Declare ftdi_read_data_submit and ftdi_transfer_data_done in ftdi.h.
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2008 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44
45/**
46 Internal function to close usb device pointer.
47 Sets ftdi->usb_dev to NULL.
48 \internal
49
50 \param ftdi pointer to ftdi_context
51
52 \retval none
53*/
54static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
55{
56 if (ftdi->usb_dev)
57 {
58 libusb_close (ftdi->usb_dev);
59 ftdi->usb_dev = NULL;
60 }
61}
62
63/**
64 Initializes a ftdi_context.
65
66 \param ftdi pointer to ftdi_context
67
68 \retval 0: all fine
69 \retval -1: couldn't allocate read buffer
70
71 \remark This should be called before all functions
72*/
73int ftdi_init(struct ftdi_context *ftdi)
74{
75 ftdi->usb_dev = NULL;
76 ftdi->usb_read_timeout = 5000;
77 ftdi->usb_write_timeout = 5000;
78
79 ftdi->type = TYPE_BM; /* chip type */
80 ftdi->baudrate = -1;
81 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
82
83 ftdi->readbuffer = NULL;
84 ftdi->readbuffer_offset = 0;
85 ftdi->readbuffer_remaining = 0;
86 ftdi->writebuffer_chunksize = 4096;
87 ftdi->max_packet_size = 0;
88
89 ftdi->interface = 0;
90 ftdi->index = 0;
91 ftdi->in_ep = 0x02;
92 ftdi->out_ep = 0x81;
93 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
94
95 ftdi->error_str = NULL;
96
97 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
98
99 /* All fine. Now allocate the readbuffer */
100 return ftdi_read_data_set_chunksize(ftdi, 4096);
101}
102
103/**
104 Allocate and initialize a new ftdi_context
105
106 \return a pointer to a new ftdi_context, or NULL on failure
107*/
108struct ftdi_context *ftdi_new(void)
109{
110 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
111
112 if (ftdi == NULL)
113 {
114 return NULL;
115 }
116
117 if (ftdi_init(ftdi) != 0)
118 {
119 free(ftdi);
120 return NULL;
121 }
122
123 return ftdi;
124}
125
126/**
127 Open selected channels on a chip, otherwise use first channel.
128
129 \param ftdi pointer to ftdi_context
130 \param interface Interface to use for FT2232C/2232H/4232H chips.
131
132 \retval 0: all fine
133 \retval -1: unknown interface
134*/
135int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
136{
137 switch (interface)
138 {
139 case INTERFACE_ANY:
140 case INTERFACE_A:
141 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
142 break;
143 case INTERFACE_B:
144 ftdi->interface = 1;
145 ftdi->index = INTERFACE_B;
146 ftdi->in_ep = 0x04;
147 ftdi->out_ep = 0x83;
148 break;
149 case INTERFACE_C:
150 ftdi->interface = 2;
151 ftdi->index = INTERFACE_C;
152 ftdi->in_ep = 0x06;
153 ftdi->out_ep = 0x85;
154 break;
155 case INTERFACE_D:
156 ftdi->interface = 3;
157 ftdi->index = INTERFACE_D;
158 ftdi->in_ep = 0x08;
159 ftdi->out_ep = 0x87;
160 break;
161 default:
162 ftdi_error_return(-1, "Unknown interface");
163 }
164 return 0;
165}
166
167/**
168 Deinitializes a ftdi_context.
169
170 \param ftdi pointer to ftdi_context
171*/
172void ftdi_deinit(struct ftdi_context *ftdi)
173{
174 ftdi_usb_close_internal (ftdi);
175
176 if (ftdi->readbuffer != NULL)
177 {
178 free(ftdi->readbuffer);
179 ftdi->readbuffer = NULL;
180 }
181}
182
183/**
184 Deinitialize and free an ftdi_context.
185
186 \param ftdi pointer to ftdi_context
187*/
188void ftdi_free(struct ftdi_context *ftdi)
189{
190 ftdi_deinit(ftdi);
191 free(ftdi);
192}
193
194/**
195 Use an already open libusb device.
196
197 \param ftdi pointer to ftdi_context
198 \param usb libusb libusb_device_handle to use
199*/
200void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
201{
202 ftdi->usb_dev = usb;
203}
204
205
206/**
207 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
208 needs to be deallocated by ftdi_list_free() after use.
209
210 \param ftdi pointer to ftdi_context
211 \param devlist Pointer where to store list of found devices
212 \param vendor Vendor ID to search for
213 \param product Product ID to search for
214
215 \retval >0: number of devices found
216 \retval -3: out of memory
217 \retval -4: libusb_init() failed
218 \retval -5: libusb_get_device_list() failed
219 \retval -6: libusb_get_device_descriptor() failed
220*/
221int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
222{
223 struct ftdi_device_list **curdev;
224 libusb_device *dev;
225 libusb_device **devs;
226 int count = 0;
227 int i = 0;
228
229 if (libusb_init(NULL) < 0)
230 ftdi_error_return(-4, "libusb_init() failed");
231
232 if (libusb_get_device_list(NULL, &devs) < 0)
233 ftdi_error_return(-5, "libusb_get_device_list() failed");
234
235 curdev = devlist;
236 *curdev = NULL;
237
238 while ((dev = devs[i++]) != NULL)
239 {
240 struct libusb_device_descriptor desc;
241
242 if (libusb_get_device_descriptor(dev, &desc) < 0)
243 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
244
245 if (desc.idVendor == vendor && desc.idProduct == product)
246 {
247 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
248 if (!*curdev)
249 ftdi_error_return(-3, "out of memory");
250
251 (*curdev)->next = NULL;
252 (*curdev)->dev = dev;
253
254 curdev = &(*curdev)->next;
255 count++;
256 }
257 }
258
259 return count;
260}
261
262/**
263 Frees a usb device list.
264
265 \param devlist USB device list created by ftdi_usb_find_all()
266*/
267void ftdi_list_free(struct ftdi_device_list **devlist)
268{
269 struct ftdi_device_list *curdev, *next;
270
271 for (curdev = *devlist; curdev != NULL;)
272 {
273 next = curdev->next;
274 free(curdev);
275 curdev = next;
276 }
277
278 *devlist = NULL;
279}
280
281/**
282 Frees a usb device list.
283
284 \param devlist USB device list created by ftdi_usb_find_all()
285*/
286void ftdi_list_free2(struct ftdi_device_list *devlist)
287{
288 ftdi_list_free(&devlist);
289}
290
291/**
292 Return device ID strings from the usb device.
293
294 The parameters manufacturer, description and serial may be NULL
295 or pointer to buffers to store the fetched strings.
296
297 \note Use this function only in combination with ftdi_usb_find_all()
298 as it closes the internal "usb_dev" after use.
299
300 \param ftdi pointer to ftdi_context
301 \param dev libusb usb_dev to use
302 \param manufacturer Store manufacturer string here if not NULL
303 \param mnf_len Buffer size of manufacturer string
304 \param description Store product description string here if not NULL
305 \param desc_len Buffer size of product description string
306 \param serial Store serial string here if not NULL
307 \param serial_len Buffer size of serial string
308
309 \retval 0: all fine
310 \retval -1: wrong arguments
311 \retval -4: unable to open device
312 \retval -7: get product manufacturer failed
313 \retval -8: get product description failed
314 \retval -9: get serial number failed
315 \retval -11: libusb_get_device_descriptor() failed
316*/
317int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
318 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
319{
320 struct libusb_device_descriptor desc;
321
322 if ((ftdi==NULL) || (dev==NULL))
323 return -1;
324
325 if (libusb_open(dev, &ftdi->usb_dev) < 0)
326 ftdi_error_return(-4, "libusb_open() failed");
327
328 if (libusb_get_device_descriptor(dev, &desc) < 0)
329 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
330
331 if (manufacturer != NULL)
332 {
333 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
334 {
335 ftdi_usb_close_internal (ftdi);
336 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
337 }
338 }
339
340 if (description != NULL)
341 {
342 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
343 {
344 ftdi_usb_close_internal (ftdi);
345 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
346 }
347 }
348
349 if (serial != NULL)
350 {
351 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
352 {
353 ftdi_usb_close_internal (ftdi);
354 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
355 }
356 }
357
358 ftdi_usb_close_internal (ftdi);
359
360 return 0;
361}
362
363/**
364 * Internal function to determine the maximum packet size.
365 * \param ftdi pointer to ftdi_context
366 * \param dev libusb usb_dev to use
367 * \retval Maximum packet size for this device
368 */
369static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
370{
371 struct libusb_device_descriptor desc;
372 struct libusb_config_descriptor *config0;
373 unsigned int packet_size;
374
375 // Determine maximum packet size. Init with default value.
