Add FT230X support to ftdi_usb_find_all()
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2014 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi_i.h"
38#include "ftdi.h"
39#include "ftdi_version_i.h"
40
41#define ftdi_error_return(code, str) do { \
42 if ( ftdi ) \
43 ftdi->error_str = str; \
44 else \
45 fprintf(stderr, str); \
46 return code; \
47 } while(0);
48
49#define ftdi_error_return_free_device_list(code, str, devs) do { \
50 libusb_free_device_list(devs,1); \
51 ftdi->error_str = str; \
52 return code; \
53 } while(0);
54
55
56/**
57 Internal function to close usb device pointer.
58 Sets ftdi->usb_dev to NULL.
59 \internal
60
61 \param ftdi pointer to ftdi_context
62
63 \retval none
64*/
65static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
66{
67 if (ftdi && ftdi->usb_dev)
68 {
69 libusb_close (ftdi->usb_dev);
70 ftdi->usb_dev = NULL;
71 if(ftdi->eeprom)
72 ftdi->eeprom->initialized_for_connected_device = 0;
73 }
74}
75
76/**
77 Initializes a ftdi_context.
78
79 \param ftdi pointer to ftdi_context
80
81 \retval 0: all fine
82 \retval -1: couldn't allocate read buffer
83 \retval -2: couldn't allocate struct buffer
84 \retval -3: libusb_init() failed
85
86 \remark This should be called before all functions
87*/
88int ftdi_init(struct ftdi_context *ftdi)
89{
90 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
91 ftdi->usb_ctx = NULL;
92 ftdi->usb_dev = NULL;
93 ftdi->usb_read_timeout = 5000;
94 ftdi->usb_write_timeout = 5000;
95
96 ftdi->type = TYPE_BM; /* chip type */
97 ftdi->baudrate = -1;
98 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
99
100 ftdi->readbuffer = NULL;
101 ftdi->readbuffer_offset = 0;
102 ftdi->readbuffer_remaining = 0;
103 ftdi->writebuffer_chunksize = 4096;
104 ftdi->max_packet_size = 0;
105 ftdi->error_str = NULL;
106 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
107
108 if (libusb_init(&ftdi->usb_ctx) < 0)
109 ftdi_error_return(-3, "libusb_init() failed");
110
111 ftdi_set_interface(ftdi, INTERFACE_ANY);
112 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
113
114 if (eeprom == 0)
115 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
116 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
117 ftdi->eeprom = eeprom;
118
119 /* All fine. Now allocate the readbuffer */
120 return ftdi_read_data_set_chunksize(ftdi, 4096);
121}
122
123/**
124 Allocate and initialize a new ftdi_context
125
126 \return a pointer to a new ftdi_context, or NULL on failure
127*/
128struct ftdi_context *ftdi_new(void)
129{
130 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
131
132 if (ftdi == NULL)
133 {
134 return NULL;
135 }
136
137 if (ftdi_init(ftdi) != 0)
138 {
139 free(ftdi);
140 return NULL;
141 }
142
143 return ftdi;
144}
145
146/**
147 Open selected channels on a chip, otherwise use first channel.
148
149 \param ftdi pointer to ftdi_context
150 \param interface Interface to use for FT2232C/2232H/4232H chips.
151
152 \retval 0: all fine
153 \retval -1: unknown interface
154 \retval -2: USB device unavailable
155 \retval -3: Device already open, interface can't be set in that state
156*/
157int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
158{
159 if (ftdi == NULL)
160 ftdi_error_return(-2, "USB device unavailable");
161
162 if (ftdi->usb_dev != NULL)
163 {
164 int check_interface = interface;
165 if (check_interface == INTERFACE_ANY)
166 check_interface = INTERFACE_A;
167
168 if (ftdi->index != check_interface)
169 ftdi_error_return(-3, "Interface can not be changed on an already open device");
170 }
171
172 switch (interface)
173 {
174 case INTERFACE_ANY:
175 case INTERFACE_A:
176 ftdi->interface = 0;
177 ftdi->index = INTERFACE_A;
178 ftdi->in_ep = 0x02;
179 ftdi->out_ep = 0x81;
180 break;
181 case INTERFACE_B:
182 ftdi->interface = 1;
183 ftdi->index = INTERFACE_B;
184 ftdi->in_ep = 0x04;
185 ftdi->out_ep = 0x83;
186 break;
187 case INTERFACE_C:
188 ftdi->interface = 2;
189 ftdi->index = INTERFACE_C;
190 ftdi->in_ep = 0x06;
191 ftdi->out_ep = 0x85;
192 break;
193 case INTERFACE_D:
194 ftdi->interface = 3;
195 ftdi->index = INTERFACE_D;
196 ftdi->in_ep = 0x08;
197 ftdi->out_ep = 0x87;
198 break;
199 default:
200 ftdi_error_return(-1, "Unknown interface");
201 }
202 return 0;
203}
204
205/**
206 Deinitializes a ftdi_context.
207
208 \param ftdi pointer to ftdi_context
209*/
210void ftdi_deinit(struct ftdi_context *ftdi)
211{
212 if (ftdi == NULL)
213 return;
214
215 ftdi_usb_close_internal (ftdi);
216
217 if (ftdi->readbuffer != NULL)
218 {
219 free(ftdi->readbuffer);
220 ftdi->readbuffer = NULL;
221 }
222
223 if (ftdi->eeprom != NULL)
224 {
225 if (ftdi->eeprom->manufacturer != 0)
226 {
227 free(ftdi->eeprom->manufacturer);
228 ftdi->eeprom->manufacturer = 0;
229 }
230 if (ftdi->eeprom->product != 0)
231 {
232 free(ftdi->eeprom->product);
233 ftdi->eeprom->product = 0;
234 }
235 if (ftdi->eeprom->serial != 0)
236 {
237 free(ftdi->eeprom->serial);
238 ftdi->eeprom->serial = 0;
239 }
240 free(ftdi->eeprom);
241 ftdi->eeprom = NULL;
242 }
243
244 if (ftdi->usb_ctx)
245 {
246 libusb_exit(ftdi->usb_ctx);
247 ftdi->usb_ctx = NULL;
248 }
249}
250
251/**
252 Deinitialize and free an ftdi_context.
253
254 \param ftdi pointer to ftdi_context
255*/
256void ftdi_free(struct ftdi_context *ftdi)
257{
258 ftdi_deinit(ftdi);
259 free(ftdi);
260}
261
262/**
263 Use an already open libusb device.
264
265 \param ftdi pointer to ftdi_context
266 \param usb libusb libusb_device_handle to use
267*/
268void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
269{
270 if (ftdi == NULL)
271 return;
272
273 ftdi->usb_dev = usb;
274}
275
276/**
277 * @brief Get libftdi library version
278 *
279 * @return ftdi_version_info Library version information
280 **/
281struct ftdi_version_info ftdi_get_library_version(void)
282{
283 struct ftdi_version_info ver;
284
285 ver.major = FTDI_MAJOR_VERSION;
286 ver.minor = FTDI_MINOR_VERSION;
287 ver.micro = FTDI_MICRO_VERSION;
288 ver.version_str = FTDI_VERSION_STRING;
289 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
290
291 return ver;
292}
293
294/**
295 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
296 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
297 use. With VID:PID 0:0, search for the default devices
298 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014, 0x403:0x6015)
299
300 \param ftdi pointer to ftdi_context
301 \param devlist Pointer where to store list of found devices
302 \param vendor Vendor ID to search for
303 \param product Product ID to search for
304
305 \retval >0: number of devices found
306 \retval -3: out of memory
307 \retval -5: libusb_get_device_list() failed
308 \retval -6: libusb_get_device_descriptor() failed
309*/
310int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
311{
312 struct ftdi_device_list **curdev;
313 libusb_device *dev;
314 libusb_device **devs;
315 int count = 0;
316 int i = 0;
317
318 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
319 ftdi_error_return(-5, "libusb_get_device_list() failed");
320
321 curdev = devlist;
322 *curdev = NULL;
323
324 while ((dev = devs[i++]) != NULL)
325 {
326 struct libusb_device_descriptor desc;
327
328 if (libusb_get_device_descriptor(dev, &desc) < 0)
329 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
330
331 if (((vendor || product) &&
332 desc.idVendor == vendor && desc.idProduct == product) ||
333 (!(vendor || product) &&
334 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
335 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014
336 || desc.idProduct == 0x6015)))
337 {
338 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
339 if (!*curdev)
340 ftdi_error_return_free_device_list(-3, "out of memory", devs);
341
342 (*curdev)->next = NULL;
343 (*curdev)->dev = dev;
344 libusb_ref_device(dev);
345 curdev = &(*curdev)->next;
346 count++;
347 }
348 }
349 libusb_free_device_list(devs,1);
350 return count;
351}
352
353/**
354 Frees a usb device list.
355
356 \param devlist USB device list created by ftdi_usb_find_all()
357*/
358void ftdi_list_free(struct ftdi_device_list **devlist)
359{
360 struct ftdi_device_list *curdev, *next;
361
362 for (curdev = *devlist; curdev != NULL;)
363 {
364 next = curdev->next;
365 libusb_unref_device(curdev->dev);
366 free(curdev);
367 curdev = next;
368 }
369
370 *devlist = NULL;
371}
372
373/**
374 Frees a usb device list.
375
376 \param devlist USB device list created by ftdi_usb_find_all()
377*/
378void ftdi_list_free2(struct ftdi_device_list *devlist)
379{
380 ftdi_list_free(&devlist);
381}
382
383/**
384 Return device ID strings from the usb device.
385
386 The parameters manufacturer, description and serial may be NULL
387 or pointer to buffers to store the fetched strings.
388
389 \note Use this function only in combination with ftdi_usb_find_all()
390 as it closes the internal "usb_dev" after use.
391
392 \param ftdi pointer to ftdi_context
393 \param dev libusb usb_dev to use
394 \param manufacturer Store manufacturer string here if not NULL
395 \param mnf_len Buffer size of manufacturer string
396 \param description Store product description string here if not NULL
397 \param desc_len Buffer size of product description string
398 \param serial Store serial string here if not NULL
399 \param serial_len Buffer size of serial string
400
401 \retval 0: all fine
402 \retval -1: wrong arguments
403 \retval -4: unable to open device
404 \retval -7: get product manufacturer failed
405 \retval -8: get product description failed
406 \retval -9: get serial number failed
407 \retval -11: libusb_get_device_descriptor() failed
408*/
409int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
410 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
411{
412 struct libusb_device_descriptor desc;
413
414 if ((ftdi==NULL) || (dev==NULL))
415 return -1;
416
417 if (ftdi->usb_dev == NULL && libusb_open(dev, &ftdi->usb_dev) < 0)
418 ftdi_error_return(-4, "libusb_open() failed");
419
420 if (libusb_get_device_descriptor(dev, &desc) < 0)
421 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
422
423 if (manufacturer != NULL)
424 {
425 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
426 {
427 ftdi_usb_close_internal (ftdi);
428 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
429 }
430 }
431
432 if (description != NULL)
433 {
434 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
435 {
436 ftdi_usb_close_internal (ftdi);
437 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
438 }
439 }
440
441 if (serial != NULL)
442 {
443 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
444 {
445 ftdi_usb_close_internal (ftdi);
446 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
447 }
448 }
449
450 ftdi_usb_close_internal (ftdi);
451
452 return 0;
453}
454
455/**
456 * Internal function to determine the maximum packet size.
457 * \param ftdi pointer to ftdi_context
458 * \param dev libusb usb_dev to use
459 * \retval Maximum packet size for this device
460 */
461static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
462{
463 struct libusb_device_descriptor desc;
464 struct libusb_config_descriptor *config0;
465 unsigned int packet_size;
466
467 // Sanity check
468 if (ftdi == NULL || dev == NULL)
469 return 64;
470
471 // Determine maximum packet size. Init with default value.
472 // New hi-speed devices from FTDI use a packet size of 512 bytes
473 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
474 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
475 packet_size = 512;
476 else
477 packet_size = 64;
478
479 if (libusb_get_device_descriptor(dev, &desc) < 0)
480 return packet_size;
481
482 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
483 return packet_size;
484
485 if (desc.bNumConfigurations > 0)
486 {
487 if (ftdi->interface < config0->bNumInterfaces)
488 {
489 struct libusb_interface interface = config0->interface[ftdi->interface];
490 if (interface.num_altsetting > 0)
491 {
492 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
493 if (descriptor.bNumEndpoints > 0)
494 {
495 packet_size = descriptor.endpoint[0].wMaxPacketSize;
496 }
497 }
498 }
499 }
500
501 libusb_free_config_descriptor (config0);
502 return packet_size;
503}
504
505/**
506 Opens a ftdi device given by an usb_device.
507
508 \param ftdi pointer to ftdi_context
509 \param dev libusb usb_dev to use
510
511 \retval 0: all fine
512 \retval -3: unable to config device
513 \retval -4: unable to open device
514 \retval -5: unable to claim device
515 \retval -6: reset failed
516 \retval -7: set baudrate failed
517 \retval -8: ftdi context invalid
518 \retval -9: libusb_get_device_descriptor() failed
519 \retval -10: libusb_get_config_descriptor() failed
520 \retval -11: libusb_detach_kernel_driver() failed
521 \retval -12: libusb_get_configuration() failed
522*/
523int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
524{
525 struct libusb_device_descriptor desc;
526 struct libusb_config_descriptor *config0;
527 int cfg, cfg0, detach_errno = 0;
528
529 if (ftdi == NULL)
530 ftdi_error_return(-8, "ftdi context invalid");
531
532 if (libusb_open(dev, &ftdi->usb_dev) < 0)
533 ftdi_error_return(-4, "libusb_open() failed");
534
535 if (libusb_get_device_descriptor(dev, &desc) < 0)
536 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
537
538 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
539 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
540 cfg0 = config0->bConfigurationValue;
541 libusb_free_config_descriptor (config0);
542
543 // Try to detach ftdi_sio kernel module.
544 //
545 // The return code is kept in a separate variable and only parsed
546 // if usb_set_configuration() or usb_claim_interface() fails as the
547 // detach operation might be denied and everything still works fine.
548 // Likely scenario is a static ftdi_sio kernel module.
549 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
550 {
551 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
552 detach_errno = errno;
553 }
554
555 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
556 ftdi_error_return(-12, "libusb_get_configuration () failed");
557 // set configuration (needed especially for windows)
558 // tolerate EBUSY: one device with one configuration, but two interfaces
559 // and libftdi sessions to both interfaces (e.g. FT2232)
560 if (desc.bNumConfigurations > 0 && cfg != cfg0)
561 {
562 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
563 {
564 ftdi_usb_close_internal (ftdi);
565 if (detach_errno == EPERM)
566 {
567 ftdi_error_return(-8, "inappropriate permissions on device!");
568 }
569 else
570 {
571 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
572 }
573 }
574 }
575
576 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
577 {
578 ftdi_usb_close_internal (ftdi);
579 if (detach_errno == EPERM)
580 {
581 ftdi_error_return(-8, "inappropriate permissions on device!");
582 }
583 else
584 {
585 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
586 }
587 }
588
589 if (ftdi_usb_reset (ftdi) != 0)
590 {
591 ftdi_usb_close_internal (ftdi);
592 ftdi_error_return(-6, "ftdi_usb_reset failed");
593 }
594
595 // Try to guess chip type
596 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
597 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
598 && desc.iSerialNumber == 0))
599 ftdi->type = TYPE_BM;
600 else if (desc.bcdDevice == 0x200)
601 ftdi->type = TYPE_AM;
602 else if (desc.bcdDevice == 0x500)
603 ftdi->type = TYPE_2232C;
604 else if (desc.bcdDevice == 0x600)
605 ftdi->type = TYPE_R;
606 else if (desc.bcdDevice == 0x700)
607 ftdi->type = TYPE_2232H;
608 else if (desc.bcdDevice == 0x800)
609 ftdi->type = TYPE_4232H;
610 else if (desc.bcdDevice == 0x900)
611 ftdi->type = TYPE_232H;
612 else if (desc.bcdDevice == 0x1000)
613 ftdi->type = TYPE_230X;
614
615 // Determine maximum packet size
616 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
617
618 if (ftdi_set_baudrate (ftdi, 9600) != 0)
619 {
620 ftdi_usb_close_internal (ftdi);
621 ftdi_error_return(-7, "set baudrate failed");
622 }
623
624 ftdi_error_return(0, "all fine");
625}
626
627/**
628 Opens the first device with a given vendor and product ids.
629
630 \param ftdi pointer to ftdi_context
631 \param vendor Vendor ID
632 \param product Product ID
633
634 \retval same as ftdi_usb_open_desc()
635*/
636int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
637{
638 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
639}
640
641/**
642 Opens the first device with a given, vendor id, product id,
643 description and serial.
