libftdi: (gerd) improve async documentation (#1270)
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2008 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/de/produkte/opensource/ftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <usb.h>
32#include <string.h>
33#include <errno.h>
34
35#include "ftdi.h"
36
37/* stuff needed for async write */
38#include <sys/ioctl.h>
39#include <sys/time.h>
40#include <sys/select.h>
41#include <sys/types.h>
42#include <unistd.h>
43#include <linux/usbdevice_fs.h>
44
45#define ftdi_error_return(code, str) do { \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Initializes a ftdi_context.
53
54 \param ftdi pointer to ftdi_context
55
56 \retval 0: all fine
57 \retval -1: couldn't allocate read buffer
58
59 \remark This should be called before all functions
60*/
61int ftdi_init(struct ftdi_context *ftdi)
62{
63 int i;
64
65 ftdi->usb_dev = NULL;
66 ftdi->usb_read_timeout = 5000;
67 ftdi->usb_write_timeout = 5000;
68
69 ftdi->type = TYPE_BM; /* chip type */
70 ftdi->baudrate = -1;
71 ftdi->bitbang_enabled = 0;
72
73 ftdi->readbuffer = NULL;
74 ftdi->readbuffer_offset = 0;
75 ftdi->readbuffer_remaining = 0;
76 ftdi->writebuffer_chunksize = 4096;
77
78 ftdi->interface = 0;
79 ftdi->index = 0;
80 ftdi->in_ep = 0x02;
81 ftdi->out_ep = 0x81;
82 ftdi->bitbang_mode = 1; /* 1: Normal bitbang mode, 2: SPI bitbang mode */
83
84 ftdi->error_str = NULL;
85
86 ftdi->async_usb_buffer_size=10;
87 if ((ftdi->async_usb_buffer=malloc(sizeof(struct usbdevfs_urb)*ftdi->async_usb_buffer_size)) == NULL)
88 ftdi_error_return(-1, "out of memory for async usb buffer");
89
90 /* initialize async usb buffer with unused-marker */
91 for (i=0; i < ftdi->async_usb_buffer_size; i++)
92 ((struct usbdevfs_urb*)ftdi->async_usb_buffer)[i].usercontext = FTDI_URB_USERCONTEXT_COOKIE;
93
94 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
95
96 /* All fine. Now allocate the readbuffer */
97 return ftdi_read_data_set_chunksize(ftdi, 4096);
98}
99
100/**
101 Open selected channels on a chip, otherwise use first channel.
102
103 \param ftdi pointer to ftdi_context
104 \param interface Interface to use for FT2232C chips.
105
106 \retval 0: all fine
107 \retval -1: unknown interface
108*/
109int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
110{
111 switch (interface) {
112 case INTERFACE_ANY:
113 case INTERFACE_A:
114 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
115 break;
116 case INTERFACE_B:
117 ftdi->interface = 1;
118 ftdi->index = INTERFACE_B;
119 ftdi->in_ep = 0x04;
120 ftdi->out_ep = 0x83;
121 break;
122 default:
123 ftdi_error_return(-1, "Unknown interface");
124 }
125 return 0;
126}
127
128/**
129 Deinitializes a ftdi_context.
130
131 \param ftdi pointer to ftdi_context
132*/
133void ftdi_deinit(struct ftdi_context *ftdi)
134{
135 if (ftdi->async_usb_buffer != NULL) {
136 free(ftdi->async_usb_buffer);
137 ftdi->async_usb_buffer = NULL;
138 }
139
140 if (ftdi->readbuffer != NULL) {
141 free(ftdi->readbuffer);
142 ftdi->readbuffer = NULL;
143 }
144}
145
146/**
147 Use an already open libusb device.
148
149 \param ftdi pointer to ftdi_context
150 \param usb libusb usb_dev_handle to use
151*/
152void ftdi_set_usbdev (struct ftdi_context *ftdi, usb_dev_handle *usb)
153{
154 ftdi->usb_dev = usb;
155}
156
157
158/**
159 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
160 needs to be deallocated by ftdi_list_free() after use.
161
162 \param ftdi pointer to ftdi_context
163 \param devlist Pointer where to store list of found devices
164 \param vendor Vendor ID to search for
165 \param product Product ID to search for
166
167 \retval >0: number of devices found
168 \retval -1: usb_find_busses() failed
169 \retval -2: usb_find_devices() failed
170 \retval -3: out of memory
171*/
172int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
173{
174 struct ftdi_device_list **curdev;
175 struct usb_bus *bus;
176 struct usb_device *dev;
177 int count = 0;
178
179 usb_init();
180 if (usb_find_busses() < 0)
181 ftdi_error_return(-1, "usb_find_busses() failed");
182 if (usb_find_devices() < 0)
183 ftdi_error_return(-2, "usb_find_devices() failed");
184
185 curdev = devlist;
186 *curdev = NULL;
187 for (bus = usb_busses; bus; bus = bus->next) {
188 for (dev = bus->devices; dev; dev = dev->next) {
189 if (dev->descriptor.idVendor == vendor
190 && dev->descriptor.idProduct == product)
191 {
192 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
193 if (!*curdev)
194 ftdi_error_return(-3, "out of memory");
195
196 (*curdev)->next = NULL;
197 (*curdev)->dev = dev;
198
199 curdev = &(*curdev)->next;
200 count++;
201 }
202 }
203 }
204
205 return count;
206}
207
208/**
209 Frees a usb device list.
210
211 \param devlist USB device list created by ftdi_usb_find_all()
212*/
213void ftdi_list_free(struct ftdi_device_list **devlist)
214{
215 struct ftdi_device_list *curdev, *next;
216
217 for (curdev = *devlist; curdev != NULL;) {
218 next = curdev->next;
219 free(curdev);
220 curdev = next;
221 }
222
223 *devlist = NULL;
224}
225
226/**
227 Return device ID strings from the usb device.
228
229 The parameters manufacturer, description and serial may be NULL
230 or pointer to buffers to store the fetched strings.
231
232 \note Use this function only in combination with ftdi_usb_find_all()
233 as it closes the internal "usb_dev" after use.
