Use API and not direct structure ftdi->eeprom access in eeprom example
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2010 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
58 \retval none
59*/
60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
61{
62 if (ftdi && ftdi->usb_dev)
63 {
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
66 }
67}
68
69/**
70 Initializes a ftdi_context.
71
72 \param ftdi pointer to ftdi_context
73
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
76 \retval -2: couldn't allocate struct buffer
77
78 \remark This should be called before all functions
79*/
80int ftdi_init(struct ftdi_context *ftdi)
81{
82 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
83 ftdi->usb_ctx = NULL;
84 ftdi->usb_dev = NULL;
85 ftdi->usb_read_timeout = 5000;
86 ftdi->usb_write_timeout = 5000;
87
88 ftdi->type = TYPE_BM; /* chip type */
89 ftdi->baudrate = -1;
90 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
91
92 ftdi->readbuffer = NULL;
93 ftdi->readbuffer_offset = 0;
94 ftdi->readbuffer_remaining = 0;
95 ftdi->writebuffer_chunksize = 4096;
96 ftdi->max_packet_size = 0;
97
98 ftdi->interface = 0;
99 ftdi->index = 0;
100 ftdi->in_ep = 0x02;
101 ftdi->out_ep = 0x81;
102 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
103
104 ftdi->error_str = NULL;
105
106 if (eeprom == 0)
107 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
108 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
109 ftdi->eeprom = eeprom;
110
111 /* All fine. Now allocate the readbuffer */
112 return ftdi_read_data_set_chunksize(ftdi, 4096);
113}
114
115/**
116 Allocate and initialize a new ftdi_context
117
118 \return a pointer to a new ftdi_context, or NULL on failure
119*/
120struct ftdi_context *ftdi_new(void)
121{
122 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
123
124 if (ftdi == NULL)
125 {
126 return NULL;
127 }
128
129 if (ftdi_init(ftdi) != 0)
130 {
131 free(ftdi);
132 return NULL;
133 }
134
135 return ftdi;
136}
137
138/**
139 Open selected channels on a chip, otherwise use first channel.
140
141 \param ftdi pointer to ftdi_context
142 \param interface Interface to use for FT2232C/2232H/4232H chips.
143
144 \retval 0: all fine
145 \retval -1: unknown interface
146 \retval -2: USB device unavailable
147*/
148int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
149{
150 if (ftdi == NULL)
151 ftdi_error_return(-2, "USB device unavailable");
152
153 switch (interface)
154 {
155 case INTERFACE_ANY:
156 case INTERFACE_A:
157 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
158 break;
159 case INTERFACE_B:
160 ftdi->interface = 1;
161 ftdi->index = INTERFACE_B;
162 ftdi->in_ep = 0x04;
163 ftdi->out_ep = 0x83;
164 break;
165 case INTERFACE_C:
166 ftdi->interface = 2;
167 ftdi->index = INTERFACE_C;
168 ftdi->in_ep = 0x06;
169 ftdi->out_ep = 0x85;
170 break;
171 case INTERFACE_D:
172 ftdi->interface = 3;
173 ftdi->index = INTERFACE_D;
174 ftdi->in_ep = 0x08;
175 ftdi->out_ep = 0x87;
176 break;
177 default:
178 ftdi_error_return(-1, "Unknown interface");
179 }
180 return 0;
181}
182
183/**
184 Deinitializes a ftdi_context.
185
186 \param ftdi pointer to ftdi_context
187*/
188void ftdi_deinit(struct ftdi_context *ftdi)
189{
190 if (ftdi == NULL)
191 return;
192
193 ftdi_usb_close_internal (ftdi);
194
195 if (ftdi->readbuffer != NULL)
196 {
197 free(ftdi->readbuffer);
198 ftdi->readbuffer = NULL;
199 }
200
201 if (ftdi->eeprom != NULL)
202 {
203 if (ftdi->eeprom->manufacturer != 0)
204 {
205 free(ftdi->eeprom->manufacturer);
206 ftdi->eeprom->manufacturer = 0;
207 }
208 if (ftdi->eeprom->product != 0)
209 {
210 free(ftdi->eeprom->product);
211 ftdi->eeprom->product = 0;
212 }
213 if (ftdi->eeprom->serial != 0)
214 {
215 free(ftdi->eeprom->serial);
216 ftdi->eeprom->serial = 0;
217 }
218 free(ftdi->eeprom);
219 ftdi->eeprom = NULL;
220 }
221 libusb_exit(ftdi->usb_ctx);
222}
223
224/**
225 Deinitialize and free an ftdi_context.
226
227 \param ftdi pointer to ftdi_context
228*/
229void ftdi_free(struct ftdi_context *ftdi)
230{
231 ftdi_deinit(ftdi);
232 free(ftdi);
233}
234
235/**
236 Use an already open libusb device.
237
238 \param ftdi pointer to ftdi_context
239 \param usb libusb libusb_device_handle to use
240*/
241void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
242{
243 if (ftdi == NULL)
244 return;
245
246 ftdi->usb_dev = usb;
247}
248
249
250/**
251 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
252 needs to be deallocated by ftdi_list_free() after use.
253
254 \param ftdi pointer to ftdi_context
255 \param devlist Pointer where to store list of found devices
256 \param vendor Vendor ID to search for
257 \param product Product ID to search for
258
259 \retval >0: number of devices found
260 \retval -3: out of memory
261 \retval -4: libusb_init() failed
262 \retval -5: libusb_get_device_list() failed
263 \retval -6: libusb_get_device_descriptor() failed
264*/
265int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
266{
267 struct ftdi_device_list **curdev;
268 libusb_device *dev;
269 libusb_device **devs;
270 int count = 0;
271 int i = 0;
272
273 if (libusb_init(&ftdi->usb_ctx) < 0)
274 ftdi_error_return(-4, "libusb_init() failed");
275
276 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
277 ftdi_error_return(-5, "libusb_get_device_list() failed");
278
279 curdev = devlist;
280 *curdev = NULL;
281
282 while ((dev = devs[i++]) != NULL)
283 {
284 struct libusb_device_descriptor desc;
285
286 if (libusb_get_device_descriptor(dev, &desc) < 0)
287 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
288
289 if (desc.idVendor == vendor && desc.idProduct == product)
290 {
291 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
292 if (!*curdev)
293 ftdi_error_return(-3, "out of memory");
294
295 (*curdev)->next = NULL;
296 (*curdev)->dev = dev;
297
298 curdev = &(*curdev)->next;
299 count++;
300 }
301 }
302
303 return count;
304}
305
306/**
307 Frees a usb device list.
308
309 \param devlist USB device list created by ftdi_usb_find_all()
310*/
311void ftdi_list_free(struct ftdi_device_list **devlist)
312{
313 struct ftdi_device_list *curdev, *next;
314
315 for (curdev = *devlist; curdev != NULL;)
316 {
317 next = curdev->next;
318 free(curdev);
319 curdev = next;
320 }
321
322 *devlist = NULL;
323}
324
325/**
326 Frees a usb device list.
327
328 \param devlist USB device list created by ftdi_usb_find_all()
329*/
330void ftdi_list_free2(struct ftdi_device_list *devlist)
331{
332 ftdi_list_free(&devlist);
333}
334
335/**
336 Return device ID strings from the usb device.
337
338 The parameters manufacturer, description and serial may be NULL
339 or pointer to buffers to store the fetched strings.
340
341 \note Use this function only in combination with ftdi_usb_find_all()
342 as it closes the internal "usb_dev" after use.
343
344 \param ftdi pointer to ftdi_context
345 \param dev libusb usb_dev to use
346 \param manufacturer Store manufacturer string here if not NULL
347 \param mnf_len Buffer size of manufacturer string
348 \param description Store product description string here if not NULL
349 \param desc_len Buffer size of product description string
350 \param serial Store serial string here if not NULL
351 \param serial_len Buffer size of serial string
352
353 \retval 0: all fine
354 \retval -1: wrong arguments
355 \retval -4: unable to open device
356 \retval -7: get product manufacturer failed
357 \retval -8: get product description failed
358 \retval -9: get serial number failed
359 \retval -11: libusb_get_device_descriptor() failed
360*/
361int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
362 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
363{
364 struct libusb_device_descriptor desc;
365
366 if ((ftdi==NULL) || (dev==NULL))
367 return -1;
368
369 if (libusb_open(dev, &ftdi->usb_dev) < 0)
370 ftdi_error_return(-4, "libusb_open() failed");
371
372 if (libusb_get_device_descriptor(dev, &desc) < 0)
373 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
374
375 if (manufacturer != NULL)
376 {
377 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
378 {
379 ftdi_usb_close_internal (ftdi);
380 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
381 }
382 }
383
384 if (description != NULL)
385 {
386 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
387 {
388 ftdi_usb_close_internal (ftdi);
389 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
390 }
391 }
392
393 if (serial != NULL)
394 {
395 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
396 {
397 ftdi_usb_close_internal (ftdi);
398 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
399 }
400 }
401
402 ftdi_usb_close_internal (ftdi);
403
404 return 0;
405}
406
407/**
408 * Internal function to determine the maximum packet size.
409 * \param ftdi pointer to ftdi_context
410 * \param dev libusb usb_dev to use
411 * \retval Maximum packet size for this device
412 */
413static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
414{
415 struct libusb_device_descriptor desc;
416 struct libusb_config_descriptor *config0;
417 unsigned int packet_size;
418
419 // Sanity check
420 if (ftdi == NULL || dev == NULL)
421 return 64;
422
423 // Determine maximum packet size. Init with default value.
424 // New hi-speed devices from FTDI use a packet size of 512 bytes
425 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
426 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
427 packet_size = 512;
428 else
429 packet_size = 64;
430
431 if (libusb_get_device_descriptor(dev, &desc) < 0)
432 return packet_size;
433
434 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
435 return packet_size;
436
437 if (desc.bNumConfigurations > 0)
438 {
439 if (ftdi->interface < config0->bNumInterfaces)
440 {
441 struct libusb_interface interface = config0->interface[ftdi->interface];
442 if (interface.num_altsetting > 0)
443 {
444 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
445 if (descriptor.bNumEndpoints > 0)
446 {
447 packet_size = descriptor.endpoint[0].wMaxPacketSize;
448 }
449 }
450 }
451 }
452
453 libusb_free_config_descriptor (config0);
454 return packet_size;
455}
456
457/**
458 Opens a ftdi device given by an usb_device.
459
460 \param ftdi pointer to ftdi_context
461 \param dev libusb usb_dev to use
462
463 \retval 0: all fine
464 \retval -3: unable to config device
465 \retval -4: unable to open device
466 \retval -5: unable to claim device
467 \retval -6: reset failed
468 \retval -7: set baudrate failed
469 \retval -8: ftdi context invalid
470 \retval -9: libusb_get_device_descriptor() failed
471 \retval -10: libusb_get_config_descriptor() failed
472 \retval -11: libusb_etach_kernel_driver() failed
473 \retval -12: libusb_get_configuration() failed
474*/
475int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
476{
477 struct libusb_device_descriptor desc;
478 struct libusb_config_descriptor *config0;
479 int cfg, cfg0, detach_errno = 0;
480
481 if (ftdi == NULL)
482 ftdi_error_return(-8, "ftdi context invalid");
483
484 if (libusb_open(dev, &ftdi->usb_dev) < 0)
485 ftdi_error_return(-4, "libusb_open() failed");
486
487 if (libusb_get_device_descriptor(dev, &desc) < 0)
488 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
489
490 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
491 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
492 cfg0 = config0->bConfigurationValue;
493 libusb_free_config_descriptor (config0);
494
495 // Try to detach ftdi_sio kernel module.
496 //
497 // The return code is kept in a separate variable and only parsed
498 // if usb_set_configuration() or usb_claim_interface() fails as the
499 // detach operation might be denied and everything still works fine.
500 // Likely scenario is a static ftdi_sio kernel module.