644
645 \param ftdi pointer to ftdi_context
646 \param vendor Vendor ID
647 \param product Product ID
648 \param description Description to search for. Use NULL if not needed.
649 \param serial Serial to search for. Use NULL if not needed.
650
651 \retval 0: all fine
652 \retval -3: usb device not found
653 \retval -4: unable to open device
654 \retval -5: unable to claim device
655 \retval -6: reset failed
656 \retval -7: set baudrate failed
657 \retval -8: get product description failed
658 \retval -9: get serial number failed
659 \retval -12: libusb_get_device_list() failed
660 \retval -13: libusb_get_device_descriptor() failed
661*/
662int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
663 const char* description, const char* serial)
664{
665 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
666}
667
668/**
669 Opens the index-th device with a given, vendor id, product id,
670 description and serial.
671
672 \param ftdi pointer to ftdi_context
673 \param vendor Vendor ID
674 \param product Product ID
675 \param description Description to search for. Use NULL if not needed.
676 \param serial Serial to search for. Use NULL if not needed.
677 \param index Number of matching device to open if there are more than one, starts with 0.
678
679 \retval 0: all fine
680 \retval -1: usb_find_busses() failed
681 \retval -2: usb_find_devices() failed
682 \retval -3: usb device not found
683 \retval -4: unable to open device
684 \retval -5: unable to claim device
685 \retval -6: reset failed
686 \retval -7: set baudrate failed
687 \retval -8: get product description failed
688 \retval -9: get serial number failed
689 \retval -10: unable to close device
690 \retval -11: ftdi context invalid
691*/
692int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
693 const char* description, const char* serial, unsigned int index)
694{
695 libusb_device *dev;
696 libusb_device **devs;
697 char string[256];
698 int i = 0;
699
700 if (ftdi == NULL)
701 ftdi_error_return(-11, "ftdi context invalid");
702
703 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
704 ftdi_error_return(-12, "libusb_get_device_list() failed");
705
706 while ((dev = devs[i++]) != NULL)
707 {
708 struct libusb_device_descriptor desc;
709 int res;
710
711 if (libusb_get_device_descriptor(dev, &desc) < 0)
712 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
713
714 if (desc.idVendor == vendor && desc.idProduct == product)
715 {
716 if (libusb_open(dev, &ftdi->usb_dev) < 0)
717 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
718
719 if (description != NULL)
720 {
721 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
722 {
723 ftdi_usb_close_internal (ftdi);
724 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
725 }
726 if (strncmp(string, description, sizeof(string)) != 0)
727 {
728 ftdi_usb_close_internal (ftdi);
729 continue;
730 }
731 }
732 if (serial != NULL)
733 {
734 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
735 {
736 ftdi_usb_close_internal (ftdi);
737 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
738 }
739 if (strncmp(string, serial, sizeof(string)) != 0)
740 {
741 ftdi_usb_close_internal (ftdi);
742 continue;
743 }
744 }
745
746 ftdi_usb_close_internal (ftdi);
747
748 if (index > 0)
749 {
750 index--;
751 continue;
752 }
753
754 res = ftdi_usb_open_dev(ftdi, dev);
755 libusb_free_device_list(devs,1);
756 return res;
757 }
758 }
759
760 // device not found
761 ftdi_error_return_free_device_list(-3, "device not found", devs);
762}
763
764/**
765 Opens the ftdi-device described by a description-string.
766 Intended to be used for parsing a device-description given as commandline argument.
767
768 \param ftdi pointer to ftdi_context
769 \param description NULL-terminated description-string, using this format:
770 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
771 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
772 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
773 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
774
775 \note The description format may be extended in later versions.
776
777 \retval 0: all fine
778 \retval -2: libusb_get_device_list() failed
779 \retval -3: usb device not found
780 \retval -4: unable to open device
781 \retval -5: unable to claim device
782 \retval -6: reset failed
783 \retval -7: set baudrate failed
784 \retval -8: get product description failed
785 \retval -9: get serial number failed
786 \retval -10: unable to close device
787 \retval -11: illegal description format
788 \retval -12: ftdi context invalid
789*/
790int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
791{
792 if (ftdi == NULL)
793 ftdi_error_return(-12, "ftdi context invalid");
794
795 if (description[0] == 0 || description[1] != ':')
796 ftdi_error_return(-11, "illegal description format");
797
798 if (description[0] == 'd')
799 {
800 libusb_device *dev;
801 libusb_device **devs;
802 unsigned int bus_number, device_address;
803 int i = 0;
804
805 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
806 ftdi_error_return(-2, "libusb_get_device_list() failed");
807
808 /* XXX: This doesn't handle symlinks/odd paths/etc... */
809 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
810 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
811
812 while ((dev = devs[i++]) != NULL)
813 {
814 int ret;
815 if (bus_number == libusb_get_bus_number (dev)
816 && device_address == libusb_get_device_address (dev))
817 {
818 ret = ftdi_usb_open_dev(ftdi, dev);
819 libusb_free_device_list(devs,1);
820 return ret;
821 }
822 }
823
824 // device not found
825 ftdi_error_return_free_device_list(-3, "device not found", devs);
826 }
827 else if (description[0] == 'i' || description[0] == 's')
828 {
829 unsigned int vendor;
830 unsigned int product;
831 unsigned int index=0;
832 const char *serial=NULL;
833 const char *startp, *endp;
834
835 errno=0;
836 startp=description+2;
837 vendor=strtoul((char*)startp,(char**)&endp,0);
838 if (*endp != ':' || endp == startp || errno != 0)
839 ftdi_error_return(-11, "illegal description format");
840
841 startp=endp+1;
842 product=strtoul((char*)startp,(char**)&endp,0);
843 if (endp == startp || errno != 0)
844 ftdi_error_return(-11, "illegal description format");
845
846 if (description[0] == 'i' && *endp != 0)
847 {
848 /* optional index field in i-mode */
849 if (*endp != ':')
850 ftdi_error_return(-11, "illegal description format");
851
852 startp=endp+1;
853 index=strtoul((char*)startp,(char**)&endp,0);
854 if (*endp != 0 || endp == startp || errno != 0)
855 ftdi_error_return(-11, "illegal description format");
856 }
857 if (description[0] == 's')
858 {
859 if (*endp != ':')
860 ftdi_error_return(-11, "illegal description format");
861
862 /* rest of the description is the serial */
863 serial=endp+1;
864 }
865
866 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
867 }
868 else
869 {
870 ftdi_error_return(-11, "illegal description format");
871 }
872}
873
874/**
875 Resets the ftdi device.
876
877 \param ftdi pointer to ftdi_context
878
879 \retval 0: all fine
880 \retval -1: FTDI reset failed
881 \retval -2: USB device unavailable
882*/
883int ftdi_usb_reset(struct ftdi_context *ftdi)
884{
885 if (ftdi == NULL || ftdi->usb_dev == NULL)
886 ftdi_error_return(-2, "USB device unavailable");
887
888 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
889 SIO_RESET_REQUEST, SIO_RESET_SIO,
890 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
891 ftdi_error_return(-1,"FTDI reset failed");
892
893 // Invalidate data in the readbuffer
894 ftdi->readbuffer_offset = 0;
895 ftdi->readbuffer_remaining = 0;
896
897 return 0;
898}
899
900/**
901 Clears the read buffer on the chip and the internal read buffer.
902
903 \param ftdi pointer to ftdi_context
904
905 \retval 0: all fine
906 \retval -1: read buffer purge failed
907 \retval -2: USB device unavailable
908*/
909int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
910{
911 if (ftdi == NULL || ftdi->usb_dev == NULL)
912 ftdi_error_return(-2, "USB device unavailable");
913
914 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
915 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
916 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
917 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
918
919 // Invalidate data in the readbuffer
920 ftdi->readbuffer_offset = 0;
921 ftdi->readbuffer_remaining = 0;
922
923 return 0;
924}
925
926/**
927 Clears the write buffer on the chip.
928
929 \param ftdi pointer to ftdi_context
930
931 \retval 0: all fine
932 \retval -1: write buffer purge failed
933 \retval -2: USB device unavailable
934*/
935int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
936{
937 if (ftdi == NULL || ftdi->usb_dev == NULL)
938 ftdi_error_return(-2, "USB device unavailable");
939
940 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
941 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
942 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
943 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
944
945 return 0;
946}
947
948/**
949 Clears the buffers on the chip and the internal read buffer.
950
951 \param ftdi pointer to ftdi_context
952
953 \retval 0: all fine
954 \retval -1: read buffer purge failed
955 \retval -2: write buffer purge failed
956 \retval -3: USB device unavailable
957*/
958int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
959{
960 int result;
961
962 if (ftdi == NULL || ftdi->usb_dev == NULL)
963 ftdi_error_return(-3, "USB device unavailable");
964
965 result = ftdi_usb_purge_rx_buffer(ftdi);
966 if (result < 0)
967 return -1;
968
969 result = ftdi_usb_purge_tx_buffer(ftdi);
970 if (result < 0)
971 return -2;
972
973 return 0;
974}
975
976
977
978/**
979 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
980
981 \param ftdi pointer to ftdi_context
982
983 \retval 0: all fine
984 \retval -1: usb_release failed
985 \retval -3: ftdi context invalid
986*/
987int ftdi_usb_close(struct ftdi_context *ftdi)
988{
989 int rtn = 0;
990
991 if (ftdi == NULL)
992 ftdi_error_return(-3, "ftdi context invalid");
993
994 if (ftdi->usb_dev != NULL)
995 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
996 rtn = -1;
997
998 ftdi_usb_close_internal (ftdi);
999
1000 return rtn;
1001}
1002
1003/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
1004 to encoded divisor and the achievable baudrate
1005 Function is only used internally
1006 \internal
1007
1008 See AN120
1009 clk/1 -> 0
1010 clk/1.5 -> 1
1011 clk/2 -> 2
1012 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1013 The fractional part has frac_code encoding
1014*/
1015static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1016
1017{
1018 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1019 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1020 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
1021 int divisor, best_divisor, best_baud, best_baud_diff;
1022 int i;
1023 divisor = 24000000 / baudrate;
1024
1025 // Round down to supported fraction (AM only)
1026 divisor -= am_adjust_dn[divisor & 7];
1027
1028 // Try this divisor and the one above it (because division rounds down)
1029 best_divisor = 0;
1030 best_baud = 0;
1031 best_baud_diff = 0;
1032 for (i = 0; i < 2; i++)
1033 {
1034 int try_divisor = divisor + i;
1035 int baud_estimate;
1036 int baud_diff;
1037
1038 // Round up to supported divisor value
1039 if (try_divisor <= 8)
1040 {
1041 // Round up to minimum supported divisor
1042 try_divisor = 8;
1043 }
1044 else if (divisor < 16)
1045 {
1046 // AM doesn't support divisors 9 through 15 inclusive
1047 try_divisor = 16;
1048 }
1049 else
1050 {
1051 // Round up to supported fraction (AM only)
1052 try_divisor += am_adjust_up[try_divisor & 7];
1053 if (try_divisor > 0x1FFF8)
1054 {
1055 // Round down to maximum supported divisor value (for AM)
1056 try_divisor = 0x1FFF8;
1057 }
1058 }
1059 // Get estimated baud rate (to nearest integer)
1060 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1061 // Get absolute difference from requested baud rate
1062 if (baud_estimate < baudrate)
1063 {
1064 baud_diff = baudrate - baud_estimate;
1065 }
1066 else
1067 {
1068 baud_diff = baud_estimate - baudrate;
1069 }
1070 if (i == 0 || baud_diff < best_baud_diff)
1071 {
1072 // Closest to requested baud rate so far
1073 best_divisor = try_divisor;
1074 best_baud = baud_estimate;
1075 best_baud_diff = baud_diff;
1076 if (baud_diff == 0)
1077 {
1078 // Spot on! No point trying
1079 break;
1080 }
1081 }
1082 }
1083 // Encode the best divisor value
1084 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1085 // Deal with special cases for encoded value
1086 if (*encoded_divisor == 1)
1087 {
1088 *encoded_divisor = 0; // 3000000 baud
1089 }
1090 else if (*encoded_divisor == 0x4001)
1091 {
1092 *encoded_divisor = 1; // 2000000 baud (BM only)
1093 }
1094 return best_baud;
1095}
1096
1097/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1098 to encoded divisor and the achievable baudrate
1099 Function is only used internally
1100 \internal
1101
1102 See AN120
1103 clk/1 -> 0
1104 clk/1.5 -> 1
1105 clk/2 -> 2
1106 From /2, 0.125 steps may be taken.
1107 The fractional part has frac_code encoding
1108
1109 value[13:0] of value is the divisor
1110 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1111
1112 H Type have all features above with
1113 {index[8],value[15:14]} is the encoded subdivisor
1114
1115 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
1116 {index[0],value[15:14]} is the encoded subdivisor
1117
1118 AM Type chips have only four fractional subdivisors at value[15:14]
1119 for subdivisors 0, 0.5, 0.25, 0.125
1120*/
1121static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor)
1122{
1123 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1124 int best_baud = 0;
1125 int divisor, best_divisor;
1126 if (baudrate >= clk/clk_div)
1127 {
1128 *encoded_divisor = 0;
1129 best_baud = clk/clk_div;
1130 }
1131 else if (baudrate >= clk/(clk_div + clk_div/2))
1132 {
1133 *encoded_divisor = 1;
1134 best_baud = clk/(clk_div + clk_div/2);
1135 }
1136 else if (baudrate >= clk/(2*clk_div))
1137 {
1138 *encoded_divisor = 2;
1139 best_baud = clk/(2*clk_div);
1140 }
1141 else
1142 {
1143 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1144 divisor = clk*16/clk_div / baudrate;
1145 if (divisor & 1) /* Decide if to round up or down*/
1146 best_divisor = divisor /2 +1;
1147 else
1148 best_divisor = divisor/2;
1149 if(best_divisor > 0x20000)
1150 best_divisor = 0x1ffff;
1151 best_baud = clk*16/clk_div/best_divisor;
1152 if (best_baud & 1) /* Decide if to round up or down*/
1153 best_baud = best_baud /2 +1;
1154 else
1155 best_baud = best_baud /2;
1156 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1157 }
1158 return best_baud;
1159}
1160/**
1161 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1162 Function is only used internally
1163 \internal
1164*/
1165static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1166 unsigned short *value, unsigned short *index)
1167{
1168 int best_baud;
1169 unsigned long encoded_divisor;
1170
1171 if (baudrate <= 0)
1172 {
1173 // Return error
1174 return -1;
1175 }
1176
1177#define H_CLK 120000000
1178#define C_CLK 48000000
1179 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H))
1180 {
1181 if(baudrate*10 > H_CLK /0x3fff)
1182 {
1183 /* On H Devices, use 12 000 000 Baudrate when possible
1184 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
1185 three fractional bits and a 120 MHz clock
1186 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1187 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1188 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1189 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1190 }
1191 else
1192 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1193 }
1194 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R ))
1195 {
1196 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1197 }
1198 else
1199 {
1200 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
1201 }
1202 // Split into "value" and "index" values
1203 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1204 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
1205 {
1206 *index = (unsigned short)(encoded_divisor >> 8);
1207 *index &= 0xFF00;
1208 *index |= ftdi->index;
1209 }
1210 else
1211 *index = (unsigned short)(encoded_divisor >> 16);
1212
1213 // Return the nearest baud rate
1214 return best_baud;
1215}
1216
1217/**
1218 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1219 * Do not use, it's only for the unit test framework
1220 **/
1221int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1222 unsigned short *value, unsigned short *index)
1223{
1224 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1225}
1226
1227/**
1228 Sets the chip baud rate
1229
1230 \param ftdi pointer to ftdi_context
1231 \param baudrate baud rate to set
1232
1233 \retval 0: all fine
1234 \retval -1: invalid baudrate
1235 \retval -2: setting baudrate failed
1236 \retval -3: USB device unavailable
1237*/
1238int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1239{
1240 unsigned short value, index;
1241 int actual_baudrate;
1242
1243 if (ftdi == NULL || ftdi->usb_dev == NULL)
1244 ftdi_error_return(-3, "USB device unavailable");
1245
1246 if (ftdi->bitbang_enabled)
1247 {
1248 baudrate = baudrate*4;
1249 }
1250
1251 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1252 if (actual_baudrate <= 0)
1253 ftdi_error_return (-1, "Silly baudrate <= 0.");
1254
1255 // Check within tolerance (about 5%)
1256 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1257 || ((actual_baudrate < baudrate)
1258 ? (actual_baudrate * 21 < baudrate * 20)
1259 : (baudrate * 21 < actual_baudrate * 20)))
1260 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1261
1262 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1263 SIO_SET_BAUDRATE_REQUEST, value,
1264 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1265 ftdi_error_return (-2, "Setting new baudrate failed");
1266
1267 ftdi->baudrate = baudrate;
1268 return 0;
1269}
1270
1271/**
1272 Set (RS232) line characteristics.
1273 The break type can only be set via ftdi_set_line_property2()
1274 and defaults to "off".
