially for windows)
557 // tolerate EBUSY: one device with one configuration, but two interfaces
558 // and libftdi sessions to both interfaces (e.g. FT2232)
559 if (desc.bNumConfigurations > 0 && cfg != cfg0)
560 {
561 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
562 {
563 ftdi_usb_close_internal (ftdi);
564 if (detach_errno == EPERM)
565 {
566 ftdi_error_return(-8, "inappropriate permissions on device!");
567 }
568 else
569 {
570 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
571 }
572 }
573 }
574
575 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
576 {
577 ftdi_usb_close_internal (ftdi);
578 if (detach_errno == EPERM)
579 {
580 ftdi_error_return(-8, "inappropriate permissions on device!");
581 }
582 else
583 {
584 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
585 }
586 }
587
588 if (ftdi_usb_reset (ftdi) != 0)
589 {
590 ftdi_usb_close_internal (ftdi);
591 ftdi_error_return(-6, "ftdi_usb_reset failed");
592 }
593
594 // Try to guess chip type
595 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
596 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
597 && desc.iSerialNumber == 0))
598 ftdi->type = TYPE_BM;
599 else if (desc.bcdDevice == 0x200)
600 ftdi->type = TYPE_AM;
601 else if (desc.bcdDevice == 0x500)
602 ftdi->type = TYPE_2232C;
603 else if (desc.bcdDevice == 0x600)
604 ftdi->type = TYPE_R;
605 else if (desc.bcdDevice == 0x700)
606 ftdi->type = TYPE_2232H;
607 else if (desc.bcdDevice == 0x800)
608 ftdi->type = TYPE_4232H;
609 else if (desc.bcdDevice == 0x900)
610 ftdi->type = TYPE_232H;
611
612 // Determine maximum packet size
613 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
614
615 if (ftdi_set_baudrate (ftdi, 9600) != 0)
616 {
617 ftdi_usb_close_internal (ftdi);
618 ftdi_error_return(-7, "set baudrate failed");
619 }
620
621 ftdi_error_return(0, "all fine");
622}
623
624/**
625 Opens the first device with a given vendor and product ids.
626
627 \param ftdi pointer to ftdi_context
628 \param vendor Vendor ID
629 \param product Product ID
630
631 \retval same as ftdi_usb_open_desc()
632*/
633int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
634{
635 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
636}
637
638/**
639 Opens the first device with a given, vendor id, product id,
640 description and serial.
641
642 \param ftdi pointer to ftdi_context
643 \param vendor Vendor ID
644 \param product Product ID
645 \param description Description to search for. Use NULL if not needed.
646 \param serial Serial to search for. Use NULL if not needed.
647
648 \retval 0: all fine
649 \retval -3: usb device not found
650 \retval -4: unable to open device
651 \retval -5: unable to claim device
652 \retval -6: reset failed
653 \retval -7: set baudrate failed
654 \retval -8: get product description failed
655 \retval -9: get serial number failed
656 \retval -12: libusb_get_device_list() failed
657 \retval -13: libusb_get_device_descriptor() failed
658*/
659int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
660 const char* description, const char* serial)
661{
662 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
663}
664
665/**
666 Opens the index-th device with a given, vendor id, product id,
667 description and serial.
668
669 \param ftdi pointer to ftdi_context
670 \param vendor Vendor ID
671 \param product Product ID
672 \param description Description to search for. Use NULL if not needed.
673 \param serial Serial to search for. Use NULL if not needed.
674 \param index Number of matching device to open if there are more than one, starts with 0.
675
676 \retval 0: all fine
677 \retval -1: usb_find_busses() failed
678 \retval -2: usb_find_devices() failed
679 \retval -3: usb device not found
680 \retval -4: unable to open device
681 \retval -5: unable to claim device
682 \retval -6: reset failed
683 \retval -7: set baudrate failed
684 \retval -8: get product description failed
685 \retval -9: get serial number failed
686 \retval -10: unable to close device
687 \retval -11: ftdi context invalid
688*/
689int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
690 const char* description, const char* serial, unsigned int index)
691{
692 libusb_device *dev;
693 libusb_device **devs;
694 char string[256];
695 int i = 0;
696
697 if (ftdi == NULL)
698 ftdi_error_return(-11, "ftdi context invalid");
699
700 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
701 ftdi_error_return(-12, "libusb_get_device_list() failed");
702
703 while ((dev = devs[i++]) != NULL)
704 {
705 struct libusb_device_descriptor desc;
706 int res;
707
708 if (libusb_get_device_descriptor(dev, &desc) < 0)
709 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
710
711 if (desc.idVendor == vendor && desc.idProduct == product)
712 {
713 if (libusb_open(dev, &ftdi->usb_dev) < 0)
714 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
715
716 if (description != NULL)
717 {
718 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
719 {
720 ftdi_usb_close_internal (ftdi);
721 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
722 }
723 if (strncmp(string, description, sizeof(string)) != 0)
724 {
725 ftdi_usb_close_internal (ftdi);
726 continue;
727 }
728 }
729 if (serial != NULL)
730 {
731 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
732 {
733 ftdi_usb_close_internal (ftdi);
734 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
735 }
736 if (strncmp(string, serial, sizeof(string)) != 0)
737 {
738 ftdi_usb_close_internal (ftdi);
739 continue;
740 }
741 }
742
743 ftdi_usb_close_internal (ftdi);
744
745 if (index > 0)
746 {
747 index--;
748 continue;
749 }
750
751 res = ftdi_usb_open_dev(ftdi, dev);
752 libusb_free_device_list(devs,1);
753 return res;
754 }
755 }
756
757 // device not found
758 ftdi_error_return_free_device_list(-3, "device not found", devs);
759}
760
761/**
762 Opens the ftdi-device described by a description-string.
763 Intended to be used for parsing a device-description given as commandline argument.
764
765 \param ftdi pointer to ftdi_context
766 \param description NULL-terminated description-string, using this format:
767 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
768 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
769 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
770 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
771
772 \note The description format may be extended in later versions.
773
774 \retval 0: all fine
775 \retval -2: libusb_get_device_list() failed
776 \retval -3: usb device not found
777 \retval -4: unable to open device
778 \retval -5: unable to claim device
779 \retval -6: reset failed
780 \retval -7: set baudrate failed
781 \retval -8: get product description failed
782 \retval -9: get serial number failed
783 \retval -10: unable to close device
784 \retval -11: illegal description format
785 \retval -12: ftdi context invalid
786*/
787int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
788{
789 if (ftdi == NULL)
790 ftdi_error_return(-12, "ftdi context invalid");
791
792 if (description[0] == 0 || description[1] != ':')
793 ftdi_error_return(-11, "illegal description format");
794
795 if (description[0] == 'd')
796 {
797 libusb_device *dev;
798 libusb_device **devs;
799 unsigned int bus_number, device_address;
800 int i = 0;
801
802 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
803 ftdi_error_return(-2, "libusb_get_device_list() failed");
804
805 /* XXX: This doesn't handle symlinks/odd paths/etc... */
806 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
807 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
808
809 while ((dev = devs[i++]) != NULL)
810 {
811 int ret;
812 if (bus_number == libusb_get_bus_number (dev)
813 && device_address == libusb_get_device_address (dev))
814 {
815 ret = ftdi_usb_open_dev(ftdi, dev);
816 libusb_free_device_list(devs,1);
817 return ret;
818 }
819 }
820
821 // device not found
822 ftdi_error_return_free_device_list(-3, "device not found", devs);
823 }
824 else if (description[0] == 'i' || description[0] == 's')
825 {
826 unsigned int vendor;
827 unsigned int product;
828 unsigned int index=0;
829 const char *serial=NULL;
830 const char *startp, *endp;
831
832 errno=0;
833 startp=description+2;
834 vendor=strtoul((char*)startp,(char**)&endp,0);
835 if (*endp != ':' || endp == startp || errno != 0)
836 ftdi_error_return(-11, "illegal description format");
837
838 startp=endp+1;
839 product=strtoul((char*)startp,(char**)&endp,0);
840 if (endp == startp || errno != 0)
841 ftdi_error_return(-11, "illegal description format");
842
843 if (description[0] == 'i' && *endp != 0)
844 {
845 /* optional index field in i-mode */
846 if (*endp != ':')
847 ftdi_error_return(-11, "illegal description format");
848
849 startp=endp+1;
850 index=strtoul((char*)startp,(char**)&endp,0);
851 if (*endp != 0 || endp == startp || errno != 0)
852 ftdi_error_return(-11, "illegal description format");
853 }
854 if (description[0] == 's')
855 {
856 if (*endp != ':')
857 ftdi_error_return(-11, "illegal description format");
858
859 /* rest of the description is the serial */
860 serial=endp+1;
861 }
862
863 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
864 }
865 else
866 {
867 ftdi_error_return(-11, "illegal description format");
868 }
869}
870
871/**
872 Resets the ftdi device.
873
874 \param ftdi pointer to ftdi_context
875
876 \retval 0: all fine
877 \retval -1: FTDI reset failed
878 \retval -2: USB device unavailable
879*/
880int ftdi_usb_reset(struct ftdi_context *ftdi)
881{
882 if (ftdi == NULL || ftdi->usb_dev == NULL)
883 ftdi_error_return(-2, "USB device unavailable");
884
885 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
886 SIO_RESET_REQUEST, SIO_RESET_SIO,
887 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
888 ftdi_error_return(-1,"FTDI reset failed");
889
890 // Invalidate data in the readbuffer
891 ftdi->readbuffer_offset = 0;
892 ftdi->readbuffer_remaining = 0;
893
894 return 0;
895}
896
897/**
898 Clears the read buffer on the chip and the internal read buffer.
899
900 \param ftdi pointer to ftdi_context
901
902 \retval 0: all fine
903 \retval -1: read buffer purge failed
904 \retval -2: USB device unavailable
905*/
906int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
907{
908 if (ftdi == NULL || ftdi->usb_dev == NULL)
909 ftdi_error_return(-2, "USB device unavailable");
910
911 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
912 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
913 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
914 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
915
916 // Invalidate data in the readbuffer
917 ftdi->readbuffer_offset = 0;
918 ftdi->readbuffer_remaining = 0;
919
920 return 0;
921}
922
923/**
924 Clears the write buffer on the chip.
925
926 \param ftdi pointer to ftdi_context
927
928 \retval 0: all fine
929 \retval -1: write buffer purge failed
930 \retval -2: USB device unavailable
931*/
932int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
933{
934 if (ftdi == NULL || ftdi->usb_dev == NULL)
935 ftdi_error_return(-2, "USB device unavailable");
936
937 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
938 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
939 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
940 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
941
942 return 0;
943}
944
945/**
946 Clears the buffers on the chip and the internal read buffer.
947
948 \param ftdi pointer to ftdi_context
949
950 \retval 0: all fine
951 \retval -1: read buffer purge failed
952 \retval -2: write buffer purge failed
953 \retval -3: USB device unavailable
954*/
955int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
956{
957 int result;
958
959 if (ftdi == NULL || ftdi->usb_dev == NULL)
960 ftdi_error_return(-3, "USB device unavailable");
961
962 result = ftdi_usb_purge_rx_buffer(ftdi);
963 if (result < 0)
964 return -1;
965
966 result = ftdi_usb_purge_tx_buffer(ftdi);
967 if (result < 0)
968 return -2;
969
970 return 0;
971}
972
973
974
975/**
976 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
977
978 \param ftdi pointer to ftdi_context
979
980 \retval 0: all fine
981 \retval -1: usb_release failed
982 \retval -3: ftdi context invalid
983*/
984int ftdi_usb_close(struct ftdi_context *ftdi)
985{
986 int rtn = 0;
987
988 if (ftdi == NULL)
989 ftdi_error_return(-3, "ftdi context invalid");
990
991 if (ftdi->usb_dev != NULL)
992 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
993 rtn = -1;
994
995 ftdi_usb_close_internal (ftdi);
996
997 return rtn;
998}
999
1000/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
1001 to encoded divisor and the achievable baudrate
1002 Function is only used internally
1003 \internal
1004
1005 See AN120
1006 clk/1 -> 0
1007 clk/1.5 -> 1
1008 clk/2 -> 2
1009 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1010 The fractional part has frac_code encoding
1011*/
1012static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1013
1014{
1015 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1016 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1017 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
1018 int divisor, best_divisor, best_baud, best_baud_diff;
1019 divisor = 24000000 / baudrate;
1020 int i;
1021
1022 // Round down to supported fraction (AM only)
1023 divisor -= am_adjust_dn[divisor & 7];
1024
1025 // Try this divisor and the one above it (because division rounds down)
1026 best_divisor = 0;
1027 best_baud = 0;
1028 best_baud_diff = 0;
1029 for (i = 0; i < 2; i++)
1030 {
1031 int try_divisor = divisor + i;
1032 int baud_estimate;
1033 int baud_diff;
1034
1035 // Round up to supported divisor value
1036 if (try_divisor <= 8)
1037 {
1038 // Round up to minimum supported divisor
1039 try_divisor = 8;
1040 }
1041 else if (divisor < 16)
1042 {
1043 // AM doesn't support divisors 9 through 15 inclusive
1044 try_divisor = 16;
1045 }
1046 else
1047 {
1048 // Round up to supported fraction (AM only)
1049 try_divisor += am_adjust_up[try_divisor & 7];
1050 if (try_divisor > 0x1FFF8)
1051 {
1052 // Round down to maximum supported divisor value (for AM)
1053 try_divisor = 0x1FFF8;
1054 }
1055 }
1056 // Get estimated baud rate (to nearest integer)
1057 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1058 // Get absolute difference from requested baud rate
1059 if (baud_estimate < baudrate)
1060 {
1061 baud_diff = baudrate - baud_estimate;
1062 }
1063 else
1064 {
1065 baud_diff = baud_estimate - baudrate;
1066 }
1067 if (i == 0 || baud_diff < best_baud_diff)
1068 {
1069 // Closest to requested baud rate so far
1070 best_divisor = try_divisor;
1071 best_baud = baud_estimate;
1072 best_baud_diff = baud_diff;
1073 if (baud_diff == 0)
1074 {
1075 // Spot on! No point trying
1076 break;
1077 }
1078 }
1079 }
1080 // Encode the best divisor value
1081 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1082 // Deal with special cases for encoded value
1083 if (*encoded_divisor == 1)
1084 {
1085 *encoded_divisor = 0; // 3000000 baud
1086 }
1087 else if (*encoded_divisor == 0x4001)
1088 {
1089 *encoded_divisor = 1; // 2000000 baud (BM only)
1090 }
1091 return best_baud;
1092}
1093
1094/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1095 to encoded divisor and the achievable baudrate
