Allow to search for all FTDI standard VID/PID
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
58 \retval none
59*/
60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
61{
62 if (ftdi && ftdi->usb_dev)
63 {
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
66 }
67}
68
69/**
70 Initializes a ftdi_context.
71
72 \param ftdi pointer to ftdi_context
73
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
76 \retval -2: couldn't allocate struct buffer
77 \retval -3: libusb_init() failed
78
79 \remark This should be called before all functions
80*/
81int ftdi_init(struct ftdi_context *ftdi)
82{
83 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
84 ftdi->usb_ctx = NULL;
85 ftdi->usb_dev = NULL;
86 ftdi->usb_read_timeout = 5000;
87 ftdi->usb_write_timeout = 5000;
88
89 ftdi->type = TYPE_BM; /* chip type */
90 ftdi->baudrate = -1;
91 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
92
93 ftdi->readbuffer = NULL;
94 ftdi->readbuffer_offset = 0;
95 ftdi->readbuffer_remaining = 0;
96 ftdi->writebuffer_chunksize = 4096;
97 ftdi->max_packet_size = 0;
98 ftdi->error_str = NULL;
99 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
100
101 if (libusb_init(&ftdi->usb_ctx) < 0)
102 ftdi_error_return(-3, "libusb_init() failed");
103
104 ftdi_set_interface(ftdi, INTERFACE_ANY);
105 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
106
107 if (eeprom == 0)
108 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
109 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
110 ftdi->eeprom = eeprom;
111
112 /* All fine. Now allocate the readbuffer */
113 return ftdi_read_data_set_chunksize(ftdi, 4096);
114}
115
116/**
117 Allocate and initialize a new ftdi_context
118
119 \return a pointer to a new ftdi_context, or NULL on failure
120*/
121struct ftdi_context *ftdi_new(void)
122{
123 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
124
125 if (ftdi == NULL)
126 {
127 return NULL;
128 }
129
130 if (ftdi_init(ftdi) != 0)
131 {
132 free(ftdi);
133 return NULL;
134 }
135
136 return ftdi;
137}
138
139/**
140 Open selected channels on a chip, otherwise use first channel.
141
142 \param ftdi pointer to ftdi_context
143 \param interface Interface to use for FT2232C/2232H/4232H chips.
144
145 \retval 0: all fine
146 \retval -1: unknown interface
147 \retval -2: USB device unavailable
148*/
149int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
150{
151 if (ftdi == NULL)
152 ftdi_error_return(-2, "USB device unavailable");
153
154 switch (interface)
155 {
156 case INTERFACE_ANY:
157 case INTERFACE_A:
158 ftdi->interface = 0;
159 ftdi->index = INTERFACE_A;
160 ftdi->in_ep = 0x02;
161 ftdi->out_ep = 0x81;
162 break;
163 case INTERFACE_B:
164 ftdi->interface = 1;
165 ftdi->index = INTERFACE_B;
166 ftdi->in_ep = 0x04;
167 ftdi->out_ep = 0x83;
168 break;
169 case INTERFACE_C:
170 ftdi->interface = 2;
171 ftdi->index = INTERFACE_C;
172 ftdi->in_ep = 0x06;
173 ftdi->out_ep = 0x85;
174 break;
175 case INTERFACE_D:
176 ftdi->interface = 3;
177 ftdi->index = INTERFACE_D;
178 ftdi->in_ep = 0x08;
179 ftdi->out_ep = 0x87;
180 break;
181 default:
182 ftdi_error_return(-1, "Unknown interface");
183 }
184 return 0;
185}
186
187/**
188 Deinitializes a ftdi_context.
189
190 \param ftdi pointer to ftdi_context
191*/
192void ftdi_deinit(struct ftdi_context *ftdi)
193{
194 if (ftdi == NULL)
195 return;
196
197 ftdi_usb_close_internal (ftdi);
198
199 if (ftdi->readbuffer != NULL)
200 {
201 free(ftdi->readbuffer);
202 ftdi->readbuffer = NULL;
203 }
204
205 if (ftdi->eeprom != NULL)
206 {
207 if (ftdi->eeprom->manufacturer != 0)
208 {
209 free(ftdi->eeprom->manufacturer);
210 ftdi->eeprom->manufacturer = 0;
211 }
212 if (ftdi->eeprom->product != 0)
213 {
214 free(ftdi->eeprom->product);
215 ftdi->eeprom->product = 0;
216 }
217 if (ftdi->eeprom->serial != 0)
218 {
219 free(ftdi->eeprom->serial);
220 ftdi->eeprom->serial = 0;
221 }
222 free(ftdi->eeprom);
223 ftdi->eeprom = NULL;
224 }
225
226 if (ftdi->usb_ctx)
227 {
228 libusb_exit(ftdi->usb_ctx);
229 ftdi->usb_ctx = NULL;
230 }
231}
232
233/**
234 Deinitialize and free an ftdi_context.
235
236 \param ftdi pointer to ftdi_context
237*/
238void ftdi_free(struct ftdi_context *ftdi)
239{
240 ftdi_deinit(ftdi);
241 free(ftdi);
242}
243
244/**
245 Use an already open libusb device.
246
247 \param ftdi pointer to ftdi_context
248 \param usb libusb libusb_device_handle to use
249*/
250void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
251{
252 if (ftdi == NULL)
253 return;
254
255 ftdi->usb_dev = usb;
256}
257
258
259/**
260 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
261 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
262 use. With VID:PID 0:0, search for the default devices
263 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014)
264
265 \param ftdi pointer to ftdi_context
266 \param devlist Pointer where to store list of found devices
267 \param vendor Vendor ID to search for
268 \param product Product ID to search for
269
270 \retval >0: number of devices found
271 \retval -3: out of memory
272 \retval -5: libusb_get_device_list() failed
273 \retval -6: libusb_get_device_descriptor() failed
274*/
275int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
276{
277 struct ftdi_device_list **curdev;
278 libusb_device *dev;
279 libusb_device **devs;
280 int count = 0;
281 int i = 0;
282
283 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
284 ftdi_error_return(-5, "libusb_get_device_list() failed");
285
286 curdev = devlist;
287 *curdev = NULL;
288
289 while ((dev = devs[i++]) != NULL)
290 {
291 struct libusb_device_descriptor desc;
292
293 if (libusb_get_device_descriptor(dev, &desc) < 0)
294 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
295
296 if ((vendor != 0 && product != 0 && desc.idVendor == vendor && desc.idProduct == product) ||
297 ((desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
298 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014)))
299 {
300 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
301 if (!*curdev)
302 ftdi_error_return_free_device_list(-3, "out of memory", devs);
303
304 (*curdev)->next = NULL;
305 (*curdev)->dev = dev;
306 libusb_ref_device(dev);
307 curdev = &(*curdev)->next;
308 count++;
309 }
310 }
311 libusb_free_device_list(devs,1);
312 return count;
313}
314
315/**
316 Frees a usb device list.
317
318 \param devlist USB device list created by ftdi_usb_find_all()
319*/
320void ftdi_list_free(struct ftdi_device_list **devlist)
321{
322 struct ftdi_device_list *curdev, *next;
323
324 for (curdev = *devlist; curdev != NULL;)
325 {
326 next = curdev->next;
327 libusb_unref_device(curdev->dev);
328 free(curdev);
329 curdev = next;
330 }
331
332 *devlist = NULL;
333}
334
335/**
336 Frees a usb device list.
337
338 \param devlist USB device list created by ftdi_usb_find_all()
339*/
340void ftdi_list_free2(struct ftdi_device_list *devlist)
341{
342 ftdi_list_free(&devlist);
343}
344
345/**
346 Return device ID strings from the usb device.
347
348 The parameters manufacturer, description and serial may be NULL
349 or pointer to buffers to store the fetched strings.
350
351 \note Use this function only in combination with ftdi_usb_find_all()
352 as it closes the internal "usb_dev" after use.
353
354 \param ftdi pointer to ftdi_context
355 \param dev libusb usb_dev to use
356 \param manufacturer Store manufacturer string here if not NULL
357 \param mnf_len Buffer size of manufacturer string
358 \param description Store product description string here if not NULL
359 \param desc_len Buffer size of product description string
360 \param serial Store serial string here if not NULL
361 \param serial_len Buffer size of serial string
362
363 \retval 0: all fine
364 \retval -1: wrong arguments
365 \retval -4: unable to open device
366 \retval -7: get product manufacturer failed
367 \retval -8: get product description failed
368 \retval -9: get serial number failed
369 \retval -11: libusb_get_device_descriptor() failed
370*/
371int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
372 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
373{
374 struct libusb_device_descriptor desc;
375
376 if ((ftdi==NULL) || (dev==NULL))
377 return -1;
378
379 if (libusb_open(dev, &ftdi->usb_dev) < 0)
380 ftdi_error_return(-4, "libusb_open() failed");
381
382 if (libusb_get_device_descriptor(dev, &desc) < 0)
383 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
384
385 if (manufacturer != NULL)
386 {
387 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
388 {
389 ftdi_usb_close_internal (ftdi);
390 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
391 }
392 }
393
394 if (description != NULL)
395 {
396 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
397 {
398 ftdi_usb_close_internal (ftdi);
399 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
400 }
401 }
402
403 if (serial != NULL)
404 {
405 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
406 {
407 ftdi_usb_close_internal (ftdi);
408 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
409 }
410 }
411
412 ftdi_usb_close_internal (ftdi);
413
414 return 0;
415}
416
417/**
418 * Internal function to determine the maximum packet size.
419 * \param ftdi pointer to ftdi_context
420 * \param dev libusb usb_dev to use
421 * \retval Maximum packet size for this device
422 */
423static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
424{
425 struct libusb_device_descriptor desc;
426 struct libusb_config_descriptor *config0;
427 unsigned int packet_size;
428
429 // Sanity check
430 if (ftdi == NULL || dev == NULL)
431 return 64;
432
433 // Determine maximum packet size. Init with default value.
434 // New hi-speed devices from FTDI use a packet size of 512 bytes
435 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
436 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
437 packet_size = 512;
438 else
439 packet_size = 64;
440
441 if (libusb_get_device_descriptor(dev, &desc) < 0)
442 return packet_size;
443
444 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
445 return packet_size;
446
447 if (desc.bNumConfigurations > 0)
448 {
449 if (ftdi->interface < config0->bNumInterfaces)
450 {
451 struct libusb_interface interface = config0->interface[ftdi->interface];
452 if (interface.num_altsetting > 0)
453 {
454 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
455 if (descriptor.bNumEndpoints > 0)
456 {
457 packet_size = descriptor.endpoint[0].wMaxPacketSize;
458 }
459 }
460 }
461 }
462
463 libusb_free_config_descriptor (config0);
464 return packet_size;
465}
466
467/**
468 Opens a ftdi device given by an usb_device.
469
470 \param ftdi pointer to ftdi_context
471 \param dev libusb usb_dev to use
472
473 \retval 0: all fine
474 \retval -3: unable to config device
475 \retval -4: unable to open device
476 \retval -5: unable to claim device
477 \retval -6: reset failed
478 \retval -7: set baudrate failed
479 \retval -8: ftdi context invalid
480 \retval -9: libusb_get_device_descriptor() failed
481 \retval -10: libusb_get_config_descriptor() failed
482 \retval -11: libusb_detach_kernel_driver() failed
483 \retval -12: libusb_get_configuration() failed
484*/
485int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
486{
487 struct libusb_device_descriptor desc;
488 struct libusb_config_descriptor *config0;
489 int cfg, cfg0, detach_errno = 0;
490
491 if (ftdi == NULL)
492 ftdi_error_return(-8, "ftdi context invalid");
493
494 if (libusb_open(dev, &ftdi->usb_dev) < 0)
495 ftdi_error_return(-4, "libusb_open() failed");
496
497 if (libusb_get_device_descriptor(dev, &desc) < 0)
498 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
499
500 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
501 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
502 cfg0 = config0->bConfigurationValue;
503 libusb_free_config_descriptor (config0);
504
505 // Try to detach ftdi_sio kernel module.
506 //
507 // The return code is kept in a separate variable and only parsed
508 // if usb_set_configuration() or usb_claim_interface() fails as the
509 // detach operation might be denied and everything still works fine.
510 // Likely scenario is a static ftdi_sio kernel module.
511 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
512 {
513 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
514 detach_errno = errno;
515 }
516
517 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
518 ftdi_error_return(-12, "libusb_get_configuration () failed");
519 // set configuration (needed especially for windows)
520 // tolerate EBUSY: one device with one configuration, but two interfaces
521 // and libftdi sessions to both interfaces (e.g. FT2232)
522 if (desc.bNumConfigurations > 0 && cfg != cfg0)
523 {
524 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
525 {
526 ftdi_usb_close_internal (ftdi);
527 if (detach_errno == EPERM)
528 {
529 ftdi_error_return(-8, "inappropriate permissions on device!");
530 }
531 else
532 {
533 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
534 }
535 }
536 }
537
538 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
539 {
540 ftdi_usb_close_internal (ftdi);
541 if (detach_errno == EPERM)
542 {
543 ftdi_error_return(-8, "inappropriate permissions on device!");
544 }
545 else
546 {
547 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
548 }
549 }
550
551 if (ftdi_usb_reset (ftdi) != 0)
552 {
553 ftdi_usb_close_internal (ftdi);
554 ftdi_error_return(-6, "ftdi_usb_reset failed");
555 }
556
557 // Try to guess chip type
558 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
559 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
560 && desc.iSerialNumber == 0))
561 ftdi->type = TYPE_BM;
562 else if (desc.bcdDevice == 0x200)
563 ftdi->type = TYPE_AM;
564 else if (desc.bcdDevice == 0x500)
565 ftdi->type = TYPE_2232C;
566 else if (desc.bcdDevice == 0x600)
567 ftdi->type = TYPE_R;
568 else if (desc.bcdDevice == 0x700)
569 ftdi->type = TYPE_2232H;
570 else if (desc.bcdDevice == 0x800)
571 ftdi->type = TYPE_4232H;
572 else if (desc.bcdDevice == 0x900)
573 ftdi->type = TYPE_232H;
574
575 // Determine maximum packet size
576 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
577
578 if (ftdi_set_baudrate (ftdi, 9600) != 0)
579 {
580 ftdi_usb_close_internal (ftdi);
581 ftdi_error_return(-7, "set baudrate failed");
582 }
583
584 ftdi_error_return(0, "all fine");
585}
586
587/**
588 Opens the first device with a given vendor and product ids.
589
590 \param ftdi pointer to ftdi_context
591 \param vendor Vendor ID
592 \param product Product ID
593
594 \retval same as ftdi_usb_open_desc()
595*/
596int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
597{
598 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
599}
600
601/**
602 Opens the first device with a given, vendor id, product id,
603 description and serial.