1275
1276 \param ftdi pointer to ftdi_context
1277 \param bits Number of bits
1278 \param sbit Number of stop bits
1279 \param parity Parity mode
1280
1281 \retval 0: all fine
1282 \retval -1: Setting line property failed
1283*/
1284int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1285 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1286{
1287 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1288}
1289
1290/**
1291 Set (RS232) line characteristics
1292
1293 \param ftdi pointer to ftdi_context
1294 \param bits Number of bits
1295 \param sbit Number of stop bits
1296 \param parity Parity mode
1297 \param break_type Break type
1298
1299 \retval 0: all fine
1300 \retval -1: Setting line property failed
1301 \retval -2: USB device unavailable
1302*/
1303int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1304 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1305 enum ftdi_break_type break_type)
1306{
1307 unsigned short value = bits;
1308
1309 if (ftdi == NULL || ftdi->usb_dev == NULL)
1310 ftdi_error_return(-2, "USB device unavailable");
1311
1312 switch (parity)
1313 {
1314 case NONE:
1315 value |= (0x00 << 8);
1316 break;
1317 case ODD:
1318 value |= (0x01 << 8);
1319 break;
1320 case EVEN:
1321 value |= (0x02 << 8);
1322 break;
1323 case MARK:
1324 value |= (0x03 << 8);
1325 break;
1326 case SPACE:
1327 value |= (0x04 << 8);
1328 break;
1329 }
1330
1331 switch (sbit)
1332 {
1333 case STOP_BIT_1:
1334 value |= (0x00 << 11);
1335 break;
1336 case STOP_BIT_15:
1337 value |= (0x01 << 11);
1338 break;
1339 case STOP_BIT_2:
1340 value |= (0x02 << 11);
1341 break;
1342 }
1343
1344 switch (break_type)
1345 {
1346 case BREAK_OFF:
1347 value |= (0x00 << 14);
1348 break;
1349 case BREAK_ON:
1350 value |= (0x01 << 14);
1351 break;
1352 }
1353
1354 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1355 SIO_SET_DATA_REQUEST, value,
1356 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1357 ftdi_error_return (-1, "Setting new line property failed");
1358
1359 return 0;
1360}
1361
1362/**
1363 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1364
1365 \param ftdi pointer to ftdi_context
1366 \param buf Buffer with the data
1367 \param size Size of the buffer
1368
1369 \retval -666: USB device unavailable
1370 \retval <0: error code from usb_bulk_write()
1371 \retval >0: number of bytes written
1372*/
1373int ftdi_write_data(struct ftdi_context *ftdi, const unsigned char *buf, int size)
1374{
1375 int offset = 0;
1376 int actual_length;
1377
1378 if (ftdi == NULL || ftdi->usb_dev == NULL)
1379 ftdi_error_return(-666, "USB device unavailable");
1380
1381 while (offset < size)
1382 {
1383 int write_size = ftdi->writebuffer_chunksize;
1384
1385 if (offset+write_size > size)
1386 write_size = size-offset;
1387
1388 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, (unsigned char *)buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1389 ftdi_error_return(-1, "usb bulk write failed");
1390
1391 offset += actual_length;
1392 }
1393
1394 return offset;
1395}
1396
1397static void LIBUSB_CALL ftdi_read_data_cb(struct libusb_transfer *transfer)
1398{
1399 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1400 struct ftdi_context *ftdi = tc->ftdi;
1401 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1402
1403 packet_size = ftdi->max_packet_size;
1404
1405 actual_length = transfer->actual_length;
1406
1407 if (actual_length > 2)
1408 {
1409 // skip FTDI status bytes.
1410 // Maybe stored in the future to enable modem use
1411 num_of_chunks = actual_length / packet_size;
1412 chunk_remains = actual_length % packet_size;
1413 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1414
1415 ftdi->readbuffer_offset += 2;
1416 actual_length -= 2;
1417
1418 if (actual_length > packet_size - 2)
1419 {
1420 for (i = 1; i < num_of_chunks; i++)
1421 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1422 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1423 packet_size - 2);
1424 if (chunk_remains > 2)
1425 {
1426 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1427 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1428 chunk_remains-2);
1429 actual_length -= 2*num_of_chunks;
1430 }
1431 else
1432 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1433 }
1434
1435 if (actual_length > 0)
1436 {
1437 // data still fits in buf?
1438 if (tc->offset + actual_length <= tc->size)
1439 {
1440 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1441 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1442 tc->offset += actual_length;
1443
1444 ftdi->readbuffer_offset = 0;
1445 ftdi->readbuffer_remaining = 0;
1446
1447 /* Did we read exactly the right amount of bytes? */
1448 if (tc->offset == tc->size)
1449 {
1450 //printf("read_data exact rem %d offset %d\n",
1451 //ftdi->readbuffer_remaining, offset);
1452 tc->completed = 1;
1453 return;
1454 }
1455 }
1456 else
1457 {
1458 // only copy part of the data or size <= readbuffer_chunksize
1459 int part_size = tc->size - tc->offset;
1460 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1461 tc->offset += part_size;
1462
1463 ftdi->readbuffer_offset += part_size;
1464 ftdi->readbuffer_remaining = actual_length - part_size;
1465
1466 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1467 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1468 tc->completed = 1;
1469 return;
1470 }
1471 }
1472 }
1473 ret = libusb_submit_transfer (transfer);
1474 if (ret < 0)
1475 tc->completed = 1;
1476}
1477
1478
1479static void LIBUSB_CALL ftdi_write_data_cb(struct libusb_transfer *transfer)
1480{
1481 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1482 struct ftdi_context *ftdi = tc->ftdi;
1483
1484 tc->offset += transfer->actual_length;
1485
1486 if (tc->offset == tc->size)
1487 {
1488 tc->completed = 1;
1489 }
1490 else
1491 {
1492 int write_size = ftdi->writebuffer_chunksize;
1493 int ret;
1494
1495 if (tc->offset + write_size > tc->size)
1496 write_size = tc->size - tc->offset;
1497
1498 transfer->length = write_size;
1499 transfer->buffer = tc->buf + tc->offset;
1500 ret = libusb_submit_transfer (transfer);
1501 if (ret < 0)
1502 tc->completed = 1;
1503 }
1504}
1505
1506
1507/**
1508 Writes data to the chip. Does not wait for completion of the transfer
1509 nor does it make sure that the transfer was successful.
1510
1511 Use libusb 1.0 asynchronous API.
1512
1513 \param ftdi pointer to ftdi_context
1514 \param buf Buffer with the data
1515 \param size Size of the buffer
1516
1517 \retval NULL: Some error happens when submit transfer
1518 \retval !NULL: Pointer to a ftdi_transfer_control
1519*/
1520
1521struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1522{
1523 struct ftdi_transfer_control *tc;
1524 struct libusb_transfer *transfer;
1525 int write_size, ret;
1526
1527 if (ftdi == NULL || ftdi->usb_dev == NULL)
1528 return NULL;
1529
1530 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1531 if (!tc)
1532 return NULL;
1533
1534 transfer = libusb_alloc_transfer(0);
1535 if (!transfer)
1536 {
1537 free(tc);
1538 return NULL;
1539 }
1540
1541 tc->ftdi = ftdi;
1542 tc->completed = 0;
1543 tc->buf = buf;
1544 tc->size = size;
1545 tc->offset = 0;
1546
1547 if (size < (int)ftdi->writebuffer_chunksize)
1548 write_size = size;
1549 else
1550 write_size = ftdi->writebuffer_chunksize;
1551
1552 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1553 write_size, ftdi_write_data_cb, tc,
1554 ftdi->usb_write_timeout);
1555 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1556
1557 ret = libusb_submit_transfer(transfer);
1558 if (ret < 0)
1559 {
1560 libusb_free_transfer(transfer);
1561 free(tc);
1562 return NULL;
1563 }
1564 tc->transfer = transfer;
1565
1566 return tc;
1567}
1568
1569/**
1570 Reads data from the chip. Does not wait for completion of the transfer
1571 nor does it make sure that the transfer was successful.
1572
1573 Use libusb 1.0 asynchronous API.
1574
1575 \param ftdi pointer to ftdi_context
1576 \param buf Buffer with the data
1577 \param size Size of the buffer
1578
1579 \retval NULL: Some error happens when submit transfer
1580 \retval !NULL: Pointer to a ftdi_transfer_control
1581*/
1582
1583struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1584{
1585 struct ftdi_transfer_control *tc;
1586 struct libusb_transfer *transfer;
1587 int ret;
1588
1589 if (ftdi == NULL || ftdi->usb_dev == NULL)
1590 return NULL;
1591
1592 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1593 if (!tc)
1594 return NULL;
1595
1596 tc->ftdi = ftdi;
1597 tc->buf = buf;
1598 tc->size = size;
1599
1600 if (size <= (int)ftdi->readbuffer_remaining)
1601 {
1602 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1603
1604 // Fix offsets
1605 ftdi->readbuffer_remaining -= size;
1606 ftdi->readbuffer_offset += size;
1607
1608 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1609
1610 tc->completed = 1;
1611 tc->offset = size;
1612 tc->transfer = NULL;
1613 return tc;
1614 }
1615
1616 tc->completed = 0;
1617 if (ftdi->readbuffer_remaining != 0)
1618 {
1619 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1620
1621 tc->offset = ftdi->readbuffer_remaining;
1622 }
1623 else
1624 tc->offset = 0;
1625
1626 transfer = libusb_alloc_transfer(0);
1627 if (!transfer)
1628 {
1629 free (tc);
1630 return NULL;
1631 }
1632
1633 ftdi->readbuffer_remaining = 0;
1634 ftdi->readbuffer_offset = 0;
1635
1636 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1637 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1638
1639 ret = libusb_submit_transfer(transfer);
1640 if (ret < 0)
1641 {
1642 libusb_free_transfer(transfer);
1643 free (tc);
1644 return NULL;
1645 }
1646 tc->transfer = transfer;
1647
1648 return tc;
1649}
1650
1651/**
1652 Wait for completion of the transfer.
1653
1654 Use libusb 1.0 asynchronous API.
1655
1656 \param tc pointer to ftdi_transfer_control
1657
1658 \retval < 0: Some error happens
1659 \retval >= 0: Data size transferred
1660*/
1661
1662int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1663{
1664 int ret;
1665
1666 while (!tc->completed)
1667 {
1668 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1669 if (ret < 0)
1670 {
1671 if (ret == LIBUSB_ERROR_INTERRUPTED)
1672 continue;
1673 libusb_cancel_transfer(tc->transfer);
1674 while (!tc->completed)
1675 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1676 break;
1677 libusb_free_transfer(tc->transfer);
1678 free (tc);
1679 return ret;
1680 }
1681 }
1682
1683 ret = tc->offset;
1684 /**
1685 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1686 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1687 **/
1688 if (tc->transfer)
1689 {
1690 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1691 ret = -1;
1692 libusb_free_transfer(tc->transfer);
1693 }
1694 free(tc);
1695 return ret;
1696}
1697
1698/**
1699 Configure write buffer chunk size.
1700 Default is 4096.
1701
1702 \param ftdi pointer to ftdi_context
1703 \param chunksize Chunk size
1704
1705 \retval 0: all fine
1706 \retval -1: ftdi context invalid
1707*/
1708int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1709{
1710 if (ftdi == NULL)
1711 ftdi_error_return(-1, "ftdi context invalid");
1712
1713 ftdi->writebuffer_chunksize = chunksize;
1714 return 0;
1715}
1716
1717/**
1718 Get write buffer chunk size.
1719
1720 \param ftdi pointer to ftdi_context
1721 \param chunksize Pointer to store chunk size in
1722
1723 \retval 0: all fine
1724 \retval -1: ftdi context invalid
1725*/
1726int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1727{
1728 if (ftdi == NULL)
1729 ftdi_error_return(-1, "ftdi context invalid");
1730
1731 *chunksize = ftdi->writebuffer_chunksize;
1732 return 0;
1733}
1734
1735/**
1736 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1737
1738 Automatically strips the two modem status bytes transfered during every read.
1739
1740 \param ftdi pointer to ftdi_context
1741 \param buf Buffer to store data in
1742 \param size Size of the buffer
1743
1744 \retval -666: USB device unavailable
1745 \retval <0: error code from libusb_bulk_transfer()
1746 \retval 0: no data was available
1747 \retval >0: number of bytes read
1748
1749*/
1750int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1751{
1752 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1753 int packet_size = ftdi->max_packet_size;
1754 int actual_length = 1;
1755
1756 if (ftdi == NULL || ftdi->usb_dev == NULL)
1757 ftdi_error_return(-666, "USB device unavailable");
1758
1759 // Packet size sanity check (avoid division by zero)
1760 if (packet_size == 0)
1761 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1762
1763 // everything we want is still in the readbuffer?
1764 if (size <= (int)ftdi->readbuffer_remaining)
1765 {
1766 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1767
1768 // Fix offsets
1769 ftdi->readbuffer_remaining -= size;
1770 ftdi->readbuffer_offset += size;
1771
1772 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1773
1774 return size;
1775 }
1776 // something still in the readbuffer, but not enough to satisfy 'size'?
1777 if (ftdi->readbuffer_remaining != 0)
1778 {
1779 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1780
1781 // Fix offset
1782 offset += ftdi->readbuffer_remaining;
1783 }
1784 // do the actual USB read
1785 while (offset < size && actual_length > 0)
1786 {
1787 ftdi->readbuffer_remaining = 0;
1788 ftdi->readbuffer_offset = 0;
1789 /* returns how much received */
1790 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1791 if (ret < 0)
1792 ftdi_error_return(ret, "usb bulk read failed");
1793
1794 if (actual_length > 2)
1795 {
1796 // skip FTDI status bytes.
1797 // Maybe stored in the future to enable modem use
1798 num_of_chunks = actual_length / packet_size;
1799 chunk_remains = actual_length % packet_size;
1800 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1801
1802 ftdi->readbuffer_offset += 2;
1803 actual_length -= 2;
1804
1805 if (actual_length > packet_size - 2)
1806 {
1807 for (i = 1; i < num_of_chunks; i++)
1808 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1809 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1810 packet_size - 2);
1811 if (chunk_remains > 2)
1812 {
1813 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1814 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1815 chunk_remains-2);
1816 actual_length -= 2*num_of_chunks;
1817 }
1818 else
1819 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1820 }
1821 }
1822 else if (actual_length <= 2)
1823 {
1824 // no more data to read?
1825 return offset;
1826 }
1827 if (actual_length > 0)
1828 {
1829 // data still fits in buf?