1096 Function is only used internally
1097 \internal
1098
1099 See AN120
1100 clk/1 -> 0
1101 clk/1.5 -> 1
1102 clk/2 -> 2
1103 From /2, 0.125 steps may be taken.
1104 The fractional part has frac_code encoding
1105
1106 value[13:0] of value is the divisor
1107 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1108
1109 H Type have all features above with
1110 {index[8],value[15:14]} is the encoded subdivisor
1111
1112 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
1113 {index[0],value[15:14]} is the encoded subdivisor
1114
1115 AM Type chips have only four fractional subdivisors at value[15:14]
1116 for subdivisors 0, 0.5, 0.25, 0.125
1117*/
1118static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor)
1119{
1120 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1121 int best_baud = 0;
1122 int divisor, best_divisor;
1123 if (baudrate >= clk/clk_div)
1124 {
1125 *encoded_divisor = 0;
1126 best_baud = clk/clk_div;
1127 }
1128 else if (baudrate >= clk/(clk_div + clk_div/2))
1129 {
1130 *encoded_divisor = 1;
1131 best_baud = clk/(clk_div + clk_div/2);
1132 }
1133 else if (baudrate >= clk/(2*clk_div))
1134 {
1135 *encoded_divisor = 2;
1136 best_baud = clk/(2*clk_div);
1137 }
1138 else
1139 {
1140 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1141 divisor = clk*16/clk_div / baudrate;
1142 if (divisor & 1) /* Decide if to round up or down*/
1143 best_divisor = divisor /2 +1;
1144 else
1145 best_divisor = divisor/2;
1146 if(best_divisor > 0x20000)
1147 best_divisor = 0x1ffff;
1148 best_baud = clk*16/clk_div/best_divisor;
1149 if (best_baud & 1) /* Decide if to round up or down*/
1150 best_baud = best_baud /2 +1;
1151 else
1152 best_baud = best_baud /2;
1153 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1154 }
1155 return best_baud;
1156}
1157/**
1158 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1159 Function is only used internally
1160 \internal
1161*/
1162static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1163 unsigned short *value, unsigned short *index)
1164{
1165 int best_baud;
1166 unsigned long encoded_divisor;
1167
1168 if (baudrate <= 0)
1169 {
1170 // Return error
1171 return -1;
1172 }
1173
1174#define H_CLK 120000000
1175#define C_CLK 48000000
1176 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H ))
1177 {
1178 if(baudrate*10 > H_CLK /0x3fff)
1179 {
1180 /* On H Devices, use 12 000 000 Baudrate when possible
1181 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
1182 three fractional bits and a 120 MHz clock
1183 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1184 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1185 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1186 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1187 }
1188 else
1189 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1190 }
1191 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R ))
1192 {
1193 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1194 }
1195 else
1196 {
1197 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
1198 }
1199 // Split into "value" and "index" values
1200 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1201 if (ftdi->type == TYPE_2232H ||
1202 ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
1203 {
1204 *index = (unsigned short)(encoded_divisor >> 8);
1205 *index &= 0xFF00;
1206 *index |= ftdi->index;
1207 }
1208 else
1209 *index = (unsigned short)(encoded_divisor >> 16);
1210
1211 // Return the nearest baud rate
1212 return best_baud;
1213}
1214
1215/**
1216 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1217 * Do not use, it's only for the unit test framework
1218 **/
1219int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1220 unsigned short *value, unsigned short *index)
1221{
1222 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1223}
1224
1225/**
1226 Sets the chip baud rate
1227
1228 \param ftdi pointer to ftdi_context
1229 \param baudrate baud rate to set
1230
1231 \retval 0: all fine
1232 \retval -1: invalid baudrate
1233 \retval -2: setting baudrate failed
1234 \retval -3: USB device unavailable
1235*/
1236int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1237{
1238 unsigned short value, index;
1239 int actual_baudrate;
1240
1241 if (ftdi == NULL || ftdi->usb_dev == NULL)
1242 ftdi_error_return(-3, "USB device unavailable");
1243
1244 if (ftdi->bitbang_enabled)
1245 {
1246 baudrate = baudrate*4;
1247 }
1248
1249 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1250 if (actual_baudrate <= 0)
1251 ftdi_error_return (-1, "Silly baudrate <= 0.");
1252
1253 // Check within tolerance (about 5%)
1254 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1255 || ((actual_baudrate < baudrate)
1256 ? (actual_baudrate * 21 < baudrate * 20)
1257 : (baudrate * 21 < actual_baudrate * 20)))
1258 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1259
1260 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1261 SIO_SET_BAUDRATE_REQUEST, value,
1262 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1263 ftdi_error_return (-2, "Setting new baudrate failed");
1264
1265 ftdi->baudrate = baudrate;
1266 return 0;
1267}
1268
1269/**
1270 Set (RS232) line characteristics.
1271 The break type can only be set via ftdi_set_line_property2()
1272 and defaults to "off".
1273
1274 \param ftdi pointer to ftdi_context
1275 \param bits Number of bits
1276 \param sbit Number of stop bits
1277 \param parity Parity mode
1278
1279 \retval 0: all fine
1280 \retval -1: Setting line property failed
1281*/
1282int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1283 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1284{
1285 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1286}
1287
1288/**
1289 Set (RS232) line characteristics
1290
1291 \param ftdi pointer to ftdi_context
1292 \param bits Number of bits
1293 \param sbit Number of stop bits
1294 \param parity Parity mode
1295 \param break_type Break type
1296
1297 \retval 0: all fine
1298 \retval -1: Setting line property failed
1299 \retval -2: USB device unavailable
1300*/
1301int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1302 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1303 enum ftdi_break_type break_type)
1304{
1305 unsigned short value = bits;
1306
1307 if (ftdi == NULL || ftdi->usb_dev == NULL)
1308 ftdi_error_return(-2, "USB device unavailable");
1309
1310 switch (parity)
1311 {
1312 case NONE:
1313 value |= (0x00 << 8);
1314 break;
1315 case ODD:
1316 value |= (0x01 << 8);
1317 break;
1318 case EVEN:
1319 value |= (0x02 << 8);
1320 break;
1321 case MARK:
1322 value |= (0x03 << 8);
1323 break;
1324 case SPACE:
1325 value |= (0x04 << 8);
1326 break;
1327 }
1328
1329 switch (sbit)
1330 {
1331 case STOP_BIT_1:
1332 value |= (0x00 << 11);
1333 break;
1334 case STOP_BIT_15:
1335 value |= (0x01 << 11);
1336 break;
1337 case STOP_BIT_2:
1338 value |= (0x02 << 11);
1339 break;
1340 }
1341
1342 switch (break_type)
1343 {
1344 case BREAK_OFF:
1345 value |= (0x00 << 14);
1346 break;
1347 case BREAK_ON:
1348 value |= (0x01 << 14);
1349 break;
1350 }
1351
1352 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1353 SIO_SET_DATA_REQUEST, value,
1354 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1355 ftdi_error_return (-1, "Setting new line property failed");
1356
1357 return 0;
1358}
1359
1360/**
1361 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1362
1363 \param ftdi pointer to ftdi_context
1364 \param buf Buffer with the data
1365 \param size Size of the buffer
1366
1367 \retval -666: USB device unavailable
1368 \retval <0: error code from usb_bulk_write()
1369 \retval >0: number of bytes written
1370*/
1371int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1372{
1373 int offset = 0;
1374 int actual_length;
1375
1376 if (ftdi == NULL || ftdi->usb_dev == NULL)
1377 ftdi_error_return(-666, "USB device unavailable");
1378
1379 while (offset < size)
1380 {
1381 int write_size = ftdi->writebuffer_chunksize;
1382
1383 if (offset+write_size > size)
1384 write_size = size-offset;
1385
1386 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1387 ftdi_error_return(-1, "usb bulk write failed");
1388
1389 offset += actual_length;
1390 }
1391
1392 return offset;
1393}
1394
1395static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1396{
1397 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1398 struct ftdi_context *ftdi = tc->ftdi;
1399 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1400
1401 packet_size = ftdi->max_packet_size;
1402
1403 actual_length = transfer->actual_length;
1404
1405 if (actual_length > 2)
1406 {
1407 // skip FTDI status bytes.
1408 // Maybe stored in the future to enable modem use
1409 num_of_chunks = actual_length / packet_size;
1410 chunk_remains = actual_length % packet_size;
1411 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1412
1413 ftdi->readbuffer_offset += 2;
1414 actual_length -= 2;
1415
1416 if (actual_length > packet_size - 2)
1417 {
1418 for (i = 1; i < num_of_chunks; i++)
1419 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1420 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1421 packet_size - 2);
1422 if (chunk_remains > 2)
1423 {
1424 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1425 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1426 chunk_remains-2);
1427 actual_length -= 2*num_of_chunks;
1428 }
1429 else
1430 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1431 }
1432
1433 if (actual_length > 0)
1434 {
1435 // data still fits in buf?
1436 if (tc->offset + actual_length <= tc->size)
1437 {
1438 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1439 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1440 tc->offset += actual_length;
1441
1442 ftdi->readbuffer_offset = 0;
1443 ftdi->readbuffer_remaining = 0;
1444
1445 /* Did we read exactly the right amount of bytes? */
1446 if (tc->offset == tc->size)
1447 {
1448 //printf("read_data exact rem %d offset %d\n",
1449 //ftdi->readbuffer_remaining, offset);
1450 tc->completed = 1;
1451 return;
1452 }
1453 }
1454 else
1455 {
1456 // only copy part of the data or size <= readbuffer_chunksize
1457 int part_size = tc->size - tc->offset;
1458 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1459 tc->offset += part_size;
1460
1461 ftdi->readbuffer_offset += part_size;
1462 ftdi->readbuffer_remaining = actual_length - part_size;
1463
1464 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1465 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1466 tc->completed = 1;
1467 return;
1468 }
1469 }
1470 }
1471 ret = libusb_submit_transfer (transfer);
1472 if (ret < 0)
1473 tc->completed = 1;
1474}
1475
1476
1477static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1478{
1479 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1480 struct ftdi_context *ftdi = tc->ftdi;
1481
1482 tc->offset += transfer->actual_length;
1483
1484 if (tc->offset == tc->size)
1485 {
1486 tc->completed = 1;
1487 }
1488 else
1489 {
1490 int write_size = ftdi->writebuffer_chunksize;
1491 int ret;
1492
1493 if (tc->offset + write_size > tc->size)
1494 write_size = tc->size - tc->offset;
1495
1496 transfer->length = write_size;
1497 transfer->buffer = tc->buf + tc->offset;
1498 ret = libusb_submit_transfer (transfer);
1499 if (ret < 0)
1500 tc->completed = 1;
1501 }
1502}
1503
1504
1505/**
1506 Writes data to the chip. Does not wait for completion of the transfer
1507 nor does it make sure that the transfer was successful.
1508
1509 Use libusb 1.0 asynchronous API.
1510
1511 \param ftdi pointer to ftdi_context
1512 \param buf Buffer with the data
1513 \param size Size of the buffer
1514
1515 \retval NULL: Some error happens when submit transfer
1516 \retval !NULL: Pointer to a ftdi_transfer_control
1517*/
1518
1519struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1520{
1521 struct ftdi_transfer_control *tc;
1522 struct libusb_transfer *transfer;
1523 int write_size, ret;
1524
1525 if (ftdi == NULL || ftdi->usb_dev == NULL)
1526 return NULL;
1527
1528 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1529 if (!tc)
1530 return NULL;
1531
1532 transfer = libusb_alloc_transfer(0);
1533 if (!transfer)
1534 {
1535 free(tc);
1536 return NULL;
1537 }
1538
1539 tc->ftdi = ftdi;
1540 tc->completed = 0;
1541 tc->buf = buf;
1542 tc->size = size;
1543 tc->offset = 0;
1544
1545 if (size < (int)ftdi->writebuffer_chunksize)
1546 write_size = size;
1547 else
1548 write_size = ftdi->writebuffer_chunksize;
1549
1550 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1551 write_size, ftdi_write_data_cb, tc,
1552 ftdi->usb_write_timeout);
1553 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1554
1555 ret = libusb_submit_transfer(transfer);
1556 if (ret < 0)
1557 {
1558 libusb_free_transfer(transfer);
1559 free(tc);
1560 return NULL;
1561 }
1562 tc->transfer = transfer;
1563
1564 return tc;
1565}
1566
1567/**
1568 Reads data from the chip. Does not wait for completion of the transfer
1569 nor does it make sure that the transfer was successful.