501 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
502 detach_errno = errno;
503
504 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
505 ftdi_error_return(-12, "libusb_get_configuration () failed");
506 // set configuration (needed especially for windows)
507 // tolerate EBUSY: one device with one configuration, but two interfaces
508 // and libftdi sessions to both interfaces (e.g. FT2232)
509 if (desc.bNumConfigurations > 0 && cfg != cfg0)
510 {
511 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
512 {
513 ftdi_usb_close_internal (ftdi);
514 if(detach_errno == EPERM)
515 {
516 ftdi_error_return(-8, "inappropriate permissions on device!");
517 }
518 else
519 {
520 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
521 }
522 }
523 }
524
525 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
526 {
527 ftdi_usb_close_internal (ftdi);
528 if(detach_errno == EPERM)
529 {
530 ftdi_error_return(-8, "inappropriate permissions on device!");
531 }
532 else
533 {
534 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
535 }
536 }
537
538 if (ftdi_usb_reset (ftdi) != 0)
539 {
540 ftdi_usb_close_internal (ftdi);
541 ftdi_error_return(-6, "ftdi_usb_reset failed");
542 }
543
544 // Try to guess chip type
545 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
546 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
547 && desc.iSerialNumber == 0))
548 ftdi->type = TYPE_BM;
549 else if (desc.bcdDevice == 0x200)
550 ftdi->type = TYPE_AM;
551 else if (desc.bcdDevice == 0x500)
552 ftdi->type = TYPE_2232C;
553 else if (desc.bcdDevice == 0x600)
554 ftdi->type = TYPE_R;
555 else if (desc.bcdDevice == 0x700)
556 ftdi->type = TYPE_2232H;
557 else if (desc.bcdDevice == 0x800)
558 ftdi->type = TYPE_4232H;
559
560 // Set default interface on dual/quad type chips
561 switch(ftdi->type)
562 {
563 case TYPE_2232C:
564 case TYPE_2232H:
565 case TYPE_4232H:
566 if (!ftdi->index)
567 ftdi->index = INTERFACE_A;
568 break;
569 default:
570 break;
571 }
572
573 // Determine maximum packet size
574 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
575
576 if (ftdi_set_baudrate (ftdi, 9600) != 0)
577 {
578 ftdi_usb_close_internal (ftdi);
579 ftdi_error_return(-7, "set baudrate failed");
580 }
581
582 ftdi_error_return(0, "all fine");
583}
584
585/**
586 Opens the first device with a given vendor and product ids.
587
588 \param ftdi pointer to ftdi_context
589 \param vendor Vendor ID
590 \param product Product ID
591
592 \retval same as ftdi_usb_open_desc()
593*/
594int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
595{
596 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
597}
598
599/**
600 Opens the first device with a given, vendor id, product id,
601 description and serial.
602
603 \param ftdi pointer to ftdi_context
604 \param vendor Vendor ID
605 \param product Product ID
606 \param description Description to search for. Use NULL if not needed.
607 \param serial Serial to search for. Use NULL if not needed.
608
609 \retval 0: all fine
610 \retval -3: usb device not found
611 \retval -4: unable to open device
612 \retval -5: unable to claim device
613 \retval -6: reset failed
614 \retval -7: set baudrate failed
615 \retval -8: get product description failed
616 \retval -9: get serial number failed
617 \retval -11: libusb_init() failed
618 \retval -12: libusb_get_device_list() failed
619 \retval -13: libusb_get_device_descriptor() failed
620*/
621int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
622 const char* description, const char* serial)
623{
624 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
625}
626
627/**
628 Opens the index-th device with a given, vendor id, product id,
629 description and serial.
630
631 \param ftdi pointer to ftdi_context
632 \param vendor Vendor ID
633 \param product Product ID
634 \param description Description to search for. Use NULL if not needed.
635 \param serial Serial to search for. Use NULL if not needed.
636 \param index Number of matching device to open if there are more than one, starts with 0.
637
638 \retval 0: all fine
639 \retval -1: usb_find_busses() failed
640 \retval -2: usb_find_devices() failed
641 \retval -3: usb device not found
642 \retval -4: unable to open device
643 \retval -5: unable to claim device
644 \retval -6: reset failed
645 \retval -7: set baudrate failed
646 \retval -8: get product description failed
647 \retval -9: get serial number failed
648 \retval -10: unable to close device
649 \retval -11: ftdi context invalid
650*/
651int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
652 const char* description, const char* serial, unsigned int index)
653{
654 libusb_device *dev;
655 libusb_device **devs;
656 char string[256];
657 int i = 0;
658
659 if (libusb_init(&ftdi->usb_ctx) < 0)
660 ftdi_error_return(-11, "libusb_init() failed");
661
662 if (ftdi == NULL)
663 ftdi_error_return(-11, "ftdi context invalid");
664
665 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
666 ftdi_error_return(-12, "libusb_get_device_list() failed");
667
668 while ((dev = devs[i++]) != NULL)
669 {
670 struct libusb_device_descriptor desc;
671 int res;
672
673 if (libusb_get_device_descriptor(dev, &desc) < 0)
674 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
675
676 if (desc.idVendor == vendor && desc.idProduct == product)
677 {
678 if (libusb_open(dev, &ftdi->usb_dev) < 0)
679 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
680
681 if (description != NULL)
682 {
683 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
684 {
685 libusb_close (ftdi->usb_dev);
686 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
687 }
688 if (strncmp(string, description, sizeof(string)) != 0)
689 {
690 libusb_close (ftdi->usb_dev);
691 continue;
692 }
693 }
694 if (serial != NULL)
695 {
696 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
697 {
698 ftdi_usb_close_internal (ftdi);
699 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
700 }
701 if (strncmp(string, serial, sizeof(string)) != 0)
702 {
703 ftdi_usb_close_internal (ftdi);
704 continue;
705 }
706 }
707
708 ftdi_usb_close_internal (ftdi);
709
710 if (index > 0)
711 {
712 index--;
713 continue;
714 }
715
716 res = ftdi_usb_open_dev(ftdi, dev);
717 libusb_free_device_list(devs,1);
718 return res;
719 }
720 }
721
722 // device not found
723 ftdi_error_return_free_device_list(-3, "device not found", devs);
724}
725
726/**
727 Opens the ftdi-device described by a description-string.
728 Intended to be used for parsing a device-description given as commandline argument.
729
730 \param ftdi pointer to ftdi_context
731 \param description NULL-terminated description-string, using this format:
732 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
733 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
734 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
735 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
736
737 \note The description format may be extended in later versions.
738
739 \retval 0: all fine
740 \retval -1: libusb_init() failed
741 \retval -2: libusb_get_device_list() failed
742 \retval -3: usb device not found
743 \retval -4: unable to open device
744 \retval -5: unable to claim device
745 \retval -6: reset failed
746 \retval -7: set baudrate failed
747 \retval -8: get product description failed
748 \retval -9: get serial number failed
749 \retval -10: unable to close device
750 \retval -11: illegal description format
751 \retval -12: ftdi context invalid
752*/
753int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
754{
755 if (ftdi == NULL)
756 ftdi_error_return(-12, "ftdi context invalid");
757
758 if (description[0] == 0 || description[1] != ':')
759 ftdi_error_return(-11, "illegal description format");
760
761 if (description[0] == 'd')
762 {
763 libusb_device *dev;
764 libusb_device **devs;
765 unsigned int bus_number, device_address;
766 int i = 0;
767
768 if (libusb_init (&ftdi->usb_ctx) < 0)
769 ftdi_error_return(-1, "libusb_init() failed");
770
771 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
772 ftdi_error_return(-2, "libusb_get_device_list() failed");
773
774 /* XXX: This doesn't handle symlinks/odd paths/etc... */
775 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
776 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
777
778 while ((dev = devs[i++]) != NULL)
779 {
780 int ret;
781 if (bus_number == libusb_get_bus_number (dev)
782 && device_address == libusb_get_device_address (dev))
783 {
784 ret = ftdi_usb_open_dev(ftdi, dev);
785 libusb_free_device_list(devs,1);
786 return ret;
787 }
788 }
789
790 // device not found
791 ftdi_error_return_free_device_list(-3, "device not found", devs);
792 }
793 else if (description[0] == 'i' || description[0] == 's')
794 {
795 unsigned int vendor;
796 unsigned int product;
797 unsigned int index=0;
798 const char *serial=NULL;
799 const char *startp, *endp;
800
801 errno=0;
802 startp=description+2;
803 vendor=strtoul((char*)startp,(char**)&endp,0);
804 if (*endp != ':' || endp == startp || errno != 0)
805 ftdi_error_return(-11, "illegal description format");
806
807 startp=endp+1;
808 product=strtoul((char*)startp,(char**)&endp,0);
809 if (endp == startp || errno != 0)
810 ftdi_error_return(-11, "illegal description format");
811
812 if (description[0] == 'i' && *endp != 0)
813 {
814 /* optional index field in i-mode */
815 if (*endp != ':')
816 ftdi_error_return(-11, "illegal description format");
817
818 startp=endp+1;
819 index=strtoul((char*)startp,(char**)&endp,0);
820 if (*endp != 0 || endp == startp || errno != 0)
821 ftdi_error_return(-11, "illegal description format");
822 }
823 if (description[0] == 's')
824 {
825 if (*endp != ':')
826 ftdi_error_return(-11, "illegal description format");
827
828 /* rest of the description is the serial */
829 serial=endp+1;
830 }
831
832 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
833 }
834 else
835 {
836 ftdi_error_return(-11, "illegal description format");
837 }
838}
839
840/**
841 Resets the ftdi device.
842
843 \param ftdi pointer to ftdi_context
844
845 \retval 0: all fine
846 \retval -1: FTDI reset failed
847 \retval -2: USB device unavailable
848*/
849int ftdi_usb_reset(struct ftdi_context *ftdi)
850{
851 if (ftdi == NULL || ftdi->usb_dev == NULL)
852 ftdi_error_return(-2, "USB device unavailable");
853
854 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
855 SIO_RESET_REQUEST, SIO_RESET_SIO,
856 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
857 ftdi_error_return(-1,"FTDI reset failed");
858
859 // Invalidate data in the readbuffer
860 ftdi->readbuffer_offset = 0;
861 ftdi->readbuffer_remaining = 0;
862
863 return 0;
864}
865
866/**
867 Clears the read buffer on the chip and the internal read buffer.
868
869 \param ftdi pointer to ftdi_context
870
871 \retval 0: all fine
872 \retval -1: read buffer purge failed
873 \retval -2: USB device unavailable
874*/
875int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
876{
877 if (ftdi == NULL || ftdi->usb_dev == NULL)
878 ftdi_error_return(-2, "USB device unavailable");
879
880 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
881 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
882 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
883 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
884
885 // Invalidate data in the readbuffer
886 ftdi->readbuffer_offset = 0;
887 ftdi->readbuffer_remaining = 0;
888
889 return 0;
890}
891
892/**
893 Clears the write buffer on the chip.
894
895 \param ftdi pointer to ftdi_context
896
897 \retval 0: all fine
898 \retval -1: write buffer purge failed
899 \retval -2: USB device unavailable
900*/
901int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
902{
903 if (ftdi == NULL || ftdi->usb_dev == NULL)
904 ftdi_error_return(-2, "USB device unavailable");
905
906 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
907 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
908 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
909 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
910
911 return 0;