1830 if (offset+actual_length <= size)
1831 {
1832 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1833 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1834 offset += actual_length;
1835
1836 /* Did we read exactly the right amount of bytes? */
1837 if (offset == size)
1838 //printf("read_data exact rem %d offset %d\n",
1839 //ftdi->readbuffer_remaining, offset);
1840 return offset;
1841 }
1842 else
1843 {
1844 // only copy part of the data or size <= readbuffer_chunksize
1845 int part_size = size-offset;
1846 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1847
1848 ftdi->readbuffer_offset += part_size;
1849 ftdi->readbuffer_remaining = actual_length-part_size;
1850 offset += part_size;
1851
1852 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1853 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1854
1855 return offset;
1856 }
1857 }
1858 }
1859 // never reached
1860 return -127;
1861}
1862
1863/**
1864 Configure read buffer chunk size.
1865 Default is 4096.
1866
1867 Automatically reallocates the buffer.
1868
1869 \param ftdi pointer to ftdi_context
1870 \param chunksize Chunk size
1871
1872 \retval 0: all fine
1873 \retval -1: ftdi context invalid
1874*/
1875int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1876{
1877 unsigned char *new_buf;
1878
1879 if (ftdi == NULL)
1880 ftdi_error_return(-1, "ftdi context invalid");
1881
1882 // Invalidate all remaining data
1883 ftdi->readbuffer_offset = 0;
1884 ftdi->readbuffer_remaining = 0;
1885#ifdef __linux__
1886 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1887 which is defined in libusb-1.0. Otherwise, each USB read request will
1888 be divided into multiple URBs. This will cause issues on Linux kernel
1889 older than 2.6.32. */
1890 if (chunksize > 16384)
1891 chunksize = 16384;
1892#endif
1893
1894 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1895 ftdi_error_return(-1, "out of memory for readbuffer");
1896
1897 ftdi->readbuffer = new_buf;
1898 ftdi->readbuffer_chunksize = chunksize;
1899
1900 return 0;
1901}
1902
1903/**
1904 Get read buffer chunk size.
1905
1906 \param ftdi pointer to ftdi_context
1907 \param chunksize Pointer to store chunk size in
1908
1909 \retval 0: all fine
1910 \retval -1: FTDI context invalid
1911*/
1912int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1913{
1914 if (ftdi == NULL)
1915 ftdi_error_return(-1, "FTDI context invalid");
1916
1917 *chunksize = ftdi->readbuffer_chunksize;
1918 return 0;
1919}
1920
1921/**
1922 Enable/disable bitbang modes.
1923
1924 \param ftdi pointer to ftdi_context
1925 \param bitmask Bitmask to configure lines.
1926 HIGH/ON value configures a line as output.
1927 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1928
1929 \retval 0: all fine
1930 \retval -1: can't enable bitbang mode
1931 \retval -2: USB device unavailable
1932*/
1933int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1934{
1935 unsigned short usb_val;
1936
1937 if (ftdi == NULL || ftdi->usb_dev == NULL)
1938 ftdi_error_return(-2, "USB device unavailable");
1939
1940 usb_val = bitmask; // low byte: bitmask
1941 usb_val |= (mode << 8);
1942 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1943 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
1944
1945 ftdi->bitbang_mode = mode;
1946 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1947 return 0;
1948}
1949
1950/**
1951 Disable bitbang mode.
1952
1953 \param ftdi pointer to ftdi_context
1954
1955 \retval 0: all fine
1956 \retval -1: can't disable bitbang mode
1957 \retval -2: USB device unavailable
1958*/
1959int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1960{
1961 if (ftdi == NULL || ftdi->usb_dev == NULL)
1962 ftdi_error_return(-2, "USB device unavailable");
1963
1964 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1965 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1966
1967 ftdi->bitbang_enabled = 0;
1968 return 0;
1969}
1970
1971
1972/**
1973 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1974
1975 \param ftdi pointer to ftdi_context
1976 \param pins Pointer to store pins into
1977
1978 \retval 0: all fine
1979 \retval -1: read pins failed
1980 \retval -2: USB device unavailable
1981*/
1982int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1983{
1984 if (ftdi == NULL || ftdi->usb_dev == NULL)
1985 ftdi_error_return(-2, "USB device unavailable");
1986
1987 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1988 ftdi_error_return(-1, "read pins failed");
1989
1990 return 0;
1991}
1992
1993/**
1994 Set latency timer
1995
1996 The FTDI chip keeps data in the internal buffer for a specific
1997 amount of time if the buffer is not full yet to decrease
1998 load on the usb bus.
1999
2000 \param ftdi pointer to ftdi_context
2001 \param latency Value between 1 and 255
2002
2003 \retval 0: all fine
2004 \retval -1: latency out of range
2005 \retval -2: unable to set latency timer
2006 \retval -3: USB device unavailable
2007*/
2008int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2009{
2010 unsigned short usb_val;
2011
2012 if (latency < 1)
2013 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
2014
2015 if (ftdi == NULL || ftdi->usb_dev == NULL)
2016 ftdi_error_return(-3, "USB device unavailable");
2017
2018 usb_val = latency;
2019 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2020 ftdi_error_return(-2, "unable to set latency timer");
2021
2022 return 0;
2023}
2024
2025/**
2026 Get latency timer
2027
2028 \param ftdi pointer to ftdi_context
2029 \param latency Pointer to store latency value in
2030
2031 \retval 0: all fine
2032 \retval -1: unable to get latency timer
2033 \retval -2: USB device unavailable
2034*/
2035int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2036{
2037 unsigned short usb_val;
2038
2039 if (ftdi == NULL || ftdi->usb_dev == NULL)
2040 ftdi_error_return(-2, "USB device unavailable");
2041
2042 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
2043 ftdi_error_return(-1, "reading latency timer failed");
2044
2045 *latency = (unsigned char)usb_val;
2046 return 0;
2047}
2048
2049/**
2050 Poll modem status information
2051
2052 This function allows the retrieve the two status bytes of the device.
2053 The device sends these bytes also as a header for each read access
2054 where they are discarded by ftdi_read_data(). The chip generates
2055 the two stripped status bytes in the absence of data every 40 ms.
2056
2057 Layout of the first byte:
2058 - B0..B3 - must be 0
2059 - B4 Clear to send (CTS)
2060 0 = inactive
2061 1 = active
2062 - B5 Data set ready (DTS)
2063 0 = inactive
2064 1 = active
2065 - B6 Ring indicator (RI)
2066 0 = inactive
2067 1 = active
2068 - B7 Receive line signal detect (RLSD)
2069 0 = inactive
2070 1 = active
2071
2072 Layout of the second byte:
2073 - B0 Data ready (DR)
2074 - B1 Overrun error (OE)
2075 - B2 Parity error (PE)
2076 - B3 Framing error (FE)
2077 - B4 Break interrupt (BI)
2078 - B5 Transmitter holding register (THRE)
2079 - B6 Transmitter empty (TEMT)
2080 - B7 Error in RCVR FIFO
2081
2082 \param ftdi pointer to ftdi_context
2083 \param status Pointer to store status information in. Must be two bytes.
2084
2085 \retval 0: all fine
2086 \retval -1: unable to retrieve status information
2087 \retval -2: USB device unavailable
2088*/
2089int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2090{
2091 char usb_val[2];
2092
2093 if (ftdi == NULL || ftdi->usb_dev == NULL)
2094 ftdi_error_return(-2, "USB device unavailable");
2095
2096 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
2097 ftdi_error_return(-1, "getting modem status failed");
2098
2099 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
2100
2101 return 0;
2102}
2103
2104/**
2105 Set flowcontrol for ftdi chip
2106
2107 \param ftdi pointer to ftdi_context
2108 \param flowctrl flow control to use. should be
2109 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2110
2111 \retval 0: all fine
2112 \retval -1: set flow control failed
2113 \retval -2: USB device unavailable
2114*/
2115int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2116{
2117 if (ftdi == NULL || ftdi->usb_dev == NULL)
2118 ftdi_error_return(-2, "USB device unavailable");
2119
2120 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2121 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2122 NULL, 0, ftdi->usb_write_timeout) < 0)
2123 ftdi_error_return(-1, "set flow control failed");
2124
2125 return 0;
2126}
2127
2128/**
2129 Set dtr line
2130
2131 \param ftdi pointer to ftdi_context
2132 \param state state to set line to (1 or 0)
2133
2134 \retval 0: all fine
2135 \retval -1: set dtr failed
2136 \retval -2: USB device unavailable
2137*/
2138int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2139{
2140 unsigned short usb_val;
2141
2142 if (ftdi == NULL || ftdi->usb_dev == NULL)
2143 ftdi_error_return(-2, "USB device unavailable");
2144
2145 if (state)
2146 usb_val = SIO_SET_DTR_HIGH;
2147 else
2148 usb_val = SIO_SET_DTR_LOW;
2149
2150 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2151 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2152 NULL, 0, ftdi->usb_write_timeout) < 0)
2153 ftdi_error_return(-1, "set dtr failed");
2154
2155 return 0;
2156}
2157
2158/**
2159 Set rts line
2160
2161 \param ftdi pointer to ftdi_context
2162 \param state state to set line to (1 or 0)
2163
2164 \retval 0: all fine
2165 \retval -1: set rts failed
2166 \retval -2: USB device unavailable
2167*/
2168int ftdi_setrts(struct ftdi_context *ftdi, int state)
2169{
2170 unsigned short usb_val;
2171
2172 if (ftdi == NULL || ftdi->usb_dev == NULL)
2173 ftdi_error_return(-2, "USB device unavailable");
2174
2175 if (state)
2176 usb_val = SIO_SET_RTS_HIGH;
2177 else
2178 usb_val = SIO_SET_RTS_LOW;
2179
2180 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2181 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2182 NULL, 0, ftdi->usb_write_timeout) < 0)
2183 ftdi_error_return(-1, "set of rts failed");
2184
2185 return 0;
2186}
2187
2188/**
2189 Set dtr and rts line in one pass
2190
2191 \param ftdi pointer to ftdi_context
2192 \param dtr DTR state to set line to (1 or 0)
2193 \param rts RTS state to set line to (1 or 0)
2194
2195 \retval 0: all fine
2196 \retval -1: set dtr/rts failed
2197 \retval -2: USB device unavailable
2198 */
2199int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2200{
2201 unsigned short usb_val;
2202
2203 if (ftdi == NULL || ftdi->usb_dev == NULL)
2204 ftdi_error_return(-2, "USB device unavailable");
2205
2206 if (dtr)
2207 usb_val = SIO_SET_DTR_HIGH;
2208 else
2209 usb_val = SIO_SET_DTR_LOW;
2210
2211 if (rts)
2212 usb_val |= SIO_SET_RTS_HIGH;
2213 else
2214 usb_val |= SIO_SET_RTS_LOW;
2215
2216 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2217 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2218 NULL, 0, ftdi->usb_write_timeout) < 0)
2219 ftdi_error_return(-1, "set of rts/dtr failed");
2220
2221 return 0;
2222}
2223
2224/**
2225 Set the special event character
2226
2227 \param ftdi pointer to ftdi_context
2228 \param eventch Event character
2229 \param enable 0 to disable the event character, non-zero otherwise
2230
2231 \retval 0: all fine
2232 \retval -1: unable to set event character
2233 \retval -2: USB device unavailable
2234*/
2235int ftdi_set_event_char(struct ftdi_context *ftdi,
2236 unsigned char eventch, unsigned char enable)
2237{
2238 unsigned short usb_val;
2239
2240 if (ftdi == NULL || ftdi->usb_dev == NULL)
2241 ftdi_error_return(-2, "USB device unavailable");
2242
2243 usb_val = eventch;
2244 if (enable)
2245 usb_val |= 1 << 8;
2246
2247 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2248 ftdi_error_return(-1, "setting event character failed");
2249
2250 return 0;
2251}
2252
2253/**
2254 Set error character
2255
2256 \param ftdi pointer to ftdi_context
2257 \param errorch Error character
2258 \param enable 0 to disable the error character, non-zero otherwise
2259
2260 \retval 0: all fine
2261 \retval -1: unable to set error character
2262 \retval -2: USB device unavailable
2263*/
2264int ftdi_set_error_char(struct ftdi_context *ftdi,
2265 unsigned char errorch, unsigned char enable)
2266{
2267 unsigned short usb_val;
2268
2269 if (ftdi == NULL || ftdi->usb_dev == NULL)
2270 ftdi_error_return(-2, "USB device unavailable");
2271
2272 usb_val = errorch;
2273 if (enable)
2274 usb_val |= 1 << 8;
2275
2276 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2277 ftdi_error_return(-1, "setting error character failed");
2278
2279 return 0;
2280}
2281
2282/**
2283 Init eeprom with default values for the connected device
2284 \param ftdi pointer to ftdi_context
2285 \param manufacturer String to use as Manufacturer
2286 \param product String to use as Product description
2287 \param serial String to use as Serial number description
2288
2289 \retval 0: all fine
2290 \retval -1: No struct ftdi_context
2291 \retval -2: No struct ftdi_eeprom
2292 \retval -3: No connected device or device not yet opened
2293*/
2294int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2295 char * product, char * serial)
2296{
2297 struct ftdi_eeprom *eeprom;
2298
2299 if (ftdi == NULL)
2300 ftdi_error_return(-1, "No struct ftdi_context");
2301
2302 if (ftdi->eeprom == NULL)
2303 ftdi_error_return(-2,"No struct ftdi_eeprom");
2304
2305 eeprom = ftdi->eeprom;
2306 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2307
2308 if (ftdi->usb_dev == NULL)
2309 ftdi_error_return(-3, "No connected device or device not yet opened");
2310
2311 eeprom->vendor_id = 0x0403;
2312 eeprom->use_serial = 1;
2313 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2314 (ftdi->type == TYPE_R))
2315 eeprom->product_id = 0x6001;
2316 else if (ftdi->type == TYPE_4232H)
2317 eeprom->product_id = 0x6011;
2318 else if (ftdi->type == TYPE_232H)
2319 eeprom->product_id = 0x6014;
2320 else if (ftdi->type == TYPE_230X)
2321 eeprom->product_id = 0x6015;
2322 else
2323 eeprom->product_id = 0x6010;
2324
2325 if (ftdi->type == TYPE_AM)
2326 eeprom->usb_version = 0x0101;
2327 else
2328 eeprom->usb_version = 0x0200;
2329 eeprom->max_power = 100;
2330
2331 if (eeprom->manufacturer)
2332 free (eeprom->manufacturer);
2333 eeprom->manufacturer = NULL;
2334 if (manufacturer)
2335 {
2336 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2337 if (eeprom->manufacturer)
2338 strcpy(eeprom->manufacturer, manufacturer);
2339 }
2340
2341 if (eeprom->product)
2342 free (eeprom->product);
2343 eeprom->product = NULL;
2344 if(product)
2345 {
2346 eeprom->product = malloc(strlen(product)+1);
2347 if (eeprom->product)
2348 strcpy(eeprom->product, product);
2349 }
2350 else
2351 {
2352 const char* default_product;
2353 switch(ftdi->type)
2354 {
2355 case TYPE_AM: default_product = "AM"; break;
2356 case TYPE_BM: default_product = "BM"; break;
2357 case TYPE_2232C: default_product = "Dual RS232"; break;
2358 case TYPE_R: default_product = "FT232R USB UART"; break;
2359 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2360 case TYPE_4232H: default_product = "FT4232H"; break;
2361 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2362 case TYPE_230X: default_product = "FT230X Basic UART"; break;
2363 default:
2364 ftdi_error_return(-3, "Unknown chip type");
2365 }
2366 eeprom->product = malloc(strlen(default_product) +1);
2367 if (eeprom->product)
2368 strcpy(eeprom->product, default_product);
2369 }
2370
2371 if (eeprom->serial)
2372 free (eeprom->serial);
2373 eeprom->serial = NULL;
2374 if (serial)
2375 {
2376 eeprom->serial = malloc(strlen(serial)+1);
2377 if (eeprom->serial)
2378 strcpy(eeprom->serial, serial);
2379 }
2380
2381 if (ftdi->type == TYPE_R)
2382 {
2383 eeprom->max_power = 90;
2384 eeprom->size = 0x80;
2385 eeprom->cbus_function[0] = CBUS_TXLED;
2386 eeprom->cbus_function[1] = CBUS_RXLED;
2387 eeprom->cbus_function[2] = CBUS_TXDEN;
2388 eeprom->cbus_function[3] = CBUS_PWREN;
2389 eeprom->cbus_function[4] = CBUS_SLEEP;
2390 }
2391 else if (ftdi->type == TYPE_230X)
2392 {
2393 eeprom->max_power = 90;
2394 eeprom->size = 0x100;
2395 eeprom->cbus_function[0] = CBUSH_TXDEN;
2396 eeprom->cbus_function[1] = CBUSH_RXLED;
2397 eeprom->cbus_function[2] = CBUSH_TXLED;
2398 eeprom->cbus_function[3] = CBUSH_SLEEP;
2399 }
2400 else
2401 {
2402 if(ftdi->type == TYPE_232H)
2403 {
2404 int i;
2405 for (i=0; i<10; i++)
2406 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2407 }
2408 eeprom->size = -1;
2409 }
2410 switch (ftdi->type)
2411 {
2412 case TYPE_AM:
2413 eeprom->release_number = 0x0200;
2414 break;
2415 case TYPE_BM:
2416 eeprom->release_number = 0x0400;
2417 break;
2418 case TYPE_2232C:
2419 eeprom->release_number = 0x0500;
2420 break;
2421 case TYPE_R:
2422 eeprom->release_number = 0x0600;
2423 break;
2424 case TYPE_2232H:
2425 eeprom->release_number = 0x0700;
2426 break;
2427 case TYPE_4232H:
2428 eeprom->release_number = 0x0800;
2429 break;
2430 case TYPE_232H:
2431 eeprom->release_number = 0x0900;
2432 break;
2433 case TYPE_230X:
2434 eeprom->release_number = 0x1000;
2435 break;
2436 default:
2437 eeprom->release_number = 0x00;
2438 }
2439 return 0;
2440}
2441
2442int ftdi_eeprom_set_strings(struct ftdi_context *ftdi, char * manufacturer,
2443 char * product, char * serial)
2444{
2445 struct ftdi_eeprom *eeprom;
2446
2447 if (ftdi == NULL)
2448 ftdi_error_return(-1, "No struct ftdi_context");
2449
2450 if (ftdi->eeprom == NULL)
2451 ftdi_error_return(-2,"No struct ftdi_eeprom");
2452
2453 eeprom = ftdi->eeprom;
2454
2455 if (ftdi->usb_dev == NULL)
2456 ftdi_error_return(-3, "No connected device or device not yet opened");
2457
2458 if (manufacturer)
2459 {
2460 if (eeprom->manufacturer)
2461 free (eeprom->manufacturer);
2462 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2463 if (eeprom->manufacturer)
2464 strcpy(eeprom->manufacturer, manufacturer);
2465 }
2466
2467 if(product)
2468 {
2469 if (eeprom->product)
2470 free (eeprom->product);
2471 eeprom->product = malloc(strlen(product)+1);
2472 if (eeprom->product)
2473 strcpy(eeprom->product, product);
2474 }
2475
2476 if (serial)
2477 {
2478 if (eeprom->serial)
2479 free (eeprom->serial);
2480 eeprom->serial = malloc(strlen(serial)+1);
2481 if (eeprom->serial)
2482 {
2483 strcpy(eeprom->serial, serial);
2484 eeprom->use_serial = 1;
2485 }
2486 }
2487 return 0;
2488}
2489
2490
2491/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2492void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2493{
2494 int i;
2495 for(i=0; i<5; i++)
2496 {
2497 int mode_low, mode_high;
2498 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2499 mode_low = CBUSH_TRISTATE;
2500 else
2501 mode_low = eeprom->cbus_function[2*i];
2502 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2503 mode_high = CBUSH_TRISTATE;
2504 else
2505 mode_high = eeprom->cbus_function[2*i+1];
2506
2507 output[0x18+i] = (mode_high <<4) | mode_low;
2508 }
2509}
2510/* Return the bits for the encoded EEPROM Structure of a requested Mode
2511 *
2512 */
2513static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2514{
2515 switch (chip)
2516 {
2517 case TYPE_2232H:
2518 case TYPE_2232C:
2519 {
2520 switch (type)
2521 {
2522 case CHANNEL_IS_UART: return 0;
2523 case CHANNEL_IS_FIFO: return 0x01;
2524 case CHANNEL_IS_OPTO: return 0x02;
2525 case CHANNEL_IS_CPU : return 0x04;
2526 default: return 0;
2527 }
2528 }
2529 case TYPE_232H:
2530 {
2531 switch (type)
2532 {
2533 case CHANNEL_IS_UART : return 0;
2534 case CHANNEL_IS_FIFO : return 0x01;
2535 case CHANNEL_IS_OPTO : return 0x02;
2536 case CHANNEL_IS_CPU : return 0x04;
2537 case CHANNEL_IS_FT1284 : return 0x08;
2538 default: return 0;
2539 }
2540 }
2541 case TYPE_230X: /* FT230X is only UART */
2542 default: return 0;
2543 }
2544 return 0;
