ftdi_eeprom: Fix flashing FT245R
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2014 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi_i.h"
38#include "ftdi.h"
39#include "ftdi_version_i.h"
40
41#define ftdi_error_return(code, str) do { \
42 if ( ftdi ) \
43 ftdi->error_str = str; \
44 else \
45 fprintf(stderr, str); \
46 return code; \
47 } while(0);
48
49#define ftdi_error_return_free_device_list(code, str, devs) do { \
50 libusb_free_device_list(devs,1); \
51 ftdi->error_str = str; \
52 return code; \
53 } while(0);
54
55
56/**
57 Internal function to close usb device pointer.
58 Sets ftdi->usb_dev to NULL.
59 \internal
60
61 \param ftdi pointer to ftdi_context
62
63 \retval none
64*/
65static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
66{
67 if (ftdi && ftdi->usb_dev)
68 {
69 libusb_close (ftdi->usb_dev);
70 ftdi->usb_dev = NULL;
71 if(ftdi->eeprom)
72 ftdi->eeprom->initialized_for_connected_device = 0;
73 }
74}
75
76/**
77 Initializes a ftdi_context.
78
79 \param ftdi pointer to ftdi_context
80
81 \retval 0: all fine
82 \retval -1: couldn't allocate read buffer
83 \retval -2: couldn't allocate struct buffer
84 \retval -3: libusb_init() failed
85
86 \remark This should be called before all functions
87*/
88int ftdi_init(struct ftdi_context *ftdi)
89{
90 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
91 ftdi->usb_ctx = NULL;
92 ftdi->usb_dev = NULL;
93 ftdi->usb_read_timeout = 5000;
94 ftdi->usb_write_timeout = 5000;
95
96 ftdi->type = TYPE_BM; /* chip type */
97 ftdi->baudrate = -1;
98 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
99
100 ftdi->readbuffer = NULL;
101 ftdi->readbuffer_offset = 0;
102 ftdi->readbuffer_remaining = 0;
103 ftdi->writebuffer_chunksize = 4096;
104 ftdi->max_packet_size = 0;
105 ftdi->error_str = NULL;
106 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
107
108 if (libusb_init(&ftdi->usb_ctx) < 0)
109 ftdi_error_return(-3, "libusb_init() failed");
110
111 ftdi_set_interface(ftdi, INTERFACE_ANY);
112 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
113
114 if (eeprom == 0)
115 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
116 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
117 ftdi->eeprom = eeprom;
118
119 /* All fine. Now allocate the readbuffer */
120 return ftdi_read_data_set_chunksize(ftdi, 4096);
121}
122
123/**
124 Allocate and initialize a new ftdi_context
125
126 \return a pointer to a new ftdi_context, or NULL on failure
127*/
128struct ftdi_context *ftdi_new(void)
129{
130 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
131
132 if (ftdi == NULL)
133 {
134 return NULL;
135 }
136
137 if (ftdi_init(ftdi) != 0)
138 {
139 free(ftdi);
140 return NULL;
141 }
142
143 return ftdi;
144}
145
146/**
147 Open selected channels on a chip, otherwise use first channel.
148
149 \param ftdi pointer to ftdi_context
150 \param interface Interface to use for FT2232C/2232H/4232H chips.
151
152 \retval 0: all fine
153 \retval -1: unknown interface
154 \retval -2: USB device unavailable
155 \retval -3: Device already open, interface can't be set in that state
156*/
157int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
158{
159 if (ftdi == NULL)
160 ftdi_error_return(-2, "USB device unavailable");
161
162 if (ftdi->usb_dev != NULL)
163 {
164 int check_interface = interface;
165 if (check_interface == INTERFACE_ANY)
166 check_interface = INTERFACE_A;
167
168 if (ftdi->index != check_interface)
169 ftdi_error_return(-3, "Interface can not be changed on an already open device");
170 }
171
172 switch (interface)
173 {
174 case INTERFACE_ANY:
175 case INTERFACE_A:
176 ftdi->interface = 0;
177 ftdi->index = INTERFACE_A;
178 ftdi->in_ep = 0x02;
179 ftdi->out_ep = 0x81;
180 break;
181 case INTERFACE_B:
182 ftdi->interface = 1;
183 ftdi->index = INTERFACE_B;
184 ftdi->in_ep = 0x04;
185 ftdi->out_ep = 0x83;
186 break;
187 case INTERFACE_C:
188 ftdi->interface = 2;
189 ftdi->index = INTERFACE_C;
190 ftdi->in_ep = 0x06;
191 ftdi->out_ep = 0x85;
192 break;
193 case INTERFACE_D:
194 ftdi->interface = 3;
195 ftdi->index = INTERFACE_D;
196 ftdi->in_ep = 0x08;
197 ftdi->out_ep = 0x87;
198 break;
199 default:
200 ftdi_error_return(-1, "Unknown interface");
201 }
202 return 0;
