Free the device list in ftdi_usb_find_all
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
58 \retval none
59*/
60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
61{
62 if (ftdi && ftdi->usb_dev)
63 {
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
66 }
67}
68
69/**
70 Initializes a ftdi_context.
71
72 \param ftdi pointer to ftdi_context
73
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
76 \retval -2: couldn't allocate struct buffer
77 \retval -3: libusb_init() failed
78
79 \remark This should be called before all functions
80*/
81int ftdi_init(struct ftdi_context *ftdi)
82{
83 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
84 ftdi->usb_ctx = NULL;
85 ftdi->usb_dev = NULL;
86 ftdi->usb_read_timeout = 5000;
87 ftdi->usb_write_timeout = 5000;
88
89 ftdi->type = TYPE_BM; /* chip type */
90 ftdi->baudrate = -1;
91 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
92
93 ftdi->readbuffer = NULL;
94 ftdi->readbuffer_offset = 0;
95 ftdi->readbuffer_remaining = 0;
96 ftdi->writebuffer_chunksize = 4096;
97 ftdi->max_packet_size = 0;
98 ftdi->error_str = NULL;
99 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
100
101 if (libusb_init(&ftdi->usb_ctx) < 0)
102 ftdi_error_return(-3, "libusb_init() failed");
103
104 ftdi_set_interface(ftdi, INTERFACE_ANY);
105 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
106
107 if (eeprom == 0)
108 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
109 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
110 ftdi->eeprom = eeprom;
111
112 /* All fine. Now allocate the readbuffer */
113 return ftdi_read_data_set_chunksize(ftdi, 4096);
114}
115
116/**
117 Allocate and initialize a new ftdi_context
118
119 \return a pointer to a new ftdi_context, or NULL on failure
120*/
121struct ftdi_context *ftdi_new(void)
122{
123 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
124
125 if (ftdi == NULL)
126 {
127 return NULL;
128 }
129
130 if (ftdi_init(ftdi) != 0)
131 {
132 free(ftdi);
133 return NULL;
134 }
135
136 return ftdi;
137}
138
139/**
140 Open selected channels on a chip, otherwise use first channel.
141
142 \param ftdi pointer to ftdi_context
143 \param interface Interface to use for FT2232C/2232H/4232H chips.
144
145 \retval 0: all fine
146 \retval -1: unknown interface
147 \retval -2: USB device unavailable
148*/
149int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
150{
151 if (ftdi == NULL)
152 ftdi_error_return(-2, "USB device unavailable");
153
154 switch (interface)
155 {
156 case INTERFACE_ANY:
157 case INTERFACE_A:
158 ftdi->interface = 0;
159 ftdi->index = INTERFACE_A;
160 ftdi->in_ep = 0x02;
161 ftdi->out_ep = 0x81;
162 break;
163 case INTERFACE_B:
164 ftdi->interface = 1;
165 ftdi->index = INTERFACE_B;
166 ftdi->in_ep = 0x04;
167 ftdi->out_ep = 0x83;
168 break;
169 case INTERFACE_C:
170 ftdi->interface = 2;
171 ftdi->index = INTERFACE_C;
172 ftdi->in_ep = 0x06;
173 ftdi->out_ep = 0x85;
174 break;
175 case INTERFACE_D:
176 ftdi->interface = 3;
177 ftdi->index = INTERFACE_D;
178 ftdi->in_ep = 0x08;
179 ftdi->out_ep = 0x87;
180 break;
181 default:
182 ftdi_error_return(-1, "Unknown interface");
183 }
184 return 0;
185}
186
187/**
188 Deinitializes a ftdi_context.
189
190 \param ftdi pointer to ftdi_context
191*/
192void ftdi_deinit(struct ftdi_context *ftdi)
193{
194 if (ftdi == NULL)
195 return;
196
197 ftdi_usb_close_internal (ftdi);
198
199 if (ftdi->readbuffer != NULL)
200 {
201 free(ftdi->readbuffer);
202 ftdi->readbuffer = NULL;
203 }
204
205 if (ftdi->eeprom != NULL)
206 {
207 if (ftdi->eeprom->manufacturer != 0)
208 {
209 free(ftdi->eeprom->manufacturer);
210 ftdi->eeprom->manufacturer = 0;
211 }
212 if (ftdi->eeprom->product != 0)
213 {
214 free(ftdi->eeprom->product);
215 ftdi->eeprom->product = 0;
216 }
217 if (ftdi->eeprom->serial != 0)
218 {
219 free(ftdi->eeprom->serial);
220 ftdi->eeprom->serial = 0;
221 }
222 free(ftdi->eeprom);
223 ftdi->eeprom = NULL;
224 }
225
226 if (ftdi->usb_ctx)
227 {
228 libusb_exit(ftdi->usb_ctx);
229 ftdi->usb_ctx = NULL;
230 }
231}
232
233/**
234 Deinitialize and free an ftdi_context.
235
236 \param ftdi pointer to ftdi_context
237*/
238void ftdi_free(struct ftdi_context *ftdi)
239{
240 ftdi_deinit(ftdi);
241 free(ftdi);
242}
243
244/**
245 Use an already open libusb device.
246
247 \param ftdi pointer to ftdi_context
248 \param usb libusb libusb_device_handle to use
249*/
250void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
251{
252 if (ftdi == NULL)
253 return;
254
255 ftdi->usb_dev = usb;
256}
257
258
259/**
260 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
261 needs to be deallocated by ftdi_list_free() after use.
262
263 \param ftdi pointer to ftdi_context
264 \param devlist Pointer where to store list of found devices
265 \param vendor Vendor ID to search for
266 \param product Product ID to search for
267
268 \retval >0: number of devices found
269 \retval -3: out of memory
270 \retval -5: libusb_get_device_list() failed
271 \retval -6: libusb_get_device_descriptor() failed
272*/
273int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
274{
275 struct ftdi_device_list **curdev;
276 libusb_device *dev;
277 libusb_device **devs;
278 int count = 0;
279 int i = 0;
280
281 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
282 ftdi_error_return(-5, "libusb_get_device_list() failed");
283
284 curdev = devlist;
285 *curdev = NULL;
286
287 while ((dev = devs[i++]) != NULL)
288 {
289 struct libusb_device_descriptor desc;
290
291 if (libusb_get_device_descriptor(dev, &desc) < 0)
292 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
293
294 if (desc.idVendor == vendor && desc.idProduct == product)
295 {
296 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
297 if (!*curdev)
298 ftdi_error_return_free_device_list(-3, "out of memory", devs);
299
300 (*curdev)->next = NULL;
301 (*curdev)->dev = dev;
302
303 curdev = &(*curdev)->next;
304 count++;
305 }
306 }
307 libusb_free_device_list(devs,1);
308 return count;
309}
310
311/**
312 Frees a usb device list.
313
314 \param devlist USB device list created by ftdi_usb_find_all()
315*/
316void ftdi_list_free(struct ftdi_device_list **devlist)
317{
318 struct ftdi_device_list *curdev, *next;
319
320 for (curdev = *devlist; curdev != NULL;)
321 {
322 next = curdev->next;
323 free(curdev);
324 curdev = next;
325 }
326
327 *devlist = NULL;
328}
329
330/**
331 Frees a usb device list.
332
333 \param devlist USB device list created by ftdi_usb_find_all()
334*/
335void ftdi_list_free2(struct ftdi_device_list *devlist)
336{
337 ftdi_list_free(&devlist);
338}
339
340/**
341 Return device ID strings from the usb device.
342
343 The parameters manufacturer, description and serial may be NULL
344 or pointer to buffers to store the fetched strings.
345
346 \note Use this function only in combination with ftdi_usb_find_all()
347 as it closes the internal "usb_dev" after use.
348
349 \param ftdi pointer to ftdi_context
350 \param dev libusb usb_dev to use
351 \param manufacturer Store manufacturer string here if not NULL
352 \param mnf_len Buffer size of manufacturer string
353 \param description Store product description string here if not NULL
354 \param desc_len Buffer size of product description string
355 \param serial Store serial string here if not NULL
356 \param serial_len Buffer size of serial string
357
358 \retval 0: all fine
359 \retval -1: wrong arguments
360 \retval -4: unable to open device
361 \retval -7: get product manufacturer failed
362 \retval -8: get product description failed
363 \retval -9: get serial number failed
364 \retval -11: libusb_get_device_descriptor() failed
365*/
366int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
367 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
368{
369 struct libusb_device_descriptor desc;
370
371 if ((ftdi==NULL) || (dev==NULL))
372 return -1;
373
374 if (libusb_open(dev, &ftdi->usb_dev) < 0)
375 ftdi_error_return(-4, "libusb_open() failed");
376
377 if (libusb_get_device_descriptor(dev, &desc) < 0)
378 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
379
380 if (manufacturer != NULL)
381 {
382 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
383 {
384 ftdi_usb_close_internal (ftdi);
385 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
386 }
387 }
388
389 if (description != NULL)
390 {
391 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
392 {
393 ftdi_usb_close_internal (ftdi);
394 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
395 }
396 }
397
398 if (serial != NULL)
399 {
400 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
401 {
402 ftdi_usb_close_internal (ftdi);
403 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
404 }
405 }
406
407 ftdi_usb_close_internal (ftdi);
408
409 return 0;
410}
411
412/**
413 * Internal function to determine the maximum packet size.
414 * \param ftdi pointer to ftdi_context
415 * \param dev libusb usb_dev to use
416 * \retval Maximum packet size for this device
417 */
418static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
419{
420 struct libusb_device_descriptor desc;
421 struct libusb_config_descriptor *config0;
422 unsigned int packet_size;
423
424 // Sanity check
425 if (ftdi == NULL || dev == NULL)
426 return 64;
427
428 // Determine maximum packet size. Init with default value.
429 // New hi-speed devices from FTDI use a packet size of 512 bytes
430 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
431 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
432 packet_size = 512;
433 else
434 packet_size = 64;
435
436 if (libusb_get_device_descriptor(dev, &desc) < 0)
437 return packet_size;
438
439 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
440 return packet_size;
441
442 if (desc.bNumConfigurations > 0)
443 {
444 if (ftdi->interface < config0->bNumInterfaces)
445 {
446 struct libusb_interface interface = config0->interface[ftdi->interface];
447 if (interface.num_altsetting > 0)
448 {
449 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
450 if (descriptor.bNumEndpoints > 0)
451 {
452 packet_size = descriptor.endpoint[0].wMaxPacketSize;
453 }
454 }
455 }
456 }
457
458 libusb_free_config_descriptor (config0);
459 return packet_size;
460}
461
462/**
463 Opens a ftdi device given by an usb_device.
464
465 \param ftdi pointer to ftdi_context
466 \param dev libusb usb_dev to use
467
468 \retval 0: all fine
469 \retval -3: unable to config device
470 \retval -4: unable to open device
471 \retval -5: unable to claim device
472 \retval -6: reset failed
473 \retval -7: set baudrate failed
474 \retval -8: ftdi context invalid
475 \retval -9: libusb_get_device_descriptor() failed
476 \retval -10: libusb_get_config_descriptor() failed
477 \retval -11: libusb_detach_kernel_driver() failed
478 \retval -12: libusb_get_configuration() failed
479*/
480int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
481{
482 struct libusb_device_descriptor desc;
483 struct libusb_config_descriptor *config0;
484 int cfg, cfg0, detach_errno = 0;
485
486 if (ftdi == NULL)
487 ftdi_error_return(-8, "ftdi context invalid");
488
489 if (libusb_open(dev, &ftdi->usb_dev) < 0)
490 ftdi_error_return(-4, "libusb_open() failed");
491
492 if (libusb_get_device_descriptor(dev, &desc) < 0)
493 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
494
495 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
496 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
497 cfg0 = config0->bConfigurationValue;
498 libusb_free_config_descriptor (config0);
499
500 // Try to detach ftdi_sio kernel module.
501 //
502 // The return code is kept in a separate variable and only parsed
503 // if usb_set_configuration() or usb_claim_interface() fails as the
504 // detach operation might be denied and everything still works fine.
505 // Likely scenario is a static ftdi_sio kernel module.