234
235 \param ftdi pointer to ftdi_context
236 \param dev libusb usb_dev to use
237 \param manufacturer Store manufacturer string here if not NULL
238 \param mnf_len Buffer size of manufacturer string
239 \param description Store product description string here if not NULL
240 \param desc_len Buffer size of product description string
241 \param serial Store serial string here if not NULL
242 \param serial_len Buffer size of serial string
243
244 \retval 0: all fine
245 \retval -1: wrong arguments
246 \retval -4: unable to open device
247 \retval -7: get product manufacturer failed
248 \retval -8: get product description failed
249 \retval -9: get serial number failed
250 \retval -10: unable to close device
251*/
252int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct usb_device * dev,
253 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
254{
255 if ((ftdi==NULL) || (dev==NULL))
256 return -1;
257
258 if (!(ftdi->usb_dev = usb_open(dev)))
259 ftdi_error_return(-4, usb_strerror());
260
261 if (manufacturer != NULL) {
262 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iManufacturer, manufacturer, mnf_len) <= 0) {
263 usb_close (ftdi->usb_dev);
264 ftdi_error_return(-7, usb_strerror());
265 }
266 }
267
268 if (description != NULL) {
269 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, description, desc_len) <= 0) {
270 usb_close (ftdi->usb_dev);
271 ftdi_error_return(-8, usb_strerror());
272 }
273 }
274
275 if (serial != NULL) {
276 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, serial, serial_len) <= 0) {
277 usb_close (ftdi->usb_dev);
278 ftdi_error_return(-9, usb_strerror());
279 }
280 }
281
282 if (usb_close (ftdi->usb_dev) != 0)
283 ftdi_error_return(-10, usb_strerror());
284
285 return 0;
286}
287
288/**
289 Opens a ftdi device given by a usb_device.
290
291 \param ftdi pointer to ftdi_context
292 \param dev libusb usb_dev to use
293
294 \retval 0: all fine
295 \retval -4: unable to open device
296 \retval -5: unable to claim device
297 \retval -6: reset failed
298 \retval -7: set baudrate failed
299*/
300int ftdi_usb_open_dev(struct ftdi_context *ftdi, struct usb_device *dev)
301{
302 int detach_errno = 0;
303 if (!(ftdi->usb_dev = usb_open(dev)))
304 ftdi_error_return(-4, "usb_open() failed");
305
306#ifdef LIBUSB_HAS_GET_DRIVER_NP
307 // Try to detach ftdi_sio kernel module
308 // Returns ENODATA if driver is not loaded
309 if (usb_detach_kernel_driver_np(ftdi->usb_dev, ftdi->interface) != 0 && errno != ENODATA)
310 detach_errno = errno;
311#endif
312
313 if (usb_claim_interface(ftdi->usb_dev, ftdi->interface) != 0) {
314 usb_close (ftdi->usb_dev);
315 if (detach_errno == EPERM) {
316 ftdi_error_return(-8, "inappropriate permissions on device!");
317 } else {
318 ftdi_error_return(-5, "unable to claim usb device. Make sure ftdi_sio is unloaded!");
319 }
320 }
321
322 if (ftdi_usb_reset (ftdi) != 0) {
323 usb_close (ftdi->usb_dev);
324 ftdi_error_return(-6, "ftdi_usb_reset failed");
325 }
326
327 if (ftdi_set_baudrate (ftdi, 9600) != 0) {
328 usb_close (ftdi->usb_dev);
329 ftdi_error_return(-7, "set baudrate failed");
330 }
331
332 // Try to guess chip type
333 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
334 if (dev->descriptor.bcdDevice == 0x400 || (dev->descriptor.bcdDevice == 0x200
335 && dev->descriptor.iSerialNumber == 0))
336 ftdi->type = TYPE_BM;
337 else if (dev->descriptor.bcdDevice == 0x200)
338 ftdi->type = TYPE_AM;
339 else if (dev->descriptor.bcdDevice == 0x500) {
340 ftdi->type = TYPE_2232C;
341 if (!ftdi->index)
342 ftdi->index = INTERFACE_A;
343 } else if (dev->descriptor.bcdDevice == 0x600)
344 ftdi->type = TYPE_R;
345
346 ftdi_error_return(0, "all fine");
347}
348
349/**
350 Opens the first device with a given vendor and product ids.
351
352 \param ftdi pointer to ftdi_context
353 \param vendor Vendor ID
354 \param product Product ID
355
356 \retval same as ftdi_usb_open_desc()
357*/
358int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
359{
360 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
361}
362
363/**
364 Opens the first device with a given, vendor id, product id,
365 description and serial.
366
367 \param ftdi pointer to ftdi_context
368 \param vendor Vendor ID
369 \param product Product ID
370 \param description Description to search for. Use NULL if not needed.
371 \param serial Serial to search for. Use NULL if not needed.
372
373 \retval 0: all fine
374 \retval -1: usb_find_busses() failed
375 \retval -2: usb_find_devices() failed
376 \retval -3: usb device not found
377 \retval -4: unable to open device
378 \retval -5: unable to claim device
379 \retval -6: reset failed
380 \retval -7: set baudrate failed
381 \retval -8: get product description failed
382 \retval -9: get serial number failed
383 \retval -10: unable to close device
384*/
385int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
386 const char* description, const char* serial)
387{
388 struct usb_bus *bus;
389 struct usb_device *dev;
390 char string[256];
391
392 usb_init();
393
394 if (usb_find_busses() < 0)
395 ftdi_error_return(-1, "usb_find_busses() failed");
396 if (usb_find_devices() < 0)
397 ftdi_error_return(-2, "usb_find_devices() failed");
398
399 for (bus = usb_busses; bus; bus = bus->next) {
400 for (dev = bus->devices; dev; dev = dev->next) {
401 if (dev->descriptor.idVendor == vendor
402 && dev->descriptor.idProduct == product) {
403 if (!(ftdi->usb_dev = usb_open(dev)))
404 ftdi_error_return(-4, "usb_open() failed");
405
406 if (description != NULL) {
407 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, string, sizeof(string)) <= 0) {
408 usb_close (ftdi->usb_dev);
409 ftdi_error_return(-8, "unable to fetch product description");
410 }
411 if (strncmp(string, description, sizeof(string)) != 0) {
412 if (usb_close (ftdi->usb_dev) != 0)
413 ftdi_error_return(-10, "unable to close device");
414 continue;
415 }
416 }
417 if (serial != NULL) {
418 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, string, sizeof(string)) <= 0) {
419 usb_close (ftdi->usb_dev);
420 ftdi_error_return(-9, "unable to fetch serial number");
421 }
422 if (strncmp(string, serial, sizeof(string)) != 0) {
423 if (usb_close (ftdi->usb_dev) != 0)
424 ftdi_error_return(-10, "unable to close device");
425 continue;
426 }
427 }
428
429 if (usb_close (ftdi->usb_dev) != 0)
430 ftdi_error_return(-10, "unable to close device");
431
432 return ftdi_usb_open_dev(ftdi, dev);
433 }
434 }
435 }
436
437 // device not found
438 ftdi_error_return(-3, "device not found");