376 // New hi-speed devices from FTDI use a packet size of 512 bytes
377 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
378 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
379 packet_size = 512;
380 else
381 packet_size = 64;
382
383 if (libusb_get_device_descriptor(dev, &desc) < 0)
384 return packet_size;
385
386 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
387 return packet_size;
388
389 if (desc.bNumConfigurations > 0)
390 {
391 if (ftdi->interface < config0->bNumInterfaces)
392 {
393 struct libusb_interface interface = config0->interface[ftdi->interface];
394 if (interface.num_altsetting > 0)
395 {
396 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
397 if (descriptor.bNumEndpoints > 0)
398 {
399 packet_size = descriptor.endpoint[0].wMaxPacketSize;
400 }
401 }
402 }
403 }
404
405 libusb_free_config_descriptor (config0);
406 return packet_size;
407}
408
409/**
410 Opens a ftdi device given by an usb_device.
411
412 \param ftdi pointer to ftdi_context
413 \param dev libusb usb_dev to use
414
415 \retval 0: all fine
416 \retval -3: unable to config device
417 \retval -4: unable to open device
418 \retval -5: unable to claim device
419 \retval -6: reset failed
420 \retval -7: set baudrate failed
421 \retval -9: libusb_get_device_descriptor() failed
422 \retval -10: libusb_get_config_descriptor() failed
423 \retval -11: libusb_etach_kernel_driver() failed
424 \retval -12: libusb_get_configuration() failed
425*/
426int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
427{
428 struct libusb_device_descriptor desc;
429 struct libusb_config_descriptor *config0;
430 int cfg, cfg0;
431
432 if (libusb_open(dev, &ftdi->usb_dev) < 0)
433 ftdi_error_return(-4, "libusb_open() failed");
434
435 if (libusb_get_device_descriptor(dev, &desc) < 0)
436 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
437
438 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
439 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
440 cfg0 = config0->bConfigurationValue;
441 libusb_free_config_descriptor (config0);
442
443#ifdef LIBUSB_HAS_GET_DRIVER_NP
444 // Try to detach ftdi_sio kernel module.
445 // Returns ENODATA if driver is not loaded.
446 //
447 // The return code is kept in a separate variable and only parsed
448 // if usb_set_configuration() or usb_claim_interface() fails as the
449 // detach operation might be denied and everything still works fine.
450 // Likely scenario is a static ftdi_sio kernel module.
451 ret = libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface);
452 if (ret < 0 && ret != LIBUSB_ERROR_NOT_FOUND)
453 ftdi_error_return(-11, "libusb_detach_kernel_driver () failed");
454#endif
455
456 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
457 ftdi_error_return(-12, "libusb_get_configuration () failed");
458
459 // set configuration (needed especially for windows)
460 // tolerate EBUSY: one device with one configuration, but two interfaces
461 // and libftdi sessions to both interfaces (e.g. FT2232)
462 if (desc.bNumConfigurations > 0 && cfg != cfg0)
463 {
464 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
465 {
466 ftdi_usb_close_internal (ftdi);
467 ftdi_error_return(-3, "unable to set usb configuration. Make sure ftdi_sio is unloaded!");
468 }
469 }
470
471 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
472 {
473 ftdi_usb_close_internal (ftdi);
474 ftdi_error_return(-5, "unable to claim usb device. Make sure ftdi_sio is unloaded!");
475 }
476
477 if (ftdi_usb_reset (ftdi) != 0)
478 {
479 ftdi_usb_close_internal (ftdi);
480 ftdi_error_return(-6, "ftdi_usb_reset failed");
481 }
482
483 // Try to guess chip type
484 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
485 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
486 && desc.iSerialNumber == 0))
487 ftdi->type = TYPE_BM;
488 else if (desc.bcdDevice == 0x200)
489 ftdi->type = TYPE_AM;
490 else if (desc.bcdDevice == 0x500)
491 ftdi->type = TYPE_2232C;
492 else if (desc.bcdDevice == 0x600)
493 ftdi->type = TYPE_R;
494 else if (desc.bcdDevice == 0x700)
495 ftdi->type = TYPE_2232H;
496 else if (desc.bcdDevice == 0x800)
497 ftdi->type = TYPE_4232H;
498
499 // Set default interface on dual/quad type chips
500 switch(ftdi->type)
501 {
502 case TYPE_2232C:
503 case TYPE_2232H:
504 case TYPE_4232H:
505 if (!ftdi->index)
506 ftdi->index = INTERFACE_A;
507 break;
508 default:
509 break;
510 }
511
512 // Determine maximum packet size
513 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
514
515 if (ftdi_set_baudrate (ftdi, 9600) != 0)
516 {
517 ftdi_usb_close_internal (ftdi);
518 ftdi_error_return(-7, "set baudrate failed");
519 }
520
521 ftdi_error_return(0, "all fine");
522}
523
524/**
525 Opens the first device with a given vendor and product ids.
526
527 \param ftdi pointer to ftdi_context
528 \param vendor Vendor ID
529 \param product Product ID
530
531 \retval same as ftdi_usb_open_desc()
532*/
533int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
534{
535 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
536}
537
538/**
539 Opens the first device with a given, vendor id, product id,
540 description and serial.
541
542 \param ftdi pointer to ftdi_context
543 \param vendor Vendor ID
544 \param product Product ID
545 \param description Description to search for. Use NULL if not needed.
546 \param serial Serial to search for. Use NULL if not needed.
547
548 \retval 0: all fine
549 \retval -3: usb device not found
550 \retval -4: unable to open device
551 \retval -5: unable to claim device
552 \retval -6: reset failed
553 \retval -7: set baudrate failed
554 \retval -8: get product description failed
555 \retval -9: get serial number failed
556 \retval -11: libusb_init() failed
557 \retval -12: libusb_get_device_list() failed
558 \retval -13: libusb_get_device_descriptor() failed
559*/
560int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
561 const char* description, const char* serial)
562{
563 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
564}
565
566/**
567 Opens the index-th device with a given, vendor id, product id,
568 description and serial.
569
570 \param ftdi pointer to ftdi_context
571 \param vendor Vendor ID
572 \param product Product ID
573 \param description Description to search for. Use NULL if not needed.
574 \param serial Serial to search for. Use NULL if not needed.
575 \param index Number of matching device to open if there are more than one, starts with 0.
576
577 \retval 0: all fine
578 \retval -1: usb_find_busses() failed
579 \retval -2: usb_find_devices() failed
580 \retval -3: usb device not found
581 \retval -4: unable to open device
582 \retval -5: unable to claim device
583 \retval -6: reset failed
584 \retval -7: set baudrate failed
585 \retval -8: get product description failed
586 \retval -9: get serial number failed
587 \retval -10: unable to close device
588*/
589int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
590 const char* description, const char* serial, unsigned int index)
591{
592 libusb_device *dev;
593 libusb_device **devs;
594 char string[256];
595 int i = 0;
596
597 if (libusb_init(NULL) < 0)
598 ftdi_error_return(-11, "libusb_init() failed");
599
600 if (libusb_get_device_list(NULL, &devs) < 0)
601 ftdi_error_return(-12, "libusb_get_device_list() failed");
602
603 while ((dev = devs[i++]) != NULL)
604 {
605 struct libusb_device_descriptor desc;
606
607 if (libusb_get_device_descriptor(dev, &desc) < 0)
608 ftdi_error_return(-13, "libusb_get_device_descriptor() failed");
609
610 if (desc.idVendor == vendor && desc.idProduct == product)
611 {
612 if (libusb_open(dev, &ftdi->usb_dev) < 0)
613 ftdi_error_return(-4, "usb_open() failed");
614
615 if (description != NULL)
616 {
617 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
618 {
619 libusb_close (ftdi->usb_dev);
620 ftdi_error_return(-8, "unable to fetch product description");
621 }
622 if (strncmp(string, description, sizeof(string)) != 0)
623 {
624 libusb_close (ftdi->usb_dev);
625 continue;
626 }
627 }
628 if (serial != NULL)
629 {
630 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
631 {
632 ftdi_usb_close_internal (ftdi);
633 ftdi_error_return(-9, "unable to fetch serial number");
634 }
635 if (strncmp(string, serial, sizeof(string)) != 0)
636 {
637 ftdi_usb_close_internal (ftdi);
638 continue;
639 }
640 }
641
642 ftdi_usb_close_internal (ftdi);
643
644 if (index > 0)
645 {
646 index--;
647 continue;
648 }
649
650 return ftdi_usb_open_dev(ftdi, dev);
651 }
652 }
653
654 // device not found
655 ftdi_error_return(-3, "device not found");
656}
657
658/**
659 Opens the ftdi-device described by a description-string.
660 Intended to be used for parsing a device-description given as commandline argument.
661
662 \param ftdi pointer to ftdi_context
663 \param description NULL-terminated description-string, using this format:
664 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
665 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
666 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
667 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
668
669 \note The description format may be extended in later versions.