1570
1571 Use libusb 1.0 asynchronous API.
1572
1573 \param ftdi pointer to ftdi_context
1574 \param buf Buffer with the data
1575 \param size Size of the buffer
1576
1577 \retval NULL: Some error happens when submit transfer
1578 \retval !NULL: Pointer to a ftdi_transfer_control
1579*/
1580
1581struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1582{
1583 struct ftdi_transfer_control *tc;
1584 struct libusb_transfer *transfer;
1585 int ret;
1586
1587 if (ftdi == NULL || ftdi->usb_dev == NULL)
1588 return NULL;
1589
1590 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1591 if (!tc)
1592 return NULL;
1593
1594 tc->ftdi = ftdi;
1595 tc->buf = buf;
1596 tc->size = size;
1597
1598 if (size <= (int)ftdi->readbuffer_remaining)
1599 {
1600 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1601
1602 // Fix offsets
1603 ftdi->readbuffer_remaining -= size;
1604 ftdi->readbuffer_offset += size;
1605
1606 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1607
1608 tc->completed = 1;
1609 tc->offset = size;
1610 tc->transfer = NULL;
1611 return tc;
1612 }
1613
1614 tc->completed = 0;
1615 if (ftdi->readbuffer_remaining != 0)
1616 {
1617 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1618
1619 tc->offset = ftdi->readbuffer_remaining;
1620 }
1621 else
1622 tc->offset = 0;
1623
1624 transfer = libusb_alloc_transfer(0);
1625 if (!transfer)
1626 {
1627 free (tc);
1628 return NULL;
1629 }
1630
1631 ftdi->readbuffer_remaining = 0;
1632 ftdi->readbuffer_offset = 0;
1633
1634 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1635 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1636
1637 ret = libusb_submit_transfer(transfer);
1638 if (ret < 0)
1639 {
1640 libusb_free_transfer(transfer);
1641 free (tc);
1642 return NULL;
1643 }
1644 tc->transfer = transfer;
1645
1646 return tc;
1647}
1648
1649/**
1650 Wait for completion of the transfer.
1651
1652 Use libusb 1.0 asynchronous API.
1653
1654 \param tc pointer to ftdi_transfer_control
1655
1656 \retval < 0: Some error happens
1657 \retval >= 0: Data size transferred
1658*/
1659
1660int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1661{
1662 int ret;
1663
1664 while (!tc->completed)
1665 {
1666 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1667 if (ret < 0)
1668 {
1669 if (ret == LIBUSB_ERROR_INTERRUPTED)
1670 continue;
1671 libusb_cancel_transfer(tc->transfer);
1672 while (!tc->completed)
1673 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1674 break;
1675 libusb_free_transfer(tc->transfer);
1676 free (tc);
1677 return ret;
1678 }
1679 }
1680
1681 ret = tc->offset;
1682 /**
1683 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1684 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1685 **/
1686 if (tc->transfer)
1687 {
1688 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1689 ret = -1;
1690 libusb_free_transfer(tc->transfer);
1691 }
1692 free(tc);
1693 return ret;
1694}
1695
1696/**
1697 Configure write buffer chunk size.
1698 Default is 4096.
1699
1700 \param ftdi pointer to ftdi_context
1701 \param chunksize Chunk size
1702
1703 \retval 0: all fine
1704 \retval -1: ftdi context invalid
1705*/
1706int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1707{
1708 if (ftdi == NULL)
1709 ftdi_error_return(-1, "ftdi context invalid");
1710
1711 ftdi->writebuffer_chunksize = chunksize;
1712 return 0;
1713}
1714
1715/**
1716 Get write buffer chunk size.
1717
1718 \param ftdi pointer to ftdi_context
1719 \param chunksize Pointer to store chunk size in
1720
1721 \retval 0: all fine
1722 \retval -1: ftdi context invalid
1723*/
1724int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1725{
1726 if (ftdi == NULL)
1727 ftdi_error_return(-1, "ftdi context invalid");
1728
1729 *chunksize = ftdi->writebuffer_chunksize;
1730 return 0;
1731}
1732
1733/**
1734 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1735
1736 Automatically strips the two modem status bytes transfered during every read.
1737
1738 \param ftdi pointer to ftdi_context
1739 \param buf Buffer to store data in
1740 \param size Size of the buffer
1741
1742 \retval -666: USB device unavailable
1743 \retval <0: error code from libusb_bulk_transfer()
1744 \retval 0: no data was available
1745 \retval >0: number of bytes read
1746
1747*/
1748int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1749{
1750 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1751 int packet_size = ftdi->max_packet_size;
1752 int actual_length = 1;
1753
1754 if (ftdi == NULL || ftdi->usb_dev == NULL)
1755 ftdi_error_return(-666, "USB device unavailable");
1756
1757 // Packet size sanity check (avoid division by zero)
1758 if (packet_size == 0)
1759 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1760
1761 // everything we want is still in the readbuffer?
1762 if (size <= (int)ftdi->readbuffer_remaining)
1763 {
1764 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1765
1766 // Fix offsets
1767 ftdi->readbuffer_remaining -= size;
1768 ftdi->readbuffer_offset += size;
1769
1770 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1771
1772 return size;
1773 }
1774 // something still in the readbuffer, but not enough to satisfy 'size'?
1775 if (ftdi->readbuffer_remaining != 0)
1776 {
1777 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1778
1779 // Fix offset
1780 offset += ftdi->readbuffer_remaining;
1781 }
1782 // do the actual USB read
1783 while (offset < size && actual_length > 0)
1784 {
1785 ftdi->readbuffer_remaining = 0;
1786 ftdi->readbuffer_offset = 0;
1787 /* returns how much received */
1788 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1789 if (ret < 0)
1790 ftdi_error_return(ret, "usb bulk read failed");
1791
1792 if (actual_length > 2)
1793 {
1794 // skip FTDI status bytes.
1795 // Maybe stored in the future to enable modem use
1796 num_of_chunks = actual_length / packet_size;
1797 chunk_remains = actual_length % packet_size;
1798 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1799
1800 ftdi->readbuffer_offset += 2;
1801 actual_length -= 2;
1802
1803 if (actual_length > packet_size - 2)
1804 {
1805 for (i = 1; i < num_of_chunks; i++)
1806 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1807 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1808 packet_size - 2);
1809 if (chunk_remains > 2)
1810 {
1811 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1812 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1813 chunk_remains-2);
1814 actual_length -= 2*num_of_chunks;
1815 }
1816 else
1817 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1818 }
1819 }
1820 else if (actual_length <= 2)
1821 {
1822 // no more data to read?
1823 return offset;
1824 }
1825 if (actual_length > 0)
1826 {
1827 // data still fits in buf?
1828 if (offset+actual_length <= size)
1829 {
1830 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1831 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1832 offset += actual_length;
1833
1834 /* Did we read exactly the right amount of bytes? */
1835 if (offset == size)
1836 //printf("read_data exact rem %d offset %d\n",
1837 //ftdi->readbuffer_remaining, offset);
1838 return offset;
1839 }
1840 else
1841 {
1842 // only copy part of the data or size <= readbuffer_chunksize
1843 int part_size = size-offset;
1844 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1845
1846 ftdi->readbuffer_offset += part_size;
1847 ftdi->readbuffer_remaining = actual_length-part_size;
1848 offset += part_size;
1849
1850 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1851 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1852
1853 return offset;
1854 }
1855 }
1856 }
1857 // never reached
1858 return -127;
1859}
1860
1861/**
1862 Configure read buffer chunk size.
1863 Default is 4096.
1864
1865 Automatically reallocates the buffer.
1866
1867 \param ftdi pointer to ftdi_context
1868 \param chunksize Chunk size
1869
1870 \retval 0: all fine
1871 \retval -1: ftdi context invalid
1872*/
1873int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1874{
1875 unsigned char *new_buf;
1876
1877 if (ftdi == NULL)
1878 ftdi_error_return(-1, "ftdi context invalid");
1879
1880 // Invalidate all remaining data
1881 ftdi->readbuffer_offset = 0;
1882 ftdi->readbuffer_remaining = 0;
1883#ifdef __linux__
1884 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1885 which is defined in libusb-1.0. Otherwise, each USB read request will
1886 be divided into multiple URBs. This will cause issues on Linux kernel
1887 older than 2.6.32. */
1888 if (chunksize > 16384)
1889 chunksize = 16384;
1890#endif
1891
1892 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1893 ftdi_error_return(-1, "out of memory for readbuffer");
1894
1895 ftdi->readbuffer = new_buf;
1896 ftdi->readbuffer_chunksize = chunksize;
1897
1898 return 0;
1899}
1900
1901/**
1902 Get read buffer chunk size.
1903
1904 \param ftdi pointer to ftdi_context
1905 \param chunksize Pointer to store chunk size in
1906
1907 \retval 0: all fine
1908 \retval -1: FTDI context invalid
1909*/
1910int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1911{
1912 if (ftdi == NULL)
1913 ftdi_error_return(-1, "FTDI context invalid");
1914
1915 *chunksize = ftdi->readbuffer_chunksize;
1916 return 0;
1917}
1918
1919/**
1920 Enable/disable bitbang modes.
1921
1922 \param ftdi pointer to ftdi_context
1923 \param bitmask Bitmask to configure lines.
1924 HIGH/ON value configures a line as output.
1925 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1926
1927 \retval 0: all fine
1928 \retval -1: can't enable bitbang mode
1929 \retval -2: USB device unavailable
1930*/
1931int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1932{
1933 unsigned short usb_val;
1934
1935 if (ftdi == NULL || ftdi->usb_dev == NULL)
1936 ftdi_error_return(-2, "USB device unavailable");
1937
1938 usb_val = bitmask; // low byte: bitmask
1939 usb_val |= (mode << 8);
1940 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1941 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
1942
1943 ftdi->bitbang_mode = mode;
1944 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1945 return 0;
1946}
1947
1948/**
1949 Disable bitbang mode.
1950
1951 \param ftdi pointer to ftdi_context
1952
1953 \retval 0: all fine
1954 \retval -1: can't disable bitbang mode
1955 \retval -2: USB device unavailable
1956*/
1957int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1958{
1959 if (ftdi == NULL || ftdi->usb_dev == NULL)
1960 ftdi_error_return(-2, "USB device unavailable");
1961
1962 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1963 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1964
1965 ftdi->bitbang_enabled = 0;
1966 return 0;
1967}
1968
1969
1970/**
1971 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1972
1973 \param ftdi pointer to ftdi_context
1974 \param pins Pointer to store pins into
1975
1976 \retval 0: all fine
1977 \retval -1: read pins failed
1978 \retval -2: USB device unavailable
1979*/
1980int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1981{
1982 if (ftdi == NULL || ftdi->usb_dev == NULL)
1983 ftdi_error_return(-2, "USB device unavailable");
1984
1985 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1986 ftdi_error_return(-1, "read pins failed");
1987
1988 return 0;
1989}
1990
1991/**
1992 Set latency timer
1993
1994 The FTDI chip keeps data in the internal buffer for a specific
1995 amount of time if the buffer is not full yet to decrease
1996 load on the usb bus.
1997
1998 \param ftdi pointer to ftdi_context
1999 \param latency Value between 1 and 255
2000
2001 \retval 0: all fine
2002 \retval -1: latency out of range
2003 \retval -2: unable to set latency timer
2004 \retval -3: USB device unavailable
2005*/
2006int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2007{
2008 unsigned short usb_val;
2009
2010 if (latency < 1)
2011 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
2012
2013 if (ftdi == NULL || ftdi->usb_dev == NULL)
2014 ftdi_error_return(-3, "USB device unavailable");
2015
2016 usb_val = latency;
2017 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2018 ftdi_error_return(-2, "unable to set latency timer");
2019
2020 return 0;
2021}
2022
2023/**
2024 Get latency timer
2025
2026 \param ftdi pointer to ftdi_context
2027 \param latency Pointer to store latency value in
2028
2029 \retval 0: all fine
2030 \retval -1: unable to get latency timer
2031 \retval -2: USB device unavailable
2032*/
2033int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2034{
2035 unsigned short usb_val;
2036
2037 if (ftdi == NULL || ftdi->usb_dev == NULL)
2038 ftdi_error_return(-2, "USB device unavailable");
2039
2040 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
2041 ftdi_error_return(-1, "reading latency timer failed");
2042
2043 *latency = (unsigned char)usb_val;
2044 return 0;
2045}
2046
2047/**
2048 Poll modem status information
2049
2050 This function allows the retrieve the two status bytes of the device.
2051 The device sends these bytes also as a header for each read access
2052 where they are discarded by ftdi_read_data(). The chip generates
2053 the two stripped status bytes in the absence of data every 40 ms.
2054
2055 Layout of the first byte:
2056 - B0..B3 - must be 0
2057 - B4 Clear to send (CTS)
2058 0 = inactive
2059 1 = active
2060 - B5 Data set ready (DTS)
2061 0 = inactive
2062 1 = active
2063 - B6 Ring indicator (RI)
2064 0 = inactive
2065 1 = active
2066 - B7 Receive line signal detect (RLSD)
2067 0 = inactive
2068 1 = active
2069
2070 Layout of the second byte:
2071 - B0 Data ready (DR)
2072 - B1 Overrun error (OE)
2073 - B2 Parity error (PE)
2074 - B3 Framing error (FE)
2075 - B4 Break interrupt (BI)
2076 - B5 Transmitter holding register (THRE)
2077 - B6 Transmitter empty (TEMT)
2078 - B7 Error in RCVR FIFO
2079
2080 \param ftdi pointer to ftdi_context
2081 \param status Pointer to store status information in. Must be two bytes.