439}
440
441/**
442 Resets the ftdi device.
443
444 \param ftdi pointer to ftdi_context
445
446 \retval 0: all fine
447 \retval -1: FTDI reset failed
448*/
449int ftdi_usb_reset(struct ftdi_context *ftdi)
450{
451 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
452 ftdi_error_return(-1,"FTDI reset failed");
453
454 // Invalidate data in the readbuffer
455 ftdi->readbuffer_offset = 0;
456 ftdi->readbuffer_remaining = 0;
457
458 return 0;
459}
460
461/**
462 Clears the buffers on the chip.
463
464 \param ftdi pointer to ftdi_context
465
466 \retval 0: all fine
467 \retval -1: write buffer purge failed
468 \retval -2: read buffer purge failed
469*/
470int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
471{
472 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 1, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
473 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
474
475 // Invalidate data in the readbuffer
476 ftdi->readbuffer_offset = 0;
477 ftdi->readbuffer_remaining = 0;
478
479 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 2, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
480 ftdi_error_return(-2, "FTDI purge of TX buffer failed");
481
482 return 0;
483}
484
485/**
486 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
487
488 \param ftdi pointer to ftdi_context
489
490 \retval 0: all fine
491 \retval -1: usb_release failed
492 \retval -2: usb_close failed
493*/
494int ftdi_usb_close(struct ftdi_context *ftdi)
495{
496 int rtn = 0;
497
498 /* try to release some kernel resources */
499 ftdi_async_complete(ftdi,1);
500
501 if (usb_release_interface(ftdi->usb_dev, ftdi->interface) != 0)
502 rtn = -1;
503
504 if (usb_close (ftdi->usb_dev) != 0)
505 rtn = -2;
506
507 return rtn;
508}
509
510/*
511 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
512 Function is only used internally
513 \internal
514*/
515static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
516 unsigned short *value, unsigned short *index)
517{
518 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
519 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
520 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
521 int divisor, best_divisor, best_baud, best_baud_diff;
522 unsigned long encoded_divisor;
523 int i;
524
525 if (baudrate <= 0) {
526 // Return error
527 return -1;
528 }
529
530 divisor = 24000000 / baudrate;
531
532 if (ftdi->type == TYPE_AM) {
533 // Round down to supported fraction (AM only)
534 divisor -= am_adjust_dn[divisor & 7];
535 }
536
537 // Try this divisor and the one above it (because division rounds down)
538 best_divisor = 0;
539 best_baud = 0;
540 best_baud_diff = 0;
541 for (i = 0; i < 2; i++) {
542 int try_divisor = divisor + i;
543 int baud_estimate;
544 int baud_diff;
545
546 // Round up to supported divisor value
547 if (try_divisor <= 8) {
548 // Round up to minimum supported divisor
549 try_divisor = 8;
550 } else if (ftdi->type != TYPE_AM && try_divisor < 12) {
551 // BM doesn't support divisors 9 through 11 inclusive
552 try_divisor = 12;
553 } else if (divisor < 16) {
554 // AM doesn't support divisors 9 through 15 inclusive
555 try_divisor = 16;
556 } else {
557 if (ftdi->type == TYPE_AM) {
558 // Round up to supported fraction (AM only)
559 try_divisor += am_adjust_up[try_divisor & 7];
560 if (try_divisor > 0x1FFF8) {
561 // Round down to maximum supported divisor value (for AM)
562 try_divisor = 0x1FFF8;
563 }
564 } else {
565 if (try_divisor > 0x1FFFF) {
566 // Round down to maximum supported divisor value (for BM)
567 try_divisor = 0x1FFFF;
568 }
569 }
570 }
571 // Get estimated baud rate (to nearest integer)
572 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
573 // Get absolute difference from requested baud rate
574 if (baud_estimate < baudrate) {
575 baud_diff = baudrate - baud_estimate;
576 } else {
577 baud_diff = baud_estimate - baudrate;
578 }
579 if (i == 0 || baud_diff < best_baud_diff) {
580 // Closest to requested baud rate so far
581 best_divisor = try_divisor;
582 best_baud = baud_estimate;
583 best_baud_diff = baud_diff;
584 if (baud_diff == 0) {
585 // Spot on! No point trying
586 break;
587 }
588 }
589 }
590 // Encode the best divisor value
591 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
592 // Deal with special cases for encoded value
593 if (encoded_divisor == 1) {
594 encoded_divisor = 0; // 3000000 baud
595 } else if (encoded_divisor == 0x4001) {
596 encoded_divisor = 1; // 2000000 baud (BM only)
597 }
598 // Split into "value" and "index" values
599 *value = (unsigned short)(encoded_divisor & 0xFFFF);
600 if(ftdi->type == TYPE_2232C) {
601 *index = (unsigned short)(encoded_divisor >> 8);
602 *index &= 0xFF00;
603 *index |= ftdi->index;
604 }
605 else
606 *index = (unsigned short)(encoded_divisor >> 16);
607
608 // Return the nearest baud rate
609 return best_baud;
610}
611
612/**
613 Sets the chip baud rate
614
615 \param ftdi pointer to ftdi_context
616 \param baudrate baud rate to set
617
618 \retval 0: all fine
619 \retval -1: invalid baudrate
620 \retval -2: setting baudrate failed
621*/
622int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
623{
624 unsigned short value, index;
625 int actual_baudrate;
626
627 if (ftdi->bitbang_enabled) {
628 baudrate = baudrate*4;
629 }
630
631 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