506 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
507 {
508 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
509 detach_errno = errno;
510 }
511
512 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
513 ftdi_error_return(-12, "libusb_get_configuration () failed");
514 // set configuration (needed especially for windows)
515 // tolerate EBUSY: one device with one configuration, but two interfaces
516 // and libftdi sessions to both interfaces (e.g. FT2232)
517 if (desc.bNumConfigurations > 0 && cfg != cfg0)
518 {
519 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
520 {
521 ftdi_usb_close_internal (ftdi);
522 if (detach_errno == EPERM)
523 {
524 ftdi_error_return(-8, "inappropriate permissions on device!");
525 }
526 else
527 {
528 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
529 }
530 }
531 }
532
533 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
534 {
535 ftdi_usb_close_internal (ftdi);
536 if (detach_errno == EPERM)
537 {
538 ftdi_error_return(-8, "inappropriate permissions on device!");
539 }
540 else
541 {
542 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
543 }
544 }
545
546 if (ftdi_usb_reset (ftdi) != 0)
547 {
548 ftdi_usb_close_internal (ftdi);
549 ftdi_error_return(-6, "ftdi_usb_reset failed");
550 }
551
552 // Try to guess chip type
553 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
554 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
555 && desc.iSerialNumber == 0))
556 ftdi->type = TYPE_BM;
557 else if (desc.bcdDevice == 0x200)
558 ftdi->type = TYPE_AM;
559 else if (desc.bcdDevice == 0x500)
560 ftdi->type = TYPE_2232C;
561 else if (desc.bcdDevice == 0x600)
562 ftdi->type = TYPE_R;
563 else if (desc.bcdDevice == 0x700)
564 ftdi->type = TYPE_2232H;
565 else if (desc.bcdDevice == 0x800)
566 ftdi->type = TYPE_4232H;
567
568 // Determine maximum packet size
569 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
570
571 if (ftdi_set_baudrate (ftdi, 9600) != 0)
572 {
573 ftdi_usb_close_internal (ftdi);
574 ftdi_error_return(-7, "set baudrate failed");
575 }
576
577 ftdi_error_return(0, "all fine");
578}
579
580/**
581 Opens the first device with a given vendor and product ids.
582
583 \param ftdi pointer to ftdi_context
584 \param vendor Vendor ID
585 \param product Product ID
586
587 \retval same as ftdi_usb_open_desc()
588*/
589int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
590{
591 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
592}
593
594/**
595 Opens the first device with a given, vendor id, product id,
596 description and serial.
597
598 \param ftdi pointer to ftdi_context
599 \param vendor Vendor ID
600 \param product Product ID
601 \param description Description to search for. Use NULL if not needed.
602 \param serial Serial to search for. Use NULL if not needed.
603
604 \retval 0: all fine
605 \retval -3: usb device not found
606 \retval -4: unable to open device
607 \retval -5: unable to claim device
608 \retval -6: reset failed
609 \retval -7: set baudrate failed
610 \retval -8: get product description failed
611 \retval -9: get serial number failed
612 \retval -11: libusb_init() failed
613 \retval -12: libusb_get_device_list() failed
614 \retval -13: libusb_get_device_descriptor() failed
615*/
616int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
617 const char* description, const char* serial)
618{
619 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
620}
621
622/**
623 Opens the index-th device with a given, vendor id, product id,
624 description and serial.
625
626 \param ftdi pointer to ftdi_context
627 \param vendor Vendor ID
628 \param product Product ID
629 \param description Description to search for. Use NULL if not needed.
630 \param serial Serial to search for. Use NULL if not needed.
631 \param index Number of matching device to open if there are more than one, starts with 0.
632
633 \retval 0: all fine
634 \retval -1: usb_find_busses() failed
635 \retval -2: usb_find_devices() failed
636 \retval -3: usb device not found
637 \retval -4: unable to open device
638 \retval -5: unable to claim device
639 \retval -6: reset failed
640 \retval -7: set baudrate failed
641 \retval -8: get product description failed
642 \retval -9: get serial number failed
643 \retval -10: unable to close device
644 \retval -11: ftdi context invalid
645*/
646int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
647 const char* description, const char* serial, unsigned int index)
648{
649 libusb_device *dev;
650 libusb_device **devs;
651 char string[256];
652 int i = 0;
653
654 if (ftdi == NULL)
655 ftdi_error_return(-11, "ftdi context invalid");
656
657 if (libusb_init(&ftdi->usb_ctx) < 0)
658 ftdi_error_return(-11, "libusb_init() failed");
659
660 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
661 ftdi_error_return(-12, "libusb_get_device_list() failed");
662
663 while ((dev = devs[i++]) != NULL)
664 {
665 struct libusb_device_descriptor desc;
666 int res;
667
668 if (libusb_get_device_descriptor(dev, &desc) < 0)
669 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
670
671 if (desc.idVendor == vendor && desc.idProduct == product)
672 {
673 if (libusb_open(dev, &ftdi->usb_dev) < 0)
674 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
675
676 if (description != NULL)
677 {
678 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
679 {
680 ftdi_usb_close_internal (ftdi);
681 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
682 }
683 if (strncmp(string, description, sizeof(string)) != 0)
684 {
685 ftdi_usb_close_internal (ftdi);
686 continue;
687 }
688 }
689 if (serial != NULL)
690 {
691 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
692 {
693 ftdi_usb_close_internal (ftdi);
694 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
695 }
696 if (strncmp(string, serial, sizeof(string)) != 0)
697 {
698 ftdi_usb_close_internal (ftdi);
699 continue;
700 }
701 }
702
703 ftdi_usb_close_internal (ftdi);
704
705 if (index > 0)
706 {
707 index--;
708 continue;
709 }
710
711 res = ftdi_usb_open_dev(ftdi, dev);
712 libusb_free_device_list(devs,1);
713 return res;
714 }
715 }
716
717 // device not found
718 ftdi_error_return_free_device_list(-3, "device not found", devs);
719}
720
721/**
722 Opens the ftdi-device described by a description-string.
723 Intended to be used for parsing a device-description given as commandline argument.
724
725 \param ftdi pointer to ftdi_context
726 \param description NULL-terminated description-string, using this format:
727 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
728 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
729 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
730 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
731
732 \note The description format may be extended in later versions.
733
734 \retval 0: all fine
735 \retval -1: libusb_init() failed
736 \retval -2: libusb_get_device_list() failed
737 \retval -3: usb device not found
738 \retval -4: unable to open device
739 \retval -5: unable to claim device
740 \retval -6: reset failed
741 \retval -7: set baudrate failed
742 \retval -8: get product description failed
743 \retval -9: get serial number failed
744 \retval -10: unable to close device
745 \retval -11: illegal description format
746 \retval -12: ftdi context invalid
747*/
748int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
749{
750 if (ftdi == NULL)
751 ftdi_error_return(-12, "ftdi context invalid");
752
753 if (description[0] == 0 || description[1] != ':')
754 ftdi_error_return(-11, "illegal description format");
755
756 if (description[0] == 'd')
757 {
758 libusb_device *dev;
759 libusb_device **devs;
760 unsigned int bus_number, device_address;
761 int i = 0;
762
763 if (libusb_init (&ftdi->usb_ctx) < 0)
764 ftdi_error_return(-1, "libusb_init() failed");
765
766 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
767 ftdi_error_return(-2, "libusb_get_device_list() failed");
768
769 /* XXX: This doesn't handle symlinks/odd paths/etc... */
770 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
771 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
772
773 while ((dev = devs[i++]) != NULL)
774 {
775 int ret;
776 if (bus_number == libusb_get_bus_number (dev)
777 && device_address == libusb_get_device_address (dev))
778 {
779 ret = ftdi_usb_open_dev(ftdi, dev);
780 libusb_free_device_list(devs,1);
781 return ret;
782 }
783 }
784
785 // device not found
786 ftdi_error_return_free_device_list(-3, "device not found", devs);
787 }
788 else if (description[0] == 'i' || description[0] == 's')
789 {
790 unsigned int vendor;
791 unsigned int product;
792 unsigned int index=0;
793 const char *serial=NULL;
794 const char *startp, *endp;
795
796 errno=0;
797 startp=description+2;
798 vendor=strtoul((char*)startp,(char**)&endp,0);
799 if (*endp != ':' || endp == startp || errno != 0)
800 ftdi_error_return(-11, "illegal description format");
801
802 startp=endp+1;
803 product=strtoul((char*)startp,(char**)&endp,0);
804 if (endp == startp || errno != 0)
805 ftdi_error_return(-11, "illegal description format");
806
807 if (description[0] == 'i' && *endp != 0)
808 {
809 /* optional index field in i-mode */
810 if (*endp != ':')
811 ftdi_error_return(-11, "illegal description format");
812
813 startp=endp+1;
814 index=strtoul((char*)startp,(char**)&endp,0);
815 if (*endp != 0 || endp == startp || errno != 0)
816 ftdi_error_return(-11, "illegal description format");
817 }
818 if (description[0] == 's')
819 {
820 if (*endp != ':')
821 ftdi_error_return(-11, "illegal description format");
822
823 /* rest of the description is the serial */
824 serial=endp+1;
825 }
826
827 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
828 }
829 else
830 {
831 ftdi_error_return(-11, "illegal description format");
832 }
833}
834
835/**
836 Resets the ftdi device.
837
838 \param ftdi pointer to ftdi_context
839
840 \retval 0: all fine
841 \retval -1: FTDI reset failed
842 \retval -2: USB device unavailable
843*/
844int ftdi_usb_reset(struct ftdi_context *ftdi)
845{
846 if (ftdi == NULL || ftdi->usb_dev == NULL)
847 ftdi_error_return(-2, "USB device unavailable");
848
849 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
850 SIO_RESET_REQUEST, SIO_RESET_SIO,
851 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
852 ftdi_error_return(-1,"FTDI reset failed");
853
854 // Invalidate data in the readbuffer
855 ftdi->readbuffer_offset = 0;
856 ftdi->readbuffer_remaining = 0;
857
858 return 0;
859}
860
861/**
862 Clears the read buffer on the chip and the internal read buffer.
863
864 \param ftdi pointer to ftdi_context
865
866 \retval 0: all fine
867 \retval -1: read buffer purge failed
868 \retval -2: USB device unavailable
869*/
870int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
871{
872 if (ftdi == NULL || ftdi->usb_dev == NULL)
873 ftdi_error_return(-2, "USB device unavailable");
874
875 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
876 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
877 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
878 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
879
880 // Invalidate data in the readbuffer
881 ftdi->readbuffer_offset = 0;
882 ftdi->readbuffer_remaining = 0;
883
884 return 0;
885}
886
887/**
888 Clears the write buffer on the chip.
889
890 \param ftdi pointer to ftdi_context
891
892 \retval 0: all fine
893 \retval -1: write buffer purge failed
894 \retval -2: USB device unavailable
895*/
896int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
897{
898 if (ftdi == NULL || ftdi->usb_dev == NULL)
899 ftdi_error_return(-2, "USB device unavailable");
900
901 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
902 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
903 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
904 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
905
906 return 0;