203}
204
205/**
206 Deinitializes a ftdi_context.
207
208 \param ftdi pointer to ftdi_context
209*/
210void ftdi_deinit(struct ftdi_context *ftdi)
211{
212 if (ftdi == NULL)
213 return;
214
215 ftdi_usb_close_internal (ftdi);
216
217 if (ftdi->readbuffer != NULL)
218 {
219 free(ftdi->readbuffer);
220 ftdi->readbuffer = NULL;
221 }
222
223 if (ftdi->eeprom != NULL)
224 {
225 if (ftdi->eeprom->manufacturer != 0)
226 {
227 free(ftdi->eeprom->manufacturer);
228 ftdi->eeprom->manufacturer = 0;
229 }
230 if (ftdi->eeprom->product != 0)
231 {
232 free(ftdi->eeprom->product);
233 ftdi->eeprom->product = 0;
234 }
235 if (ftdi->eeprom->serial != 0)
236 {
237 free(ftdi->eeprom->serial);
238 ftdi->eeprom->serial = 0;
239 }
240 free(ftdi->eeprom);
241 ftdi->eeprom = NULL;
242 }
243
244 if (ftdi->usb_ctx)
245 {
246 libusb_exit(ftdi->usb_ctx);
247 ftdi->usb_ctx = NULL;
248 }
249}
250
251/**
252 Deinitialize and free an ftdi_context.
253
254 \param ftdi pointer to ftdi_context
255*/
256void ftdi_free(struct ftdi_context *ftdi)
257{
258 ftdi_deinit(ftdi);
259 free(ftdi);
260}
261
262/**
263 Use an already open libusb device.
264
265 \param ftdi pointer to ftdi_context
266 \param usb libusb libusb_device_handle to use
267*/
268void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
269{
270 if (ftdi == NULL)
271 return;
272
273 ftdi->usb_dev = usb;
274}
275
276/**
277 * @brief Get libftdi library version
278 *
279 * @return ftdi_version_info Library version information
280 **/
281struct ftdi_version_info ftdi_get_library_version(void)
282{
283 struct ftdi_version_info ver;
284
285 ver.major = FTDI_MAJOR_VERSION;
286 ver.minor = FTDI_MINOR_VERSION;
287 ver.micro = FTDI_MICRO_VERSION;
288 ver.version_str = FTDI_VERSION_STRING;
289 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
290
291 return ver;
292}
293
294/**
295 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
296 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
297 use. With VID:PID 0:0, search for the default devices
298 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014, 0x403:0x6015)
299
300 \param ftdi pointer to ftdi_context
301 \param devlist Pointer where to store list of found devices
302 \param vendor Vendor ID to search for
303 \param product Product ID to search for
304
305 \retval >0: number of devices found
306 \retval -3: out of memory
307 \retval -5: libusb_get_device_list() failed
308 \retval -6: libusb_get_device_descriptor() failed
309*/
310int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
311{
312 struct ftdi_device_list **curdev;
313 libusb_device *dev;
314 libusb_device **devs;
315 int count = 0;
316 int i = 0;
317
318 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
319 ftdi_error_return(-5, "libusb_get_device_list() failed");
320
321 curdev = devlist;
322 *curdev = NULL;
323
324 while ((dev = devs[i++]) != NULL)
325 {
326 struct libusb_device_descriptor desc;
327
328 if (libusb_get_device_descriptor(dev, &desc) < 0)
329 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
330
331 if (((vendor || product) &&
332 desc.idVendor == vendor && desc.idProduct == product) ||
333 (!(vendor || product) &&
334 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
335 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014
336 || desc.idProduct == 0x6015)))
337 {
338 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
339 if (!*curdev)
340 ftdi_error_return_free_device_list(-3, "out of memory", devs);
341
342 (*curdev)->next = NULL;
343 (*curdev)->dev = dev;
344 libusb_ref_device(dev);
345 curdev = &(*curdev)->next;
346 count++;
347 }
348 }
349 libusb_free_device_list(devs,1);
350 return count;
