Handle manufacturer/product/serial strings internal Set these string as arguments...
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2010 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
58 \retval none
59*/
60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
61{
62 if (ftdi && ftdi->usb_dev)
63 {
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
66 }
67}
68
69/**
70 Initializes a ftdi_context.
71
72 \param ftdi pointer to ftdi_context
73
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
76 \retval -2: couldn't allocate struct buffer
77
78 \remark This should be called before all functions
79*/
80int ftdi_init(struct ftdi_context *ftdi)
81{
82 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
83 ftdi->usb_ctx = NULL;
84 ftdi->usb_dev = NULL;
85 ftdi->usb_read_timeout = 5000;
86 ftdi->usb_write_timeout = 5000;
87
88 ftdi->type = TYPE_BM; /* chip type */
89 ftdi->baudrate = -1;
90 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
91
92 ftdi->readbuffer = NULL;
93 ftdi->readbuffer_offset = 0;
94 ftdi->readbuffer_remaining = 0;
95 ftdi->writebuffer_chunksize = 4096;
96 ftdi->max_packet_size = 0;
97
98 ftdi->interface = 0;
99 ftdi->index = 0;
100 ftdi->in_ep = 0x02;
101 ftdi->out_ep = 0x81;
102 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
103
104 ftdi->error_str = NULL;
105
106 if (eeprom == 0)
107 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
108 ftdi->eeprom = eeprom;
109
110 /* All fine. Now allocate the readbuffer */
111 return ftdi_read_data_set_chunksize(ftdi, 4096);
112}
113
114/**
115 Allocate and initialize a new ftdi_context
116
117 \return a pointer to a new ftdi_context, or NULL on failure
118*/
119struct ftdi_context *ftdi_new(void)
120{
121 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
122
123 if (ftdi == NULL)
124 {
125 return NULL;
126 }
127
128 if (ftdi_init(ftdi) != 0)
129 {
130 free(ftdi);
131 return NULL;
132 }
133
134 return ftdi;
135}
136
137/**
138 Open selected channels on a chip, otherwise use first channel.
139
140 \param ftdi pointer to ftdi_context
141 \param interface Interface to use for FT2232C/2232H/4232H chips.
142
143 \retval 0: all fine
144 \retval -1: unknown interface
145 \retval -2: USB device unavailable
146*/
147int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
148{
149 if (ftdi == NULL)
150 ftdi_error_return(-2, "USB device unavailable");
151
152 switch (interface)
153 {
154 case INTERFACE_ANY:
155 case INTERFACE_A:
156 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
157 break;
158 case INTERFACE_B:
159 ftdi->interface = 1;
160 ftdi->index = INTERFACE_B;
161 ftdi->in_ep = 0x04;
162 ftdi->out_ep = 0x83;
163 break;
164 case INTERFACE_C:
165 ftdi->interface = 2;
166 ftdi->index = INTERFACE_C;
167 ftdi->in_ep = 0x06;
168 ftdi->out_ep = 0x85;
169 break;
170 case INTERFACE_D:
171 ftdi->interface = 3;
172 ftdi->index = INTERFACE_D;
173 ftdi->in_ep = 0x08;
174 ftdi->out_ep = 0x87;
175 break;
176 default:
177 ftdi_error_return(-1, "Unknown interface");
178 }
179 return 0;
180}
181
182/**
183 Deinitializes a ftdi_context.
184
185 \param ftdi pointer to ftdi_context
186*/
187void ftdi_deinit(struct ftdi_context *ftdi)
188{
189 if (ftdi == NULL)
190 return;
191
192 ftdi_usb_close_internal (ftdi);
193
194 if (ftdi->readbuffer != NULL)
195 {
196 free(ftdi->readbuffer);
197 ftdi->readbuffer = NULL;
198 }
199
200 if (ftdi->eeprom != NULL)
201 {
202 if (ftdi->eeprom->manufacturer != 0)
203 {
204 free(ftdi->eeprom->manufacturer);
205 ftdi->eeprom->manufacturer = 0;
206 }
207 if (ftdi->eeprom->product != 0)
208 {
209 free(ftdi->eeprom->product);
210 ftdi->eeprom->product = 0;
211 }
212 if (ftdi->eeprom->serial != 0)
213 {
214 free(ftdi->eeprom->serial);
215 ftdi->eeprom->serial = 0;
216 }
217 free(ftdi->eeprom);
218 ftdi->eeprom = NULL;
219 }
220 libusb_exit(ftdi->usb_ctx);
221}
222
223/**
224 Deinitialize and free an ftdi_context.
225
226 \param ftdi pointer to ftdi_context
227*/
228void ftdi_free(struct ftdi_context *ftdi)
229{
230 ftdi_deinit(ftdi);
231 free(ftdi);
232}
233
234/**
235 Use an already open libusb device.
236
237 \param ftdi pointer to ftdi_context
238 \param usb libusb libusb_device_handle to use
239*/
240void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
241{
242 if (ftdi == NULL)
243 return;
244
245 ftdi->usb_dev = usb;
246}
247
248
249/**
250 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
251 needs to be deallocated by ftdi_list_free() after use.
252
253 \param ftdi pointer to ftdi_context
254 \param devlist Pointer where to store list of found devices
255 \param vendor Vendor ID to search for
256 \param product Product ID to search for
257
258 \retval >0: number of devices found
259 \retval -3: out of memory
260 \retval -4: libusb_init() failed
261 \retval -5: libusb_get_device_list() failed
262 \retval -6: libusb_get_device_descriptor() failed
263*/
264int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
265{
266 struct ftdi_device_list **curdev;
267 libusb_device *dev;
268 libusb_device **devs;
269 int count = 0;
270 int i = 0;
271
272 if (libusb_init(&ftdi->usb_ctx) < 0)
273 ftdi_error_return(-4, "libusb_init() failed");
274
275 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
276 ftdi_error_return(-5, "libusb_get_device_list() failed");
277
278 curdev = devlist;
279 *curdev = NULL;
280
281 while ((dev = devs[i++]) != NULL)
282 {
283 struct libusb_device_descriptor desc;
284
285 if (libusb_get_device_descriptor(dev, &desc) < 0)
286 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
287
288 if (desc.idVendor == vendor && desc.idProduct == product)
289 {
290 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
291 if (!*curdev)
292 ftdi_error_return(-3, "out of memory");
293
294 (*curdev)->next = NULL;
295 (*curdev)->dev = dev;
296
297 curdev = &(*curdev)->next;
298 count++;
299 }
300 }
301
302 return count;
303}
304
305/**
306 Frees a usb device list.
307
308 \param devlist USB device list created by ftdi_usb_find_all()
309*/
310void ftdi_list_free(struct ftdi_device_list **devlist)
311{
312 struct ftdi_device_list *curdev, *next;
313
314 for (curdev = *devlist; curdev != NULL;)
315 {
316 next = curdev->next;
317 free(curdev);
318 curdev = next;
319 }
320
321 *devlist = NULL;
322}
323
324/**
325 Frees a usb device list.
326
327 \param devlist USB device list created by ftdi_usb_find_all()
328*/
329void ftdi_list_free2(struct ftdi_device_list *devlist)
330{
331 ftdi_list_free(&devlist);
332}
333
334/**
335 Return device ID strings from the usb device.
336
337 The parameters manufacturer, description and serial may be NULL
338 or pointer to buffers to store the fetched strings.
339
340 \note Use this function only in combination with ftdi_usb_find_all()
341 as it closes the internal "usb_dev" after use.
342
343 \param ftdi pointer to ftdi_context
344 \param dev libusb usb_dev to use
345 \param manufacturer Store manufacturer string here if not NULL
346 \param mnf_len Buffer size of manufacturer string
347 \param description Store product description string here if not NULL
348 \param desc_len Buffer size of product description string
349 \param serial Store serial string here if not NULL
350 \param serial_len Buffer size of serial string
351
352 \retval 0: all fine
353 \retval -1: wrong arguments
354 \retval -4: unable to open device
355 \retval -7: get product manufacturer failed
356 \retval -8: get product description failed
357 \retval -9: get serial number failed
358 \retval -11: libusb_get_device_descriptor() failed
359*/
360int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
361 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
362{
363 struct libusb_device_descriptor desc;
364
365 if ((ftdi==NULL) || (dev==NULL))
366 return -1;
367
368 if (libusb_open(dev, &ftdi->usb_dev) < 0)
369 ftdi_error_return(-4, "libusb_open() failed");
370
371 if (libusb_get_device_descriptor(dev, &desc) < 0)
372 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
373
374 if (manufacturer != NULL)
375 {
376 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
377 {
378 ftdi_usb_close_internal (ftdi);
379 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
380 }
381 }
382
383 if (description != NULL)
384 {
385 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
386 {
387 ftdi_usb_close_internal (ftdi);
388 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
389 }
390 }
391
392 if (serial != NULL)
393 {
394 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
395 {
396 ftdi_usb_close_internal (ftdi);
397 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
398 }
399 }
400
401 ftdi_usb_close_internal (ftdi);
402
403 return 0;
404}
405
406/**
407 * Internal function to determine the maximum packet size.
408 * \param ftdi pointer to ftdi_context
409 * \param dev libusb usb_dev to use
410 * \retval Maximum packet size for this device
411 */
412static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
413{
414 struct libusb_device_descriptor desc;
415 struct libusb_config_descriptor *config0;
416 unsigned int packet_size;
417
418 // Sanity check
419 if (ftdi == NULL || dev == NULL)
420 return 64;
421
422 // Determine maximum packet size. Init with default value.
423 // New hi-speed devices from FTDI use a packet size of 512 bytes
424 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
425 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
426 packet_size = 512;
427 else
428 packet_size = 64;
429
430 if (libusb_get_device_descriptor(dev, &desc) < 0)
431 return packet_size;
432
433 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
434 return packet_size;
435
436 if (desc.bNumConfigurations > 0)
437 {
438 if (ftdi->interface < config0->bNumInterfaces)
439 {
440 struct libusb_interface interface = config0->interface[ftdi->interface];
441 if (interface.num_altsetting > 0)
442 {
443 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
444 if (descriptor.bNumEndpoints > 0)
445 {
446 packet_size = descriptor.endpoint[0].wMaxPacketSize;
447 }
448 }
449 }
450 }
451
452 libusb_free_config_descriptor (config0);
453 return packet_size;
454}
455
456/**
457 Opens a ftdi device given by an usb_device.
458
459 \param ftdi pointer to ftdi_context
460 \param dev libusb usb_dev to use
461
462 \retval 0: all fine
463 \retval -3: unable to config device
464 \retval -4: unable to open device
465 \retval -5: unable to claim device
466 \retval -6: reset failed
467 \retval -7: set baudrate failed
468 \retval -8: ftdi context invalid
469 \retval -9: libusb_get_device_descriptor() failed
470 \retval -10: libusb_get_config_descriptor() failed
471 \retval -11: libusb_etach_kernel_driver() failed
472 \retval -12: libusb_get_configuration() failed
473*/
474int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
475{
476 struct libusb_device_descriptor desc;
477 struct libusb_config_descriptor *config0;
478 int cfg, cfg0, detach_errno = 0;
479
480 if (ftdi == NULL)
481 ftdi_error_return(-8, "ftdi context invalid");
482
483 if (libusb_open(dev, &ftdi->usb_dev) < 0)
484 ftdi_error_return(-4, "libusb_open() failed");
485
486 if (libusb_get_device_descriptor(dev, &desc) < 0)
487 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
488
489 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
490 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
491 cfg0 = config0->bConfigurationValue;
492 libusb_free_config_descriptor (config0);
493
494 // Try to detach ftdi_sio kernel module.