2545}
2546
2547/**
2548 Build binary buffer from ftdi_eeprom structure.
2549 Output is suitable for ftdi_write_eeprom().
2550
2551 \param ftdi pointer to ftdi_context
2552
2553 \retval >=0: size of eeprom user area in bytes
2554 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2555 \retval -2: Invalid eeprom or ftdi pointer
2556 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2557 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2558 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2559 \retval -6: No connected EEPROM or EEPROM Type unknown
2560*/
2561int ftdi_eeprom_build(struct ftdi_context *ftdi)
2562{
2563 unsigned char i, j, eeprom_size_mask;
2564 unsigned short checksum, value;
2565 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2566 int user_area_size;
2567 struct ftdi_eeprom *eeprom;
2568 unsigned char * output;
2569
2570 if (ftdi == NULL)
2571 ftdi_error_return(-2,"No context");
2572 if (ftdi->eeprom == NULL)
2573 ftdi_error_return(-2,"No eeprom structure");
2574
2575 eeprom= ftdi->eeprom;
2576 output = eeprom->buf;
2577
2578 if (eeprom->chip == -1)
2579 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2580
2581 if (eeprom->size == -1)
2582 {
2583 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2584 eeprom->size = 0x100;
2585 else
2586 eeprom->size = 0x80;
2587 }
2588
2589 if (eeprom->manufacturer != NULL)
2590 manufacturer_size = strlen(eeprom->manufacturer);
2591 if (eeprom->product != NULL)
2592 product_size = strlen(eeprom->product);
2593 if (eeprom->serial != NULL)
2594 serial_size = strlen(eeprom->serial);
2595
2596 // eeprom size check
2597 switch (ftdi->type)
2598 {
2599 case TYPE_AM:
2600 case TYPE_BM:
2601 user_area_size = 96; // base size for strings (total of 48 characters)
2602 break;
2603 case TYPE_2232C:
2604 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2605 break;
2606 case TYPE_R:
2607 case TYPE_230X:
2608 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2609 break;
2610 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2611 case TYPE_4232H:
2612 user_area_size = 86;
2613 break;
2614 case TYPE_232H:
2615 user_area_size = 80;
2616 break;
2617 default:
2618 user_area_size = 0;
2619 break;
2620 }
2621 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2622
2623 if (user_area_size < 0)
2624 ftdi_error_return(-1,"eeprom size exceeded");
2625
2626 // empty eeprom
2627 if (ftdi->type == TYPE_230X)
2628 {
2629 /* FT230X have a reserved section in the middle of the MTP,
2630 which cannot be written to, but must be included in the checksum */
2631 memset(ftdi->eeprom->buf, 0, 0x80);
2632 memset((ftdi->eeprom->buf + 0xa0), 0, (FTDI_MAX_EEPROM_SIZE - 0xa0));
2633 }
2634 else
2635 {
2636 memset(ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2637 }
2638
2639 // Bytes and Bits set for all Types
2640
2641 // Addr 02: Vendor ID
2642 output[0x02] = eeprom->vendor_id;
2643 output[0x03] = eeprom->vendor_id >> 8;
2644
2645 // Addr 04: Product ID
2646 output[0x04] = eeprom->product_id;
2647 output[0x05] = eeprom->product_id >> 8;
2648
2649 // Addr 06: Device release number (0400h for BM features)
2650 output[0x06] = eeprom->release_number;
2651 output[0x07] = eeprom->release_number >> 8;
2652
2653 // Addr 08: Config descriptor
2654 // Bit 7: always 1
2655 // Bit 6: 1 if this device is self powered, 0 if bus powered
2656 // Bit 5: 1 if this device uses remote wakeup
2657 // Bit 4-0: reserved - 0
2658 j = 0x80;
2659 if (eeprom->self_powered)
2660 j |= 0x40;
2661 if (eeprom->remote_wakeup)
2662 j |= 0x20;
2663 output[0x08] = j;
2664
2665 // Addr 09: Max power consumption: max power = value * 2 mA
2666 output[0x09] = eeprom->max_power / MAX_POWER_MILLIAMP_PER_UNIT;
2667
2668 if ((ftdi->type != TYPE_AM) && (ftdi->type != TYPE_230X))
2669 {
2670 // Addr 0A: Chip configuration
2671 // Bit 7: 0 - reserved
2672 // Bit 6: 0 - reserved
2673 // Bit 5: 0 - reserved
2674 // Bit 4: 1 - Change USB version
2675 // Bit 3: 1 - Use the serial number string
2676 // Bit 2: 1 - Enable suspend pull downs for lower power
2677 // Bit 1: 1 - Out EndPoint is Isochronous
2678 // Bit 0: 1 - In EndPoint is Isochronous
2679 //
2680 j = 0;
2681 if (eeprom->in_is_isochronous)
2682 j = j | 1;
2683 if (eeprom->out_is_isochronous)
2684 j = j | 2;
2685 output[0x0A] = j;
2686 }
2687
2688 // Dynamic content
2689 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2690 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2691 // 0xa0 (TYPE_232H)
2692 i = 0;
2693 switch (ftdi->type)
2694 {
2695 case TYPE_2232H:
2696 case TYPE_4232H:
2697 i += 2;
2698 case TYPE_R:
2699 i += 2;
2700 case TYPE_2232C:
2701 i += 2;
2702 case TYPE_AM:
2703 case TYPE_BM:
2704 i += 0x94;
2705 break;
2706 case TYPE_232H:
2707 case TYPE_230X:
2708 i = 0xa0;
2709 break;
2710 }
2711 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2712 eeprom_size_mask = eeprom->size -1;
2713
2714 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2715 // Addr 0F: Length of manufacturer string
2716 // Output manufacturer
2717 output[0x0E] = i; // calculate offset
2718 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2719 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2720 for (j = 0; j < manufacturer_size; j++)
2721 {
2722 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2723 output[i & eeprom_size_mask] = 0x00, i++;
2724 }
2725 output[0x0F] = manufacturer_size*2 + 2;
2726
2727 // Addr 10: Offset of the product string + 0x80, calculated later
2728 // Addr 11: Length of product string
2729 output[0x10] = i | 0x80; // calculate offset
2730 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2731 output[i & eeprom_size_mask] = 0x03, i++;
2732 for (j = 0; j < product_size; j++)
2733 {
2734 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2735 output[i & eeprom_size_mask] = 0x00, i++;
2736 }
2737 output[0x11] = product_size*2 + 2;
2738
2739 // Addr 12: Offset of the serial string + 0x80, calculated later
2740 // Addr 13: Length of serial string
2741 output[0x12] = i | 0x80; // calculate offset
2742 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2743 output[i & eeprom_size_mask] = 0x03, i++;
2744 for (j = 0; j < serial_size; j++)
2745 {
2746 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2747 output[i & eeprom_size_mask] = 0x00, i++;
2748 }
2749
2750 // Legacy port name and PnP fields for FT2232 and newer chips
2751 if (ftdi->type > TYPE_BM)
2752 {
2753 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2754 i++;
2755 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2756 i++;
2757 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2758 i++;
2759 }
2760
2761 output[0x13] = serial_size*2 + 2;
2762
2763 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2764 {
2765 if (eeprom->use_serial)
2766 output[0x0A] |= USE_SERIAL_NUM;
2767 else
2768 output[0x0A] &= ~USE_SERIAL_NUM;
2769 }
2770
2771 /* Bytes and Bits specific to (some) types
2772 Write linear, as this allows easier fixing*/
2773 switch (ftdi->type)
2774 {
2775 case TYPE_AM:
2776 break;
2777 case TYPE_BM:
2778 output[0x0C] = eeprom->usb_version & 0xff;
2779 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2780 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2781 output[0x0A] |= USE_USB_VERSION_BIT;
2782 else
2783 output[0x0A] &= ~USE_USB_VERSION_BIT;
2784
2785 break;
2786 case TYPE_2232C:
2787
2788 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
2789 if ( eeprom->channel_a_driver == DRIVER_VCP)
2790 output[0x00] |= DRIVER_VCP;
2791 else
2792 output[0x00] &= ~DRIVER_VCP;
2793
2794 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2795 output[0x00] |= HIGH_CURRENT_DRIVE;
2796 else
2797 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2798
2799 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
2800 if ( eeprom->channel_b_driver == DRIVER_VCP)
2801 output[0x01] |= DRIVER_VCP;
2802 else
2803 output[0x01] &= ~DRIVER_VCP;
2804
2805 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2806 output[0x01] |= HIGH_CURRENT_DRIVE;
2807 else
2808 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2809
2810 if (eeprom->in_is_isochronous)
2811 output[0x0A] |= 0x1;
2812 else
2813 output[0x0A] &= ~0x1;
2814 if (eeprom->out_is_isochronous)
2815 output[0x0A] |= 0x2;
2816 else
2817 output[0x0A] &= ~0x2;
2818 if (eeprom->suspend_pull_downs)
2819 output[0x0A] |= 0x4;
2820 else
2821 output[0x0A] &= ~0x4;
2822 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2823 output[0x0A] |= USE_USB_VERSION_BIT;
2824 else
2825 output[0x0A] &= ~USE_USB_VERSION_BIT;
2826
2827 output[0x0C] = eeprom->usb_version & 0xff;
2828 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2829 output[0x14] = eeprom->chip;
2830 break;
2831 case TYPE_R:
2832 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2833 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2834 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2835
2836 if (eeprom->suspend_pull_downs)
2837 output[0x0A] |= 0x4;
2838 else
2839 output[0x0A] &= ~0x4;
2840 output[0x0B] = eeprom->invert;
2841 output[0x0C] = eeprom->usb_version & 0xff;
2842 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2843
2844 if (eeprom->cbus_function[0] > CBUS_BB)
2845 output[0x14] = CBUS_TXLED;
2846 else
2847 output[0x14] = eeprom->cbus_function[0];
2848
2849 if (eeprom->cbus_function[1] > CBUS_BB)
2850 output[0x14] |= CBUS_RXLED<<4;
2851 else
2852 output[0x14] |= eeprom->cbus_function[1]<<4;
2853
2854 if (eeprom->cbus_function[2] > CBUS_BB)
2855 output[0x15] = CBUS_TXDEN;
2856 else
2857 output[0x15] = eeprom->cbus_function[2];
2858
2859 if (eeprom->cbus_function[3] > CBUS_BB)
2860 output[0x15] |= CBUS_PWREN<<4;
2861 else
2862 output[0x15] |= eeprom->cbus_function[3]<<4;
2863
2864 if (eeprom->cbus_function[4] > CBUS_CLK6)
2865 output[0x16] = CBUS_SLEEP;
2866 else
2867 output[0x16] = eeprom->cbus_function[4];
2868 break;
2869 case TYPE_2232H:
2870 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
2871 if ( eeprom->channel_a_driver == DRIVER_VCP)
2872 output[0x00] |= DRIVER_VCP;
2873 else
2874 output[0x00] &= ~DRIVER_VCP;
2875
2876 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
2877 if ( eeprom->channel_b_driver == DRIVER_VCP)
2878 output[0x01] |= DRIVER_VCP;
2879 else
2880 output[0x01] &= ~DRIVER_VCP;
2881 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2882 output[0x01] |= SUSPEND_DBUS7_BIT;
2883 else
2884 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2885
2886 if (eeprom->suspend_pull_downs)
2887 output[0x0A] |= 0x4;
2888 else
2889 output[0x0A] &= ~0x4;
2890
2891 if (eeprom->group0_drive > DRIVE_16MA)
2892 output[0x0c] |= DRIVE_16MA;
2893 else
2894 output[0x0c] |= eeprom->group0_drive;
2895 if (eeprom->group0_schmitt == IS_SCHMITT)
2896 output[0x0c] |= IS_SCHMITT;
2897 if (eeprom->group0_slew == SLOW_SLEW)
2898 output[0x0c] |= SLOW_SLEW;
2899
2900 if (eeprom->group1_drive > DRIVE_16MA)
2901 output[0x0c] |= DRIVE_16MA<<4;
2902 else
2903 output[0x0c] |= eeprom->group1_drive<<4;
2904 if (eeprom->group1_schmitt == IS_SCHMITT)
2905 output[0x0c] |= IS_SCHMITT<<4;
2906 if (eeprom->group1_slew == SLOW_SLEW)
2907 output[0x0c] |= SLOW_SLEW<<4;
2908
2909 if (eeprom->group2_drive > DRIVE_16MA)
2910 output[0x0d] |= DRIVE_16MA;
2911 else
2912 output[0x0d] |= eeprom->group2_drive;
2913 if (eeprom->group2_schmitt == IS_SCHMITT)
2914 output[0x0d] |= IS_SCHMITT;
2915 if (eeprom->group2_slew == SLOW_SLEW)
2916 output[0x0d] |= SLOW_SLEW;
2917
2918 if (eeprom->group3_drive > DRIVE_16MA)
2919 output[0x0d] |= DRIVE_16MA<<4;
2920 else
2921 output[0x0d] |= eeprom->group3_drive<<4;
2922 if (eeprom->group3_schmitt == IS_SCHMITT)
2923 output[0x0d] |= IS_SCHMITT<<4;
2924 if (eeprom->group3_slew == SLOW_SLEW)
2925 output[0x0d] |= SLOW_SLEW<<4;
2926
2927 output[0x18] = eeprom->chip;
2928
2929 break;
2930 case TYPE_4232H:
2931 if (eeprom->channel_a_driver == DRIVER_VCP)
2932 output[0x00] |= DRIVER_VCP;
2933 else
2934 output[0x00] &= ~DRIVER_VCP;
2935 if (eeprom->channel_b_driver == DRIVER_VCP)
2936 output[0x01] |= DRIVER_VCP;
2937 else
2938 output[0x01] &= ~DRIVER_VCP;
2939 if (eeprom->channel_c_driver == DRIVER_VCP)
2940 output[0x00] |= (DRIVER_VCP << 4);
2941 else
2942 output[0x00] &= ~(DRIVER_VCP << 4);
2943 if (eeprom->channel_d_driver == DRIVER_VCP)
2944 output[0x01] |= (DRIVER_VCP << 4);
2945 else
2946 output[0x01] &= ~(DRIVER_VCP << 4);
2947
2948 if (eeprom->suspend_pull_downs)
2949 output[0x0a] |= 0x4;
2950 else
2951 output[0x0a] &= ~0x4;
2952
2953 if (eeprom->channel_a_rs485enable)
2954 output[0x0b] |= CHANNEL_IS_RS485 << 0;
2955 else
2956 output[0x0b] &= ~(CHANNEL_IS_RS485 << 0);
2957 if (eeprom->channel_b_rs485enable)
2958 output[0x0b] |= CHANNEL_IS_RS485 << 1;
2959 else
2960 output[0x0b] &= ~(CHANNEL_IS_RS485 << 1);
2961 if (eeprom->channel_c_rs485enable)
2962 output[0x0b] |= CHANNEL_IS_RS485 << 2;
2963 else
2964 output[0x0b] &= ~(CHANNEL_IS_RS485 << 2);
2965 if (eeprom->channel_d_rs485enable)
2966 output[0x0b] |= CHANNEL_IS_RS485 << 3;
2967 else
2968 output[0x0b] &= ~(CHANNEL_IS_RS485 << 3);
2969
2970 if (eeprom->group0_drive > DRIVE_16MA)
2971 output[0x0c] |= DRIVE_16MA;
2972 else
2973 output[0x0c] |= eeprom->group0_drive;
2974 if (eeprom->group0_schmitt == IS_SCHMITT)
2975 output[0x0c] |= IS_SCHMITT;
2976 if (eeprom->group0_slew == SLOW_SLEW)
2977 output[0x0c] |= SLOW_SLEW;
2978
2979 if (eeprom->group1_drive > DRIVE_16MA)
2980 output[0x0c] |= DRIVE_16MA<<4;
2981 else
2982 output[0x0c] |= eeprom->group1_drive<<4;
2983 if (eeprom->group1_schmitt == IS_SCHMITT)
2984 output[0x0c] |= IS_SCHMITT<<4;