2082
2083 \retval 0: all fine
2084 \retval -1: unable to retrieve status information
2085 \retval -2: USB device unavailable
2086*/
2087int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2088{
2089 char usb_val[2];
2090
2091 if (ftdi == NULL || ftdi->usb_dev == NULL)
2092 ftdi_error_return(-2, "USB device unavailable");
2093
2094 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
2095 ftdi_error_return(-1, "getting modem status failed");
2096
2097 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
2098
2099 return 0;
2100}
2101
2102/**
2103 Set flowcontrol for ftdi chip
2104
2105 \param ftdi pointer to ftdi_context
2106 \param flowctrl flow control to use. should be
2107 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2108
2109 \retval 0: all fine
2110 \retval -1: set flow control failed
2111 \retval -2: USB device unavailable
2112*/
2113int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2114{
2115 if (ftdi == NULL || ftdi->usb_dev == NULL)
2116 ftdi_error_return(-2, "USB device unavailable");
2117
2118 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2119 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2120 NULL, 0, ftdi->usb_write_timeout) < 0)
2121 ftdi_error_return(-1, "set flow control failed");
2122
2123 return 0;
2124}
2125
2126/**
2127 Set dtr line
2128
2129 \param ftdi pointer to ftdi_context
2130 \param state state to set line to (1 or 0)
2131
2132 \retval 0: all fine
2133 \retval -1: set dtr failed
2134 \retval -2: USB device unavailable
2135*/
2136int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2137{
2138 unsigned short usb_val;
2139
2140 if (ftdi == NULL || ftdi->usb_dev == NULL)
2141 ftdi_error_return(-2, "USB device unavailable");
2142
2143 if (state)
2144 usb_val = SIO_SET_DTR_HIGH;
2145 else
2146 usb_val = SIO_SET_DTR_LOW;
2147
2148 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2149 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2150 NULL, 0, ftdi->usb_write_timeout) < 0)
2151 ftdi_error_return(-1, "set dtr failed");
2152
2153 return 0;
2154}
2155
2156/**
2157 Set rts line
2158
2159 \param ftdi pointer to ftdi_context
2160 \param state state to set line to (1 or 0)
2161
2162 \retval 0: all fine
2163 \retval -1: set rts failed
2164 \retval -2: USB device unavailable
2165*/
2166int ftdi_setrts(struct ftdi_context *ftdi, int state)
2167{
2168 unsigned short usb_val;
2169
2170 if (ftdi == NULL || ftdi->usb_dev == NULL)
2171 ftdi_error_return(-2, "USB device unavailable");
2172
2173 if (state)
2174 usb_val = SIO_SET_RTS_HIGH;
2175 else
2176 usb_val = SIO_SET_RTS_LOW;
2177
2178 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2179 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2180 NULL, 0, ftdi->usb_write_timeout) < 0)
2181 ftdi_error_return(-1, "set of rts failed");
2182
2183 return 0;
2184}
2185
2186/**
2187 Set dtr and rts line in one pass
2188
2189 \param ftdi pointer to ftdi_context
2190 \param dtr DTR state to set line to (1 or 0)
2191 \param rts RTS state to set line to (1 or 0)
2192
2193 \retval 0: all fine
2194 \retval -1: set dtr/rts failed
2195 \retval -2: USB device unavailable
2196 */
2197int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2198{
2199 unsigned short usb_val;
2200
2201 if (ftdi == NULL || ftdi->usb_dev == NULL)
2202 ftdi_error_return(-2, "USB device unavailable");
2203
2204 if (dtr)
2205 usb_val = SIO_SET_DTR_HIGH;
2206 else
2207 usb_val = SIO_SET_DTR_LOW;
2208
2209 if (rts)
2210 usb_val |= SIO_SET_RTS_HIGH;
2211 else
2212 usb_val |= SIO_SET_RTS_LOW;
2213
2214 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2215 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2216 NULL, 0, ftdi->usb_write_timeout) < 0)
2217 ftdi_error_return(-1, "set of rts/dtr failed");
2218
2219 return 0;
2220}
2221
2222/**
2223 Set the special event character
2224
2225 \param ftdi pointer to ftdi_context
2226 \param eventch Event character
2227 \param enable 0 to disable the event character, non-zero otherwise
2228
2229 \retval 0: all fine
2230 \retval -1: unable to set event character
2231 \retval -2: USB device unavailable
2232*/
2233int ftdi_set_event_char(struct ftdi_context *ftdi,
2234 unsigned char eventch, unsigned char enable)
2235{
2236 unsigned short usb_val;
2237
2238 if (ftdi == NULL || ftdi->usb_dev == NULL)
2239 ftdi_error_return(-2, "USB device unavailable");
2240
2241 usb_val = eventch;
2242 if (enable)
2243 usb_val |= 1 << 8;
2244
2245 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2246 ftdi_error_return(-1, "setting event character failed");
2247
2248 return 0;
2249}
2250
2251/**
2252 Set error character
2253
2254 \param ftdi pointer to ftdi_context
2255 \param errorch Error character
2256 \param enable 0 to disable the error character, non-zero otherwise
2257
2258 \retval 0: all fine
2259 \retval -1: unable to set error character
2260 \retval -2: USB device unavailable
2261*/
2262int ftdi_set_error_char(struct ftdi_context *ftdi,
2263 unsigned char errorch, unsigned char enable)
2264{
2265 unsigned short usb_val;
2266
2267 if (ftdi == NULL || ftdi->usb_dev == NULL)
2268 ftdi_error_return(-2, "USB device unavailable");
2269
2270 usb_val = errorch;
2271 if (enable)
2272 usb_val |= 1 << 8;
2273
2274 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2275 ftdi_error_return(-1, "setting error character failed");
2276
2277 return 0;
2278}
2279
2280/**
2281 Init eeprom with default values for the connected device
2282 \param ftdi pointer to ftdi_context
2283 \param manufacturer String to use as Manufacturer
2284 \param product String to use as Product description
2285 \param serial String to use as Serial number description
2286
2287 \retval 0: all fine
2288 \retval -1: No struct ftdi_context
2289 \retval -2: No struct ftdi_eeprom
2290 \retval -3: No connected device or device not yet opened
2291*/
2292int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2293 char * product, char * serial)
2294{
2295 struct ftdi_eeprom *eeprom;
2296
2297 if (ftdi == NULL)
2298 ftdi_error_return(-1, "No struct ftdi_context");
2299
2300 if (ftdi->eeprom == NULL)
2301 ftdi_error_return(-2,"No struct ftdi_eeprom");
2302
2303 eeprom = ftdi->eeprom;
2304 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2305
2306 if (ftdi->usb_dev == NULL)
2307 ftdi_error_return(-3, "No connected device or device not yet opened");
2308
2309 eeprom->vendor_id = 0x0403;
2310 eeprom->use_serial = 1;
2311 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2312 (ftdi->type == TYPE_R))
2313 eeprom->product_id = 0x6001;
2314 else if (ftdi->type == TYPE_4232H)
2315 eeprom->product_id = 0x6011;
2316 else if (ftdi->type == TYPE_232H)
2317 eeprom->product_id = 0x6014;
2318 else
2319 eeprom->product_id = 0x6010;
2320 if (ftdi->type == TYPE_AM)
2321 eeprom->usb_version = 0x0101;
2322 else
2323 eeprom->usb_version = 0x0200;
2324 eeprom->max_power = 100;
2325
2326 if (eeprom->manufacturer)
2327 free (eeprom->manufacturer);
2328 eeprom->manufacturer = NULL;
2329 if (manufacturer)
2330 {
2331 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2332 if (eeprom->manufacturer)
2333 strcpy(eeprom->manufacturer, manufacturer);
2334 }
2335
2336 if (eeprom->product)
2337 free (eeprom->product);
2338 eeprom->product = NULL;
2339 if(product)
2340 {
2341 eeprom->product = malloc(strlen(product)+1);
2342 if (eeprom->product)
2343 strcpy(eeprom->product, product);
2344 }
2345 else
2346 {
2347 const char* default_product;
2348 switch(ftdi->type)
2349 {
2350 case TYPE_AM: default_product = "AM"; break;
2351 case TYPE_BM: default_product = "BM"; break;
2352 case TYPE_2232C: default_product = "Dual RS232"; break;
2353 case TYPE_R: default_product = "FT232R USB UART"; break;
2354 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2355 case TYPE_4232H: default_product = "FT4232H"; break;
2356 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2357 default:
2358 ftdi_error_return(-3, "Unknown chip type");
2359 }
2360 eeprom->product = malloc(strlen(default_product) +1);
2361 if (eeprom->product)
2362 strcpy(eeprom->product, default_product);
2363 }
2364
2365 if (eeprom->serial)
2366 free (eeprom->serial);
2367 eeprom->serial = NULL;
2368 if (serial)
2369 {
2370 eeprom->serial = malloc(strlen(serial)+1);
2371 if (eeprom->serial)
2372 strcpy(eeprom->serial, serial);
2373 }
2374
2375 if (ftdi->type == TYPE_R)
2376 {
2377 eeprom->max_power = 90;
2378 eeprom->size = 0x80;
2379 eeprom->cbus_function[0] = CBUS_TXLED;
2380 eeprom->cbus_function[1] = CBUS_RXLED;
2381 eeprom->cbus_function[2] = CBUS_TXDEN;
2382 eeprom->cbus_function[3] = CBUS_PWREN;
2383 eeprom->cbus_function[4] = CBUS_SLEEP;
2384 }
2385 else
2386 {
2387 if(ftdi->type == TYPE_232H)
2388 {
2389 int i;
2390 for (i=0; i<10; i++)
2391 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2392 }
2393 eeprom->size = -1;
2394 }
2395 switch (ftdi->type)
2396 {
2397 case TYPE_AM:
2398 eeprom->release_number = 0x0200;
2399 break;
2400 case TYPE_BM:
2401 eeprom->release_number = 0x0400;
2402 break;
2403 case TYPE_2232C:
2404 eeprom->release_number = 0x0500;
2405 break;
2406 case TYPE_R:
2407 eeprom->release_number = 0x0600;
2408 break;
2409 case TYPE_2232H:
2410 eeprom->release_number = 0x0700;
2411 break;
2412 case TYPE_4232H:
2413 eeprom->release_number = 0x0800;
2414 break;
2415 case TYPE_232H:
2416 eeprom->release_number = 0x0900;
2417 break;
2418 default:
2419 eeprom->release_number = 0x00;
2420 }
2421 return 0;
2422}
2423
2424int ftdi_eeprom_set_strings(struct ftdi_context *ftdi, char * manufacturer,
2425 char * product, char * serial)
2426{
2427 struct ftdi_eeprom *eeprom;
2428
2429 if (ftdi == NULL)
2430 ftdi_error_return(-1, "No struct ftdi_context");
2431
2432 if (ftdi->eeprom == NULL)
2433 ftdi_error_return(-2,"No struct ftdi_eeprom");
2434
2435 eeprom = ftdi->eeprom;
2436
2437 if (ftdi->usb_dev == NULL)
2438 ftdi_error_return(-3, "No connected device or device not yet opened");
2439
2440 if (manufacturer) {
2441 if (eeprom->manufacturer)
2442 free (eeprom->manufacturer);
2443 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2444 if (eeprom->manufacturer)
2445 strcpy(eeprom->manufacturer, manufacturer);
2446 }
2447
2448 if(product) {
2449 if (eeprom->product)
2450 free (eeprom->product);
2451 eeprom->product = malloc(strlen(product)+1);
2452 if (eeprom->product)
2453 strcpy(eeprom->product, product);
2454 }
2455
2456 if (serial) {
2457 if (eeprom->serial)
2458 free (eeprom->serial);
2459 eeprom->serial = malloc(strlen(serial)+1);
2460 if (eeprom->serial) {
2461 strcpy(eeprom->serial, serial);
2462 eeprom->use_serial = 1;
2463 }
2464 }
2465 return 0;
2466}
2467
2468
2469/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2470void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2471{
2472 int i;
2473 for(i=0; i<5;i++)
2474 {
2475 int mode_low, mode_high;
2476 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2477 mode_low = CBUSH_TRISTATE;
2478 else
2479 mode_low = eeprom->cbus_function[2*i];
2480 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2481 mode_high = CBUSH_TRISTATE;
2482 else
2483 mode_high = eeprom->cbus_function[2*i+1];
2484
2485 output[0x18+i] = (mode_high <<4) | mode_low;
2486 }
2487}
2488/* Return the bits for the encoded EEPROM Structure of a requested Mode
2489 *
2490 */
2491static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2492{
2493 switch (chip)
2494 {
2495 case TYPE_2232H:
2496 case TYPE_2232C:
2497 {
2498 switch (type)
2499 {
2500 case CHANNEL_IS_UART: return 0;
2501 case CHANNEL_IS_FIFO: return 0x01;
2502 case CHANNEL_IS_OPTO: return 0x02;
2503 case CHANNEL_IS_CPU : return 0x04;
2504 default: return 0;
2505 }
2506 }
2507 case TYPE_232H:
2508 {
2509 switch (type)
2510 {
2511 case CHANNEL_IS_UART : return 0;
2512 case CHANNEL_IS_FIFO : return 0x01;
2513 case CHANNEL_IS_OPTO : return 0x02;
2514 case CHANNEL_IS_CPU : return 0x04;
2515 case CHANNEL_IS_FT1284 : return 0x08;
2516 default: return 0;
2517 }
2518 }
2519 default: return 0;
2520 }
2521 return 0;