907}
908
909/**
910 Clears the buffers on the chip and the internal read buffer.
911
912 \param ftdi pointer to ftdi_context
913
914 \retval 0: all fine
915 \retval -1: read buffer purge failed
916 \retval -2: write buffer purge failed
917 \retval -3: USB device unavailable
918*/
919int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
920{
921 int result;
922
923 if (ftdi == NULL || ftdi->usb_dev == NULL)
924 ftdi_error_return(-3, "USB device unavailable");
925
926 result = ftdi_usb_purge_rx_buffer(ftdi);
927 if (result < 0)
928 return -1;
929
930 result = ftdi_usb_purge_tx_buffer(ftdi);
931 if (result < 0)
932 return -2;
933
934 return 0;
935}
936
937
938
939/**
940 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
941
942 \param ftdi pointer to ftdi_context
943
944 \retval 0: all fine
945 \retval -1: usb_release failed
946 \retval -3: ftdi context invalid
947*/
948int ftdi_usb_close(struct ftdi_context *ftdi)
949{
950 int rtn = 0;
951
952 if (ftdi == NULL)
953 ftdi_error_return(-3, "ftdi context invalid");
954
955 if (ftdi->usb_dev != NULL)
956 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
957 rtn = -1;
958
959 ftdi_usb_close_internal (ftdi);
960
961 return rtn;
962}
963
964/**
965 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
966 Function is only used internally
967 \internal
968*/
969static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
970 unsigned short *value, unsigned short *index)
971{
972 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
973 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
974 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
975 int divisor, best_divisor, best_baud, best_baud_diff;
976 unsigned long encoded_divisor;
977 int i;
978
979 if (baudrate <= 0)
980 {
981 // Return error
982 return -1;
983 }
984
985 divisor = 24000000 / baudrate;
986
987 if (ftdi->type == TYPE_AM)
988 {
989 // Round down to supported fraction (AM only)
990 divisor -= am_adjust_dn[divisor & 7];
991 }
992
993 // Try this divisor and the one above it (because division rounds down)
994 best_divisor = 0;
995 best_baud = 0;
996 best_baud_diff = 0;
997 for (i = 0; i < 2; i++)
998 {
999 int try_divisor = divisor + i;
1000 int baud_estimate;
1001 int baud_diff;
1002
1003 // Round up to supported divisor value
1004 if (try_divisor <= 8)
1005 {
1006 // Round up to minimum supported divisor
1007 try_divisor = 8;
1008 }
1009 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1010 {
1011 // BM doesn't support divisors 9 through 11 inclusive
1012 try_divisor = 12;
1013 }
1014 else if (divisor < 16)
1015 {
1016 // AM doesn't support divisors 9 through 15 inclusive
1017 try_divisor = 16;
1018 }
1019 else
1020 {
1021 if (ftdi->type == TYPE_AM)
1022 {
1023 // Round up to supported fraction (AM only)
1024 try_divisor += am_adjust_up[try_divisor & 7];
1025 if (try_divisor > 0x1FFF8)
1026 {
1027 // Round down to maximum supported divisor value (for AM)
1028 try_divisor = 0x1FFF8;
1029 }
1030 }
1031 else
1032 {
1033 if (try_divisor > 0x1FFFF)
1034 {
1035 // Round down to maximum supported divisor value (for BM)
1036 try_divisor = 0x1FFFF;
1037 }
1038 }
1039 }
1040 // Get estimated baud rate (to nearest integer)
1041 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1042 // Get absolute difference from requested baud rate
1043 if (baud_estimate < baudrate)
1044 {
1045 baud_diff = baudrate - baud_estimate;
1046 }
1047 else
1048 {
1049 baud_diff = baud_estimate - baudrate;
1050 }
1051 if (i == 0 || baud_diff < best_baud_diff)
1052 {
1053 // Closest to requested baud rate so far
1054 best_divisor = try_divisor;
1055 best_baud = baud_estimate;
1056 best_baud_diff = baud_diff;
1057 if (baud_diff == 0)
1058 {
1059 // Spot on! No point trying
1060 break;
1061 }
1062 }
1063 }
1064 // Encode the best divisor value
1065 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1066 // Deal with special cases for encoded value
1067 if (encoded_divisor == 1)
1068 {
1069 encoded_divisor = 0; // 3000000 baud
1070 }
1071 else if (encoded_divisor == 0x4001)
1072 {
1073 encoded_divisor = 1; // 2000000 baud (BM only)
1074 }
1075 // Split into "value" and "index" values
1076 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1077 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1078 {
1079 *index = (unsigned short)(encoded_divisor >> 8);
1080 *index &= 0xFF00;
1081 *index |= ftdi->index;
1082 }
1083 else
1084 *index = (unsigned short)(encoded_divisor >> 16);
1085
1086 // Return the nearest baud rate
1087 return best_baud;
1088}
1089
1090/**
1091 Sets the chip baud rate
1092
1093 \param ftdi pointer to ftdi_context
1094 \param baudrate baud rate to set
1095
1096 \retval 0: all fine
1097 \retval -1: invalid baudrate
1098 \retval -2: setting baudrate failed
1099 \retval -3: USB device unavailable
1100*/
1101int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1102{
1103 unsigned short value, index;
1104 int actual_baudrate;
1105
1106 if (ftdi == NULL || ftdi->usb_dev == NULL)
1107 ftdi_error_return(-3, "USB device unavailable");
1108
1109 if (ftdi->bitbang_enabled)
1110 {
1111 baudrate = baudrate*4;
1112 }
1113
1114 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1115 if (actual_baudrate <= 0)
1116 ftdi_error_return (-1, "Silly baudrate <= 0.");
1117
1118 // Check within tolerance (about 5%)
1119 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1120 || ((actual_baudrate < baudrate)
1121 ? (actual_baudrate * 21 < baudrate * 20)
1122 : (baudrate * 21 < actual_baudrate * 20)))
1123 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1124
1125 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1126 SIO_SET_BAUDRATE_REQUEST, value,
1127 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1128 ftdi_error_return (-2, "Setting new baudrate failed");
1129
1130 ftdi->baudrate = baudrate;
1131 return 0;
1132}
1133
1134/**
1135 Set (RS232) line characteristics.
1136 The break type can only be set via ftdi_set_line_property2()
1137 and defaults to "off".
1138
1139 \param ftdi pointer to ftdi_context
1140 \param bits Number of bits
1141 \param sbit Number of stop bits
1142 \param parity Parity mode
1143
1144 \retval 0: all fine
1145 \retval -1: Setting line property failed
1146*/
1147int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1148 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1149{
1150 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1151}
1152
1153/**
1154 Set (RS232) line characteristics
1155
1156 \param ftdi pointer to ftdi_context
1157 \param bits Number of bits
1158 \param sbit Number of stop bits
1159 \param parity Parity mode
1160 \param break_type Break type
1161
1162 \retval 0: all fine
1163 \retval -1: Setting line property failed
1164 \retval -2: USB device unavailable
1165*/
1166int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1167 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1168 enum ftdi_break_type break_type)
1169{
1170 unsigned short value = bits;
1171
1172 if (ftdi == NULL || ftdi->usb_dev == NULL)
1173 ftdi_error_return(-2, "USB device unavailable");
1174
1175 switch (parity)
1176 {
1177 case NONE:
1178 value |= (0x00 << 8);
1179 break;
1180 case ODD:
1181 value |= (0x01 << 8);
1182 break;
1183 case EVEN:
1184 value |= (0x02 << 8);
1185 break;
1186 case MARK:
1187 value |= (0x03 << 8);
1188 break;
1189 case SPACE:
1190 value |= (0x04 << 8);
1191 break;
1192 }
1193
1194 switch (sbit)
1195 {
1196 case STOP_BIT_1:
1197 value |= (0x00 << 11);
1198 break;
1199 case STOP_BIT_15:
1200 value |= (0x01 << 11);
1201 break;
1202 case STOP_BIT_2:
1203 value |= (0x02 << 11);
1204 break;
1205 }
1206
1207 switch (break_type)
1208 {
1209 case BREAK_OFF:
1210 value |= (0x00 << 14);
1211 break;
1212 case BREAK_ON:
1213 value |= (0x01 << 14);
1214 break;
1215 }
1216
1217 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1218 SIO_SET_DATA_REQUEST, value,
1219 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1220 ftdi_error_return (-1, "Setting new line property failed");
1221
1222 return 0;
1223}
1224
1225/**
1226 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1227
1228 \param ftdi pointer to ftdi_context
1229 \param buf Buffer with the data
1230 \param size Size of the buffer
1231
1232 \retval -666: USB device unavailable
1233 \retval <0: error code from usb_bulk_write()
1234 \retval >0: number of bytes written
1235*/
1236int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1237{
1238 int offset = 0;
1239 int actual_length;
1240
1241 if (ftdi == NULL || ftdi->usb_dev == NULL)
1242 ftdi_error_return(-666, "USB device unavailable");
1243
1244 while (offset < size)
1245 {
1246 int write_size = ftdi->writebuffer_chunksize;
1247
1248 if (offset+write_size > size)
1249 write_size = size-offset;
1250
1251 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1252 ftdi_error_return(-1, "usb bulk write failed");
1253
1254 offset += actual_length;
1255 }
1256
1257 return offset;
1258}
1259
1260static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1261{
1262 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1263 struct ftdi_context *ftdi = tc->ftdi;
1264 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1265
1266 packet_size = ftdi->max_packet_size;
1267
1268 actual_length = transfer->actual_length;
1269
1270 if (actual_length > 2)
1271 {
1272 // skip FTDI status bytes.
1273 // Maybe stored in the future to enable modem use
1274 num_of_chunks = actual_length / packet_size;
1275 chunk_remains = actual_length % packet_size;
1276 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1277
1278 ftdi->readbuffer_offset += 2;
1279 actual_length -= 2;
1280
1281 if (actual_length > packet_size - 2)
1282 {
1283 for (i = 1; i < num_of_chunks; i++)
1284 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1285 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1286 packet_size - 2);
1287 if (chunk_remains > 2)
1288 {
1289 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1290 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1291 chunk_remains-2);
1292 actual_length -= 2*num_of_chunks;
1293 }
1294 else
1295 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1296 }
1297
1298 if (actual_length > 0)
1299 {
1300 // data still fits in buf?
1301 if (tc->offset + actual_length <= tc->size)
1302 {
1303 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1304 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1305 tc->offset += actual_length;
1306
1307 ftdi->readbuffer_offset = 0;
1308 ftdi->readbuffer_remaining = 0;
1309
1310 /* Did we read exactly the right amount of bytes? */
1311 if (tc->offset == tc->size)
1312 {
1313 //printf("read_data exact rem %d offset %d\n",
1314 //ftdi->readbuffer_remaining, offset);
1315 tc->completed = 1;
1316 return;
1317 }
1318 }
1319 else
1320 {
1321 // only copy part of the data or size <= readbuffer_chunksize
1322 int part_size = tc->size - tc->offset;
1323 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1324 tc->offset += part_size;
1325
1326 ftdi->readbuffer_offset += part_size;
1327 ftdi->readbuffer_remaining = actual_length - part_size;
1328
1329 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1330 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1331 tc->completed = 1;
1332 return;
1333 }
1334 }
1335 }
1336 ret = libusb_submit_transfer (transfer);
1337 if (ret < 0)
1338 tc->completed = 1;
1339}
1340
1341
1342static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1343{
1344 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1345 struct ftdi_context *ftdi = tc->ftdi;
1346
1347 tc->offset += transfer->actual_length;
1348
1349 if (tc->offset == tc->size)
1350 {
1351 tc->completed = 1;
1352 }
1353 else
1354 {
1355 int write_size = ftdi->writebuffer_chunksize;
1356 int ret;
1357
1358 if (tc->offset + write_size > tc->size)
1359 write_size = tc->size - tc->offset;
1360
1361 transfer->length = write_size;
1362 transfer->buffer = tc->buf + tc->offset;
1363 ret = libusb_submit_transfer (transfer);
1364 if (ret < 0)
1365 tc->completed = 1;
1366 }
1367}
1368
1369
1370/**
1371 Writes data to the chip. Does not wait for completion of the transfer
1372 nor does it make sure that the transfer was successful.
1373
1374 Use libusb 1.0 asynchronous API.
1375
1376 \param ftdi pointer to ftdi_context
1377 \param buf Buffer with the data
1378 \param size Size of the buffer
1379
1380 \retval NULL: Some error happens when submit transfer
1381 \retval !NULL: Pointer to a ftdi_transfer_control
1382*/
1383
1384struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1385{
1386 struct ftdi_transfer_control *tc;
1387 struct libusb_transfer *transfer;
1388 int write_size, ret;
1389
1390 if (ftdi == NULL || ftdi->usb_dev == NULL)
1391 return NULL;
1392
1393 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1394 if (!tc)
1395 return NULL;
1396
1397 transfer = libusb_alloc_transfer(0);
1398 if (!transfer)
1399 {
1400 free(tc);
1401 return NULL;
1402 }
1403
1404 tc->ftdi = ftdi;
1405 tc->completed = 0;
1406 tc->buf = buf;
1407 tc->size = size;
1408 tc->offset = 0;
1409
1410 if (size < ftdi->writebuffer_chunksize)
1411 write_size = size;
1412 else
1413 write_size = ftdi->writebuffer_chunksize;
1414
1415 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1416 write_size, ftdi_write_data_cb, tc,
1417 ftdi->usb_write_timeout);
1418 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1419
1420 ret = libusb_submit_transfer(transfer);
1421 if (ret < 0)
1422 {
1423 libusb_free_transfer(transfer);
1424 free(tc);
1425 return NULL;
1426 }
1427 tc->transfer = transfer;
1428
1429 return tc;
1430}
1431
1432/**
1433 Reads data from the chip. Does not wait for completion of the transfer
1434 nor does it make sure that the transfer was successful.
1435
1436 Use libusb 1.0 asynchronous API.
1437
1438 \param ftdi pointer to ftdi_context
1439 \param buf Buffer with the data
1440 \param size Size of the buffer
1441
1442 \retval NULL: Some error happens when submit transfer
1443 \retval !NULL: Pointer to a ftdi_transfer_control
1444*/
1445
1446struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1447{
1448 struct ftdi_transfer_control *tc;
1449 struct libusb_transfer *transfer;
1450 int ret;
1451
1452 if (ftdi == NULL || ftdi->usb_dev == NULL)
1453 return NULL;
1454
1455 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1456 if (!tc)
1457 return NULL;
1458
1459 tc->ftdi = ftdi;
1460 tc->buf = buf;
1461 tc->size = size;
1462
1463 if (size <= ftdi->readbuffer_remaining)
1464 {
1465 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1466
1467 // Fix offsets
1468 ftdi->readbuffer_remaining -= size;
1469 ftdi->readbuffer_offset += size;
1470
1471 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1472
1473 tc->completed = 1;
1474 tc->offset = size;
1475 tc->transfer = NULL;
1476 return tc;
1477 }
1478
1479 tc->completed = 0;
1480 if (ftdi->readbuffer_remaining != 0)
1481 {
1482 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1483
1484 tc->offset = ftdi->readbuffer_remaining;
1485 }
1486 else
1487 tc->offset = 0;
1488
1489 transfer = libusb_alloc_transfer(0);
1490 if (!transfer)
1491 {
1492 free (tc);
1493 return NULL;
1494 }
1495
1496 ftdi->readbuffer_remaining = 0;
1497 ftdi->readbuffer_offset = 0;
1498
1499 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1500 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1501
1502 ret = libusb_submit_transfer(transfer);
1503 if (ret < 0)
1504 {
1505 libusb_free_transfer(transfer);
1506 free (tc);
1507 return NULL;
1508 }
1509 tc->transfer = transfer;
1510
1511 return tc;