632 if (actual_baudrate <= 0)
633 ftdi_error_return (-1, "Silly baudrate <= 0.");
634
635 // Check within tolerance (about 5%)
636 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
637 || ((actual_baudrate < baudrate)
638 ? (actual_baudrate * 21 < baudrate * 20)
639 : (baudrate * 21 < actual_baudrate * 20)))
640 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
641
642 if (usb_control_msg(ftdi->usb_dev, 0x40, 3, value, index, NULL, 0, ftdi->usb_write_timeout) != 0)
643 ftdi_error_return (-2, "Setting new baudrate failed");
644
645 ftdi->baudrate = baudrate;
646 return 0;
647}
648
649/**
650 Set (RS232) line characteristics by Alain Abbas
651
652 \param ftdi pointer to ftdi_context
653 \param bits Number of bits
654 \param sbit Number of stop bits
655 \param parity Parity mode
656
657 \retval 0: all fine
658 \retval -1: Setting line property failed
659*/
660int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
661 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
662{
663 unsigned short value = bits;
664
665 switch(parity) {
666 case NONE:
667 value |= (0x00 << 8);
668 break;
669 case ODD:
670 value |= (0x01 << 8);
671 break;
672 case EVEN:
673 value |= (0x02 << 8);
674 break;
675 case MARK:
676 value |= (0x03 << 8);
677 break;
678 case SPACE:
679 value |= (0x04 << 8);
680 break;
681 }
682
683 switch(sbit) {
684 case STOP_BIT_1:
685 value |= (0x00 << 11);
686 break;
687 case STOP_BIT_15:
688 value |= (0x01 << 11);
689 break;
690 case STOP_BIT_2:
691 value |= (0x02 << 11);
692 break;
693 }
694
695 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x04, value, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
696 ftdi_error_return (-1, "Setting new line property failed");
697
698 return 0;
699}
700
701/**
702 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
703
704 \param ftdi pointer to ftdi_context
705 \param buf Buffer with the data
706 \param size Size of the buffer
707
708 \retval <0: error code from usb_bulk_write()
709 \retval >0: number of bytes written
710*/
711int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
712{
713 int ret;
714 int offset = 0;
715 int total_written = 0;
716
717 while (offset < size) {
718 int write_size = ftdi->writebuffer_chunksize;
719
720 if (offset+write_size > size)
721 write_size = size-offset;
722
723 ret = usb_bulk_write(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, ftdi->usb_write_timeout);
724 if (ret < 0)
725 ftdi_error_return(ret, "usb bulk write failed");
726
727 total_written += ret;
728 offset += write_size;
729 }
730
731 return total_written;
732}
733
734/* this is strongly dependent on libusb using the same struct layout. If libusb
735 changes in some later version this may break horribly (this is for libusb 0.1.12) */
736struct usb_dev_handle {
737 int fd;
738 // some other stuff coming here we don't need
739};
740
741/**
742 Check for pending async urbs
743 \internal
744*/
745static int _usb_get_async_urbs_pending(struct ftdi_context *ftdi)
746{
747 struct usbdevfs_urb *urb;
748 int pending=0;
749 int i;
750
751 for (i=0; i < ftdi->async_usb_buffer_size; i++) {
752 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
753 if (urb->usercontext != FTDI_URB_USERCONTEXT_COOKIE)
754 pending++;
755 }
756
757 return pending;
758}
759
760/**
761 Wait until one or more async URBs are completed by the kernel and mark their
762 positions in the async-buffer as unused
763
764 \param ftdi pointer to ftdi_context
765 \param wait_for_more if != 0 wait for more than one write to complete
766 \param timeout_msec max milliseconds to wait
767
768 \internal
769*/
770static void _usb_async_cleanup(struct ftdi_context *ftdi, int wait_for_more, int timeout_msec)
771{
772 struct timeval tv;
773 struct usbdevfs_urb *urb=NULL;
774 int ret;
775 fd_set writefds;
776 int keep_going=0;
777
778 FD_ZERO(&writefds);
779 FD_SET(ftdi->usb_dev->fd, &writefds);
780
781 /* init timeout only once, select writes time left after call */
782 tv.tv_sec = timeout_msec / 1000;
783 tv.tv_usec = (timeout_msec % 1000) * 1000;
784
785 do {
786 while (_usb_get_async_urbs_pending(ftdi)
787 && (ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_REAPURBNDELAY, &urb)) == -1
788 && errno == EAGAIN)
789 {
790 if (keep_going && !wait_for_more) {
791 /* don't wait if repeating only for keep_going */
792 keep_going=0;
793 break;
794 }
795
796 /* wait for timeout msec or something written ready */
797 select(ftdi->usb_dev->fd+1, NULL, &writefds, NULL, &tv);
798 }
799
800 if (ret == 0 && urb != NULL) {
801 /* got a free urb, mark it */
802 urb->usercontext = FTDI_URB_USERCONTEXT_COOKIE;
803
804 /* try to get more urbs that are ready now, but don't wait anymore */
805 urb=NULL;
806 keep_going=1;
807 } else {
808 /* no more urbs waiting */
809 keep_going=0;
810 }
811 } while (keep_going);
812}
813
814/**
815 Wait until one or more async URBs are completed by the kernel and mark their
816 positions in the async-buffer as unused.
817
818 \param ftdi pointer to ftdi_context
819 \param wait_for_more if != 0 wait for more than one write to complete (until write timeout)
820*/
821void ftdi_async_complete(struct ftdi_context *ftdi, int wait_for_more)
822{
823 _usb_async_cleanup(ftdi,wait_for_more,ftdi->usb_write_timeout);
824}
825
826/**
827 Stupid libusb does not offer async writes nor does it allow
828 access to its fd - so we need some hacks here.