604
605 \param ftdi pointer to ftdi_context
606 \param vendor Vendor ID
607 \param product Product ID
608 \param description Description to search for. Use NULL if not needed.
609 \param serial Serial to search for. Use NULL if not needed.
610
611 \retval 0: all fine
612 \retval -3: usb device not found
613 \retval -4: unable to open device
614 \retval -5: unable to claim device
615 \retval -6: reset failed
616 \retval -7: set baudrate failed
617 \retval -8: get product description failed
618 \retval -9: get serial number failed
619 \retval -12: libusb_get_device_list() failed
620 \retval -13: libusb_get_device_descriptor() failed
621*/
622int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
623 const char* description, const char* serial)
624{
625 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
626}
627
628/**
629 Opens the index-th device with a given, vendor id, product id,
630 description and serial.
631
632 \param ftdi pointer to ftdi_context
633 \param vendor Vendor ID
634 \param product Product ID
635 \param description Description to search for. Use NULL if not needed.
636 \param serial Serial to search for. Use NULL if not needed.
637 \param index Number of matching device to open if there are more than one, starts with 0.
638
639 \retval 0: all fine
640 \retval -1: usb_find_busses() failed
641 \retval -2: usb_find_devices() failed
642 \retval -3: usb device not found
643 \retval -4: unable to open device
644 \retval -5: unable to claim device
645 \retval -6: reset failed
646 \retval -7: set baudrate failed
647 \retval -8: get product description failed
648 \retval -9: get serial number failed
649 \retval -10: unable to close device
650 \retval -11: ftdi context invalid
651*/
652int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
653 const char* description, const char* serial, unsigned int index)
654{
655 libusb_device *dev;
656 libusb_device **devs;
657 char string[256];
658 int i = 0;
659
660 if (ftdi == NULL)
661 ftdi_error_return(-11, "ftdi context invalid");
662
663 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
664 ftdi_error_return(-12, "libusb_get_device_list() failed");
665
666 while ((dev = devs[i++]) != NULL)
667 {
668 struct libusb_device_descriptor desc;
669 int res;
670
671 if (libusb_get_device_descriptor(dev, &desc) < 0)
672 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
673
674 if (desc.idVendor == vendor && desc.idProduct == product)
675 {
676 if (libusb_open(dev, &ftdi->usb_dev) < 0)
677 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
678
679 if (description != NULL)
680 {
681 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
682 {
683 ftdi_usb_close_internal (ftdi);
684 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
685 }
686 if (strncmp(string, description, sizeof(string)) != 0)
687 {
688 ftdi_usb_close_internal (ftdi);
689 continue;
690 }
691 }
692 if (serial != NULL)
693 {
694 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
695 {
696 ftdi_usb_close_internal (ftdi);
697 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
698 }
699 if (strncmp(string, serial, sizeof(string)) != 0)
700 {
701 ftdi_usb_close_internal (ftdi);
702 continue;
703 }
704 }
705
706 ftdi_usb_close_internal (ftdi);
707
708 if (index > 0)
709 {
710 index--;
711 continue;
712 }
713
714 res = ftdi_usb_open_dev(ftdi, dev);
715 libusb_free_device_list(devs,1);
716 return res;
717 }
718 }
719
720 // device not found
721 ftdi_error_return_free_device_list(-3, "device not found", devs);
722}
723
724/**
725 Opens the ftdi-device described by a description-string.
726 Intended to be used for parsing a device-description given as commandline argument.
727
728 \param ftdi pointer to ftdi_context
729 \param description NULL-terminated description-string, using this format:
730 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
731 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
732 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
733 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
734
735 \note The description format may be extended in later versions.
736
737 \retval 0: all fine
738 \retval -2: libusb_get_device_list() failed
739 \retval -3: usb device not found
740 \retval -4: unable to open device
741 \retval -5: unable to claim device
742 \retval -6: reset failed
743 \retval -7: set baudrate failed
744 \retval -8: get product description failed
745 \retval -9: get serial number failed
746 \retval -10: unable to close device
747 \retval -11: illegal description format
748 \retval -12: ftdi context invalid
749*/
750int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
751{
752 if (ftdi == NULL)
753 ftdi_error_return(-12, "ftdi context invalid");
754
755 if (description[0] == 0 || description[1] != ':')
756 ftdi_error_return(-11, "illegal description format");
757
758 if (description[0] == 'd')
759 {
760 libusb_device *dev;
761 libusb_device **devs;
762 unsigned int bus_number, device_address;
763 int i = 0;
764
765 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
766 ftdi_error_return(-2, "libusb_get_device_list() failed");
767
768 /* XXX: This doesn't handle symlinks/odd paths/etc... */
769 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
770 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
771
772 while ((dev = devs[i++]) != NULL)
773 {
774 int ret;
775 if (bus_number == libusb_get_bus_number (dev)
776 && device_address == libusb_get_device_address (dev))
777 {
778 ret = ftdi_usb_open_dev(ftdi, dev);
779 libusb_free_device_list(devs,1);
780 return ret;
781 }
782 }
783
784 // device not found
785 ftdi_error_return_free_device_list(-3, "device not found", devs);
786 }
787 else if (description[0] == 'i' || description[0] == 's')
788 {
789 unsigned int vendor;
790 unsigned int product;
791 unsigned int index=0;
792 const char *serial=NULL;
793 const char *startp, *endp;
794
795 errno=0;
796 startp=description+2;
797 vendor=strtoul((char*)startp,(char**)&endp,0);
798 if (*endp != ':' || endp == startp || errno != 0)
799 ftdi_error_return(-11, "illegal description format");
800
801 startp=endp+1;
802 product=strtoul((char*)startp,(char**)&endp,0);
803 if (endp == startp || errno != 0)
804 ftdi_error_return(-11, "illegal description format");
805
806 if (description[0] == 'i' && *endp != 0)
807 {
808 /* optional index field in i-mode */
809 if (*endp != ':')
810 ftdi_error_return(-11, "illegal description format");
811
812 startp=endp+1;
813 index=strtoul((char*)startp,(char**)&endp,0);
814 if (*endp != 0 || endp == startp || errno != 0)
815 ftdi_error_return(-11, "illegal description format");
816 }
817 if (description[0] == 's')
818 {
819 if (*endp != ':')
820 ftdi_error_return(-11, "illegal description format");
821
822 /* rest of the description is the serial */
823 serial=endp+1;
824 }
825
826 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
827 }
828 else
829 {
830 ftdi_error_return(-11, "illegal description format");
831 }
832}
833
834/**
835 Resets the ftdi device.
836
837 \param ftdi pointer to ftdi_context
838
839 \retval 0: all fine
840 \retval -1: FTDI reset failed
841 \retval -2: USB device unavailable
842*/
843int ftdi_usb_reset(struct ftdi_context *ftdi)
844{
845 if (ftdi == NULL || ftdi->usb_dev == NULL)
846 ftdi_error_return(-2, "USB device unavailable");
847
848 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
849 SIO_RESET_REQUEST, SIO_RESET_SIO,
850 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
851 ftdi_error_return(-1,"FTDI reset failed");
852
853 // Invalidate data in the readbuffer
854 ftdi->readbuffer_offset = 0;
855 ftdi->readbuffer_remaining = 0;
856
857 return 0;
858}
859
860/**
861 Clears the read buffer on the chip and the internal read buffer.
862
863 \param ftdi pointer to ftdi_context
864
865 \retval 0: all fine
866 \retval -1: read buffer purge failed
867 \retval -2: USB device unavailable
868*/
869int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
870{
871 if (ftdi == NULL || ftdi->usb_dev == NULL)
872 ftdi_error_return(-2, "USB device unavailable");
873
874 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
875 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
876 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
877 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
878
879 // Invalidate data in the readbuffer
880 ftdi->readbuffer_offset = 0;
881 ftdi->readbuffer_remaining = 0;
882
883 return 0;
884}
885
886/**
887 Clears the write buffer on the chip.
888
889 \param ftdi pointer to ftdi_context
890
891 \retval 0: all fine
892 \retval -1: write buffer purge failed
893 \retval -2: USB device unavailable
894*/
895int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
896{
897 if (ftdi == NULL || ftdi->usb_dev == NULL)
898 ftdi_error_return(-2, "USB device unavailable");
899
900 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
901 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
902 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
903 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
904
905 return 0;
906}
907
908/**
909 Clears the buffers on the chip and the internal read buffer.
910
911 \param ftdi pointer to ftdi_context
912
913 \retval 0: all fine
914 \retval -1: read buffer purge failed
915 \retval -2: write buffer purge failed
916 \retval -3: USB device unavailable
917*/
918int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
919{
920 int result;
921
922 if (ftdi == NULL || ftdi->usb_dev == NULL)
923 ftdi_error_return(-3, "USB device unavailable");
924
925 result = ftdi_usb_purge_rx_buffer(ftdi);
926 if (result < 0)
927 return -1;
928
929 result = ftdi_usb_purge_tx_buffer(ftdi);
930 if (result < 0)
931 return -2;
932
933 return 0;
934}
935
936
937
938/**
939 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
940
941 \param ftdi pointer to ftdi_context
942
943 \retval 0: all fine
944 \retval -1: usb_release failed
945 \retval -3: ftdi context invalid
946*/
947int ftdi_usb_close(struct ftdi_context *ftdi)
948{
949 int rtn = 0;
950
951 if (ftdi == NULL)
952 ftdi_error_return(-3, "ftdi context invalid");
953
954 if (ftdi->usb_dev != NULL)
955 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
956 rtn = -1;
957
958 ftdi_usb_close_internal (ftdi);
959
960 return rtn;
961}
962
963/**
964 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
965 Function is only used internally
966 \internal
967*/
968static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
969 unsigned short *value, unsigned short *index)
970{
971 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
972 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
973 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
974 int divisor, best_divisor, best_baud, best_baud_diff;
975 unsigned long encoded_divisor;
976 int i;
977
978 if (baudrate <= 0)
979 {
980 // Return error
981 return -1;
982 }
983
984 divisor = 24000000 / baudrate;
985
986 if (ftdi->type == TYPE_AM)
987 {
988 // Round down to supported fraction (AM only)
989 divisor -= am_adjust_dn[divisor & 7];
990 }
991
992 // Try this divisor and the one above it (because division rounds down)
993 best_divisor = 0;
994 best_baud = 0;
995 best_baud_diff = 0;
996 for (i = 0; i < 2; i++)
997 {
998 int try_divisor = divisor + i;
999 int baud_estimate;
1000 int baud_diff;
1001
1002 // Round up to supported divisor value
1003 if (try_divisor <= 8)
1004 {
1005 // Round up to minimum supported divisor
1006 try_divisor = 8;
1007 }
1008 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1009 {
1010 // BM doesn't support divisors 9 through 11 inclusive
1011 try_divisor = 12;
1012 }
1013 else if (divisor < 16)
1014 {
1015 // AM doesn't support divisors 9 through 15 inclusive
1016 try_divisor = 16;
1017 }
1018 else
1019 {
1020 if (ftdi->type == TYPE_AM)
1021 {
1022 // Round up to supported fraction (AM only)
1023 try_divisor += am_adjust_up[try_divisor & 7];
1024 if (try_divisor > 0x1FFF8)
1025 {
1026 // Round down to maximum supported divisor value (for AM)
1027 try_divisor = 0x1FFF8;
1028 }
1029 }
1030 else
1031 {
1032 if (try_divisor > 0x1FFFF)
1033 {
1034 // Round down to maximum supported divisor value (for BM)
1035 try_divisor = 0x1FFFF;
1036 }
1037 }
1038 }
1039 // Get estimated baud rate (to nearest integer)
1040 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1041 // Get absolute difference from requested baud rate
1042 if (baud_estimate < baudrate)
1043 {
1044 baud_diff = baudrate - baud_estimate;
1045 }
1046 else
1047 {
1048 baud_diff = baud_estimate - baudrate;
1049 }
1050 if (i == 0 || baud_diff < best_baud_diff)
1051 {
1052 // Closest to requested baud rate so far
1053 best_divisor = try_divisor;
1054 best_baud = baud_estimate;
1055 best_baud_diff = baud_diff;
1056 if (baud_diff == 0)
1057 {
1058 // Spot on! No point trying
1059 break;
1060 }
1061 }
1062 }
1063 // Encode the best divisor value
1064 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1065 // Deal with special cases for encoded value
1066 if (encoded_divisor == 1)
1067 {
1068 encoded_divisor = 0; // 3000000 baud
1069 }
1070 else if (encoded_divisor == 0x4001)
1071 {
1072 encoded_divisor = 1; // 2000000 baud (BM only)
1073 }
1074 // Split into "value" and "index" values
1075 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1076 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1077 {
1078 *index = (unsigned short)(encoded_divisor >> 8);
1079 *index &= 0xFF00;
1080 *index |= ftdi->index;
1081 }
1082 else
1083 *index = (unsigned short)(encoded_divisor >> 16);
1084
1085 // Return the nearest baud rate
1086 return best_baud;
1087}
1088
1089/**
1090 Sets the chip baud rate
1091
1092 \param ftdi pointer to ftdi_context
1093 \param baudrate baud rate to set
1094
1095 \retval 0: all fine
1096 \retval -1: invalid baudrate
1097 \retval -2: setting baudrate failed
1098 \retval -3: USB device unavailable
1099*/
1100int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1101{
1102 unsigned short value, index;
1103 int actual_baudrate;
1104
1105 if (ftdi == NULL || ftdi->usb_dev == NULL)
1106 ftdi_error_return(-3, "USB device unavailable");
1107
1108 if (ftdi->bitbang_enabled)
1109 {
1110 baudrate = baudrate*4;
1111 }
1112
1113 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1114 if (actual_baudrate <= 0)
1115 ftdi_error_return (-1, "Silly baudrate <= 0.");
1116
1117 // Check within tolerance (about 5%)
1118 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1119 || ((actual_baudrate < baudrate)
1120 ? (actual_baudrate * 21 < baudrate * 20)
1121 : (baudrate * 21 < actual_baudrate * 20)))
1122 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1123
1124 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1125 SIO_SET_BAUDRATE_REQUEST, value,
1126 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1127 ftdi_error_return (-2, "Setting new baudrate failed");
1128
1129 ftdi->baudrate = baudrate;
1130 return 0;
1131}
1132
1133/**
1134 Set (RS232) line characteristics.
1135 The break type can only be set via ftdi_set_line_property2()
1136 and defaults to "off".