912}
913
914/**
915 Clears the buffers on the chip and the internal read buffer.
916
917 \param ftdi pointer to ftdi_context
918
919 \retval 0: all fine
920 \retval -1: read buffer purge failed
921 \retval -2: write buffer purge failed
922 \retval -3: USB device unavailable
923*/
924int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
925{
926 int result;
927
928 if (ftdi == NULL || ftdi->usb_dev == NULL)
929 ftdi_error_return(-3, "USB device unavailable");
930
931 result = ftdi_usb_purge_rx_buffer(ftdi);
932 if (result < 0)
933 return -1;
934
935 result = ftdi_usb_purge_tx_buffer(ftdi);
936 if (result < 0)
937 return -2;
938
939 return 0;
940}
941
942
943
944/**
945 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
946
947 \param ftdi pointer to ftdi_context
948
949 \retval 0: all fine
950 \retval -1: usb_release failed
951 \retval -3: ftdi context invalid
952*/
953int ftdi_usb_close(struct ftdi_context *ftdi)
954{
955 int rtn = 0;
956
957 if (ftdi == NULL)
958 ftdi_error_return(-3, "ftdi context invalid");
959
960 if (ftdi->usb_dev != NULL)
961 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
962 rtn = -1;
963
964 ftdi_usb_close_internal (ftdi);
965
966 return rtn;
967}
968
969/**
970 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
971 Function is only used internally
972 \internal
973*/
974static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
975 unsigned short *value, unsigned short *index)
976{
977 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
978 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
979 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
980 int divisor, best_divisor, best_baud, best_baud_diff;
981 unsigned long encoded_divisor;
982 int i;
983
984 if (baudrate <= 0)
985 {
986 // Return error
987 return -1;
988 }
989
990 divisor = 24000000 / baudrate;
991
992 if (ftdi->type == TYPE_AM)
993 {
994 // Round down to supported fraction (AM only)
995 divisor -= am_adjust_dn[divisor & 7];
996 }
997
998 // Try this divisor and the one above it (because division rounds down)
999 best_divisor = 0;
1000 best_baud = 0;
1001 best_baud_diff = 0;
1002 for (i = 0; i < 2; i++)
1003 {
1004 int try_divisor = divisor + i;
1005 int baud_estimate;
1006 int baud_diff;
1007
1008 // Round up to supported divisor value
1009 if (try_divisor <= 8)
1010 {
1011 // Round up to minimum supported divisor
1012 try_divisor = 8;
1013 }
1014 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1015 {
1016 // BM doesn't support divisors 9 through 11 inclusive
1017 try_divisor = 12;
1018 }
1019 else if (divisor < 16)
1020 {
1021 // AM doesn't support divisors 9 through 15 inclusive
1022 try_divisor = 16;
1023 }
1024 else
1025 {
1026 if (ftdi->type == TYPE_AM)
1027 {
1028 // Round up to supported fraction (AM only)
1029 try_divisor += am_adjust_up[try_divisor & 7];
1030 if (try_divisor > 0x1FFF8)
1031 {
1032 // Round down to maximum supported divisor value (for AM)
1033 try_divisor = 0x1FFF8;
1034 }
1035 }
1036 else
1037 {
1038 if (try_divisor > 0x1FFFF)
1039 {
1040 // Round down to maximum supported divisor value (for BM)
1041 try_divisor = 0x1FFFF;
1042 }
1043 }
1044 }
1045 // Get estimated baud rate (to nearest integer)
1046 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1047 // Get absolute difference from requested baud rate
1048 if (baud_estimate < baudrate)
1049 {
1050 baud_diff = baudrate - baud_estimate;
1051 }
1052 else
1053 {
1054 baud_diff = baud_estimate - baudrate;
1055 }
1056 if (i == 0 || baud_diff < best_baud_diff)
1057 {
1058 // Closest to requested baud rate so far
1059 best_divisor = try_divisor;
1060 best_baud = baud_estimate;
1061 best_baud_diff = baud_diff;
1062 if (baud_diff == 0)
1063 {
1064 // Spot on! No point trying
1065 break;
1066 }
1067 }
1068 }
1069 // Encode the best divisor value
1070 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1071 // Deal with special cases for encoded value
1072 if (encoded_divisor == 1)
1073 {
1074 encoded_divisor = 0; // 3000000 baud
1075 }
1076 else if (encoded_divisor == 0x4001)
1077 {
1078 encoded_divisor = 1; // 2000000 baud (BM only)
1079 }
1080 // Split into "value" and "index" values
1081 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1082 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1083 {
1084 *index = (unsigned short)(encoded_divisor >> 8);
1085 *index &= 0xFF00;
1086 *index |= ftdi->index;
1087 }
1088 else
1089 *index = (unsigned short)(encoded_divisor >> 16);
1090
1091 // Return the nearest baud rate
1092 return best_baud;
1093}
1094
1095/**
1096 Sets the chip baud rate
1097
1098 \param ftdi pointer to ftdi_context
1099 \param baudrate baud rate to set
1100
1101 \retval 0: all fine
1102 \retval -1: invalid baudrate
1103 \retval -2: setting baudrate failed
1104 \retval -3: USB device unavailable
1105*/
1106int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1107{
1108 unsigned short value, index;
1109 int actual_baudrate;
1110
1111 if (ftdi == NULL || ftdi->usb_dev == NULL)
1112 ftdi_error_return(-3, "USB device unavailable");
1113
1114 if (ftdi->bitbang_enabled)
1115 {
1116 baudrate = baudrate*4;
1117 }
1118
1119 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1120 if (actual_baudrate <= 0)
1121 ftdi_error_return (-1, "Silly baudrate <= 0.");
1122
1123 // Check within tolerance (about 5%)
1124 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1125 || ((actual_baudrate < baudrate)
1126 ? (actual_baudrate * 21 < baudrate * 20)
1127 : (baudrate * 21 < actual_baudrate * 20)))
1128 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1129
1130 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1131 SIO_SET_BAUDRATE_REQUEST, value,
1132 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1133 ftdi_error_return (-2, "Setting new baudrate failed");
1134
1135 ftdi->baudrate = baudrate;
1136 return 0;
1137}
1138
1139/**
1140 Set (RS232) line characteristics.
1141 The break type can only be set via ftdi_set_line_property2()
1142 and defaults to "off".
1143
1144 \param ftdi pointer to ftdi_context
1145 \param bits Number of bits
1146 \param sbit Number of stop bits
1147 \param parity Parity mode
1148
1149 \retval 0: all fine
1150 \retval -1: Setting line property failed
1151*/
1152int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1153 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1154{
1155 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1156}
1157
1158/**
1159 Set (RS232) line characteristics
1160
1161 \param ftdi pointer to ftdi_context
1162 \param bits Number of bits
1163 \param sbit Number of stop bits
1164 \param parity Parity mode
1165 \param break_type Break type
1166
1167 \retval 0: all fine
1168 \retval -1: Setting line property failed
1169 \retval -2: USB device unavailable
1170*/
1171int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1172 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1173 enum ftdi_break_type break_type)
1174{
1175 unsigned short value = bits;
1176
1177 if (ftdi == NULL || ftdi->usb_dev == NULL)
1178 ftdi_error_return(-2, "USB device unavailable");
1179
1180 switch (parity)
1181 {
1182 case NONE:
1183 value |= (0x00 << 8);
1184 break;
1185 case ODD:
1186 value |= (0x01 << 8);
1187 break;
1188 case EVEN:
1189 value |= (0x02 << 8);
1190 break;
1191 case MARK:
1192 value |= (0x03 << 8);
1193 break;
1194 case SPACE:
1195 value |= (0x04 << 8);
1196 break;
1197 }
1198
1199 switch (sbit)
1200 {
1201 case STOP_BIT_1:
1202 value |= (0x00 << 11);
1203 break;
1204 case STOP_BIT_15:
1205 value |= (0x01 << 11);
1206 break;
1207 case STOP_BIT_2:
1208 value |= (0x02 << 11);
1209 break;
1210 }
1211
1212 switch (break_type)
1213 {
1214 case BREAK_OFF:
1215 value |= (0x00 << 14);
1216 break;
1217 case BREAK_ON:
1218 value |= (0x01 << 14);
1219 break;
1220 }
1221
1222 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1223 SIO_SET_DATA_REQUEST, value,
1224 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1225 ftdi_error_return (-1, "Setting new line property failed");
1226
1227 return 0;
1228}
1229
1230/**
1231 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1232
1233 \param ftdi pointer to ftdi_context
1234 \param buf Buffer with the data
1235 \param size Size of the buffer
1236
1237 \retval -666: USB device unavailable
1238 \retval <0: error code from usb_bulk_write()
1239 \retval >0: number of bytes written
1240*/
1241int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1242{
1243 int offset = 0;
1244 int actual_length;
1245
1246 if (ftdi == NULL || ftdi->usb_dev == NULL)
1247 ftdi_error_return(-666, "USB device unavailable");
1248
1249 while (offset < size)
1250 {
1251 int write_size = ftdi->writebuffer_chunksize;
1252
1253 if (offset+write_size > size)
1254 write_size = size-offset;
1255
1256 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1257 ftdi_error_return(-1, "usb bulk write failed");
1258
1259 offset += actual_length;
1260 }
1261
1262 return offset;
1263}
1264
1265static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1266{
1267 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1268 struct ftdi_context *ftdi = tc->ftdi;
1269 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1270
1271 packet_size = ftdi->max_packet_size;
1272
1273 actual_length = transfer->actual_length;
1274
1275 if (actual_length > 2)
1276 {
1277 // skip FTDI status bytes.
1278 // Maybe stored in the future to enable modem use
1279 num_of_chunks = actual_length / packet_size;
1280 chunk_remains = actual_length % packet_size;
1281 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1282
1283 ftdi->readbuffer_offset += 2;
1284 actual_length -= 2;
1285
1286 if (actual_length > packet_size - 2)
1287 {
1288 for (i = 1; i < num_of_chunks; i++)
1289 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1290 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1291 packet_size - 2);
1292 if (chunk_remains > 2)
1293 {
1294 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1295 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1296 chunk_remains-2);
1297 actual_length -= 2*num_of_chunks;
1298 }
1299 else
1300 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1301 }
1302
1303 if (actual_length > 0)
1304 {
1305 // data still fits in buf?
1306 if (tc->offset + actual_length <= tc->size)
1307 {
1308 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1309 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1310 tc->offset += actual_length;
1311
1312 ftdi->readbuffer_offset = 0;
1313 ftdi->readbuffer_remaining = 0;
1314
1315 /* Did we read exactly the right amount of bytes? */
1316 if (tc->offset == tc->size)
1317 {
1318 //printf("read_data exact rem %d offset %d\n",
1319 //ftdi->readbuffer_remaining, offset);
1320 tc->completed = 1;
1321 return;
1322 }
1323 }
1324 else
1325 {
1326 // only copy part of the data or size <= readbuffer_chunksize
1327 int part_size = tc->size - tc->offset;
1328 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1329 tc->offset += part_size;
1330
1331 ftdi->readbuffer_offset += part_size;
1332 ftdi->readbuffer_remaining = actual_length - part_size;
1333
1334 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1335 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1336 tc->completed = 1;
1337 return;
1338 }
1339 }
1340 }
1341 ret = libusb_submit_transfer (transfer);
1342 if (ret < 0)
1343 tc->completed = 1;
1344}
1345
1346
1347static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1348{
1349 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1350 struct ftdi_context *ftdi = tc->ftdi;
1351
1352 tc->offset += transfer->actual_length;
1353
1354 if (tc->offset == tc->size)
1355 {
1356 tc->completed = 1;
1357 }
1358 else
1359 {
1360 int write_size = ftdi->writebuffer_chunksize;
1361 int ret;
1362
1363 if (tc->offset + write_size > tc->size)
1364 write_size = tc->size - tc->offset;
1365
1366 transfer->length = write_size;
1367 transfer->buffer = tc->buf + tc->offset;
1368 ret = libusb_submit_transfer (transfer);
1369 if (ret < 0)
1370 tc->completed = 1;
1371 }
1372}
1373
1374
1375/**
1376 Writes data to the chip. Does not wait for completion of the transfer
1377 nor does it make sure that the transfer was successful.
1378
1379 Use libusb 1.0 asynchronous API.
1380
1381 \param ftdi pointer to ftdi_context
1382 \param buf Buffer with the data
1383 \param size Size of the buffer
1384
1385 \retval NULL: Some error happens when submit transfer
1386 \retval !NULL: Pointer to a ftdi_transfer_control
1387*/
1388
1389struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1390{
1391 struct ftdi_transfer_control *tc;
1392 struct libusb_transfer *transfer = libusb_alloc_transfer(0);
1393 int write_size, ret;
1394
1395 if (ftdi == NULL || ftdi->usb_dev == NULL)
1396 {
1397 libusb_free_transfer(transfer);
1398 return NULL;
1399 }
1400
1401 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1402
1403 if (!tc || !transfer)
1404 return NULL;
1405
1406 tc->ftdi = ftdi;
1407 tc->completed = 0;
1408 tc->buf = buf;
1409 tc->size = size;
1410 tc->offset = 0;
1411
1412 if (size < ftdi->writebuffer_chunksize)
1413 write_size = size;
1414 else
1415 write_size = ftdi->writebuffer_chunksize;
1416
1417 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1418 write_size, ftdi_write_data_cb, tc,
1419 ftdi->usb_write_timeout);
1420 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1421
1422 ret = libusb_submit_transfer(transfer);
1423 if (ret < 0)
1424 {
1425 libusb_free_transfer(transfer);
1426 tc->completed = 1;
1427 tc->transfer = NULL;
1428 return NULL;
1429 }
1430 tc->transfer = transfer;
1431
1432 return tc;
1433}
1434
1435/**
1436 Reads data from the chip. Does not wait for completion of the transfer
1437 nor does it make sure that the transfer was successful.