1512}
1513
1514/**
1515 Wait for completion of the transfer.
1516
1517 Use libusb 1.0 asynchronous API.
1518
1519 \param tc pointer to ftdi_transfer_control
1520
1521 \retval < 0: Some error happens
1522 \retval >= 0: Data size transferred
1523*/
1524
1525int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1526{
1527 int ret;
1528
1529 while (!tc->completed)
1530 {
1531 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1532 if (ret < 0)
1533 {
1534 if (ret == LIBUSB_ERROR_INTERRUPTED)
1535 continue;
1536 libusb_cancel_transfer(tc->transfer);
1537 while (!tc->completed)
1538 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1539 break;
1540 libusb_free_transfer(tc->transfer);
1541 free (tc);
1542 return ret;
1543 }
1544 }
1545
1546 ret = tc->offset;
1547 /**
1548 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1549 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1550 **/
1551 if (tc->transfer)
1552 {
1553 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1554 ret = -1;
1555 libusb_free_transfer(tc->transfer);
1556 }
1557 free(tc);
1558 return ret;
1559}
1560
1561/**
1562 Configure write buffer chunk size.
1563 Default is 4096.
1564
1565 \param ftdi pointer to ftdi_context
1566 \param chunksize Chunk size
1567
1568 \retval 0: all fine
1569 \retval -1: ftdi context invalid
1570*/
1571int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1572{
1573 if (ftdi == NULL)
1574 ftdi_error_return(-1, "ftdi context invalid");
1575
1576 ftdi->writebuffer_chunksize = chunksize;
1577 return 0;
1578}
1579
1580/**
1581 Get write buffer chunk size.
1582
1583 \param ftdi pointer to ftdi_context
1584 \param chunksize Pointer to store chunk size in
1585
1586 \retval 0: all fine
1587 \retval -1: ftdi context invalid
1588*/
1589int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1590{
1591 if (ftdi == NULL)
1592 ftdi_error_return(-1, "ftdi context invalid");
1593
1594 *chunksize = ftdi->writebuffer_chunksize;
1595 return 0;
1596}
1597
1598/**
1599 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1600
1601 Automatically strips the two modem status bytes transfered during every read.
1602
1603 \param ftdi pointer to ftdi_context
1604 \param buf Buffer to store data in
1605 \param size Size of the buffer
1606
1607 \retval -666: USB device unavailable
1608 \retval <0: error code from libusb_bulk_transfer()
1609 \retval 0: no data was available
1610 \retval >0: number of bytes read
1611
1612*/
1613int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1614{
1615 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1616 int packet_size = ftdi->max_packet_size;
1617 int actual_length = 1;
1618
1619 if (ftdi == NULL || ftdi->usb_dev == NULL)
1620 ftdi_error_return(-666, "USB device unavailable");
1621
1622 // Packet size sanity check (avoid division by zero)
1623 if (packet_size == 0)
1624 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1625
1626 // everything we want is still in the readbuffer?
1627 if (size <= ftdi->readbuffer_remaining)
1628 {
1629 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1630
1631 // Fix offsets
1632 ftdi->readbuffer_remaining -= size;
1633 ftdi->readbuffer_offset += size;
1634
1635 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1636
1637 return size;
1638 }
1639 // something still in the readbuffer, but not enough to satisfy 'size'?
1640 if (ftdi->readbuffer_remaining != 0)
1641 {
1642 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1643
1644 // Fix offset
1645 offset += ftdi->readbuffer_remaining;
1646 }
1647 // do the actual USB read
1648 while (offset < size && actual_length > 0)
1649 {
1650 ftdi->readbuffer_remaining = 0;
1651 ftdi->readbuffer_offset = 0;
1652 /* returns how much received */
1653 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1654 if (ret < 0)
1655 ftdi_error_return(ret, "usb bulk read failed");
1656
1657 if (actual_length > 2)
1658 {
1659 // skip FTDI status bytes.
1660 // Maybe stored in the future to enable modem use
1661 num_of_chunks = actual_length / packet_size;
1662 chunk_remains = actual_length % packet_size;
1663 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1664
1665 ftdi->readbuffer_offset += 2;
1666 actual_length -= 2;
1667
1668 if (actual_length > packet_size - 2)
1669 {
1670 for (i = 1; i < num_of_chunks; i++)
1671 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1672 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1673 packet_size - 2);
1674 if (chunk_remains > 2)
1675 {
1676 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1677 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1678 chunk_remains-2);
1679 actual_length -= 2*num_of_chunks;
1680 }
1681 else
1682 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1683 }
1684 }
1685 else if (actual_length <= 2)
1686 {
1687 // no more data to read?
1688 return offset;
1689 }
1690 if (actual_length > 0)
1691 {
1692 // data still fits in buf?
1693 if (offset+actual_length <= size)
1694 {
1695 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1696 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1697 offset += actual_length;
1698
1699 /* Did we read exactly the right amount of bytes? */
1700 if (offset == size)
1701 //printf("read_data exact rem %d offset %d\n",
1702 //ftdi->readbuffer_remaining, offset);
1703 return offset;
1704 }
1705 else
1706 {
1707 // only copy part of the data or size <= readbuffer_chunksize
1708 int part_size = size-offset;
1709 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1710
1711 ftdi->readbuffer_offset += part_size;
1712 ftdi->readbuffer_remaining = actual_length-part_size;
1713 offset += part_size;
1714
1715 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1716 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1717
1718 return offset;
1719 }
1720 }
1721 }
1722 // never reached
1723 return -127;
1724}
1725
1726/**
1727 Configure read buffer chunk size.
1728 Default is 4096.
1729
1730 Automatically reallocates the buffer.
1731
1732 \param ftdi pointer to ftdi_context
1733 \param chunksize Chunk size
1734
1735 \retval 0: all fine
1736 \retval -1: ftdi context invalid
1737*/
1738int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1739{
1740 unsigned char *new_buf;
1741
1742 if (ftdi == NULL)
1743 ftdi_error_return(-1, "ftdi context invalid");
1744
1745 // Invalidate all remaining data
1746 ftdi->readbuffer_offset = 0;
1747 ftdi->readbuffer_remaining = 0;
1748#ifdef __linux__
1749 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1750 which is defined in libusb-1.0. Otherwise, each USB read request will
1751 be divided into multiple URBs. This will cause issues on Linux kernel
1752 older than 2.6.32. */
1753 if (chunksize > 16384)
1754 chunksize = 16384;
1755#endif
1756
1757 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1758 ftdi_error_return(-1, "out of memory for readbuffer");
1759
1760 ftdi->readbuffer = new_buf;
1761 ftdi->readbuffer_chunksize = chunksize;
1762
1763 return 0;
1764}
1765
1766/**
1767 Get read buffer chunk size.
1768
1769 \param ftdi pointer to ftdi_context
1770 \param chunksize Pointer to store chunk size in
1771
1772 \retval 0: all fine
1773 \retval -1: FTDI context invalid
1774*/
1775int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1776{
1777 if (ftdi == NULL)
1778 ftdi_error_return(-1, "FTDI context invalid");
1779
1780 *chunksize = ftdi->readbuffer_chunksize;
1781 return 0;
1782}
1783
1784
1785/**
1786 Enable bitbang mode.
1787
1788 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1789
1790 \param ftdi pointer to ftdi_context
1791 \param bitmask Bitmask to configure lines.
1792 HIGH/ON value configures a line as output.
1793
1794 \retval 0: all fine
1795 \retval -1: can't enable bitbang mode
1796 \retval -2: USB device unavailable
1797*/
1798int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1799{
1800 unsigned short usb_val;
1801
1802 if (ftdi == NULL || ftdi->usb_dev == NULL)
1803 ftdi_error_return(-2, "USB device unavailable");
1804
1805 usb_val = bitmask; // low byte: bitmask
1806 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1807 usb_val |= (ftdi->bitbang_mode << 8);
1808
1809 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1810 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1811 NULL, 0, ftdi->usb_write_timeout) < 0)
1812 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1813
1814 ftdi->bitbang_enabled = 1;
1815 return 0;
1816}
1817
1818/**
1819 Disable bitbang mode.
1820
1821 \param ftdi pointer to ftdi_context
1822
1823 \retval 0: all fine
1824 \retval -1: can't disable bitbang mode
1825 \retval -2: USB device unavailable
1826*/
1827int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1828{
1829 if (ftdi == NULL || ftdi->usb_dev == NULL)
1830 ftdi_error_return(-2, "USB device unavailable");
1831
1832 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1833 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1834
1835 ftdi->bitbang_enabled = 0;
1836 return 0;
1837}
1838
1839/**
1840 Enable/disable bitbang modes.
1841
1842 \param ftdi pointer to ftdi_context
1843 \param bitmask Bitmask to configure lines.
1844 HIGH/ON value configures a line as output.
1845 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1846
1847 \retval 0: all fine
1848 \retval -1: can't enable bitbang mode
1849 \retval -2: USB device unavailable
1850*/
1851int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1852{
1853 unsigned short usb_val;
1854
1855 if (ftdi == NULL || ftdi->usb_dev == NULL)
1856 ftdi_error_return(-2, "USB device unavailable");
1857
1858 usb_val = bitmask; // low byte: bitmask
1859 usb_val |= (mode << 8);
1860 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1861 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1862
1863 ftdi->bitbang_mode = mode;
1864 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1865 return 0;
1866}
1867
1868/**
1869 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1870
1871 \param ftdi pointer to ftdi_context
1872 \param pins Pointer to store pins into
1873
1874 \retval 0: all fine
1875 \retval -1: read pins failed
1876 \retval -2: USB device unavailable
1877*/
1878int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1879{
1880 if (ftdi == NULL || ftdi->usb_dev == NULL)
1881 ftdi_error_return(-2, "USB device unavailable");
1882
1883 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1884 ftdi_error_return(-1, "read pins failed");
1885
1886 return 0;
1887}
1888
1889/**
1890 Set latency timer
1891
1892 The FTDI chip keeps data in the internal buffer for a specific
1893 amount of time if the buffer is not full yet to decrease
1894 load on the usb bus.
1895
1896 \param ftdi pointer to ftdi_context
1897 \param latency Value between 1 and 255
1898
1899 \retval 0: all fine
1900 \retval -1: latency out of range
1901 \retval -2: unable to set latency timer
1902 \retval -3: USB device unavailable
1903*/
1904int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1905{
1906 unsigned short usb_val;
1907
1908 if (latency < 1)
1909 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1910
1911 if (ftdi == NULL || ftdi->usb_dev == NULL)
1912 ftdi_error_return(-3, "USB device unavailable");
1913
1914 usb_val = latency;
1915 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1916 ftdi_error_return(-2, "unable to set latency timer");
1917
1918 return 0;
1919}
1920
1921/**
1922 Get latency timer
1923
1924 \param ftdi pointer to ftdi_context
1925 \param latency Pointer to store latency value in
1926
1927 \retval 0: all fine
1928 \retval -1: unable to get latency timer
1929 \retval -2: USB device unavailable
1930*/
1931int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1932{
1933 unsigned short usb_val;
1934
1935 if (ftdi == NULL || ftdi->usb_dev == NULL)
1936 ftdi_error_return(-2, "USB device unavailable");
1937
1938 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1939 ftdi_error_return(-1, "reading latency timer failed");
1940
1941 *latency = (unsigned char)usb_val;
1942 return 0;
1943}
1944
1945/**
1946 Poll modem status information
1947
1948 This function allows the retrieve the two status bytes of the device.
1949 The device sends these bytes also as a header for each read access
1950 where they are discarded by ftdi_read_data(). The chip generates
1951 the two stripped status bytes in the absence of data every 40 ms.
1952
1953 Layout of the first byte:
1954 - B0..B3 - must be 0
1955 - B4 Clear to send (CTS)
1956 0 = inactive
1957 1 = active
1958 - B5 Data set ready (DTS)
1959 0 = inactive
1960 1 = active
1961 - B6 Ring indicator (RI)
1962 0 = inactive
1963 1 = active
1964 - B7 Receive line signal detect (RLSD)
1965 0 = inactive
1966 1 = active
1967
1968 Layout of the second byte:
1969 - B0 Data ready (DR)
1970 - B1 Overrun error (OE)
1971 - B2 Parity error (PE)
1972 - B3 Framing error (FE)
1973 - B4 Break interrupt (BI)
1974 - B5 Transmitter holding register (THRE)
1975 - B6 Transmitter empty (TEMT)
1976 - B7 Error in RCVR FIFO
1977
1978 \param ftdi pointer to ftdi_context
1979 \param status Pointer to store status information in. Must be two bytes.