829 \internal
830*/
831static int _usb_bulk_write_async(struct ftdi_context *ftdi, int ep, char *bytes, int size)
832{
833 struct usbdevfs_urb *urb;
834 int bytesdone = 0, requested;
835 int ret, i;
836 int cleanup_count;
837
838 do {
839 /* find a free urb buffer we can use */
840 urb=NULL;
841 for (cleanup_count=0; urb==NULL && cleanup_count <= 1; cleanup_count++)
842 {
843 if (i==ftdi->async_usb_buffer_size) {
844 /* wait until some buffers are free */
845 _usb_async_cleanup(ftdi,0,ftdi->usb_write_timeout);
846 }
847
848 for (i=0; i < ftdi->async_usb_buffer_size; i++) {
849 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
850 if (urb->usercontext == FTDI_URB_USERCONTEXT_COOKIE)
851 break; /* found a free urb position */
852 urb=NULL;
853 }
854 }
855
856 /* no free urb position found */
857 if (urb==NULL)
858 return -1;
859
860 requested = size - bytesdone;
861 if (requested > 4096)
862 requested = 4096;
863
864 memset(urb,0,sizeof(urb));
865
866 urb->type = USBDEVFS_URB_TYPE_BULK;
867 urb->endpoint = ep;
868 urb->flags = 0;
869 urb->buffer = bytes + bytesdone;
870 urb->buffer_length = requested;
871 urb->signr = 0;
872 urb->actual_length = 0;
873 urb->number_of_packets = 0;
874 urb->usercontext = 0;
875
876 do {
877 ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_SUBMITURB, urb);
878 } while (ret < 0 && errno == EINTR);
879 if (ret < 0)
880 return ret; /* the caller can read errno to get more info */
881
882 bytesdone += requested;
883 } while (bytesdone < size);
884 return bytesdone;
885}
886
887/**
888 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip.
889 Does not wait for completion of the transfer nor does it make sure that
890 the transfer was successful.
891
892 This function could be extended to use signals and callbacks to inform the
893 caller of completion or error - but this is not done yet, volunteers welcome.
894
895 Works around libusb and directly accesses functions only available on Linux.
896
897 \param ftdi pointer to ftdi_context
898 \param buf Buffer with the data
899 \param size Size of the buffer
900
901 \retval <0: error code from usb_bulk_write()
902 \retval >0: number of bytes written
903*/
904int ftdi_write_data_async(struct ftdi_context *ftdi, unsigned char *buf, int size)
905{
906 int ret;
907 int offset = 0;
908 int total_written = 0;
909
910 while (offset < size) {
911 int write_size = ftdi->writebuffer_chunksize;
912
913 if (offset+write_size > size)
914 write_size = size-offset;
915
916 ret = _usb_bulk_write_async(ftdi, ftdi->in_ep, buf+offset, write_size);
917 if (ret < 0)
918 ftdi_error_return(ret, "usb bulk write async failed");
919
920 total_written += ret;
921 offset += write_size;
922 }
923
924 return total_written;
925}
926
927
928/**
929 Configure write buffer chunk size.
930 Default is 4096.
931
932 \param ftdi pointer to ftdi_context
933 \param chunksize Chunk size
934
935 \retval 0: all fine
936*/
937int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
938{
939 ftdi->writebuffer_chunksize = chunksize;
940 return 0;
941}
942
943/**
944 Get write buffer chunk size.
945
946 \param ftdi pointer to ftdi_context
947 \param chunksize Pointer to store chunk size in
948
949 \retval 0: all fine
950*/
951int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
952{
953 *chunksize = ftdi->writebuffer_chunksize;
954 return 0;
955}
956
957/**
958 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
959
960 Automatically strips the two modem status bytes transfered during every read.
961
962 \param ftdi pointer to ftdi_context
963 \param buf Buffer to store data in
964 \param size Size of the buffer
965
966 \retval <0: error code from usb_bulk_read()
967 \retval 0: no data was available
968 \retval >0: number of bytes read
969
970 \remark This function is not useful in bitbang mode.
971 Use ftdi_read_pins() to get the current state of the pins.
972*/
973int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
974{
975 int offset = 0, ret = 1, i, num_of_chunks, chunk_remains;
976
977 // everything we want is still in the readbuffer?
978 if (size <= ftdi->readbuffer_remaining) {
979 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
980
981 // Fix offsets
982 ftdi->readbuffer_remaining -= size;
983 ftdi->readbuffer_offset += size;
984
985 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
986
987 return size;
988 }
989 // something still in the readbuffer, but not enough to satisfy 'size'?
990 if (ftdi->readbuffer_remaining != 0) {
991 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
992
993 // Fix offset
994 offset += ftdi->readbuffer_remaining;
995 }
996 // do the actual USB read
997 while (offset < size && ret > 0) {
998 ftdi->readbuffer_remaining = 0;
999 ftdi->readbuffer_offset = 0;
1000 /* returns how much received */
1001 ret = usb_bulk_read (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi->usb_read_timeout);
1002 if (ret < 0)
1003 ftdi_error_return(ret, "usb bulk read failed");
1004
1005 if (ret > 2) {
1006 // skip FTDI status bytes.
1007 // Maybe stored in the future to enable modem use
1008 num_of_chunks = ret / 64;
1009 chunk_remains = ret % 64;
1010 //printf("ret = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", ret, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1011
1012 ftdi->readbuffer_offset += 2;
1013 ret -= 2;
1014
1015 if (ret > 62) {
1016 for (i = 1; i < num_of_chunks; i++)
1017 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
1018 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
1019 62);
1020 if (chunk_remains > 2) {
1021 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
1022 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
1023 chunk_remains-2);
1024 ret -= 2*num_of_chunks;
1025 } else
1026 ret -= 2*(num_of_chunks-1)+chunk_remains;
1027 }
1028 } else if (ret <= 2) {
1029 // no more data to read?
1030 return offset;
1031 }
1032 if (ret > 0) {
1033 // data still fits in buf?
1034 if (offset+ret <= size) {
1035 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, ret);
1036 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1037 offset += ret;
1038
1039 /* Did we read exactly the right amount of bytes? */
1040 if (offset == size)
1041 //printf("read_data exact rem %d offset %d\n",
1042 //ftdi->readbuffer_remaining, offset);
1043 return offset;
1044 } else {
1045 // only copy part of the data or size <= readbuffer_chunksize
1046 int part_size = size-offset;
1047 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1048
1049 ftdi->readbuffer_offset += part_size;
1050 ftdi->readbuffer_remaining = ret-part_size;
1051 offset += part_size;
1052
1053 /* printf("Returning part: %d - size: %d - offset: %d - ret: %d - remaining: %d\n",
1054 part_size, size, offset, ret, ftdi->readbuffer_remaining); */
1055
1056 return offset;
1057 }
1058 }
1059 }
1060 // never reached
1061 return -127;