1438
1439 Use libusb 1.0 asynchronous API.
1440
1441 \param ftdi pointer to ftdi_context
1442 \param buf Buffer with the data
1443 \param size Size of the buffer
1444
1445 \retval NULL: Some error happens when submit transfer
1446 \retval !NULL: Pointer to a ftdi_transfer_control
1447*/
1448
1449struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1450{
1451 struct ftdi_transfer_control *tc;
1452 struct libusb_transfer *transfer;
1453 int ret;
1454
1455 if (ftdi == NULL || ftdi->usb_dev == NULL)
1456 return NULL;
1457
1458 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1459 if (!tc)
1460 return NULL;
1461
1462 tc->ftdi = ftdi;
1463 tc->buf = buf;
1464 tc->size = size;
1465
1466 if (size <= ftdi->readbuffer_remaining)
1467 {
1468 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1469
1470 // Fix offsets
1471 ftdi->readbuffer_remaining -= size;
1472 ftdi->readbuffer_offset += size;
1473
1474 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1475
1476 tc->completed = 1;
1477 tc->offset = size;
1478 tc->transfer = NULL;
1479 return tc;
1480 }
1481
1482 tc->completed = 0;
1483 if (ftdi->readbuffer_remaining != 0)
1484 {
1485 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1486
1487 tc->offset = ftdi->readbuffer_remaining;
1488 }
1489 else
1490 tc->offset = 0;
1491
1492 transfer = libusb_alloc_transfer(0);
1493 if (!transfer)
1494 {
1495 free (tc);
1496 return NULL;
1497 }
1498
1499 ftdi->readbuffer_remaining = 0;
1500 ftdi->readbuffer_offset = 0;
1501
1502 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1503 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1504
1505 ret = libusb_submit_transfer(transfer);
1506 if (ret < 0)
1507 {
1508 libusb_free_transfer(transfer);
1509 free (tc);
1510 return NULL;
1511 }
1512 tc->transfer = transfer;
1513
1514 return tc;
1515}
1516
1517/**
1518 Wait for completion of the transfer.
1519
1520 Use libusb 1.0 asynchronous API.
1521
1522 \param tc pointer to ftdi_transfer_control
1523
1524 \retval < 0: Some error happens
1525 \retval >= 0: Data size transferred
1526*/
1527
1528int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1529{
1530 int ret;
1531
1532 while (!tc->completed)
1533 {
1534 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1535 if (ret < 0)
1536 {
1537 if (ret == LIBUSB_ERROR_INTERRUPTED)
1538 continue;
1539 libusb_cancel_transfer(tc->transfer);
1540 while (!tc->completed)
1541 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1542 break;
1543 libusb_free_transfer(tc->transfer);
1544 free (tc);
1545 return ret;
1546 }
1547 }
1548
1549 ret = tc->offset;
1550 /**
1551 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1552 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1553 **/
1554 if (tc->transfer)
1555 {
1556 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1557 ret = -1;
1558 libusb_free_transfer(tc->transfer);
1559 }
1560 free(tc);
1561 return ret;
1562}
1563
1564/**
1565 Configure write buffer chunk size.
1566 Default is 4096.
1567
1568 \param ftdi pointer to ftdi_context
1569 \param chunksize Chunk size
1570
1571 \retval 0: all fine
1572 \retval -1: ftdi context invalid
1573*/
1574int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1575{
1576 if (ftdi == NULL)
1577 ftdi_error_return(-1, "ftdi context invalid");
1578
1579 ftdi->writebuffer_chunksize = chunksize;
1580 return 0;
1581}
1582
1583/**
1584 Get write buffer chunk size.
1585
1586 \param ftdi pointer to ftdi_context
1587 \param chunksize Pointer to store chunk size in
1588
1589 \retval 0: all fine
1590 \retval -1: ftdi context invalid
1591*/
1592int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1593{
1594 if (ftdi == NULL)
1595 ftdi_error_return(-1, "ftdi context invalid");
1596
1597 *chunksize = ftdi->writebuffer_chunksize;
1598 return 0;
1599}
1600
1601/**
1602 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1603
1604 Automatically strips the two modem status bytes transfered during every read.
1605
1606 \param ftdi pointer to ftdi_context
1607 \param buf Buffer to store data in
1608 \param size Size of the buffer
1609
1610 \retval -666: USB device unavailable
1611 \retval <0: error code from libusb_bulk_transfer()
1612 \retval 0: no data was available
1613 \retval >0: number of bytes read
1614
1615*/
1616int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1617{
1618 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1619 int packet_size = ftdi->max_packet_size;
1620 int actual_length = 1;
1621
1622 if (ftdi == NULL || ftdi->usb_dev == NULL)
1623 ftdi_error_return(-666, "USB device unavailable");
1624
1625 // Packet size sanity check (avoid division by zero)
1626 if (packet_size == 0)
1627 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1628
1629 // everything we want is still in the readbuffer?
1630 if (size <= ftdi->readbuffer_remaining)
1631 {
1632 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1633
1634 // Fix offsets
1635 ftdi->readbuffer_remaining -= size;
1636 ftdi->readbuffer_offset += size;
1637
1638 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1639
1640 return size;
1641 }
1642 // something still in the readbuffer, but not enough to satisfy 'size'?
1643 if (ftdi->readbuffer_remaining != 0)
1644 {
1645 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1646
1647 // Fix offset
1648 offset += ftdi->readbuffer_remaining;
1649 }
1650 // do the actual USB read
1651 while (offset < size && actual_length > 0)
1652 {
1653 ftdi->readbuffer_remaining = 0;
1654 ftdi->readbuffer_offset = 0;
1655 /* returns how much received */
1656 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1657 if (ret < 0)
1658 ftdi_error_return(ret, "usb bulk read failed");
1659
1660 if (actual_length > 2)
1661 {
1662 // skip FTDI status bytes.
1663 // Maybe stored in the future to enable modem use
1664 num_of_chunks = actual_length / packet_size;
1665 chunk_remains = actual_length % packet_size;
1666 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1667
1668 ftdi->readbuffer_offset += 2;
1669 actual_length -= 2;
1670
1671 if (actual_length > packet_size - 2)
1672 {
1673 for (i = 1; i < num_of_chunks; i++)
1674 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1675 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1676 packet_size - 2);
1677 if (chunk_remains > 2)
1678 {
1679 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1680 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1681 chunk_remains-2);
1682 actual_length -= 2*num_of_chunks;
1683 }
1684 else
1685 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1686 }
1687 }
1688 else if (actual_length <= 2)
1689 {
1690 // no more data to read?
1691 return offset;
1692 }
1693 if (actual_length > 0)
1694 {
1695 // data still fits in buf?
1696 if (offset+actual_length <= size)
1697 {
1698 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1699 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1700 offset += actual_length;
1701
1702 /* Did we read exactly the right amount of bytes? */
1703 if (offset == size)
1704 //printf("read_data exact rem %d offset %d\n",
1705 //ftdi->readbuffer_remaining, offset);
1706 return offset;
1707 }
1708 else
1709 {
1710 // only copy part of the data or size <= readbuffer_chunksize
1711 int part_size = size-offset;
1712 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1713
1714 ftdi->readbuffer_offset += part_size;
1715 ftdi->readbuffer_remaining = actual_length-part_size;
1716 offset += part_size;
1717
1718 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1719 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1720
1721 return offset;
1722 }
1723 }
1724 }
1725 // never reached
1726 return -127;
1727}
1728
1729/**
1730 Configure read buffer chunk size.
1731 Default is 4096.
1732
1733 Automatically reallocates the buffer.
1734
1735 \param ftdi pointer to ftdi_context
1736 \param chunksize Chunk size
1737
1738 \retval 0: all fine
1739 \retval -1: ftdi context invalid
1740*/
1741int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1742{
1743 unsigned char *new_buf;
1744
1745 if (ftdi == NULL)
1746 ftdi_error_return(-1, "ftdi context invalid");
1747
1748 // Invalidate all remaining data
1749 ftdi->readbuffer_offset = 0;
1750 ftdi->readbuffer_remaining = 0;
1751#ifdef __linux__
1752 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1753 which is defined in libusb-1.0. Otherwise, each USB read request will
1754 be divided into multiple URBs. This will cause issues on Linux kernel
1755 older than 2.6.32. */
1756 if (chunksize > 16384)
1757 chunksize = 16384;
1758#endif
1759
1760 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1761 ftdi_error_return(-1, "out of memory for readbuffer");
1762
1763 ftdi->readbuffer = new_buf;
1764 ftdi->readbuffer_chunksize = chunksize;
1765
1766 return 0;
1767}
1768
1769/**
1770 Get read buffer chunk size.
1771
1772 \param ftdi pointer to ftdi_context
1773 \param chunksize Pointer to store chunk size in
1774
1775 \retval 0: all fine
1776 \retval -1: FTDI context invalid
1777*/
1778int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1779{
1780 if (ftdi == NULL)
1781 ftdi_error_return(-1, "FTDI context invalid");
1782
1783 *chunksize = ftdi->readbuffer_chunksize;
1784 return 0;
1785}
1786
1787
1788/**
1789 Enable bitbang mode.
1790
1791 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1792
1793 \param ftdi pointer to ftdi_context
1794 \param bitmask Bitmask to configure lines.
1795 HIGH/ON value configures a line as output.
1796
1797 \retval 0: all fine
1798 \retval -1: can't enable bitbang mode
1799 \retval -2: USB device unavailable
1800*/
1801int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1802{
1803 unsigned short usb_val;
1804
1805 if (ftdi == NULL || ftdi->usb_dev == NULL)
1806 ftdi_error_return(-2, "USB device unavailable");
1807
1808 usb_val = bitmask; // low byte: bitmask
1809 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1810 usb_val |= (ftdi->bitbang_mode << 8);
1811
1812 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1813 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1814 NULL, 0, ftdi->usb_write_timeout) < 0)
1815 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1816
1817 ftdi->bitbang_enabled = 1;
1818 return 0;
1819}
1820
1821/**
1822 Disable bitbang mode.
1823
1824 \param ftdi pointer to ftdi_context
1825
1826 \retval 0: all fine
1827 \retval -1: can't disable bitbang mode
1828 \retval -2: USB device unavailable
1829*/
1830int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1831{
1832 if (ftdi == NULL || ftdi->usb_dev == NULL)
1833 ftdi_error_return(-2, "USB device unavailable");
1834
1835 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1836 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1837
1838 ftdi->bitbang_enabled = 0;
1839 return 0;
1840}
1841
1842/**
1843 Enable/disable bitbang modes.
1844
1845 \param ftdi pointer to ftdi_context
1846 \param bitmask Bitmask to configure lines.
1847 HIGH/ON value configures a line as output.
1848 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1849
1850 \retval 0: all fine
1851 \retval -1: can't enable bitbang mode
1852 \retval -2: USB device unavailable
1853*/
1854int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1855{
1856 unsigned short usb_val;
1857
1858 if (ftdi == NULL || ftdi->usb_dev == NULL)
1859 ftdi_error_return(-2, "USB device unavailable");
1860
1861 usb_val = bitmask; // low byte: bitmask
1862 usb_val |= (mode << 8);
1863 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1864 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1865
1866 ftdi->bitbang_mode = mode;
1867 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1868 return 0;
1869}
1870
1871/**
1872 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1873
1874 \param ftdi pointer to ftdi_context
1875 \param pins Pointer to store pins into
1876
1877 \retval 0: all fine
1878 \retval -1: read pins failed
1879 \retval -2: USB device unavailable
1880*/
1881int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1882{
1883 if (ftdi == NULL || ftdi->usb_dev == NULL)
1884 ftdi_error_return(-2, "USB device unavailable");
1885
1886 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1887 ftdi_error_return(-1, "read pins failed");
1888
1889 return 0;
1890}
1891
1892/**
1893 Set latency timer
1894
1895 The FTDI chip keeps data in the internal buffer for a specific
1896 amount of time if the buffer is not full yet to decrease
1897 load on the usb bus.
1898
1899 \param ftdi pointer to ftdi_context
1900 \param latency Value between 1 and 255
1901
1902 \retval 0: all fine
1903 \retval -1: latency out of range
1904 \retval -2: unable to set latency timer
1905 \retval -3: USB device unavailable
1906*/
1907int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1908{
1909 unsigned short usb_val;
1910
1911 if (latency < 1)
1912 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1913
1914 if (ftdi == NULL || ftdi->usb_dev == NULL)
1915 ftdi_error_return(-3, "USB device unavailable");
1916
1917 usb_val = latency;
1918 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1919 ftdi_error_return(-2, "unable to set latency timer");
1920
1921 return 0;
1922}
1923
1924/**
1925 Get latency timer
1926
1927 \param ftdi pointer to ftdi_context
1928 \param latency Pointer to store latency value in
1929
1930 \retval 0: all fine
1931 \retval -1: unable to get latency timer
1932 \retval -2: USB device unavailable
1933*/
1934int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1935{
1936 unsigned short usb_val;
1937
1938 if (ftdi == NULL || ftdi->usb_dev == NULL)
1939 ftdi_error_return(-2, "USB device unavailable");
1940
1941 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1942 ftdi_error_return(-1, "reading latency timer failed");
1943
1944 *latency = (unsigned char)usb_val;
1945 return 0;
1946}
1947
1948/**
1949 Poll modem status information
1950
1951 This function allows the retrieve the two status bytes of the device.
1952 The device sends these bytes also as a header for each read access
1953 where they are discarded by ftdi_read_data(). The chip generates
1954 the two stripped status bytes in the absence of data every 40 ms.
1955
1956 Layout of the first byte:
1957 - B0..B3 - must be 0
1958 - B4 Clear to send (CTS)
1959 0 = inactive
1960 1 = active
1961 - B5 Data set ready (DTS)
1962 0 = inactive
1963 1 = active
1964 - B6 Ring indicator (RI)
1965 0 = inactive
1966 1 = active
1967 - B7 Receive line signal detect (RLSD)
1968 0 = inactive
1969 1 = active
1970
1971 Layout of the second byte:
1972 - B0 Data ready (DR)
1973 - B1 Overrun error (OE)
1974 - B2 Parity error (PE)
1975 - B3 Framing error (FE)
1976 - B4 Break interrupt (BI)
1977 - B5 Transmitter holding register (THRE)
1978 - B6 Transmitter empty (TEMT)
1979 - B7 Error in RCVR FIFO
1980
1981 \param ftdi pointer to ftdi_context
1982 \param status Pointer to store status information in. Must be two bytes.