670
671 \retval 0: all fine
672 \retval -1: libusb_init() failed
673 \retval -2: libusb_get_device_list() failed
674 \retval -3: usb device not found
675 \retval -4: unable to open device
676 \retval -5: unable to claim device
677 \retval -6: reset failed
678 \retval -7: set baudrate failed
679 \retval -8: get product description failed
680 \retval -9: get serial number failed
681 \retval -10: unable to close device
682 \retval -11: illegal description format
683*/
684int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
685{
686 if (description[0] == 0 || description[1] != ':')
687 ftdi_error_return(-11, "illegal description format");
688
689 if (description[0] == 'd')
690 {
691 libusb_device *dev;
692 libusb_device **devs;
693 unsigned int bus_number, device_address;
694 int i = 0;
695
696 if (libusb_init (NULL) < 0)
697 ftdi_error_return(-1, "libusb_init() failed");
698
699 if (libusb_get_device_list(NULL, &devs) < 0)
700 ftdi_error_return(-2, "libusb_get_device_list() failed");
701
702 /* XXX: This doesn't handle symlinks/odd paths/etc... */
703 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
704 ftdi_error_return(-11, "illegal description format");
705
706 while ((dev = devs[i++]) != NULL)
707 {
708 if (bus_number == libusb_get_bus_number (dev)
709 && device_address == libusb_get_device_address (dev))
710 return ftdi_usb_open_dev(ftdi, dev);
711 }
712
713 // device not found
714 ftdi_error_return(-3, "device not found");
715 }
716 else if (description[0] == 'i' || description[0] == 's')
717 {
718 unsigned int vendor;
719 unsigned int product;
720 unsigned int index=0;
721 const char *serial=NULL;
722 const char *startp, *endp;
723
724 errno=0;
725 startp=description+2;
726 vendor=strtoul((char*)startp,(char**)&endp,0);
727 if (*endp != ':' || endp == startp || errno != 0)
728 ftdi_error_return(-11, "illegal description format");
729
730 startp=endp+1;
731 product=strtoul((char*)startp,(char**)&endp,0);
732 if (endp == startp || errno != 0)
733 ftdi_error_return(-11, "illegal description format");
734
735 if (description[0] == 'i' && *endp != 0)
736 {
737 /* optional index field in i-mode */
738 if (*endp != ':')
739 ftdi_error_return(-11, "illegal description format");
740
741 startp=endp+1;
742 index=strtoul((char*)startp,(char**)&endp,0);
743 if (*endp != 0 || endp == startp || errno != 0)
744 ftdi_error_return(-11, "illegal description format");
745 }
746 if (description[0] == 's')
747 {
748 if (*endp != ':')
749 ftdi_error_return(-11, "illegal description format");
750
751 /* rest of the description is the serial */
752 serial=endp+1;
753 }
754
755 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
756 }
757 else
758 {
759 ftdi_error_return(-11, "illegal description format");
760 }
761}
762
763/**
764 Resets the ftdi device.
765
766 \param ftdi pointer to ftdi_context
767
768 \retval 0: all fine
769 \retval -1: FTDI reset failed
770*/
771int ftdi_usb_reset(struct ftdi_context *ftdi)
772{
773 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
774 SIO_RESET_REQUEST, SIO_RESET_SIO,
775 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
776 ftdi_error_return(-1,"FTDI reset failed");
777
778 // Invalidate data in the readbuffer
779 ftdi->readbuffer_offset = 0;
780 ftdi->readbuffer_remaining = 0;
781
782 return 0;
783}
784
785/**
786 Clears the read buffer on the chip and the internal read buffer.
787
788 \param ftdi pointer to ftdi_context
789
790 \retval 0: all fine
791 \retval -1: read buffer purge failed
792*/
793int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
794{
795 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
796 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
797 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
798 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
799
800 // Invalidate data in the readbuffer
801 ftdi->readbuffer_offset = 0;
802 ftdi->readbuffer_remaining = 0;
803
804 return 0;
805}
806
807/**
808 Clears the write buffer on the chip.
809
810 \param ftdi pointer to ftdi_context
811
812 \retval 0: all fine
813 \retval -1: write buffer purge failed
814*/
815int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
816{
817 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
818 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
819 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
820 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
821
822 return 0;
823}
824
825/**
826 Clears the buffers on the chip and the internal read buffer.
827
828 \param ftdi pointer to ftdi_context
829
830 \retval 0: all fine
831 \retval -1: read buffer purge failed
832 \retval -2: write buffer purge failed
833*/
834int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
835{
836 int result;
837
838 result = ftdi_usb_purge_rx_buffer(ftdi);
839 if (result < 0)
840 return -1;
841
842 result = ftdi_usb_purge_tx_buffer(ftdi);
843 if (result < 0)
844 return -2;
845
846 return 0;
847}
848
849
850
851/**
852 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
853
854 \param ftdi pointer to ftdi_context
855
856 \retval 0: all fine
857 \retval -1: usb_release failed
858*/
859int ftdi_usb_close(struct ftdi_context *ftdi)
860{
861 int rtn = 0;
862
863 if (ftdi->usb_dev != NULL)
864 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
865 rtn = -1;
866
867 ftdi_usb_close_internal (ftdi);
868
869 return rtn;
870}
871
872/**
873 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
874 Function is only used internally
875 \internal
876*/
877static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
878 unsigned short *value, unsigned short *index)
879{
880 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
881 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
882 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
883 int divisor, best_divisor, best_baud, best_baud_diff;
884 unsigned long encoded_divisor;
885 int i;
886
887 if (baudrate <= 0)
888 {
889 // Return error
890 return -1;
891 }
892
893 divisor = 24000000 / baudrate;
894
895 if (ftdi->type == TYPE_AM)
896 {
897 // Round down to supported fraction (AM only)
898 divisor -= am_adjust_dn[divisor & 7];
899 }
900
901 // Try this divisor and the one above it (because division rounds down)
902 best_divisor = 0;
903 best_baud = 0;
904 best_baud_diff = 0;
905 for (i = 0; i < 2; i++)
906 {
907 int try_divisor = divisor + i;
908 int baud_estimate;
909 int baud_diff;
910
911 // Round up to supported divisor value
912 if (try_divisor <= 8)
913 {
914 // Round up to minimum supported divisor
915 try_divisor = 8;
916 }
917 else if (ftdi->type != TYPE_AM && try_divisor < 12)
918 {
919 // BM doesn't support divisors 9 through 11 inclusive
920 try_divisor = 12;
921 }
922 else if (divisor < 16)
923 {
924 // AM doesn't support divisors 9 through 15 inclusive
925 try_divisor = 16;
926 }
927 else
928 {
929 if (ftdi->type == TYPE_AM)
930 {
931 // Round up to supported fraction (AM only)
932 try_divisor += am_adjust_up[try_divisor & 7];
933 if (try_divisor > 0x1FFF8)
934 {
935 // Round down to maximum supported divisor value (for AM)
936 try_divisor = 0x1FFF8;
937 }
938 }
939 else
940 {
941 if (try_divisor > 0x1FFFF)
942 {
943 // Round down to maximum supported divisor value (for BM)
944 try_divisor = 0x1FFFF;
945 }
946 }
947 }
948 // Get estimated baud rate (to nearest integer)
949 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
950 // Get absolute difference from requested baud rate
951 if (baud_estimate < baudrate)
952 {
953 baud_diff = baudrate - baud_estimate;
954 }
955 else
956 {
957 baud_diff = baud_estimate - baudrate;
958 }
959 if (i == 0 || baud_diff < best_baud_diff)
960 {
961 // Closest to requested baud rate so far
962 best_divisor = try_divisor;
963 best_baud = baud_estimate;
964 best_baud_diff = baud_diff;
965 if (baud_diff == 0)
966 {
967 // Spot on! No point trying
968 break;
969 }
970 }
971 }
972 // Encode the best divisor value
973 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
974 // Deal with special cases for encoded value
975 if (encoded_divisor == 1)
976 {
977 encoded_divisor = 0; // 3000000 baud
978 }
979 else if (encoded_divisor == 0x4001)
980 {
981 encoded_divisor = 1; // 2000000 baud (BM only)
982 }
983 // Split into "value" and "index" values
984 *value = (unsigned short)(encoded_divisor & 0xFFFF);
985 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
986 {
987 *index = (unsigned short)(encoded_divisor >> 8);
988 *index &= 0xFF00;
989 *index |= ftdi->index;
990 }
991 else
992 *index = (unsigned short)(encoded_divisor >> 16);
993
994 // Return the nearest baud rate
995 return best_baud;
996}
997
998/**
999 Sets the chip baud rate
1000
1001 \param ftdi pointer to ftdi_context
1002 \param baudrate baud rate to set
1003
1004 \retval 0: all fine
1005 \retval -1: invalid baudrate
1006 \retval -2: setting baudrate failed
1007*/
1008int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1009{
1010 unsigned short value, index;
1011 int actual_baudrate;
1012
1013 if (ftdi->bitbang_enabled)
1014 {
1015 baudrate = baudrate*4;
1016 }
1017
1018 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1019 if (actual_baudrate <= 0)
1020 ftdi_error_return (-1, "Silly baudrate <= 0.");
1021
1022 // Check within tolerance (about 5%)
1023 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1024 || ((actual_baudrate < baudrate)
1025 ? (actual_baudrate * 21 < baudrate * 20)
1026 : (baudrate * 21 < actual_baudrate * 20)))
1027 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1028
1029 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1030 SIO_SET_BAUDRATE_REQUEST, value,
1031 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1032 ftdi_error_return (-2, "Setting new baudrate failed");
1033
1034 ftdi->baudrate = baudrate;
1035 return 0;
1036}
1037
1038/**
1039 Set (RS232) line characteristics.
1040 The break type can only be set via ftdi_set_line_property2()
1041 and defaults to "off".