351}
352
353/**
354 Frees a usb device list.
355
356 \param devlist USB device list created by ftdi_usb_find_all()
357*/
358void ftdi_list_free(struct ftdi_device_list **devlist)
359{
360 struct ftdi_device_list *curdev, *next;
361
362 for (curdev = *devlist; curdev != NULL;)
363 {
364 next = curdev->next;
365 libusb_unref_device(curdev->dev);
366 free(curdev);
367 curdev = next;
368 }
369
370 *devlist = NULL;
371}
372
373/**
374 Frees a usb device list.
375
376 \param devlist USB device list created by ftdi_usb_find_all()
377*/
378void ftdi_list_free2(struct ftdi_device_list *devlist)
379{
380 ftdi_list_free(&devlist);
381}
382
383/**
384 Return device ID strings from the usb device.
385
386 The parameters manufacturer, description and serial may be NULL
387 or pointer to buffers to store the fetched strings.
388
389 \note Use this function only in combination with ftdi_usb_find_all()
390 as it closes the internal "usb_dev" after use.
391
392 \param ftdi pointer to ftdi_context
393 \param dev libusb usb_dev to use
394 \param manufacturer Store manufacturer string here if not NULL
395 \param mnf_len Buffer size of manufacturer string
396 \param description Store product description string here if not NULL
397 \param desc_len Buffer size of product description string
398 \param serial Store serial string here if not NULL
399 \param serial_len Buffer size of serial string
400
401 \retval 0: all fine
402 \retval -1: wrong arguments
403 \retval -4: unable to open device
404 \retval -7: get product manufacturer failed
405 \retval -8: get product description failed
406 \retval -9: get serial number failed
407 \retval -11: libusb_get_device_descriptor() failed
408*/
409int ftdi_usb_get_strings(struct ftdi_context *ftdi,
410 struct libusb_device *dev,
411 char *manufacturer, int mnf_len,
412 char *description, int desc_len,
413 char *serial, int serial_len)
414{
415 int ret;
416
417 if ((ftdi==NULL) || (dev==NULL))
418 return -1;
419
420 if (ftdi->usb_dev == NULL && libusb_open(dev, &ftdi->usb_dev) < 0)
421 ftdi_error_return(-4, "libusb_open() failed");
422
423 // ftdi->usb_dev will not be NULL when entering ftdi_usb_get_strings2(), so
424 // it won't be closed either. This allows us to close it whether we actually
425 // called libusb_open() up above or not. This matches the expected behavior
426 // (and note) for ftdi_usb_get_strings().
427 ret = ftdi_usb_get_strings2(ftdi, dev,
428 manufacturer, mnf_len,
429 description, desc_len,
430 serial, serial_len);
431
432 // only close it if it was successful, as all other return codes close
433 // before returning already.
434 if (ret == 0)
435 ftdi_usb_close_internal(ftdi);
436
437 return ret;
438}
439
440/**
441 Return device ID strings from the usb device.
442
443 The parameters manufacturer, description and serial may be NULL
444 or pointer to buffers to store the fetched strings.
445
446 \note The old function ftdi_usb_get_strings() always closes the device.