1980
1981 \retval 0: all fine
1982 \retval -1: unable to retrieve status information
1983 \retval -2: USB device unavailable
1984*/
1985int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1986{
1987 char usb_val[2];
1988
1989 if (ftdi == NULL || ftdi->usb_dev == NULL)
1990 ftdi_error_return(-2, "USB device unavailable");
1991
1992 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1993 ftdi_error_return(-1, "getting modem status failed");
1994
1995 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
1996
1997 return 0;
1998}
1999
2000/**
2001 Set flowcontrol for ftdi chip
2002
2003 \param ftdi pointer to ftdi_context
2004 \param flowctrl flow control to use. should be
2005 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2006
2007 \retval 0: all fine
2008 \retval -1: set flow control failed
2009 \retval -2: USB device unavailable
2010*/
2011int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2012{
2013 if (ftdi == NULL || ftdi->usb_dev == NULL)
2014 ftdi_error_return(-2, "USB device unavailable");
2015
2016 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2017 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2018 NULL, 0, ftdi->usb_write_timeout) < 0)
2019 ftdi_error_return(-1, "set flow control failed");
2020
2021 return 0;
2022}
2023
2024/**
2025 Set dtr line
2026
2027 \param ftdi pointer to ftdi_context
2028 \param state state to set line to (1 or 0)
2029
2030 \retval 0: all fine
2031 \retval -1: set dtr failed
2032 \retval -2: USB device unavailable
2033*/
2034int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2035{
2036 unsigned short usb_val;
2037
2038 if (ftdi == NULL || ftdi->usb_dev == NULL)
2039 ftdi_error_return(-2, "USB device unavailable");
2040
2041 if (state)
2042 usb_val = SIO_SET_DTR_HIGH;
2043 else
2044 usb_val = SIO_SET_DTR_LOW;
2045
2046 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2047 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2048 NULL, 0, ftdi->usb_write_timeout) < 0)
2049 ftdi_error_return(-1, "set dtr failed");
2050
2051 return 0;
2052}
2053
2054/**
2055 Set rts line
2056
2057 \param ftdi pointer to ftdi_context
2058 \param state state to set line to (1 or 0)
2059
2060 \retval 0: all fine
2061 \retval -1: set rts failed
2062 \retval -2: USB device unavailable
2063*/
2064int ftdi_setrts(struct ftdi_context *ftdi, int state)
2065{
2066 unsigned short usb_val;
2067
2068 if (ftdi == NULL || ftdi->usb_dev == NULL)
2069 ftdi_error_return(-2, "USB device unavailable");
2070
2071 if (state)
2072 usb_val = SIO_SET_RTS_HIGH;
2073 else
2074 usb_val = SIO_SET_RTS_LOW;
2075
2076 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2077 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2078 NULL, 0, ftdi->usb_write_timeout) < 0)
2079 ftdi_error_return(-1, "set of rts failed");
2080
2081 return 0;
2082}
2083
2084/**
2085 Set dtr and rts line in one pass
2086
2087 \param ftdi pointer to ftdi_context
2088 \param dtr DTR state to set line to (1 or 0)
2089 \param rts RTS state to set line to (1 or 0)
2090
2091 \retval 0: all fine
2092 \retval -1: set dtr/rts failed
2093 \retval -2: USB device unavailable
2094 */
2095int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2096{
2097 unsigned short usb_val;
2098
2099 if (ftdi == NULL || ftdi->usb_dev == NULL)
2100 ftdi_error_return(-2, "USB device unavailable");
2101
2102 if (dtr)
2103 usb_val = SIO_SET_DTR_HIGH;
2104 else
2105 usb_val = SIO_SET_DTR_LOW;
2106
2107 if (rts)
2108 usb_val |= SIO_SET_RTS_HIGH;
2109 else
2110 usb_val |= SIO_SET_RTS_LOW;
2111
2112 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2113 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2114 NULL, 0, ftdi->usb_write_timeout) < 0)
2115 ftdi_error_return(-1, "set of rts/dtr failed");
2116
2117 return 0;
2118}
2119
2120/**
2121 Set the special event character
2122
2123 \param ftdi pointer to ftdi_context
2124 \param eventch Event character
2125 \param enable 0 to disable the event character, non-zero otherwise
2126
2127 \retval 0: all fine
2128 \retval -1: unable to set event character
2129 \retval -2: USB device unavailable
2130*/
2131int ftdi_set_event_char(struct ftdi_context *ftdi,
2132 unsigned char eventch, unsigned char enable)
2133{
2134 unsigned short usb_val;
2135
2136 if (ftdi == NULL || ftdi->usb_dev == NULL)
2137 ftdi_error_return(-2, "USB device unavailable");
2138
2139 usb_val = eventch;
2140 if (enable)
2141 usb_val |= 1 << 8;
2142
2143 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2144 ftdi_error_return(-1, "setting event character failed");
2145
2146 return 0;
2147}
2148
2149/**
2150 Set error character
2151
2152 \param ftdi pointer to ftdi_context
2153 \param errorch Error character
2154 \param enable 0 to disable the error character, non-zero otherwise
2155
2156 \retval 0: all fine
2157 \retval -1: unable to set error character
2158 \retval -2: USB device unavailable
2159*/
2160int ftdi_set_error_char(struct ftdi_context *ftdi,
2161 unsigned char errorch, unsigned char enable)
2162{
2163 unsigned short usb_val;
2164
2165 if (ftdi == NULL || ftdi->usb_dev == NULL)
2166 ftdi_error_return(-2, "USB device unavailable");
2167
2168 usb_val = errorch;
2169 if (enable)
2170 usb_val |= 1 << 8;
2171
2172 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2173 ftdi_error_return(-1, "setting error character failed");
2174
2175 return 0;
2176}
2177
2178/**
2179 Init eeprom with default values.
2180 \param ftdi pointer to ftdi_context
2181 \param manufacturer String to use as Manufacturer
2182 \param product String to use as Product description
2183 \param serial String to use as Serial number description
2184
2185 \retval 0: all fine
2186 \retval -1: No struct ftdi_context
2187 \retval -2: No struct ftdi_eeprom
2188*/
2189int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2190 char * product, char * serial)
2191{
2192 struct ftdi_eeprom *eeprom;
2193
2194 if (ftdi == NULL)
2195 ftdi_error_return(-1, "No struct ftdi_context");
2196
2197 if (ftdi->eeprom == NULL)
2198 ftdi_error_return(-2,"No struct ftdi_eeprom");
2199
2200 eeprom = ftdi->eeprom;
2201 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2202
2203 eeprom->vendor_id = 0x0403;
2204 eeprom->use_serial = USE_SERIAL_NUM;
2205 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2206 (ftdi->type == TYPE_R))
2207 eeprom->product_id = 0x6001;
2208 else
2209 eeprom->product_id = 0x6010;
2210 if (ftdi->type == TYPE_AM)
2211 eeprom->usb_version = 0x0101;
2212 else
2213 eeprom->usb_version = 0x0200;
2214 eeprom->max_power = 100;
2215
2216 if (eeprom->manufacturer)
2217 free (eeprom->manufacturer);
2218 eeprom->manufacturer = NULL;
2219 if (manufacturer)
2220 {
2221 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2222 if (eeprom->manufacturer)
2223 strcpy(eeprom->manufacturer, manufacturer);
2224 }
2225
2226 if (eeprom->product)
2227 free (eeprom->product);
2228 eeprom->product = NULL;
2229 if(product)
2230 {
2231 eeprom->product = malloc(strlen(product)+1);
2232 if (eeprom->product)
2233 strcpy(eeprom->product, product);
2234 }
2235
2236 if (eeprom->serial)
2237 free (eeprom->serial);
2238 eeprom->serial = NULL;
2239 if (serial)
2240 {
2241 eeprom->serial = malloc(strlen(serial)+1);
2242 if (eeprom->serial)
2243 strcpy(eeprom->serial, serial);
2244 }
2245
2246
2247 if (ftdi->type == TYPE_R)
2248 {
2249 eeprom->max_power = 90;
2250 eeprom->size = 0x80;
2251 eeprom->cbus_function[0] = CBUS_TXLED;
2252 eeprom->cbus_function[1] = CBUS_RXLED;
2253 eeprom->cbus_function[2] = CBUS_TXDEN;
2254 eeprom->cbus_function[3] = CBUS_PWREN;
2255 eeprom->cbus_function[4] = CBUS_SLEEP;
2256 }
2257 else
2258 eeprom->size = -1;
2259 return 0;
2260}
2261
2262/**
2263 Build binary buffer from ftdi_eeprom structure.
2264 Output is suitable for ftdi_write_eeprom().
2265
2266 \param ftdi pointer to ftdi_context
2267
2268 \retval >=0: size of eeprom user area in bytes
2269 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2270 \retval -2: Invalid eeprom or ftdi pointer
2271 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2272 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2273 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2274 \retval -6: No connected EEPROM or EEPROM Type unknown
2275*/
2276int ftdi_eeprom_build(struct ftdi_context *ftdi)
2277{
2278 unsigned char i, j, eeprom_size_mask;
2279 unsigned short checksum, value;
2280 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2281 int user_area_size;
2282 struct ftdi_eeprom *eeprom;
2283 unsigned char * output;
2284
2285 if (ftdi == NULL)
2286 ftdi_error_return(-2,"No context");
2287 if (ftdi->eeprom == NULL)
2288 ftdi_error_return(-2,"No eeprom structure");
2289
2290 eeprom= ftdi->eeprom;
2291 output = eeprom->buf;
2292
2293 if (eeprom->chip == -1)
2294 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2295
2296 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2297 eeprom->size = 0x100;
2298 else
2299 eeprom->size = 0x80;
2300
2301 if (eeprom->manufacturer != NULL)
2302 manufacturer_size = strlen(eeprom->manufacturer);
2303 if (eeprom->product != NULL)
2304 product_size = strlen(eeprom->product);
2305 if (eeprom->serial != NULL)
2306 serial_size = strlen(eeprom->serial);
2307
2308 // eeprom size check
2309 switch (ftdi->type)
2310 {
2311 case TYPE_AM:
2312 case TYPE_BM:
2313 user_area_size = 96; // base size for strings (total of 48 characters)
2314 break;
2315 case TYPE_2232C:
2316 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2317 break;
2318 case TYPE_R:
2319 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2320 break;
2321 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2322 case TYPE_4232H:
2323 user_area_size = 86;
2324 break;
2325 default:
2326 user_area_size = 0;
2327 break;
2328 }
2329 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2330
2331 if (user_area_size < 0)
2332 ftdi_error_return(-1,"eeprom size exceeded");
2333
2334 // empty eeprom
2335 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2336
2337 // Bytes and Bits set for all Types
2338
2339 // Addr 02: Vendor ID
2340 output[0x02] = eeprom->vendor_id;
2341 output[0x03] = eeprom->vendor_id >> 8;
2342
2343 // Addr 04: Product ID
2344 output[0x04] = eeprom->product_id;
2345 output[0x05] = eeprom->product_id >> 8;
2346
2347 // Addr 06: Device release number (0400h for BM features)
2348 output[0x06] = 0x00;
2349 switch (ftdi->type)
2350 {
2351 case TYPE_AM:
2352 output[0x07] = 0x02;
2353 break;
2354 case TYPE_BM:
2355 output[0x07] = 0x04;
2356 break;
2357 case TYPE_2232C:
2358 output[0x07] = 0x05;
2359 break;
2360 case TYPE_R:
2361 output[0x07] = 0x06;
2362 break;
2363 case TYPE_2232H:
2364 output[0x07] = 0x07;
2365 break;
2366 case TYPE_4232H:
2367 output[0x07] = 0x08;
2368 break;
2369 default:
2370 output[0x07] = 0x00;
2371 }
2372
2373 // Addr 08: Config descriptor
2374 // Bit 7: always 1
2375 // Bit 6: 1 if this device is self powered, 0 if bus powered
2376 // Bit 5: 1 if this device uses remote wakeup
2377 // Bit 4-0: reserved - 0
2378 j = 0x80;
2379 if (eeprom->self_powered == 1)
2380 j |= 0x40;
2381 if (eeprom->remote_wakeup == 1)
2382 j |= 0x20;
2383 output[0x08] = j;
2384
2385 // Addr 09: Max power consumption: max power = value * 2 mA
2386 output[0x09] = eeprom->max_power>>1;
2387
2388 if (ftdi->type != TYPE_AM)
2389 {
2390 // Addr 0A: Chip configuration
2391 // Bit 7: 0 - reserved
2392 // Bit 6: 0 - reserved
2393 // Bit 5: 0 - reserved
2394 // Bit 4: 1 - Change USB version
2395 // Bit 3: 1 - Use the serial number string
2396 // Bit 2: 1 - Enable suspend pull downs for lower power
2397 // Bit 1: 1 - Out EndPoint is Isochronous
2398 // Bit 0: 1 - In EndPoint is Isochronous
2399 //
2400 j = 0;
2401 if (eeprom->in_is_isochronous == 1)
2402 j = j | 1;
2403 if (eeprom->out_is_isochronous == 1)
2404 j = j | 2;
2405 output[0x0A] = j;