2522}
2523
2524/**
2525 Build binary buffer from ftdi_eeprom structure.
2526 Output is suitable for ftdi_write_eeprom().
2527
2528 \param ftdi pointer to ftdi_context
2529
2530 \retval >=0: size of eeprom user area in bytes
2531 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2532 \retval -2: Invalid eeprom or ftdi pointer
2533 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2534 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2535 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2536 \retval -6: No connected EEPROM or EEPROM Type unknown
2537*/
2538int ftdi_eeprom_build(struct ftdi_context *ftdi)
2539{
2540 unsigned char i, j, eeprom_size_mask;
2541 unsigned short checksum, value;
2542 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2543 int user_area_size;
2544 struct ftdi_eeprom *eeprom;
2545 unsigned char * output;
2546
2547 if (ftdi == NULL)
2548 ftdi_error_return(-2,"No context");
2549 if (ftdi->eeprom == NULL)
2550 ftdi_error_return(-2,"No eeprom structure");
2551
2552 eeprom= ftdi->eeprom;
2553 output = eeprom->buf;
2554
2555 if (eeprom->chip == -1)
2556 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2557
2558 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2559 eeprom->size = 0x100;
2560 else
2561 eeprom->size = 0x80;
2562
2563 if (eeprom->manufacturer != NULL)
2564 manufacturer_size = strlen(eeprom->manufacturer);
2565 if (eeprom->product != NULL)
2566 product_size = strlen(eeprom->product);
2567 if (eeprom->serial != NULL)
2568 serial_size = strlen(eeprom->serial);
2569
2570 // eeprom size check
2571 switch (ftdi->type)
2572 {
2573 case TYPE_AM:
2574 case TYPE_BM:
2575 user_area_size = 96; // base size for strings (total of 48 characters)
2576 break;
2577 case TYPE_2232C:
2578 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2579 break;
2580 case TYPE_R:
2581 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2582 break;
2583 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2584 case TYPE_4232H:
2585 user_area_size = 86;
2586 break;
2587 case TYPE_232H:
2588 user_area_size = 80;
2589 break;
2590 default:
2591 user_area_size = 0;
2592 break;
2593 }
2594 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2595
2596 if (user_area_size < 0)
2597 ftdi_error_return(-1,"eeprom size exceeded");
2598
2599 // empty eeprom
2600 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2601
2602 // Bytes and Bits set for all Types
2603
2604 // Addr 02: Vendor ID
2605 output[0x02] = eeprom->vendor_id;
2606 output[0x03] = eeprom->vendor_id >> 8;
2607
2608 // Addr 04: Product ID
2609 output[0x04] = eeprom->product_id;
2610 output[0x05] = eeprom->product_id >> 8;
2611
2612 // Addr 06: Device release number (0400h for BM features)
2613 output[0x06] = eeprom->release_number;
2614 output[0x07] = eeprom->release_number >> 8;
2615
2616 // Addr 08: Config descriptor
2617 // Bit 7: always 1
2618 // Bit 6: 1 if this device is self powered, 0 if bus powered
2619 // Bit 5: 1 if this device uses remote wakeup
2620 // Bit 4-0: reserved - 0
2621 j = 0x80;
2622 if (eeprom->self_powered)
2623 j |= 0x40;
2624 if (eeprom->remote_wakeup)
2625 j |= 0x20;
2626 output[0x08] = j;
2627
2628 // Addr 09: Max power consumption: max power = value * 2 mA
2629 output[0x09] = eeprom->max_power / MAX_POWER_MILLIAMP_PER_UNIT;
2630
2631 if (ftdi->type != TYPE_AM)
2632 {
2633 // Addr 0A: Chip configuration
2634 // Bit 7: 0 - reserved
2635 // Bit 6: 0 - reserved
2636 // Bit 5: 0 - reserved
2637 // Bit 4: 1 - Change USB version
2638 // Bit 3: 1 - Use the serial number string
2639 // Bit 2: 1 - Enable suspend pull downs for lower power
2640 // Bit 1: 1 - Out EndPoint is Isochronous
2641 // Bit 0: 1 - In EndPoint is Isochronous
2642 //
2643 j = 0;
2644 if (eeprom->in_is_isochronous)
2645 j = j | 1;
2646 if (eeprom->out_is_isochronous)
2647 j = j | 2;
2648 output[0x0A] = j;
2649 }
2650
2651 // Dynamic content
2652 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2653 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2654 // 0xa0 (TYPE_232H)
2655 i = 0;
2656 switch (ftdi->type)
2657 {
2658 case TYPE_232H:
2659 i += 2;
2660 case TYPE_2232H:
2661 case TYPE_4232H:
2662 i += 2;
2663 case TYPE_R:
2664 i += 2;
2665 case TYPE_2232C:
2666 i += 2;
2667 case TYPE_AM:
2668 case TYPE_BM:
2669 i += 0x94;
2670 }
2671 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2672 eeprom_size_mask = eeprom->size -1;
2673
2674 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2675 // Addr 0F: Length of manufacturer string
2676 // Output manufacturer
2677 output[0x0E] = i; // calculate offset
2678 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2679 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2680 for (j = 0; j < manufacturer_size; j++)
2681 {
2682 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2683 output[i & eeprom_size_mask] = 0x00, i++;
2684 }
2685 output[0x0F] = manufacturer_size*2 + 2;
2686
2687 // Addr 10: Offset of the product string + 0x80, calculated later
2688 // Addr 11: Length of product string
2689 output[0x10] = i | 0x80; // calculate offset
2690 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2691 output[i & eeprom_size_mask] = 0x03, i++;
2692 for (j = 0; j < product_size; j++)
2693 {
2694 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2695 output[i & eeprom_size_mask] = 0x00, i++;
2696 }
2697 output[0x11] = product_size*2 + 2;
2698
2699 // Addr 12: Offset of the serial string + 0x80, calculated later
2700 // Addr 13: Length of serial string
2701 output[0x12] = i | 0x80; // calculate offset
2702 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2703 output[i & eeprom_size_mask] = 0x03, i++;
2704 for (j = 0; j < serial_size; j++)
2705 {
2706 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2707 output[i & eeprom_size_mask] = 0x00, i++;
2708 }
2709
2710 // Legacy port name and PnP fields for FT2232 and newer chips
2711 if (ftdi->type > TYPE_BM)
2712 {
2713 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2714 i++;
2715 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2716 i++;
2717 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2718 i++;
2719 }
2720
2721 output[0x13] = serial_size*2 + 2;
2722
2723 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2724 {
2725 if (eeprom->use_serial)
2726 output[0x0A] |= USE_SERIAL_NUM;
2727 else
2728 output[0x0A] &= ~USE_SERIAL_NUM;
2729 }
2730
2731 /* Bytes and Bits specific to (some) types
2732 Write linear, as this allows easier fixing*/
2733 switch (ftdi->type)
2734 {
2735 case TYPE_AM:
2736 break;
2737 case TYPE_BM:
2738 output[0x0C] = eeprom->usb_version & 0xff;
2739 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2740 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2741 output[0x0A] |= USE_USB_VERSION_BIT;
2742 else
2743 output[0x0A] &= ~USE_USB_VERSION_BIT;
2744
2745 break;
2746 case TYPE_2232C:
2747
2748 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
2749 if ( eeprom->channel_a_driver == DRIVER_VCP)
2750 output[0x00] |= DRIVER_VCP;
2751 else
2752 output[0x00] &= ~DRIVER_VCP;
2753
2754 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2755 output[0x00] |= HIGH_CURRENT_DRIVE;
2756 else
2757 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2758
2759 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
2760 if ( eeprom->channel_b_driver == DRIVER_VCP)
2761 output[0x01] |= DRIVER_VCP;
2762 else
2763 output[0x01] &= ~DRIVER_VCP;
2764
2765 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2766 output[0x01] |= HIGH_CURRENT_DRIVE;
2767 else
2768 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2769
2770 if (eeprom->in_is_isochronous)
2771 output[0x0A] |= 0x1;
2772 else
2773 output[0x0A] &= ~0x1;
2774 if (eeprom->out_is_isochronous)
2775 output[0x0A] |= 0x2;
2776 else
2777 output[0x0A] &= ~0x2;
2778 if (eeprom->suspend_pull_downs)
2779 output[0x0A] |= 0x4;
2780 else
2781 output[0x0A] &= ~0x4;
2782 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2783 output[0x0A] |= USE_USB_VERSION_BIT;
2784 else
2785 output[0x0A] &= ~USE_USB_VERSION_BIT;
2786
2787 output[0x0C] = eeprom->usb_version & 0xff;
2788 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2789 output[0x14] = eeprom->chip;
2790 break;
2791 case TYPE_R:
2792 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2793 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2794 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2795
2796 if (eeprom->suspend_pull_downs)
2797 output[0x0A] |= 0x4;
2798 else
2799 output[0x0A] &= ~0x4;
2800 output[0x0B] = eeprom->invert;
2801 output[0x0C] = eeprom->usb_version & 0xff;
2802 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2803
2804 if (eeprom->cbus_function[0] > CBUS_BB)
2805 output[0x14] = CBUS_TXLED;
2806 else
2807 output[0x14] = eeprom->cbus_function[0];
2808
2809 if (eeprom->cbus_function[1] > CBUS_BB)
2810 output[0x14] |= CBUS_RXLED<<4;
2811 else
2812 output[0x14] |= eeprom->cbus_function[1]<<4;
2813
2814 if (eeprom->cbus_function[2] > CBUS_BB)
2815 output[0x15] = CBUS_TXDEN;
2816 else
2817 output[0x15] = eeprom->cbus_function[2];
2818
2819 if (eeprom->cbus_function[3] > CBUS_BB)
2820 output[0x15] |= CBUS_PWREN<<4;
2821 else
2822 output[0x15] |= eeprom->cbus_function[3]<<4;
2823
2824 if (eeprom->cbus_function[4] > CBUS_CLK6)
2825 output[0x16] = CBUS_SLEEP;
2826 else
2827 output[0x16] = eeprom->cbus_function[4];
2828 break;
2829 case TYPE_2232H:
2830 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
2831 if ( eeprom->channel_a_driver == DRIVER_VCP)
2832 output[0x00] |= DRIVER_VCP;
2833 else
2834 output[0x00] &= ~DRIVER_VCP;
2835
2836 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
2837 if ( eeprom->channel_b_driver == DRIVER_VCP)
2838 output[0x01] |= DRIVER_VCP;
2839 else
2840 output[0x01] &= ~DRIVER_VCP;
2841 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2842 output[0x01] |= SUSPEND_DBUS7_BIT;
2843 else
2844 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2845
2846 if (eeprom->suspend_pull_downs)
2847 output[0x0A] |= 0x4;
2848 else
2849 output[0x0A] &= ~0x4;
2850
2851 if (eeprom->group0_drive > DRIVE_16MA)
2852 output[0x0c] |= DRIVE_16MA;
2853 else
2854 output[0x0c] |= eeprom->group0_drive;
2855 if (eeprom->group0_schmitt == IS_SCHMITT)
2856 output[0x0c] |= IS_SCHMITT;
2857 if (eeprom->group0_slew == SLOW_SLEW)
2858 output[0x0c] |= SLOW_SLEW;
2859
2860 if (eeprom->group1_drive > DRIVE_16MA)
2861 output[0x0c] |= DRIVE_16MA<<4;
2862 else
2863 output[0x0c] |= eeprom->group1_drive<<4;
2864 if (eeprom->group1_schmitt == IS_SCHMITT)
2865 output[0x0c] |= IS_SCHMITT<<4;
2866 if (eeprom->group1_slew == SLOW_SLEW)
2867 output[0x0c] |= SLOW_SLEW<<4;
2868
2869 if (eeprom->group2_drive > DRIVE_16MA)
2870 output[0x0d] |= DRIVE_16MA;
2871 else
2872 output[0x0d] |= eeprom->group2_drive;
2873 if (eeprom->group2_schmitt == IS_SCHMITT)
2874 output[0x0d] |= IS_SCHMITT;
2875 if (eeprom->group2_slew == SLOW_SLEW)
2876 output[0x0d] |= SLOW_SLEW;
2877
2878 if (eeprom->group3_drive > DRIVE_16MA)
2879 output[0x0d] |= DRIVE_16MA<<4;
2880 else
2881 output[0x0d] |= eeprom->group3_drive<<4;
2882 if (eeprom->group3_schmitt == IS_SCHMITT)
2883 output[0x0d] |= IS_SCHMITT<<4;
2884 if (eeprom->group3_slew == SLOW_SLEW)
2885 output[0x0d] |= SLOW_SLEW<<4;
2886
2887 output[0x18] = eeprom->chip;
2888
2889 break;
2890 case TYPE_4232H:
2891 if (eeprom->channel_a_driver == DRIVER_VCP)
2892 output[0x00] |= DRIVER_VCP;
2893 else
2894 output[0x00] &= ~DRIVER_VCP;
2895 if (eeprom->channel_b_driver == DRIVER_VCP)
2896 output[0x01] |= DRIVER_VCP;
2897 else
2898 output[0x01] &= ~DRIVER_VCP;
2899 if (eeprom->channel_c_driver == DRIVER_VCP)
2900 output[0x00] |= (DRIVER_VCP << 4);
2901 else
2902 output[0x00] &= ~(DRIVER_VCP << 4);
2903 if (eeprom->channel_d_driver == DRIVER_VCP)
2904 output[0x01] |= (DRIVER_VCP << 4);
2905 else
2906 output[0x01] &= ~(DRIVER_VCP << 4);
2907
2908 if (eeprom->suspend_pull_downs)
2909 output[0x0a] |= 0x4;
2910 else
2911 output[0x0a] &= ~0x4;
2912
2913 if (eeprom->channel_a_rs485enable)
2914 output[0x0b] |= CHANNEL_IS_RS485 << 0;
2915 else
2916 output[0x0b] &= ~(CHANNEL_IS_RS485 << 0);
2917 if (eeprom->channel_b_rs485enable)
2918 output[0x0b] |= CHANNEL_IS_RS485 << 1;
2919 else
2920 output[0x0b] &= ~(CHANNEL_IS_RS485 << 1);
2921 if (eeprom->channel_c_rs485enable)
2922 output[0x0b] |= CHANNEL_IS_RS485 << 2;
2923 else
2924 output[0x0b] &= ~(CHANNEL_IS_RS485 << 2);
2925 if (eeprom->channel_d_rs485enable)
2926 output[0x0b] |= CHANNEL_IS_RS485 << 3;
2927 else
2928 output[0x0b] &= ~(CHANNEL_IS_RS485 << 3);
2929
2930 if (eeprom->group0_drive > DRIVE_16MA)
2931 output[0x0c] |= DRIVE_16MA;
2932 else
2933 output[0x0c] |= eeprom->group0_drive;
2934 if (eeprom->group0_schmitt == IS_SCHMITT)
2935 output[0x0c] |= IS_SCHMITT;
2936 if (eeprom->group0_slew == SLOW_SLEW)
2937 output[0x0c] |= SLOW_SLEW;
2938
2939 if (eeprom->group1_drive > DRIVE_16MA)
2940 output[0x0c] |= DRIVE_16MA<<4;
2941 else
2942 output[0x0c] |= eeprom->group1_drive<<4;
2943 if (eeprom->group1_schmitt == IS_SCHMITT)
2944 output[0x0c] |= IS_SCHMITT<<4;
2945 if (eeprom->group1_slew == SLOW_SLEW)
2946 output[0x0c] |= SLOW_SLEW<<4;
2947
2948 if (eeprom->group2_drive > DRIVE_16MA)
2949 output[0x0d] |= DRIVE_16MA;
2950 else
2951 output[0x0d] |= eeprom->group2_drive;
2952 if (eeprom->group2_schmitt == IS_SCHMITT)
2953 output[0x0d] |= IS_SCHMITT;
2954 if (eeprom->group2_slew == SLOW_SLEW)
2955 output[0x0d] |= SLOW_SLEW;
2956
2957 if (eeprom->group3_drive > DRIVE_16MA)
2958 output[0x0d] |= DRIVE_16MA<<4;
2959 else
2960 output[0x0d] |= eeprom->group3_drive<<4;
2961 if (eeprom->group3_schmitt == IS_SCHMITT)
2962 output[0x0d] |= IS_SCHMITT<<4;
2963 if (eeprom->group3_slew == SLOW_SLEW)
2964 output[0x0d] |= SLOW_SLEW<<4;
2965
2966 output[0x18] = eeprom->chip;
2967
2968 break;
2969 case TYPE_232H:
2970 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
2971 if ( eeprom->channel_a_driver == DRIVER_VCP)
2972 output[0x00] |= DRIVER_VCPH;
2973 else
2974 output[0x00] &= ~DRIVER_VCPH;
2975 if (eeprom->powersave)
2976 output[0x01] |= POWER_SAVE_DISABLE_H;
2977 else
2978 output[0x01] &= ~POWER_SAVE_DISABLE_H;
2979 if (eeprom->clock_polarity)
2980 output[0x01] |= FT1284_CLK_IDLE_STATE;
2981 else
2982 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
2983 if (eeprom->data_order)
2984 output[0x01] |= FT1284_DATA_LSB;
2985 else
2986 output[0x01] &= ~FT1284_DATA_LSB;
2987 if (eeprom->flow_control)
2988 output[0x01] |= FT1284_FLOW_CONTROL;
2989 else
2990 output[0x01] &= ~FT1284_FLOW_CONTROL;
2991 if (eeprom->group0_drive > DRIVE_16MA)
2992 output[0x0c] |= DRIVE_16MA;
2993 else
2994 output[0x0c] |= eeprom->group0_drive;
2995 if (eeprom->group0_schmitt == IS_SCHMITT)
2996 output[0x0c] |= IS_SCHMITT;
2997 if (eeprom->group0_slew == SLOW_SLEW)
2998 output[0x0c] |= SLOW_SLEW;
2999
3000 if (eeprom->group1_drive > DRIVE_16MA)
3001 output[0x0d] |= DRIVE_16MA;
3002 else
3003 output[0x0d] |= eeprom->group1_drive;
3004 if (eeprom->group1_schmitt == IS_SCHMITT)
3005 output[0x0d] |= IS_SCHMITT;
3006 if (eeprom->group1_slew == SLOW_SLEW)
3007 output[0x0d] |= SLOW_SLEW;
3008
3009 set_ft232h_cbus(eeprom, output);
3010
3011 output[0x1e] = eeprom->chip;
3012 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
3013 break;
3014
3015 }
3016
3017 // calculate checksum
3018 checksum = 0xAAAA;
3019
3020 for (i = 0; i < eeprom->size/2-1; i++)
3021 {
3022 value = output[i*2];
3023 value += output[(i*2)+1] << 8;
3024
3025 checksum = value^checksum;
3026 checksum = (checksum << 1) | (checksum >> 15);
3027 }
3028
3029 output[eeprom->size-2] = checksum;
3030 output[eeprom->size-1] = checksum >> 8;
3031
3032 eeprom->initialized_for_connected_device = 1;
3033 return user_area_size;
3034}
3035/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
3036 * EEPROM structure
3037 *
3038 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
3039 */
3040static unsigned char bit2type(unsigned char bits)
3041{
3042 switch (bits)
3043 {
3044 case 0: return CHANNEL_IS_UART;
3045 case 1: return CHANNEL_IS_FIFO;
3046 case 2: return CHANNEL_IS_OPTO;
3047 case 4: return CHANNEL_IS_CPU;
3048 case 8: return CHANNEL_IS_FT1284;
3049 default:
3050 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
3051 bits);
3052 }
3053 return 0;