1137
1138 \param ftdi pointer to ftdi_context
1139 \param bits Number of bits
1140 \param sbit Number of stop bits
1141 \param parity Parity mode
1142
1143 \retval 0: all fine
1144 \retval -1: Setting line property failed
1145*/
1146int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1147 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1148{
1149 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1150}
1151
1152/**
1153 Set (RS232) line characteristics
1154
1155 \param ftdi pointer to ftdi_context
1156 \param bits Number of bits
1157 \param sbit Number of stop bits
1158 \param parity Parity mode
1159 \param break_type Break type
1160
1161 \retval 0: all fine
1162 \retval -1: Setting line property failed
1163 \retval -2: USB device unavailable
1164*/
1165int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1166 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1167 enum ftdi_break_type break_type)
1168{
1169 unsigned short value = bits;
1170
1171 if (ftdi == NULL || ftdi->usb_dev == NULL)
1172 ftdi_error_return(-2, "USB device unavailable");
1173
1174 switch (parity)
1175 {
1176 case NONE:
1177 value |= (0x00 << 8);
1178 break;
1179 case ODD:
1180 value |= (0x01 << 8);
1181 break;
1182 case EVEN:
1183 value |= (0x02 << 8);
1184 break;
1185 case MARK:
1186 value |= (0x03 << 8);
1187 break;
1188 case SPACE:
1189 value |= (0x04 << 8);
1190 break;
1191 }
1192
1193 switch (sbit)
1194 {
1195 case STOP_BIT_1:
1196 value |= (0x00 << 11);
1197 break;
1198 case STOP_BIT_15:
1199 value |= (0x01 << 11);
1200 break;
1201 case STOP_BIT_2:
1202 value |= (0x02 << 11);
1203 break;
1204 }
1205
1206 switch (break_type)
1207 {
1208 case BREAK_OFF:
1209 value |= (0x00 << 14);
1210 break;
1211 case BREAK_ON:
1212 value |= (0x01 << 14);
1213 break;
1214 }
1215
1216 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1217 SIO_SET_DATA_REQUEST, value,
1218 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1219 ftdi_error_return (-1, "Setting new line property failed");
1220
1221 return 0;
1222}
1223
1224/**
1225 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1226
1227 \param ftdi pointer to ftdi_context
1228 \param buf Buffer with the data
1229 \param size Size of the buffer
1230
1231 \retval -666: USB device unavailable
1232 \retval <0: error code from usb_bulk_write()
1233 \retval >0: number of bytes written
1234*/
1235int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1236{
1237 int offset = 0;
1238 int actual_length;
1239
1240 if (ftdi == NULL || ftdi->usb_dev == NULL)
1241 ftdi_error_return(-666, "USB device unavailable");
1242
1243 while (offset < size)
1244 {
1245 int write_size = ftdi->writebuffer_chunksize;
1246
1247 if (offset+write_size > size)
1248 write_size = size-offset;
1249
1250 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1251 ftdi_error_return(-1, "usb bulk write failed");
1252
1253 offset += actual_length;
1254 }
1255
1256 return offset;
1257}
1258
1259static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1260{
1261 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1262 struct ftdi_context *ftdi = tc->ftdi;
1263 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1264
1265 packet_size = ftdi->max_packet_size;
1266
1267 actual_length = transfer->actual_length;
1268
1269 if (actual_length > 2)
1270 {
1271 // skip FTDI status bytes.
1272 // Maybe stored in the future to enable modem use
1273 num_of_chunks = actual_length / packet_size;
1274 chunk_remains = actual_length % packet_size;
1275 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1276
1277 ftdi->readbuffer_offset += 2;
1278 actual_length -= 2;
1279
1280 if (actual_length > packet_size - 2)
1281 {
1282 for (i = 1; i < num_of_chunks; i++)
1283 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1284 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1285 packet_size - 2);
1286 if (chunk_remains > 2)
1287 {
1288 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1289 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1290 chunk_remains-2);
1291 actual_length -= 2*num_of_chunks;
1292 }
1293 else
1294 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1295 }
1296
1297 if (actual_length > 0)
1298 {
1299 // data still fits in buf?
1300 if (tc->offset + actual_length <= tc->size)
1301 {
1302 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1303 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1304 tc->offset += actual_length;
1305
1306 ftdi->readbuffer_offset = 0;
1307 ftdi->readbuffer_remaining = 0;
1308
1309 /* Did we read exactly the right amount of bytes? */
1310 if (tc->offset == tc->size)
1311 {
1312 //printf("read_data exact rem %d offset %d\n",
1313 //ftdi->readbuffer_remaining, offset);
1314 tc->completed = 1;
1315 return;
1316 }
1317 }
1318 else
1319 {
1320 // only copy part of the data or size <= readbuffer_chunksize
1321 int part_size = tc->size - tc->offset;
1322 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1323 tc->offset += part_size;
1324
1325 ftdi->readbuffer_offset += part_size;
1326 ftdi->readbuffer_remaining = actual_length - part_size;
1327
1328 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1329 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1330 tc->completed = 1;
1331 return;
1332 }
1333 }
1334 }
1335 ret = libusb_submit_transfer (transfer);
1336 if (ret < 0)
1337 tc->completed = 1;
1338}
1339
1340
1341static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1342{
1343 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1344 struct ftdi_context *ftdi = tc->ftdi;
1345
1346 tc->offset += transfer->actual_length;
1347
1348 if (tc->offset == tc->size)
1349 {
1350 tc->completed = 1;
1351 }
1352 else
1353 {
1354 int write_size = ftdi->writebuffer_chunksize;
1355 int ret;
1356
1357 if (tc->offset + write_size > tc->size)
1358 write_size = tc->size - tc->offset;
1359
1360 transfer->length = write_size;
1361 transfer->buffer = tc->buf + tc->offset;
1362 ret = libusb_submit_transfer (transfer);
1363 if (ret < 0)
1364 tc->completed = 1;
1365 }
1366}
1367
1368
1369/**
1370 Writes data to the chip. Does not wait for completion of the transfer
1371 nor does it make sure that the transfer was successful.
1372
1373 Use libusb 1.0 asynchronous API.
1374
1375 \param ftdi pointer to ftdi_context
1376 \param buf Buffer with the data
1377 \param size Size of the buffer
1378
1379 \retval NULL: Some error happens when submit transfer
1380 \retval !NULL: Pointer to a ftdi_transfer_control
1381*/
1382
1383struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1384{
1385 struct ftdi_transfer_control *tc;
1386 struct libusb_transfer *transfer;
1387 int write_size, ret;
1388
1389 if (ftdi == NULL || ftdi->usb_dev == NULL)
1390 return NULL;
1391
1392 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1393 if (!tc)
1394 return NULL;
1395
1396 transfer = libusb_alloc_transfer(0);
1397 if (!transfer)
1398 {
1399 free(tc);
1400 return NULL;
1401 }
1402
1403 tc->ftdi = ftdi;
1404 tc->completed = 0;
1405 tc->buf = buf;
1406 tc->size = size;
1407 tc->offset = 0;
1408
1409 if (size < ftdi->writebuffer_chunksize)
1410 write_size = size;
1411 else
1412 write_size = ftdi->writebuffer_chunksize;
1413
1414 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1415 write_size, ftdi_write_data_cb, tc,
1416 ftdi->usb_write_timeout);
1417 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1418
1419 ret = libusb_submit_transfer(transfer);
1420 if (ret < 0)
1421 {
1422 libusb_free_transfer(transfer);
1423 free(tc);
1424 return NULL;
1425 }
1426 tc->transfer = transfer;
1427
1428 return tc;
1429}
1430
1431/**
1432 Reads data from the chip. Does not wait for completion of the transfer
1433 nor does it make sure that the transfer was successful.
1434
1435 Use libusb 1.0 asynchronous API.
1436
1437 \param ftdi pointer to ftdi_context
1438 \param buf Buffer with the data
1439 \param size Size of the buffer
1440
1441 \retval NULL: Some error happens when submit transfer
1442 \retval !NULL: Pointer to a ftdi_transfer_control
1443*/
1444
1445struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1446{
1447 struct ftdi_transfer_control *tc;
1448 struct libusb_transfer *transfer;
1449 int ret;
1450
1451 if (ftdi == NULL || ftdi->usb_dev == NULL)
1452 return NULL;
1453
1454 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1455 if (!tc)
1456 return NULL;
1457
1458 tc->ftdi = ftdi;
1459 tc->buf = buf;
1460 tc->size = size;
1461
1462 if (size <= ftdi->readbuffer_remaining)
1463 {
1464 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1465
1466 // Fix offsets
1467 ftdi->readbuffer_remaining -= size;
1468 ftdi->readbuffer_offset += size;
1469
1470 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1471
1472 tc->completed = 1;
1473 tc->offset = size;
1474 tc->transfer = NULL;
1475 return tc;
1476 }
1477
1478 tc->completed = 0;
1479 if (ftdi->readbuffer_remaining != 0)
1480 {
1481 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1482
1483 tc->offset = ftdi->readbuffer_remaining;
1484 }
1485 else
1486 tc->offset = 0;
1487
1488 transfer = libusb_alloc_transfer(0);
1489 if (!transfer)
1490 {
1491 free (tc);
1492 return NULL;
1493 }
1494
1495 ftdi->readbuffer_remaining = 0;
1496 ftdi->readbuffer_offset = 0;
1497
1498 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1499 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1500
1501 ret = libusb_submit_transfer(transfer);
1502 if (ret < 0)
1503 {
1504 libusb_free_transfer(transfer);
1505 free (tc);
1506 return NULL;
1507 }
1508 tc->transfer = transfer;
1509
1510 return tc;
1511}
1512
1513/**
1514 Wait for completion of the transfer.
1515
1516 Use libusb 1.0 asynchronous API.
1517
1518 \param tc pointer to ftdi_transfer_control
1519
1520 \retval < 0: Some error happens
1521 \retval >= 0: Data size transferred
1522*/
1523
1524int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1525{
1526 int ret;
1527
1528 while (!tc->completed)
1529 {
1530 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1531 if (ret < 0)
1532 {
1533 if (ret == LIBUSB_ERROR_INTERRUPTED)
1534 continue;
1535 libusb_cancel_transfer(tc->transfer);
1536 while (!tc->completed)
1537 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1538 break;
1539 libusb_free_transfer(tc->transfer);
1540 free (tc);
1541 return ret;
1542 }
1543 }
1544
1545 ret = tc->offset;
1546 /**
1547 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1548 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1549 **/
1550 if (tc->transfer)
1551 {
1552 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1553 ret = -1;
1554 libusb_free_transfer(tc->transfer);
1555 }
1556 free(tc);
1557 return ret;
1558}
1559
1560/**
1561 Configure write buffer chunk size.
1562 Default is 4096.
1563
1564 \param ftdi pointer to ftdi_context
1565 \param chunksize Chunk size
1566
1567 \retval 0: all fine
1568 \retval -1: ftdi context invalid
1569*/
1570int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1571{
1572 if (ftdi == NULL)
1573 ftdi_error_return(-1, "ftdi context invalid");
1574
1575 ftdi->writebuffer_chunksize = chunksize;
1576 return 0;
1577}
1578
1579/**
1580 Get write buffer chunk size.
1581
1582 \param ftdi pointer to ftdi_context
1583 \param chunksize Pointer to store chunk size in
1584
1585 \retval 0: all fine
1586 \retval -1: ftdi context invalid
1587*/
1588int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1589{
1590 if (ftdi == NULL)
1591 ftdi_error_return(-1, "ftdi context invalid");
1592
1593 *chunksize = ftdi->writebuffer_chunksize;
1594 return 0;
1595}
1596
1597/**
1598 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1599
1600 Automatically strips the two modem status bytes transfered during every read.
1601
1602 \param ftdi pointer to ftdi_context
1603 \param buf Buffer to store data in
1604 \param size Size of the buffer
1605
1606 \retval -666: USB device unavailable
1607 \retval <0: error code from libusb_bulk_transfer()
1608 \retval 0: no data was available
1609 \retval >0: number of bytes read
1610
1611*/
1612int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1613{
1614 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1615 int packet_size = ftdi->max_packet_size;
1616 int actual_length = 1;
1617
1618 if (ftdi == NULL || ftdi->usb_dev == NULL)
1619 ftdi_error_return(-666, "USB device unavailable");
1620
1621 // Packet size sanity check (avoid division by zero)
1622 if (packet_size == 0)
1623 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1624
1625 // everything we want is still in the readbuffer?