2406 }
2407
2408 // Dynamic content
2409 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2410 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2411 i = 0;
2412 switch (ftdi->type)
2413 {
2414 case TYPE_2232H:
2415 case TYPE_4232H:
2416 i += 2;
2417 case TYPE_R:
2418 i += 2;
2419 case TYPE_2232C:
2420 i += 2;
2421 case TYPE_AM:
2422 case TYPE_BM:
2423 i += 0x94;
2424 }
2425 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2426 eeprom_size_mask = eeprom->size -1;
2427
2428 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2429 // Addr 0F: Length of manufacturer string
2430 // Output manufacturer
2431 output[0x0E] = i; // calculate offset
2432 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2433 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2434 for (j = 0; j < manufacturer_size; j++)
2435 {
2436 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2437 output[i & eeprom_size_mask] = 0x00, i++;
2438 }
2439 output[0x0F] = manufacturer_size*2 + 2;
2440
2441 // Addr 10: Offset of the product string + 0x80, calculated later
2442 // Addr 11: Length of product string
2443 output[0x10] = i | 0x80; // calculate offset
2444 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2445 output[i & eeprom_size_mask] = 0x03, i++;
2446 for (j = 0; j < product_size; j++)
2447 {
2448 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2449 output[i & eeprom_size_mask] = 0x00, i++;
2450 }
2451 output[0x11] = product_size*2 + 2;
2452
2453 // Addr 12: Offset of the serial string + 0x80, calculated later
2454 // Addr 13: Length of serial string
2455 output[0x12] = i | 0x80; // calculate offset
2456 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2457 output[i & eeprom_size_mask] = 0x03, i++;
2458 for (j = 0; j < serial_size; j++)
2459 {
2460 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2461 output[i & eeprom_size_mask] = 0x00, i++;
2462 }
2463
2464 // Legacy port name and PnP fields for FT2232 and newer chips
2465 if (ftdi->type > TYPE_BM)
2466 {
2467 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2468 i++;
2469 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2470 i++;
2471 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2472 i++;
2473 }
2474
2475 output[0x13] = serial_size*2 + 2;
2476
2477 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2478 {
2479 if (eeprom->use_serial == USE_SERIAL_NUM )
2480 output[0x0A] |= USE_SERIAL_NUM;
2481 else
2482 output[0x0A] &= ~USE_SERIAL_NUM;
2483 }
2484
2485 /* Bytes and Bits specific to (some) types
2486 Write linear, as this allows easier fixing*/
2487 switch (ftdi->type)
2488 {
2489 case TYPE_AM:
2490 break;
2491 case TYPE_BM:
2492 output[0x0C] = eeprom->usb_version & 0xff;
2493 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2494 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2495 output[0x0A] |= USE_USB_VERSION_BIT;
2496 else
2497 output[0x0A] &= ~USE_USB_VERSION_BIT;
2498
2499 break;
2500 case TYPE_2232C:
2501
2502 output[0x00] = (eeprom->channel_a_type);
2503 if ( eeprom->channel_a_driver == DRIVER_VCP)
2504 output[0x00] |= DRIVER_VCP;
2505 else
2506 output[0x00] &= ~DRIVER_VCP;
2507
2508 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2509 output[0x00] |= HIGH_CURRENT_DRIVE;
2510 else
2511 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2512
2513 output[0x01] = (eeprom->channel_b_type);
2514 if ( eeprom->channel_b_driver == DRIVER_VCP)
2515 output[0x01] |= DRIVER_VCP;
2516 else
2517 output[0x01] &= ~DRIVER_VCP;
2518
2519 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2520 output[0x01] |= HIGH_CURRENT_DRIVE;
2521 else
2522 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2523
2524 if (eeprom->in_is_isochronous == 1)
2525 output[0x0A] |= 0x1;
2526 else
2527 output[0x0A] &= ~0x1;
2528 if (eeprom->out_is_isochronous == 1)
2529 output[0x0A] |= 0x2;
2530 else
2531 output[0x0A] &= ~0x2;
2532 if (eeprom->suspend_pull_downs == 1)
2533 output[0x0A] |= 0x4;
2534 else
2535 output[0x0A] &= ~0x4;
2536 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2537 output[0x0A] |= USE_USB_VERSION_BIT;
2538 else
2539 output[0x0A] &= ~USE_USB_VERSION_BIT;
2540
2541 output[0x0C] = eeprom->usb_version & 0xff;
2542 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2543 output[0x14] = eeprom->chip;
2544 break;
2545 case TYPE_R:
2546 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2547 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2548 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2549
2550 if (eeprom->suspend_pull_downs == 1)
2551 output[0x0A] |= 0x4;
2552 else
2553 output[0x0A] &= ~0x4;
2554 output[0x0B] = eeprom->invert;
2555 output[0x0C] = eeprom->usb_version & 0xff;
2556 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2557
2558 if (eeprom->cbus_function[0] > CBUS_BB)
2559 output[0x14] = CBUS_TXLED;
2560 else
2561 output[0x14] = eeprom->cbus_function[0];
2562
2563 if (eeprom->cbus_function[1] > CBUS_BB)
2564 output[0x14] |= CBUS_RXLED<<4;
2565 else
2566 output[0x14] |= eeprom->cbus_function[1]<<4;
2567
2568 if (eeprom->cbus_function[2] > CBUS_BB)
2569 output[0x15] = CBUS_TXDEN;
2570 else
2571 output[0x15] = eeprom->cbus_function[2];
2572
2573 if (eeprom->cbus_function[3] > CBUS_BB)
2574 output[0x15] |= CBUS_PWREN<<4;
2575 else
2576 output[0x15] |= eeprom->cbus_function[3]<<4;
2577
2578 if (eeprom->cbus_function[4] > CBUS_CLK6)
2579 output[0x16] = CBUS_SLEEP;
2580 else
2581 output[0x16] = eeprom->cbus_function[4];
2582 break;
2583 case TYPE_2232H:
2584 output[0x00] = (eeprom->channel_a_type);
2585 if ( eeprom->channel_a_driver == DRIVER_VCP)
2586 output[0x00] |= DRIVER_VCP;
2587 else
2588 output[0x00] &= ~DRIVER_VCP;
2589
2590 output[0x01] = (eeprom->channel_b_type);
2591 if ( eeprom->channel_b_driver == DRIVER_VCP)
2592 output[0x01] |= DRIVER_VCP;
2593 else
2594 output[0x01] &= ~DRIVER_VCP;
2595 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2596 output[0x01] |= SUSPEND_DBUS7_BIT;
2597 else
2598 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2599
2600 if (eeprom->suspend_pull_downs == 1)
2601 output[0x0A] |= 0x4;
2602 else
2603 output[0x0A] &= ~0x4;
2604
2605 if (eeprom->group0_drive > DRIVE_16MA)
2606 output[0x0c] |= DRIVE_16MA;
2607 else
2608 output[0x0c] |= eeprom->group0_drive;
2609 if (eeprom->group0_schmitt == IS_SCHMITT)
2610 output[0x0c] |= IS_SCHMITT;
2611 if (eeprom->group0_slew == SLOW_SLEW)
2612 output[0x0c] |= SLOW_SLEW;
2613
2614 if (eeprom->group1_drive > DRIVE_16MA)
2615 output[0x0c] |= DRIVE_16MA<<4;
2616 else
2617 output[0x0c] |= eeprom->group1_drive<<4;
2618 if (eeprom->group1_schmitt == IS_SCHMITT)
2619 output[0x0c] |= IS_SCHMITT<<4;
2620 if (eeprom->group1_slew == SLOW_SLEW)
2621 output[0x0c] |= SLOW_SLEW<<4;
2622
2623 if (eeprom->group2_drive > DRIVE_16MA)
2624 output[0x0d] |= DRIVE_16MA;
2625 else
2626 output[0x0d] |= eeprom->group2_drive;
2627 if (eeprom->group2_schmitt == IS_SCHMITT)
2628 output[0x0d] |= IS_SCHMITT;
2629 if (eeprom->group2_slew == SLOW_SLEW)
2630 output[0x0d] |= SLOW_SLEW;
2631
2632 if (eeprom->group3_drive > DRIVE_16MA)
2633 output[0x0d] |= DRIVE_16MA<<4;
2634 else
2635 output[0x0d] |= eeprom->group3_drive<<4;
2636 if (eeprom->group3_schmitt == IS_SCHMITT)
2637 output[0x0d] |= IS_SCHMITT<<4;
2638 if (eeprom->group3_slew == SLOW_SLEW)
2639 output[0x0d] |= SLOW_SLEW<<4;
2640
2641 output[0x18] = eeprom->chip;
2642
2643 break;
2644 case TYPE_4232H:
2645 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
2646 }
2647
2648 // calculate checksum
2649 checksum = 0xAAAA;
2650
2651 for (i = 0; i < eeprom->size/2-1; i++)
2652 {
2653 value = output[i*2];
2654 value += output[(i*2)+1] << 8;
2655
2656 checksum = value^checksum;
2657 checksum = (checksum << 1) | (checksum >> 15);
2658 }
2659
2660 output[eeprom->size-2] = checksum;
2661 output[eeprom->size-1] = checksum >> 8;
2662
2663 return user_area_size;
2664}
2665
2666/**
2667 Decode binary EEPROM image into an ftdi_eeprom structure.
2668
2669 \param ftdi pointer to ftdi_context
2670 \param verbose Decode EEPROM on stdout
2671
2672 \retval 0: all fine
2673 \retval -1: something went wrong
2674
2675 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2676 FIXME: Strings are malloc'ed here and should be freed somewhere
2677*/
2678int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2679{
2680 unsigned char i, j;
2681 unsigned short checksum, eeprom_checksum, value;
2682 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2683 int eeprom_size;
2684 struct ftdi_eeprom *eeprom;
2685 unsigned char *buf = ftdi->eeprom->buf;
2686 int release;
2687
2688 if (ftdi == NULL)
2689 ftdi_error_return(-1,"No context");
2690 if (ftdi->eeprom == NULL)
2691 ftdi_error_return(-1,"No eeprom structure");
2692
2693 eeprom = ftdi->eeprom;
2694 eeprom_size = eeprom->size;
2695
2696 // Addr 02: Vendor ID
2697 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2698
2699 // Addr 04: Product ID
2700 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2701
2702 release = buf[0x06] + (buf[0x07]<<8);
2703
2704 // Addr 08: Config descriptor
2705 // Bit 7: always 1
2706 // Bit 6: 1 if this device is self powered, 0 if bus powered
2707 // Bit 5: 1 if this device uses remote wakeup
2708 eeprom->self_powered = buf[0x08] & 0x40;
2709 eeprom->remote_wakeup = buf[0x08] & 0x20;
2710
2711 // Addr 09: Max power consumption: max power = value * 2 mA
2712 eeprom->max_power = buf[0x09];
2713
2714 // Addr 0A: Chip configuration
2715 // Bit 7: 0 - reserved
2716 // Bit 6: 0 - reserved
2717 // Bit 5: 0 - reserved
2718 // Bit 4: 1 - Change USB version on BM and 2232C
2719 // Bit 3: 1 - Use the serial number string
2720 // Bit 2: 1 - Enable suspend pull downs for lower power
2721 // Bit 1: 1 - Out EndPoint is Isochronous
2722 // Bit 0: 1 - In EndPoint is Isochronous
2723 //
2724 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2725 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2726 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2727 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
2728 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
2729
2730 // Addr 0C: USB version low byte when 0x0A
2731 // Addr 0D: USB version high byte when 0x0A
2732 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2733
2734 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2735 // Addr 0F: Length of manufacturer string
2736 manufacturer_size = buf[0x0F]/2;
2737 if (eeprom->manufacturer)
2738 free(eeprom->manufacturer);
2739 if (manufacturer_size > 0)
2740 {
2741 eeprom->manufacturer = malloc(manufacturer_size);
2742 if (eeprom->manufacturer)
2743 {
2744 // Decode manufacturer
2745 i = buf[0x0E] & (eeprom_size -1); // offset
2746 for (j=0;j<manufacturer_size-1;j++)
2747 {
2748 eeprom->manufacturer[j] = buf[2*j+i+2];
2749 }
2750 eeprom->manufacturer[j] = '\0';
2751 }
2752 }
2753 else eeprom->manufacturer = NULL;
2754
2755 // Addr 10: Offset of the product string + 0x80, calculated later
2756 // Addr 11: Length of product string
2757 if (eeprom->product)
2758 free(eeprom->product);
2759 product_size = buf[0x11]/2;
2760 if (product_size > 0)
2761 {
2762 eeprom->product = malloc(product_size);
2763 if (eeprom->product)
2764 {
2765 // Decode product name
2766 i = buf[0x10] & (eeprom_size -1); // offset
2767 for (j=0;j<product_size-1;j++)
2768 {
2769 eeprom->product[j] = buf[2*j+i+2];
2770 }
2771 eeprom->product[j] = '\0';
2772 }
2773 }
2774 else eeprom->product = NULL;
2775
2776 // Addr 12: Offset of the serial string + 0x80, calculated later
2777 // Addr 13: Length of serial string
2778 if (eeprom->serial)
2779 free(eeprom->serial);
2780 serial_size = buf[0x13]/2;
2781 if (serial_size > 0)
2782 {
2783 eeprom->serial = malloc(serial_size);
2784 if (eeprom->serial)
2785 {
2786 // Decode serial
2787 i = buf[0x12] & (eeprom_size -1); // offset