495 //
496 // The return code is kept in a separate variable and only parsed
497 // if usb_set_configuration() or usb_claim_interface() fails as the
498 // detach operation might be denied and everything still works fine.
499 // Likely scenario is a static ftdi_sio kernel module.
500 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
501 detach_errno = errno;
502
503 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
504 ftdi_error_return(-12, "libusb_get_configuration () failed");
505 // set configuration (needed especially for windows)
506 // tolerate EBUSY: one device with one configuration, but two interfaces
507 // and libftdi sessions to both interfaces (e.g. FT2232)
508 if (desc.bNumConfigurations > 0 && cfg != cfg0)
509 {
510 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
511 {
512 ftdi_usb_close_internal (ftdi);
513 if(detach_errno == EPERM)
514 {
515 ftdi_error_return(-8, "inappropriate permissions on device!");
516 }
517 else
518 {
519 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
520 }
521 }
522 }
523
524 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
525 {
526 ftdi_usb_close_internal (ftdi);
527 if(detach_errno == EPERM)
528 {
529 ftdi_error_return(-8, "inappropriate permissions on device!");
530 }
531 else
532 {
533 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
534 }
535 }
536
537 if (ftdi_usb_reset (ftdi) != 0)
538 {
539 ftdi_usb_close_internal (ftdi);
540 ftdi_error_return(-6, "ftdi_usb_reset failed");
541 }
542
543 // Try to guess chip type
544 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
545 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
546 && desc.iSerialNumber == 0))
547 ftdi->type = TYPE_BM;
548 else if (desc.bcdDevice == 0x200)
549 ftdi->type = TYPE_AM;
550 else if (desc.bcdDevice == 0x500)
551 ftdi->type = TYPE_2232C;
552 else if (desc.bcdDevice == 0x600)
553 ftdi->type = TYPE_R;
554 else if (desc.bcdDevice == 0x700)
555 ftdi->type = TYPE_2232H;
556 else if (desc.bcdDevice == 0x800)
557 ftdi->type = TYPE_4232H;
558
559 // Set default interface on dual/quad type chips
560 switch(ftdi->type)
561 {
562 case TYPE_2232C:
563 case TYPE_2232H:
564 case TYPE_4232H:
565 if (!ftdi->index)
566 ftdi->index = INTERFACE_A;
567 break;
568 default:
569 break;
570 }
571
572 // Determine maximum packet size
573 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
574
575 if (ftdi_set_baudrate (ftdi, 9600) != 0)
576 {
577 ftdi_usb_close_internal (ftdi);
578 ftdi_error_return(-7, "set baudrate failed");
579 }
580
581 ftdi_error_return(0, "all fine");
582}
583
584/**
585 Opens the first device with a given vendor and product ids.
586
587 \param ftdi pointer to ftdi_context
588 \param vendor Vendor ID
589 \param product Product ID
590
591 \retval same as ftdi_usb_open_desc()
592*/
593int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
594{
595 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
596}
597
598/**
599 Opens the first device with a given, vendor id, product id,
600 description and serial.
601
602 \param ftdi pointer to ftdi_context
603 \param vendor Vendor ID
604 \param product Product ID
605 \param description Description to search for. Use NULL if not needed.
606 \param serial Serial to search for. Use NULL if not needed.
607
608 \retval 0: all fine
609 \retval -3: usb device not found
610 \retval -4: unable to open device
611 \retval -5: unable to claim device
612 \retval -6: reset failed
613 \retval -7: set baudrate failed
614 \retval -8: get product description failed
615 \retval -9: get serial number failed
616 \retval -11: libusb_init() failed
617 \retval -12: libusb_get_device_list() failed
618 \retval -13: libusb_get_device_descriptor() failed
619*/
620int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
621 const char* description, const char* serial)
622{
623 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
624}
625
626/**
627 Opens the index-th device with a given, vendor id, product id,
628 description and serial.
629
630 \param ftdi pointer to ftdi_context
631 \param vendor Vendor ID
632 \param product Product ID
633 \param description Description to search for. Use NULL if not needed.
634 \param serial Serial to search for. Use NULL if not needed.
635 \param index Number of matching device to open if there are more than one, starts with 0.
636
637 \retval 0: all fine
638 \retval -1: usb_find_busses() failed
639 \retval -2: usb_find_devices() failed
640 \retval -3: usb device not found
641 \retval -4: unable to open device
642 \retval -5: unable to claim device
643 \retval -6: reset failed
644 \retval -7: set baudrate failed
645 \retval -8: get product description failed
646 \retval -9: get serial number failed
647 \retval -10: unable to close device
648 \retval -11: ftdi context invalid
649*/
650int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
651 const char* description, const char* serial, unsigned int index)
652{
653 libusb_device *dev;
654 libusb_device **devs;
655 char string[256];
656 int i = 0;
657
658 if (libusb_init(&ftdi->usb_ctx) < 0)
659 ftdi_error_return(-11, "libusb_init() failed");
660
661 if (ftdi == NULL)
662 ftdi_error_return(-11, "ftdi context invalid");
663
664 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
665 ftdi_error_return(-12, "libusb_get_device_list() failed");
666
667 while ((dev = devs[i++]) != NULL)
668 {
669 struct libusb_device_descriptor desc;
670 int res;
671
672 if (libusb_get_device_descriptor(dev, &desc) < 0)
673 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
674
675 if (desc.idVendor == vendor && desc.idProduct == product)
676 {
677 if (libusb_open(dev, &ftdi->usb_dev) < 0)
678 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
679
680 if (description != NULL)
681 {
682 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
683 {
684 libusb_close (ftdi->usb_dev);
685 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
686 }
687 if (strncmp(string, description, sizeof(string)) != 0)
688 {
689 libusb_close (ftdi->usb_dev);
690 continue;
691 }
692 }
693 if (serial != NULL)
694 {
695 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
696 {
697 ftdi_usb_close_internal (ftdi);
698 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
699 }
700 if (strncmp(string, serial, sizeof(string)) != 0)
701 {
702 ftdi_usb_close_internal (ftdi);
703 continue;
704 }
705 }
706
707 ftdi_usb_close_internal (ftdi);
708
709 if (index > 0)
710 {
711 index--;
712 continue;
713 }
714
715 res = ftdi_usb_open_dev(ftdi, dev);
716 libusb_free_device_list(devs,1);
717 return res;
718 }
719 }
720
721 // device not found
722 ftdi_error_return_free_device_list(-3, "device not found", devs);
723}
724
725/**
726 Opens the ftdi-device described by a description-string.
727 Intended to be used for parsing a device-description given as commandline argument.
728
729 \param ftdi pointer to ftdi_context
730 \param description NULL-terminated description-string, using this format:
731 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
732 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
733 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
734 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
735
736 \note The description format may be extended in later versions.
737
738 \retval 0: all fine
739 \retval -1: libusb_init() failed
740 \retval -2: libusb_get_device_list() failed
741 \retval -3: usb device not found
742 \retval -4: unable to open device
743 \retval -5: unable to claim device
744 \retval -6: reset failed
745 \retval -7: set baudrate failed
746 \retval -8: get product description failed
747 \retval -9: get serial number failed
748 \retval -10: unable to close device
749 \retval -11: illegal description format
750 \retval -12: ftdi context invalid
751*/
752int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
753{
754 if (ftdi == NULL)
755 ftdi_error_return(-12, "ftdi context invalid");
756
757 if (description[0] == 0 || description[1] != ':')
758 ftdi_error_return(-11, "illegal description format");
759
760 if (description[0] == 'd')
761 {
762 libusb_device *dev;
763 libusb_device **devs;
764 unsigned int bus_number, device_address;
765 int i = 0;
766
767 if (libusb_init (&ftdi->usb_ctx) < 0)
768 ftdi_error_return(-1, "libusb_init() failed");
769
770 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
771 ftdi_error_return(-2, "libusb_get_device_list() failed");
772
773 /* XXX: This doesn't handle symlinks/odd paths/etc... */
774 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
775 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
776
777 while ((dev = devs[i++]) != NULL)
778 {
779 int ret;
780 if (bus_number == libusb_get_bus_number (dev)
781 && device_address == libusb_get_device_address (dev))
782 {
783 ret = ftdi_usb_open_dev(ftdi, dev);
784 libusb_free_device_list(devs,1);
785 return ret;
786 }
787 }
788
789 // device not found
790 ftdi_error_return_free_device_list(-3, "device not found", devs);
791 }
792 else if (description[0] == 'i' || description[0] == 's')
793 {
794 unsigned int vendor;
795 unsigned int product;
796 unsigned int index=0;
797 const char *serial=NULL;
798 const char *startp, *endp;
799
800 errno=0;
801 startp=description+2;
802 vendor=strtoul((char*)startp,(char**)&endp,0);
803 if (*endp != ':' || endp == startp || errno != 0)
804 ftdi_error_return(-11, "illegal description format");
805
806 startp=endp+1;
807 product=strtoul((char*)startp,(char**)&endp,0);
808 if (endp == startp || errno != 0)
809 ftdi_error_return(-11, "illegal description format");
810
811 if (description[0] == 'i' && *endp != 0)
812 {
813 /* optional index field in i-mode */
814 if (*endp != ':')
815 ftdi_error_return(-11, "illegal description format");
816
817 startp=endp+1;
818 index=strtoul((char*)startp,(char**)&endp,0);
819 if (*endp != 0 || endp == startp || errno != 0)
820 ftdi_error_return(-11, "illegal description format");
821 }
822 if (description[0] == 's')
823 {
824 if (*endp != ':')
825 ftdi_error_return(-11, "illegal description format");
826
827 /* rest of the description is the serial */
828 serial=endp+1;
829 }
830
831 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
832 }
833 else
834 {
835 ftdi_error_return(-11, "illegal description format");
836 }
837}
838
839/**
840 Resets the ftdi device.
841
842 \param ftdi pointer to ftdi_context
843
844 \retval 0: all fine
845 \retval -1: FTDI reset failed
846 \retval -2: USB device unavailable
847*/
848int ftdi_usb_reset(struct ftdi_context *ftdi)
849{
850 if (ftdi == NULL || ftdi->usb_dev == NULL)
851 ftdi_error_return(-2, "USB device unavailable");
852
853 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
854 SIO_RESET_REQUEST, SIO_RESET_SIO,
855 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
856 ftdi_error_return(-1,"FTDI reset failed");
857
858 // Invalidate data in the readbuffer
859 ftdi->readbuffer_offset = 0;
860 ftdi->readbuffer_remaining = 0;
861
862 return 0;
863}
864
865/**
866 Clears the read buffer on the chip and the internal read buffer.
867
868 \param ftdi pointer to ftdi_context
869
870 \retval 0: all fine
871 \retval -1: read buffer purge failed
872 \retval -2: USB device unavailable
873*/
874int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
875{
876 if (ftdi == NULL || ftdi->usb_dev == NULL)
877 ftdi_error_return(-2, "USB device unavailable");
878
879 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
880 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
881 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
882 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
883
884 // Invalidate data in the readbuffer
885 ftdi->readbuffer_offset = 0;
886 ftdi->readbuffer_remaining = 0;
887
888 return 0;
889}
890
891/**
892 Clears the write buffer on the chip.
893
894 \param ftdi pointer to ftdi_context
895
896 \retval 0: all fine
897 \retval -1: write buffer purge failed
898 \retval -2: USB device unavailable
899*/
900int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
901{
902 if (ftdi == NULL || ftdi->usb_dev == NULL)
903 ftdi_error_return(-2, "USB device unavailable");
904
905 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
906 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
907 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
908 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
909
910 return 0;