1042
1043 \param ftdi pointer to ftdi_context
1044 \param bits Number of bits
1045 \param sbit Number of stop bits
1046 \param parity Parity mode
1047
1048 \retval 0: all fine
1049 \retval -1: Setting line property failed
1050*/
1051int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1052 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1053{
1054 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1055}
1056
1057/**
1058 Set (RS232) line characteristics
1059
1060 \param ftdi pointer to ftdi_context
1061 \param bits Number of bits
1062 \param sbit Number of stop bits
1063 \param parity Parity mode
1064 \param break_type Break type
1065
1066 \retval 0: all fine
1067 \retval -1: Setting line property failed
1068*/
1069int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1070 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1071 enum ftdi_break_type break_type)
1072{
1073 unsigned short value = bits;
1074
1075 switch (parity)
1076 {
1077 case NONE:
1078 value |= (0x00 << 8);
1079 break;
1080 case ODD:
1081 value |= (0x01 << 8);
1082 break;
1083 case EVEN:
1084 value |= (0x02 << 8);
1085 break;
1086 case MARK:
1087 value |= (0x03 << 8);
1088 break;
1089 case SPACE:
1090 value |= (0x04 << 8);
1091 break;
1092 }
1093
1094 switch (sbit)
1095 {
1096 case STOP_BIT_1:
1097 value |= (0x00 << 11);
1098 break;
1099 case STOP_BIT_15:
1100 value |= (0x01 << 11);
1101 break;
1102 case STOP_BIT_2:
1103 value |= (0x02 << 11);
1104 break;
1105 }
1106
1107 switch (break_type)
1108 {
1109 case BREAK_OFF:
1110 value |= (0x00 << 14);
1111 break;
1112 case BREAK_ON:
1113 value |= (0x01 << 14);
1114 break;
1115 }
1116
1117 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1118 SIO_SET_DATA_REQUEST, value,
1119 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1120 ftdi_error_return (-1, "Setting new line property failed");
1121
1122 return 0;
1123}
1124
1125/**
1126 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1127
1128 \param ftdi pointer to ftdi_context
1129 \param buf Buffer with the data
1130 \param size Size of the buffer
1131
1132 \retval <0: error code from usb_bulk_write()
1133 \retval >0: number of bytes written
1134*/
1135int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1136{
1137 int offset = 0;
1138 int actual_length;
1139
1140 while (offset < size)
1141 {
1142 int write_size = ftdi->writebuffer_chunksize;
1143
1144 if (offset+write_size > size)
1145 write_size = size-offset;
1146
1147 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1148 ftdi_error_return(-1, "usb bulk write failed");
1149
1150 offset += actual_length;
1151 }
1152
1153 return offset;
1154}
1155
1156#ifdef LIBFTDI_LINUX_ASYNC_MODE
1157#ifdef USB_CLASS_PTP
1158#error LIBFTDI_LINUX_ASYNC_MODE is not compatible with libusb-compat-0.1!
1159#endif
1160static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1161{
1162 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1163 struct ftdi_context *ftdi = tc->ftdi;
1164 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1165
1166 // New hi-speed devices from FTDI use a packet size of 512 bytes
1167 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1168 packet_size = 512;
1169 else
1170 packet_size = 64;
1171
1172 actual_length = transfer->actual_length;
1173
1174 if (actual_length > 2)
1175 {
1176 // skip FTDI status bytes.
1177 // Maybe stored in the future to enable modem use
1178 num_of_chunks = actual_length / packet_size;
1179 chunk_remains = actual_length % packet_size;
1180 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1181
1182 ftdi->readbuffer_offset += 2;
1183 actual_length -= 2;
1184
1185 if (actual_length > packet_size - 2)
1186 {
1187 for (i = 1; i < num_of_chunks; i++)
1188 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1189 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1190 packet_size - 2);
1191 if (chunk_remains > 2)
1192 {
1193 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1194 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1195 chunk_remains-2);
1196 actual_length -= 2*num_of_chunks;
1197 }
1198 else
1199 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1200 }
1201
1202 if (actual_length > 0)
1203 {
1204 // data still fits in buf?
1205 if (tc->offset + actual_length <= tc->size)
1206 {
1207 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1208 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1209 tc->offset += actual_length;
1210
1211 ftdi->readbuffer_offset = 0;
1212 ftdi->readbuffer_remaining = 0;
1213
1214 /* Did we read exactly the right amount of bytes? */
1215 if (tc->offset == tc->size)
1216 {
1217 //printf("read_data exact rem %d offset %d\n",
1218 //ftdi->readbuffer_remaining, offset);
1219 tc->completed = 1;
1220 return;
1221 }
1222 }
1223 else
1224 {
1225 // only copy part of the data or size <= readbuffer_chunksize
1226 int part_size = tc->size - tc->offset;
1227 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1228 tc->offset += part_size;
1229
1230 ftdi->readbuffer_offset += part_size;
1231 ftdi->readbuffer_remaining = actual_length - part_size;
1232
1233 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1234 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1235 tc->completed = 1;
1236 return;
1237 }
1238 }
1239 }
1240 ret = libusb_submit_transfer (transfer);
1241 if (ret < 0)
1242 tc->completed = 1;
1243}
1244
1245
1246static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1247{
1248 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1249 struct ftdi_context *ftdi = tc->ftdi;
1250
1251 tc->offset = transfer->actual_length;
1252
1253 if (tc->offset == tc->size)
1254 {
1255 tc->completed = 1;
1256 }
1257 else
1258 {
1259 int write_size = ftdi->writebuffer_chunksize;
1260 int ret;
1261
1262 if (tc->offset + write_size > tc->size)
1263 write_size = tc->size - tc->offset;
1264
1265 transfer->length = write_size;
1266 transfer->buffer = tc->buf + tc->offset;
1267 ret = libusb_submit_transfer (transfer);
1268 if (ret < 0)
1269 tc->completed = 1;
1270 }
1271}
1272
1273
1274/**
1275 Writes data to the chip. Does not wait for completion of the transfer
1276 nor does it make sure that the transfer was successful.
1277
1278 Use libusb 1.0 Asynchronous API.
1279 Only available if compiled with --with-async-mode.
1280
1281 \param ftdi pointer to ftdi_context
1282 \param buf Buffer with the data
1283 \param size Size of the buffer
1284
1285 \retval NULL: Some error happens when submit transfer
1286 \retval !NULL: Pointer to a ftdi_transfer_control
1287*/
1288
1289struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1290{
1291 struct ftdi_transfer_control *tc;
1292 struct libusb_transfer *transfer = libusb_alloc_transfer(0);
1293 int write_size, ret;
1294
1295 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1296
1297 if (!tc || !transfer)
1298 return NULL;
1299
1300 tc->ftdi = ftdi;
1301 tc->completed = 0;
1302 tc->buf = buf;
1303 tc->size = size;
1304 tc->offset = 0;
1305
1306 if (size < ftdi->writebuffer_chunksize)
1307 write_size = size;
1308 else
1309 write_size = ftdi->writebuffer_chunksize;
1310
1311 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf, write_size, ftdi_write_data_cb, tc, ftdi->usb_write_timeout);
1312 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1313
1314 ret = libusb_submit_transfer(transfer);
1315 if (ret < 0)
1316 {
1317 libusb_free_transfer(transfer);
1318 tc->completed = 1;
1319 tc->transfer = NULL;
1320 return NULL;
1321 }
1322 tc->transfer = transfer;
1323
1324 return tc;
1325}
1326
1327/**
1328 Reads data from the chip. Does not wait for completion of the transfer
1329 nor does it make sure that the transfer was successful.