1626 if (size <= ftdi->readbuffer_remaining)
1627 {
1628 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1629
1630 // Fix offsets
1631 ftdi->readbuffer_remaining -= size;
1632 ftdi->readbuffer_offset += size;
1633
1634 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1635
1636 return size;
1637 }
1638 // something still in the readbuffer, but not enough to satisfy 'size'?
1639 if (ftdi->readbuffer_remaining != 0)
1640 {
1641 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1642
1643 // Fix offset
1644 offset += ftdi->readbuffer_remaining;
1645 }
1646 // do the actual USB read
1647 while (offset < size && actual_length > 0)
1648 {
1649 ftdi->readbuffer_remaining = 0;
1650 ftdi->readbuffer_offset = 0;
1651 /* returns how much received */
1652 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1653 if (ret < 0)
1654 ftdi_error_return(ret, "usb bulk read failed");
1655
1656 if (actual_length > 2)
1657 {
1658 // skip FTDI status bytes.
1659 // Maybe stored in the future to enable modem use
1660 num_of_chunks = actual_length / packet_size;
1661 chunk_remains = actual_length % packet_size;
1662 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1663
1664 ftdi->readbuffer_offset += 2;
1665 actual_length -= 2;
1666
1667 if (actual_length > packet_size - 2)
1668 {
1669 for (i = 1; i < num_of_chunks; i++)
1670 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1671 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1672 packet_size - 2);
1673 if (chunk_remains > 2)
1674 {
1675 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1676 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1677 chunk_remains-2);
1678 actual_length -= 2*num_of_chunks;
1679 }
1680 else
1681 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1682 }
1683 }
1684 else if (actual_length <= 2)
1685 {
1686 // no more data to read?
1687 return offset;
1688 }
1689 if (actual_length > 0)
1690 {
1691 // data still fits in buf?
1692 if (offset+actual_length <= size)
1693 {
1694 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1695 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1696 offset += actual_length;
1697
1698 /* Did we read exactly the right amount of bytes? */
1699 if (offset == size)
1700 //printf("read_data exact rem %d offset %d\n",
1701 //ftdi->readbuffer_remaining, offset);
1702 return offset;
1703 }
1704 else
1705 {
1706 // only copy part of the data or size <= readbuffer_chunksize
1707 int part_size = size-offset;
1708 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1709
1710 ftdi->readbuffer_offset += part_size;
1711 ftdi->readbuffer_remaining = actual_length-part_size;
1712 offset += part_size;
1713
1714 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1715 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1716
1717 return offset;
1718 }
1719 }
1720 }
1721 // never reached
1722 return -127;
1723}
1724
1725/**
1726 Configure read buffer chunk size.
1727 Default is 4096.
1728
1729 Automatically reallocates the buffer.
1730
1731 \param ftdi pointer to ftdi_context
1732 \param chunksize Chunk size
1733
1734 \retval 0: all fine
1735 \retval -1: ftdi context invalid
1736*/
1737int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1738{
1739 unsigned char *new_buf;
1740
1741 if (ftdi == NULL)
1742 ftdi_error_return(-1, "ftdi context invalid");
1743
1744 // Invalidate all remaining data
1745 ftdi->readbuffer_offset = 0;
1746 ftdi->readbuffer_remaining = 0;
1747#ifdef __linux__
1748 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1749 which is defined in libusb-1.0. Otherwise, each USB read request will
1750 be divided into multiple URBs. This will cause issues on Linux kernel
1751 older than 2.6.32. */
1752 if (chunksize > 16384)
1753 chunksize = 16384;
1754#endif
1755
1756 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1757 ftdi_error_return(-1, "out of memory for readbuffer");
1758
1759 ftdi->readbuffer = new_buf;
1760 ftdi->readbuffer_chunksize = chunksize;
1761
1762 return 0;
1763}
1764
1765/**
1766 Get read buffer chunk size.
1767
1768 \param ftdi pointer to ftdi_context
1769 \param chunksize Pointer to store chunk size in
1770
1771 \retval 0: all fine
1772 \retval -1: FTDI context invalid
1773*/
1774int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1775{
1776 if (ftdi == NULL)
1777 ftdi_error_return(-1, "FTDI context invalid");
1778
1779 *chunksize = ftdi->readbuffer_chunksize;
1780 return 0;
1781}
1782
1783
1784/**
1785 Enable bitbang mode.
1786
1787 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1788
1789 \param ftdi pointer to ftdi_context
1790 \param bitmask Bitmask to configure lines.
1791 HIGH/ON value configures a line as output.
1792
1793 \retval 0: all fine
1794 \retval -1: can't enable bitbang mode
1795 \retval -2: USB device unavailable
1796*/
1797int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1798{
1799 unsigned short usb_val;
1800
1801 if (ftdi == NULL || ftdi->usb_dev == NULL)
1802 ftdi_error_return(-2, "USB device unavailable");
1803
1804 usb_val = bitmask; // low byte: bitmask
1805 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1806 usb_val |= (ftdi->bitbang_mode << 8);
1807
1808 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1809 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1810 NULL, 0, ftdi->usb_write_timeout) < 0)
1811 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1812
1813 ftdi->bitbang_enabled = 1;
1814 return 0;
1815}
1816
1817/**
1818 Disable bitbang mode.
1819
1820 \param ftdi pointer to ftdi_context
1821
1822 \retval 0: all fine
1823 \retval -1: can't disable bitbang mode
1824 \retval -2: USB device unavailable
1825*/
1826int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1827{
1828 if (ftdi == NULL || ftdi->usb_dev == NULL)
1829 ftdi_error_return(-2, "USB device unavailable");
1830
1831 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1832 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1833
1834 ftdi->bitbang_enabled = 0;
1835 return 0;
1836}
1837
1838/**
1839 Enable/disable bitbang modes.
1840
1841 \param ftdi pointer to ftdi_context
1842 \param bitmask Bitmask to configure lines.
1843 HIGH/ON value configures a line as output.
1844 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1845
1846 \retval 0: all fine
1847 \retval -1: can't enable bitbang mode
1848 \retval -2: USB device unavailable
1849*/
1850int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1851{
1852 unsigned short usb_val;
1853
1854 if (ftdi == NULL || ftdi->usb_dev == NULL)
1855 ftdi_error_return(-2, "USB device unavailable");
1856
1857 usb_val = bitmask; // low byte: bitmask
1858 usb_val |= (mode << 8);
1859 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1860 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1861
1862 ftdi->bitbang_mode = mode;
1863 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1864 return 0;
1865}
1866
1867/**
1868 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1869
1870 \param ftdi pointer to ftdi_context
1871 \param pins Pointer to store pins into
1872
1873 \retval 0: all fine
1874 \retval -1: read pins failed
1875 \retval -2: USB device unavailable
1876*/
1877int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1878{
1879 if (ftdi == NULL || ftdi->usb_dev == NULL)
1880 ftdi_error_return(-2, "USB device unavailable");
1881
1882 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1883 ftdi_error_return(-1, "read pins failed");
1884
1885 return 0;
1886}
1887
1888/**
1889 Set latency timer
1890
1891 The FTDI chip keeps data in the internal buffer for a specific
1892 amount of time if the buffer is not full yet to decrease
1893 load on the usb bus.
1894
1895 \param ftdi pointer to ftdi_context
1896 \param latency Value between 1 and 255
1897
1898 \retval 0: all fine
1899 \retval -1: latency out of range
1900 \retval -2: unable to set latency timer
1901 \retval -3: USB device unavailable
1902*/
1903int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1904{
1905 unsigned short usb_val;
1906
1907 if (latency < 1)
1908 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1909
1910 if (ftdi == NULL || ftdi->usb_dev == NULL)
1911 ftdi_error_return(-3, "USB device unavailable");
1912
1913 usb_val = latency;
1914 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1915 ftdi_error_return(-2, "unable to set latency timer");
1916
1917 return 0;
1918}
1919
1920/**
1921 Get latency timer
1922
1923 \param ftdi pointer to ftdi_context
1924 \param latency Pointer to store latency value in
1925
1926 \retval 0: all fine
1927 \retval -1: unable to get latency timer
1928 \retval -2: USB device unavailable
1929*/
1930int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1931{
1932 unsigned short usb_val;
1933
1934 if (ftdi == NULL || ftdi->usb_dev == NULL)
1935 ftdi_error_return(-2, "USB device unavailable");
1936
1937 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1938 ftdi_error_return(-1, "reading latency timer failed");
1939
1940 *latency = (unsigned char)usb_val;
1941 return 0;
1942}
1943
1944/**
1945 Poll modem status information
1946
1947 This function allows the retrieve the two status bytes of the device.
1948 The device sends these bytes also as a header for each read access
1949 where they are discarded by ftdi_read_data(). The chip generates
1950 the two stripped status bytes in the absence of data every 40 ms.
1951
1952 Layout of the first byte:
1953 - B0..B3 - must be 0
1954 - B4 Clear to send (CTS)
1955 0 = inactive
1956 1 = active
1957 - B5 Data set ready (DTS)
1958 0 = inactive
1959 1 = active
1960 - B6 Ring indicator (RI)
1961 0 = inactive
1962 1 = active
1963 - B7 Receive line signal detect (RLSD)
1964 0 = inactive
1965 1 = active
1966
1967 Layout of the second byte:
1968 - B0 Data ready (DR)
1969 - B1 Overrun error (OE)
1970 - B2 Parity error (PE)
1971 - B3 Framing error (FE)
1972 - B4 Break interrupt (BI)
1973 - B5 Transmitter holding register (THRE)
1974 - B6 Transmitter empty (TEMT)
1975 - B7 Error in RCVR FIFO
1976
1977 \param ftdi pointer to ftdi_context
1978 \param status Pointer to store status information in. Must be two bytes.
1979
1980 \retval 0: all fine
1981 \retval -1: unable to retrieve status information
1982 \retval -2: USB device unavailable
1983*/
1984int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1985{
1986 char usb_val[2];
1987
1988 if (ftdi == NULL || ftdi->usb_dev == NULL)
1989 ftdi_error_return(-2, "USB device unavailable");
1990
1991 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1992 ftdi_error_return(-1, "getting modem status failed");
1993
1994 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
1995
1996 return 0;
1997}
1998
1999/**
2000 Set flowcontrol for ftdi chip
2001
2002 \param ftdi pointer to ftdi_context
2003 \param flowctrl flow control to use. should be
2004 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2005
2006 \retval 0: all fine
2007 \retval -1: set flow control failed
2008 \retval -2: USB device unavailable
2009*/
2010int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2011{
2012 if (ftdi == NULL || ftdi->usb_dev == NULL)
2013 ftdi_error_return(-2, "USB device unavailable");
2014
2015 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2016 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2017 NULL, 0, ftdi->usb_write_timeout) < 0)
2018 ftdi_error_return(-1, "set flow control failed");
2019
2020 return 0;
2021}
2022
2023/**
2024 Set dtr line
2025
2026 \param ftdi pointer to ftdi_context
2027 \param state state to set line to (1 or 0)
2028
2029 \retval 0: all fine
2030 \retval -1: set dtr failed
2031 \retval -2: USB device unavailable
2032*/
2033int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2034{
2035 unsigned short usb_val;
2036
2037 if (ftdi == NULL || ftdi->usb_dev == NULL)
2038 ftdi_error_return(-2, "USB device unavailable");
2039
2040 if (state)
2041 usb_val = SIO_SET_DTR_HIGH;
2042 else
2043 usb_val = SIO_SET_DTR_LOW;
2044
2045 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2046 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2047 NULL, 0, ftdi->usb_write_timeout) < 0)
2048 ftdi_error_return(-1, "set dtr failed");
2049
2050 return 0;
2051}
2052
2053/**
2054 Set rts line
2055
2056 \param ftdi pointer to ftdi_context
2057 \param state state to set line to (1 or 0)
2058
2059 \retval 0: all fine
2060 \retval -1: set rts failed
2061 \retval -2: USB device unavailable
2062*/
2063int ftdi_setrts(struct ftdi_context *ftdi, int state)
2064{
2065 unsigned short usb_val;
2066
2067 if (ftdi == NULL || ftdi->usb_dev == NULL)
2068 ftdi_error_return(-2, "USB device unavailable");
2069
2070 if (state)
2071 usb_val = SIO_SET_RTS_HIGH;
2072 else
2073 usb_val = SIO_SET_RTS_LOW;
2074
2075 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2076 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2077 NULL, 0, ftdi->usb_write_timeout) < 0)
2078 ftdi_error_return(-1, "set of rts failed");
2079
2080 return 0;
2081}
2082
2083/**
2084 Set dtr and rts line in one pass
2085
2086 \param ftdi pointer to ftdi_context
2087 \param dtr DTR state to set line to (1 or 0)
2088 \param rts RTS state to set line to (1 or 0)
2089
2090 \retval 0: all fine
2091 \retval -1: set dtr/rts failed
2092 \retval -2: USB device unavailable
2093 */
2094int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2095{
2096 unsigned short usb_val;
2097
2098 if (ftdi == NULL || ftdi->usb_dev == NULL)
2099 ftdi_error_return(-2, "USB device unavailable");
2100
2101 if (dtr)
2102 usb_val = SIO_SET_DTR_HIGH;
2103 else
2104 usb_val = SIO_SET_DTR_LOW;
2105
2106 if (rts)
2107 usb_val |= SIO_SET_RTS_HIGH;
2108 else
2109 usb_val |= SIO_SET_RTS_LOW;
2110
2111 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2112 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2113 NULL, 0, ftdi->usb_write_timeout) < 0)
2114 ftdi_error_return(-1, "set of rts/dtr failed");
2115
2116 return 0;
2117}
2118
2119/**
2120 Set the special event character
2121
2122 \param ftdi pointer to ftdi_context
2123 \param eventch Event character
2124 \param enable 0 to disable the event character, non-zero otherwise
2125
2126 \retval 0: all fine
2127 \retval -1: unable to set event character
2128 \retval -2: USB device unavailable
2129*/
2130int ftdi_set_event_char(struct ftdi_context *ftdi,
2131 unsigned char eventch, unsigned char enable)
2132{
2133 unsigned short usb_val;
2134
2135 if (ftdi == NULL || ftdi->usb_dev == NULL)
2136 ftdi_error_return(-2, "USB device unavailable");
2137
2138 usb_val = eventch;
2139 if (enable)
2140 usb_val |= 1 << 8;
2141
2142 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2143 ftdi_error_return(-1, "setting event character failed");
2144
2145 return 0;
2146}
2147
2148/**
2149 Set error character
2150
2151 \param ftdi pointer to ftdi_context
2152 \param errorch Error character
2153 \param enable 0 to disable the error character, non-zero otherwise
2154
2155 \retval 0: all fine
2156 \retval -1: unable to set error character
2157 \retval -2: USB device unavailable
2158*/
2159int ftdi_set_error_char(struct ftdi_context *ftdi,
2160 unsigned char errorch, unsigned char enable)
2161{
2162 unsigned short usb_val;
2163
2164 if (ftdi == NULL || ftdi->usb_dev == NULL)
2165 ftdi_error_return(-2, "USB device unavailable");
2166
2167 usb_val = errorch;
2168 if (enable)
2169 usb_val |= 1 << 8;
2170
2171 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2172 ftdi_error_return(-1, "setting error character failed");
2173
2174 return 0;