911}
912
913/**
914 Clears the buffers on the chip and the internal read buffer.
915
916 \param ftdi pointer to ftdi_context
917
918 \retval 0: all fine
919 \retval -1: read buffer purge failed
920 \retval -2: write buffer purge failed
921 \retval -3: USB device unavailable
922*/
923int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
924{
925 int result;
926
927 if (ftdi == NULL || ftdi->usb_dev == NULL)
928 ftdi_error_return(-3, "USB device unavailable");
929
930 result = ftdi_usb_purge_rx_buffer(ftdi);
931 if (result < 0)
932 return -1;
933
934 result = ftdi_usb_purge_tx_buffer(ftdi);
935 if (result < 0)
936 return -2;
937
938 return 0;
939}
940
941
942
943/**
944 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
945
946 \param ftdi pointer to ftdi_context
947
948 \retval 0: all fine
949 \retval -1: usb_release failed
950 \retval -3: ftdi context invalid
951*/
952int ftdi_usb_close(struct ftdi_context *ftdi)
953{
954 int rtn = 0;
955
956 if (ftdi == NULL)
957 ftdi_error_return(-3, "ftdi context invalid");
958
959 if (ftdi->usb_dev != NULL)
960 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
961 rtn = -1;
962
963 ftdi_usb_close_internal (ftdi);
964
965 return rtn;
966}
967
968/**
969 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
970 Function is only used internally
971 \internal
972*/
973static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
974 unsigned short *value, unsigned short *index)
975{
976 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
977 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
978 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
979 int divisor, best_divisor, best_baud, best_baud_diff;
980 unsigned long encoded_divisor;
981 int i;
982
983 if (baudrate <= 0)
984 {
985 // Return error
986 return -1;
987 }
988
989 divisor = 24000000 / baudrate;
990
991 if (ftdi->type == TYPE_AM)
992 {
993 // Round down to supported fraction (AM only)
994 divisor -= am_adjust_dn[divisor & 7];
995 }
996
997 // Try this divisor and the one above it (because division rounds down)
998 best_divisor = 0;
999 best_baud = 0;
1000 best_baud_diff = 0;
1001 for (i = 0; i < 2; i++)
1002 {
1003 int try_divisor = divisor + i;
1004 int baud_estimate;
1005 int baud_diff;
1006
1007 // Round up to supported divisor value
1008 if (try_divisor <= 8)
1009 {
1010 // Round up to minimum supported divisor
1011 try_divisor = 8;
1012 }
1013 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1014 {
1015 // BM doesn't support divisors 9 through 11 inclusive
1016 try_divisor = 12;
1017 }
1018 else if (divisor < 16)
1019 {
1020 // AM doesn't support divisors 9 through 15 inclusive
1021 try_divisor = 16;
1022 }
1023 else
1024 {
1025 if (ftdi->type == TYPE_AM)
1026 {
1027 // Round up to supported fraction (AM only)
1028 try_divisor += am_adjust_up[try_divisor & 7];
1029 if (try_divisor > 0x1FFF8)
1030 {
1031 // Round down to maximum supported divisor value (for AM)
1032 try_divisor = 0x1FFF8;
1033 }
1034 }
1035 else
1036 {
1037 if (try_divisor > 0x1FFFF)
1038 {
1039 // Round down to maximum supported divisor value (for BM)
1040 try_divisor = 0x1FFFF;
1041 }
1042 }
1043 }
1044 // Get estimated baud rate (to nearest integer)
1045 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1046 // Get absolute difference from requested baud rate
1047 if (baud_estimate < baudrate)
1048 {
1049 baud_diff = baudrate - baud_estimate;
1050 }
1051 else
1052 {
1053 baud_diff = baud_estimate - baudrate;
1054 }
1055 if (i == 0 || baud_diff < best_baud_diff)
1056 {
1057 // Closest to requested baud rate so far
1058 best_divisor = try_divisor;
1059 best_baud = baud_estimate;
1060 best_baud_diff = baud_diff;
1061 if (baud_diff == 0)
1062 {
1063 // Spot on! No point trying
1064 break;
1065 }
1066 }
1067 }
1068 // Encode the best divisor value
1069 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1070 // Deal with special cases for encoded value
1071 if (encoded_divisor == 1)
1072 {
1073 encoded_divisor = 0; // 3000000 baud
1074 }
1075 else if (encoded_divisor == 0x4001)
1076 {
1077 encoded_divisor = 1; // 2000000 baud (BM only)
1078 }
1079 // Split into "value" and "index" values
1080 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1081 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1082 {
1083 *index = (unsigned short)(encoded_divisor >> 8);
1084 *index &= 0xFF00;
1085 *index |= ftdi->index;
1086 }
1087 else
1088 *index = (unsigned short)(encoded_divisor >> 16);
1089
1090 // Return the nearest baud rate
1091 return best_baud;
1092}
1093
1094/**
1095 Sets the chip baud rate
1096
1097 \param ftdi pointer to ftdi_context
1098 \param baudrate baud rate to set
1099
1100 \retval 0: all fine
1101 \retval -1: invalid baudrate
1102 \retval -2: setting baudrate failed
1103 \retval -3: USB device unavailable
1104*/
1105int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1106{
1107 unsigned short value, index;
1108 int actual_baudrate;
1109
1110 if (ftdi == NULL || ftdi->usb_dev == NULL)
1111 ftdi_error_return(-3, "USB device unavailable");
1112
1113 if (ftdi->bitbang_enabled)
1114 {
1115 baudrate = baudrate*4;
1116 }
1117
1118 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1119 if (actual_baudrate <= 0)
1120 ftdi_error_return (-1, "Silly baudrate <= 0.");
1121
1122 // Check within tolerance (about 5%)
1123 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1124 || ((actual_baudrate < baudrate)
1125 ? (actual_baudrate * 21 < baudrate * 20)
1126 : (baudrate * 21 < actual_baudrate * 20)))
1127 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1128
1129 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1130 SIO_SET_BAUDRATE_REQUEST, value,
1131 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1132 ftdi_error_return (-2, "Setting new baudrate failed");
1133
1134 ftdi->baudrate = baudrate;
1135 return 0;
1136}
1137
1138/**
1139 Set (RS232) line characteristics.
1140 The break type can only be set via ftdi_set_line_property2()
1141 and defaults to "off".
1142
1143 \param ftdi pointer to ftdi_context
1144 \param bits Number of bits
1145 \param sbit Number of stop bits
1146 \param parity Parity mode
1147
1148 \retval 0: all fine
1149 \retval -1: Setting line property failed
1150*/
1151int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1152 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1153{
1154 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1155}
1156
1157/**
1158 Set (RS232) line characteristics
1159
1160 \param ftdi pointer to ftdi_context
1161 \param bits Number of bits
1162 \param sbit Number of stop bits
1163 \param parity Parity mode
1164 \param break_type Break type
1165
1166 \retval 0: all fine
1167 \retval -1: Setting line property failed
1168 \retval -2: USB device unavailable
1169*/
1170int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1171 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1172 enum ftdi_break_type break_type)
1173{
1174 unsigned short value = bits;
1175
1176 if (ftdi == NULL || ftdi->usb_dev == NULL)
1177 ftdi_error_return(-2, "USB device unavailable");
1178
1179 switch (parity)
1180 {
1181 case NONE:
1182 value |= (0x00 << 8);
1183 break;
1184 case ODD:
1185 value |= (0x01 << 8);
1186 break;
1187 case EVEN:
1188 value |= (0x02 << 8);
1189 break;
1190 case MARK:
1191 value |= (0x03 << 8);
1192 break;
1193 case SPACE:
1194 value |= (0x04 << 8);
1195 break;
1196 }
1197
1198 switch (sbit)
1199 {
1200 case STOP_BIT_1:
1201 value |= (0x00 << 11);
1202 break;
1203 case STOP_BIT_15:
1204 value |= (0x01 << 11);
1205 break;
1206 case STOP_BIT_2:
1207 value |= (0x02 << 11);
1208 break;
1209 }
1210
1211 switch (break_type)
1212 {
1213 case BREAK_OFF:
1214 value |= (0x00 << 14);
1215 break;
1216 case BREAK_ON:
1217 value |= (0x01 << 14);
1218 break;
1219 }
1220
1221 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1222 SIO_SET_DATA_REQUEST, value,
1223 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1224 ftdi_error_return (-1, "Setting new line property failed");
1225
1226 return 0;
1227}
1228
1229/**
1230 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1231
1232 \param ftdi pointer to ftdi_context
1233 \param buf Buffer with the data
1234 \param size Size of the buffer
1235
1236 \retval -666: USB device unavailable
1237 \retval <0: error code from usb_bulk_write()
1238 \retval >0: number of bytes written
1239*/
1240int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1241{
1242 int offset = 0;
1243 int actual_length;
1244
1245 if (ftdi == NULL || ftdi->usb_dev == NULL)
1246 ftdi_error_return(-666, "USB device unavailable");
1247
1248 while (offset < size)
1249 {
1250 int write_size = ftdi->writebuffer_chunksize;
1251
1252 if (offset+write_size > size)
1253 write_size = size-offset;
1254
1255 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1256 ftdi_error_return(-1, "usb bulk write failed");
1257
1258 offset += actual_length;
1259 }
1260
1261 return offset;
1262}
1263
1264static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1265{
1266 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1267 struct ftdi_context *ftdi = tc->ftdi;
1268 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1269
1270 packet_size = ftdi->max_packet_size;
1271
1272 actual_length = transfer->actual_length;
1273
1274 if (actual_length > 2)
1275 {
1276 // skip FTDI status bytes.
1277 // Maybe stored in the future to enable modem use
1278 num_of_chunks = actual_length / packet_size;
1279 chunk_remains = actual_length % packet_size;
1280 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1281
1282 ftdi->readbuffer_offset += 2;
1283 actual_length -= 2;
1284
1285 if (actual_length > packet_size - 2)
1286 {
1287 for (i = 1; i < num_of_chunks; i++)
1288 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1289 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1290 packet_size - 2);
1291 if (chunk_remains > 2)
1292 {
1293 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1294 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1295 chunk_remains-2);
1296 actual_length -= 2*num_of_chunks;
1297 }
1298 else
1299 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1300 }
1301
1302 if (actual_length > 0)
1303 {
1304 // data still fits in buf?
1305 if (tc->offset + actual_length <= tc->size)
1306 {
1307 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1308 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1309 tc->offset += actual_length;
1310
1311 ftdi->readbuffer_offset = 0;
1312 ftdi->readbuffer_remaining = 0;
1313
1314 /* Did we read exactly the right amount of bytes? */
1315 if (tc->offset == tc->size)
1316 {
1317 //printf("read_data exact rem %d offset %d\n",
1318 //ftdi->readbuffer_remaining, offset);
1319 tc->completed = 1;
1320 return;
1321 }
1322 }
1323 else
1324 {
1325 // only copy part of the data or size <= readbuffer_chunksize
1326 int part_size = tc->size - tc->offset;
1327 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1328 tc->offset += part_size;
1329
1330 ftdi->readbuffer_offset += part_size;
1331 ftdi->readbuffer_remaining = actual_length - part_size;
1332
1333 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1334 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1335 tc->completed = 1;
1336 return;
1337 }
1338 }
1339 }
1340 ret = libusb_submit_transfer (transfer);
1341 if (ret < 0)
1342 tc->completed = 1;
1343}
1344
1345
1346static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1347{
1348 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1349 struct ftdi_context *ftdi = tc->ftdi;
1350
1351 tc->offset += transfer->actual_length;
1352
1353 if (tc->offset == tc->size)
1354 {
1355 tc->completed = 1;
1356 }
1357 else
1358 {
1359 int write_size = ftdi->writebuffer_chunksize;
1360 int ret;
1361
1362 if (tc->offset + write_size > tc->size)
1363 write_size = tc->size - tc->offset;
1364
1365 transfer->length = write_size;
1366 transfer->buffer = tc->buf + tc->offset;
1367 ret = libusb_submit_transfer (transfer);
1368 if (ret < 0)
1369 tc->completed = 1;
1370 }
1371}
1372
1373
1374/**
1375 Writes data to the chip. Does not wait for completion of the transfer
1376 nor does it make sure that the transfer was successful.