1330
1331 Use libusb 1.0 Asynchronous API.
1332 Only available if compiled with --with-async-mode.
1333
1334 \param ftdi pointer to ftdi_context
1335 \param buf Buffer with the data
1336 \param size Size of the buffer
1337
1338 \retval NULL: Some error happens when submit transfer
1339 \retval !NULL: Pointer to a ftdi_transfer_control
1340*/
1341
1342struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1343{
1344 struct ftdi_transfer_control *tc;
1345 struct libusb_transfer *transfer;
1346 int ret;
1347
1348 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1349 if (!tc)
1350 return NULL;
1351
1352 tc->ftdi = ftdi;
1353 tc->buf = buf;
1354 tc->size = size;
1355
1356 if (size <= ftdi->readbuffer_remaining)
1357 {
1358 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1359
1360 // Fix offsets
1361 ftdi->readbuffer_remaining -= size;
1362 ftdi->readbuffer_offset += size;
1363
1364 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1365
1366 tc->completed = 1;
1367 tc->offset = size;
1368 tc->transfer = NULL;
1369 return tc;
1370 }
1371
1372 tc->completed = 0;
1373 if (ftdi->readbuffer_remaining != 0)
1374 {
1375 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1376
1377 tc->offset = ftdi->readbuffer_remaining;
1378 }
1379 else
1380 tc->offset = 0;
1381
1382 transfer = libusb_alloc_transfer(0);
1383 if (!transfer)
1384 {
1385 free (tc);
1386 return NULL;
1387 }
1388
1389 ftdi->readbuffer_remaining = 0;
1390 ftdi->readbuffer_offset = 0;
1391
1392 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1393 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1394
1395 ret = libusb_submit_transfer(transfer);
1396 if (ret < 0)
1397 {
1398 libusb_free_transfer(transfer);
1399 free (tc);
1400 return NULL;
1401 }
1402 tc->transfer = transfer;
1403
1404 return tc;
1405}
1406
1407/**
1408 Wait for completion of the transfer.
1409
1410 Use libusb 1.0 Asynchronous API.
1411 Only available if compiled with --with-async-mode.
1412
1413 \param tc pointer to ftdi_transfer_control
1414
1415 \retval < 0: Some error happens
1416 \retval >= 0: Data size transferred
1417*/
1418
1419int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1420{
1421 int ret;
1422
1423 while (!tc->completed)
1424 {
1425 ret = libusb_handle_events(NULL);
1426 if (ret < 0)
1427 {
1428 if (ret == LIBUSB_ERROR_INTERRUPTED)
1429 continue;
1430 libusb_cancel_transfer(tc->transfer);
1431 while (!tc->completed)
1432 if (libusb_handle_events(NULL) < 0)
1433 break;
1434 libusb_free_transfer(tc->transfer);
1435 free (tc);
1436 tc = NULL;
1437 return ret;
1438 }
1439 }
1440
1441 if (tc->transfer->status == LIBUSB_TRANSFER_COMPLETED)
1442 ret = tc->offset;
1443 else
1444 ret = -1;
1445
1446 libusb_free_transfer(tc->transfer);
1447 free(tc);
1448 return ret;
1449}
1450
1451#endif // LIBFTDI_LINUX_ASYNC_MODE
1452
1453/**
1454 Configure write buffer chunk size.
1455 Default is 4096.
1456
1457 \param ftdi pointer to ftdi_context
1458 \param chunksize Chunk size
1459
1460 \retval 0: all fine
1461*/
1462int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1463{
1464 ftdi->writebuffer_chunksize = chunksize;
1465 return 0;
1466}
1467
1468/**
1469 Get write buffer chunk size.
1470
1471 \param ftdi pointer to ftdi_context
1472 \param chunksize Pointer to store chunk size in
1473
1474 \retval 0: all fine
1475*/
1476int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1477{
1478 *chunksize = ftdi->writebuffer_chunksize;
1479 return 0;
1480}
1481
1482/**
1483 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1484
1485 Automatically strips the two modem status bytes transfered during every read.
1486
1487 \param ftdi pointer to ftdi_context
1488 \param buf Buffer to store data in
1489 \param size Size of the buffer
1490
1491 \retval <0: error code from libusb_bulk_transfer()
1492 \retval 0: no data was available
1493 \retval >0: number of bytes read
1494
1495*/
1496int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1497{
1498 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1499 int packet_size = ftdi->max_packet_size;
1500 int actual_length = 1;
1501
1502 // Packet size sanity check (avoid division by zero)
1503 if (packet_size == 0)
1504 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1505
1506 // everything we want is still in the readbuffer?
1507 if (size <= ftdi->readbuffer_remaining)
1508 {
1509 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1510
1511 // Fix offsets
1512 ftdi->readbuffer_remaining -= size;
1513 ftdi->readbuffer_offset += size;
1514
1515 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1516
1517 return size;
1518 }
1519 // something still in the readbuffer, but not enough to satisfy 'size'?
1520 if (ftdi->readbuffer_remaining != 0)
1521 {
1522 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1523
1524 // Fix offset
1525 offset += ftdi->readbuffer_remaining;
1526 }
1527 // do the actual USB read
1528 while (offset < size && actual_length > 0)
1529 {
1530 ftdi->readbuffer_remaining = 0;
1531 ftdi->readbuffer_offset = 0;
1532 /* returns how much received */
1533 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1534 if (ret < 0)
1535 ftdi_error_return(ret, "usb bulk read failed");
1536
1537 if (actual_length > 2)
1538 {
1539 // skip FTDI status bytes.
1540 // Maybe stored in the future to enable modem use
1541 num_of_chunks = actual_length / packet_size;
1542 chunk_remains = actual_length % packet_size;
1543 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1544
1545 ftdi->readbuffer_offset += 2;
1546 actual_length -= 2;
1547
1548 if (actual_length > packet_size - 2)
1549 {
1550 for (i = 1; i < num_of_chunks; i++)
1551 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1552 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1553 packet_size - 2);
1554 if (chunk_remains > 2)
1555 {
1556 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1557 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1558 chunk_remains-2);
1559 actual_length -= 2*num_of_chunks;
1560 }
1561 else
1562 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1563 }
1564 }
1565 else if (actual_length <= 2)
1566 {
1567 // no more data to read?
1568 return offset;
1569 }
1570 if (actual_length > 0)
1571 {
1572 // data still fits in buf?
1573 if (offset+actual_length <= size)
1574 {
1575 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1576 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1577 offset += actual_length;
1578
1579 /* Did we read exactly the right amount of bytes? */
1580 if (offset == size)
1581 //printf("read_data exact rem %d offset %d\n",
1582 //ftdi->readbuffer_remaining, offset);
1583 return offset;
1584 }
1585 else
1586 {
1587 // only copy part of the data or size <= readbuffer_chunksize
1588 int part_size = size-offset;
1589 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1590
1591 ftdi->readbuffer_offset += part_size;
1592 ftdi->readbuffer_remaining = actual_length-part_size;
1593 offset += part_size;
1594
1595 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1596 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1597
1598 return offset;
1599 }
1600 }
1601 }
1602 // never reached
1603 return -127;
1604}
1605
1606/**
1607 Configure read buffer chunk size.
1608 Default is 4096.
1609
1610 Automatically reallocates the buffer.
1611
1612 \param ftdi pointer to ftdi_context
1613 \param chunksize Chunk size
1614
1615 \retval 0: all fine
1616*/
1617int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1618{
1619 unsigned char *new_buf;
1620
1621 // Invalidate all remaining data
1622 ftdi->readbuffer_offset = 0;
1623 ftdi->readbuffer_remaining = 0;
1624
1625 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1626 ftdi_error_return(-1, "out of memory for readbuffer");
1627
1628 ftdi->readbuffer = new_buf;
1629 ftdi->readbuffer_chunksize = chunksize;
1630
1631 return 0;
1632}
1633
1634/**
1635 Get read buffer chunk size.
1636
1637 \param ftdi pointer to ftdi_context
1638 \param chunksize Pointer to store chunk size in
1639
1640 \retval 0: all fine
1641*/
1642int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1643{
1644 *chunksize = ftdi->readbuffer_chunksize;
1645 return 0;
1646}
1647
1648
1649/**
1650 Enable bitbang mode.
1651
1652 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1653
1654 \param ftdi pointer to ftdi_context
1655 \param bitmask Bitmask to configure lines.
1656 HIGH/ON value configures a line as output.
1657
1658 \retval 0: all fine
1659 \retval -1: can't enable bitbang mode
1660*/
1661int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1662{
1663 unsigned short usb_val;
1664
1665 usb_val = bitmask; // low byte: bitmask
1666 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1667 usb_val |= (ftdi->bitbang_mode << 8);
1668
1669 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1670 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1671 NULL, 0, ftdi->usb_write_timeout) < 0)
1672 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1673
1674 ftdi->bitbang_enabled = 1;
1675 return 0;
1676}
1677
1678/**
1679 Disable bitbang mode.
1680
1681 \param ftdi pointer to ftdi_context
1682
1683 \retval 0: all fine
1684 \retval -1: can't disable bitbang mode
1685*/
1686int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1687{
1688 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1689 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1690
1691 ftdi->bitbang_enabled = 0;
1692 return 0;
1693}
1694
1695/**
1696 Enable/disable bitbang modes.
1697
1698 \param ftdi pointer to ftdi_context
1699 \param bitmask Bitmask to configure lines.