447 This version only closes the device if it was opened by it.
448
449 \param ftdi pointer to ftdi_context
450 \param dev libusb usb_dev to use
451 \param manufacturer Store manufacturer string here if not NULL
452 \param mnf_len Buffer size of manufacturer string
453 \param description Store product description string here if not NULL
454 \param desc_len Buffer size of product description string
455 \param serial Store serial string here if not NULL
456 \param serial_len Buffer size of serial string
457
458 \retval 0: all fine
459 \retval -1: wrong arguments
460 \retval -4: unable to open device
461 \retval -7: get product manufacturer failed
462 \retval -8: get product description failed
463 \retval -9: get serial number failed
464 \retval -11: libusb_get_device_descriptor() failed
465*/
466int ftdi_usb_get_strings2(struct ftdi_context *ftdi, struct libusb_device *dev,
467 char *manufacturer, int mnf_len,
468 char *description, int desc_len,
469 char *serial, int serial_len)
470{
471 struct libusb_device_descriptor desc;
472
473 if ((ftdi==NULL) || (dev==NULL))
474 return -1;
475
476 char need_open = (ftdi->usb_dev == NULL);
477 if (need_open && libusb_open(dev, &ftdi->usb_dev) < 0)
478 ftdi_error_return(-4, "libusb_open() failed");
479
480 if (libusb_get_device_descriptor(dev, &desc) < 0)
481 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
482
483 if (manufacturer != NULL)
484 {
485 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
486 {
487 ftdi_usb_close_internal (ftdi);
488 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
489 }
490 }
491
492 if (description != NULL)
493 {
494 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
495 {
496 ftdi_usb_close_internal (ftdi);
497 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
498 }
499 }
500
501 if (serial != NULL)
502 {
503 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
504 {
505 ftdi_usb_close_internal (ftdi);
506 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
507 }
508 }
509
510 if (need_open)
511 ftdi_usb_close_internal (ftdi);
512
513 return 0;
514}
515
516/**
517 * Internal function to determine the maximum packet size.
518 * \param ftdi pointer to ftdi_context
519 * \param dev libusb usb_dev to use
520 * \retval Maximum packet size for this device
521 */
522static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
523{
524 struct libusb_device_descriptor desc;
525 struct libusb_config_descriptor *config0;
526 unsigned int packet_size;
527
528 // Sanity check
529 if (ftdi == NULL || dev == NULL)
530 return 64;
531
532 // Determine maximum packet size. Init with default value.
533 // New hi-speed devices from FTDI use a packet size of 512 bytes
534 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
535 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
536 packet_size = 512;
537 else
538 packet_size = 64;
539
540 if (libusb_get_device_descriptor(dev, &desc) < 0)
541 return packet_size;
542
543 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
544 return packet_size;
545
546 if (desc.bNumConfigurations > 0)
547 {
548 if (ftdi->interface < config0->bNumInterfaces)
549 {
550 struct libusb_interface interface = config0->interface[ftdi->interface];
551 if (interface.num_altsetting > 0)
552 {
553 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
554 if (descriptor.bNumEndpoints > 0)
555 {
556 packet_size = descriptor.endpoint[0].wMaxPacketSize;
557 }
558 }
559 }
560 }
561
562 libusb_free_config_descriptor (config0);
563 return packet_size;
564}
565
566/**
567 Opens a ftdi device given by an usb_device.
568
569 \param ftdi pointer to ftdi_context
570 \param dev libusb usb_dev to use
571
572 \retval 0: all fine
573 \retval -3: unable to config device
574 \retval -4: unable to open device
575 \retval -5: unable to claim device
576 \retval -6: reset failed
577 \retval -7: set baudrate failed
578 \retval -8: ftdi context invalid
579 \retval -9: libusb_get_device_descriptor() failed
580 \retval -10: libusb_get_config_descriptor() failed
581 \retval -11: libusb_detach_kernel_driver() failed
582 \retval -12: libusb_get_configuration() failed
583*/
584int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
585{
586 struct libusb_device_descriptor desc;
587 struct libusb_config_descriptor *config0;
588 int cfg, cfg0, detach_errno = 0;
589
590 if (ftdi == NULL)
591 ftdi_error_return(-8, "ftdi context invalid");
592
593 if (libusb_open(dev, &ftdi->usb_dev) < 0)
594 ftdi_error_return(-4, "libusb_open() failed");
595
596 if (libusb_get_device_descriptor(dev, &desc) < 0)
597 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
598
599 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
600 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
601 cfg0 = config0->bConfigurationValue;
602 libusb_free_config_descriptor (config0);
603
604 // Try to detach ftdi_sio kernel module.