2175}
2176
2177/**
2178 Init eeprom with default values.
2179 \param ftdi pointer to ftdi_context
2180 \param manufacturer String to use as Manufacturer
2181 \param product String to use as Product description
2182 \param serial String to use as Serial number description
2183
2184 \retval 0: all fine
2185 \retval -1: No struct ftdi_context
2186 \retval -2: No struct ftdi_eeprom
2187*/
2188int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2189 char * product, char * serial)
2190{
2191 struct ftdi_eeprom *eeprom;
2192
2193 if (ftdi == NULL)
2194 ftdi_error_return(-1, "No struct ftdi_context");
2195
2196 if (ftdi->eeprom == NULL)
2197 ftdi_error_return(-2,"No struct ftdi_eeprom");
2198
2199 eeprom = ftdi->eeprom;
2200 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2201
2202 eeprom->vendor_id = 0x0403;
2203 eeprom->use_serial = USE_SERIAL_NUM;
2204 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2205 (ftdi->type == TYPE_R))
2206 eeprom->product_id = 0x6001;
2207 else if (ftdi->type == TYPE_4232H)
2208 eeprom->product_id = 0x6011;
2209 else if (ftdi->type == TYPE_232H)
2210 eeprom->product_id = 0x6014;
2211 else
2212 eeprom->product_id = 0x6010;
2213 if (ftdi->type == TYPE_AM)
2214 eeprom->usb_version = 0x0101;
2215 else
2216 eeprom->usb_version = 0x0200;
2217 eeprom->max_power = 100;
2218
2219 if (eeprom->manufacturer)
2220 free (eeprom->manufacturer);
2221 eeprom->manufacturer = NULL;
2222 if (manufacturer)
2223 {
2224 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2225 if (eeprom->manufacturer)
2226 strcpy(eeprom->manufacturer, manufacturer);
2227 }
2228
2229 if (eeprom->product)
2230 free (eeprom->product);
2231 eeprom->product = NULL;
2232 if(product)
2233 {
2234 eeprom->product = malloc(strlen(product)+1);
2235 if (eeprom->product)
2236 strcpy(eeprom->product, product);
2237 }
2238
2239 if (eeprom->serial)
2240 free (eeprom->serial);
2241 eeprom->serial = NULL;
2242 if (serial)
2243 {
2244 eeprom->serial = malloc(strlen(serial)+1);
2245 if (eeprom->serial)
2246 strcpy(eeprom->serial, serial);
2247 }
2248
2249
2250 if (ftdi->type == TYPE_R)
2251 {
2252 eeprom->max_power = 90;
2253 eeprom->size = 0x80;
2254 eeprom->cbus_function[0] = CBUS_TXLED;
2255 eeprom->cbus_function[1] = CBUS_RXLED;
2256 eeprom->cbus_function[2] = CBUS_TXDEN;
2257 eeprom->cbus_function[3] = CBUS_PWREN;
2258 eeprom->cbus_function[4] = CBUS_SLEEP;
2259 }
2260 else
2261 {
2262 if(ftdi->type == TYPE_232H)
2263 {
2264 int i;
2265 for (i=0; i<10; i++)
2266 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2267 }
2268 eeprom->size = -1;
2269 }
2270 return 0;
2271}
2272/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2273void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2274{
2275 int i;
2276 for(i=0; i<5;i++)
2277 {
2278 int mode_low, mode_high;
2279 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2280 mode_low = CBUSH_TRISTATE;
2281 else
2282 mode_low = eeprom->cbus_function[2*i];
2283 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2284 mode_high = CBUSH_TRISTATE;
2285 else
2286 mode_high = eeprom->cbus_function[2*i];
2287
2288 output[0x18+i] = mode_high <<4 | mode_low;
2289 }
2290}
2291/**
2292 Build binary buffer from ftdi_eeprom structure.
2293 Output is suitable for ftdi_write_eeprom().
2294
2295 \param ftdi pointer to ftdi_context
2296
2297 \retval >=0: size of eeprom user area in bytes
2298 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2299 \retval -2: Invalid eeprom or ftdi pointer
2300 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2301 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2302 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2303 \retval -6: No connected EEPROM or EEPROM Type unknown
2304*/
2305int ftdi_eeprom_build(struct ftdi_context *ftdi)
2306{
2307 unsigned char i, j, eeprom_size_mask;
2308 unsigned short checksum, value;
2309 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2310 int user_area_size;
2311 struct ftdi_eeprom *eeprom;
2312 unsigned char * output;
2313
2314 if (ftdi == NULL)
2315 ftdi_error_return(-2,"No context");
2316 if (ftdi->eeprom == NULL)
2317 ftdi_error_return(-2,"No eeprom structure");
2318
2319 eeprom= ftdi->eeprom;
2320 output = eeprom->buf;
2321
2322 if (eeprom->chip == -1)
2323 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2324
2325 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2326 eeprom->size = 0x100;
2327 else
2328 eeprom->size = 0x80;
2329
2330 if (eeprom->manufacturer != NULL)
2331 manufacturer_size = strlen(eeprom->manufacturer);
2332 if (eeprom->product != NULL)
2333 product_size = strlen(eeprom->product);
2334 if (eeprom->serial != NULL)
2335 serial_size = strlen(eeprom->serial);
2336
2337 // eeprom size check
2338 switch (ftdi->type)
2339 {
2340 case TYPE_AM:
2341 case TYPE_BM:
2342 user_area_size = 96; // base size for strings (total of 48 characters)
2343 break;
2344 case TYPE_2232C:
2345 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2346 break;
2347 case TYPE_R:
2348 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2349 break;
2350 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2351 case TYPE_4232H:
2352 user_area_size = 86;
2353 break;
2354 default:
2355 user_area_size = 0;
2356 break;
2357 }
2358 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2359
2360 if (user_area_size < 0)
2361 ftdi_error_return(-1,"eeprom size exceeded");
2362
2363 // empty eeprom
2364 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2365
2366 // Bytes and Bits set for all Types
2367
2368 // Addr 02: Vendor ID
2369 output[0x02] = eeprom->vendor_id;
2370 output[0x03] = eeprom->vendor_id >> 8;
2371
2372 // Addr 04: Product ID
2373 output[0x04] = eeprom->product_id;
2374 output[0x05] = eeprom->product_id >> 8;
2375
2376 // Addr 06: Device release number (0400h for BM features)
2377 output[0x06] = 0x00;
2378 switch (ftdi->type)
2379 {
2380 case TYPE_AM:
2381 output[0x07] = 0x02;
2382 break;
2383 case TYPE_BM:
2384 output[0x07] = 0x04;
2385 break;
2386 case TYPE_2232C:
2387 output[0x07] = 0x05;
2388 break;
2389 case TYPE_R:
2390 output[0x07] = 0x06;
2391 break;
2392 case TYPE_2232H:
2393 output[0x07] = 0x07;
2394 break;
2395 case TYPE_4232H:
2396 output[0x07] = 0x08;
2397 break;
2398 case TYPE_232H:
2399 output[0x07] = 0x09;
2400 break;
2401 default:
2402 output[0x07] = 0x00;
2403 }
2404
2405 // Addr 08: Config descriptor
2406 // Bit 7: always 1
2407 // Bit 6: 1 if this device is self powered, 0 if bus powered
2408 // Bit 5: 1 if this device uses remote wakeup
2409 // Bit 4-0: reserved - 0
2410 j = 0x80;
2411 if (eeprom->self_powered == 1)
2412 j |= 0x40;
2413 if (eeprom->remote_wakeup == 1)
2414 j |= 0x20;
2415 output[0x08] = j;
2416
2417 // Addr 09: Max power consumption: max power = value * 2 mA
2418 output[0x09] = eeprom->max_power>>1;
2419
2420 if (ftdi->type != TYPE_AM)
2421 {
2422 // Addr 0A: Chip configuration
2423 // Bit 7: 0 - reserved
2424 // Bit 6: 0 - reserved
2425 // Bit 5: 0 - reserved
2426 // Bit 4: 1 - Change USB version
2427 // Bit 3: 1 - Use the serial number string
2428 // Bit 2: 1 - Enable suspend pull downs for lower power
2429 // Bit 1: 1 - Out EndPoint is Isochronous
2430 // Bit 0: 1 - In EndPoint is Isochronous
2431 //
2432 j = 0;
2433 if (eeprom->in_is_isochronous == 1)
2434 j = j | 1;
2435 if (eeprom->out_is_isochronous == 1)
2436 j = j | 2;
2437 output[0x0A] = j;
2438 }
2439
2440 // Dynamic content
2441 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2442 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2443 // 0xa0 (TYPE_232H)
2444 i = 0;
2445 switch (ftdi->type)
2446 {
2447 case TYPE_232H:
2448 i += 2;
2449 case TYPE_2232H:
2450 case TYPE_4232H:
2451 i += 2;
2452 case TYPE_R:
2453 i += 2;
2454 case TYPE_2232C:
2455 i += 2;
2456 case TYPE_AM:
2457 case TYPE_BM:
2458 i += 0x94;
2459 }
2460 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2461 eeprom_size_mask = eeprom->size -1;
2462
2463 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2464 // Addr 0F: Length of manufacturer string
2465 // Output manufacturer
2466 output[0x0E] = i; // calculate offset
2467 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2468 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2469 for (j = 0; j < manufacturer_size; j++)
2470 {
2471 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2472 output[i & eeprom_size_mask] = 0x00, i++;
2473 }
2474 output[0x0F] = manufacturer_size*2 + 2;
2475
2476 // Addr 10: Offset of the product string + 0x80, calculated later
2477 // Addr 11: Length of product string
2478 output[0x10] = i | 0x80; // calculate offset
2479 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2480 output[i & eeprom_size_mask] = 0x03, i++;
2481 for (j = 0; j < product_size; j++)
2482 {
2483 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2484 output[i & eeprom_size_mask] = 0x00, i++;
2485 }
2486 output[0x11] = product_size*2 + 2;
2487
2488 // Addr 12: Offset of the serial string + 0x80, calculated later
2489 // Addr 13: Length of serial string
2490 output[0x12] = i | 0x80; // calculate offset
2491 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2492 output[i & eeprom_size_mask] = 0x03, i++;
2493 for (j = 0; j < serial_size; j++)
2494 {
2495 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2496 output[i & eeprom_size_mask] = 0x00, i++;
2497 }
2498
2499 // Legacy port name and PnP fields for FT2232 and newer chips
2500 if (ftdi->type > TYPE_BM)
2501 {
2502 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2503 i++;
2504 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2505 i++;
2506 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2507 i++;
2508 }
2509
2510 output[0x13] = serial_size*2 + 2;
2511
2512 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2513 {
2514 if (eeprom->use_serial == USE_SERIAL_NUM )
2515 output[0x0A] |= USE_SERIAL_NUM;
2516 else
2517 output[0x0A] &= ~USE_SERIAL_NUM;
2518 }
2519
2520 /* Bytes and Bits specific to (some) types
2521 Write linear, as this allows easier fixing*/
2522 switch (ftdi->type)
2523 {
2524 case TYPE_AM:
2525 break;
2526 case TYPE_BM:
2527 output[0x0C] = eeprom->usb_version & 0xff;
2528 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2529 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2530 output[0x0A] |= USE_USB_VERSION_BIT;
2531 else
2532 output[0x0A] &= ~USE_USB_VERSION_BIT;
2533
2534 break;
2535 case TYPE_2232C:
2536
2537 output[0x00] = (eeprom->channel_a_type)?((1<<(eeprom->channel_a_type)) & 0x7):0;
2538 if ( eeprom->channel_a_driver == DRIVER_VCP)
2539 output[0x00] |= DRIVER_VCP;
2540 else
2541 output[0x00] &= ~DRIVER_VCP;
2542
2543 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2544 output[0x00] |= HIGH_CURRENT_DRIVE;
2545 else
2546 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2547
2548 output[0x01] = (eeprom->channel_b_type)?((1<<(eeprom->channel_b_type)) & 0x7):0;
2549 if ( eeprom->channel_b_driver == DRIVER_VCP)
2550 output[0x01] |= DRIVER_VCP;
2551 else
2552 output[0x01] &= ~DRIVER_VCP;
2553
2554 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2555 output[0x01] |= HIGH_CURRENT_DRIVE;
2556 else
2557 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2558
2559 if (eeprom->in_is_isochronous == 1)
2560 output[0x0A] |= 0x1;
2561 else
2562 output[0x0A] &= ~0x1;
2563 if (eeprom->out_is_isochronous == 1)
2564 output[0x0A] |= 0x2;
2565 else
2566 output[0x0A] &= ~0x2;
2567 if (eeprom->suspend_pull_downs == 1)
2568 output[0x0A] |= 0x4;
2569 else
2570 output[0x0A] &= ~0x4;
2571 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2572 output[0x0A] |= USE_USB_VERSION_BIT;
2573 else
2574 output[0x0A] &= ~USE_USB_VERSION_BIT;
2575
2576 output[0x0C] = eeprom->usb_version & 0xff;
2577 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2578 output[0x14] = eeprom->chip;
2579 break;
2580 case TYPE_R:
2581 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2582 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2583 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2584
2585 if (eeprom->suspend_pull_downs == 1)
2586 output[0x0A] |= 0x4;
2587 else
2588 output[0x0A] &= ~0x4;
2589 output[0x0B] = eeprom->invert;