1377
1378 Use libusb 1.0 asynchronous API.
1379
1380 \param ftdi pointer to ftdi_context
1381 \param buf Buffer with the data
1382 \param size Size of the buffer
1383
1384 \retval NULL: Some error happens when submit transfer
1385 \retval !NULL: Pointer to a ftdi_transfer_control
1386*/
1387
1388struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1389{
1390 struct ftdi_transfer_control *tc;
1391 struct libusb_transfer *transfer = libusb_alloc_transfer(0);
1392 int write_size, ret;
1393
1394 if (ftdi == NULL || ftdi->usb_dev == NULL)
1395 {
1396 libusb_free_transfer(transfer);
1397 return NULL;
1398 }
1399
1400 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1401
1402 if (!tc || !transfer)
1403 return NULL;
1404
1405 tc->ftdi = ftdi;
1406 tc->completed = 0;
1407 tc->buf = buf;
1408 tc->size = size;
1409 tc->offset = 0;
1410
1411 if (size < ftdi->writebuffer_chunksize)
1412 write_size = size;
1413 else
1414 write_size = ftdi->writebuffer_chunksize;
1415
1416 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1417 write_size, ftdi_write_data_cb, tc,
1418 ftdi->usb_write_timeout);
1419 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1420
1421 ret = libusb_submit_transfer(transfer);
1422 if (ret < 0)
1423 {
1424 libusb_free_transfer(transfer);
1425 tc->completed = 1;
1426 tc->transfer = NULL;
1427 return NULL;
1428 }
1429 tc->transfer = transfer;
1430
1431 return tc;
1432}
1433
1434/**
1435 Reads data from the chip. Does not wait for completion of the transfer
1436 nor does it make sure that the transfer was successful.
1437
1438 Use libusb 1.0 asynchronous API.
1439
1440 \param ftdi pointer to ftdi_context
1441 \param buf Buffer with the data
1442 \param size Size of the buffer
1443
1444 \retval NULL: Some error happens when submit transfer
1445 \retval !NULL: Pointer to a ftdi_transfer_control
1446*/
1447
1448struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1449{
1450 struct ftdi_transfer_control *tc;
1451 struct libusb_transfer *transfer;
1452 int ret;
1453
1454 if (ftdi == NULL || ftdi->usb_dev == NULL)
1455 return NULL;
1456
1457 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1458 if (!tc)
1459 return NULL;
1460
1461 tc->ftdi = ftdi;
1462 tc->buf = buf;
1463 tc->size = size;
1464
1465 if (size <= ftdi->readbuffer_remaining)
1466 {
1467 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1468
1469 // Fix offsets
1470 ftdi->readbuffer_remaining -= size;
1471 ftdi->readbuffer_offset += size;
1472
1473 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1474
1475 tc->completed = 1;
1476 tc->offset = size;
1477 tc->transfer = NULL;
1478 return tc;
1479 }
1480
1481 tc->completed = 0;
1482 if (ftdi->readbuffer_remaining != 0)
1483 {
1484 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1485
1486 tc->offset = ftdi->readbuffer_remaining;
1487 }
1488 else
1489 tc->offset = 0;
1490
1491 transfer = libusb_alloc_transfer(0);
1492 if (!transfer)
1493 {
1494 free (tc);
1495 return NULL;
1496 }
1497
1498 ftdi->readbuffer_remaining = 0;
1499 ftdi->readbuffer_offset = 0;
1500
1501 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1502 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1503
1504 ret = libusb_submit_transfer(transfer);
1505 if (ret < 0)
1506 {
1507 libusb_free_transfer(transfer);
1508 free (tc);
1509 return NULL;
1510 }
1511 tc->transfer = transfer;
1512
1513 return tc;
1514}
1515
1516/**
1517 Wait for completion of the transfer.
1518
1519 Use libusb 1.0 asynchronous API.
1520
1521 \param tc pointer to ftdi_transfer_control
1522
1523 \retval < 0: Some error happens
1524 \retval >= 0: Data size transferred
1525*/
1526
1527int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1528{
1529 int ret;
1530
1531 while (!tc->completed)
1532 {
1533 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1534 if (ret < 0)
1535 {
1536 if (ret == LIBUSB_ERROR_INTERRUPTED)
1537 continue;
1538 libusb_cancel_transfer(tc->transfer);
1539 while (!tc->completed)
1540 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1541 break;
1542 libusb_free_transfer(tc->transfer);
1543 free (tc);
1544 return ret;
1545 }
1546 }
1547
1548 ret = tc->offset;
1549 /**
1550 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1551 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1552 **/
1553 if (tc->transfer)
1554 {
1555 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1556 ret = -1;
1557 libusb_free_transfer(tc->transfer);
1558 }
1559 free(tc);
1560 return ret;
1561}
1562
1563/**
1564 Configure write buffer chunk size.
1565 Default is 4096.
1566
1567 \param ftdi pointer to ftdi_context
1568 \param chunksize Chunk size
1569
1570 \retval 0: all fine
1571 \retval -1: ftdi context invalid
1572*/
1573int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1574{
1575 if (ftdi == NULL)
1576 ftdi_error_return(-1, "ftdi context invalid");
1577
1578 ftdi->writebuffer_chunksize = chunksize;
1579 return 0;
1580}
1581
1582/**
1583 Get write buffer chunk size.
1584
1585 \param ftdi pointer to ftdi_context
1586 \param chunksize Pointer to store chunk size in
1587
1588 \retval 0: all fine
1589 \retval -1: ftdi context invalid
1590*/
1591int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1592{
1593 if (ftdi == NULL)
1594 ftdi_error_return(-1, "ftdi context invalid");
1595
1596 *chunksize = ftdi->writebuffer_chunksize;
1597 return 0;
1598}
1599
1600/**
1601 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1602
1603 Automatically strips the two modem status bytes transfered during every read.
1604
1605 \param ftdi pointer to ftdi_context
1606 \param buf Buffer to store data in
1607 \param size Size of the buffer
1608
1609 \retval -666: USB device unavailable
1610 \retval <0: error code from libusb_bulk_transfer()
1611 \retval 0: no data was available
1612 \retval >0: number of bytes read
1613
1614*/
1615int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1616{
1617 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1618 int packet_size = ftdi->max_packet_size;
1619 int actual_length = 1;
1620
1621 if (ftdi == NULL || ftdi->usb_dev == NULL)
1622 ftdi_error_return(-666, "USB device unavailable");
1623
1624 // Packet size sanity check (avoid division by zero)
1625 if (packet_size == 0)
1626 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1627
1628 // everything we want is still in the readbuffer?
1629 if (size <= ftdi->readbuffer_remaining)
1630 {
1631 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1632
1633 // Fix offsets
1634 ftdi->readbuffer_remaining -= size;
1635 ftdi->readbuffer_offset += size;
1636
1637 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1638
1639 return size;
1640 }
1641 // something still in the readbuffer, but not enough to satisfy 'size'?
1642 if (ftdi->readbuffer_remaining != 0)
1643 {
1644 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1645
1646 // Fix offset
1647 offset += ftdi->readbuffer_remaining;
1648 }
1649 // do the actual USB read
1650 while (offset < size && actual_length > 0)
1651 {
1652 ftdi->readbuffer_remaining = 0;
1653 ftdi->readbuffer_offset = 0;
1654 /* returns how much received */
1655 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1656 if (ret < 0)
1657 ftdi_error_return(ret, "usb bulk read failed");
1658
1659 if (actual_length > 2)
1660 {
1661 // skip FTDI status bytes.
1662 // Maybe stored in the future to enable modem use
1663 num_of_chunks = actual_length / packet_size;
1664 chunk_remains = actual_length % packet_size;
1665 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1666
1667 ftdi->readbuffer_offset += 2;
1668 actual_length -= 2;
1669
1670 if (actual_length > packet_size - 2)
1671 {
1672 for (i = 1; i < num_of_chunks; i++)
1673 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1674 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1675 packet_size - 2);
1676 if (chunk_remains > 2)
1677 {
1678 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1679 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1680 chunk_remains-2);
1681 actual_length -= 2*num_of_chunks;
1682 }
1683 else
1684 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1685 }
1686 }
1687 else if (actual_length <= 2)
1688 {
1689 // no more data to read?
1690 return offset;
1691 }
1692 if (actual_length > 0)
1693 {
1694 // data still fits in buf?
1695 if (offset+actual_length <= size)
1696 {
1697 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1698 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1699 offset += actual_length;
1700
1701 /* Did we read exactly the right amount of bytes? */
1702 if (offset == size)
1703 //printf("read_data exact rem %d offset %d\n",
1704 //ftdi->readbuffer_remaining, offset);
1705 return offset;
1706 }
1707 else
1708 {
1709 // only copy part of the data or size <= readbuffer_chunksize
1710 int part_size = size-offset;
1711 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1712
1713 ftdi->readbuffer_offset += part_size;
1714 ftdi->readbuffer_remaining = actual_length-part_size;
1715 offset += part_size;
1716
1717 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1718 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1719
1720 return offset;
1721 }
1722 }
1723 }
1724 // never reached
1725 return -127;
1726}
1727
1728/**
1729 Configure read buffer chunk size.
1730 Default is 4096.
1731
1732 Automatically reallocates the buffer.
1733
1734 \param ftdi pointer to ftdi_context
1735 \param chunksize Chunk size
1736
1737 \retval 0: all fine
1738 \retval -1: ftdi context invalid
1739*/
1740int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1741{
1742 unsigned char *new_buf;
1743
1744 if (ftdi == NULL)
1745 ftdi_error_return(-1, "ftdi context invalid");
1746
1747 // Invalidate all remaining data
1748 ftdi->readbuffer_offset = 0;
1749 ftdi->readbuffer_remaining = 0;
1750#ifdef __linux__
1751 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1752 which is defined in libusb-1.0. Otherwise, each USB read request will
1753 be divided into multiple URBs. This will cause issues on Linux kernel
1754 older than 2.6.32. */
1755 if (chunksize > 16384)
1756 chunksize = 16384;
1757#endif
1758
1759 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1760 ftdi_error_return(-1, "out of memory for readbuffer");
1761
1762 ftdi->readbuffer = new_buf;
1763 ftdi->readbuffer_chunksize = chunksize;
1764
1765 return 0;
1766}
1767
1768/**
1769 Get read buffer chunk size.
1770
1771 \param ftdi pointer to ftdi_context
1772 \param chunksize Pointer to store chunk size in
1773
1774 \retval 0: all fine
1775 \retval -1: FTDI context invalid
1776*/
1777int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1778{
1779 if (ftdi == NULL)
1780 ftdi_error_return(-1, "FTDI context invalid");
1781
1782 *chunksize = ftdi->readbuffer_chunksize;
1783 return 0;
1784}
1785
1786
1787/**
1788 Enable bitbang mode.
1789
1790 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1791
1792 \param ftdi pointer to ftdi_context
1793 \param bitmask Bitmask to configure lines.