1983
1984 \retval 0: all fine
1985 \retval -1: unable to retrieve status information
1986 \retval -2: USB device unavailable
1987*/
1988int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1989{
1990 char usb_val[2];
1991
1992 if (ftdi == NULL || ftdi->usb_dev == NULL)
1993 ftdi_error_return(-2, "USB device unavailable");
1994
1995 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1996 ftdi_error_return(-1, "getting modem status failed");
1997
1998 *status = (usb_val[1] << 8) | usb_val[0];
1999
2000 return 0;
2001}
2002
2003/**
2004 Set flowcontrol for ftdi chip
2005
2006 \param ftdi pointer to ftdi_context
2007 \param flowctrl flow control to use. should be
2008 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2009
2010 \retval 0: all fine
2011 \retval -1: set flow control failed
2012 \retval -2: USB device unavailable
2013*/
2014int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2015{
2016 if (ftdi == NULL || ftdi->usb_dev == NULL)
2017 ftdi_error_return(-2, "USB device unavailable");
2018
2019 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2020 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2021 NULL, 0, ftdi->usb_write_timeout) < 0)
2022 ftdi_error_return(-1, "set flow control failed");
2023
2024 return 0;
2025}
2026
2027/**
2028 Set dtr line
2029
2030 \param ftdi pointer to ftdi_context
2031 \param state state to set line to (1 or 0)
2032
2033 \retval 0: all fine
2034 \retval -1: set dtr failed
2035 \retval -2: USB device unavailable
2036*/
2037int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2038{
2039 unsigned short usb_val;
2040
2041 if (ftdi == NULL || ftdi->usb_dev == NULL)
2042 ftdi_error_return(-2, "USB device unavailable");
2043
2044 if (state)
2045 usb_val = SIO_SET_DTR_HIGH;
2046 else
2047 usb_val = SIO_SET_DTR_LOW;
2048
2049 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2050 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2051 NULL, 0, ftdi->usb_write_timeout) < 0)
2052 ftdi_error_return(-1, "set dtr failed");
2053
2054 return 0;
2055}
2056
2057/**
2058 Set rts line
2059
2060 \param ftdi pointer to ftdi_context
2061 \param state state to set line to (1 or 0)
2062
2063 \retval 0: all fine
2064 \retval -1: set rts failed
2065 \retval -2: USB device unavailable
2066*/
2067int ftdi_setrts(struct ftdi_context *ftdi, int state)
2068{
2069 unsigned short usb_val;
2070
2071 if (ftdi == NULL || ftdi->usb_dev == NULL)
2072 ftdi_error_return(-2, "USB device unavailable");
2073
2074 if (state)
2075 usb_val = SIO_SET_RTS_HIGH;
2076 else
2077 usb_val = SIO_SET_RTS_LOW;
2078
2079 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2080 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2081 NULL, 0, ftdi->usb_write_timeout) < 0)
2082 ftdi_error_return(-1, "set of rts failed");
2083
2084 return 0;
2085}
2086
2087/**
2088 Set dtr and rts line in one pass
2089
2090 \param ftdi pointer to ftdi_context
2091 \param dtr DTR state to set line to (1 or 0)
2092 \param rts RTS state to set line to (1 or 0)
2093
2094 \retval 0: all fine
2095 \retval -1: set dtr/rts failed
2096 \retval -2: USB device unavailable
2097 */
2098int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2099{
2100 unsigned short usb_val;
2101
2102 if (ftdi == NULL || ftdi->usb_dev == NULL)
2103 ftdi_error_return(-2, "USB device unavailable");
2104
2105 if (dtr)
2106 usb_val = SIO_SET_DTR_HIGH;
2107 else
2108 usb_val = SIO_SET_DTR_LOW;
2109
2110 if (rts)
2111 usb_val |= SIO_SET_RTS_HIGH;
2112 else
2113 usb_val |= SIO_SET_RTS_LOW;
2114
2115 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2116 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2117 NULL, 0, ftdi->usb_write_timeout) < 0)
2118 ftdi_error_return(-1, "set of rts/dtr failed");
2119
2120 return 0;
2121}
2122
2123/**
2124 Set the special event character
2125
2126 \param ftdi pointer to ftdi_context
2127 \param eventch Event character
2128 \param enable 0 to disable the event character, non-zero otherwise
2129
2130 \retval 0: all fine
2131 \retval -1: unable to set event character
2132 \retval -2: USB device unavailable
2133*/
2134int ftdi_set_event_char(struct ftdi_context *ftdi,
2135 unsigned char eventch, unsigned char enable)
2136{
2137 unsigned short usb_val;
2138
2139 if (ftdi == NULL || ftdi->usb_dev == NULL)
2140 ftdi_error_return(-2, "USB device unavailable");
2141
2142 usb_val = eventch;
2143 if (enable)
2144 usb_val |= 1 << 8;
2145
2146 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2147 ftdi_error_return(-1, "setting event character failed");
2148
2149 return 0;
2150}
2151
2152/**
2153 Set error character
2154
2155 \param ftdi pointer to ftdi_context
2156 \param errorch Error character
2157 \param enable 0 to disable the error character, non-zero otherwise
2158
2159 \retval 0: all fine
2160 \retval -1: unable to set error character
2161 \retval -2: USB device unavailable
2162*/
2163int ftdi_set_error_char(struct ftdi_context *ftdi,
2164 unsigned char errorch, unsigned char enable)
2165{
2166 unsigned short usb_val;
2167
2168 if (ftdi == NULL || ftdi->usb_dev == NULL)
2169 ftdi_error_return(-2, "USB device unavailable");
2170
2171 usb_val = errorch;
2172 if (enable)
2173 usb_val |= 1 << 8;
2174
2175 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2176 ftdi_error_return(-1, "setting error character failed");
2177
2178 return 0;
2179}
2180
2181/**
2182 Init eeprom with default values.
2183 \param ftdi pointer to ftdi_context
2184 \param manufacturer String to use as Manufacturer
2185 \param product String to use as Product description
2186 \param serial String to use as Serial number description
2187
2188 \retval 0: all fine
2189 \retval -1: No struct ftdi_context
2190 \retval -2: No struct ftdi_eeprom
2191*/
2192int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2193 char * product, char * serial)
2194{
2195 struct ftdi_eeprom *eeprom;
2196
2197 if (ftdi == NULL)
2198 ftdi_error_return(-1, "No struct ftdi_context");
2199
2200 if (ftdi->eeprom == NULL)
2201 ftdi_error_return(-2,"No struct ftdi_eeprom");
2202
2203 eeprom = ftdi->eeprom;
2204 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2205
2206 eeprom->vendor_id = 0x0403;
2207 eeprom->use_serial = USE_SERIAL_NUM;
2208 if((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2209 (ftdi->type == TYPE_R))
2210 eeprom->product_id = 0x6001;
2211 else
2212 eeprom->product_id = 0x6010;
2213 if (ftdi->type == TYPE_AM)
2214 eeprom->usb_version = 0x0101;
2215 else
2216 eeprom->usb_version = 0x0200;
2217 eeprom->max_power = 100;
2218
2219 if (eeprom->manufacturer)
2220 free (eeprom->manufacturer);
2221 eeprom->manufacturer = NULL;
2222 if (manufacturer)
2223 {
2224 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2225 if (eeprom->manufacturer)
2226 strcpy(eeprom->manufacturer, manufacturer);
2227 }
2228
2229 if (eeprom->product)
2230 free (eeprom->product);
2231 eeprom->product = NULL;
2232 {
2233 eeprom->product = malloc(strlen(product)+1);
2234 if (eeprom->product)
2235 strcpy(eeprom->product, product);
2236 }
2237
2238 if (eeprom->serial)
2239 free (eeprom->serial);
2240 eeprom->serial = NULL;
2241 if (serial)
2242 {
2243 eeprom->serial = malloc(strlen(serial)+1);
2244 if (eeprom->serial)
2245 strcpy(eeprom->serial, serial);
2246 }
2247
2248
2249 if(ftdi->type == TYPE_R)
2250 {
2251 eeprom->max_power = 90;
2252 eeprom->size = 0x80;
2253 eeprom->cbus_function[0] = CBUS_TXLED;
2254 eeprom->cbus_function[1] = CBUS_RXLED;
2255 eeprom->cbus_function[2] = CBUS_TXDEN;
2256 eeprom->cbus_function[3] = CBUS_PWREN;
2257 eeprom->cbus_function[4] = CBUS_SLEEP;
2258 }
2259 else
2260 eeprom->size = -1;
2261 return 0;
2262}
2263
2264/**
2265 Build binary buffer from ftdi_eeprom structure.
2266 Output is suitable for ftdi_write_eeprom().
2267
2268 \param ftdi pointer to ftdi_context
2269
2270 \retval >=0: size of eeprom user area in bytes
2271 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2272 \retval -2: Invalid eeprom pointer
2273 \retval -3: Invalid cbus function setting
2274 \retval -4: Chip doesn't support invert
2275 \retval -5: Chip doesn't support high current drive
2276 \retval -6: No connected EEPROM or EEPROM Type unknown
2277*/
2278int ftdi_eeprom_build(struct ftdi_context *ftdi)
2279{
2280 unsigned char i, j, eeprom_size_mask;
2281 unsigned short checksum, value;
2282 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2283 int user_area_size;
2284 struct ftdi_eeprom *eeprom;
2285 unsigned char * output;
2286
2287 if (ftdi == NULL)
2288 ftdi_error_return(-2,"No context");
2289 if (ftdi->eeprom == NULL)
2290 ftdi_error_return(-2,"No eeprom structure");
2291
2292 eeprom= ftdi->eeprom;
2293 output = eeprom->buf;
2294
2295 if(eeprom->chip == -1)
2296 ftdi_error_return(-5,"No connected EEPROM or EEPROM type unknown");
2297
2298 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2299 eeprom->size = 0x100;
2300 else
2301 eeprom->size = 0x80;
2302
2303 if (eeprom->manufacturer != NULL)
2304 manufacturer_size = strlen(eeprom->manufacturer);
2305 if (eeprom->product != NULL)
2306 product_size = strlen(eeprom->product);
2307 if (eeprom->serial != NULL)
2308 serial_size = strlen(eeprom->serial);
2309
2310 // eeprom size check
2311 switch (ftdi->type)
2312 {
2313 case TYPE_AM:
2314 case TYPE_BM:
2315 user_area_size = 96; // base size for strings (total of 48 characters)
2316 break;
2317 case TYPE_2232C:
2318 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2319 break;
2320 case TYPE_R:
2321 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2322 break;
2323 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2324 case TYPE_4232H:
2325 user_area_size = 86;
2326 break;
2327 }
2328 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2329
2330 if (user_area_size < 0)
2331 ftdi_error_return(-1,"eeprom size exceeded");