605 //
606 // The return code is kept in a separate variable and only parsed
607 // if usb_set_configuration() or usb_claim_interface() fails as the
608 // detach operation might be denied and everything still works fine.
609 // Likely scenario is a static ftdi_sio kernel module.
610 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
611 {
612 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
613 detach_errno = errno;
614 }
615
616 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
617 ftdi_error_return(-12, "libusb_get_configuration () failed");
618 // set configuration (needed especially for windows)
619 // tolerate EBUSY: one device with one configuration, but two interfaces
620 // and libftdi sessions to both interfaces (e.g. FT2232)
621 if (desc.bNumConfigurations > 0 && cfg != cfg0)
622 {
623 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
624 {
625 ftdi_usb_close_internal (ftdi);
626 if (detach_errno == EPERM)
627 {
628 ftdi_error_return(-8, "inappropriate permissions on device!");
629 }
630 else
631 {
632 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
633 }
634 }
635 }
636
637 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
638 {
639 ftdi_usb_close_internal (ftdi);
640 if (detach_errno == EPERM)
641 {
642 ftdi_error_return(-8, "inappropriate permissions on device!");
643 }
644 else
645 {
646 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
647 }
648 }
649
650 if (ftdi_usb_reset (ftdi) != 0)
651 {
652 ftdi_usb_close_internal (ftdi);
653 ftdi_error_return(-6, "ftdi_usb_reset failed");
654 }
655
656 // Try to guess chip type
657 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
658 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
659 && desc.iSerialNumber == 0))
660 ftdi->type = TYPE_BM;
661 else if (desc.bcdDevice == 0x200)
662 ftdi->type = TYPE_AM;
663 else if (desc.bcdDevice == 0x500)
664 ftdi->type = TYPE_2232C;
665 else if (desc.bcdDevice == 0x600)
666 ftdi->type = TYPE_R;
667 else if (desc.bcdDevice == 0x700)
668 ftdi->type = TYPE_2232H;
669 else if (desc.bcdDevice == 0x800)
670 ftdi->type = TYPE_4232H;
671 else if (desc.bcdDevice == 0x900)
672 ftdi->type = TYPE_232H;
673 else if (desc.bcdDevice == 0x1000)
674 ftdi->type = TYPE_230X;
675
676 // Determine maximum packet size
677 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
678
679 if (ftdi_set_baudrate (ftdi, 9600) != 0)
680 {
681 ftdi_usb_close_internal (ftdi);
682 ftdi_error_return(-7, "set baudrate failed");
683 }
684
685 ftdi_error_return(0, "all fine");
686}
687
688/**
689 Opens the first device with a given vendor and product ids.
690
691 \param ftdi pointer to ftdi_context
692 \param vendor Vendor ID
693 \param product Product ID
694
695 \retval same as ftdi_usb_open_desc()
696*/
697int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
698{
699 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
700}
701
702/**
703 Opens the first device with a given, vendor id, product id,
704 description and serial.
705
706 \param ftdi pointer to ftdi_context
707 \param vendor Vendor ID
708 \param product Product ID
709 \param description Description to search for. Use NULL if not needed.
710 \param serial Serial to search for. Use NULL if not needed.
711
712 \retval 0: all fine
713 \retval -3: usb device not found
714 \retval -4: unable to open device
715 \retval -5: unable to claim device
716 \retval -6: reset failed
717 \retval -7: set baudrate failed
718 \retval -8: get product description failed
719 \retval -9: get serial number failed
720 \retval -12: libusb_get_device_list() failed
721 \retval -13: libusb_get_device_descriptor() failed
722*/
723int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
724 const char* description, const char* serial)
725{
726 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
727}
728
729/**
730 Opens the index-th device with a given, vendor id, product id,
731 description and serial.
732
733 \param ftdi pointer to ftdi_context
734 \param vendor Vendor ID
735 \param product Product ID
736 \param description Description to search for. Use NULL if not needed.
737 \param serial Serial to search for. Use NULL if not needed.
738 \param index Number of matching device to open if there are more than one, starts with 0.