1794 HIGH/ON value configures a line as output.
1795
1796 \retval 0: all fine
1797 \retval -1: can't enable bitbang mode
1798 \retval -2: USB device unavailable
1799*/
1800int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1801{
1802 unsigned short usb_val;
1803
1804 if (ftdi == NULL || ftdi->usb_dev == NULL)
1805 ftdi_error_return(-2, "USB device unavailable");
1806
1807 usb_val = bitmask; // low byte: bitmask
1808 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1809 usb_val |= (ftdi->bitbang_mode << 8);
1810
1811 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1812 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1813 NULL, 0, ftdi->usb_write_timeout) < 0)
1814 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1815
1816 ftdi->bitbang_enabled = 1;
1817 return 0;
1818}
1819
1820/**
1821 Disable bitbang mode.
1822
1823 \param ftdi pointer to ftdi_context
1824
1825 \retval 0: all fine
1826 \retval -1: can't disable bitbang mode
1827 \retval -2: USB device unavailable
1828*/
1829int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1830{
1831 if (ftdi == NULL || ftdi->usb_dev == NULL)
1832 ftdi_error_return(-2, "USB device unavailable");
1833
1834 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1835 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1836
1837 ftdi->bitbang_enabled = 0;
1838 return 0;
1839}
1840
1841/**
1842 Enable/disable bitbang modes.
1843
1844 \param ftdi pointer to ftdi_context
1845 \param bitmask Bitmask to configure lines.
1846 HIGH/ON value configures a line as output.
1847 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1848
1849 \retval 0: all fine
1850 \retval -1: can't enable bitbang mode
1851 \retval -2: USB device unavailable
1852*/
1853int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1854{
1855 unsigned short usb_val;
1856
1857 if (ftdi == NULL || ftdi->usb_dev == NULL)
1858 ftdi_error_return(-2, "USB device unavailable");
1859
1860 usb_val = bitmask; // low byte: bitmask
1861 usb_val |= (mode << 8);
1862 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1863 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1864
1865 ftdi->bitbang_mode = mode;
1866 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1867 return 0;
1868}
1869
1870/**
1871 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1872
1873 \param ftdi pointer to ftdi_context
1874 \param pins Pointer to store pins into
1875
1876 \retval 0: all fine
1877 \retval -1: read pins failed
1878 \retval -2: USB device unavailable
1879*/
1880int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1881{
1882 if (ftdi == NULL || ftdi->usb_dev == NULL)
1883 ftdi_error_return(-2, "USB device unavailable");
1884
1885 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1886 ftdi_error_return(-1, "read pins failed");
1887
1888 return 0;
1889}
1890
1891/**
1892 Set latency timer
1893
1894 The FTDI chip keeps data in the internal buffer for a specific
1895 amount of time if the buffer is not full yet to decrease
1896 load on the usb bus.
1897
1898 \param ftdi pointer to ftdi_context
1899 \param latency Value between 1 and 255
1900
1901 \retval 0: all fine
1902 \retval -1: latency out of range
1903 \retval -2: unable to set latency timer
1904 \retval -3: USB device unavailable
1905*/
1906int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1907{
1908 unsigned short usb_val;
1909
1910 if (latency < 1)
1911 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1912
1913 if (ftdi == NULL || ftdi->usb_dev == NULL)
1914 ftdi_error_return(-3, "USB device unavailable");
1915
1916 usb_val = latency;
1917 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1918 ftdi_error_return(-2, "unable to set latency timer");
1919
1920 return 0;
1921}
1922
1923/**
1924 Get latency timer
1925
1926 \param ftdi pointer to ftdi_context
1927 \param latency Pointer to store latency value in
1928
1929 \retval 0: all fine
1930 \retval -1: unable to get latency timer
1931 \retval -2: USB device unavailable
1932*/
1933int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1934{
1935 unsigned short usb_val;
1936
1937 if (ftdi == NULL || ftdi->usb_dev == NULL)
1938 ftdi_error_return(-2, "USB device unavailable");
1939
1940 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1941 ftdi_error_return(-1, "reading latency timer failed");
1942
1943 *latency = (unsigned char)usb_val;
1944 return 0;
1945}
1946
1947/**
1948 Poll modem status information
1949
1950 This function allows the retrieve the two status bytes of the device.
1951 The device sends these bytes also as a header for each read access
1952 where they are discarded by ftdi_read_data(). The chip generates
1953 the two stripped status bytes in the absence of data every 40 ms.
1954
1955 Layout of the first byte:
1956 - B0..B3 - must be 0
1957 - B4 Clear to send (CTS)
1958 0 = inactive
1959 1 = active
1960 - B5 Data set ready (DTS)
1961 0 = inactive
1962 1 = active
1963 - B6 Ring indicator (RI)
1964 0 = inactive
1965 1 = active
1966 - B7 Receive line signal detect (RLSD)
1967 0 = inactive
1968 1 = active
1969
1970 Layout of the second byte:
1971 - B0 Data ready (DR)
1972 - B1 Overrun error (OE)
1973 - B2 Parity error (PE)
1974 - B3 Framing error (FE)
1975 - B4 Break interrupt (BI)
1976 - B5 Transmitter holding register (THRE)
1977 - B6 Transmitter empty (TEMT)
1978 - B7 Error in RCVR FIFO
1979
1980 \param ftdi pointer to ftdi_context
1981 \param status Pointer to store status information in. Must be two bytes.
1982
1983 \retval 0: all fine
1984 \retval -1: unable to retrieve status information
1985 \retval -2: USB device unavailable
1986*/
1987int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1988{
1989 char usb_val[2];
1990
1991 if (ftdi == NULL || ftdi->usb_dev == NULL)
1992 ftdi_error_return(-2, "USB device unavailable");
1993
1994 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1995 ftdi_error_return(-1, "getting modem status failed");
1996
1997 *status = (usb_val[1] << 8) | usb_val[0];
1998
1999 return 0;
2000}
2001
2002/**
2003 Set flowcontrol for ftdi chip
2004
2005 \param ftdi pointer to ftdi_context
2006 \param flowctrl flow control to use. should be
2007 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2008
2009 \retval 0: all fine
2010 \retval -1: set flow control failed
2011 \retval -2: USB device unavailable
2012*/
2013int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2014{
2015 if (ftdi == NULL || ftdi->usb_dev == NULL)
2016 ftdi_error_return(-2, "USB device unavailable");
2017
2018 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2019 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2020 NULL, 0, ftdi->usb_write_timeout) < 0)
2021 ftdi_error_return(-1, "set flow control failed");
2022
2023 return 0;
2024}
2025
2026/**
2027 Set dtr line
2028
2029 \param ftdi pointer to ftdi_context
2030 \param state state to set line to (1 or 0)
2031
2032 \retval 0: all fine
2033 \retval -1: set dtr failed
2034 \retval -2: USB device unavailable
2035*/
2036int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2037{
2038 unsigned short usb_val;
2039
2040 if (ftdi == NULL || ftdi->usb_dev == NULL)
2041 ftdi_error_return(-2, "USB device unavailable");
2042
2043 if (state)
2044 usb_val = SIO_SET_DTR_HIGH;
2045 else
2046 usb_val = SIO_SET_DTR_LOW;
2047
2048 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2049 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2050 NULL, 0, ftdi->usb_write_timeout) < 0)
2051 ftdi_error_return(-1, "set dtr failed");
2052
2053 return 0;
2054}
2055
2056/**
2057 Set rts line
2058
2059 \param ftdi pointer to ftdi_context
2060 \param state state to set line to (1 or 0)
2061
2062 \retval 0: all fine
2063 \retval -1: set rts failed
2064 \retval -2: USB device unavailable
2065*/
2066int ftdi_setrts(struct ftdi_context *ftdi, int state)
2067{
2068 unsigned short usb_val;
2069
2070 if (ftdi == NULL || ftdi->usb_dev == NULL)
2071 ftdi_error_return(-2, "USB device unavailable");
2072
2073 if (state)
2074 usb_val = SIO_SET_RTS_HIGH;
2075 else
2076 usb_val = SIO_SET_RTS_LOW;
2077
2078 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2079 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2080 NULL, 0, ftdi->usb_write_timeout) < 0)
2081 ftdi_error_return(-1, "set of rts failed");
2082
2083 return 0;
2084}
2085
2086/**
2087 Set dtr and rts line in one pass
2088
2089 \param ftdi pointer to ftdi_context
2090 \param dtr DTR state to set line to (1 or 0)
2091 \param rts RTS state to set line to (1 or 0)
2092
2093 \retval 0: all fine
2094 \retval -1: set dtr/rts failed
2095 \retval -2: USB device unavailable
2096 */
2097int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2098{
2099 unsigned short usb_val;
2100
2101 if (ftdi == NULL || ftdi->usb_dev == NULL)
2102 ftdi_error_return(-2, "USB device unavailable");
2103
2104 if (dtr)
2105 usb_val = SIO_SET_DTR_HIGH;
2106 else
2107 usb_val = SIO_SET_DTR_LOW;
2108
2109 if (rts)
2110 usb_val |= SIO_SET_RTS_HIGH;
2111 else
2112 usb_val |= SIO_SET_RTS_LOW;
2113
2114 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2115 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2116 NULL, 0, ftdi->usb_write_timeout) < 0)
2117 ftdi_error_return(-1, "set of rts/dtr failed");
2118
2119 return 0;
2120}
2121
2122/**
2123 Set the special event character
2124
2125 \param ftdi pointer to ftdi_context
2126 \param eventch Event character
2127 \param enable 0 to disable the event character, non-zero otherwise
2128
2129 \retval 0: all fine
2130 \retval -1: unable to set event character
2131 \retval -2: USB device unavailable
2132*/
2133int ftdi_set_event_char(struct ftdi_context *ftdi,
2134 unsigned char eventch, unsigned char enable)
2135{
2136 unsigned short usb_val;
2137
2138 if (ftdi == NULL || ftdi->usb_dev == NULL)
2139 ftdi_error_return(-2, "USB device unavailable");
2140
2141 usb_val = eventch;
2142 if (enable)
2143 usb_val |= 1 << 8;
2144
2145 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2146 ftdi_error_return(-1, "setting event character failed");
2147
2148 return 0;
2149}
2150
2151/**
2152 Set error character
2153
2154 \param ftdi pointer to ftdi_context
2155 \param errorch Error character
2156 \param enable 0 to disable the error character, non-zero otherwise
2157
2158 \retval 0: all fine
2159 \retval -1: unable to set error character
2160 \retval -2: USB device unavailable
2161*/
2162int ftdi_set_error_char(struct ftdi_context *ftdi,
2163 unsigned char errorch, unsigned char enable)
2164{
2165 unsigned short usb_val;
2166
2167 if (ftdi == NULL || ftdi->usb_dev == NULL)
2168 ftdi_error_return(-2, "USB device unavailable");
2169
2170 usb_val = errorch;
2171 if (enable)
2172 usb_val |= 1 << 8;
2173
2174 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2175 ftdi_error_return(-1, "setting error character failed");
2176
2177 return 0;