2788 for (j=0;j<serial_size-1;j++)
2789 {
2790 eeprom->serial[j] = buf[2*j+i+2];
2791 }
2792 eeprom->serial[j] = '\0';
2793 }
2794 }
2795 else eeprom->serial = NULL;
2796
2797 // verify checksum
2798 checksum = 0xAAAA;
2799
2800 for (i = 0; i < eeprom_size/2-1; i++)
2801 {
2802 value = buf[i*2];
2803 value += buf[(i*2)+1] << 8;
2804
2805 checksum = value^checksum;
2806 checksum = (checksum << 1) | (checksum >> 15);
2807 }
2808
2809 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2810
2811 if (eeprom_checksum != checksum)
2812 {
2813 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2814 ftdi_error_return(-1,"EEPROM checksum error");
2815 }
2816
2817 eeprom->channel_a_type = 0;
2818 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
2819 {
2820 eeprom->chip = -1;
2821 }
2822 else if (ftdi->type == TYPE_2232C)
2823 {
2824 eeprom->channel_a_type = buf[0x00] & 0x7;
2825 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2826 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2827 eeprom->channel_b_type = buf[0x01] & 0x7;
2828 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2829 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
2830 eeprom->chip = buf[0x14];
2831 }
2832 else if (ftdi->type == TYPE_R)
2833 {
2834 /* TYPE_R flags D2XX, not VCP as all others*/
2835 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2836 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2837 if ( (buf[0x01]&0x40) != 0x40)
2838 fprintf(stderr,
2839 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2840 " If this happened with the\n"
2841 " EEPROM programmed by FTDI tools, please report "
2842 "to libftdi@developer.intra2net.com\n");
2843
2844 eeprom->chip = buf[0x16];
2845 // Addr 0B: Invert data lines
2846 // Works only on FT232R, not FT245R, but no way to distinguish
2847 eeprom->invert = buf[0x0B];
2848 // Addr 14: CBUS function: CBUS0, CBUS1
2849 // Addr 15: CBUS function: CBUS2, CBUS3
2850 // Addr 16: CBUS function: CBUS5
2851 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2852 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2853 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2854 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2855 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
2856 }
2857 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
2858 {
2859 eeprom->channel_a_type = buf[0x00] & 0x7;
2860 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2861 eeprom->channel_b_type = buf[0x01] & 0x7;
2862 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2863
2864 if (ftdi->type == TYPE_2232H)
2865 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
2866
2867 eeprom->chip = buf[0x18];
2868 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2869 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2870 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2871 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2872 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2873 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2874 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2875 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2876 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2877 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2878 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2879 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
2880 }
2881
2882 if (verbose)
2883 {
2884 char *channel_mode[] = {"UART","245","CPU", "unknown", "OPTO"};
2885 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
2886 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
2887 fprintf(stdout, "Release: 0x%04x\n",release);
2888
2889 if (eeprom->self_powered)
2890 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
2891 else
2892 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
2893 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
2894 if (eeprom->manufacturer)
2895 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
2896 if (eeprom->product)
2897 fprintf(stdout, "Product: %s\n",eeprom->product);
2898 if (eeprom->serial)
2899 fprintf(stdout, "Serial: %s\n",eeprom->serial);
2900 fprintf(stdout, "Checksum : %04x\n", checksum);
2901 if (ftdi->type == TYPE_R)
2902 fprintf(stdout, "Internal EEPROM\n");
2903 else if (eeprom->chip >= 0x46)
2904 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
2905 if (eeprom->suspend_dbus7)
2906 fprintf(stdout, "Suspend on DBUS7\n");
2907 if (eeprom->suspend_pull_downs)
2908 fprintf(stdout, "Pull IO pins low during suspend\n");
2909 if (eeprom->remote_wakeup)
2910 fprintf(stdout, "Enable Remote Wake Up\n");
2911 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
2912 if (ftdi->type >= TYPE_2232C)
2913 fprintf(stdout,"Channel A has Mode %s%s%s\n",
2914 channel_mode[eeprom->channel_a_type],
2915 (eeprom->channel_a_driver)?" VCP":"",
2916 (eeprom->high_current_a)?" High Current IO":"");
2917 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R))
2918 fprintf(stdout,"Channel B has Mode %s%s%s\n",
2919 channel_mode[eeprom->channel_b_type],
2920 (eeprom->channel_b_driver)?" VCP":"",
2921 (eeprom->high_current_b)?" High Current IO":"");
2922 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
2923 eeprom->use_usb_version == USE_USB_VERSION_BIT)
2924 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
2925
2926 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
2927 {
2928 fprintf(stdout,"%s has %d mA drive%s%s\n",
2929 (ftdi->type == TYPE_2232H)?"AL":"A",
2930 (eeprom->group0_drive+1) *4,
2931 (eeprom->group0_schmitt)?" Schmitt Input":"",
2932 (eeprom->group0_slew)?" Slow Slew":"");
2933 fprintf(stdout,"%s has %d mA drive%s%s\n",
2934 (ftdi->type == TYPE_2232H)?"AH":"B",
2935 (eeprom->group1_drive+1) *4,
2936 (eeprom->group1_schmitt)?" Schmitt Input":"",
2937 (eeprom->group1_slew)?" Slow Slew":"");
2938 fprintf(stdout,"%s has %d mA drive%s%s\n",
2939 (ftdi->type == TYPE_2232H)?"BL":"C",
2940 (eeprom->group2_drive+1) *4,
2941 (eeprom->group2_schmitt)?" Schmitt Input":"",
2942 (eeprom->group2_slew)?" Slow Slew":"");
2943 fprintf(stdout,"%s has %d mA drive%s%s\n",
2944 (ftdi->type == TYPE_2232H)?"BH":"D",
2945 (eeprom->group3_drive+1) *4,
2946 (eeprom->group3_schmitt)?" Schmitt Input":"",
2947 (eeprom->group3_slew)?" Slow Slew":"");
2948 }
2949 if (ftdi->type == TYPE_R)
2950 {
2951 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
2952 "SLEEP","CLK48","CLK24","CLK12","CLK6",
2953 "IOMODE","BB_WR","BB_RD"
2954 };
2955 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
2956
2957 if (eeprom->invert)
2958 {
2959 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
2960 fprintf(stdout,"Inverted bits:");
2961 for (i=0; i<8; i++)
2962 if ((eeprom->invert & (1<<i)) == (1<<i))
2963 fprintf(stdout," %s",r_bits[i]);
2964 fprintf(stdout,"\n");
2965 }
2966 for (i=0; i<5; i++)
2967 {
2968 if (eeprom->cbus_function[i]<CBUS_BB)
2969 fprintf(stdout,"C%d Function: %s\n", i,
2970 cbus_mux[eeprom->cbus_function[i]]);
2971 else
2972 {
2973 if (i < 4)
2974 /* Running MPROG show that C0..3 have fixed function Synchronous
2975 Bit Bang mode */
2976 fprintf(stdout,"C%d BB Function: %s\n", i,
2977 cbus_BB[i]);
2978 else
2979 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
2980 }
2981 }
2982 }
2983 }
2984 return 0;
2985}
2986
2987/**
2988 Get a value from the decoded EEPROM structure
2989
2990 \param ftdi pointer to ftdi_context
2991 \param value_name Enum of the value to query
2992 \param value Pointer to store read value
2993
2994 \retval 0: all fine
2995 \retval -1: Value doesn't exist
2996*/
2997int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
2998{
2999 switch (value_name)
3000 {
3001 case VENDOR_ID:
3002 *value = ftdi->eeprom->vendor_id;
3003 break;
3004 case PRODUCT_ID:
3005 *value = ftdi->eeprom->product_id;
3006 break;
3007 case SELF_POWERED:
3008 *value = ftdi->eeprom->self_powered;
3009 break;
3010 case REMOTE_WAKEUP:
3011 *value = ftdi->eeprom->remote_wakeup;
3012 break;
3013 case IS_NOT_PNP:
3014 *value = ftdi->eeprom->is_not_pnp;
3015 break;
3016 case SUSPEND_DBUS7:
3017 *value = ftdi->eeprom->suspend_dbus7;
3018 break;
3019 case IN_IS_ISOCHRONOUS:
3020 *value = ftdi->eeprom->in_is_isochronous;
3021 break;
3022 case SUSPEND_PULL_DOWNS:
3023 *value = ftdi->eeprom->suspend_pull_downs;
3024 break;
3025 case USE_SERIAL:
3026 *value = ftdi->eeprom->use_serial;
3027 break;
3028 case USB_VERSION:
3029 *value = ftdi->eeprom->usb_version;
3030 break;
3031 case MAX_POWER:
3032 *value = ftdi->eeprom->max_power;
3033 break;
3034 case CHANNEL_A_TYPE:
3035 *value = ftdi->eeprom->channel_a_type;
3036 break;
3037 case CHANNEL_B_TYPE:
3038 *value = ftdi->eeprom->channel_b_type;
3039 break;
3040 case CHANNEL_A_DRIVER:
3041 *value = ftdi->eeprom->channel_a_driver;
3042 break;
3043 case CHANNEL_B_DRIVER:
3044 *value = ftdi->eeprom->channel_b_driver;
3045 break;
3046 case CBUS_FUNCTION_0:
3047 *value = ftdi->eeprom->cbus_function[0];
3048 break;
3049 case CBUS_FUNCTION_1:
3050 *value = ftdi->eeprom->cbus_function[1];
3051 break;
3052 case CBUS_FUNCTION_2:
3053 *value = ftdi->eeprom->cbus_function[2];
3054 break;
3055 case CBUS_FUNCTION_3:
3056 *value = ftdi->eeprom->cbus_function[3];
3057 break;
3058 case CBUS_FUNCTION_4:
3059 *value = ftdi->eeprom->cbus_function[4];
3060 break;
3061 case HIGH_CURRENT:
3062 *value = ftdi->eeprom->high_current;
3063 break;
3064 case HIGH_CURRENT_A:
3065 *value = ftdi->eeprom->high_current_a;
3066 break;
3067 case HIGH_CURRENT_B:
3068 *value = ftdi->eeprom->high_current_b;
3069 break;
3070 case INVERT:
3071 *value = ftdi->eeprom->invert;
3072 break;
3073 case GROUP0_DRIVE:
3074 *value = ftdi->eeprom->group0_drive;
3075 break;
3076 case GROUP0_SCHMITT:
3077 *value = ftdi->eeprom->group0_schmitt;
3078 break;
3079 case GROUP0_SLEW:
3080 *value = ftdi->eeprom->group0_slew;
3081 break;
3082 case GROUP1_DRIVE:
3083 *value = ftdi->eeprom->group1_drive;
3084 break;
3085 case GROUP1_SCHMITT:
3086 *value = ftdi->eeprom->group1_schmitt;
3087 break;
3088 case GROUP1_SLEW:
3089 *value = ftdi->eeprom->group1_slew;
3090 break;
3091 case GROUP2_DRIVE:
3092 *value = ftdi->eeprom->group2_drive;
3093 break;
3094 case GROUP2_SCHMITT:
3095 *value = ftdi->eeprom->group2_schmitt;
3096 break;
3097 case GROUP2_SLEW:
3098 *value = ftdi->eeprom->group2_slew;
3099 break;
3100 case GROUP3_DRIVE:
3101 *value = ftdi->eeprom->group3_drive;
3102 break;
3103 case GROUP3_SCHMITT:
3104 *value = ftdi->eeprom->group3_schmitt;
3105 break;
3106 case GROUP3_SLEW:
3107 *value = ftdi->eeprom->group3_slew;
3108 break;
3109 case CHIP_TYPE:
3110 *value = ftdi->eeprom->chip;
3111 break;
3112 case CHIP_SIZE:
3113 *value = ftdi->eeprom->size;
3114 break;
3115 default:
3116 ftdi_error_return(-1, "Request for unknown EEPROM value");
3117 }
3118 return 0;
3119}
3120
3121/**
3122 Set a value in the decoded EEPROM Structure
3123 No parameter checking is performed
3124
3125 \param ftdi pointer to ftdi_context
3126 \param value_name Enum of the value to set
3127 \param value to set
3128
3129 \retval 0: all fine
3130 \retval -1: Value doesn't exist
3131 \retval -2: Value not user settable
3132*/
3133int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3134{
3135 switch (value_name)
3136 {
3137 case VENDOR_ID:
3138 ftdi->eeprom->vendor_id = value;
3139 break;
3140 case PRODUCT_ID:
3141 ftdi->eeprom->product_id = value;
3142 break;
3143 case SELF_POWERED:
3144 ftdi->eeprom->self_powered = value;
3145 break;
3146 case REMOTE_WAKEUP:
3147 ftdi->eeprom->remote_wakeup = value;
3148 break;
3149 case IS_NOT_PNP:
3150 ftdi->eeprom->is_not_pnp = value;
3151 break;
3152 case SUSPEND_DBUS7:
3153 ftdi->eeprom->suspend_dbus7 = value;
3154 break;
3155 case IN_IS_ISOCHRONOUS:
3156 ftdi->eeprom->in_is_isochronous = value;
3157 break;
3158 case SUSPEND_PULL_DOWNS:
3159 ftdi->eeprom->suspend_pull_downs = value;