3054}
3055/**
3056 Decode binary EEPROM image into an ftdi_eeprom structure.
3057
3058 \param ftdi pointer to ftdi_context
3059 \param verbose Decode EEPROM on stdout
3060
3061 \retval 0: all fine
3062 \retval -1: something went wrong
3063
3064 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
3065 FIXME: Strings are malloc'ed here and should be freed somewhere
3066*/
3067int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
3068{
3069 unsigned char i, j;
3070 unsigned short checksum, eeprom_checksum, value;
3071 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
3072 int eeprom_size;
3073 struct ftdi_eeprom *eeprom;
3074 unsigned char *buf = NULL;
3075
3076 if (ftdi == NULL)
3077 ftdi_error_return(-1,"No context");
3078 if (ftdi->eeprom == NULL)
3079 ftdi_error_return(-1,"No eeprom structure");
3080
3081 eeprom = ftdi->eeprom;
3082 eeprom_size = eeprom->size;
3083 buf = ftdi->eeprom->buf;
3084
3085 // Addr 02: Vendor ID
3086 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
3087
3088 // Addr 04: Product ID
3089 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
3090
3091 // Addr 06: Device release number
3092 eeprom->release_number = buf[0x06] + (buf[0x07]<<8);
3093
3094 // Addr 08: Config descriptor
3095 // Bit 7: always 1
3096 // Bit 6: 1 if this device is self powered, 0 if bus powered
3097 // Bit 5: 1 if this device uses remote wakeup
3098 eeprom->self_powered = buf[0x08] & 0x40;
3099 eeprom->remote_wakeup = buf[0x08] & 0x20;
3100
3101 // Addr 09: Max power consumption: max power = value * 2 mA
3102 eeprom->max_power = MAX_POWER_MILLIAMP_PER_UNIT * buf[0x09];
3103
3104 // Addr 0A: Chip configuration
3105 // Bit 7: 0 - reserved
3106 // Bit 6: 0 - reserved
3107 // Bit 5: 0 - reserved
3108 // Bit 4: 1 - Change USB version on BM and 2232C
3109 // Bit 3: 1 - Use the serial number string
3110 // Bit 2: 1 - Enable suspend pull downs for lower power
3111 // Bit 1: 1 - Out EndPoint is Isochronous
3112 // Bit 0: 1 - In EndPoint is Isochronous
3113 //
3114 eeprom->in_is_isochronous = buf[0x0A]&0x01;
3115 eeprom->out_is_isochronous = buf[0x0A]&0x02;
3116 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
3117 eeprom->use_serial = (buf[0x0A] & USE_SERIAL_NUM)?1:0;
3118 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
3119
3120 // Addr 0C: USB version low byte when 0x0A
3121 // Addr 0D: USB version high byte when 0x0A
3122 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
3123
3124 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3125 // Addr 0F: Length of manufacturer string
3126 manufacturer_size = buf[0x0F]/2;
3127 if (eeprom->manufacturer)
3128 free(eeprom->manufacturer);
3129 if (manufacturer_size > 0)
3130 {
3131 eeprom->manufacturer = malloc(manufacturer_size);
3132 if (eeprom->manufacturer)
3133 {
3134 // Decode manufacturer
3135 i = buf[0x0E] & (eeprom_size -1); // offset
3136 for (j=0;j<manufacturer_size-1;j++)
3137 {
3138 eeprom->manufacturer[j] = buf[2*j+i+2];
3139 }
3140 eeprom->manufacturer[j] = '\0';
3141 }
3142 }
3143 else eeprom->manufacturer = NULL;
3144
3145 // Addr 10: Offset of the product string + 0x80, calculated later
3146 // Addr 11: Length of product string
3147 if (eeprom->product)
3148 free(eeprom->product);
3149 product_size = buf[0x11]/2;
3150 if (product_size > 0)
3151 {
3152 eeprom->product = malloc(product_size);
3153 if (eeprom->product)
3154 {
3155 // Decode product name
3156 i = buf[0x10] & (eeprom_size -1); // offset
3157 for (j=0;j<product_size-1;j++)
3158 {
3159 eeprom->product[j] = buf[2*j+i+2];
3160 }
3161 eeprom->product[j] = '\0';
3162 }
3163 }
3164 else eeprom->product = NULL;
3165
3166 // Addr 12: Offset of the serial string + 0x80, calculated later
3167 // Addr 13: Length of serial string
3168 if (eeprom->serial)
3169 free(eeprom->serial);
3170 serial_size = buf[0x13]/2;
3171 if (serial_size > 0)
3172 {
3173 eeprom->serial = malloc(serial_size);
3174 if (eeprom->serial)
3175 {
3176 // Decode serial
3177 i = buf[0x12] & (eeprom_size -1); // offset
3178 for (j=0;j<serial_size-1;j++)
3179 {
3180 eeprom->serial[j] = buf[2*j+i+2];
3181 }
3182 eeprom->serial[j] = '\0';
3183 }
3184 }
3185 else eeprom->serial = NULL;
3186
3187 // verify checksum
3188 checksum = 0xAAAA;
3189
3190 for (i = 0; i < eeprom_size/2-1; i++)
3191 {
3192 value = buf[i*2];
3193 value += buf[(i*2)+1] << 8;
3194
3195 checksum = value^checksum;
3196 checksum = (checksum << 1) | (checksum >> 15);
3197 }
3198
3199 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3200
3201 if (eeprom_checksum != checksum)
3202 {
3203 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
3204 ftdi_error_return(-1,"EEPROM checksum error");
3205 }
3206
3207 eeprom->channel_a_type = 0;
3208 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
3209 {
3210 eeprom->chip = -1;
3211 }
3212 else if (ftdi->type == TYPE_2232C)
3213 {
3214 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3215 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3216 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
3217 eeprom->channel_b_type = buf[0x01] & 0x7;
3218 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3219 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
3220 eeprom->chip = buf[0x14];
3221 }
3222 else if (ftdi->type == TYPE_R)
3223 {
3224 /* TYPE_R flags D2XX, not VCP as all others*/
3225 eeprom->channel_a_driver = ~buf[0x00] & DRIVER_VCP;
3226 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
3227 if ( (buf[0x01]&0x40) != 0x40)
3228 fprintf(stderr,
3229 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3230 " If this happened with the\n"
3231 " EEPROM programmed by FTDI tools, please report "
3232 "to libftdi@developer.intra2net.com\n");
3233
3234 eeprom->chip = buf[0x16];
3235 // Addr 0B: Invert data lines
3236 // Works only on FT232R, not FT245R, but no way to distinguish
3237 eeprom->invert = buf[0x0B];
3238 // Addr 14: CBUS function: CBUS0, CBUS1
3239 // Addr 15: CBUS function: CBUS2, CBUS3
3240 // Addr 16: CBUS function: CBUS5
3241 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3242 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3243 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3244 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3245 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
3246 }
3247 else if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3248 {
3249 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3250 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3251
3252 if (ftdi->type == TYPE_2232H)
3253 {
3254 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3255 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3256 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
3257 }
3258 else
3259 {
3260 eeprom->channel_c_driver = (buf[0x00] >> 4) & DRIVER_VCP;
3261 eeprom->channel_d_driver = (buf[0x01] >> 4) & DRIVER_VCP;
3262 eeprom->channel_a_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 0);
3263 eeprom->channel_b_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 1);
3264 eeprom->channel_c_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 2);
3265 eeprom->channel_d_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 3);
3266 }
3267
3268 eeprom->chip = buf[0x18];
3269 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3270 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3271 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3272 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3273 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3274 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3275 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3276 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3277 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3278 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3279 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3280 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
3281 }
3282 else if (ftdi->type == TYPE_232H)
3283 {
3284 int i;
3285
3286 eeprom->channel_a_type = buf[0x00] & 0xf;
3287 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
3288 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3289 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3290 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
3291 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
3292 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3293 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3294 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3295 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3296 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3297 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3298
3299 for(i=0; i<5; i++)
3300 {
3301 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3302 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3303 }
3304 eeprom->chip = buf[0x1e];
3305 /*FIXME: Decipher more values*/
3306 }
3307
3308 if (verbose)
3309 {
3310 char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3311 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3312 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3313 fprintf(stdout, "Release: 0x%04x\n",eeprom->release_number);
3314
3315 if (eeprom->self_powered)
3316 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3317 else
3318 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power,
3319 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3320 if (eeprom->manufacturer)
3321 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3322 if (eeprom->product)
3323 fprintf(stdout, "Product: %s\n",eeprom->product);
3324 if (eeprom->serial)
3325 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3326 fprintf(stdout, "Checksum : %04x\n", checksum);
3327 if (ftdi->type == TYPE_R)
3328 fprintf(stdout, "Internal EEPROM\n");
3329 else if (eeprom->chip >= 0x46)
3330 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3331 if (eeprom->suspend_dbus7)
3332 fprintf(stdout, "Suspend on DBUS7\n");
3333 if (eeprom->suspend_pull_downs)
3334 fprintf(stdout, "Pull IO pins low during suspend\n");
3335 if(eeprom->powersave)
3336 {
3337 if(ftdi->type >= TYPE_232H)
3338 fprintf(stdout,"Enter low power state on ACBUS7\n");
3339 }
3340 if (eeprom->remote_wakeup)
3341 fprintf(stdout, "Enable Remote Wake Up\n");
3342 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3343 if (ftdi->type >= TYPE_2232C)
3344 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3345 channel_mode[eeprom->channel_a_type],
3346 (eeprom->channel_a_driver)?" VCP":"",
3347 (eeprom->high_current_a)?" High Current IO":"");
3348 if (ftdi->type >= TYPE_232H)
3349 {
3350 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3351 (eeprom->clock_polarity)?"HIGH":"LOW",
3352 (eeprom->data_order)?"LSB":"MSB",
3353 (eeprom->flow_control)?"":"No ");
3354 }
3355 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
3356 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3357 channel_mode[eeprom->channel_b_type],
3358 (eeprom->channel_b_driver)?" VCP":"",
3359 (eeprom->high_current_b)?" High Current IO":"");
3360 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3361 eeprom->use_usb_version == USE_USB_VERSION_BIT)
3362 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3363
3364 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3365 {
3366 fprintf(stdout,"%s has %d mA drive%s%s\n",
3367 (ftdi->type == TYPE_2232H)?"AL":"A",
3368 (eeprom->group0_drive+1) *4,
3369 (eeprom->group0_schmitt)?" Schmitt Input":"",