1062}
1063
1064/**
1065 Configure read buffer chunk size.
1066 Default is 4096.
1067
1068 Automatically reallocates the buffer.
1069
1070 \param ftdi pointer to ftdi_context
1071 \param chunksize Chunk size
1072
1073 \retval 0: all fine
1074*/
1075int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1076{
1077 unsigned char *new_buf;
1078
1079 // Invalidate all remaining data
1080 ftdi->readbuffer_offset = 0;
1081 ftdi->readbuffer_remaining = 0;
1082
1083 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1084 ftdi_error_return(-1, "out of memory for readbuffer");
1085
1086 ftdi->readbuffer = new_buf;
1087 ftdi->readbuffer_chunksize = chunksize;
1088
1089 return 0;
1090}
1091
1092/**
1093 Get read buffer chunk size.
1094
1095 \param ftdi pointer to ftdi_context
1096 \param chunksize Pointer to store chunk size in
1097
1098 \retval 0: all fine
1099*/
1100int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1101{
1102 *chunksize = ftdi->readbuffer_chunksize;
1103 return 0;
1104}
1105
1106
1107/**
1108 Enable bitbang mode.
1109
1110 For advanced bitbang modes of the FT2232C chip use ftdi_set_bitmode().
1111
1112 \param ftdi pointer to ftdi_context
1113 \param bitmask Bitmask to configure lines.
1114 HIGH/ON value configures a line as output.
1115
1116 \retval 0: all fine
1117 \retval -1: can't enable bitbang mode
1118*/
1119int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1120{
1121 unsigned short usb_val;
1122
1123 usb_val = bitmask; // low byte: bitmask
1124 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1125 usb_val |= (ftdi->bitbang_mode << 8);
1126
1127 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1128 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1129
1130 ftdi->bitbang_enabled = 1;
1131 return 0;
1132}
1133
1134/**
1135 Disable bitbang mode.
1136
1137 \param ftdi pointer to ftdi_context
1138
1139 \retval 0: all fine
1140 \retval -1: can't disable bitbang mode
1141*/
1142int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1143{
1144 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1145 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1146
1147 ftdi->bitbang_enabled = 0;
1148 return 0;
1149}
1150
1151/**
1152 Enable advanced bitbang mode for FT2232C chips.
1153
1154 \param ftdi pointer to ftdi_context
1155 \param bitmask Bitmask to configure lines.
1156 HIGH/ON value configures a line as output.
1157 \param mode Bitbang mode: 1 for normal mode, 2 for SPI mode
1158
1159 \retval 0: all fine
1160 \retval -1: can't enable bitbang mode
1161*/
1162int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1163{
1164 unsigned short usb_val;
1165
1166 usb_val = bitmask; // low byte: bitmask
1167 usb_val |= (mode << 8);
1168 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1169 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1170
1171 ftdi->bitbang_mode = mode;
1172 ftdi->bitbang_enabled = (mode == BITMODE_BITBANG || mode == BITMODE_SYNCBB)?1:0;
1173 return 0;
1174}
1175
1176/**
1177 Directly read pin state. Useful for bitbang mode.
1178
1179 \param ftdi pointer to ftdi_context
1180 \param pins Pointer to store pins into
1181
1182 \retval 0: all fine
1183 \retval -1: read pins failed
1184*/
1185int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1186{
1187 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0C, 0, ftdi->index, (char *)pins, 1, ftdi->usb_read_timeout) != 1)
1188 ftdi_error_return(-1, "read pins failed");
1189
1190 return 0;
1191}
1192
1193/**
1194 Set latency timer
1195
1196 The FTDI chip keeps data in the internal buffer for a specific
1197 amount of time if the buffer is not full yet to decrease
1198 load on the usb bus.
1199
1200 \param ftdi pointer to ftdi_context
1201 \param latency Value between 1 and 255
1202
1203 \retval 0: all fine
1204 \retval -1: latency out of range
1205 \retval -2: unable to set latency timer
1206*/
1207int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1208{
1209 unsigned short usb_val;
1210
1211 if (latency < 1)
1212 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1213
1214 usb_val = latency;
1215 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x09, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1216 ftdi_error_return(-2, "unable to set latency timer");
1217
1218 return 0;
1219}
1220
1221/**
1222 Get latency timer
1223
1224 \param ftdi pointer to ftdi_context
1225 \param latency Pointer to store latency value in
1226
1227 \retval 0: all fine
1228 \retval -1: unable to get latency timer
1229*/
1230int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1231{
1232 unsigned short usb_val;
1233 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0A, 0, ftdi->index, (char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1234 ftdi_error_return(-1, "reading latency timer failed");
1235
1236 *latency = (unsigned char)usb_val;
1237 return 0;
1238}
1239
1240/**
1241 Set the eeprom size
1242
1243 \param ftdi pointer to ftdi_context
1244 \param eeprom Pointer to ftdi_eeprom
1245 \param size
1246
1247*/
1248void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
1249{
1250 ftdi->eeprom_size=size;
1251 eeprom->size=size;
1252}
1253
1254/**
1255 Init eeprom with default values.
1256
1257 \param eeprom Pointer to ftdi_eeprom
1258*/
1259void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
1260{
1261 eeprom->vendor_id = 0x0403;
1262 eeprom->product_id = 0x6001;
1263
1264 eeprom->self_powered = 1;
1265 eeprom->remote_wakeup = 1;
1266 eeprom->BM_type_chip = 1;
1267
1268 eeprom->in_is_isochronous = 0;
1269 eeprom->out_is_isochronous = 0;
1270 eeprom->suspend_pull_downs = 0;
1271
1272 eeprom->use_serial = 0;
1273 eeprom->change_usb_version = 0;
1274 eeprom->usb_version = 0x0200;
1275 eeprom->max_power = 0;
1276
1277 eeprom->manufacturer = NULL;
1278 eeprom->product = NULL;
1279 eeprom->serial = NULL;