2590 output[0x0C] = eeprom->usb_version & 0xff;
2591 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2592
2593 if (eeprom->cbus_function[0] > CBUS_BB)
2594 output[0x14] = CBUS_TXLED;
2595 else
2596 output[0x14] = eeprom->cbus_function[0];
2597
2598 if (eeprom->cbus_function[1] > CBUS_BB)
2599 output[0x14] |= CBUS_RXLED<<4;
2600 else
2601 output[0x14] |= eeprom->cbus_function[1]<<4;
2602
2603 if (eeprom->cbus_function[2] > CBUS_BB)
2604 output[0x15] = CBUS_TXDEN;
2605 else
2606 output[0x15] = eeprom->cbus_function[2];
2607
2608 if (eeprom->cbus_function[3] > CBUS_BB)
2609 output[0x15] |= CBUS_PWREN<<4;
2610 else
2611 output[0x15] |= eeprom->cbus_function[3]<<4;
2612
2613 if (eeprom->cbus_function[4] > CBUS_CLK6)
2614 output[0x16] = CBUS_SLEEP;
2615 else
2616 output[0x16] = eeprom->cbus_function[4];
2617 break;
2618 case TYPE_2232H:
2619 output[0x00] = (eeprom->channel_a_type)?((1<<(eeprom->channel_a_type)) & 0x7):0;
2620 if ( eeprom->channel_a_driver == DRIVER_VCP)
2621 output[0x00] |= DRIVER_VCP;
2622 else
2623 output[0x00] &= ~DRIVER_VCP;
2624
2625 output[0x01] = (eeprom->channel_b_type)?((1<<(eeprom->channel_b_type)) & 0x7):0;
2626 if ( eeprom->channel_b_driver == DRIVER_VCP)
2627 output[0x01] |= DRIVER_VCP;
2628 else
2629 output[0x01] &= ~DRIVER_VCP;
2630 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2631 output[0x01] |= SUSPEND_DBUS7_BIT;
2632 else
2633 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2634
2635 if (eeprom->suspend_pull_downs == 1)
2636 output[0x0A] |= 0x4;
2637 else
2638 output[0x0A] &= ~0x4;
2639
2640 if (eeprom->group0_drive > DRIVE_16MA)
2641 output[0x0c] |= DRIVE_16MA;
2642 else
2643 output[0x0c] |= eeprom->group0_drive;
2644 if (eeprom->group0_schmitt == IS_SCHMITT)
2645 output[0x0c] |= IS_SCHMITT;
2646 if (eeprom->group0_slew == SLOW_SLEW)
2647 output[0x0c] |= SLOW_SLEW;
2648
2649 if (eeprom->group1_drive > DRIVE_16MA)
2650 output[0x0c] |= DRIVE_16MA<<4;
2651 else
2652 output[0x0c] |= eeprom->group1_drive<<4;
2653 if (eeprom->group1_schmitt == IS_SCHMITT)
2654 output[0x0c] |= IS_SCHMITT<<4;
2655 if (eeprom->group1_slew == SLOW_SLEW)
2656 output[0x0c] |= SLOW_SLEW<<4;
2657
2658 if (eeprom->group2_drive > DRIVE_16MA)
2659 output[0x0d] |= DRIVE_16MA;
2660 else
2661 output[0x0d] |= eeprom->group2_drive;
2662 if (eeprom->group2_schmitt == IS_SCHMITT)
2663 output[0x0d] |= IS_SCHMITT;
2664 if (eeprom->group2_slew == SLOW_SLEW)
2665 output[0x0d] |= SLOW_SLEW;
2666
2667 if (eeprom->group3_drive > DRIVE_16MA)
2668 output[0x0d] |= DRIVE_16MA<<4;
2669 else
2670 output[0x0d] |= eeprom->group3_drive<<4;
2671 if (eeprom->group3_schmitt == IS_SCHMITT)
2672 output[0x0d] |= IS_SCHMITT<<4;
2673 if (eeprom->group3_slew == SLOW_SLEW)
2674 output[0x0d] |= SLOW_SLEW<<4;
2675
2676 output[0x18] = eeprom->chip;
2677
2678 break;
2679 case TYPE_4232H:
2680 output[0x18] = eeprom->chip;
2681 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
2682 break;
2683 case TYPE_232H:
2684 output[0x00] = (eeprom->channel_a_type)?((1<<(eeprom->channel_a_type)) & 0xf):0;
2685 if ( eeprom->channel_a_driver == DRIVER_VCP)
2686 output[0x00] |= DRIVER_VCPH;
2687 else
2688 output[0x00] &= ~DRIVER_VCPH;
2689 if (eeprom->powersave)
2690 output[0x01] |= POWER_SAVE_DISABLE_H;
2691 else
2692 output[0x01] &= ~POWER_SAVE_DISABLE_H;
2693 if (eeprom->clock_polarity)
2694 output[0x01] |= FT1284_CLK_IDLE_STATE;
2695 else
2696 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
2697 if (eeprom->data_order)
2698 output[0x01] |= FT1284_DATA_LSB;
2699 else
2700 output[0x01] &= ~FT1284_DATA_LSB;
2701 if (eeprom->flow_control)
2702 output[0x01] |= FT1284_FLOW_CONTROL;
2703 else
2704 output[0x01] &= ~FT1284_FLOW_CONTROL;
2705 if (eeprom->group0_drive > DRIVE_16MA)
2706 output[0x0c] |= DRIVE_16MA;
2707 else
2708 output[0x0c] |= eeprom->group0_drive;
2709 if (eeprom->group0_schmitt == IS_SCHMITT)
2710 output[0x0c] |= IS_SCHMITT;
2711 if (eeprom->group0_slew == SLOW_SLEW)
2712 output[0x0c] |= SLOW_SLEW;
2713
2714 if (eeprom->group1_drive > DRIVE_16MA)
2715 output[0x0d] |= DRIVE_16MA;
2716 else
2717 output[0x0d] |= eeprom->group1_drive;
2718 if (eeprom->group1_schmitt == IS_SCHMITT)
2719 output[0x0d] |= IS_SCHMITT;
2720 if (eeprom->group1_slew == SLOW_SLEW)
2721 output[0x0d] |= SLOW_SLEW;
2722
2723 set_ft232h_cbus(eeprom, output);
2724
2725 output[0x1e] = eeprom->chip;
2726 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
2727 break;
2728
2729 }
2730
2731 // calculate checksum
2732 checksum = 0xAAAA;
2733
2734 for (i = 0; i < eeprom->size/2-1; i++)
2735 {
2736 value = output[i*2];
2737 value += output[(i*2)+1] << 8;
2738
2739 checksum = value^checksum;
2740 checksum = (checksum << 1) | (checksum >> 15);
2741 }
2742
2743 output[eeprom->size-2] = checksum;
2744 output[eeprom->size-1] = checksum >> 8;
2745
2746 return user_area_size;
2747}
2748/* FTD2XX doesn't allow to set multiple bits in the interface mode bitfield*/
2749unsigned char bit2type(unsigned char bits)
2750{
2751 switch (bits)
2752 {
2753 case 0: return 0;
2754 case 1: return 1;
2755 case 2: return 2;
2756 case 4: return 3;
2757 case 8: return 4;
2758 default:
2759 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
2760 bits);
2761 }
2762 return 0;
2763}
2764
2765/**
2766 Decode binary EEPROM image into an ftdi_eeprom structure.
2767
2768 \param ftdi pointer to ftdi_context
2769 \param verbose Decode EEPROM on stdout
2770
2771 \retval 0: all fine
2772 \retval -1: something went wrong
2773
2774 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2775 FIXME: Strings are malloc'ed here and should be freed somewhere
2776*/
2777int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2778{
2779 unsigned char i, j;
2780 unsigned short checksum, eeprom_checksum, value;
2781 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2782 int eeprom_size;
2783 struct ftdi_eeprom *eeprom;
2784 unsigned char *buf = ftdi->eeprom->buf;
2785 int release;
2786
2787 if (ftdi == NULL)
2788 ftdi_error_return(-1,"No context");
2789 if (ftdi->eeprom == NULL)
2790 ftdi_error_return(-1,"No eeprom structure");
2791
2792 eeprom = ftdi->eeprom;
2793 eeprom_size = eeprom->size;
2794
2795 // Addr 02: Vendor ID
2796 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2797
2798 // Addr 04: Product ID
2799 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2800
2801 release = buf[0x06] + (buf[0x07]<<8);
2802
2803 // Addr 08: Config descriptor
2804 // Bit 7: always 1
2805 // Bit 6: 1 if this device is self powered, 0 if bus powered
2806 // Bit 5: 1 if this device uses remote wakeup
2807 eeprom->self_powered = buf[0x08] & 0x40;
2808 eeprom->remote_wakeup = buf[0x08] & 0x20;
2809
2810 // Addr 09: Max power consumption: max power = value * 2 mA
2811 eeprom->max_power = buf[0x09];
2812
2813 // Addr 0A: Chip configuration
2814 // Bit 7: 0 - reserved
2815 // Bit 6: 0 - reserved
2816 // Bit 5: 0 - reserved
2817 // Bit 4: 1 - Change USB version on BM and 2232C
2818 // Bit 3: 1 - Use the serial number string
2819 // Bit 2: 1 - Enable suspend pull downs for lower power
2820 // Bit 1: 1 - Out EndPoint is Isochronous
2821 // Bit 0: 1 - In EndPoint is Isochronous
2822 //
2823 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2824 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2825 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2826 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
2827 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
2828
2829 // Addr 0C: USB version low byte when 0x0A
2830 // Addr 0D: USB version high byte when 0x0A
2831 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2832
2833 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2834 // Addr 0F: Length of manufacturer string
2835 manufacturer_size = buf[0x0F]/2;
2836 if (eeprom->manufacturer)
2837 free(eeprom->manufacturer);
2838 if (manufacturer_size > 0)
2839 {
2840 eeprom->manufacturer = malloc(manufacturer_size);
2841 if (eeprom->manufacturer)
2842 {
2843 // Decode manufacturer
2844 i = buf[0x0E] & (eeprom_size -1); // offset
2845 for (j=0;j<manufacturer_size-1;j++)
2846 {
2847 eeprom->manufacturer[j] = buf[2*j+i+2];
2848 }
2849 eeprom->manufacturer[j] = '\0';
2850 }
2851 }
2852 else eeprom->manufacturer = NULL;
2853
2854 // Addr 10: Offset of the product string + 0x80, calculated later
2855 // Addr 11: Length of product string
2856 if (eeprom->product)
2857 free(eeprom->product);
2858 product_size = buf[0x11]/2;
2859 if (product_size > 0)
2860 {
2861 eeprom->product = malloc(product_size);
2862 if (eeprom->product)
2863 {
2864 // Decode product name
2865 i = buf[0x10] & (eeprom_size -1); // offset
2866 for (j=0;j<product_size-1;j++)
2867 {
2868 eeprom->product[j] = buf[2*j+i+2];
2869 }
2870 eeprom->product[j] = '\0';
2871 }
2872 }
2873 else eeprom->product = NULL;
2874
2875 // Addr 12: Offset of the serial string + 0x80, calculated later
2876 // Addr 13: Length of serial string
2877 if (eeprom->serial)
2878 free(eeprom->serial);
2879 serial_size = buf[0x13]/2;
2880 if (serial_size > 0)
2881 {
2882 eeprom->serial = malloc(serial_size);
2883 if (eeprom->serial)
2884 {
2885 // Decode serial
2886 i = buf[0x12] & (eeprom_size -1); // offset
2887 for (j=0;j<serial_size-1;j++)
2888 {
2889 eeprom->serial[j] = buf[2*j+i+2];
2890 }
2891 eeprom->serial[j] = '\0';
2892 }
2893 }
2894 else eeprom->serial = NULL;
2895
2896 // verify checksum
2897 checksum = 0xAAAA;
2898
2899 for (i = 0; i < eeprom_size/2-1; i++)
2900 {
2901 value = buf[i*2];
2902 value += buf[(i*2)+1] << 8;
2903
2904 checksum = value^checksum;
2905 checksum = (checksum << 1) | (checksum >> 15);
2906 }
2907
2908 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2909
2910 if (eeprom_checksum != checksum)
2911 {
2912 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2913 ftdi_error_return(-1,"EEPROM checksum error");
2914 }
2915
2916 eeprom->channel_a_type = 0;
2917 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
2918 {
2919 eeprom->chip = -1;
2920 }
2921 else if (ftdi->type == TYPE_2232C)
2922 {
2923 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2924 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2925 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2926 eeprom->channel_b_type = buf[0x01] & 0x7;
2927 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2928 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
2929 eeprom->chip = buf[0x14];
2930 }
2931 else if (ftdi->type == TYPE_R)
2932 {
2933 /* TYPE_R flags D2XX, not VCP as all others*/
2934 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2935 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2936 if ( (buf[0x01]&0x40) != 0x40)
2937 fprintf(stderr,
2938 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2939 " If this happened with the\n"
2940 " EEPROM programmed by FTDI tools, please report "
2941 "to libftdi@developer.intra2net.com\n");
2942
2943 eeprom->chip = buf[0x16];
2944 // Addr 0B: Invert data lines
2945 // Works only on FT232R, not FT245R, but no way to distinguish
2946 eeprom->invert = buf[0x0B];
2947 // Addr 14: CBUS function: CBUS0, CBUS1
2948 // Addr 15: CBUS function: CBUS2, CBUS3
2949 // Addr 16: CBUS function: CBUS5
2950 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2951 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2952 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2953 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2954 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
2955 }
2956 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
2957 {
2958 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2959 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2960 eeprom->channel_b_type = buf[0x01] & 0x7;
2961 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2962
2963 if (ftdi->type == TYPE_2232H)
2964 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
2965
2966 eeprom->chip = buf[0x18];