3370 (eeprom->group0_slew)?" Slow Slew":"");
3371 fprintf(stdout,"%s has %d mA drive%s%s\n",
3372 (ftdi->type == TYPE_2232H)?"AH":"B",
3373 (eeprom->group1_drive+1) *4,
3374 (eeprom->group1_schmitt)?" Schmitt Input":"",
3375 (eeprom->group1_slew)?" Slow Slew":"");
3376 fprintf(stdout,"%s has %d mA drive%s%s\n",
3377 (ftdi->type == TYPE_2232H)?"BL":"C",
3378 (eeprom->group2_drive+1) *4,
3379 (eeprom->group2_schmitt)?" Schmitt Input":"",
3380 (eeprom->group2_slew)?" Slow Slew":"");
3381 fprintf(stdout,"%s has %d mA drive%s%s\n",
3382 (ftdi->type == TYPE_2232H)?"BH":"D",
3383 (eeprom->group3_drive+1) *4,
3384 (eeprom->group3_schmitt)?" Schmitt Input":"",
3385 (eeprom->group3_slew)?" Slow Slew":"");
3386 }
3387 else if (ftdi->type == TYPE_232H)
3388 {
3389 int i;
3390 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3391 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3392 "CLK30","CLK15","CLK7_5"
3393 };
3394 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3395 (eeprom->group0_drive+1) *4,
3396 (eeprom->group0_schmitt)?" Schmitt Input":"",
3397 (eeprom->group0_slew)?" Slow Slew":"");
3398 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3399 (eeprom->group1_drive+1) *4,
3400 (eeprom->group1_schmitt)?" Schmitt Input":"",
3401 (eeprom->group1_slew)?" Slow Slew":"");
3402 for (i=0; i<10; i++)
3403 {
3404 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3405 fprintf(stdout,"C%d Function: %s\n", i,
3406 cbush_mux[eeprom->cbus_function[i]]);
3407 }
3408 }
3409
3410 if (ftdi->type == TYPE_R)
3411 {
3412 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3413 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3414 "IOMODE","BB_WR","BB_RD"
3415 };
3416 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3417
3418 if (eeprom->invert)
3419 {
3420 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3421 fprintf(stdout,"Inverted bits:");
3422 for (i=0; i<8; i++)
3423 if ((eeprom->invert & (1<<i)) == (1<<i))
3424 fprintf(stdout," %s",r_bits[i]);
3425 fprintf(stdout,"\n");
3426 }
3427 for (i=0; i<5; i++)
3428 {
3429 if (eeprom->cbus_function[i]<CBUS_BB)
3430 fprintf(stdout,"C%d Function: %s\n", i,
3431 cbus_mux[eeprom->cbus_function[i]]);
3432 else
3433 {
3434 if (i < 4)
3435 /* Running MPROG show that C0..3 have fixed function Synchronous
3436 Bit Bang mode */
3437 fprintf(stdout,"C%d BB Function: %s\n", i,
3438 cbus_BB[i]);
3439 else
3440 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3441 }
3442 }
3443 }
3444 }
3445 return 0;
3446}
3447
3448/**
3449 Get a value from the decoded EEPROM structure
3450
3451 \param ftdi pointer to ftdi_context
3452 \param value_name Enum of the value to query
3453 \param value Pointer to store read value
3454
3455 \retval 0: all fine
3456 \retval -1: Value doesn't exist
3457*/
3458int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3459{
3460 switch (value_name)
3461 {
3462 case VENDOR_ID:
3463 *value = ftdi->eeprom->vendor_id;
3464 break;
3465 case PRODUCT_ID:
3466 *value = ftdi->eeprom->product_id;
3467 break;
3468 case RELEASE_NUMBER:
3469 *value = ftdi->eeprom->release_number;
3470 break;
3471 case SELF_POWERED:
3472 *value = ftdi->eeprom->self_powered;
3473 break;
3474 case REMOTE_WAKEUP:
3475 *value = ftdi->eeprom->remote_wakeup;
3476 break;
3477 case IS_NOT_PNP:
3478 *value = ftdi->eeprom->is_not_pnp;
3479 break;
3480 case SUSPEND_DBUS7:
3481 *value = ftdi->eeprom->suspend_dbus7;
3482 break;
3483 case IN_IS_ISOCHRONOUS:
3484 *value = ftdi->eeprom->in_is_isochronous;
3485 break;
3486 case OUT_IS_ISOCHRONOUS:
3487 *value = ftdi->eeprom->out_is_isochronous;
3488 break;
3489 case SUSPEND_PULL_DOWNS:
3490 *value = ftdi->eeprom->suspend_pull_downs;
3491 break;
3492 case USE_SERIAL:
3493 *value = ftdi->eeprom->use_serial;
3494 break;
3495 case USB_VERSION:
3496 *value = ftdi->eeprom->usb_version;
3497 break;
3498 case USE_USB_VERSION:
3499 *value = ftdi->eeprom->use_usb_version;
3500 break;
3501 case MAX_POWER:
3502 *value = ftdi->eeprom->max_power;
3503 break;
3504 case CHANNEL_A_TYPE:
3505 *value = ftdi->eeprom->channel_a_type;
3506 break;
3507 case CHANNEL_B_TYPE:
3508 *value = ftdi->eeprom->channel_b_type;
3509 break;
3510 case CHANNEL_A_DRIVER:
3511 *value = ftdi->eeprom->channel_a_driver;
3512 break;
3513 case CHANNEL_B_DRIVER:
3514 *value = ftdi->eeprom->channel_b_driver;
3515 break;
3516 case CHANNEL_C_DRIVER:
3517 *value = ftdi->eeprom->channel_c_driver;
3518 break;
3519 case CHANNEL_D_DRIVER:
3520 *value = ftdi->eeprom->channel_d_driver;
3521 break;
3522 case CHANNEL_A_RS485:
3523 *value = ftdi->eeprom->channel_a_rs485enable;
3524 break;
3525 case CHANNEL_B_RS485:
3526 *value = ftdi->eeprom->channel_b_rs485enable;
3527 break;
3528 case CHANNEL_C_RS485:
3529 *value = ftdi->eeprom->channel_c_rs485enable;
3530 break;
3531 case CHANNEL_D_RS485:
3532 *value = ftdi->eeprom->channel_d_rs485enable;
3533 break;
3534 case CBUS_FUNCTION_0:
3535 *value = ftdi->eeprom->cbus_function[0];
3536 break;
3537 case CBUS_FUNCTION_1:
3538 *value = ftdi->eeprom->cbus_function[1];
3539 break;
3540 case CBUS_FUNCTION_2:
3541 *value = ftdi->eeprom->cbus_function[2];
3542 break;
3543 case CBUS_FUNCTION_3:
3544 *value = ftdi->eeprom->cbus_function[3];
3545 break;
3546 case CBUS_FUNCTION_4:
3547 *value = ftdi->eeprom->cbus_function[4];
3548 break;
3549 case CBUS_FUNCTION_5:
3550 *value = ftdi->eeprom->cbus_function[5];
3551 break;
3552 case CBUS_FUNCTION_6:
3553 *value = ftdi->eeprom->cbus_function[6];
3554 break;
3555 case CBUS_FUNCTION_7:
3556 *value = ftdi->eeprom->cbus_function[7];
3557 break;
3558 case CBUS_FUNCTION_8:
3559 *value = ftdi->eeprom->cbus_function[8];
3560 break;
3561 case CBUS_FUNCTION_9:
3562 *value = ftdi->eeprom->cbus_function[8];
3563 break;
3564 case HIGH_CURRENT:
3565 *value = ftdi->eeprom->high_current;
3566 break;
3567 case HIGH_CURRENT_A:
3568 *value = ftdi->eeprom->high_current_a;
3569 break;
3570 case HIGH_CURRENT_B:
3571 *value = ftdi->eeprom->high_current_b;
3572 break;
3573 case INVERT:
3574 *value = ftdi->eeprom->invert;
3575 break;
3576 case GROUP0_DRIVE:
3577 *value = ftdi->eeprom->group0_drive;
3578 break;
3579 case GROUP0_SCHMITT:
3580 *value = ftdi->eeprom->group0_schmitt;
3581 break;
3582 case GROUP0_SLEW:
3583 *value = ftdi->eeprom->group0_slew;
3584 break;
3585 case GROUP1_DRIVE:
3586 *value = ftdi->eeprom->group1_drive;
3587 break;
3588 case GROUP1_SCHMITT:
3589 *value = ftdi->eeprom->group1_schmitt;
3590 break;
3591 case GROUP1_SLEW:
3592 *value = ftdi->eeprom->group1_slew;
3593 break;
3594 case GROUP2_DRIVE:
3595 *value = ftdi->eeprom->group2_drive;
3596 break;
3597 case GROUP2_SCHMITT:
3598 *value = ftdi->eeprom->group2_schmitt;
3599 break;
3600 case GROUP2_SLEW:
3601 *value = ftdi->eeprom->group2_slew;
3602 break;
3603 case GROUP3_DRIVE:
3604 *value = ftdi->eeprom->group3_drive;
3605 break;
3606 case GROUP3_SCHMITT:
3607 *value = ftdi->eeprom->group3_schmitt;
3608 break;
3609 case GROUP3_SLEW:
3610 *value = ftdi->eeprom->group3_slew;
3611 break;
3612 case POWER_SAVE:
3613 *value = ftdi->eeprom->powersave;
3614 break;
3615 case CLOCK_POLARITY:
3616 *value = ftdi->eeprom->clock_polarity;
3617 break;
3618 case DATA_ORDER:
3619 *value = ftdi->eeprom->data_order;
3620 break;
3621 case FLOW_CONTROL:
3622 *value = ftdi->eeprom->flow_control;
3623 break;
3624 case CHIP_TYPE:
3625 *value = ftdi->eeprom->chip;
3626 break;
3627 case CHIP_SIZE:
3628 *value = ftdi->eeprom->size;
3629 break;
3630 default:
3631 ftdi_error_return(-1, "Request for unknown EEPROM value");
3632 }
3633 return 0;
3634}
3635
3636/**
3637 Set a value in the decoded EEPROM Structure
3638 No parameter checking is performed
3639
3640 \param ftdi pointer to ftdi_context
3641 \param value_name Enum of the value to set
3642 \param value to set
3643
3644 \retval 0: all fine
3645 \retval -1: Value doesn't exist
3646 \retval -2: Value not user settable
3647*/
3648int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3649{
3650 switch (value_name)
3651 {
3652 case VENDOR_ID:
3653 ftdi->eeprom->vendor_id = value;
3654 break;
3655 case PRODUCT_ID:
3656 ftdi->eeprom->product_id = value;
3657 break;
3658 case RELEASE_NUMBER:
3659 ftdi->eeprom->release_number = value;
3660 break;
3661 case SELF_POWERED:
3662 ftdi->eeprom->self_powered = value;
3663 break;
3664 case REMOTE_WAKEUP:
3665 ftdi->eeprom->remote_wakeup = value;
3666 break;
3667 case IS_NOT_PNP:
3668 ftdi->eeprom->is_not_pnp = value;
3669 break;
3670 case SUSPEND_DBUS7:
3671 ftdi->eeprom->suspend_dbus7 = value;
3672 break;
3673 case IN_IS_ISOCHRONOUS:
3674 ftdi->eeprom->in_is_isochronous = value;
3675 break;
3676 case OUT_IS_ISOCHRONOUS:
3677 ftdi->eeprom->out_is_isochronous = value;
3678 break;
3679 case SUSPEND_PULL_DOWNS:
3680 ftdi->eeprom->suspend_pull_downs = value;
3681 break;
3682 case USE_SERIAL:
3683 ftdi->eeprom->use_serial = value;
3684 break;
3685 case USB_VERSION:
3686 ftdi->eeprom->usb_version = value;
3687 break;
3688 case USE_USB_VERSION:
3689 ftdi->eeprom->use_usb_version = value;
3690 break;
3691 case MAX_POWER:
3692 ftdi->eeprom->max_power = value;
3693 break;
3694 case CHANNEL_A_TYPE:
3695 ftdi->eeprom->channel_a_type = value;
3696 break;
3697 case CHANNEL_B_TYPE:
3698 ftdi->eeprom->channel_b_type = value;
3699 break;
3700 case CHANNEL_A_DRIVER:
3701 ftdi->eeprom->channel_a_driver = value;
3702 break;
3703 case CHANNEL_B_DRIVER:
3704 ftdi->eeprom->channel_b_driver = value;
3705 break;
3706 case CHANNEL_C_DRIVER:
3707 ftdi->eeprom->channel_c_driver = value;
3708 break;
3709 case CHANNEL_D_DRIVER:
3710 ftdi->eeprom->channel_d_driver = value;
3711 break;
3712 case CHANNEL_A_RS485:
3713 ftdi->eeprom->channel_a_rs485enable = value;
3714 break;
3715 case CHANNEL_B_RS485:
3716 ftdi->eeprom->channel_b_rs485enable = value;
3717 break;
3718 case CHANNEL_C_RS485:
3719 ftdi->eeprom->channel_c_rs485enable = value;
3720 break;
3721 case CHANNEL_D_RS485:
3722 ftdi->eeprom->channel_d_rs485enable = value;
3723 break;
3724 case CBUS_FUNCTION_0:
3725 ftdi->eeprom->cbus_function[0] = value;
3726 break;
3727 case CBUS_FUNCTION_1:
3728 ftdi->eeprom->cbus_function[1] = value;
3729 break;
3730 case CBUS_FUNCTION_2:
3731 ftdi->eeprom->cbus_function[2] = value;
3732 break;
3733 case CBUS_FUNCTION_3:
3734 ftdi->eeprom->cbus_function[3] = value;
3735 break;
3736 case CBUS_FUNCTION_4:
3737 ftdi->eeprom->cbus_function[4] = value;
3738 break;
3739 case CBUS_FUNCTION_5:
3740 ftdi->eeprom->cbus_function[5] = value;
3741 break;
3742 case CBUS_FUNCTION_6:
3743 ftdi->eeprom->cbus_function[6] = value;
3744 break;
3745 case CBUS_FUNCTION_7:
3746 ftdi->eeprom->cbus_function[7] = value;
3747 break;
3748 case CBUS_FUNCTION_8:
3749 ftdi->eeprom->cbus_function[8] = value;
3750 break;
3751 case CBUS_FUNCTION_9:
3752 ftdi->eeprom->cbus_function[9] = value;
3753 break;
3754 case HIGH_CURRENT:
3755 ftdi->eeprom->high_current = value;
3756 break;
3757 case HIGH_CURRENT_A:
3758 ftdi->eeprom->high_current_a = value;
3759 break;
3760 case HIGH_CURRENT_B:
3761 ftdi->eeprom->high_current_b = value;
3762 break;
3763 case INVERT:
3764 ftdi->eeprom->invert = value;
3765 break;
3766 case GROUP0_DRIVE:
3767 ftdi->eeprom->group0_drive = value;
3768 break;
3769 case GROUP0_SCHMITT:
3770 ftdi->eeprom->group0_schmitt = value;
3771 break;
3772 case GROUP0_SLEW:
3773 ftdi->eeprom->group0_slew = value;
3774 break;
3775 case GROUP1_DRIVE:
3776 ftdi->eeprom->group1_drive = value;
3777 break;
3778 case GROUP1_SCHMITT:
3779 ftdi->eeprom->group1_schmitt = value;
3780 break;
3781 case GROUP1_SLEW:
3782 ftdi->eeprom->group1_slew = value;
3783 break;
3784 case GROUP2_DRIVE:
3785 ftdi->eeprom->group2_drive = value;
3786 break;
3787 case GROUP2_SCHMITT:
3788 ftdi->eeprom->group2_schmitt = value;
3789 break;
3790 case GROUP2_SLEW:
3791 ftdi->eeprom->group2_slew = value;
3792 break;
3793 case GROUP3_DRIVE:
3794 ftdi->eeprom->group3_drive = value;
3795 break;
3796 case GROUP3_SCHMITT:
3797 ftdi->eeprom->group3_schmitt = value;
3798 break;
3799 case GROUP3_SLEW:
3800 ftdi->eeprom->group3_slew = value;
3801 break;
3802 case CHIP_TYPE:
3803 ftdi->eeprom->chip = value;
3804 break;
3805 case POWER_SAVE:
3806 ftdi->eeprom->powersave = value;
3807 break;
3808 case CLOCK_POLARITY:
3809 ftdi->eeprom->clock_polarity = value;
3810 break;
3811 case DATA_ORDER:
3812 ftdi->eeprom->data_order = value;
3813 break;
3814 case FLOW_CONTROL:
3815 ftdi->eeprom->flow_control = value;
3816 break;
3817 case CHIP_SIZE:
3818 ftdi_error_return(-2, "EEPROM Value can't be changed");
3819 default :
3820 ftdi_error_return(-1, "Request to unknown EEPROM value");
3821 }
3822 ftdi->eeprom->initialized_for_connected_device = 0;
3823 return 0;
3824}
3825
3826/** Get the read-only buffer to the binary EEPROM content
3827
3828 \param ftdi pointer to ftdi_context
3829 \param buf buffer to receive EEPROM content
3830 \param size Size of receiving buffer
3831
3832 \retval 0: All fine
3833 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3834 \retval -2: Not enough room to store eeprom
3835*/
3836int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3837{
3838 if (!ftdi || !(ftdi->eeprom))
3839 ftdi_error_return(-1, "No appropriate structure");
3840
3841 if (!buf || size < ftdi->eeprom->size)
3842 ftdi_error_return(-1, "Not enough room to store eeprom");
3843
3844 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3845 if (size > FTDI_MAX_EEPROM_SIZE)
3846 size = FTDI_MAX_EEPROM_SIZE;
3847
3848 memcpy(buf, ftdi->eeprom->buf, size);
3849
3850 return 0;
3851}
3852
3853/** Set the EEPROM content from the user-supplied prefilled buffer
3854
3855 \param ftdi pointer to ftdi_context
3856 \param buf buffer to read EEPROM content
3857 \param size Size of buffer
3858
3859 \retval 0: All fine
3860 \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing
3861*/
3862int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
3863{
3864 if (!ftdi || !(ftdi->eeprom) || !buf)
3865 ftdi_error_return(-1, "No appropriate structure");
3866
3867 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3868 if (size > FTDI_MAX_EEPROM_SIZE)
3869 size = FTDI_MAX_EEPROM_SIZE;
3870
3871 memcpy(ftdi->eeprom->buf, buf, size);
3872
3873 return 0;
3874}
3875
3876/**
3877 Read eeprom location
3878
3879 \param ftdi pointer to ftdi_context
3880 \param eeprom_addr Address of eeprom location to be read
3881 \param eeprom_val Pointer to store read eeprom location
3882
3883 \retval 0: all fine
3884 \retval -1: read failed
3885 \retval -2: USB device unavailable
3886*/
3887int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3888{
3889 if (ftdi == NULL || ftdi->usb_dev == NULL)
3890 ftdi_error_return(-2, "USB device unavailable");
3891
3892 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3893 ftdi_error_return(-1, "reading eeprom failed");
3894
3895 return 0;
3896}
3897
3898/**
3899 Read eeprom
3900
3901 \param ftdi pointer to ftdi_context
3902
3903 \retval 0: all fine
3904 \retval -1: read failed
3905 \retval -2: USB device unavailable
3906*/
3907int ftdi_read_eeprom(struct ftdi_context *ftdi)
3908{
3909 int i;
3910 unsigned char *buf;
3911
3912 if (ftdi == NULL || ftdi->usb_dev == NULL)
3913 ftdi_error_return(-2, "USB device unavailable");
3914 buf = ftdi->eeprom->buf;
3915
3916 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
3917 {
3918 if (libusb_control_transfer(
3919 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3920 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
3921 ftdi_error_return(-1, "reading eeprom failed");
3922 }
3923
3924 if (ftdi->type == TYPE_R)
3925 ftdi->eeprom->size = 0x80;
3926 /* Guesses size of eeprom by comparing halves
3927 - will not work with blank eeprom */
3928 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3929 ftdi->eeprom->size = -1;
3930 else if (memcmp(buf,&buf[0x80],0x80) == 0)
3931 ftdi->eeprom->size = 0x80;
3932 else if (memcmp(buf,&buf[0x40],0x40) == 0)
3933 ftdi->eeprom->size = 0x40;
3934 else
3935 ftdi->eeprom->size = 0x100;
3936 return 0;
3937}
3938
3939/*
3940 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3941 Function is only used internally
3942 \internal
3943*/
3944static unsigned char ftdi_read_chipid_shift(unsigned char value)
3945{
3946 return ((value & 1) << 1) |
3947 ((value & 2) << 5) |
3948 ((value & 4) >> 2) |
3949 ((value & 8) << 4) |
3950 ((value & 16) >> 1) |
3951 ((value & 32) >> 1) |
3952 ((value & 64) >> 4) |
3953 ((value & 128) >> 2);
3954}
3955
3956/**
3957 Read the FTDIChip-ID from R-type devices
3958
3959 \param ftdi pointer to ftdi_context
3960 \param chipid Pointer to store FTDIChip-ID
3961
3962 \retval 0: all fine
3963 \retval -1: read failed
3964 \retval -2: USB device unavailable
3965*/
3966int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3967{
3968 unsigned int a = 0, b = 0;
3969
3970 if (ftdi == NULL || ftdi->usb_dev == NULL)
3971 ftdi_error_return(-2, "USB device unavailable");
3972
3973 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3974 {
3975 a = a << 8 | a >> 8;
3976 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3977 {
3978 b = b << 8 | b >> 8;
3979 a = (a << 16) | (b & 0xFFFF);
3980 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3981 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3982 *chipid = a ^ 0xa5f0f7d1;
3983 return 0;
3984 }
3985 }
3986
3987 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3988}
3989
3990/**
3991 Write eeprom location
3992
3993 \param ftdi pointer to ftdi_context
3994 \param eeprom_addr Address of eeprom location to be written
3995 \param eeprom_val Value to be written
3996
3997 \retval 0: all fine
3998 \retval -1: write failed
3999 \retval -2: USB device unavailable
4000 \retval -3: Invalid access to checksum protected area below 0x80
4001 \retval -4: Device can't access unprotected area
4002 \retval -5: Reading chip type failed
4003*/
4004int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
4005 unsigned short eeprom_val)
4006{
4007 int chip_type_location;
4008 unsigned short chip_type;
4009
4010 if (ftdi == NULL || ftdi->usb_dev == NULL)
4011 ftdi_error_return(-2, "USB device unavailable");
4012
4013 if (eeprom_addr <0x80)
4014 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
4015
4016
4017 switch (ftdi->type)
4018 {
4019 case TYPE_BM:
4020 case TYPE_2232C:
4021 chip_type_location = 0x14;
4022 break;
4023 case TYPE_2232H:
4024 case TYPE_4232H:
4025 chip_type_location = 0x18;
4026 break;
4027 case TYPE_232H:
4028 chip_type_location = 0x1e;
4029 break;
4030 default:
4031 ftdi_error_return(-4, "Device can't access unprotected area");
4032 }
4033
4034 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
4035 ftdi_error_return(-5, "Reading failed failed");
4036 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
4037 if ((chip_type & 0xff) != 0x66)
4038 {
4039 ftdi_error_return(-6, "EEPROM is not of 93x66");
4040 }
4041
4042 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4043 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
4044 NULL, 0, ftdi->usb_write_timeout) != 0)
4045 ftdi_error_return(-1, "unable to write eeprom");
4046
4047 return 0;
4048}
4049
4050/**
4051 Write eeprom
4052
4053 \param ftdi pointer to ftdi_context
4054
4055 \retval 0: all fine
4056 \retval -1: read failed
4057 \retval -2: USB device unavailable
4058 \retval -3: EEPROM not initialized for the connected device;
4059*/
4060int ftdi_write_eeprom(struct ftdi_context *ftdi)
4061{
4062 unsigned short usb_val, status;
4063 int i, ret;
4064 unsigned char *eeprom;
4065
4066 if (ftdi == NULL || ftdi->usb_dev == NULL)
4067 ftdi_error_return(-2, "USB device unavailable");
4068
4069 if(ftdi->eeprom->initialized_for_connected_device == 0)
4070 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
4071
4072 eeprom = ftdi->eeprom->buf;
4073
4074 /* These commands were traced while running MProg */
4075 if ((ret = ftdi_usb_reset(ftdi)) != 0)
4076 return ret;
4077 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
4078 return ret;
4079 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
4080 return ret;
4081
4082 for (i = 0; i < ftdi->eeprom->size/2; i++)
4083 {
4084 usb_val = eeprom[i*2];
4085 usb_val += eeprom[(i*2)+1] << 8;
4086 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4087 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
4088 NULL, 0, ftdi->usb_write_timeout) < 0)
4089 ftdi_error_return(-1, "unable to write eeprom");
4090 }
4091
4092 return 0;
4093}
4094
4095/**
4096 Erase eeprom
4097
4098 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
4099
4100 \param ftdi pointer to ftdi_context
4101
4102 \retval 0: all fine
4103 \retval -1: erase failed
4104 \retval -2: USB device unavailable
4105 \retval -3: Writing magic failed
4106 \retval -4: Read EEPROM failed
4107 \retval -5: Unexpected EEPROM value
4108*/
4109#define MAGIC 0x55aa
4110int ftdi_erase_eeprom(struct ftdi_context *ftdi)
4111{
4112 unsigned short eeprom_value;
4113 if (ftdi == NULL || ftdi->usb_dev == NULL)
4114 ftdi_error_return(-2, "USB device unavailable");
4115
4116 if (ftdi->type == TYPE_R)
4117 {
4118 ftdi->eeprom->chip = 0;
4119 return 0;
4120 }
4121
4122 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4123 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4124 ftdi_error_return(-1, "unable to erase eeprom");
4125
4126
4127 /* detect chip type by writing 0x55AA as magic at word position 0xc0
4128 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
4129 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
4130 Chip is 93x66 if magic is only read at word position 0xc0*/
4131 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4132 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
4133 NULL, 0, ftdi->usb_write_timeout) != 0)
4134 ftdi_error_return(-3, "Writing magic failed");
4135 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
4136 ftdi_error_return(-4, "Reading failed failed");
4137 if (eeprom_value == MAGIC)
4138 {
4139 ftdi->eeprom->chip = 0x46;
4140 }
4141 else
4142 {
4143 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
4144 ftdi_error_return(-4, "Reading failed failed");
4145 if (eeprom_value == MAGIC)
4146 ftdi->eeprom->chip = 0x56;
4147 else
4148 {
4149 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
4150 ftdi_error_return(-4, "Reading failed failed");
4151 if (eeprom_value == MAGIC)
4152 ftdi->eeprom->chip = 0x66;
4153 else
4154 {
4155 ftdi->eeprom->chip = -1;
4156 }
4157 }
4158 }
4159 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4160 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4161 ftdi_error_return(-1, "unable to erase eeprom");
4162 return 0;
4163}
4164
4165/**
4166 Get string representation for last error code
4167
4168 \param ftdi pointer to ftdi_context
4169
4170 \retval Pointer to error string
4171*/
4172char *ftdi_get_error_string (struct ftdi_context *ftdi)
4173{
4174 if (ftdi == NULL)
4175 return "";
4176
4177 return ftdi->error_str;
4178}
4179
4180/* @} end of doxygen libftdi group */