1280
1281 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
1282}
1283
1284/**
1285 Build binary output from ftdi_eeprom structure.
1286 Output is suitable for ftdi_write_eeprom().
1287
1288 \param eeprom Pointer to ftdi_eeprom
1289 \param output Buffer of 128 bytes to store eeprom image to
1290
1291 \retval >0: used eeprom size
1292 \retval -1: eeprom size (128 bytes) exceeded by custom strings
1293*/
1294int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
1295{
1296 unsigned char i, j;
1297 unsigned short checksum, value;
1298 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
1299 int size_check;
1300
1301 if (eeprom->manufacturer != NULL)
1302 manufacturer_size = strlen(eeprom->manufacturer);
1303 if (eeprom->product != NULL)
1304 product_size = strlen(eeprom->product);
1305 if (eeprom->serial != NULL)
1306 serial_size = strlen(eeprom->serial);
1307
1308 size_check = eeprom->size;
1309 size_check -= 28; // 28 are always in use (fixed)
1310
1311 // Top half of a 256byte eeprom is used just for strings and checksum
1312 // it seems that the FTDI chip will not read these strings from the lower half
1313 // Each string starts with two bytes; offset and type (0x03 for string)
1314 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
1315 if(eeprom->size>=256)size_check = 120;
1316 size_check -= manufacturer_size*2;
1317 size_check -= product_size*2;
1318 size_check -= serial_size*2;
1319
1320 // eeprom size exceeded?
1321 if (size_check < 0)
1322 return (-1);
1323
1324 // empty eeprom
1325 memset (output, 0, eeprom->size);
1326
1327 // Addr 00: Stay 00 00
1328 // Addr 02: Vendor ID
1329 output[0x02] = eeprom->vendor_id;
1330 output[0x03] = eeprom->vendor_id >> 8;
1331
1332 // Addr 04: Product ID
1333 output[0x04] = eeprom->product_id;
1334 output[0x05] = eeprom->product_id >> 8;
1335
1336 // Addr 06: Device release number (0400h for BM features)
1337 output[0x06] = 0x00;
1338
1339 if (eeprom->BM_type_chip == 1)
1340 output[0x07] = 0x04;
1341 else
1342 output[0x07] = 0x02;
1343
1344 // Addr 08: Config descriptor
1345 // Bit 1: remote wakeup if 1
1346 // Bit 0: self powered if 1
1347 //
1348 j = 0;
1349 if (eeprom->self_powered == 1)
1350 j = j | 1;
1351 if (eeprom->remote_wakeup == 1)
1352 j = j | 2;
1353 output[0x08] = j;
1354
1355 // Addr 09: Max power consumption: max power = value * 2 mA
1356 output[0x09] = eeprom->max_power;
1357 ;
1358
1359 // Addr 0A: Chip configuration
1360 // Bit 7: 0 - reserved
1361 // Bit 6: 0 - reserved
1362 // Bit 5: 0 - reserved
1363 // Bit 4: 1 - Change USB version
1364 // Bit 3: 1 - Use the serial number string
1365 // Bit 2: 1 - Enable suspend pull downs for lower power
1366 // Bit 1: 1 - Out EndPoint is Isochronous
1367 // Bit 0: 1 - In EndPoint is Isochronous
1368 //
1369 j = 0;
1370 if (eeprom->in_is_isochronous == 1)
1371 j = j | 1;
1372 if (eeprom->out_is_isochronous == 1)
1373 j = j | 2;
1374 if (eeprom->suspend_pull_downs == 1)
1375 j = j | 4;
1376 if (eeprom->use_serial == 1)
1377 j = j | 8;
1378 if (eeprom->change_usb_version == 1)
1379 j = j | 16;
1380 output[0x0A] = j;
1381
1382 // Addr 0B: reserved
1383 output[0x0B] = 0x00;
1384
1385 // Addr 0C: USB version low byte when 0x0A bit 4 is set
1386 // Addr 0D: USB version high byte when 0x0A bit 4 is set
1387 if (eeprom->change_usb_version == 1) {
1388 output[0x0C] = eeprom->usb_version;
1389 output[0x0D] = eeprom->usb_version >> 8;
1390 }
1391
1392
1393 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
1394 // Addr 0F: Length of manufacturer string
1395 output[0x0F] = manufacturer_size*2 + 2;
1396
1397 // Addr 10: Offset of the product string + 0x80, calculated later
1398 // Addr 11: Length of product string
1399 output[0x11] = product_size*2 + 2;
1400
1401 // Addr 12: Offset of the serial string + 0x80, calculated later
1402 // Addr 13: Length of serial string
1403 output[0x13] = serial_size*2 + 2;
1404
1405 // Dynamic content
1406 i=0x14;
1407 if(eeprom->size>=256) i = 0x80;
1408
1409
1410 // Output manufacturer
1411 output[0x0E] = i | 0x80; // calculate offset
1412 output[i++] = manufacturer_size*2 + 2;
1413 output[i++] = 0x03; // type: string
1414 for (j = 0; j < manufacturer_size; j++) {
1415 output[i] = eeprom->manufacturer[j], i++;
1416 output[i] = 0x00, i++;
1417 }
1418
1419 // Output product name
1420 output[0x10] = i | 0x80; // calculate offset
1421 output[i] = product_size*2 + 2, i++;
1422 output[i] = 0x03, i++;
1423 for (j = 0; j < product_size; j++) {
1424 output[i] = eeprom->product[j], i++;
1425 output[i] = 0x00, i++;
1426 }
1427
1428 // Output serial
1429 output[0x12] = i | 0x80; // calculate offset
1430 output[i] = serial_size*2 + 2, i++;
1431 output[i] = 0x03, i++;
1432 for (j = 0; j < serial_size; j++) {
1433 output[i] = eeprom->serial[j], i++;
1434 output[i] = 0x00, i++;
1435 }
1436
1437 // calculate checksum
1438 checksum = 0xAAAA;
1439
1440 for (i = 0; i < eeprom->size/2-1; i++) {
1441 value = output[i*2];
1442 value += output[(i*2)+1] << 8;
1443
1444 checksum = value^checksum;
1445 checksum = (checksum << 1) | (checksum >> 15);
1446 }
1447
1448 output[eeprom->size-2] = checksum;
1449 output[eeprom->size-1] = checksum >> 8;
1450
1451 return size_check;
1452}
1453
1454/**
1455 Read eeprom
1456
1457 \param ftdi pointer to ftdi_context
1458 \param eeprom Pointer to store eeprom into
1459
1460 \retval 0: all fine
1461 \retval -1: read failed
1462*/
1463int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
1464{
1465 int i;
1466
1467 for (i = 0; i < ftdi->eeprom_size/2; i++) {
1468 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
1469 ftdi_error_return(-1, "reading eeprom failed");
1470 }
1471
1472 return 0;
1473}
1474
1475/*
1476 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
1477 Function is only used internally
1478 \internal
1479*/
1480static unsigned char ftdi_read_chipid_shift(unsigned char value)
1481{
1482 return ((value & 1) << 1) |
1483 ((value & 2) << 5) |
1484 ((value & 4) >> 2) |
1485 ((value & 8) << 4) |
1486 ((value & 16) >> 1) |
1487 ((value & 32) >> 1) |
1488 ((value & 64) >> 4) |
1489 ((value & 128) >> 2);
1490}
1491
1492/**
1493 Read the FTDIChip-ID from R-type devices
1494
1495 \param ftdi pointer to ftdi_context
1496 \param chipid Pointer to store FTDIChip-ID
1497
1498 \retval 0: all fine
1499 \retval -1: read failed
1500*/
1501int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
1502{
1503 unsigned int a = 0, b = 0;
1504
1505 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, 0x43, (char *)&a, 2, ftdi->usb_read_timeout) == 2)
1506 {
1507 a = a << 8 | a >> 8;
1508 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, 0x44, (char *)&b, 2, ftdi->usb_read_timeout) == 2)
1509 {
1510 b = b << 8 | b >> 8;
1511 a = (a << 16) | b;
1512 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
1513 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
1514 *chipid = a ^ 0xa5f0f7d1;
1515 return 0;
1516 }
1517 }
1518
1519 ftdi_error_return(-1, "read of FTDIChip-ID failed");