2985 if (eeprom->group1_slew == SLOW_SLEW)
2986 output[0x0c] |= SLOW_SLEW<<4;
2987
2988 if (eeprom->group2_drive > DRIVE_16MA)
2989 output[0x0d] |= DRIVE_16MA;
2990 else
2991 output[0x0d] |= eeprom->group2_drive;
2992 if (eeprom->group2_schmitt == IS_SCHMITT)
2993 output[0x0d] |= IS_SCHMITT;
2994 if (eeprom->group2_slew == SLOW_SLEW)
2995 output[0x0d] |= SLOW_SLEW;
2996
2997 if (eeprom->group3_drive > DRIVE_16MA)
2998 output[0x0d] |= DRIVE_16MA<<4;
2999 else
3000 output[0x0d] |= eeprom->group3_drive<<4;
3001 if (eeprom->group3_schmitt == IS_SCHMITT)
3002 output[0x0d] |= IS_SCHMITT<<4;
3003 if (eeprom->group3_slew == SLOW_SLEW)
3004 output[0x0d] |= SLOW_SLEW<<4;
3005
3006 output[0x18] = eeprom->chip;
3007
3008 break;
3009 case TYPE_232H:
3010 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
3011 if ( eeprom->channel_a_driver == DRIVER_VCP)
3012 output[0x00] |= DRIVER_VCPH;
3013 else
3014 output[0x00] &= ~DRIVER_VCPH;
3015 if (eeprom->powersave)
3016 output[0x01] |= POWER_SAVE_DISABLE_H;
3017 else
3018 output[0x01] &= ~POWER_SAVE_DISABLE_H;
3019
3020 if (eeprom->suspend_pull_downs)
3021 output[0x0a] |= 0x4;
3022 else
3023 output[0x0a] &= ~0x4;
3024
3025 if (eeprom->clock_polarity)
3026 output[0x01] |= FT1284_CLK_IDLE_STATE;
3027 else
3028 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
3029 if (eeprom->data_order)
3030 output[0x01] |= FT1284_DATA_LSB;
3031 else
3032 output[0x01] &= ~FT1284_DATA_LSB;
3033 if (eeprom->flow_control)
3034 output[0x01] |= FT1284_FLOW_CONTROL;
3035 else
3036 output[0x01] &= ~FT1284_FLOW_CONTROL;
3037 if (eeprom->group0_drive > DRIVE_16MA)
3038 output[0x0c] |= DRIVE_16MA;
3039 else
3040 output[0x0c] |= eeprom->group0_drive;
3041 if (eeprom->group0_schmitt == IS_SCHMITT)
3042 output[0x0c] |= IS_SCHMITT;
3043 if (eeprom->group0_slew == SLOW_SLEW)
3044 output[0x0c] |= SLOW_SLEW;
3045
3046 if (eeprom->group1_drive > DRIVE_16MA)
3047 output[0x0d] |= DRIVE_16MA;
3048 else
3049 output[0x0d] |= eeprom->group1_drive;
3050 if (eeprom->group1_schmitt == IS_SCHMITT)
3051 output[0x0d] |= IS_SCHMITT;
3052 if (eeprom->group1_slew == SLOW_SLEW)
3053 output[0x0d] |= SLOW_SLEW;
3054
3055 set_ft232h_cbus(eeprom, output);
3056
3057 output[0x1e] = eeprom->chip;
3058 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
3059 break;
3060 case TYPE_230X:
3061 output[0x00] = 0x80; /* Actually, leave the default value */
3062 output[0x0a] = 0x08; /* Enable USB Serial Number */
3063 /*FIXME: Make DBUS & CBUS Control configurable*/
3064 output[0x0c] = 0; /* DBUS drive 4mA, CBUS drive 4 mA like factory default */
3065 for (j = 0; j <= 6; j++)
3066 {
3067 output[0x1a + j] = eeprom->cbus_function[j];
3068 }
3069 output[0x0b] = eeprom->invert;
3070 break;
3071 }
3072
3073 // calculate checksum
3074 checksum = 0xAAAA;
3075
3076 for (i = 0; i < eeprom->size/2-1; i++)
3077 {
3078 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3079 {
3080 /* FT230X has a user section in the MTP which is not part of the checksum */
3081 i = 0x40;
3082 }
3083 if ((ftdi->type == TYPE_230X) && (i >= 0x40) && (i < 0x50)) {
3084 uint16_t data;
3085 if (ftdi_read_eeprom_location(ftdi, i, &data)) {
3086 fprintf(stderr, "Reading Factory Configuration Data failed\n");
3087 i = 0x50;
3088 }
3089 value = data;
3090 }
3091 else {
3092 value = output[i*2];
3093 value += output[(i*2)+1] << 8;
3094 }
3095 checksum = value^checksum;
3096 checksum = (checksum << 1) | (checksum >> 15);
3097 }
3098
3099 output[eeprom->size-2] = checksum;
3100 output[eeprom->size-1] = checksum >> 8;
3101
3102 eeprom->initialized_for_connected_device = 1;
3103 return user_area_size;
3104}
3105/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
3106 * EEPROM structure
3107 *
3108 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
3109 */
3110static unsigned char bit2type(unsigned char bits)
3111{
3112 switch (bits)
3113 {
3114 case 0: return CHANNEL_IS_UART;
3115 case 1: return CHANNEL_IS_FIFO;
3116 case 2: return CHANNEL_IS_OPTO;
3117 case 4: return CHANNEL_IS_CPU;
3118 case 8: return CHANNEL_IS_FT1284;
3119 default:
3120 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
3121 bits);
3122 }
3123 return 0;
3124}
3125/* Decode 230X / 232R type chips invert bits
3126 * Prints directly to stdout.
3127*/
3128static void print_inverted_bits(int invert)
3129{
3130 char *r_bits[] = {"TXD","RXD","RTS","CTS","DTR","DSR","DCD","RI"};
3131 int i;
3132
3133 fprintf(stdout,"Inverted bits:");
3134 for (i=0; i<8; i++)
3135 if ((invert & (1<<i)) == (1<<i))
3136 fprintf(stdout," %s",r_bits[i]);
3137
3138 fprintf(stdout,"\n");
3139}
3140/**
3141 Decode binary EEPROM image into an ftdi_eeprom structure.
3142
3143 For FT-X devices use AN_201 FT-X MTP memory Configuration to decode.
3144
3145 \param ftdi pointer to ftdi_context
3146 \param verbose Decode EEPROM on stdout
3147
3148 \retval 0: all fine
3149 \retval -1: something went wrong
3150
3151 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
3152 FIXME: Strings are malloc'ed here and should be freed somewhere
3153*/
3154int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
3155{
3156 int i, j;
3157 unsigned short checksum, eeprom_checksum, value;
3158 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
3159 int eeprom_size;
3160 struct ftdi_eeprom *eeprom;
3161 unsigned char *buf = NULL;
3162
3163 if (ftdi == NULL)
3164 ftdi_error_return(-1,"No context");
3165 if (ftdi->eeprom == NULL)
3166 ftdi_error_return(-1,"No eeprom structure");
3167
3168 eeprom = ftdi->eeprom;
3169 eeprom_size = eeprom->size;
3170 buf = ftdi->eeprom->buf;
3171
3172 // Addr 02: Vendor ID
3173 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
3174
3175 // Addr 04: Product ID
3176 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
3177
3178 // Addr 06: Device release number
3179 eeprom->release_number = buf[0x06] + (buf[0x07]<<8);
3180
3181 // Addr 08: Config descriptor
3182 // Bit 7: always 1
3183 // Bit 6: 1 if this device is self powered, 0 if bus powered
3184 // Bit 5: 1 if this device uses remote wakeup
3185 eeprom->self_powered = buf[0x08] & 0x40;
3186 eeprom->remote_wakeup = buf[0x08] & 0x20;
3187
3188 // Addr 09: Max power consumption: max power = value * 2 mA
3189 eeprom->max_power = MAX_POWER_MILLIAMP_PER_UNIT * buf[0x09];
3190
3191 // Addr 0A: Chip configuration
3192 // Bit 7: 0 - reserved
3193 // Bit 6: 0 - reserved
3194 // Bit 5: 0 - reserved
3195 // Bit 4: 1 - Change USB version on BM and 2232C
3196 // Bit 3: 1 - Use the serial number string
3197 // Bit 2: 1 - Enable suspend pull downs for lower power
3198 // Bit 1: 1 - Out EndPoint is Isochronous
3199 // Bit 0: 1 - In EndPoint is Isochronous
3200 //
3201 eeprom->in_is_isochronous = buf[0x0A]&0x01;
3202 eeprom->out_is_isochronous = buf[0x0A]&0x02;
3203 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
3204 eeprom->use_serial = (buf[0x0A] & USE_SERIAL_NUM)?1:0;
3205 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
3206
3207 // Addr 0C: USB version low byte when 0x0A
3208 // Addr 0D: USB version high byte when 0x0A
3209 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
3210
3211 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3212 // Addr 0F: Length of manufacturer string
3213 manufacturer_size = buf[0x0F]/2;
3214 if (eeprom->manufacturer)
3215 free(eeprom->manufacturer);
3216 if (manufacturer_size > 0)
3217 {
3218 eeprom->manufacturer = malloc(manufacturer_size);
3219 if (eeprom->manufacturer)
3220 {
3221 // Decode manufacturer
3222 i = buf[0x0E] & (eeprom_size -1); // offset
3223 for (j=0; j<manufacturer_size-1; j++)
3224 {
3225 eeprom->manufacturer[j] = buf[2*j+i+2];
3226 }
3227 eeprom->manufacturer[j] = '\0';
3228 }
3229 }
3230 else eeprom->manufacturer = NULL;
3231
3232 // Addr 10: Offset of the product string + 0x80, calculated later
3233 // Addr 11: Length of product string
3234 if (eeprom->product)
3235 free(eeprom->product);
3236 product_size = buf[0x11]/2;
3237 if (product_size > 0)
3238 {
3239 eeprom->product = malloc(product_size);
3240 if (eeprom->product)
3241 {
3242 // Decode product name
3243 i = buf[0x10] & (eeprom_size -1); // offset
3244 for (j=0; j<product_size-1; j++)
3245 {
3246 eeprom->product[j] = buf[2*j+i+2];
3247 }
3248 eeprom->product[j] = '\0';
3249 }
3250 }
3251 else eeprom->product = NULL;
3252
3253 // Addr 12: Offset of the serial string + 0x80, calculated later
3254 // Addr 13: Length of serial string
3255 if (eeprom->serial)
3256 free(eeprom->serial);
3257 serial_size = buf[0x13]/2;
3258 if (serial_size > 0)
3259 {
3260 eeprom->serial = malloc(serial_size);
3261 if (eeprom->serial)
3262 {
3263 // Decode serial
3264 i = buf[0x12] & (eeprom_size -1); // offset
3265 for (j=0; j<serial_size-1; j++)
3266 {
3267 eeprom->serial[j] = buf[2*j+i+2];
3268 }
3269 eeprom->serial[j] = '\0';
3270 }
3271 }
3272 else eeprom->serial = NULL;
3273
3274 // verify checksum
3275 checksum = 0xAAAA;
3276
3277 for (i = 0; i < eeprom_size/2-1; i++)
3278 {
3279 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3280 {
3281 /* FT230X has a user section in the MTP which is not part of the checksum */
3282 i = 0x40;
3283 }
3284 value = buf[i*2];
3285 value += buf[(i*2)+1] << 8;
3286
3287 checksum = value^checksum;
3288 checksum = (checksum << 1) | (checksum >> 15);
3289 }
3290
3291 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3292
3293 if (eeprom_checksum != checksum)
3294 {
3295 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
3296 ftdi_error_return(-1,"EEPROM checksum error");
3297 }
3298
3299 eeprom->channel_a_type = 0;
3300 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
3301 {
3302 eeprom->chip = -1;
3303 }
3304 else if (ftdi->type == TYPE_2232C)
3305 {
3306 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3307 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3308 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
3309 eeprom->channel_b_type = buf[0x01] & 0x7;
3310 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3311 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
3312 eeprom->chip = buf[0x14];
3313 }
3314 else if (ftdi->type == TYPE_R)
3315 {
3316 /* TYPE_R flags D2XX, not VCP as all others*/
3317 eeprom->channel_a_driver = ~buf[0x00] & DRIVER_VCP;
3318 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
3319 if ( (buf[0x01]&0x40) != 0x40)
3320 fprintf(stderr,
3321 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3322 " If this happened with the\n"
3323 " EEPROM programmed by FTDI tools, please report "
3324 "to libftdi@developer.intra2net.com\n");
3325
3326 eeprom->chip = buf[0x16];
3327 // Addr 0B: Invert data lines
3328 // Works only on FT232R, not FT245R, but no way to distinguish
3329 eeprom->invert = buf[0x0B];
3330 // Addr 14: CBUS function: CBUS0, CBUS1
3331 // Addr 15: CBUS function: CBUS2, CBUS3
3332 // Addr 16: CBUS function: CBUS5
3333 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3334 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3335 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3336 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3337 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
3338 }
3339 else if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3340 {
3341 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3342 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3343
3344 if (ftdi->type == TYPE_2232H)
3345 {
3346 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3347 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3348 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
3349 }
3350 else
3351 {
3352 eeprom->channel_c_driver = (buf[0x00] >> 4) & DRIVER_VCP;
3353 eeprom->channel_d_driver = (buf[0x01] >> 4) & DRIVER_VCP;
3354 eeprom->channel_a_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 0);
3355 eeprom->channel_b_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 1);
3356 eeprom->channel_c_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 2);
3357 eeprom->channel_d_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 3);
3358 }
3359
3360 eeprom->chip = buf[0x18];
3361 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3362 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3363 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3364 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3365 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3366 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3367 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3368 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3369 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3370 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3371 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3372 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
3373 }
3374 else if (ftdi->type == TYPE_232H)
3375 {
3376 eeprom->channel_a_type = buf[0x00] & 0xf;
3377 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
3378 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3379 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3380 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
3381 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
3382 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3383 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3384 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3385 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3386 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3387 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3388
3389 for(i=0; i<5; i++)
3390 {