2332
2333 // empty eeprom
2334 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2335
2336 // Bytes and Bits set for all Types
2337
2338 // Addr 02: Vendor ID
2339 output[0x02] = eeprom->vendor_id;
2340 output[0x03] = eeprom->vendor_id >> 8;
2341
2342 // Addr 04: Product ID
2343 output[0x04] = eeprom->product_id;
2344 output[0x05] = eeprom->product_id >> 8;
2345
2346 // Addr 06: Device release number (0400h for BM features)
2347 output[0x06] = 0x00;
2348 switch (ftdi->type)
2349 {
2350 case TYPE_AM:
2351 output[0x07] = 0x02;
2352 break;
2353 case TYPE_BM:
2354 output[0x07] = 0x04;
2355 break;
2356 case TYPE_2232C:
2357 output[0x07] = 0x05;
2358 break;
2359 case TYPE_R:
2360 output[0x07] = 0x06;
2361 break;
2362 case TYPE_2232H:
2363 output[0x07] = 0x07;
2364 break;
2365 case TYPE_4232H:
2366 output[0x07] = 0x08;
2367 break;
2368 default:
2369 output[0x07] = 0x00;
2370 }
2371
2372 // Addr 08: Config descriptor
2373 // Bit 7: always 1
2374 // Bit 6: 1 if this device is self powered, 0 if bus powered
2375 // Bit 5: 1 if this device uses remote wakeup
2376 // Bit 4-0: reserved - 0
2377 j = 0x80;
2378 if (eeprom->self_powered == 1)
2379 j |= 0x40;
2380 if (eeprom->remote_wakeup == 1)
2381 j |= 0x20;
2382 output[0x08] = j;
2383
2384 // Addr 09: Max power consumption: max power = value * 2 mA
2385 output[0x09] = eeprom->max_power>>1;
2386
2387 if(ftdi->type != TYPE_AM)
2388 {
2389 // Addr 0A: Chip configuration
2390 // Bit 7: 0 - reserved
2391 // Bit 6: 0 - reserved
2392 // Bit 5: 0 - reserved
2393 // Bit 4: 1 - Change USB version
2394 // Bit 3: 1 - Use the serial number string
2395 // Bit 2: 1 - Enable suspend pull downs for lower power
2396 // Bit 1: 1 - Out EndPoint is Isochronous
2397 // Bit 0: 1 - In EndPoint is Isochronous
2398 //
2399 j = 0;
2400 if (eeprom->in_is_isochronous == 1)
2401 j = j | 1;
2402 if (eeprom->out_is_isochronous == 1)
2403 j = j | 2;
2404 output[0x0A] = j;
2405 }
2406
2407 // Dynamic content
2408 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2409 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2410 i = 0;
2411 switch(ftdi->type)
2412 {
2413 case TYPE_2232H:
2414 case TYPE_4232H:
2415 i += 2;
2416 case TYPE_R:
2417 i += 2;
2418 case TYPE_2232C:
2419 i += 2;
2420 case TYPE_AM:
2421 case TYPE_BM:
2422 i += 0x94;
2423 }
2424 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2425 eeprom_size_mask = eeprom->size -1;
2426
2427 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2428 // Addr 0F: Length of manufacturer string
2429 // Output manufacturer
2430 output[0x0E] = i; // calculate offset
2431 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2432 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2433 for (j = 0; j < manufacturer_size; j++)
2434 {
2435 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2436 output[i & eeprom_size_mask] = 0x00, i++;
2437 }
2438 output[0x0F] = manufacturer_size*2 + 2;
2439
2440 // Addr 10: Offset of the product string + 0x80, calculated later
2441 // Addr 11: Length of product string
2442 output[0x10] = i | 0x80; // calculate offset
2443 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2444 output[i & eeprom_size_mask] = 0x03, i++;
2445 for (j = 0; j < product_size; j++)
2446 {
2447 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2448 output[i & eeprom_size_mask] = 0x00, i++;
2449 }
2450 output[0x11] = product_size*2 + 2;
2451
2452 // Addr 12: Offset of the serial string + 0x80, calculated later
2453 // Addr 13: Length of serial string
2454 output[0x12] = i | 0x80; // calculate offset
2455 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2456 output[i & eeprom_size_mask] = 0x03, i++;
2457 for (j = 0; j < serial_size; j++)
2458 {
2459 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2460 output[i & eeprom_size_mask] = 0x00, i++;
2461 }
2462
2463 // Legacy port name and PnP fields for FT2232 and newer chips
2464 if (ftdi->type > TYPE_BM)
2465 {
2466 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2467 i++;
2468 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2469 i++;
2470 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2471 i++;
2472 }
2473
2474 output[0x13] = serial_size*2 + 2;
2475
2476 if(ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2477 {
2478 if (eeprom->use_serial == USE_SERIAL_NUM )
2479 output[0x0A] |= USE_SERIAL_NUM;
2480 else
2481 output[0x0A] &= ~USE_SERIAL_NUM;
2482 }
2483
2484 /* Bytes and Bits specific to (some) types
2485 Write linear, as this allows easier fixing*/
2486 switch(ftdi->type)
2487 {
2488 case TYPE_AM:
2489 break;
2490 case TYPE_BM:
2491 output[0x0C] = eeprom->usb_version & 0xff;
2492 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2493 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2494 output[0x0A] |= USE_USB_VERSION_BIT;
2495 else
2496 output[0x0A] &= ~USE_USB_VERSION_BIT;
2497
2498 break;
2499 case TYPE_2232C:
2500
2501 output[0x00] = (eeprom->channel_a_type);
2502 if ( eeprom->channel_a_driver == DRIVER_VCP)
2503 output[0x00] |= DRIVER_VCP;
2504 else
2505 output[0x00] &= ~DRIVER_VCP;
2506
2507 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2508 output[0x00] |= HIGH_CURRENT_DRIVE;
2509 else
2510 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2511
2512 output[0x01] = (eeprom->channel_b_type);
2513 if ( eeprom->channel_b_driver == DRIVER_VCP)
2514 output[0x01] |= DRIVER_VCP;
2515 else
2516 output[0x01] &= ~DRIVER_VCP;
2517
2518 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2519 output[0x01] |= HIGH_CURRENT_DRIVE;
2520 else
2521 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2522
2523 if (eeprom->in_is_isochronous == 1)
2524 output[0x0A] |= 0x1;
2525 else
2526 output[0x0A] &= ~0x1;
2527 if (eeprom->out_is_isochronous == 1)
2528 output[0x0A] |= 0x2;
2529 else
2530 output[0x0A] &= ~0x2;
2531 if (eeprom->suspend_pull_downs == 1)
2532 output[0x0A] |= 0x4;
2533 else
2534 output[0x0A] &= ~0x4;
2535 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2536 output[0x0A] |= USE_USB_VERSION_BIT;
2537 else
2538 output[0x0A] &= ~USE_USB_VERSION_BIT;
2539
2540 output[0x0C] = eeprom->usb_version & 0xff;
2541 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2542 output[0x14] = eeprom->chip;
2543 break;
2544 case TYPE_R:
2545 if(eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2546 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2547 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2548
2549 if (eeprom->suspend_pull_downs == 1)
2550 output[0x0A] |= 0x4;
2551 else
2552 output[0x0A] &= ~0x4;
2553 output[0x0B] = eeprom->invert;
2554 output[0x0C] = eeprom->usb_version & 0xff;
2555 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2556
2557 if(eeprom->cbus_function[0] > CBUS_BB)
2558 output[0x14] = CBUS_TXLED;
2559 else
2560 output[0x14] = eeprom->cbus_function[0];
2561
2562 if(eeprom->cbus_function[1] > CBUS_BB)
2563 output[0x14] |= CBUS_RXLED<<4;
2564 else
2565 output[0x14] |= eeprom->cbus_function[1]<<4;
2566
2567 if(eeprom->cbus_function[2] > CBUS_BB)
2568 output[0x15] = CBUS_TXDEN;
2569 else
2570 output[0x15] = eeprom->cbus_function[2];
2571
2572 if(eeprom->cbus_function[3] > CBUS_BB)
2573 output[0x15] |= CBUS_PWREN<<4;
2574 else
2575 output[0x15] |= eeprom->cbus_function[3]<<4;
2576
2577 if(eeprom->cbus_function[4] > CBUS_CLK6)
2578 output[0x16] = CBUS_SLEEP;
2579 else
2580 output[0x16] = eeprom->cbus_function[4];
2581 break;
2582 case TYPE_2232H:
2583 output[0x00] = (eeprom->channel_a_type);
2584 if ( eeprom->channel_a_driver == DRIVER_VCP)
2585 output[0x00] |= DRIVER_VCP;
2586 else
2587 output[0x00] &= ~DRIVER_VCP;
2588
2589 output[0x01] = (eeprom->channel_b_type);
2590 if ( eeprom->channel_b_driver == DRIVER_VCP)
2591 output[0x01] |= DRIVER_VCP;
2592 else
2593 output[0x01] &= ~DRIVER_VCP;
2594 if(eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2595 output[0x01] |= SUSPEND_DBUS7_BIT;
2596 else
2597 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2598
2599 if (eeprom->suspend_pull_downs == 1)
2600 output[0x0A] |= 0x4;
2601 else
2602 output[0x0A] &= ~0x4;
2603
2604 if(eeprom->group0_drive > DRIVE_16MA)
2605 output[0x0c] |= DRIVE_16MA;
2606 else
2607 output[0x0c] |= eeprom->group0_drive;
2608 if (eeprom->group0_schmitt == IS_SCHMITT)
2609 output[0x0c] |= IS_SCHMITT;
2610 if (eeprom->group0_slew == SLOW_SLEW)
2611 output[0x0c] |= SLOW_SLEW;
2612
2613 if(eeprom->group1_drive > DRIVE_16MA)
2614 output[0x0c] |= DRIVE_16MA<<4;
2615 else
2616 output[0x0c] |= eeprom->group1_drive<<4;
2617 if (eeprom->group1_schmitt == IS_SCHMITT)
2618 output[0x0c] |= IS_SCHMITT<<4;
2619 if (eeprom->group1_slew == SLOW_SLEW)
2620 output[0x0c] |= SLOW_SLEW<<4;
2621
2622 if(eeprom->group2_drive > DRIVE_16MA)
2623 output[0x0d] |= DRIVE_16MA;
2624 else
2625 output[0x0d] |= eeprom->group2_drive;
2626 if (eeprom->group2_schmitt == IS_SCHMITT)
2627 output[0x0d] |= IS_SCHMITT;
2628 if (eeprom->group2_slew == SLOW_SLEW)
2629 output[0x0d] |= SLOW_SLEW;
2630
2631 if(eeprom->group3_drive > DRIVE_16MA)
2632 output[0x0d] |= DRIVE_16MA<<4;
2633 else
2634 output[0x0d] |= eeprom->group3_drive<<4;
2635 if (eeprom->group3_schmitt == IS_SCHMITT)
2636 output[0x0d] |= IS_SCHMITT<<4;
2637 if (eeprom->group3_slew == SLOW_SLEW)
2638 output[0x0d] |= SLOW_SLEW<<4;
2639
2640 output[0x18] = eeprom->chip;
2641
2642 break;
2643 case TYPE_4232H:
2644 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
2645 }
2646
2647 // calculate checksum
2648 checksum = 0xAAAA;
2649
2650 for (i = 0; i < eeprom->size/2-1; i++)
2651 {
2652 value = output[i*2];
2653 value += output[(i*2)+1] << 8;
2654
2655 checksum = value^checksum;
2656 checksum = (checksum << 1) | (checksum >> 15);
2657 }
2658
2659 output[eeprom->size-2] = checksum;
2660 output[eeprom->size-1] = checksum >> 8;
2661
2662 return user_area_size;