1700 HIGH/ON value configures a line as output.
1701 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1702
1703 \retval 0: all fine
1704 \retval -1: can't enable bitbang mode
1705*/
1706int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1707{
1708 unsigned short usb_val;
1709
1710 usb_val = bitmask; // low byte: bitmask
1711 usb_val |= (mode << 8);
1712 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1713 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1714
1715 ftdi->bitbang_mode = mode;
1716 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1717 return 0;
1718}
1719
1720/**
1721 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1722
1723 \param ftdi pointer to ftdi_context
1724 \param pins Pointer to store pins into
1725
1726 \retval 0: all fine
1727 \retval -1: read pins failed
1728*/
1729int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1730{
1731 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1732 ftdi_error_return(-1, "read pins failed");
1733
1734 return 0;
1735}
1736
1737/**
1738 Set latency timer
1739
1740 The FTDI chip keeps data in the internal buffer for a specific
1741 amount of time if the buffer is not full yet to decrease
1742 load on the usb bus.
1743
1744 \param ftdi pointer to ftdi_context
1745 \param latency Value between 1 and 255
1746
1747 \retval 0: all fine
1748 \retval -1: latency out of range
1749 \retval -2: unable to set latency timer
1750*/
1751int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1752{
1753 unsigned short usb_val;
1754
1755 if (latency < 1)
1756 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1757
1758 usb_val = latency;
1759 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1760 ftdi_error_return(-2, "unable to set latency timer");
1761
1762 return 0;
1763}
1764
1765/**
1766 Get latency timer
1767
1768 \param ftdi pointer to ftdi_context
1769 \param latency Pointer to store latency value in
1770
1771 \retval 0: all fine
1772 \retval -1: unable to get latency timer
1773*/
1774int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1775{
1776 unsigned short usb_val;
1777 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1778 ftdi_error_return(-1, "reading latency timer failed");
1779
1780 *latency = (unsigned char)usb_val;
1781 return 0;
1782}
1783
1784/**
1785 Poll modem status information
1786
1787 This function allows the retrieve the two status bytes of the device.
1788 The device sends these bytes also as a header for each read access
1789 where they are discarded by ftdi_read_data(). The chip generates
1790 the two stripped status bytes in the absence of data every 40 ms.
1791
1792 Layout of the first byte:
1793 - B0..B3 - must be 0
1794 - B4 Clear to send (CTS)
1795 0 = inactive
1796 1 = active
1797 - B5 Data set ready (DTS)
1798 0 = inactive
1799 1 = active
1800 - B6 Ring indicator (RI)
1801 0 = inactive
1802 1 = active
1803 - B7 Receive line signal detect (RLSD)
1804 0 = inactive
1805 1 = active
1806
1807 Layout of the second byte:
1808 - B0 Data ready (DR)
1809 - B1 Overrun error (OE)
1810 - B2 Parity error (PE)
1811 - B3 Framing error (FE)
1812 - B4 Break interrupt (BI)
1813 - B5 Transmitter holding register (THRE)
1814 - B6 Transmitter empty (TEMT)
1815 - B7 Error in RCVR FIFO
1816
1817 \param ftdi pointer to ftdi_context
1818 \param status Pointer to store status information in. Must be two bytes.
1819
1820 \retval 0: all fine
1821 \retval -1: unable to retrieve status information
1822*/
1823int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1824{
1825 char usb_val[2];
1826
1827 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1828 ftdi_error_return(-1, "getting modem status failed");
1829
1830 *status = (usb_val[1] << 8) | usb_val[0];
1831
1832 return 0;
1833}
1834
1835/**
1836 Set flowcontrol for ftdi chip
1837
1838 \param ftdi pointer to ftdi_context
1839 \param flowctrl flow control to use. should be
1840 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
1841
1842 \retval 0: all fine
1843 \retval -1: set flow control failed
1844*/
1845int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1846{
1847 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1848 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
1849 NULL, 0, ftdi->usb_write_timeout) < 0)
1850 ftdi_error_return(-1, "set flow control failed");
1851
1852 return 0;
1853}
1854
1855/**
1856 Set dtr line
1857
1858 \param ftdi pointer to ftdi_context
1859 \param state state to set line to (1 or 0)
1860
1861 \retval 0: all fine
1862 \retval -1: set dtr failed
1863*/
1864int ftdi_setdtr(struct ftdi_context *ftdi, int state)
1865{
1866 unsigned short usb_val;
1867
1868 if (state)
1869 usb_val = SIO_SET_DTR_HIGH;
1870 else
1871 usb_val = SIO_SET_DTR_LOW;
1872
1873 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1874 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1875 NULL, 0, ftdi->usb_write_timeout) < 0)
1876 ftdi_error_return(-1, "set dtr failed");
1877
1878 return 0;
1879}
1880
1881/**
1882 Set rts line
1883
1884 \param ftdi pointer to ftdi_context
1885 \param state state to set line to (1 or 0)
1886
1887 \retval 0: all fine
1888 \retval -1 set rts failed
1889*/
1890int ftdi_setrts(struct ftdi_context *ftdi, int state)
1891{
1892 unsigned short usb_val;
1893
1894 if (state)
1895 usb_val = SIO_SET_RTS_HIGH;
1896 else
1897 usb_val = SIO_SET_RTS_LOW;
1898
1899 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1900 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1901 NULL, 0, ftdi->usb_write_timeout) < 0)
1902 ftdi_error_return(-1, "set of rts failed");
1903
1904 return 0;
1905}
1906
1907/**
1908 Set dtr and rts line in one pass
1909
1910 \param ftdi pointer to ftdi_context
1911 \param dtr DTR state to set line to (1 or 0)
1912 \param rts RTS state to set line to (1 or 0)
1913
1914 \retval 0: all fine
1915 \retval -1 set dtr/rts failed
1916 */
1917int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
1918{
1919 unsigned short usb_val;
1920
1921 if (dtr)
1922 usb_val = SIO_SET_DTR_HIGH;
1923 else
1924 usb_val = SIO_SET_DTR_LOW;
1925
1926 if (rts)
1927 usb_val |= SIO_SET_RTS_HIGH;
1928 else
1929 usb_val |= SIO_SET_RTS_LOW;
1930
1931 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1932 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1933 NULL, 0, ftdi->usb_write_timeout) < 0)
1934 ftdi_error_return(-1, "set of rts/dtr failed");
1935
1936 return 0;
1937}
1938
1939/**
1940 Set the special event character
1941
1942 \param ftdi pointer to ftdi_context
1943 \param eventch Event character
1944 \param enable 0 to disable the event character, non-zero otherwise
1945
1946 \retval 0: all fine
1947 \retval -1: unable to set event character
1948*/
1949int ftdi_set_event_char(struct ftdi_context *ftdi,
1950 unsigned char eventch, unsigned char enable)
1951{
1952 unsigned short usb_val;
1953
1954 usb_val = eventch;
1955 if (enable)
1956 usb_val |= 1 << 8;
1957
1958 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1959 ftdi_error_return(-1, "setting event character failed");
1960
1961 return 0;
1962}
1963
1964/**
1965 Set error character
1966
1967 \param ftdi pointer to ftdi_context
1968 \param errorch Error character
1969 \param enable 0 to disable the error character, non-zero otherwise
1970
1971 \retval 0: all fine
1972 \retval -1: unable to set error character
1973*/
1974int ftdi_set_error_char(struct ftdi_context *ftdi,
1975 unsigned char errorch, unsigned char enable)
1976{
1977 unsigned short usb_val;
1978
1979 usb_val = errorch;
1980 if (enable)
1981 usb_val |= 1 << 8;
1982
1983 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1984 ftdi_error_return(-1, "setting error character failed");
1985
1986 return 0;
1987}
1988
1989/**
1990 Set the eeprom size
1991
1992 \param ftdi pointer to ftdi_context
1993 \param eeprom Pointer to ftdi_eeprom
1994 \param size
1995
1996*/
1997void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
1998{
1999 ftdi->eeprom_size=size;
2000 eeprom->size=size;
2001}
2002
2003/**
2004 Init eeprom with default values.
2005
2006 \param eeprom Pointer to ftdi_eeprom
2007*/
2008void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
2009{
2010 eeprom->vendor_id = 0x0403;
2011 eeprom->product_id = 0x6001;
2012
2013 eeprom->self_powered = 1;
2014 eeprom->remote_wakeup = 1;
2015 eeprom->BM_type_chip = 1;
2016
2017 eeprom->in_is_isochronous = 0;
2018 eeprom->out_is_isochronous = 0;
2019 eeprom->suspend_pull_downs = 0;
2020
2021 eeprom->use_serial = 0;
2022 eeprom->change_usb_version = 0;
2023 eeprom->usb_version = 0x0200;
2024 eeprom->max_power = 0;
2025
2026 eeprom->manufacturer = NULL;
2027 eeprom->product = NULL;
2028 eeprom->serial = NULL;