2967 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2968 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2969 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2970 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2971 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2972 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2973 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2974 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2975 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2976 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2977 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2978 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
2979 }
2980 else if (ftdi->type == TYPE_232H)
2981 {
2982 int i;
2983
2984 eeprom->channel_a_type = buf[0x00] & 0xf;
2985 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
2986 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
2987 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
2988 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
2989 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
2990 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2991 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2992 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2993 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
2994 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
2995 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
2996
2997 for(i=0; i<5; i++)
2998 {
2999 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3000 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3001 }
3002 eeprom->chip = buf[0x1e];
3003 /*FIXME: Decipher more values*/
3004 }
3005
3006 if (verbose)
3007 {
3008 char *channel_mode[] = {"UART","245","CPU", "OPTO", "FT1284"};
3009 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3010 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3011 fprintf(stdout, "Release: 0x%04x\n",release);
3012
3013 if (eeprom->self_powered)
3014 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3015 else
3016 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
3017 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3018 if (eeprom->manufacturer)
3019 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3020 if (eeprom->product)
3021 fprintf(stdout, "Product: %s\n",eeprom->product);
3022 if (eeprom->serial)
3023 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3024 fprintf(stdout, "Checksum : %04x\n", checksum);
3025 if (ftdi->type == TYPE_R)
3026 fprintf(stdout, "Internal EEPROM\n");
3027 else if (eeprom->chip >= 0x46)
3028 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3029 if (eeprom->suspend_dbus7)
3030 fprintf(stdout, "Suspend on DBUS7\n");
3031 if (eeprom->suspend_pull_downs)
3032 fprintf(stdout, "Pull IO pins low during suspend\n");
3033 if(eeprom->powersave)
3034 {
3035 if(ftdi->type >= TYPE_232H)
3036 fprintf(stdout,"Enter low power state on ACBUS7\n");
3037 }
3038 if (eeprom->remote_wakeup)
3039 fprintf(stdout, "Enable Remote Wake Up\n");
3040 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3041 if (ftdi->type >= TYPE_2232C)
3042 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3043 channel_mode[eeprom->channel_a_type],
3044 (eeprom->channel_a_driver)?" VCP":"",
3045 (eeprom->high_current_a)?" High Current IO":"");
3046 if (ftdi->type >= TYPE_232H)
3047 {
3048 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3049 (eeprom->clock_polarity)?"HIGH":"LOW",
3050 (eeprom->data_order)?"LSB":"MSB",
3051 (eeprom->flow_control)?"":"No ");
3052 }
3053 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
3054 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3055 channel_mode[eeprom->channel_b_type],
3056 (eeprom->channel_b_driver)?" VCP":"",
3057 (eeprom->high_current_b)?" High Current IO":"");
3058 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3059 eeprom->use_usb_version == USE_USB_VERSION_BIT)
3060 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3061
3062 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3063 {
3064 fprintf(stdout,"%s has %d mA drive%s%s\n",
3065 (ftdi->type == TYPE_2232H)?"AL":"A",
3066 (eeprom->group0_drive+1) *4,
3067 (eeprom->group0_schmitt)?" Schmitt Input":"",
3068 (eeprom->group0_slew)?" Slow Slew":"");
3069 fprintf(stdout,"%s has %d mA drive%s%s\n",
3070 (ftdi->type == TYPE_2232H)?"AH":"B",
3071 (eeprom->group1_drive+1) *4,
3072 (eeprom->group1_schmitt)?" Schmitt Input":"",
3073 (eeprom->group1_slew)?" Slow Slew":"");
3074 fprintf(stdout,"%s has %d mA drive%s%s\n",
3075 (ftdi->type == TYPE_2232H)?"BL":"C",
3076 (eeprom->group2_drive+1) *4,
3077 (eeprom->group2_schmitt)?" Schmitt Input":"",
3078 (eeprom->group2_slew)?" Slow Slew":"");
3079 fprintf(stdout,"%s has %d mA drive%s%s\n",
3080 (ftdi->type == TYPE_2232H)?"BH":"D",
3081 (eeprom->group3_drive+1) *4,
3082 (eeprom->group3_schmitt)?" Schmitt Input":"",
3083 (eeprom->group3_slew)?" Slow Slew":"");
3084 }
3085 else if (ftdi->type == TYPE_232H)
3086 {
3087 int i;
3088 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3089 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3090 "CLK30","CLK15","CLK7_5"
3091 };
3092 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3093 (eeprom->group0_drive+1) *4,
3094 (eeprom->group0_schmitt)?" Schmitt Input":"",
3095 (eeprom->group0_slew)?" Slow Slew":"");
3096 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3097 (eeprom->group1_drive+1) *4,
3098 (eeprom->group1_schmitt)?" Schmitt Input":"",
3099 (eeprom->group1_slew)?" Slow Slew":"");
3100 for (i=0; i<10; i++)
3101 {
3102 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3103 fprintf(stdout,"C%d Function: %s\n", i,
3104 cbush_mux[eeprom->cbus_function[i]]);
3105 }
3106
3107 }
3108
3109 if (ftdi->type == TYPE_R)
3110 {
3111 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3112 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3113 "IOMODE","BB_WR","BB_RD"
3114 };
3115 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3116
3117 if (eeprom->invert)
3118 {
3119 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3120 fprintf(stdout,"Inverted bits:");
3121 for (i=0; i<8; i++)
3122 if ((eeprom->invert & (1<<i)) == (1<<i))
3123 fprintf(stdout," %s",r_bits[i]);
3124 fprintf(stdout,"\n");
3125 }
3126 for (i=0; i<5; i++)
3127 {
3128 if (eeprom->cbus_function[i]<CBUS_BB)
3129 fprintf(stdout,"C%d Function: %s\n", i,
3130 cbus_mux[eeprom->cbus_function[i]]);
3131 else
3132 {
3133 if (i < 4)
3134 /* Running MPROG show that C0..3 have fixed function Synchronous
3135 Bit Bang mode */
3136 fprintf(stdout,"C%d BB Function: %s\n", i,
3137 cbus_BB[i]);
3138 else
3139 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3140 }
3141 }
3142 }
3143 }
3144 return 0;
3145}
3146
3147/**
3148 Get a value from the decoded EEPROM structure
3149
3150 \param ftdi pointer to ftdi_context
3151 \param value_name Enum of the value to query
3152 \param value Pointer to store read value
3153
3154 \retval 0: all fine
3155 \retval -1: Value doesn't exist
3156*/
3157int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3158{
3159 switch (value_name)
3160 {
3161 case VENDOR_ID:
3162 *value = ftdi->eeprom->vendor_id;
3163 break;
3164 case PRODUCT_ID:
3165 *value = ftdi->eeprom->product_id;
3166 break;
3167 case SELF_POWERED:
3168 *value = ftdi->eeprom->self_powered;
3169 break;
3170 case REMOTE_WAKEUP:
3171 *value = ftdi->eeprom->remote_wakeup;
3172 break;
3173 case IS_NOT_PNP:
3174 *value = ftdi->eeprom->is_not_pnp;
3175 break;
3176 case SUSPEND_DBUS7:
3177 *value = ftdi->eeprom->suspend_dbus7;
3178 break;
3179 case IN_IS_ISOCHRONOUS:
3180 *value = ftdi->eeprom->in_is_isochronous;
3181 break;
3182 case SUSPEND_PULL_DOWNS:
3183 *value = ftdi->eeprom->suspend_pull_downs;
3184 break;
3185 case USE_SERIAL:
3186 *value = ftdi->eeprom->use_serial;
3187 break;
3188 case USB_VERSION:
3189 *value = ftdi->eeprom->usb_version;
3190 break;
3191 case MAX_POWER:
3192 *value = ftdi->eeprom->max_power;
3193 break;
3194 case CHANNEL_A_TYPE:
3195 *value = ftdi->eeprom->channel_a_type;
3196 break;
3197 case CHANNEL_B_TYPE:
3198 *value = ftdi->eeprom->channel_b_type;
3199 break;
3200 case CHANNEL_A_DRIVER:
3201 *value = ftdi->eeprom->channel_a_driver;
3202 break;
3203 case CHANNEL_B_DRIVER:
3204 *value = ftdi->eeprom->channel_b_driver;
3205 break;
3206 case CBUS_FUNCTION_0:
3207 *value = ftdi->eeprom->cbus_function[0];
3208 break;
3209 case CBUS_FUNCTION_1:
3210 *value = ftdi->eeprom->cbus_function[1];
3211 break;
3212 case CBUS_FUNCTION_2:
3213 *value = ftdi->eeprom->cbus_function[2];
3214 break;
3215 case CBUS_FUNCTION_3:
3216 *value = ftdi->eeprom->cbus_function[3];
3217 break;
3218 case CBUS_FUNCTION_4:
3219 *value = ftdi->eeprom->cbus_function[4];
3220 break;
3221 case CBUS_FUNCTION_5:
3222 *value = ftdi->eeprom->cbus_function[5];
3223 break;
3224 case CBUS_FUNCTION_6:
3225 *value = ftdi->eeprom->cbus_function[6];
3226 break;
3227 case CBUS_FUNCTION_7:
3228 *value = ftdi->eeprom->cbus_function[7];
3229 break;
3230 case CBUS_FUNCTION_8:
3231 *value = ftdi->eeprom->cbus_function[8];
3232 break;
3233 case CBUS_FUNCTION_9:
3234 *value = ftdi->eeprom->cbus_function[8];
3235 break;
3236 case HIGH_CURRENT:
3237 *value = ftdi->eeprom->high_current;
3238 break;
3239 case HIGH_CURRENT_A:
3240 *value = ftdi->eeprom->high_current_a;
3241 break;
3242 case HIGH_CURRENT_B:
3243 *value = ftdi->eeprom->high_current_b;
3244 break;
3245 case INVERT:
3246 *value = ftdi->eeprom->invert;
3247 break;
3248 case GROUP0_DRIVE:
3249 *value = ftdi->eeprom->group0_drive;
3250 break;
3251 case GROUP0_SCHMITT:
3252 *value = ftdi->eeprom->group0_schmitt;
3253 break;
3254 case GROUP0_SLEW:
3255 *value = ftdi->eeprom->group0_slew;
3256 break;
3257 case GROUP1_DRIVE:
3258 *value = ftdi->eeprom->group1_drive;
3259 break;
3260 case GROUP1_SCHMITT:
3261 *value = ftdi->eeprom->group1_schmitt;
3262 break;
3263 case GROUP1_SLEW:
3264 *value = ftdi->eeprom->group1_slew;
3265 break;
3266 case GROUP2_DRIVE:
3267 *value = ftdi->eeprom->group2_drive;
3268 break;
3269 case GROUP2_SCHMITT:
3270 *value = ftdi->eeprom->group2_schmitt;
3271 break;
3272 case GROUP2_SLEW:
3273 *value = ftdi->eeprom->group2_slew;
3274 break;
3275 case GROUP3_DRIVE:
3276 *value = ftdi->eeprom->group3_drive;
3277 break;
3278 case GROUP3_SCHMITT:
3279 *value = ftdi->eeprom->group3_schmitt;
3280 break;
3281 case GROUP3_SLEW:
3282 *value = ftdi->eeprom->group3_slew;
3283 break;
3284 case POWER_SAVE:
3285 *value = ftdi->eeprom->powersave;
3286 break;
3287 case CLOCK_POLARITY:
3288 *value = ftdi->eeprom->clock_polarity;
3289 break;
3290 case DATA_ORDER:
3291 *value = ftdi->eeprom->data_order;
3292 break;
3293 case FLOW_CONTROL:
3294 *value = ftdi->eeprom->flow_control;
3295 break;
3296 case CHIP_TYPE:
3297 *value = ftdi->eeprom->chip;
3298 break;
3299 case CHIP_SIZE:
3300 *value = ftdi->eeprom->size;
3301 break;
3302 default:
3303 ftdi_error_return(-1, "Request for unknown EEPROM value");
3304 }
3305 return 0;
3306}
3307
3308/**
3309 Set a value in the decoded EEPROM Structure
3310 No parameter checking is performed
3311
3312 \param ftdi pointer to ftdi_context
3313 \param value_name Enum of the value to set
3314 \param value to set
3315
3316 \retval 0: all fine
3317 \retval -1: Value doesn't exist
3318 \retval -2: Value not user settable
3319*/
3320int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3321{
3322 switch (value_name)
3323 {
3324 case VENDOR_ID:
3325 ftdi->eeprom->vendor_id = value;
3326 break;
3327 case PRODUCT_ID:
3328 ftdi->eeprom->product_id = value;
3329 break;
3330 case SELF_POWERED:
3331 ftdi->eeprom->self_powered = value;
3332 break;
3333 case REMOTE_WAKEUP:
3334 ftdi->eeprom->remote_wakeup = value;
3335 break;
3336 case IS_NOT_PNP:
3337 ftdi->eeprom->is_not_pnp = value;
3338 break;
3339 case SUSPEND_DBUS7:
3340 ftdi->eeprom->suspend_dbus7 = value;
3341 break;
3342 case IN_IS_ISOCHRONOUS:
3343 ftdi->eeprom->in_is_isochronous = value;
3344 break;
3345 case SUSPEND_PULL_DOWNS:
3346 ftdi->eeprom->suspend_pull_downs = value;
3347 break;
3348 case USE_SERIAL:
3349 ftdi->eeprom->use_serial = value;
3350 break;
3351 case USB_VERSION:
3352 ftdi->eeprom->usb_version = value;
3353 break;
3354 case MAX_POWER:
3355 ftdi->eeprom->max_power = value;
3356 break;
3357 case CHANNEL_A_TYPE:
3358 ftdi->eeprom->channel_a_type = value;
3359 break;
3360 case CHANNEL_B_TYPE:
3361 ftdi->eeprom->channel_b_type = value;
3362 break;
3363 case CHANNEL_A_DRIVER:
3364 ftdi->eeprom->channel_a_driver = value;
3365 break;
3366 case CHANNEL_B_DRIVER:
3367 ftdi->eeprom->channel_b_driver = value;
3368 break;
3369 case CBUS_FUNCTION_0:
3370 ftdi->eeprom->cbus_function[0] = value;
3371 break;
3372 case CBUS_FUNCTION_1:
3373 ftdi->eeprom->cbus_function[1] = value;
3374 break;
3375 case CBUS_FUNCTION_2:
3376 ftdi->eeprom->cbus_function[2] = value;
3377 break;
3378 case CBUS_FUNCTION_3:
3379 ftdi->eeprom->cbus_function[3] = value;
3380 break;
3381 case CBUS_FUNCTION_4:
3382 ftdi->eeprom->cbus_function[4] = value;
3383 break;
3384 case CBUS_FUNCTION_5:
3385 ftdi->eeprom->cbus_function[5] = value;
3386 break;
3387 case CBUS_FUNCTION_6:
3388 ftdi->eeprom->cbus_function[6] = value;
3389 break;
3390 case CBUS_FUNCTION_7:
3391 ftdi->eeprom->cbus_function[7] = value;
3392 break;
3393 case CBUS_FUNCTION_8:
3394 ftdi->eeprom->cbus_function[8] = value;
3395 break;
3396 case CBUS_FUNCTION_9:
3397 ftdi->eeprom->cbus_function[9] = value;
3398 break;
3399 case HIGH_CURRENT:
3400 ftdi->eeprom->high_current = value;
3401 break;
3402 case HIGH_CURRENT_A:
3403 ftdi->eeprom->high_current_a = value;
3404 break;
3405 case HIGH_CURRENT_B:
3406 ftdi->eeprom->high_current_b = value;
3407 break;
3408 case INVERT:
3409 ftdi->eeprom->invert = value;
3410 break;
3411 case GROUP0_DRIVE:
3412 ftdi->eeprom->group0_drive = value;
3413 break;
3414 case GROUP0_SCHMITT:
3415 ftdi->eeprom->group0_schmitt = value;
3416 break;
3417 case GROUP0_SLEW:
3418 ftdi->eeprom->group0_slew = value;
3419 break;
3420 case GROUP1_DRIVE:
3421 ftdi->eeprom->group1_drive = value;
3422 break;
3423 case GROUP1_SCHMITT:
3424 ftdi->eeprom->group1_schmitt = value;
3425 break;
3426 case GROUP1_SLEW:
3427 ftdi->eeprom->group1_slew = value;
3428 break;
3429 case GROUP2_DRIVE:
3430 ftdi->eeprom->group2_drive = value;
3431 break;
3432 case GROUP2_SCHMITT:
3433 ftdi->eeprom->group2_schmitt = value;
3434 break;
3435 case GROUP2_SLEW:
3436 ftdi->eeprom->group2_slew = value;
3437 break;
3438 case GROUP3_DRIVE:
3439 ftdi->eeprom->group3_drive = value;
3440 break;
3441 case GROUP3_SCHMITT:
3442 ftdi->eeprom->group3_schmitt = value;
3443 break;
3444 case GROUP3_SLEW:
3445 ftdi->eeprom->group3_slew = value;
3446 break;
3447 case CHIP_TYPE:
3448 ftdi->eeprom->chip = value;
3449 break;
3450 case POWER_SAVE:
3451 ftdi->eeprom->powersave = value;
3452 break;
3453 case CLOCK_POLARITY:
3454 ftdi->eeprom->clock_polarity = value;
3455 break;
3456 case DATA_ORDER:
3457 ftdi->eeprom->data_order = value;
3458 break;
3459 case FLOW_CONTROL:
3460 ftdi->eeprom->flow_control = value;
3461 break;
3462 case CHIP_SIZE:
3463 ftdi_error_return(-2, "EEPROM Value can't be changed");
3464 default :
3465 ftdi_error_return(-1, "Request to unknown EEPROM value");
3466 }
3467 return 0;
3468}
3469
3470/** Get the read-only buffer to the binary EEPROM content
3471
3472 \param ftdi pointer to ftdi_context
3473 \param buf buffer to receive EEPROM content
3474 \param size Size of receiving buffer
3475
3476 \retval 0: All fine
3477 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3478 \retval -2: Not enough room to store eeprom
3479*/
3480int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3481{
3482 if (!ftdi || !(ftdi->eeprom))
3483 ftdi_error_return(-1, "No appropriate structure");
3484
3485 if (!buf || size < ftdi->eeprom->size)
3486 ftdi_error_return(-1, "Not enough room to store eeprom");
3487
3488 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3489 if (size > FTDI_MAX_EEPROM_SIZE)
3490 size = FTDI_MAX_EEPROM_SIZE;
3491
3492 memcpy(buf, ftdi->eeprom->buf, size);
3493
3494 return 0;
3495}
3496
3497/**
3498 Read eeprom location
3499
3500 \param ftdi pointer to ftdi_context
3501 \param eeprom_addr Address of eeprom location to be read
3502 \param eeprom_val Pointer to store read eeprom location
3503
3504 \retval 0: all fine
3505 \retval -1: read failed
3506 \retval -2: USB device unavailable
3507*/
3508int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3509{
3510 if (ftdi == NULL || ftdi->usb_dev == NULL)
3511 ftdi_error_return(-2, "USB device unavailable");
3512
3513 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3514 ftdi_error_return(-1, "reading eeprom failed");
3515
3516 return 0;
3517}
3518
3519/**
3520 Read eeprom
3521
3522 \param ftdi pointer to ftdi_context
3523
3524 \retval 0: all fine
3525 \retval -1: read failed
3526 \retval -2: USB device unavailable
3527*/
3528int ftdi_read_eeprom(struct ftdi_context *ftdi)
3529{
3530 int i;
3531 unsigned char *buf;
3532
3533 if (ftdi == NULL || ftdi->usb_dev == NULL)
3534 ftdi_error_return(-2, "USB device unavailable");
3535 buf = ftdi->eeprom->buf;
3536
3537 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
3538 {
3539 if (libusb_control_transfer(
3540 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3541 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
3542 ftdi_error_return(-1, "reading eeprom failed");
3543 }
3544
3545 if (ftdi->type == TYPE_R)
3546 ftdi->eeprom->size = 0x80;
3547 /* Guesses size of eeprom by comparing halves
3548 - will not work with blank eeprom */
3549 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3550 ftdi->eeprom->size = -1;
3551 else if (memcmp(buf,&buf[0x80],0x80) == 0)
3552 ftdi->eeprom->size = 0x80;
3553 else if (memcmp(buf,&buf[0x40],0x40) == 0)
3554 ftdi->eeprom->size = 0x40;
3555 else
3556 ftdi->eeprom->size = 0x100;
3557 return 0;
3558}
3559
3560/*
3561 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3562 Function is only used internally
3563 \internal
3564*/
3565static unsigned char ftdi_read_chipid_shift(unsigned char value)
3566{
3567 return ((value & 1) << 1) |
3568 ((value & 2) << 5) |
3569 ((value & 4) >> 2) |
3570 ((value & 8) << 4) |
3571 ((value & 16) >> 1) |
3572 ((value & 32) >> 1) |
3573 ((value & 64) >> 4) |
3574 ((value & 128) >> 2);
3575}
3576
3577/**
3578 Read the FTDIChip-ID from R-type devices
3579
3580 \param ftdi pointer to ftdi_context
3581 \param chipid Pointer to store FTDIChip-ID
3582
3583 \retval 0: all fine
3584 \retval -1: read failed
3585 \retval -2: USB device unavailable
3586*/
3587int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3588{
3589 unsigned int a = 0, b = 0;
3590
3591 if (ftdi == NULL || ftdi->usb_dev == NULL)
3592 ftdi_error_return(-2, "USB device unavailable");
3593
3594 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3595 {
3596 a = a << 8 | a >> 8;
3597 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3598 {
3599 b = b << 8 | b >> 8;
3600 a = (a << 16) | (b & 0xFFFF);
3601 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3602 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3603 *chipid = a ^ 0xa5f0f7d1;
3604 return 0;
3605 }
3606 }
3607
3608 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3609}
3610
3611/**
3612 Write eeprom location
3613
3614 \param ftdi pointer to ftdi_context
3615 \param eeprom_addr Address of eeprom location to be written
3616 \param eeprom_val Value to be written
3617
3618 \retval 0: all fine
3619 \retval -1: write failed
3620 \retval -2: USB device unavailable
3621 \retval -3: Invalid access to checksum protected area below 0x80
3622 \retval -4: Device can't access unprotected area
3623 \retval -5: Reading chip type failed
3624*/
3625int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3626 unsigned short eeprom_val)
3627{
3628 int chip_type_location;
3629 unsigned short chip_type;
3630
3631 if (ftdi == NULL || ftdi->usb_dev == NULL)
3632 ftdi_error_return(-2, "USB device unavailable");
3633
3634 if (eeprom_addr <0x80)
3635 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3636
3637
3638 switch (ftdi->type)
3639 {
3640 case TYPE_BM:
3641 case TYPE_2232C:
3642 chip_type_location = 0x14;
3643 break;
3644 case TYPE_2232H:
3645 case TYPE_4232H:
3646 chip_type_location = 0x18;
3647 break;
3648 case TYPE_232H:
3649 chip_type_location = 0x1e;
3650 break;
3651 default:
3652 ftdi_error_return(-4, "Device can't access unprotected area");
3653 }
3654
3655 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3656 ftdi_error_return(-5, "Reading failed failed");
3657 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3658 if ((chip_type & 0xff) != 0x66)
3659 {
3660 ftdi_error_return(-6, "EEPROM is not of 93x66");
3661 }
3662
3663 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3664 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3665 NULL, 0, ftdi->usb_write_timeout) != 0)
3666 ftdi_error_return(-1, "unable to write eeprom");
3667
3668 return 0;
3669}
3670
3671/**
3672 Write eeprom
3673
3674 \param ftdi pointer to ftdi_context
3675
3676 \retval 0: all fine
3677 \retval -1: read failed
3678 \retval -2: USB device unavailable
3679*/
3680int ftdi_write_eeprom(struct ftdi_context *ftdi)
3681{
3682 unsigned short usb_val, status;
3683 int i, ret;
3684 unsigned char *eeprom;
3685
3686 if (ftdi == NULL || ftdi->usb_dev == NULL)
3687 ftdi_error_return(-2, "USB device unavailable");
3688 eeprom = ftdi->eeprom->buf;
3689
3690 /* These commands were traced while running MProg */
3691 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3692 return ret;
3693 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3694 return ret;
3695 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3696 return ret;
3697
3698 for (i = 0; i < ftdi->eeprom->size/2; i++)
3699 {
3700 usb_val = eeprom[i*2];
3701 usb_val += eeprom[(i*2)+1] << 8;
3702 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3703 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3704 NULL, 0, ftdi->usb_write_timeout) < 0)
3705 ftdi_error_return(-1, "unable to write eeprom");
3706 }
3707
3708 return 0;
3709}
3710
3711/**
3712 Erase eeprom
3713
3714 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3715
3716 \param ftdi pointer to ftdi_context
3717
3718 \retval 0: all fine
3719 \retval -1: erase failed
3720 \retval -2: USB device unavailable
3721 \retval -3: Writing magic failed
3722 \retval -4: Read EEPROM failed
3723 \retval -5: Unexpected EEPROM value
3724*/
3725#define MAGIC 0x55aa
3726int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3727{
3728 unsigned short eeprom_value;
3729 if (ftdi == NULL || ftdi->usb_dev == NULL)
3730 ftdi_error_return(-2, "USB device unavailable");
3731
3732 if (ftdi->type == TYPE_R)
3733 {
3734 ftdi->eeprom->chip = 0;
3735 return 0;
3736 }
3737
3738 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3739 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3740 ftdi_error_return(-1, "unable to erase eeprom");
3741
3742
3743 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3744 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3745 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3746 Chip is 93x66 if magic is only read at word position 0xc0*/
3747 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3748 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3749 NULL, 0, ftdi->usb_write_timeout) != 0)
3750 ftdi_error_return(-3, "Writing magic failed");
3751 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3752 ftdi_error_return(-4, "Reading failed failed");
3753 if (eeprom_value == MAGIC)
3754 {
3755 ftdi->eeprom->chip = 0x46;
3756 }
3757 else
3758 {
3759 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3760 ftdi_error_return(-4, "Reading failed failed");
3761 if (eeprom_value == MAGIC)
3762 ftdi->eeprom->chip = 0x56;
3763 else
3764 {
3765 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3766 ftdi_error_return(-4, "Reading failed failed");
3767 if (eeprom_value == MAGIC)
3768 ftdi->eeprom->chip = 0x66;
3769 else
3770 {
3771 ftdi->eeprom->chip = -1;
3772 }
3773 }
3774 }
3775 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3776 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3777 ftdi_error_return(-1, "unable to erase eeprom");
3778 return 0;
3779}
3780
3781/**
3782 Get string representation for last error code
3783
3784 \param ftdi pointer to ftdi_context
3785
3786 \retval Pointer to error string
3787*/
3788char *ftdi_get_error_string (struct ftdi_context *ftdi)
3789{
3790 if (ftdi == NULL)
3791 return "";
3792
3793 return ftdi->error_str;
3794}
3795
3796/* @} end of doxygen libftdi group */