3160 break;
3161 case USE_SERIAL:
3162 ftdi->eeprom->use_serial = value;
3163 break;
3164 case USB_VERSION:
3165 ftdi->eeprom->usb_version = value;
3166 break;
3167 case MAX_POWER:
3168 ftdi->eeprom->max_power = value;
3169 break;
3170 case CHANNEL_A_TYPE:
3171 ftdi->eeprom->channel_a_type = value;
3172 break;
3173 case CHANNEL_B_TYPE:
3174 ftdi->eeprom->channel_b_type = value;
3175 break;
3176 case CHANNEL_A_DRIVER:
3177 ftdi->eeprom->channel_a_driver = value;
3178 break;
3179 case CHANNEL_B_DRIVER:
3180 ftdi->eeprom->channel_b_driver = value;
3181 break;
3182 case CBUS_FUNCTION_0:
3183 ftdi->eeprom->cbus_function[0] = value;
3184 break;
3185 case CBUS_FUNCTION_1:
3186 ftdi->eeprom->cbus_function[1] = value;
3187 break;
3188 case CBUS_FUNCTION_2:
3189 ftdi->eeprom->cbus_function[2] = value;
3190 break;
3191 case CBUS_FUNCTION_3:
3192 ftdi->eeprom->cbus_function[3] = value;
3193 break;
3194 case CBUS_FUNCTION_4:
3195 ftdi->eeprom->cbus_function[4] = value;
3196 break;
3197 case HIGH_CURRENT:
3198 ftdi->eeprom->high_current = value;
3199 break;
3200 case HIGH_CURRENT_A:
3201 ftdi->eeprom->high_current_a = value;
3202 break;
3203 case HIGH_CURRENT_B:
3204 ftdi->eeprom->high_current_b = value;
3205 break;
3206 case INVERT:
3207 ftdi->eeprom->invert = value;
3208 break;
3209 case GROUP0_DRIVE:
3210 ftdi->eeprom->group0_drive = value;
3211 break;
3212 case GROUP0_SCHMITT:
3213 ftdi->eeprom->group0_schmitt = value;
3214 break;
3215 case GROUP0_SLEW:
3216 ftdi->eeprom->group0_slew = value;
3217 break;
3218 case GROUP1_DRIVE:
3219 ftdi->eeprom->group1_drive = value;
3220 break;
3221 case GROUP1_SCHMITT:
3222 ftdi->eeprom->group1_schmitt = value;
3223 break;
3224 case GROUP1_SLEW:
3225 ftdi->eeprom->group1_slew = value;
3226 break;
3227 case GROUP2_DRIVE:
3228 ftdi->eeprom->group2_drive = value;
3229 break;
3230 case GROUP2_SCHMITT:
3231 ftdi->eeprom->group2_schmitt = value;
3232 break;
3233 case GROUP2_SLEW:
3234 ftdi->eeprom->group2_slew = value;
3235 break;
3236 case GROUP3_DRIVE:
3237 ftdi->eeprom->group3_drive = value;
3238 break;
3239 case GROUP3_SCHMITT:
3240 ftdi->eeprom->group3_schmitt = value;
3241 break;
3242 case GROUP3_SLEW:
3243 ftdi->eeprom->group3_slew = value;
3244 break;
3245 case CHIP_TYPE:
3246 ftdi->eeprom->chip = value;
3247 break;
3248 case CHIP_SIZE:
3249 ftdi_error_return(-2, "EEPROM Value can't be changed");
3250 default :
3251 ftdi_error_return(-1, "Request to unknown EEPROM value");
3252 }
3253 return 0;
3254}
3255
3256/** Get the read-only buffer to the binary EEPROM content
3257
3258 \param ftdi pointer to ftdi_context
3259 \param buf buffer to receive EEPROM content
3260 \param size Size of receiving buffer
3261
3262 \retval 0: All fine
3263 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3264 \retval -2: Not enough room to store eeprom
3265*/
3266int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3267{
3268 if (!ftdi || !(ftdi->eeprom))
3269 ftdi_error_return(-1, "No appropriate structure");
3270
3271 if (!buf || size < ftdi->eeprom->size)
3272 ftdi_error_return(-1, "Not enough room to store eeprom");
3273
3274 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3275 if (size > FTDI_MAX_EEPROM_SIZE)
3276 size = FTDI_MAX_EEPROM_SIZE;
3277
3278 memcpy(buf, ftdi->eeprom->buf, size);
3279
3280 return 0;
3281}
3282
3283/**
3284 Read eeprom location
3285
3286 \param ftdi pointer to ftdi_context
3287 \param eeprom_addr Address of eeprom location to be read
3288 \param eeprom_val Pointer to store read eeprom location
3289
3290 \retval 0: all fine
3291 \retval -1: read failed
3292 \retval -2: USB device unavailable
3293*/
3294int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3295{
3296 if (ftdi == NULL || ftdi->usb_dev == NULL)
3297 ftdi_error_return(-2, "USB device unavailable");
3298
3299 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3300 ftdi_error_return(-1, "reading eeprom failed");
3301
3302 return 0;
3303}
3304
3305/**
3306 Read eeprom
3307
3308 \param ftdi pointer to ftdi_context
3309
3310 \retval 0: all fine
3311 \retval -1: read failed
3312 \retval -2: USB device unavailable
3313*/
3314int ftdi_read_eeprom(struct ftdi_context *ftdi)
3315{
3316 int i;
3317 unsigned char *buf;
3318
3319 if (ftdi == NULL || ftdi->usb_dev == NULL)
3320 ftdi_error_return(-2, "USB device unavailable");
3321 buf = ftdi->eeprom->buf;
3322
3323 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
3324 {
3325 if (libusb_control_transfer(
3326 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3327 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
3328 ftdi_error_return(-1, "reading eeprom failed");
3329 }
3330
3331 if (ftdi->type == TYPE_R)
3332 ftdi->eeprom->size = 0x80;
3333 /* Guesses size of eeprom by comparing halves
3334 - will not work with blank eeprom */
3335 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3336 ftdi->eeprom->size = -1;
3337 else if (memcmp(buf,&buf[0x80],0x80) == 0)
3338 ftdi->eeprom->size = 0x80;
3339 else if (memcmp(buf,&buf[0x40],0x40) == 0)
3340 ftdi->eeprom->size = 0x40;
3341 else
3342 ftdi->eeprom->size = 0x100;
3343 return 0;
3344}
3345
3346/*
3347 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3348 Function is only used internally
3349 \internal
3350*/
3351static unsigned char ftdi_read_chipid_shift(unsigned char value)
3352{
3353 return ((value & 1) << 1) |
3354 ((value & 2) << 5) |
3355 ((value & 4) >> 2) |
3356 ((value & 8) << 4) |
3357 ((value & 16) >> 1) |
3358 ((value & 32) >> 1) |
3359 ((value & 64) >> 4) |
3360 ((value & 128) >> 2);
3361}
3362
3363/**
3364 Read the FTDIChip-ID from R-type devices
3365
3366 \param ftdi pointer to ftdi_context
3367 \param chipid Pointer to store FTDIChip-ID
3368
3369 \retval 0: all fine
3370 \retval -1: read failed
3371 \retval -2: USB device unavailable
3372*/
3373int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3374{
3375 unsigned int a = 0, b = 0;
3376
3377 if (ftdi == NULL || ftdi->usb_dev == NULL)
3378 ftdi_error_return(-2, "USB device unavailable");
3379
3380 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3381 {
3382 a = a << 8 | a >> 8;
3383 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3384 {
3385 b = b << 8 | b >> 8;
3386 a = (a << 16) | (b & 0xFFFF);
3387 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3388 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3389 *chipid = a ^ 0xa5f0f7d1;
3390 return 0;
3391 }
3392 }
3393
3394 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3395}
3396
3397/**
3398 Write eeprom location
3399
3400 \param ftdi pointer to ftdi_context
3401 \param eeprom_addr Address of eeprom location to be written
3402 \param eeprom_val Value to be written
3403
3404 \retval 0: all fine
3405 \retval -1: write failed
3406 \retval -2: USB device unavailable
3407 \retval -3: Invalid access to checksum protected area below 0x80
3408 \retval -4: Device can't access unprotected area
3409 \retval -5: Reading chip type failed
3410*/
3411int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3412 unsigned short eeprom_val)
3413{
3414 int chip_type_location;
3415 unsigned short chip_type;
3416
3417 if (ftdi == NULL || ftdi->usb_dev == NULL)
3418 ftdi_error_return(-2, "USB device unavailable");
3419
3420 if (eeprom_addr <0x80)
3421 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3422
3423
3424 switch (ftdi->type)
3425 {
3426 case TYPE_BM:
3427 case TYPE_2232C:
3428 chip_type_location = 0x14;
3429 break;
3430 case TYPE_2232H:
3431 case TYPE_4232H:
3432 chip_type_location = 0x18;
3433 break;
3434 default:
3435 ftdi_error_return(-4, "Device can't access unprotected area");
3436 }
3437
3438 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3439 ftdi_error_return(-5, "Reading failed failed");
3440 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3441 if ((chip_type & 0xff) != 0x66)
3442 {
3443 ftdi_error_return(-6, "EEPROM is not of 93x66");
3444 }
3445
3446 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3447 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3448 NULL, 0, ftdi->usb_write_timeout) != 0)
3449 ftdi_error_return(-1, "unable to write eeprom");
3450
3451 return 0;
3452}
3453
3454/**
3455 Write eeprom
3456
3457 \param ftdi pointer to ftdi_context
3458
3459 \retval 0: all fine
3460 \retval -1: read failed
3461 \retval -2: USB device unavailable
3462*/
3463int ftdi_write_eeprom(struct ftdi_context *ftdi)
3464{
3465 unsigned short usb_val, status;
3466 int i, ret;
3467 unsigned char *eeprom;
3468
3469 if (ftdi == NULL || ftdi->usb_dev == NULL)
3470 ftdi_error_return(-2, "USB device unavailable");
3471 eeprom = ftdi->eeprom->buf;
3472
3473 /* These commands were traced while running MProg */
3474 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3475 return ret;
3476 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3477 return ret;
3478 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3479 return ret;
3480
3481 for (i = 0; i < ftdi->eeprom->size/2; i++)
3482 {
3483 usb_val = eeprom[i*2];
3484 usb_val += eeprom[(i*2)+1] << 8;
3485 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3486 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3487 NULL, 0, ftdi->usb_write_timeout) < 0)
3488 ftdi_error_return(-1, "unable to write eeprom");
3489 }
3490
3491 return 0;
3492}
3493
3494/**
3495 Erase eeprom
3496
3497 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3498
3499 \param ftdi pointer to ftdi_context
3500
3501 \retval 0: all fine
3502 \retval -1: erase failed
3503 \retval -2: USB device unavailable
3504 \retval -3: Writing magic failed
3505 \retval -4: Read EEPROM failed
3506 \retval -5: Unexpected EEPROM value
3507*/
3508#define MAGIC 0x55aa
3509int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3510{
3511 unsigned short eeprom_value;
3512 if (ftdi == NULL || ftdi->usb_dev == NULL)
3513 ftdi_error_return(-2, "USB device unavailable");
3514
3515 if (ftdi->type == TYPE_R)
3516 {
3517 ftdi->eeprom->chip = 0;
3518 return 0;
3519 }
3520
3521 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3522 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3523 ftdi_error_return(-1, "unable to erase eeprom");
3524
3525
3526 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3527 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3528 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3529 Chip is 93x66 if magic is only read at word position 0xc0*/
3530 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3531 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3532 NULL, 0, ftdi->usb_write_timeout) != 0)
3533 ftdi_error_return(-3, "Writing magic failed");
3534 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3535 ftdi_error_return(-4, "Reading failed failed");
3536 if (eeprom_value == MAGIC)
3537 {
3538 ftdi->eeprom->chip = 0x46;
3539 }
3540 else
3541 {
3542 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3543 ftdi_error_return(-4, "Reading failed failed");
3544 if (eeprom_value == MAGIC)
3545 ftdi->eeprom->chip = 0x56;
3546 else
3547 {
3548 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3549 ftdi_error_return(-4, "Reading failed failed");
3550 if (eeprom_value == MAGIC)
3551 ftdi->eeprom->chip = 0x66;
3552 else
3553 {
3554 ftdi->eeprom->chip = -1;
3555 }
3556 }
3557 }
3558 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3559 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3560 ftdi_error_return(-1, "unable to erase eeprom");
3561 return 0;
3562}
3563
3564/**
3565 Get string representation for last error code
3566
3567 \param ftdi pointer to ftdi_context
3568
3569 \retval Pointer to error string
3570*/
3571char *ftdi_get_error_string (struct ftdi_context *ftdi)
3572{
3573 if (ftdi == NULL)
3574 return "";
3575
3576 return ftdi->error_str;
3577}
3578
3579/* @} end of doxygen libftdi group */