739
740 \retval 0: all fine
741 \retval -1: usb_find_busses() failed
742 \retval -2: usb_find_devices() failed
743 \retval -3: usb device not found
744 \retval -4: unable to open device
745 \retval -5: unable to claim device
746 \retval -6: reset failed
747 \retval -7: set baudrate failed
748 \retval -8: get product description failed
749 \retval -9: get serial number failed
750 \retval -10: unable to close device
751 \retval -11: ftdi context invalid
752*/
753int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
754 const char* description, const char* serial, unsigned int index)
755{
756 libusb_device *dev;
757 libusb_device **devs;
758 char string[256];
759 int i = 0;
760
761 if (ftdi == NULL)
762 ftdi_error_return(-11, "ftdi context invalid");
763
764 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
765 ftdi_error_return(-12, "libusb_get_device_list() failed");
766
767 while ((dev = devs[i++]) != NULL)
768 {
769 struct libusb_device_descriptor desc;
770 int res;
771
772 if (libusb_get_device_descriptor(dev, &desc) < 0)
773 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
774
775 if (desc.idVendor == vendor && desc.idProduct == product)
776 {
777 if (libusb_open(dev, &ftdi->usb_dev) < 0)
778 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
779
780 if (description != NULL)
781 {
782 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
783 {
784 ftdi_usb_close_internal (ftdi);
785 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
786 }
787 if (strncmp(string, description, sizeof(string)) != 0)
788 {
789 ftdi_usb_close_internal (ftdi);
790 continue;
791 }
792 }
793 if (serial != NULL)
794 {
795 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
796 {
797 ftdi_usb_close_internal (ftdi);
798 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
799 }
800 if (strncmp(string, serial, sizeof(string)) != 0)
801 {
802 ftdi_usb_close_internal (ftdi);
803 continue;
804 }
805 }
806
807 ftdi_usb_close_internal (ftdi);
808
809 if (index > 0)
810 {
811 index--;
812 continue;
813 }
814
815 res = ftdi_usb_open_dev(ftdi, dev);
816 libusb_free_device_list(devs,1);
817 return res;
818 }
819 }
820
821 // device not found
822 ftdi_error_return_free_device_list(-3, "device not found", devs);
823}
824
825/**
826 Opens the ftdi-device described by a description-string.
827 Intended to be used for parsing a device-description given as commandline argument.
828
829 \param ftdi pointer to ftdi_context
830 \param description NULL-terminated description-string, using this format:
831 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
832 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
833 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
834 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
835
836 \note The description format may be extended in later versions.
837
838 \retval 0: all fine
839 \retval -2: libusb_get_device_list() failed
840 \retval -3: usb device not found
841 \retval -4: unable to open device
842 \retval -5: unable to claim device
843 \retval -6: reset failed
844 \retval -7: set baudrate failed
845 \retval -8: get product description failed
846 \retval -9: get serial number failed
847 \retval -10: unable to close device
848 \retval -11: illegal description format
849 \retval -12: ftdi context invalid
850*/
851int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
852{
853 if (ftdi == NULL)
854 ftdi_error_return(-12, "ftdi context invalid");
855
856 if (description[0] == 0 || description[1] != ':')
857 ftdi_error_return(-11, "illegal description format");
858
859 if (description[0] == 'd')
860 {
861 libusb_device *dev;
862 libusb_device **devs;
863 unsigned int bus_number, device_address;
864 int i = 0;
865
866 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
867 ftdi_error_return(-2, "libusb_get_device_list() failed");
868
869 /* XXX: This doesn't handle symlinks/odd paths/etc... */
870 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
871 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
872
873 while ((dev = devs[i++]) != NULL)
874 {
875 int ret;
876 if (bus_number == libusb_get_bus_number (dev)
877 && device_address == libusb_get_device_address (dev))
878 {
879 ret = ftdi_usb_open_dev(ftdi, dev);
880 libusb_free_device_list(devs,1);
881 return ret;
882 }
883 }
884
885 // device not found