3391 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3392 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3393 }
3394 eeprom->chip = buf[0x1e];
3395 /*FIXME: Decipher more values*/
3396 }
3397 else if (ftdi->type == TYPE_230X)
3398 {
3399 for(i=0; i<4; i++)
3400 {
3401 eeprom->cbus_function[i] = buf[0x1a + i] & 0xFF;
3402 }
3403 eeprom->group0_drive = buf[0x0c] & 0x03;
3404 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3405 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3406 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x03;
3407 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3408 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3409
3410 eeprom->invert = buf[0xb];
3411 }
3412
3413 if (verbose)
3414 {
3415 char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3416 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3417 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3418 fprintf(stdout, "Release: 0x%04x\n",eeprom->release_number);
3419
3420 if (eeprom->self_powered)
3421 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3422 else
3423 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power,
3424 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3425 if (eeprom->manufacturer)
3426 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3427 if (eeprom->product)
3428 fprintf(stdout, "Product: %s\n",eeprom->product);
3429 if (eeprom->serial)
3430 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3431 fprintf(stdout, "Checksum : %04x\n", checksum);
3432 if (ftdi->type == TYPE_R)
3433 fprintf(stdout, "Internal EEPROM\n");
3434 else if (eeprom->chip >= 0x46)
3435 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3436 if (eeprom->suspend_dbus7)
3437 fprintf(stdout, "Suspend on DBUS7\n");
3438 if (eeprom->suspend_pull_downs)
3439 fprintf(stdout, "Pull IO pins low during suspend\n");
3440 if(eeprom->powersave)
3441 {
3442 if(ftdi->type >= TYPE_232H)
3443 fprintf(stdout,"Enter low power state on ACBUS7\n");
3444 }
3445 if (eeprom->remote_wakeup)
3446 fprintf(stdout, "Enable Remote Wake Up\n");
3447 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3448 if (ftdi->type >= TYPE_2232C)
3449 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3450 channel_mode[eeprom->channel_a_type],
3451 (eeprom->channel_a_driver)?" VCP":"",
3452 (eeprom->high_current_a)?" High Current IO":"");
3453 if (ftdi->type == TYPE_232H)
3454 {
3455 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3456 (eeprom->clock_polarity)?"HIGH":"LOW",
3457 (eeprom->data_order)?"LSB":"MSB",
3458 (eeprom->flow_control)?"":"No ");
3459 }
3460 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3461 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3462 channel_mode[eeprom->channel_b_type],
3463 (eeprom->channel_b_driver)?" VCP":"",
3464 (eeprom->high_current_b)?" High Current IO":"");
3465 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3466 eeprom->use_usb_version == USE_USB_VERSION_BIT)
3467 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3468
3469 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3470 {
3471 fprintf(stdout,"%s has %d mA drive%s%s\n",
3472 (ftdi->type == TYPE_2232H)?"AL":"A",
3473 (eeprom->group0_drive+1) *4,
3474 (eeprom->group0_schmitt)?" Schmitt Input":"",
3475 (eeprom->group0_slew)?" Slow Slew":"");
3476 fprintf(stdout,"%s has %d mA drive%s%s\n",
3477 (ftdi->type == TYPE_2232H)?"AH":"B",
3478 (eeprom->group1_drive+1) *4,
3479 (eeprom->group1_schmitt)?" Schmitt Input":"",
3480 (eeprom->group1_slew)?" Slow Slew":"");
3481 fprintf(stdout,"%s has %d mA drive%s%s\n",
3482 (ftdi->type == TYPE_2232H)?"BL":"C",
3483 (eeprom->group2_drive+1) *4,
3484 (eeprom->group2_schmitt)?" Schmitt Input":"",
3485 (eeprom->group2_slew)?" Slow Slew":"");
3486 fprintf(stdout,"%s has %d mA drive%s%s\n",
3487 (ftdi->type == TYPE_2232H)?"BH":"D",
3488 (eeprom->group3_drive+1) *4,
3489 (eeprom->group3_schmitt)?" Schmitt Input":"",
3490 (eeprom->group3_slew)?" Slow Slew":"");
3491 }
3492 else if (ftdi->type == TYPE_232H)
3493 {
3494 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3495 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3496 "CLK30","CLK15","CLK7_5"
3497 };
3498 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3499 (eeprom->group0_drive+1) *4,
3500 (eeprom->group0_schmitt)?" Schmitt Input":"",
3501 (eeprom->group0_slew)?" Slow Slew":"");
3502 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3503 (eeprom->group1_drive+1) *4,
3504 (eeprom->group1_schmitt)?" Schmitt Input":"",
3505 (eeprom->group1_slew)?" Slow Slew":"");
3506 for (i=0; i<10; i++)
3507 {
3508 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3509 fprintf(stdout,"C%d Function: %s\n", i,
3510 cbush_mux[eeprom->cbus_function[i]]);
3511 }
3512 }
3513 else if (ftdi->type == TYPE_230X)
3514 {
3515 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3516 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3517 "CLK24","CLK12","CLK6","BAT_DETECT","BAT_DETECT#",
3518 "I2C_TXE#", "I2C_RXF#", "VBUS_SENSE", "BB_WR#",
3519 "BBRD#", "TIME_STAMP", "AWAKE#",
3520 };
3521 fprintf(stdout,"DBUS has %d mA drive%s%s\n",
3522 (eeprom->group0_drive+1) *4,
3523 (eeprom->group0_schmitt)?" Schmitt Input":"",
3524 (eeprom->group0_slew)?" Slow Slew":"");
3525 fprintf(stdout,"CBUS has %d mA drive%s%s\n",
3526 (eeprom->group1_drive+1) *4,
3527 (eeprom->group1_schmitt)?" Schmitt Input":"",
3528 (eeprom->group1_slew)?" Slow Slew":"");
3529 for (i=0; i<4; i++)
3530 {
3531 if (eeprom->cbus_function[i]<= CBUSH_AWAKE)
3532 fprintf(stdout,"CBUS%d Function: %s\n", i, cbush_mux[eeprom->cbus_function[i]]);
3533 }
3534
3535 if (eeprom->invert)
3536 print_inverted_bits(eeprom->invert);
3537 }
3538
3539 if (ftdi->type == TYPE_R)
3540 {
3541 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3542 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3543 "IOMODE","BB_WR","BB_RD"
3544 };
3545 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3546
3547 if (eeprom->invert)
3548 print_inverted_bits(eeprom->invert);
3549
3550 for (i=0; i<5; i++)
3551 {
3552 if (eeprom->cbus_function[i]<CBUS_BB)
3553 fprintf(stdout,"C%d Function: %s\n", i,
3554 cbus_mux[eeprom->cbus_function[i]]);
3555 else
3556 {
3557 if (i < 4)
3558 /* Running MPROG show that C0..3 have fixed function Synchronous
3559 Bit Bang mode */
3560 fprintf(stdout,"C%d BB Function: %s\n", i,
3561 cbus_BB[i]);
3562 else
3563 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3564 }
3565 }
3566 }
3567 }
3568 return 0;
3569}
3570
3571/**
3572 Get a value from the decoded EEPROM structure
3573
3574 \param ftdi pointer to ftdi_context
3575 \param value_name Enum of the value to query
3576 \param value Pointer to store read value
3577
3578 \retval 0: all fine
3579 \retval -1: Value doesn't exist
3580*/
3581int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3582{
3583 switch (value_name)
3584 {
3585 case VENDOR_ID:
3586 *value = ftdi->eeprom->vendor_id;
3587 break;
3588 case PRODUCT_ID:
3589 *value = ftdi->eeprom->product_id;
3590 break;
3591 case RELEASE_NUMBER:
3592 *value = ftdi->eeprom->release_number;
3593 break;
3594 case SELF_POWERED:
3595 *value = ftdi->eeprom->self_powered;
3596 break;
3597 case REMOTE_WAKEUP:
3598 *value = ftdi->eeprom->remote_wakeup;
3599 break;
3600 case IS_NOT_PNP:
3601 *value = ftdi->eeprom->is_not_pnp;
3602 break;
3603 case SUSPEND_DBUS7:
3604 *value = ftdi->eeprom->suspend_dbus7;
3605 break;
3606 case IN_IS_ISOCHRONOUS:
3607 *value = ftdi->eeprom->in_is_isochronous;
3608 break;
3609 case OUT_IS_ISOCHRONOUS:
3610 *value = ftdi->eeprom->out_is_isochronous;
3611 break;
3612 case SUSPEND_PULL_DOWNS:
3613 *value = ftdi->eeprom->suspend_pull_downs;
3614 break;
3615 case USE_SERIAL:
3616 *value = ftdi->eeprom->use_serial;
3617 break;
3618 case USB_VERSION:
3619 *value = ftdi->eeprom->usb_version;
3620 break;
3621 case USE_USB_VERSION:
3622 *value = ftdi->eeprom->use_usb_version;
3623 break;
3624 case MAX_POWER:
3625 *value = ftdi->eeprom->max_power;
3626 break;
3627 case CHANNEL_A_TYPE:
3628 *value = ftdi->eeprom->channel_a_type;
3629 break;
3630 case CHANNEL_B_TYPE:
3631 *value = ftdi->eeprom->channel_b_type;
3632 break;
3633 case CHANNEL_A_DRIVER:
3634 *value = ftdi->eeprom->channel_a_driver;
3635 break;
3636 case CHANNEL_B_DRIVER:
3637 *value = ftdi->eeprom->channel_b_driver;
3638 break;
3639 case CHANNEL_C_DRIVER:
3640 *value = ftdi->eeprom->channel_c_driver;
3641 break;
3642 case CHANNEL_D_DRIVER:
3643 *value = ftdi->eeprom->channel_d_driver;
3644 break;
3645 case CHANNEL_A_RS485:
3646 *value = ftdi->eeprom->channel_a_rs485enable;
3647 break;
3648 case CHANNEL_B_RS485:
3649 *value = ftdi->eeprom->channel_b_rs485enable;
3650 break;
3651 case CHANNEL_C_RS485:
3652 *value = ftdi->eeprom->channel_c_rs485enable;
3653 break;
3654 case CHANNEL_D_RS485:
3655 *value = ftdi->eeprom->channel_d_rs485enable;
3656 break;
3657 case CBUS_FUNCTION_0:
3658 *value = ftdi->eeprom->cbus_function[0];
3659 break;
3660 case CBUS_FUNCTION_1:
3661 *value = ftdi->eeprom->cbus_function[1];
3662 break;
3663 case CBUS_FUNCTION_2:
3664 *value = ftdi->eeprom->cbus_function[2];
3665 break;
3666 case CBUS_FUNCTION_3:
3667 *value = ftdi->eeprom->cbus_function[3];
3668 break;
3669 case CBUS_FUNCTION_4:
3670 *value = ftdi->eeprom->cbus_function[4];
3671 break;
3672 case CBUS_FUNCTION_5:
3673 *value = ftdi->eeprom->cbus_function[5];
3674 break;
3675 case CBUS_FUNCTION_6:
3676 *value = ftdi->eeprom->cbus_function[6];
3677 break;
3678 case CBUS_FUNCTION_7:
3679 *value = ftdi->eeprom->cbus_function[7];
3680 break;
3681 case CBUS_FUNCTION_8:
3682 *value = ftdi->eeprom->cbus_function[8];
3683 break;
3684 case CBUS_FUNCTION_9:
3685 *value = ftdi->eeprom->cbus_function[8];
3686 break;
3687 case HIGH_CURRENT:
3688 *value = ftdi->eeprom->high_current;
3689 break;
3690 case HIGH_CURRENT_A:
3691 *value = ftdi->eeprom->high_current_a;
3692 break;
3693 case HIGH_CURRENT_B:
3694 *value = ftdi->eeprom->high_current_b;
3695 break;
3696 case INVERT:
3697 *value = ftdi->eeprom->invert;
3698 break;
3699 case GROUP0_DRIVE:
3700 *value = ftdi->eeprom->group0_drive;
3701 break;
3702 case GROUP0_SCHMITT:
3703 *value = ftdi->eeprom->group0_schmitt;
3704 break;
3705 case GROUP0_SLEW:
3706 *value = ftdi->eeprom->group0_slew;
3707 break;
3708 case GROUP1_DRIVE:
3709 *value = ftdi->eeprom->group1_drive;
3710 break;
3711 case GROUP1_SCHMITT:
3712 *value = ftdi->eeprom->group1_schmitt;
3713 break;
3714 case GROUP1_SLEW:
3715 *value = ftdi->eeprom->group1_slew;
3716 break;
3717 case GROUP2_DRIVE:
3718 *value = ftdi->eeprom->group2_drive;
3719 break;
3720 case GROUP2_SCHMITT:
3721 *value = ftdi->eeprom->group2_schmitt;
3722 break;
3723 case GROUP2_SLEW:
3724 *value = ftdi->eeprom->group2_slew;
3725 break;
3726 case GROUP3_DRIVE:
3727 *value = ftdi->eeprom->group3_drive;
3728 break;
3729 case GROUP3_SCHMITT:
3730 *value = ftdi->eeprom->group3_schmitt;
3731 break;
3732 case GROUP3_SLEW:
3733 *value = ftdi->eeprom->group3_slew;
3734 break;
3735 case POWER_SAVE:
3736 *value = ftdi->eeprom->powersave;
3737 break;
3738 case CLOCK_POLARITY:
3739 *value = ftdi->eeprom->clock_polarity;
3740 break;
3741 case DATA_ORDER:
3742 *value = ftdi->eeprom->data_order;
3743 break;
3744 case FLOW_CONTROL:
3745 *value = ftdi->eeprom->flow_control;
3746 break;
3747 case CHIP_TYPE:
3748 *value = ftdi->eeprom->chip;
3749 break;
3750 case CHIP_SIZE:
3751 *value = ftdi->eeprom->size;
3752 break;
3753 default:
3754 ftdi_error_return(-1, "Request for unknown EEPROM value");
3755 }
3756 return 0;
3757}
3758
3759/**
3760 Set a value in the decoded EEPROM Structure
3761 No parameter checking is performed
3762
3763 \param ftdi pointer to ftdi_context
3764 \param value_name Enum of the value to set
3765 \param value to set
3766
3767 \retval 0: all fine
3768 \retval -1: Value doesn't exist
3769 \retval -2: Value not user settable
3770*/
3771int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3772{
3773 switch (value_name)
3774 {
3775 case VENDOR_ID:
3776 ftdi->eeprom->vendor_id = value;
3777 break;
3778 case PRODUCT_ID:
3779 ftdi->eeprom->product_id = value;
3780 break;
3781 case RELEASE_NUMBER:
3782 ftdi->eeprom->release_number = value;
3783 break;
3784 case SELF_POWERED:
3785 ftdi->eeprom->self_powered = value;
3786 break;
3787 case REMOTE_WAKEUP:
3788 ftdi->eeprom->remote_wakeup = value;
3789 break;
3790 case IS_NOT_PNP:
3791 ftdi->eeprom->is_not_pnp = value;
3792 break;
3793 case SUSPEND_DBUS7:
3794 ftdi->eeprom->suspend_dbus7 = value;
3795 break;
3796 case IN_IS_ISOCHRONOUS:
3797 ftdi->eeprom->in_is_isochronous = value;
3798 break;
3799 case OUT_IS_ISOCHRONOUS:
3800 ftdi->eeprom->out_is_isochronous = value;
3801 break;
3802 case SUSPEND_PULL_DOWNS:
3803 ftdi->eeprom->suspend_pull_downs = value;
3804 break;
3805 case USE_SERIAL:
3806 ftdi->eeprom->use_serial = value;
3807 break;
3808 case USB_VERSION:
3809 ftdi->eeprom->usb_version = value;
3810 break;
3811 case USE_USB_VERSION:
3812 ftdi->eeprom->use_usb_version = value;
3813 break;
3814 case MAX_POWER:
3815 ftdi->eeprom->max_power = value;
3816 break;
3817 case CHANNEL_A_TYPE:
3818 ftdi->eeprom->channel_a_type = value;
3819 break;
3820 case CHANNEL_B_TYPE:
3821 ftdi->eeprom->channel_b_type = value;
3822 break;
3823 case CHANNEL_A_DRIVER:
3824 ftdi->eeprom->channel_a_driver = value;
3825 break;
3826 case CHANNEL_B_DRIVER:
3827 ftdi->eeprom->channel_b_driver = value;
3828 break;
3829 case CHANNEL_C_DRIVER:
3830 ftdi->eeprom->channel_c_driver = value;
3831 break;
3832 case CHANNEL_D_DRIVER:
3833 ftdi->eeprom->channel_d_driver = value;
3834 break;
3835 case CHANNEL_A_RS485:
3836 ftdi->eeprom->channel_a_rs485enable = value;
3837 break;
3838 case CHANNEL_B_RS485:
3839 ftdi->eeprom->channel_b_rs485enable = value;
3840 break;
3841 case CHANNEL_C_RS485:
3842 ftdi->eeprom->channel_c_rs485enable = value;
3843 break;
3844 case CHANNEL_D_RS485:
3845 ftdi->eeprom->channel_d_rs485enable = value;
3846 break;
3847 case CBUS_FUNCTION_0:
3848 ftdi->eeprom->cbus_function[0] = value;
3849 break;
3850 case CBUS_FUNCTION_1:
3851 ftdi->eeprom->cbus_function[1] = value;
3852 break;
3853 case CBUS_FUNCTION_2:
3854 ftdi->eeprom->cbus_function[2] = value;
3855 break;
3856 case CBUS_FUNCTION_3:
3857 ftdi->eeprom->cbus_function[3] = value;
3858 break;
3859 case CBUS_FUNCTION_4:
3860 ftdi->eeprom->cbus_function[4] = value;
3861 break;
3862 case CBUS_FUNCTION_5:
3863 ftdi->eeprom->cbus_function[5] = value;
3864 break;
3865 case CBUS_FUNCTION_6:
3866 ftdi->eeprom->cbus_function[6] = value;
3867 break;
3868 case CBUS_FUNCTION_7:
3869 ftdi->eeprom->cbus_function[7] = value;
3870 break;
3871 case CBUS_FUNCTION_8:
3872 ftdi->eeprom->cbus_function[8] = value;
3873 break;
3874 case CBUS_FUNCTION_9:
3875 ftdi->eeprom->cbus_function[9] = value;
3876 break;
3877 case HIGH_CURRENT:
3878 ftdi->eeprom->high_current = value;
3879 break;
3880 case HIGH_CURRENT_A:
3881 ftdi->eeprom->high_current_a = value;
3882 break;
3883 case HIGH_CURRENT_B:
3884 ftdi->eeprom->high_current_b = value;
3885 break;
3886 case INVERT:
3887 ftdi->eeprom->invert = value;
3888 break;
3889 case GROUP0_DRIVE:
3890 ftdi->eeprom->group0_drive = value;
3891 break;
3892 case GROUP0_SCHMITT:
3893 ftdi->eeprom->group0_schmitt = value;
3894 break;
3895 case GROUP0_SLEW:
3896 ftdi->eeprom->group0_slew = value;
3897 break;
3898 case GROUP1_DRIVE:
3899 ftdi->eeprom->group1_drive = value;
3900 break;
3901 case GROUP1_SCHMITT:
3902 ftdi->eeprom->group1_schmitt = value;
3903 break;
3904 case GROUP1_SLEW:
3905 ftdi->eeprom->group1_slew = value;
3906 break;
3907 case GROUP2_DRIVE:
3908 ftdi->eeprom->group2_drive = value;
3909 break;
3910 case GROUP2_SCHMITT:
3911 ftdi->eeprom->group2_schmitt = value;
3912 break;
3913 case GROUP2_SLEW:
3914 ftdi->eeprom->group2_slew = value;
3915 break;
3916 case GROUP3_DRIVE:
3917 ftdi->eeprom->group3_drive = value;
3918 break;
3919 case GROUP3_SCHMITT:
3920 ftdi->eeprom->group3_schmitt = value;
3921 break;
3922 case GROUP3_SLEW:
3923 ftdi->eeprom->group3_slew = value;
3924 break;
3925 case CHIP_TYPE:
3926 ftdi->eeprom->chip = value;
3927 break;
3928 case POWER_SAVE:
3929 ftdi->eeprom->powersave = value;
3930 break;
3931 case CLOCK_POLARITY:
3932 ftdi->eeprom->clock_polarity = value;
3933 break;
3934 case DATA_ORDER:
3935 ftdi->eeprom->data_order = value;
3936 break;
3937 case FLOW_CONTROL:
3938 ftdi->eeprom->flow_control = value;
3939 break;
3940 case CHIP_SIZE:
3941 ftdi_error_return(-2, "EEPROM Value can't be changed");
3942 break;
3943
3944 default :
3945 ftdi_error_return(-1, "Request to unknown EEPROM value");
3946 }
3947 ftdi->eeprom->initialized_for_connected_device = 0;
3948 return 0;
3949}
3950
3951/** Get the read-only buffer to the binary EEPROM content
3952
3953 \param ftdi pointer to ftdi_context
3954 \param buf buffer to receive EEPROM content
3955 \param size Size of receiving buffer
3956
3957 \retval 0: All fine
3958 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3959 \retval -2: Not enough room to store eeprom
3960*/
3961int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3962{
3963 if (!ftdi || !(ftdi->eeprom))
3964 ftdi_error_return(-1, "No appropriate structure");
3965
3966 if (!buf || size < ftdi->eeprom->size)
3967 ftdi_error_return(-1, "Not enough room to store eeprom");
3968
3969 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3970 if (size > FTDI_MAX_EEPROM_SIZE)
3971 size = FTDI_MAX_EEPROM_SIZE;
3972
3973 memcpy(buf, ftdi->eeprom->buf, size);
3974
3975 return 0;
3976}
3977
3978/** Set the EEPROM content from the user-supplied prefilled buffer
3979
3980 \param ftdi pointer to ftdi_context
3981 \param buf buffer to read EEPROM content
3982 \param size Size of buffer
3983
3984 \retval 0: All fine
3985 \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing
3986*/
3987int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
3988{
3989 if (!ftdi || !(ftdi->eeprom) || !buf)
3990 ftdi_error_return(-1, "No appropriate structure");
3991
3992 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3993 if (size > FTDI_MAX_EEPROM_SIZE)
3994 size = FTDI_MAX_EEPROM_SIZE;
3995
3996 memcpy(ftdi->eeprom->buf, buf, size);
3997
3998 return 0;
3999}
4000
4001/**
4002 Read eeprom location
4003
4004 \param ftdi pointer to ftdi_context
4005 \param eeprom_addr Address of eeprom location to be read
4006 \param eeprom_val Pointer to store read eeprom location
4007
4008 \retval 0: all fine
4009 \retval -1: read failed
4010 \retval -2: USB device unavailable
4011*/
4012int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
4013{
4014 if (ftdi == NULL || ftdi->usb_dev == NULL)
4015 ftdi_error_return(-2, "USB device unavailable");
4016
4017 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
4018 ftdi_error_return(-1, "reading eeprom failed");
4019
4020 return 0;
4021}
4022
4023/**
4024 Read eeprom
4025
4026 \param ftdi pointer to ftdi_context
4027
4028 \retval 0: all fine
4029 \retval -1: read failed
4030 \retval -2: USB device unavailable
4031*/
4032int ftdi_read_eeprom(struct ftdi_context *ftdi)
4033{
4034 int i;
4035 unsigned char *buf;
4036
4037 if (ftdi == NULL || ftdi->usb_dev == NULL)
4038 ftdi_error_return(-2, "USB device unavailable");
4039 buf = ftdi->eeprom->buf;
4040
4041 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
4042 {
4043 if (libusb_control_transfer(
4044 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
4045 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
4046 ftdi_error_return(-1, "reading eeprom failed");
4047 }
4048
4049 if (ftdi->type == TYPE_R)
4050 ftdi->eeprom->size = 0x80;
4051 /* Guesses size of eeprom by comparing halves
4052 - will not work with blank eeprom */
4053 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
4054 ftdi->eeprom->size = -1;
4055 else if (memcmp(buf,&buf[0x80],0x80) == 0)
4056 ftdi->eeprom->size = 0x80;
4057 else if (memcmp(buf,&buf[0x40],0x40) == 0)
4058 ftdi->eeprom->size = 0x40;
4059 else
4060 ftdi->eeprom->size = 0x100;
4061 return 0;
4062}
4063
4064/*
4065 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
4066 Function is only used internally
4067 \internal
4068*/
4069static unsigned char ftdi_read_chipid_shift(unsigned char value)
4070{
4071 return ((value & 1) << 1) |
4072 ((value & 2) << 5) |
4073 ((value & 4) >> 2) |
4074 ((value & 8) << 4) |
4075 ((value & 16) >> 1) |
4076 ((value & 32) >> 1) |
4077 ((value & 64) >> 4) |
4078 ((value & 128) >> 2);
4079}
4080
4081/**
4082 Read the FTDIChip-ID from R-type devices
4083
4084 \param ftdi pointer to ftdi_context
4085 \param chipid Pointer to store FTDIChip-ID
4086
4087 \retval 0: all fine
4088 \retval -1: read failed
4089 \retval -2: USB device unavailable
4090*/
4091int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
4092{
4093 unsigned int a = 0, b = 0;
4094
4095 if (ftdi == NULL || ftdi->usb_dev == NULL)
4096 ftdi_error_return(-2, "USB device unavailable");
4097
4098 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
4099 {
4100 a = a << 8 | a >> 8;
4101 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
4102 {
4103 b = b << 8 | b >> 8;
4104 a = (a << 16) | (b & 0xFFFF);
4105 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
4106 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
4107 *chipid = a ^ 0xa5f0f7d1;
4108 return 0;
4109 }
4110 }
4111
4112 ftdi_error_return(-1, "read of FTDIChip-ID failed");
4113}
4114
4115/**
4116 Write eeprom location
4117
4118 \param ftdi pointer to ftdi_context
4119 \param eeprom_addr Address of eeprom location to be written
4120 \param eeprom_val Value to be written
4121
4122 \retval 0: all fine
4123 \retval -1: write failed
4124 \retval -2: USB device unavailable
4125 \retval -3: Invalid access to checksum protected area below 0x80
4126 \retval -4: Device can't access unprotected area
4127 \retval -5: Reading chip type failed
4128*/
4129int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
4130 unsigned short eeprom_val)
4131{
4132 int chip_type_location;
4133 unsigned short chip_type;
4134
4135 if (ftdi == NULL || ftdi->usb_dev == NULL)
4136 ftdi_error_return(-2, "USB device unavailable");
4137
4138 if (eeprom_addr <0x80)
4139 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
4140
4141
4142 switch (ftdi->type)
4143 {
4144 case TYPE_BM:
4145 case TYPE_2232C:
4146 chip_type_location = 0x14;
4147 break;
4148 case TYPE_2232H:
4149 case TYPE_4232H:
4150 chip_type_location = 0x18;
4151 break;
4152 case TYPE_232H:
4153 chip_type_location = 0x1e;
4154 break;
4155 default:
4156 ftdi_error_return(-4, "Device can't access unprotected area");
4157 }
4158
4159 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
4160 ftdi_error_return(-5, "Reading failed");
4161 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
4162 if ((chip_type & 0xff) != 0x66)
4163 {
4164 ftdi_error_return(-6, "EEPROM is not of 93x66");
4165 }
4166
4167 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4168 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
4169 NULL, 0, ftdi->usb_write_timeout) != 0)
4170 ftdi_error_return(-1, "unable to write eeprom");
4171
4172 return 0;
4173}
4174
4175/**
4176 Write eeprom
4177
4178 \param ftdi pointer to ftdi_context
4179
4180 \retval 0: all fine
4181 \retval -1: read failed
4182 \retval -2: USB device unavailable
4183 \retval -3: EEPROM not initialized for the connected device;
4184*/
4185int ftdi_write_eeprom(struct ftdi_context *ftdi)
4186{
4187 unsigned short usb_val, status;
4188 int i, ret;
4189 unsigned char *eeprom;
4190
4191 if (ftdi == NULL || ftdi->usb_dev == NULL)
4192 ftdi_error_return(-2, "USB device unavailable");
4193
4194 if(ftdi->eeprom->initialized_for_connected_device == 0)
4195 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
4196
4197 eeprom = ftdi->eeprom->buf;
4198
4199 /* These commands were traced while running MProg */
4200 if ((ret = ftdi_usb_reset(ftdi)) != 0)
4201 return ret;
4202 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
4203 return ret;
4204 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
4205 return ret;
4206
4207 for (i = 0; i < ftdi->eeprom->size/2; i++)
4208 {
4209 /* Do not try to write to reserved area */
4210 if ((ftdi->type == TYPE_230X) && (i == 0x40))
4211 {
4212 i = 0x50;
4213 }
4214 usb_val = eeprom[i*2];
4215 usb_val += eeprom[(i*2)+1] << 8;
4216 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4217 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
4218 NULL, 0, ftdi->usb_write_timeout) < 0)
4219 ftdi_error_return(-1, "unable to write eeprom");
4220 }
4221
4222 return 0;
4223}
4224
4225/**
4226 Erase eeprom
4227
4228 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
4229
4230 \param ftdi pointer to ftdi_context
4231
4232 \retval 0: all fine
4233 \retval -1: erase failed
4234 \retval -2: USB device unavailable
4235 \retval -3: Writing magic failed
4236 \retval -4: Read EEPROM failed
4237 \retval -5: Unexpected EEPROM value
4238*/
4239#define MAGIC 0x55aa
4240int ftdi_erase_eeprom(struct ftdi_context *ftdi)
4241{
4242 unsigned short eeprom_value;
4243 if (ftdi == NULL || ftdi->usb_dev == NULL)
4244 ftdi_error_return(-2, "USB device unavailable");
4245
4246 if ((ftdi->type == TYPE_R) || (ftdi->type == TYPE_230X))
4247 {
4248 ftdi->eeprom->chip = 0;
4249 return 0;
4250 }
4251
4252 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4253 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4254 ftdi_error_return(-1, "unable to erase eeprom");
4255
4256
4257 /* detect chip type by writing 0x55AA as magic at word position 0xc0
4258 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
4259 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
4260 Chip is 93x66 if magic is only read at word position 0xc0*/
4261 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4262 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
4263 NULL, 0, ftdi->usb_write_timeout) != 0)
4264 ftdi_error_return(-3, "Writing magic failed");
4265 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
4266 ftdi_error_return(-4, "Reading failed");
4267 if (eeprom_value == MAGIC)
4268 {
4269 ftdi->eeprom->chip = 0x46;
4270 }
4271 else
4272 {
4273 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
4274 ftdi_error_return(-4, "Reading failed");
4275 if (eeprom_value == MAGIC)
4276 ftdi->eeprom->chip = 0x56;
4277 else
4278 {
4279 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
4280 ftdi_error_return(-4, "Reading failed");
4281 if (eeprom_value == MAGIC)
4282 ftdi->eeprom->chip = 0x66;
4283 else
4284 {
4285 ftdi->eeprom->chip = -1;
4286 }
4287 }
4288 }
4289 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4290 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4291 ftdi_error_return(-1, "unable to erase eeprom");
4292 return 0;
4293}
4294
4295/**
4296 Get string representation for last error code
4297
4298 \param ftdi pointer to ftdi_context
4299
4300 \retval Pointer to error string
4301*/
4302char *ftdi_get_error_string (struct ftdi_context *ftdi)
4303{
4304 if (ftdi == NULL)
4305 return "";
4306
4307 return ftdi->error_str;
4308}
4309
4310/* @} end of doxygen libftdi group */