2029
2030 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
2031}
2032
2033/**
2034 Build binary output from ftdi_eeprom structure.
2035 Output is suitable for ftdi_write_eeprom().
2036
2037 \param eeprom Pointer to ftdi_eeprom
2038 \param output Buffer of 128 bytes to store eeprom image to
2039
2040 \retval >0: used eeprom size
2041 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2042*/
2043int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
2044{
2045 unsigned char i, j;
2046 unsigned short checksum, value;
2047 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2048 int size_check;
2049
2050 if (eeprom->manufacturer != NULL)
2051 manufacturer_size = strlen(eeprom->manufacturer);
2052 if (eeprom->product != NULL)
2053 product_size = strlen(eeprom->product);
2054 if (eeprom->serial != NULL)
2055 serial_size = strlen(eeprom->serial);
2056
2057 size_check = eeprom->size;
2058 size_check -= 28; // 28 are always in use (fixed)
2059
2060 // Top half of a 256byte eeprom is used just for strings and checksum
2061 // it seems that the FTDI chip will not read these strings from the lower half
2062 // Each string starts with two bytes; offset and type (0x03 for string)
2063 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
2064 if (eeprom->size>=256)size_check = 120;
2065 size_check -= manufacturer_size*2;
2066 size_check -= product_size*2;
2067 size_check -= serial_size*2;
2068
2069 // eeprom size exceeded?
2070 if (size_check < 0)
2071 return (-1);
2072
2073 // empty eeprom
2074 memset (output, 0, eeprom->size);
2075
2076 // Addr 00: Stay 00 00
2077 // Addr 02: Vendor ID
2078 output[0x02] = eeprom->vendor_id;
2079 output[0x03] = eeprom->vendor_id >> 8;
2080
2081 // Addr 04: Product ID
2082 output[0x04] = eeprom->product_id;
2083 output[0x05] = eeprom->product_id >> 8;
2084
2085 // Addr 06: Device release number (0400h for BM features)
2086 output[0x06] = 0x00;
2087
2088 if (eeprom->BM_type_chip == 1)
2089 output[0x07] = 0x04;
2090 else
2091 output[0x07] = 0x02;
2092
2093 // Addr 08: Config descriptor
2094 // Bit 7: always 1
2095 // Bit 6: 1 if this device is self powered, 0 if bus powered
2096 // Bit 5: 1 if this device uses remote wakeup
2097 // Bit 4: 1 if this device is battery powered
2098 j = 0x80;
2099 if (eeprom->self_powered == 1)
2100 j |= 0x40;
2101 if (eeprom->remote_wakeup == 1)
2102 j |= 0x20;
2103 output[0x08] = j;
2104
2105 // Addr 09: Max power consumption: max power = value * 2 mA
2106 output[0x09] = eeprom->max_power;
2107
2108 // Addr 0A: Chip configuration
2109 // Bit 7: 0 - reserved
2110 // Bit 6: 0 - reserved
2111 // Bit 5: 0 - reserved
2112 // Bit 4: 1 - Change USB version
2113 // Bit 3: 1 - Use the serial number string
2114 // Bit 2: 1 - Enable suspend pull downs for lower power
2115 // Bit 1: 1 - Out EndPoint is Isochronous
2116 // Bit 0: 1 - In EndPoint is Isochronous
2117 //
2118 j = 0;
2119 if (eeprom->in_is_isochronous == 1)
2120 j = j | 1;
2121 if (eeprom->out_is_isochronous == 1)
2122 j = j | 2;
2123 if (eeprom->suspend_pull_downs == 1)
2124 j = j | 4;
2125 if (eeprom->use_serial == 1)
2126 j = j | 8;
2127 if (eeprom->change_usb_version == 1)
2128 j = j | 16;
2129 output[0x0A] = j;
2130
2131 // Addr 0B: reserved
2132 output[0x0B] = 0x00;
2133
2134 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2135 // Addr 0D: USB version high byte when 0x0A bit 4 is set
2136 if (eeprom->change_usb_version == 1)
2137 {
2138 output[0x0C] = eeprom->usb_version;
2139 output[0x0D] = eeprom->usb_version >> 8;
2140 }
2141
2142
2143 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2144 // Addr 0F: Length of manufacturer string
2145 output[0x0F] = manufacturer_size*2 + 2;
2146
2147 // Addr 10: Offset of the product string + 0x80, calculated later
2148 // Addr 11: Length of product string
2149 output[0x11] = product_size*2 + 2;
2150
2151 // Addr 12: Offset of the serial string + 0x80, calculated later
2152 // Addr 13: Length of serial string
2153 output[0x13] = serial_size*2 + 2;
2154
2155 // Dynamic content
2156 i=0x14;
2157 if (eeprom->size>=256) i = 0x80;
2158
2159
2160 // Output manufacturer
2161 output[0x0E] = i | 0x80; // calculate offset
2162 output[i++] = manufacturer_size*2 + 2;
2163 output[i++] = 0x03; // type: string
2164 for (j = 0; j < manufacturer_size; j++)
2165 {
2166 output[i] = eeprom->manufacturer[j], i++;
2167 output[i] = 0x00, i++;
2168 }
2169
2170 // Output product name
2171 output[0x10] = i | 0x80; // calculate offset
2172 output[i] = product_size*2 + 2, i++;
2173 output[i] = 0x03, i++;
2174 for (j = 0; j < product_size; j++)
2175 {
2176 output[i] = eeprom->product[j], i++;
2177 output[i] = 0x00, i++;
2178 }
2179
2180 // Output serial
2181 output[0x12] = i | 0x80; // calculate offset
2182 output[i] = serial_size*2 + 2, i++;
2183 output[i] = 0x03, i++;
2184 for (j = 0; j < serial_size; j++)
2185 {
2186 output[i] = eeprom->serial[j], i++;
2187 output[i] = 0x00, i++;
2188 }
2189
2190 // calculate checksum
2191 checksum = 0xAAAA;
2192
2193 for (i = 0; i < eeprom->size/2-1; i++)
2194 {
2195 value = output[i*2];
2196 value += output[(i*2)+1] << 8;
2197
2198 checksum = value^checksum;
2199 checksum = (checksum << 1) | (checksum >> 15);
2200 }
2201
2202 output[eeprom->size-2] = checksum;
2203 output[eeprom->size-1] = checksum >> 8;
2204
2205 return size_check;
2206}
2207
2208/**
2209 Decode binary EEPROM image into an ftdi_eeprom structure.
2210
2211 \param eeprom Pointer to ftdi_eeprom which will be filled in.
2212 \param buf Buffer of \a size bytes of raw eeprom data
2213 \param size size size of eeprom data in bytes
2214
2215 \retval 0: all fine
2216 \retval -1: something went wrong
2217
2218 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2219 FIXME: Strings are malloc'ed here and should be freed somewhere
2220*/
2221int ftdi_eeprom_decode(struct ftdi_eeprom *eeprom, unsigned char *buf, int size)
2222{
2223 unsigned char i, j;
2224 unsigned short checksum, eeprom_checksum, value;
2225 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2226 int eeprom_size = 128;
2227#if 0
2228 size_check = eeprom->size;
2229 size_check -= 28; // 28 are always in use (fixed)
2230
2231 // Top half of a 256byte eeprom is used just for strings and checksum
2232 // it seems that the FTDI chip will not read these strings from the lower half
2233 // Each string starts with two bytes; offset and type (0x03 for string)
2234 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
2235 if (eeprom->size>=256)size_check = 120;
2236 size_check -= manufacturer_size*2;
2237 size_check -= product_size*2;
2238 size_check -= serial_size*2;
2239
2240 // eeprom size exceeded?