2178}
2179
2180/**
2181 Init eeprom with default values.
2182 \param ftdi pointer to ftdi_context
2183
2184*/
2185void ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2186 char * product, char * serial)
2187{
2188 struct ftdi_eeprom *eeprom;
2189
2190 if (ftdi == NULL)
2191 return;
2192
2193 if (ftdi->eeprom == NULL)
2194 return;
2195
2196 eeprom = ftdi->eeprom;
2197 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2198
2199 eeprom->vendor_id = 0x0403;
2200 eeprom->use_serial = USE_SERIAL_NUM;
2201 if((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2202 (ftdi->type == TYPE_R))
2203 eeprom->product_id = 0x6001;
2204 else
2205 eeprom->product_id = 0x6010;
2206 if (ftdi->type == TYPE_AM)
2207 eeprom->usb_version = 0x0101;
2208 else
2209 eeprom->usb_version = 0x0200;
2210 eeprom->max_power = 50;
2211
2212 if (eeprom->manufacturer)
2213 free (eeprom->manufacturer);
2214 eeprom->manufacturer = NULL;
2215 if (manufacturer)
2216 {
2217 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2218 if (eeprom->manufacturer)
2219 strcpy(eeprom->manufacturer, manufacturer);
2220 }
2221
2222 if (eeprom->product)
2223 free (eeprom->product);
2224 eeprom->product = NULL;
2225 {
2226 eeprom->product = malloc(strlen(product)+1);
2227 if (eeprom->product)
2228 strcpy(eeprom->product, product);
2229 }
2230
2231 if (eeprom->serial)
2232 free (eeprom->serial);
2233 eeprom->serial = NULL;
2234 if (serial)
2235 {
2236 eeprom->serial = malloc(strlen(serial)+1);
2237 if (eeprom->serial)
2238 strcpy(eeprom->serial, serial);
2239 }
2240
2241
2242 if(ftdi->type == TYPE_R)
2243 {
2244 eeprom->max_power = 45;
2245 eeprom->size = 0x80;
2246 eeprom->cbus_function[0] = CBUS_TXLED;
2247 eeprom->cbus_function[1] = CBUS_RXLED;
2248 eeprom->cbus_function[2] = CBUS_TXDEN;
2249 eeprom->cbus_function[3] = CBUS_PWREN;
2250 eeprom->cbus_function[4] = CBUS_SLEEP;
2251 }
2252 else
2253 eeprom->size = -1;
2254}
2255
2256/**
2257 Build binary buffer from ftdi_eeprom structure.
2258 Output is suitable for ftdi_write_eeprom().
2259
2260 \param ftdi pointer to ftdi_context
2261
2262 \retval >0: free eeprom size
2263 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2264 \retval -2: Invalid eeprom pointer
2265 \retval -3: Invalid cbus function setting
2266 \retval -4: Chip doesn't support invert
2267 \retval -5: Chip doesn't support high current drive
2268 \retval -6: No connected EEPROM or EEPROM Type unknown
2269*/
2270int ftdi_eeprom_build(struct ftdi_context *ftdi)
2271{
2272 unsigned char i, j, k;
2273 unsigned short checksum, value;
2274 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2275 int size_check;
2276 struct ftdi_eeprom *eeprom;
2277 unsigned char * output;
2278
2279 if (ftdi == NULL)
2280 ftdi_error_return(-2,"No context");
2281 if (ftdi->eeprom == NULL)
2282 ftdi_error_return(-2,"No eeprom structure");
2283
2284 eeprom= ftdi->eeprom;
2285 output = eeprom->buf;
2286
2287 if(eeprom->chip == -1)
2288 ftdi_error_return(-5,"No connected EEPROM or EEPROM Type unknown");
2289
2290 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2291 eeprom->size = 0x100;
2292 else
2293 eeprom->size = 0x80;
2294
2295 if (eeprom->manufacturer != NULL)
2296 manufacturer_size = strlen(eeprom->manufacturer);
2297 if (eeprom->product != NULL)
2298 product_size = strlen(eeprom->product);
2299 if (eeprom->serial != NULL)
2300 serial_size = strlen(eeprom->serial);
2301
2302 size_check = 0x80;
2303 switch(ftdi->type)
2304 {
2305 case TYPE_2232H:
2306 case TYPE_4232H:
2307 size_check -= 4;
2308 case TYPE_R:
2309 size_check -= 4;
2310 case TYPE_2232C:
2311 size_check -= 4;
2312 case TYPE_AM:
2313 case TYPE_BM:
2314 size_check -= 0x14*2;
2315 }
2316
2317 size_check -= manufacturer_size*2;
2318 size_check -= product_size*2;
2319 size_check -= serial_size*2;
2320
2321 /* Space for the string type and pointer bytes */
2322 size_check -= -6;
2323
2324 // eeprom size exceeded?
2325 if (size_check < 0)
2326 return (-1);
2327
2328 // empty eeprom
2329 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2330
2331 // Bytes and Bits set for all Types
2332
2333 // Addr 02: Vendor ID
2334 output[0x02] = eeprom->vendor_id;
2335 output[0x03] = eeprom->vendor_id >> 8;
2336
2337 // Addr 04: Product ID
2338 output[0x04] = eeprom->product_id;
2339 output[0x05] = eeprom->product_id >> 8;
2340
2341 // Addr 06: Device release number (0400h for BM features)
2342 output[0x06] = 0x00;
2343 switch (ftdi->type) {
2344 case TYPE_AM:
2345 output[0x07] = 0x02;
2346 break;
2347 case TYPE_BM:
2348 output[0x07] = 0x04;
2349 break;
2350 case TYPE_2232C:
2351 output[0x07] = 0x05;
2352 break;
2353 case TYPE_R:
2354 output[0x07] = 0x06;
2355 break;
2356 case TYPE_2232H:
2357 output[0x07] = 0x07;
2358 break;
2359 case TYPE_4232H:
2360 output[0x07] = 0x08;
2361 break;
2362 default:
2363 output[0x07] = 0x00;
2364 }
2365
2366 // Addr 08: Config descriptor
2367 // Bit 7: always 1
2368 // Bit 6: 1 if this device is self powered, 0 if bus powered
2369 // Bit 5: 1 if this device uses remote wakeup
2370 // Bit 4: 1 if this device is battery powered
2371 j = 0x80;
2372 if (eeprom->self_powered == 1)
2373 j |= 0x40;
2374 if (eeprom->remote_wakeup == 1)
2375 j |= 0x20;
2376 output[0x08] = j;
2377
2378 // Addr 09: Max power consumption: max power = value * 2 mA
2379 output[0x09] = eeprom->max_power;
2380
2381 if(ftdi->type != TYPE_AM)
2382 {
2383 // Addr 0A: Chip configuration
2384 // Bit 7: 0 - reserved
2385 // Bit 6: 0 - reserved
2386 // Bit 5: 0 - reserved
2387 // Bit 4: 1 - Change USB version
2388 // Bit 3: 1 - Use the serial number string
2389 // Bit 2: 1 - Enable suspend pull downs for lower power
2390 // Bit 1: 1 - Out EndPoint is Isochronous
2391 // Bit 0: 1 - In EndPoint is Isochronous
2392 //
2393 j = 0;
2394 if (eeprom->in_is_isochronous == 1)
2395 j = j | 1;
2396 if (eeprom->out_is_isochronous == 1)
2397 j = j | 2;
2398 output[0x0A] = j;
2399 }
2400
2401 // Dynamic content
2402 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2403 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2404 i = 0;
2405 switch(ftdi->type)
2406 {
2407 case TYPE_2232H:
2408 case TYPE_4232H:
2409 i += 2;
2410 case TYPE_R:
2411 i += 2;
2412 case TYPE_2232C:
2413 i += 2;
2414 case TYPE_AM:
2415 case TYPE_BM:
2416 i += 0x94;
2417 }
2418 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2419 k = eeprom->size -1;
2420
2421 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2422 // Addr 0F: Length of manufacturer string
2423 // Output manufacturer
2424 output[0x0E] = i; // calculate offset
2425 output[i++ & k] = manufacturer_size*2 + 2;
2426 output[i++ & k] = 0x03; // type: string
2427 for (j = 0; j < manufacturer_size; j++)
2428 {
2429 output[i & k] = eeprom->manufacturer[j], i++;
2430 output[i & k] = 0x00, i++;
2431 }
2432 output[0x0F] = manufacturer_size*2 + 2;
2433
2434 // Addr 10: Offset of the product string + 0x80, calculated later
2435 // Addr 11: Length of product string
2436 output[0x10] = i | 0x80; // calculate offset
2437 output[i & k] = product_size*2 + 2, i++;
2438 output[i & k] = 0x03, i++;
2439 for (j = 0; j < product_size; j++)
2440 {
2441 output[i & k] = eeprom->product[j], i++;
2442 output[i & k] = 0x00, i++;
2443 }
2444 output[0x11] = product_size*2 + 2;
2445
2446 // Addr 12: Offset of the serial string + 0x80, calculated later
2447 // Addr 13: Length of serial string
2448 output[0x12] = i | 0x80; // calculate offset
2449 output[i & k] = serial_size*2 + 2, i++;
2450 output[i & k] = 0x03, i++;
2451 for (j = 0; j < serial_size; j++)
2452 {
2453 output[i & k] = eeprom->serial[j], i++;
2454 output[i & k] = 0x00, i++;
2455 }
2456 output[0x13] = serial_size*2 + 2;
2457
2458 /* Fixme: ftd2xx seems to append 0x02, 0x03 and 0x01 for PnP = 0 or 0x00 else */
2459 // calculate checksum
2460
2461 /* Bytes and Bits specific to (some) types
2462 Write linear, as this allows easier fixing*/
2463 switch(ftdi->type)
2464 {
2465 case TYPE_AM:
2466 break;
2467 case TYPE_BM:
2468 output[0x0C] = eeprom->usb_version & 0xff;
2469 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2470 if (eeprom->use_serial == 1)
2471 output[0x0A] |= 0x8;
2472 else
2473 output[0x0A] &= ~0x8;
2474 output[0x14] = eeprom->chip;
2475 break;
2476 case TYPE_2232C:
2477
2478 output[0x00] = (eeprom->channel_a_type);
2479 if ( eeprom->channel_a_driver == DRIVER_VCP)
2480 output[0x00] |= DRIVER_VCP;
2481 else
2482 output[0x00] &= ~DRIVER_VCP;
2483
2484 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2485 output[0x00] |= HIGH_CURRENT_DRIVE;
2486 else
2487 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2488
2489 output[0x01] = (eeprom->channel_b_type);
2490 if ( eeprom->channel_b_driver == DRIVER_VCP)
2491 output[0x01] |= DRIVER_VCP;
2492 else
2493 output[0x01] &= ~DRIVER_VCP;
2494
2495 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2496 output[0x01] |= HIGH_CURRENT_DRIVE;
2497 else
2498 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2499
2500 if (eeprom->in_is_isochronous == 1)
2501 output[0x0A] |= 0x1;
2502 else
2503 output[0x0A] &= ~0x1;
2504 if (eeprom->out_is_isochronous == 1)
2505 output[0x0A] |= 0x2;
2506 else
2507 output[0x0A] &= ~0x2;
2508 if (eeprom->suspend_pull_downs == 1)
2509 output[0x0A] |= 0x4;
2510 else
2511 output[0x0A] &= ~0x4;
2512 if (eeprom->use_serial == USE_SERIAL_NUM )
2513 output[0x0A] |= USE_SERIAL_NUM;
2514 else
2515 output[0x0A] &= ~0x8;
2516 output[0x0C] = eeprom->usb_version & 0xff;
2517 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2518 output[0x14] = eeprom->chip;
2519 break;
2520 case TYPE_R:
2521 if(eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2522 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2523 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2524
2525 if (eeprom->suspend_pull_downs == 1)
2526 output[0x0A] |= 0x4;
2527 else
2528 output[0x0A] &= ~0x4;
2529 if (eeprom->use_serial == USE_SERIAL_NUM)
2530 output[0x0A] |= USE_SERIAL_NUM;
2531 else
2532 output[0x0A] &= ~0x8;
2533 output[0x0B] = eeprom->invert;
2534 output[0x0C] = eeprom->usb_version & 0xff;
2535 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2536
2537 if(eeprom->cbus_function[0] > CBUS_BB)
2538 output[0x14] = CBUS_TXLED;
2539 else
2540 output[0x14] = eeprom->cbus_function[0];
2541
2542 if(eeprom->cbus_function[1] > CBUS_BB)
2543 output[0x14] |= CBUS_RXLED<<4;
2544 else
2545 output[0x14] |= eeprom->cbus_function[1]<<4;
2546
2547 if(eeprom->cbus_function[2] > CBUS_BB)
2548 output[0x15] = CBUS_TXDEN;
2549 else