2663}
2664
2665/**
2666 Decode binary EEPROM image into an ftdi_eeprom structure.
2667
2668 \param ftdi pointer to ftdi_context
2669 \param verbose Decode EEPROM on stdout
2670
2671 \retval 0: all fine
2672 \retval -1: something went wrong
2673
2674 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2675 FIXME: Strings are malloc'ed here and should be freed somewhere
2676*/
2677int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2678{
2679 unsigned char i, j;
2680 unsigned short checksum, eeprom_checksum, value;
2681 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2682 int eeprom_size;
2683 struct ftdi_eeprom *eeprom;
2684 unsigned char *buf = ftdi->eeprom->buf;
2685 int release;
2686
2687 if (ftdi == NULL)
2688 ftdi_error_return(-1,"No context");
2689 if (ftdi->eeprom == NULL)
2690 ftdi_error_return(-1,"No eeprom structure");
2691
2692 eeprom = ftdi->eeprom;
2693 eeprom_size = eeprom->size;
2694
2695 // Addr 02: Vendor ID
2696 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2697
2698 // Addr 04: Product ID
2699 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2700
2701 release = buf[0x06] + (buf[0x07]<<8);
2702
2703 // Addr 08: Config descriptor
2704 // Bit 7: always 1
2705 // Bit 6: 1 if this device is self powered, 0 if bus powered
2706 // Bit 5: 1 if this device uses remote wakeup
2707 eeprom->self_powered = buf[0x08] & 0x40;
2708 eeprom->remote_wakeup = buf[0x08] & 0x20;
2709
2710 // Addr 09: Max power consumption: max power = value * 2 mA
2711 eeprom->max_power = buf[0x09];
2712
2713 // Addr 0A: Chip configuration
2714 // Bit 7: 0 - reserved
2715 // Bit 6: 0 - reserved
2716 // Bit 5: 0 - reserved
2717 // Bit 4: 1 - Change USB version on BM and 2232C
2718 // Bit 3: 1 - Use the serial number string
2719 // Bit 2: 1 - Enable suspend pull downs for lower power
2720 // Bit 1: 1 - Out EndPoint is Isochronous
2721 // Bit 0: 1 - In EndPoint is Isochronous
2722 //
2723 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2724 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2725 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2726 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
2727 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
2728
2729 // Addr 0C: USB version low byte when 0x0A
2730 // Addr 0D: USB version high byte when 0x0A
2731 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2732
2733 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2734 // Addr 0F: Length of manufacturer string
2735 manufacturer_size = buf[0x0F]/2;
2736 if(eeprom->manufacturer)
2737 free(eeprom->manufacturer);
2738 if (manufacturer_size > 0)
2739 {
2740 eeprom->manufacturer = malloc(manufacturer_size);
2741 if (eeprom->manufacturer)
2742 {
2743 // Decode manufacturer
2744 i = buf[0x0E] & (eeprom_size -1); // offset
2745 for (j=0;j<manufacturer_size-1;j++)
2746 {
2747 eeprom->manufacturer[j] = buf[2*j+i+2];
2748 }
2749 eeprom->manufacturer[j] = '\0';
2750 }
2751 }
2752 else eeprom->manufacturer = NULL;
2753
2754 // Addr 10: Offset of the product string + 0x80, calculated later
2755 // Addr 11: Length of product string
2756 if(eeprom->product)
2757 free(eeprom->product);
2758 product_size = buf[0x11]/2;
2759 if (product_size > 0)
2760 {
2761 eeprom->product = malloc(product_size);
2762 if(eeprom->product)
2763 {
2764 // Decode product name
2765 i = buf[0x10] & (eeprom_size -1); // offset
2766 for (j=0;j<product_size-1;j++)
2767 {
2768 eeprom->product[j] = buf[2*j+i+2];
2769 }
2770 eeprom->product[j] = '\0';
2771 }
2772 }
2773 else eeprom->product = NULL;
2774
2775 // Addr 12: Offset of the serial string + 0x80, calculated later
2776 // Addr 13: Length of serial string
2777 if(eeprom->serial)
2778 free(eeprom->serial);
2779 serial_size = buf[0x13]/2;
2780 if (serial_size > 0)
2781 {
2782 eeprom->serial = malloc(serial_size);
2783 if(eeprom->serial)
2784 {
2785 // Decode serial
2786 i = buf[0x12] & (eeprom_size -1); // offset
2787 for (j=0;j<serial_size-1;j++)
2788 {
2789 eeprom->serial[j] = buf[2*j+i+2];
2790 }
2791 eeprom->serial[j] = '\0';
2792 }
2793 }
2794 else eeprom->serial = NULL;
2795
2796 // verify checksum
2797 checksum = 0xAAAA;
2798
2799 for (i = 0; i < eeprom_size/2-1; i++)
2800 {
2801 value = buf[i*2];
2802 value += buf[(i*2)+1] << 8;
2803
2804 checksum = value^checksum;
2805 checksum = (checksum << 1) | (checksum >> 15);
2806 }
2807
2808 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2809
2810 if (eeprom_checksum != checksum)
2811 {
2812 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2813 ftdi_error_return(-1,"EEPROM checksum error");
2814 }
2815
2816 eeprom->channel_a_type = 0;
2817 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
2818 {
2819 eeprom->chip = -1;
2820 }
2821 else if(ftdi->type == TYPE_2232C)
2822 {
2823 eeprom->channel_a_type = buf[0x00] & 0x7;
2824 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2825 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2826 eeprom->channel_b_type = buf[0x01] & 0x7;
2827 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2828 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
2829 eeprom->chip = buf[0x14];
2830 }
2831 else if(ftdi->type == TYPE_R)
2832 {
2833 /* TYPE_R flags D2XX, not VCP as all others*/
2834 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2835 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2836 if( (buf[0x01]&0x40) != 0x40)
2837 fprintf(stderr,
2838 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2839 " If this happened with the\n"
2840 " EEPROM programmed by FTDI tools, please report "
2841 "to libftdi@developer.intra2net.com\n");
2842
2843 eeprom->chip = buf[0x16];
2844 // Addr 0B: Invert data lines
2845 // Works only on FT232R, not FT245R, but no way to distinguish
2846 eeprom->invert = buf[0x0B];
2847 // Addr 14: CBUS function: CBUS0, CBUS1
2848 // Addr 15: CBUS function: CBUS2, CBUS3
2849 // Addr 16: CBUS function: CBUS5
2850 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2851 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2852 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2853 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2854 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
2855 }
2856 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
2857 {
2858 eeprom->channel_a_type = buf[0x00] & 0x7;
2859 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2860 eeprom->channel_b_type = buf[0x01] & 0x7;
2861 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2862
2863 if(ftdi->type == TYPE_2232H)
2864 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
2865
2866 eeprom->chip = buf[0x18];
2867 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2868 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2869 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2870 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2871 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2872 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2873 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2874 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2875 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2876 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2877 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2878 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
2879 }
2880
2881 if(verbose)
2882 {
2883 char *channel_mode[] = {"UART","245","CPU", "unknown", "OPTO"};
2884 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
2885 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
2886 fprintf(stdout, "Release: 0x%04x\n",release);
2887
2888 if(eeprom->self_powered)
2889 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
2890 else
2891 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
2892 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
2893 if(eeprom->manufacturer)
2894 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
2895 if(eeprom->product)
2896 fprintf(stdout, "Product: %s\n",eeprom->product);
2897 if(eeprom->serial)
2898 fprintf(stdout, "Serial: %s\n",eeprom->serial);
2899 fprintf(stdout, "Checksum : %04x\n", checksum);
2900 if (ftdi->type == TYPE_R)
2901 fprintf(stdout, "Internal EEPROM\n");
2902 else if (eeprom->chip >= 0x46)
2903 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
2904 if(eeprom->suspend_dbus7)
2905 fprintf(stdout, "Suspend on DBUS7\n");
2906 if(eeprom->suspend_pull_downs)
2907 fprintf(stdout, "Pull IO pins low during suspend\n");
2908 if(eeprom->remote_wakeup)
2909 fprintf(stdout, "Enable Remote Wake Up\n");
2910 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
2911 if (ftdi->type >= TYPE_2232C)
2912 fprintf(stdout,"Channel A has Mode %s%s%s\n",
2913 channel_mode[eeprom->channel_a_type],
2914 (eeprom->channel_a_driver)?" VCP":"",
2915 (eeprom->high_current_a)?" High Current IO":"");
2916 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R))
2917 fprintf(stdout,"Channel B has Mode %s%s%s\n",
2918 channel_mode[eeprom->channel_b_type],
2919 (eeprom->channel_b_driver)?" VCP":"",
2920 (eeprom->high_current_b)?" High Current IO":"");
2921 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
2922 eeprom->use_usb_version == USE_USB_VERSION_BIT)
2923 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
2924
2925 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
2926 {
2927 fprintf(stdout,"%s has %d mA drive%s%s\n",
2928 (ftdi->type == TYPE_2232H)?"AL":"A",
2929 (eeprom->group0_drive+1) *4,
2930 (eeprom->group0_schmitt)?" Schmitt Input":"",
2931 (eeprom->group0_slew)?" Slow Slew":"");
2932 fprintf(stdout,"%s has %d mA drive%s%s\n",
2933 (ftdi->type == TYPE_2232H)?"AH":"B",
2934 (eeprom->group1_drive+1) *4,
2935 (eeprom->group1_schmitt)?" Schmitt Input":"",
2936 (eeprom->group1_slew)?" Slow Slew":"");
2937 fprintf(stdout,"%s has %d mA drive%s%s\n",
2938 (ftdi->type == TYPE_2232H)?"BL":"C",
2939 (eeprom->group2_drive+1) *4,
2940 (eeprom->group2_schmitt)?" Schmitt Input":"",
2941 (eeprom->group2_slew)?" Slow Slew":"");
2942 fprintf(stdout,"%s has %d mA drive%s%s\n",
2943 (ftdi->type == TYPE_2232H)?"BH":"D",
2944 (eeprom->group3_drive+1) *4,
2945 (eeprom->group3_schmitt)?" Schmitt Input":"",
2946 (eeprom->group3_slew)?" Slow Slew":"");
2947 }
2948 if (ftdi->type == TYPE_R)
2949 {
2950 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
2951 "SLEEP","CLK48","CLK24","CLK12","CLK6",
2952 "IOMODE","BB_WR","BB_RD"};
2953 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
2954 int i;
2955
2956 if(eeprom->invert)
2957 {
2958 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
2959 fprintf(stdout,"Inverted bits:");
2960 for (i=0; i<8; i++)
2961 if((eeprom->invert & (1<<i)) == (1<<i))
2962 fprintf(stdout," %s",r_bits[i]);
2963 fprintf(stdout,"\n");
2964 }
2965 for(i=0; i<5; i++)
2966 {
2967 if(eeprom->cbus_function[i]<CBUS_BB)
2968 fprintf(stdout,"C%d Function: %s\n", i,
2969 cbus_mux[eeprom->cbus_function[i]]);
2970 else
2971 fprintf(stdout,"C%d BB Function: %s\n", i,
2972 cbus_BB[i]);
2973 }
2974 }
2975 }
2976 return 0;
2977}
2978
2979/**
2980 Get a value from the decoded EEPROM structure
2981
2982 \\param ftdi pointer to ftdi_context
2983 \\param value_name Enum of the value to query
2984 \\param Pointer to store read value
2985
2986 \\retval 0: all fine
2987 \\retval -1: Value doesn't exist
2988*/
2989int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
2990{
2991 switch (value_name)
2992 {
2993 case VENDOR_ID:
2994 *value = ftdi->eeprom->vendor_id;
2995 break;
2996 case PRODUCT_ID:
2997 *value = ftdi->eeprom->product_id;
2998 break;
2999 case SELF_POWERED:
3000 *value = ftdi->eeprom->self_powered;
3001 break;
3002 case REMOTE_WAKEUP:
3003 *value = ftdi->eeprom->remote_wakeup;
3004 break;
3005 case IS_NOT_PNP:
3006 *value = ftdi->eeprom->is_not_pnp;
3007 break;
3008 case SUSPEND_DBUS7:
3009 *value = ftdi->eeprom->suspend_dbus7;
3010 break;
3011 case IN_IS_ISOCHRONOUS:
3012 *value = ftdi->eeprom->in_is_isochronous;
3013 break;
3014 case SUSPEND_PULL_DOWNS:
3015 *value = ftdi->eeprom->suspend_pull_downs;
3016 break;
3017 case USE_SERIAL:
3018 *value = ftdi->eeprom->use_serial;
3019 break;
3020 case USB_VERSION:
3021 *value = ftdi->eeprom->usb_version;
3022 break;
3023 case MAX_POWER:
3024 *value = ftdi->eeprom->max_power;
3025 break;
3026 case CHANNEL_A_TYPE:
3027 *value = ftdi->eeprom->channel_a_type;
3028 break;
3029 case CHANNEL_B_TYPE:
3030 *value = ftdi->eeprom->channel_b_type;
3031 break;
3032 case CHANNEL_A_DRIVER:
3033 *value = ftdi->eeprom->channel_a_driver;
3034 break;
3035 case CHANNEL_B_DRIVER:
3036 *value = ftdi->eeprom->channel_b_driver;
3037 break;
3038 case CBUS_FUNCTION_0:
3039 *value = ftdi->eeprom->cbus_function[0];
3040 break;
3041 case CBUS_FUNCTION_1:
3042 *value = ftdi->eeprom->cbus_function[1];
3043 break;
3044 case CBUS_FUNCTION_2:
3045 *value = ftdi->eeprom->cbus_function[2];
3046 break;
3047 case CBUS_FUNCTION_3:
3048 *value = ftdi->eeprom->cbus_function[3];
3049 break;
3050 case CBUS_FUNCTION_4:
3051 *value = ftdi->eeprom->cbus_function[4];
3052 break;
3053 case HIGH_CURRENT:
3054 *value = ftdi->eeprom->high_current;
3055 break;
3056 case HIGH_CURRENT_A:
3057 *value = ftdi->eeprom->high_current_a;
3058 break;
3059 case HIGH_CURRENT_B:
3060 *value = ftdi->eeprom->high_current_b;
3061 break;
3062 case INVERT:
3063 *value = ftdi->eeprom->invert;
3064 break;
3065 case GROUP0_DRIVE:
3066 *value = ftdi->eeprom->group0_drive;
3067 break;
3068 case GROUP0_SCHMITT:
3069 *value = ftdi->eeprom->group0_schmitt;
3070 break;
3071 case GROUP0_SLEW:
3072 *value = ftdi->eeprom->group0_slew;
3073 break;
3074 case GROUP1_DRIVE:
3075 *value = ftdi->eeprom->group1_drive;
3076 break;
3077 case GROUP1_SCHMITT:
3078 *value = ftdi->eeprom->group1_schmitt;
3079 break;
3080 case GROUP1_SLEW:
3081 *value = ftdi->eeprom->group1_slew;
3082 break;
3083 case GROUP2_DRIVE:
3084 *value = ftdi->eeprom->group2_drive;
3085 break;
3086 case GROUP2_SCHMITT:
3087 *value = ftdi->eeprom->group2_schmitt;
3088 break;
3089 case GROUP2_SLEW:
3090 *value = ftdi->eeprom->group2_slew;
3091 break;
3092 case GROUP3_DRIVE:
3093 *value = ftdi->eeprom->group3_drive;
3094 break;
3095 case GROUP3_SCHMITT:
3096 *value = ftdi->eeprom->group3_schmitt;
3097 break;
3098 case GROUP3_SLEW:
3099 *value = ftdi->eeprom->group3_slew;
3100 break;
3101 case CHIP_TYPE:
3102 *value = ftdi->eeprom->chip;
3103 break;
3104 case CHIP_SIZE:
3105 *value = ftdi->eeprom->size;
3106 break;
3107 default:
3108 ftdi_error_return(-1, "Request for unknown EEPROM value");
3109 }
3110 return 0;
3111}
3112
3113/**
3114 Set a value in the decoded EEPROM Structure
3115 No parameter checking is performed
3116
3117 \\param ftdi pointer to ftdi_context
3118 \\param value_name Enum of the value to query
3119 \\param Value to set
3120
3121 \\retval 0: all fine
3122 \\retval -1: Value doesn't exist
3123 \\retval -2: Value not user settable
3124*/
3125int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3126{
3127 switch (value_name)
3128 {
3129 case VENDOR_ID:
3130 ftdi->eeprom->vendor_id = value;
3131 break;
3132 case PRODUCT_ID:
3133 ftdi->eeprom->product_id = value;
3134 break;
3135 case SELF_POWERED:
3136 ftdi->eeprom->self_powered = value;
3137 break;
3138 case REMOTE_WAKEUP:
3139 ftdi->eeprom->remote_wakeup = value;
3140 break;
3141 case IS_NOT_PNP:
3142 ftdi->eeprom->is_not_pnp = value;
3143 break;
3144 case SUSPEND_DBUS7:
3145 ftdi->eeprom->suspend_dbus7 = value;
3146 break;
3147 case IN_IS_ISOCHRONOUS:
3148 ftdi->eeprom->in_is_isochronous = value;
3149 break;
3150 case SUSPEND_PULL_DOWNS:
3151 ftdi->eeprom->suspend_pull_downs = value;
3152 break;
3153 case USE_SERIAL:
3154 ftdi->eeprom->use_serial = value;
3155 break;
3156 case USB_VERSION:
3157 ftdi->eeprom->usb_version = value;
3158 break;
3159 case MAX_POWER:
3160 ftdi->eeprom->max_power = value;
3161 break;
3162 case CHANNEL_A_TYPE:
3163 ftdi->eeprom->channel_a_type = value;
3164 break;
3165 case CHANNEL_B_TYPE:
3166 ftdi->eeprom->channel_b_type = value;
3167 break;
3168 case CHANNEL_A_DRIVER:
3169 ftdi->eeprom->channel_a_driver = value;
3170 break;
3171 case CHANNEL_B_DRIVER:
3172 ftdi->eeprom->channel_b_driver = value;
3173 break;
3174 case CBUS_FUNCTION_0:
3175 ftdi->eeprom->cbus_function[0] = value;
3176 break;
3177 case CBUS_FUNCTION_1:
3178 ftdi->eeprom->cbus_function[1] = value;
3179 break;
3180 case CBUS_FUNCTION_2:
3181 ftdi->eeprom->cbus_function[2] = value;
3182 break;
3183 case CBUS_FUNCTION_3:
3184 ftdi->eeprom->cbus_function[3] = value;
3185 break;
3186 case CBUS_FUNCTION_4:
3187 ftdi->eeprom->cbus_function[4] = value;
3188 break;
3189 case HIGH_CURRENT:
3190 ftdi->eeprom->high_current = value;
3191 break;
3192 case HIGH_CURRENT_A:
3193 ftdi->eeprom->high_current_a = value;
3194 break;
3195 case HIGH_CURRENT_B:
3196 ftdi->eeprom->high_current_b = value;
3197 break;
3198 case INVERT:
3199 ftdi->eeprom->invert = value;
3200 break;
3201 case GROUP0_DRIVE:
3202 ftdi->eeprom->group0_drive = value;
3203 break;
3204 case GROUP0_SCHMITT:
3205 ftdi->eeprom->group0_schmitt = value;
3206 break;
3207 case GROUP0_SLEW:
3208 ftdi->eeprom->group0_slew = value;
3209 break;
3210 case GROUP1_DRIVE:
3211 ftdi->eeprom->group1_drive = value;
3212 break;
3213 case GROUP1_SCHMITT:
3214 ftdi->eeprom->group1_schmitt = value;
3215 break;
3216 case GROUP1_SLEW:
3217 ftdi->eeprom->group1_slew = value;
3218 break;
3219 case GROUP2_DRIVE:
3220 ftdi->eeprom->group2_drive = value;
3221 break;
3222 case GROUP2_SCHMITT:
3223 ftdi->eeprom->group2_schmitt = value;
3224 break;
3225 case GROUP2_SLEW:
3226 ftdi->eeprom->group2_slew = value;
3227 break;
3228 case GROUP3_DRIVE:
3229 ftdi->eeprom->group3_drive = value;
3230 break;
3231 case GROUP3_SCHMITT:
3232 ftdi->eeprom->group3_schmitt = value;
3233 break;
3234 case GROUP3_SLEW:
3235 ftdi->eeprom->group3_slew = value;
3236 break;
3237 case CHIP_TYPE:
3238 ftdi->eeprom->chip = value;
3239 break;
3240 case CHIP_SIZE:
3241 ftdi_error_return(-2, "EEPROM Value can't be changed");
3242 default :
3243 ftdi_error_return(-1, "Request to unknown EEPROM value");
3244 }
3245 return 0;
3246}
3247
3248/** Get the read-only buffer to the binary EEPROM content
3249
3250 \param ftdi pointer to ftdi_context
3251 \param ftdi buffer to receive EEPROM content
3252 \param size Size of receiving buffer
3253
3254 \retval 0: All fine
3255 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3256*/
3257int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3258 {
3259 if (!ftdi || !(ftdi->eeprom))
3260 ftdi_error_return(-1, "No appropriate structure");
3261 memcpy(buf, ftdi->eeprom->buf, size);
3262 return 0;
3263 }
3264
3265/**
3266 Read eeprom location
3267
3268 \param ftdi pointer to ftdi_context
3269 \param eeprom_addr Address of eeprom location to be read
3270 \param eeprom_val Pointer to store read eeprom location
3271
3272 \retval 0: all fine
3273 \retval -1: read failed
3274 \retval -2: USB device unavailable
3275*/
3276int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3277{
3278 if (ftdi == NULL || ftdi->usb_dev == NULL)
3279 ftdi_error_return(-2, "USB device unavailable");
3280
3281 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3282 ftdi_error_return(-1, "reading eeprom failed");
3283
3284 return 0;
3285}
3286
3287/**
3288 Read eeprom
3289
3290 \param ftdi pointer to ftdi_context
3291
3292 \retval 0: all fine
3293 \retval -1: read failed
3294 \retval -2: USB device unavailable
3295*/
3296int ftdi_read_eeprom(struct ftdi_context *ftdi)
3297{
3298 int i;
3299 unsigned char *buf;
3300
3301 if (ftdi == NULL || ftdi->usb_dev == NULL)
3302 ftdi_error_return(-2, "USB device unavailable");
3303 buf = ftdi->eeprom->buf;
3304
3305 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
3306 {
3307 if (libusb_control_transfer(
3308 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3309 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
3310 ftdi_error_return(-1, "reading eeprom failed");
3311 }
3312
3313 if (ftdi->type == TYPE_R)
3314 ftdi->eeprom->size = 0x80;
3315 /* Guesses size of eeprom by comparing halves
3316 - will not work with blank eeprom */
3317 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3318 ftdi->eeprom->size = -1;
3319 else if(memcmp(buf,&buf[0x80],0x80) == 0)
3320 ftdi->eeprom->size = 0x80;
3321 else if(memcmp(buf,&buf[0x40],0x40) == 0)
3322 ftdi->eeprom->size = 0x40;
3323 else
3324 ftdi->eeprom->size = 0x100;
3325 return 0;
3326}
3327
3328/*
3329 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3330 Function is only used internally
3331 \internal
3332*/
3333static unsigned char ftdi_read_chipid_shift(unsigned char value)
3334{
3335 return ((value & 1) << 1) |
3336 ((value & 2) << 5) |
3337 ((value & 4) >> 2) |
3338 ((value & 8) << 4) |
3339 ((value & 16) >> 1) |
3340 ((value & 32) >> 1) |
3341 ((value & 64) >> 4) |
3342 ((value & 128) >> 2);
3343}
3344
3345/**
3346 Read the FTDIChip-ID from R-type devices
3347
3348 \param ftdi pointer to ftdi_context
3349 \param chipid Pointer to store FTDIChip-ID
3350
3351 \retval 0: all fine
3352 \retval -1: read failed
3353 \retval -2: USB device unavailable
3354*/
3355int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3356{
3357 unsigned int a = 0, b = 0;
3358
3359 if (ftdi == NULL || ftdi->usb_dev == NULL)
3360 ftdi_error_return(-2, "USB device unavailable");
3361
3362 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3363 {
3364 a = a << 8 | a >> 8;
3365 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3366 {
3367 b = b << 8 | b >> 8;
3368 a = (a << 16) | (b & 0xFFFF);
3369 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3370 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3371 *chipid = a ^ 0xa5f0f7d1;
3372 return 0;
3373 }
3374 }
3375
3376 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3377}
3378
3379/**
3380 Write eeprom location
3381
3382 \param ftdi pointer to ftdi_context
3383 \param eeprom_addr Address of eeprom location to be written
3384 \param eeprom_val Value to be written
3385
3386 \retval 0: all fine
3387 \retval -1: write failed
3388 \retval -2: USB device unavailable
3389 \retval -3: Invalid access to checksum protected area below 0x80
3390 \retval -4: Device can't access unprotected area
3391 \retval -5: Reading chip type failed
3392*/
3393int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3394 unsigned short eeprom_val)
3395{
3396 int chip_type_location;
3397 unsigned short chip_type;
3398
3399 if (ftdi == NULL || ftdi->usb_dev == NULL)
3400 ftdi_error_return(-2, "USB device unavailable");
3401
3402 if(eeprom_addr <0x80)
3403 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3404
3405
3406 switch (ftdi->type)
3407 {
3408 case TYPE_BM:
3409 case TYPE_2232C:
3410 chip_type_location = 0x14;
3411 break;
3412 case TYPE_2232H:
3413 case TYPE_4232H:
3414 chip_type_location = 0x18;
3415 break;
3416 default:
3417 ftdi_error_return(-4, "Device can't access unprotected area");
3418 }
3419
3420 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3421 ftdi_error_return(-5, "Reading failed failed");
3422 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3423 if((chip_type & 0xff) != 0x66)
3424 {
3425 ftdi_error_return(-6, "EEPROM is not of 93x66");
3426 }
3427
3428 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3429 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3430 NULL, 0, ftdi->usb_write_timeout) != 0)
3431 ftdi_error_return(-1, "unable to write eeprom");
3432
3433 return 0;
3434}
3435
3436/**
3437 Write eeprom
3438
3439 \param ftdi pointer to ftdi_context
3440
3441 \retval 0: all fine
3442 \retval -1: read failed
3443 \retval -2: USB device unavailable
3444*/
3445int ftdi_write_eeprom(struct ftdi_context *ftdi)
3446{
3447 unsigned short usb_val, status;
3448 int i, ret;
3449 unsigned char *eeprom;
3450
3451 if (ftdi == NULL || ftdi->usb_dev == NULL)
3452 ftdi_error_return(-2, "USB device unavailable");
3453 eeprom = ftdi->eeprom->buf;
3454
3455 /* These commands were traced while running MProg */
3456 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3457 return ret;
3458 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3459 return ret;
3460 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3461 return ret;
3462
3463 for (i = 0; i < ftdi->eeprom->size/2; i++)
3464 {
3465 usb_val = eeprom[i*2];
3466 usb_val += eeprom[(i*2)+1] << 8;
3467 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3468 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3469 NULL, 0, ftdi->usb_write_timeout) < 0)
3470 ftdi_error_return(-1, "unable to write eeprom");
3471 }
3472
3473 return 0;
3474}
3475
3476/**
3477 Erase eeprom
3478
3479 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3480
3481 \param ftdi pointer to ftdi_context
3482
3483 \retval 0: all fine
3484 \retval -1: erase failed
3485 \retval -2: USB device unavailable
3486 \retval -3: Writing magic failed
3487 \retval -4: Read EEPROM failed
3488 \retval -5: Unexpected EEPROM value
3489*/
3490#define MAGIC 0x55aa
3491int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3492{
3493 unsigned short eeprom_value;
3494 if (ftdi == NULL || ftdi->usb_dev == NULL)
3495 ftdi_error_return(-2, "USB device unavailable");
3496
3497 if(ftdi->type == TYPE_R)
3498 {
3499 ftdi->eeprom->chip = 0;
3500 return 0;
3501 }
3502
3503 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3504 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3505 ftdi_error_return(-1, "unable to erase eeprom");
3506
3507
3508 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3509 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3510 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3511 Chip is 93x66 if magic is only read at word position 0xc0*/
3512 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3513 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3514 NULL, 0, ftdi->usb_write_timeout) != 0)
3515 ftdi_error_return(-3, "Writing magic failed");
3516 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3517 ftdi_error_return(-4, "Reading failed failed");
3518 if(eeprom_value == MAGIC)
3519 {
3520 ftdi->eeprom->chip = 0x46;
3521 }
3522 else
3523 {
3524 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3525 ftdi_error_return(-4, "Reading failed failed");
3526 if(eeprom_value == MAGIC)
3527 ftdi->eeprom->chip = 0x56;
3528 else
3529 {
3530 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3531 ftdi_error_return(-4, "Reading failed failed");
3532 if(eeprom_value == MAGIC)
3533 ftdi->eeprom->chip = 0x66;
3534 else
3535 {
3536 ftdi->eeprom->chip = -1;
3537 }
3538 }
3539 }
3540 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3541 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3542 ftdi_error_return(-1, "unable to erase eeprom");
3543 return 0;
3544}
3545
3546/**
3547 Get string representation for last error code
3548
3549 \param ftdi pointer to ftdi_context
3550
3551 \retval Pointer to error string
3552*/
3553char *ftdi_get_error_string (struct ftdi_context *ftdi)
3554{
3555 if (ftdi == NULL)
3556 return "";
3557
3558 return ftdi->error_str;
3559}
3560
3561/* @} end of doxygen libftdi group */