2241 if (size_check < 0)
2242 return (-1);
2243#endif
2244
2245 // empty eeprom struct
2246 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2247
2248 // Addr 00: Stay 00 00
2249
2250 // Addr 02: Vendor ID
2251 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2252
2253 // Addr 04: Product ID
2254 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2255
2256 value = buf[0x06] + (buf[0x07]<<8);
2257 switch (value)
2258 {
2259 case 0x0400:
2260 eeprom->BM_type_chip = 1;
2261 break;
2262 case 0x0200:
2263 eeprom->BM_type_chip = 0;
2264 break;
2265 default: // Unknown device
2266 eeprom->BM_type_chip = 0;
2267 break;
2268 }
2269
2270 // Addr 08: Config descriptor
2271 // Bit 7: always 1
2272 // Bit 6: 1 if this device is self powered, 0 if bus powered
2273 // Bit 5: 1 if this device uses remote wakeup
2274 // Bit 4: 1 if this device is battery powered
2275 j = buf[0x08];
2276 if (j&0x40) eeprom->self_powered = 1;
2277 if (j&0x20) eeprom->remote_wakeup = 1;
2278
2279 // Addr 09: Max power consumption: max power = value * 2 mA
2280 eeprom->max_power = buf[0x09];
2281
2282 // Addr 0A: Chip configuration
2283 // Bit 7: 0 - reserved
2284 // Bit 6: 0 - reserved
2285 // Bit 5: 0 - reserved
2286 // Bit 4: 1 - Change USB version
2287 // Bit 3: 1 - Use the serial number string
2288 // Bit 2: 1 - Enable suspend pull downs for lower power
2289 // Bit 1: 1 - Out EndPoint is Isochronous
2290 // Bit 0: 1 - In EndPoint is Isochronous
2291 //
2292 j = buf[0x0A];
2293 if (j&0x01) eeprom->in_is_isochronous = 1;
2294 if (j&0x02) eeprom->out_is_isochronous = 1;
2295 if (j&0x04) eeprom->suspend_pull_downs = 1;
2296 if (j&0x08) eeprom->use_serial = 1;
2297 if (j&0x10) eeprom->change_usb_version = 1;
2298
2299 // Addr 0B: reserved
2300
2301 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2302 // Addr 0D: USB version high byte when 0x0A bit 4 is set
2303 if (eeprom->change_usb_version == 1)
2304 {
2305 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2306 }
2307
2308 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2309 // Addr 0F: Length of manufacturer string
2310 manufacturer_size = buf[0x0F]/2;
2311 if (manufacturer_size > 0) eeprom->manufacturer = malloc(manufacturer_size);
2312 else eeprom->manufacturer = NULL;
2313
2314 // Addr 10: Offset of the product string + 0x80, calculated later
2315 // Addr 11: Length of product string
2316 product_size = buf[0x11]/2;
2317 if (product_size > 0) eeprom->product = malloc(product_size);
2318 else eeprom->product = NULL;
2319
2320 // Addr 12: Offset of the serial string + 0x80, calculated later
2321 // Addr 13: Length of serial string
2322 serial_size = buf[0x13]/2;
2323 if (serial_size > 0) eeprom->serial = malloc(serial_size);
2324 else eeprom->serial = NULL;
2325
2326 // Decode manufacturer
2327 i = buf[0x0E] & 0x7f; // offset
2328 for (j=0;j<manufacturer_size-1;j++)
2329 {
2330 eeprom->manufacturer[j] = buf[2*j+i+2];
2331 }
2332 eeprom->manufacturer[j] = '\0';
2333
2334 // Decode product name
2335 i = buf[0x10] & 0x7f; // offset
2336 for (j=0;j<product_size-1;j++)
2337 {
2338 eeprom->product[j] = buf[2*j+i+2];
2339 }
2340 eeprom->product[j] = '\0';
2341
2342 // Decode serial
2343 i = buf[0x12] & 0x7f; // offset
2344 for (j=0;j<serial_size-1;j++)
2345 {
2346 eeprom->serial[j] = buf[2*j+i+2];
2347 }
2348 eeprom->serial[j] = '\0';
2349
2350 // verify checksum
2351 checksum = 0xAAAA;
2352
2353 for (i = 0; i < eeprom_size/2-1; i++)
2354 {
2355 value = buf[i*2];
2356 value += buf[(i*2)+1] << 8;
2357
2358 checksum = value^checksum;
2359 checksum = (checksum << 1) | (checksum >> 15);
2360 }
2361
2362 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2363
2364 if (eeprom_checksum != checksum)
2365 {
2366 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2367 return -1;
2368 }
2369
2370 return 0;
2371}
2372
2373/**
2374 Read eeprom location
2375
2376 \param ftdi pointer to ftdi_context
2377 \param eeprom_addr Address of eeprom location to be read
2378 \param eeprom_val Pointer to store read eeprom location
2379
2380 \retval 0: all fine
2381 \retval -1: read failed
2382*/
2383int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
2384{
2385 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
2386 ftdi_error_return(-1, "reading eeprom failed");
2387
2388 return 0;
2389}
2390
2391/**
2392 Read eeprom
2393
2394 \param ftdi pointer to ftdi_context
2395 \param eeprom Pointer to store eeprom into
2396
2397 \retval 0: all fine
2398 \retval -1: read failed
2399*/
2400int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2401{
2402 int i;
2403
2404 for (i = 0; i < ftdi->eeprom_size/2; i++)
2405 {
2406 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
2407 ftdi_error_return(-1, "reading eeprom failed");
2408 }
2409
2410 return 0;
2411}
2412
2413/*
2414 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
2415 Function is only used internally
2416 \internal
2417*/
2418static unsigned char ftdi_read_chipid_shift(unsigned char value)
2419{
2420 return ((value & 1) << 1) |
2421 ((value & 2) << 5) |
2422 ((value & 4) >> 2) |
2423 ((value & 8) << 4) |
2424 ((value & 16) >> 1) |
2425 ((value & 32) >> 1) |
2426 ((value & 64) >> 4) |
2427 ((value & 128) >> 2);
2428}
2429
2430/**
2431 Read the FTDIChip-ID from R-type devices
2432
2433 \param ftdi pointer to ftdi_context
2434 \param chipid Pointer to store FTDIChip-ID
2435
2436 \retval 0: all fine
2437 \retval -1: read failed
2438*/
2439int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
2440{
2441 unsigned int a = 0, b = 0;
2442
2443 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
2444 {
2445 a = a << 8 | a >> 8;
2446 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
2447 {
2448 b = b << 8 | b >> 8;
2449 a = (a << 16) | (b & 0xFFFF);
2450 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
2451 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
2452 *chipid = a ^ 0xa5f0f7d1;
2453 return 0;
2454 }
2455 }
2456
2457 ftdi_error_return(-1, "read of FTDIChip-ID failed");
2458}
2459
2460/**
2461 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
2462 Call this function then do a write then call again to see if size changes, if so write again.
2463
2464 \param ftdi pointer to ftdi_context
2465 \param eeprom Pointer to store eeprom into
2466 \param maxsize the size of the buffer to read into
2467
2468 \retval size of eeprom
2469*/
2470int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
2471{
2472 int i=0,j,minsize=32;
2473 int size=minsize;
2474
2475 do
2476 {
2477 for (j = 0; i < maxsize/2 && j<size; j++)
2478 {
2479 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,
2480 SIO_READ_EEPROM_REQUEST, 0, i,
2481 eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
2482 ftdi_error_return(-1, "reading eeprom failed");
2483 i++;
2484 }
2485 size*=2;
2486 }
2487 while (size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
2488
2489 return size/2;
2490}
2491
2492/**
2493 Write eeprom location
2494
2495 \param ftdi pointer to ftdi_context
2496 \param eeprom_addr Address of eeprom location to be written
2497 \param eeprom_val Value to be written
2498
2499 \retval 0: all fine
2500 \retval -1: read failed
2501*/
2502int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr, unsigned short eeprom_val)
2503{
2504 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2505 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
2506 NULL, 0, ftdi->usb_write_timeout) != 0)
2507 ftdi_error_return(-1, "unable to write eeprom");
2508
2509 return 0;
2510}
2511
2512/**
2513 Write eeprom
2514
2515 \param ftdi pointer to ftdi_context
2516 \param eeprom Pointer to read eeprom from
2517
2518 \retval 0: all fine
2519 \retval -1: read failed
2520*/
2521int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2522{
2523 unsigned short usb_val, status;
2524 int i, ret;
2525
2526 /* These commands were traced while running MProg */
2527 if ((ret = ftdi_usb_reset(ftdi)) != 0)
2528 return ret;
2529 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
2530 return ret;
2531 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
2532 return ret;
2533
2534 for (i = 0; i < ftdi->eeprom_size/2; i++)
2535 {
2536 usb_val = eeprom[i*2];
2537 usb_val += eeprom[(i*2)+1] << 8;
2538 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2539 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
2540 NULL, 0, ftdi->usb_write_timeout) < 0)
2541 ftdi_error_return(-1, "unable to write eeprom");
2542 }
2543
2544 return 0;
2545}
2546
2547/**
2548 Erase eeprom
2549
2550 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
2551
2552 \param ftdi pointer to ftdi_context
2553
2554 \retval 0: all fine
2555 \retval -1: erase failed
2556*/
2557int ftdi_erase_eeprom(struct ftdi_context *ftdi)
2558{
2559 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST, 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
2560 ftdi_error_return(-1, "unable to erase eeprom");
2561
2562 return 0;
2563}
2564
2565/**
2566 Get string representation for last error code
2567
2568 \param ftdi pointer to ftdi_context
2569
2570 \retval Pointer to error string
2571*/
2572char *ftdi_get_error_string (struct ftdi_context *ftdi)
2573{
2574 return ftdi->error_str;
2575}
2576
2577/* @} end of doxygen libftdi group */