2550 output[0x15] = eeprom->cbus_function[2];
2551
2552 if(eeprom->cbus_function[3] > CBUS_BB)
2553 output[0x15] |= CBUS_PWREN<<4;
2554 else
2555 output[0x15] |= eeprom->cbus_function[3]<<4;
2556
2557 if(eeprom->cbus_function[4] > CBUS_CLK6)
2558 output[0x16] = CBUS_SLEEP;
2559 else
2560 output[0x16] = eeprom->cbus_function[4];
2561 break;
2562 case TYPE_2232H:
2563 output[0x00] = (eeprom->channel_a_type);
2564 if ( eeprom->channel_a_driver == DRIVER_VCP)
2565 output[0x00] |= DRIVER_VCP;
2566 else
2567 output[0x00] &= ~DRIVER_VCP;
2568
2569 output[0x01] = (eeprom->channel_b_type);
2570 if ( eeprom->channel_b_driver == DRIVER_VCP)
2571 output[0x01] |= DRIVER_VCP;
2572 else
2573 output[0x01] &= ~DRIVER_VCP;
2574 if(eeprom->suspend_dbus7 == SUSPEND_DBUS7)
2575 output[0x01] |= SUSPEND_DBUS7;
2576 else
2577 output[0x01] &= ~SUSPEND_DBUS7;
2578
2579 if(eeprom->group0_drive > DRIVE_16MA)
2580 output[0x0c] |= DRIVE_16MA;
2581 else
2582 output[0x0c] |= eeprom->group0_drive;
2583 if (eeprom->group0_schmitt == IS_SCHMITT)
2584 output[0x0c] |= IS_SCHMITT;
2585 if (eeprom->group0_slew == SLOW_SLEW)
2586 output[0x0c] |= SLOW_SLEW;
2587
2588 if(eeprom->group1_drive > DRIVE_16MA)
2589 output[0x0c] |= DRIVE_16MA<<4;
2590 else
2591 output[0x0c] |= eeprom->group1_drive<<4;
2592 if (eeprom->group1_schmitt == IS_SCHMITT)
2593 output[0x0c] |= IS_SCHMITT<<4;
2594 if (eeprom->group1_slew == SLOW_SLEW)
2595 output[0x0c] |= SLOW_SLEW<<4;
2596
2597 if(eeprom->group2_drive > DRIVE_16MA)
2598 output[0x0d] |= DRIVE_16MA;
2599 else
2600 output[0x0d] |= eeprom->group2_drive;
2601 if (eeprom->group2_schmitt == IS_SCHMITT)
2602 output[0x0d] |= IS_SCHMITT;
2603 if (eeprom->group2_slew == SLOW_SLEW)
2604 output[0x0d] |= SLOW_SLEW;
2605
2606 if(eeprom->group3_drive > DRIVE_16MA)
2607 output[0x0d] |= DRIVE_16MA<<4;
2608 else
2609 output[0x0d] |= eeprom->group3_drive<<4;
2610 if (eeprom->group3_schmitt == IS_SCHMITT)
2611 output[0x0d] |= IS_SCHMITT<<4;
2612 if (eeprom->group3_slew == SLOW_SLEW)
2613 output[0x0d] |= SLOW_SLEW<<4;
2614
2615 output[0x18] = eeprom->chip;
2616
2617 break;
2618 }
2619
2620 // calculate checksum
2621 checksum = 0xAAAA;
2622
2623 for (i = 0; i < eeprom->size/2-1; i++)
2624 {
2625 value = output[i*2];
2626 value += output[(i*2)+1] << 8;
2627
2628 checksum = value^checksum;
2629 checksum = (checksum << 1) | (checksum >> 15);
2630 }
2631
2632 output[eeprom->size-2] = checksum;
2633 output[eeprom->size-1] = checksum >> 8;
2634
2635 return size_check;
2636}
2637
2638/**
2639 Decode binary EEPROM image into an ftdi_eeprom structure.
2640
2641 \param ftdi pointer to ftdi_context
2642 \param verbose Decode EEPROM on stdout
2643
2644 \retval 0: all fine
2645 \retval -1: something went wrong
2646
2647 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2648 FIXME: Strings are malloc'ed here and should be freed somewhere
2649*/
2650int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2651{
2652 unsigned char i, j;
2653 unsigned short checksum, eeprom_checksum, value;
2654 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2655 int eeprom_size;
2656 struct ftdi_eeprom *eeprom;
2657 unsigned char *buf = ftdi->eeprom->buf;
2658 int release;
2659
2660 if (ftdi == NULL)
2661 ftdi_error_return(-1,"No context");
2662 if (ftdi->eeprom == NULL)
2663 ftdi_error_return(-1,"No eeprom structure");
2664
2665 eeprom = ftdi->eeprom;
2666 eeprom_size = eeprom->size;
2667
2668 // Addr 02: Vendor ID
2669 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2670
2671 // Addr 04: Product ID
2672 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2673
2674 release = buf[0x06] + (buf[0x07]<<8);
2675
2676 // Addr 08: Config descriptor
2677 // Bit 7: always 1
2678 // Bit 6: 1 if this device is self powered, 0 if bus powered
2679 // Bit 5: 1 if this device uses remote wakeup
2680 // Bit 4: 1 if this device is battery powered
2681 eeprom->self_powered = buf[0x08] & 0x40;
2682 eeprom->remote_wakeup = buf[0x08] & 0x20;;
2683
2684 // Addr 09: Max power consumption: max power = value * 2 mA
2685 eeprom->max_power = buf[0x09];
2686
2687 // Addr 0A: Chip configuration
2688 // Bit 7: 0 - reserved
2689 // Bit 6: 0 - reserved
2690 // Bit 5: 0 - reserved
2691 // Bit 4: 1 - Change USB version
2692 // Not seen on FT2232(D)
2693 // Bit 3: 1 - Use the serial number string
2694 // Bit 2: 1 - Enable suspend pull downs for lower power
2695 // Bit 1: 1 - Out EndPoint is Isochronous
2696 // Bit 0: 1 - In EndPoint is Isochronous
2697 //
2698 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2699 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2700 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2701 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
2702 if(buf[0x0A]&0x10)
2703 fprintf(stderr,
2704 "EEPROM byte[0x0a] Bit 4 unexpected set. If this happened with the EEPROM\n"
2705 "programmed by FTDI tools, please report to libftdi@developer.intra2net.com\n");
2706
2707
2708 // Addr 0C: USB version low byte when 0x0A
2709 // Addr 0D: USB version high byte when 0x0A
2710 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2711
2712 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2713 // Addr 0F: Length of manufacturer string
2714 manufacturer_size = buf[0x0F]/2;
2715 if(eeprom->manufacturer)
2716 free(eeprom->manufacturer);
2717 if (manufacturer_size > 0)
2718 {
2719 eeprom->manufacturer = malloc(manufacturer_size);
2720 if (eeprom->manufacturer)
2721 {
2722 // Decode manufacturer
2723 i = buf[0x0E] & (eeprom_size -1); // offset
2724 for (j=0;j<manufacturer_size-1;j++)
2725 {
2726 eeprom->manufacturer[j] = buf[2*j+i+2];
2727 }
2728 eeprom->manufacturer[j] = '\0';
2729 }
2730 }
2731 else eeprom->manufacturer = NULL;
2732
2733 // Addr 10: Offset of the product string + 0x80, calculated later
2734 // Addr 11: Length of product string
2735 if(eeprom->product)
2736 free(eeprom->product);
2737 product_size = buf[0x11]/2;
2738 if (product_size > 0)
2739 {
2740 eeprom->product = malloc(product_size);
2741 if(eeprom->product)
2742 {
2743 // Decode product name
2744 i = buf[0x10] & (eeprom_size -1); // offset
2745 for (j=0;j<product_size-1;j++)
2746 {
2747 eeprom->product[j] = buf[2*j+i+2];
2748 }
2749 eeprom->product[j] = '\0';
2750 }
2751 }
2752 else eeprom->product = NULL;
2753
2754 // Addr 12: Offset of the serial string + 0x80, calculated later
2755 // Addr 13: Length of serial string
2756 if(eeprom->serial)
2757 free(eeprom->serial);
2758 serial_size = buf[0x13]/2;
2759 if (serial_size > 0)
2760 {
2761 eeprom->serial = malloc(serial_size);
2762 if(eeprom->serial)
2763 {
2764 // Decode serial
2765 i = buf[0x12] & (eeprom_size -1); // offset
2766 for (j=0;j<serial_size-1;j++)
2767 {
2768 eeprom->serial[j] = buf[2*j+i+2];
2769 }
2770 eeprom->serial[j] = '\0';
2771 }
2772 }
2773 else eeprom->serial = NULL;
2774
2775 // verify checksum
2776 checksum = 0xAAAA;
2777
2778 for (i = 0; i < eeprom_size/2-1; i++)
2779 {
2780 value = buf[i*2];
2781 value += buf[(i*2)+1] << 8;
2782
2783 checksum = value^checksum;
2784 checksum = (checksum << 1) | (checksum >> 15);
2785 }
2786
2787 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2788
2789 if (eeprom_checksum != checksum)
2790 {
2791 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2792 ftdi_error_return(-1,"EEPROM checksum error");
2793 }
2794
2795 eeprom->channel_a_type = 0;
2796 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
2797 {
2798 eeprom->chip = -1;
2799 }
2800 else if(ftdi->type == TYPE_2232C)
2801 {
2802 eeprom->channel_a_type = buf[0x00] & 0x7;
2803 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2804 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2805 eeprom->channel_b_type = buf[0x01] & 0x7;
2806 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2807 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
2808 eeprom->chip = buf[0x14];
2809 }
2810 else if(ftdi->type == TYPE_R)
2811 {
2812 /* TYPE_R flags D2XX, not VCP as all others*/
2813 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2814 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2815 if( (buf[0x01]&0x40) != 0x40)
2816 fprintf(stderr,
2817 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2818 " If this happened with the\n"
2819 " EEPROM programmed by FTDI tools, please report "
2820 "to libftdi@developer.intra2net.com\n");
2821
2822 eeprom->chip = buf[0x16];
2823 // Addr 0B: Invert data lines
2824 // Works only on FT232R, not FT245R, but no way to distinguish
2825 eeprom->invert = buf[0x0B];
2826 // Addr 14: CBUS function: CBUS0, CBUS1
2827 // Addr 15: CBUS function: CBUS2, CBUS3
2828 // Addr 16: CBUS function: CBUS5
2829 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2830 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2831 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2832 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2833 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
2834 }
2835 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
2836 {
2837 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2838 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2839 eeprom->channel_b_type = buf[0x01] & 0x7;
2840 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2841
2842 if(ftdi->type == TYPE_2232H)
2843 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7;
2844
2845 eeprom->chip = buf[0x18];
2846 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2847 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2848 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2849 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2850 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2851 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2852 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2853 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2854 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2855 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2856 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2857 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
2858 }
2859
2860 if(verbose)
2861 {
2862 char *channel_mode[] = {"UART","245","CPU", "unknown", "OPTO"};
2863 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
2864 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
2865 fprintf(stdout, "Release: 0x%04x\n",release);
2866
2867 if(eeprom->self_powered)
2868 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
2869 else
2870 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