1520}
1521
1522/**
1523 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
1524 Call this function then do a write then call again to see if size changes, if so write again.
1525
1526 \param ftdi pointer to ftdi_context
1527 \param eeprom Pointer to store eeprom into
1528 \param maxsize the size of the buffer to read into
1529
1530 \retval size of eeprom
1531*/
1532int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
1533{
1534 int i=0,j,minsize=32;
1535 int size=minsize;
1536
1537 do{
1538 for (j = 0; i < maxsize/2 && j<size; j++) {
1539 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
1540 ftdi_error_return(-1, "reading eeprom failed");
1541 i++;
1542 }
1543 size*=2;
1544 }while(size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
1545
1546 return size/2;
1547}
1548
1549/**
1550 Write eeprom
1551
1552 \param ftdi pointer to ftdi_context
1553 \param eeprom Pointer to read eeprom from
1554
1555 \retval 0: all fine
1556 \retval -1: read failed
1557*/
1558int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
1559{
1560 unsigned short usb_val;
1561 int i;
1562
1563 for (i = 0; i < ftdi->eeprom_size/2; i++) {
1564 usb_val = eeprom[i*2];
1565 usb_val += eeprom[(i*2)+1] << 8;
1566 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x91, usb_val, i, NULL, 0, ftdi->usb_write_timeout) != 0)
1567 ftdi_error_return(-1, "unable to write eeprom");
1568 }
1569
1570 return 0;
1571}
1572
1573/**
1574 Erase eeprom
1575
1576 \param ftdi pointer to ftdi_context
1577
1578 \retval 0: all fine
1579 \retval -1: erase failed
1580*/
1581int ftdi_erase_eeprom(struct ftdi_context *ftdi)
1582{
1583 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x92, 0, 0, NULL, 0, ftdi->usb_write_timeout) != 0)
1584 ftdi_error_return(-1, "unable to erase eeprom");
1585
1586 return 0;
1587}
1588
1589/**
1590 Get string representation for last error code
1591
1592 \param ftdi pointer to ftdi_context
1593
1594 \retval Pointer to error string
1595*/
1596char *ftdi_get_error_string (struct ftdi_context *ftdi)
1597{
1598 return ftdi->error_str;
1599}
1600
1601/*
1602 Flow control code by Lorenz Moesenlechner (lorenz@hcilab.org)
1603 and Matthias Kranz (matthias@hcilab.org)
1604*/
1605/**
1606 Set flowcontrol for ftdi chip
1607
1608 \param ftdi pointer to ftdi_context
1609 \param flowctrl flow control to use. should be
1610 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
1611
1612 \retval 0: all fine
1613 \retval -1: set flow control failed
1614*/
1615int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1616{
1617 if (usb_control_msg(ftdi->usb_dev, SIO_SET_FLOW_CTRL_REQUEST_TYPE,
1618 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->interface),
1619 NULL, 0, ftdi->usb_write_timeout) != 0)
1620 ftdi_error_return(-1, "set flow control failed");
1621
1622 return 0;
1623}
1624
1625/**
1626 Set dtr line
1627
1628 \param ftdi pointer to ftdi_context
1629 \param state state to set line to (1 or 0)
1630
1631 \retval 0: all fine
1632 \retval -1: set dtr failed
1633*/
1634int ftdi_setdtr(struct ftdi_context *ftdi, int state)
1635{
1636 unsigned short usb_val;
1637
1638 if (state)
1639 usb_val = SIO_SET_DTR_HIGH;
1640 else
1641 usb_val = SIO_SET_DTR_LOW;
1642
1643 if (usb_control_msg(ftdi->usb_dev, SIO_SET_MODEM_CTRL_REQUEST_TYPE,
1644 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->interface,
1645 NULL, 0, ftdi->usb_write_timeout) != 0)
1646 ftdi_error_return(-1, "set dtr failed");
1647
1648 return 0;
1649}
1650
1651/**
1652 Set rts line
1653
1654 \param ftdi pointer to ftdi_context
1655 \param state state to set line to (1 or 0)
1656
1657 \retval 0: all fine
1658 \retval -1 set rts failed
1659*/
1660int ftdi_setrts(struct ftdi_context *ftdi, int state)
1661{
1662 unsigned short usb_val;
1663
1664 if (state)
1665 usb_val = SIO_SET_RTS_HIGH;
1666 else
1667 usb_val = SIO_SET_RTS_LOW;
1668
1669 if (usb_control_msg(ftdi->usb_dev, SIO_SET_MODEM_CTRL_REQUEST_TYPE,
1670 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->interface,
1671 NULL, 0, ftdi->usb_write_timeout) != 0)
1672 ftdi_error_return(-1, "set of rts failed");
1673
1674 return 0;
1675}
1676
1677/* @} end of doxygen libftdi group */