2871 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
2872 if(eeprom->manufacturer)
2873 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
2874 if(eeprom->product)
2875 fprintf(stdout, "Product: %s\n",eeprom->product);
2876 if(eeprom->serial)
2877 fprintf(stdout, "Serial: %s\n",eeprom->serial);
2878 fprintf(stdout, "Checksum : %04x\n", checksum);
2879 if (ftdi->type == TYPE_R)
2880 fprintf(stdout, "Internal EEPROM\n");
2881 else if (eeprom->chip >= 0x46)
2882 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
2883 if(eeprom->suspend_dbus7)
2884 fprintf(stdout, "Suspend on DBUS7\n");
2885 if(eeprom->suspend_pull_downs)
2886 fprintf(stdout, "Pull IO pins low during suspend\n");
2887 if(eeprom->remote_wakeup)
2888 fprintf(stdout, "Enable Remote Wake Up\n");
2889 if (ftdi->type >= TYPE_2232C)
2890 fprintf(stdout,"Channel A has Mode %s%s%s\n",
2891 channel_mode[eeprom->channel_a_type],
2892 (eeprom->channel_a_driver)?" VCP":"",
2893 (eeprom->high_current_a)?" High Current IO":"");
2894 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R))
2895 fprintf(stdout,"Channel B has Mode %s%s%s\n",
2896 channel_mode[eeprom->channel_b_type],
2897 (eeprom->channel_b_driver)?" VCP":"",
2898 (eeprom->high_current_b)?" High Current IO":"");
2899 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
2900 {
2901 fprintf(stdout,"%s has %d mA drive%s%s\n",
2902 (ftdi->type == TYPE_2232H)?"AL":"A",
2903 (eeprom->group0_drive+1) *4,
2904 (eeprom->group0_schmitt)?" Schmitt Input":"",
2905 (eeprom->group0_slew)?" Slow Slew":"");
2906 fprintf(stdout,"%s has %d mA drive%s%s\n",
2907 (ftdi->type == TYPE_2232H)?"AH":"B",
2908 (eeprom->group1_drive+1) *4,
2909 (eeprom->group1_schmitt)?" Schmitt Input":"",
2910 (eeprom->group1_slew)?" Slow Slew":"");
2911 fprintf(stdout,"%s has %d mA drive%s%s\n",
2912 (ftdi->type == TYPE_2232H)?"BL":"C",
2913 (eeprom->group2_drive+1) *4,
2914 (eeprom->group2_schmitt)?" Schmitt Input":"",
2915 (eeprom->group2_slew)?" Slow Slew":"");
2916 fprintf(stdout,"%s has %d mA drive%s%s\n",
2917 (ftdi->type == TYPE_2232H)?"BH":"D",
2918 (eeprom->group3_drive+1) *4,
2919 (eeprom->group3_schmitt)?" Schmitt Input":"",
2920 (eeprom->group3_slew)?" Slow Slew":"");
2921 }
2922 if (ftdi->type == TYPE_R)
2923 {
2924 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
2925 "SLEEP","CLK48","CLK24","CLK12","CLK6",
2926 "IOMODE","BB_WR","BB_RD"};
2927 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
2928 int i;
2929
2930 if(eeprom->invert)
2931 {
2932 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
2933 fprintf(stdout,"Inverted bits:");
2934 for (i=0; i<8; i++)
2935 if((eeprom->invert & (1<<i)) == (1<<i))
2936 fprintf(stdout," %s",r_bits[i]);
2937 fprintf(stdout,"\n");
2938 }
2939 for(i=0; i<5; i++)
2940 {
2941 if(eeprom->cbus_function[i]<CBUS_BB)
2942 fprintf(stdout,"C%d Function: %s\n", i,
2943 cbus_mux[eeprom->cbus_function[i]]);
2944 else
2945 fprintf(stdout,"C%d BB Function: %s\n", i,
2946 cbus_BB[i]);
2947 }
2948 }
2949 }
2950 return 0;
2951}
2952
2953/**
2954 Read eeprom location
2955
2956 \param ftdi pointer to ftdi_context
2957 \param eeprom_addr Address of eeprom location to be read
2958 \param eeprom_val Pointer to store read eeprom location
2959
2960 \retval 0: all fine
2961 \retval -1: read failed
2962 \retval -2: USB device unavailable
2963*/
2964int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
2965{
2966 if (ftdi == NULL || ftdi->usb_dev == NULL)
2967 ftdi_error_return(-2, "USB device unavailable");
2968
2969 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
2970 ftdi_error_return(-1, "reading eeprom failed");
2971
2972 return 0;
2973}
2974
2975/**
2976 Read eeprom
2977
2978 \param ftdi pointer to ftdi_context
2979
2980 \retval 0: all fine
2981 \retval -1: read failed
2982 \retval -2: USB device unavailable
2983*/
2984int ftdi_read_eeprom(struct ftdi_context *ftdi)
2985{
2986 int i;
2987 unsigned char *buf;
2988
2989 if (ftdi == NULL || ftdi->usb_dev == NULL)
2990 ftdi_error_return(-2, "USB device unavailable");
2991 buf = ftdi->eeprom->buf;
2992
2993 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
2994 {
2995 if (libusb_control_transfer(
2996 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
2997 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
2998 ftdi_error_return(-1, "reading eeprom failed");
2999 }
3000
3001 if (ftdi->type == TYPE_R)
3002 ftdi->eeprom->size = 0x80;
3003 /* Guesses size of eeprom by comparing halves
3004 - will not work with blank eeprom */
3005 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3006 ftdi->eeprom->size = -1;
3007 else if(memcmp(buf,&buf[0x80],0x80) == 0)
3008 ftdi->eeprom->size = 0x80;
3009 else if(memcmp(buf,&buf[0x40],0x40) == 0)
3010 ftdi->eeprom->size = 0x40;
3011 else
3012 ftdi->eeprom->size = 0x100;
3013 return 0;
3014}
3015
3016/*
3017 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3018 Function is only used internally
3019 \internal
3020*/
3021static unsigned char ftdi_read_chipid_shift(unsigned char value)
3022{
3023 return ((value & 1) << 1) |
3024 ((value & 2) << 5) |
3025 ((value & 4) >> 2) |
3026 ((value & 8) << 4) |
3027 ((value & 16) >> 1) |
3028 ((value & 32) >> 1) |
3029 ((value & 64) >> 4) |
3030 ((value & 128) >> 2);
3031}
3032
3033/**
3034 Read the FTDIChip-ID from R-type devices
3035
3036 \param ftdi pointer to ftdi_context
3037 \param chipid Pointer to store FTDIChip-ID
3038
3039 \retval 0: all fine
3040 \retval -1: read failed
3041 \retval -2: USB device unavailable
3042*/
3043int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3044{
3045 unsigned int a = 0, b = 0;
3046
3047 if (ftdi == NULL || ftdi->usb_dev == NULL)
3048 ftdi_error_return(-2, "USB device unavailable");
3049
3050 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3051 {
3052 a = a << 8 | a >> 8;
3053 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3054 {
3055 b = b << 8 | b >> 8;
3056 a = (a << 16) | (b & 0xFFFF);
3057 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3058 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3059 *chipid = a ^ 0xa5f0f7d1;
3060 return 0;
3061 }
3062 }
3063
3064 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3065}
3066
3067/**
3068 Write eeprom location
3069
3070 \param ftdi pointer to ftdi_context
3071 \param eeprom_addr Address of eeprom location to be written
3072 \param eeprom_val Value to be written
3073
3074 \retval 0: all fine
3075 \retval -1: read failed
3076 \retval -2: USB device unavailable
3077*/
3078int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr, unsigned short eeprom_val)
3079{
3080 if (ftdi == NULL || ftdi->usb_dev == NULL)
3081 ftdi_error_return(-2, "USB device unavailable");
3082
3083 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3084 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3085 NULL, 0, ftdi->usb_write_timeout) != 0)
3086 ftdi_error_return(-1, "unable to write eeprom");
3087
3088 return 0;
3089}
3090
3091/**
3092 Write eeprom
3093
3094 \param ftdi pointer to ftdi_context
3095
3096 \retval 0: all fine
3097 \retval -1: read failed
3098 \retval -2: USB device unavailable
3099*/
3100int ftdi_write_eeprom(struct ftdi_context *ftdi)
3101{
3102 unsigned short usb_val, status;
3103 int i, ret;
3104 unsigned char *eeprom;
3105
3106 if (ftdi == NULL || ftdi->usb_dev == NULL)
3107 ftdi_error_return(-2, "USB device unavailable");
3108 eeprom = ftdi->eeprom->buf;
3109
3110 /* These commands were traced while running MProg */
3111 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3112 return ret;
3113 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3114 return ret;
3115 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3116 return ret;
3117
3118 for (i = 0; i < ftdi->eeprom->size/2; i++)
3119 {
3120 usb_val = eeprom[i*2];
3121 usb_val += eeprom[(i*2)+1] << 8;
3122 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3123 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3124 NULL, 0, ftdi->usb_write_timeout) < 0)
3125 ftdi_error_return(-1, "unable to write eeprom");
3126 }
3127
3128 return 0;
3129}
3130
3131/**
3132 Erase eeprom
3133
3134 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3135
3136 \param ftdi pointer to ftdi_context
3137
3138 \retval 0: all fine
3139 \retval -1: erase failed
3140 \retval -2: USB device unavailable
3141 \retval -3: Writing magic failed
3142 \retval -4: Read EEPROM failed
3143 \retval -5: Unexpected EEPROM value
3144*/
3145#define MAGIC 0x55aa
3146int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3147{
3148 unsigned short eeprom_value;
3149 if (ftdi == NULL || ftdi->usb_dev == NULL)
3150 ftdi_error_return(-2, "USB device unavailable");
3151
3152 if(ftdi->type == TYPE_R)
3153 {
3154 ftdi->eeprom->chip = 0;
3155 return 0;
3156 }
3157
3158 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3159 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3160 ftdi_error_return(-1, "unable to erase eeprom");
3161
3162
3163 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3164 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3165 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3166 Chip is 93x66 if magic is only read at word position 0xc0*/
3167 if( ftdi_write_eeprom_location(ftdi, 0xc0, MAGIC))
3168 ftdi_error_return(-3, "Writing magic failed");
3169 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3170 ftdi_error_return(-4, "Reading failed failed");
3171 if(eeprom_value == MAGIC)
3172 {
3173 ftdi->eeprom->chip = 0x46;
3174 }
3175 else
3176 {
3177 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3178 ftdi_error_return(-4, "Reading failed failed");
3179 if(eeprom_value == MAGIC)
3180 ftdi->eeprom->chip = 0x56;
3181 else
3182 {
3183 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3184 ftdi_error_return(-4, "Reading failed failed");
3185 if(eeprom_value == MAGIC)
3186 ftdi->eeprom->chip = 0x66;
3187 else
3188 {
3189 ftdi->eeprom->chip = -1;
3190 }
3191 }
3192 }
3193 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3194 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3195 ftdi_error_return(-1, "unable to erase eeprom");
3196 return 0;
3197}
3198
3199/**
3200 Get string representation for last error code
3201
3202 \param ftdi pointer to ftdi_context
3203
3204 \retval Pointer to error string
3205*/
3206char *ftdi_get_error_string (struct ftdi_context *ftdi)
3207{
3208 if (ftdi == NULL)
3209 return "";
3210
3211 return ftdi->error_str;
3212}
3213
3214/* @} end of doxygen libftdi group */