886 ftdi_error_return_free_device_list(-3, "device not found", devs);
887 }
888 else if (description[0] == 'i' || description[0] == 's')
889 {
890 unsigned int vendor;
891 unsigned int product;
892 unsigned int index=0;
893 const char *serial=NULL;
894 const char *startp, *endp;
895
896 errno=0;
897 startp=description+2;
898 vendor=strtoul((char*)startp,(char**)&endp,0);
899 if (*endp != ':' || endp == startp || errno != 0)
900 ftdi_error_return(-11, "illegal description format");
901
902 startp=endp+1;
903 product=strtoul((char*)startp,(char**)&endp,0);
904 if (endp == startp || errno != 0)
905 ftdi_error_return(-11, "illegal description format");
906
907 if (description[0] == 'i' && *endp != 0)
908 {
909 /* optional index field in i-mode */
910 if (*endp != ':')
911 ftdi_error_return(-11, "illegal description format");
912
913 startp=endp+1;
914 index=strtoul((char*)startp,(char**)&endp,0);
915 if (*endp != 0 || endp == startp || errno != 0)
916 ftdi_error_return(-11, "illegal description format");
917 }
918 if (description[0] == 's')
919 {
920 if (*endp != ':')
921 ftdi_error_return(-11, "illegal description format");
922
923 /* rest of the description is the serial */
924 serial=endp+1;
925 }
926
927 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
928 }
929 else
930 {
931 ftdi_error_return(-11, "illegal description format");
932 }
933}
934
935/**
936 Resets the ftdi device.
937
938 \param ftdi pointer to ftdi_context
939
940 \retval 0: all fine
941 \retval -1: FTDI reset failed
942 \retval -2: USB device unavailable
943*/
944int ftdi_usb_reset(struct ftdi_context *ftdi)
945{
946 if (ftdi == NULL || ftdi->usb_dev == NULL)
947 ftdi_error_return(-2, "USB device unavailable");
948
949 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
950 SIO_RESET_REQUEST, SIO_RESET_SIO,
951 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
952 ftdi_error_return(-1,"FTDI reset failed");
953
954 // Invalidate data in the readbuffer
955 ftdi->readbuffer_offset = 0;
956 ftdi->readbuffer_remaining = 0;
957
958 return 0;
959}
960
961/**
962 Clears the read buffer on the chip and the internal read buffer.
963
964 \param ftdi pointer to ftdi_context
965
966 \retval 0: all fine
967 \retval -1: read buffer purge failed
968 \retval -2: USB device unavailable
969*/
970int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
971{
972 if (ftdi == NULL || ftdi->usb_dev == NULL)
973 ftdi_error_return(-2, "USB device unavailable");
974
975 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
976 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
977 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
978 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
979
980 // Invalidate data in the readbuffer
981 ftdi->readbuffer_offset = 0;
982 ftdi->readbuffer_remaining = 0;
983
984 return 0;
985}
986
987/**
988 Clears the write buffer on the chip.
989
990 \param ftdi pointer to ftdi_context
991
992 \retval 0: all fine
993 \retval -1: write buffer purge failed
994 \retval -2: USB device unavailable
995*/
996int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
997{
998 if (ftdi == NULL || ftdi->usb_dev == NULL)
999 ftdi_error_return(-2, "USB device unavailable");
1000
1001 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1002 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
1003 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1004 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
1005
1006 return 0;
1007}
1008
1009/**
1010 Clears the buffers on the chip and the internal read buffer.
1011
1012 \param ftdi pointer to ftdi_context
1013
1014 \retval 0: all fine
1015 \retval -1: read buffer purge failed
1016 \retval -2: write buffer purge failed
1017 \retval -3: USB device unavailable
1018*/
1019int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
1020{
1021 int result;
1022
1023 if (ftdi == NULL || ftdi->usb_dev == NULL)
1024 ftdi_error_return(-3, "USB device unavailable");
1025
1026 result = ftdi_usb_purge_rx_buffer(ftdi);
1027 if (result < 0)
1028 return -1;
1029
1030 result = ftdi_usb_purge_tx_buffer(ftdi);
1031 if (result < 0)
1032 return -2;
1033
1034 return 0;
1035}
1036
1037
1038
1039/**
1040 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
1041
1042 \param ftdi pointer to ftdi_context
1043
1044 \retval 0: all fine
1045 \retval -1: usb_release failed
1046 \retval -3: ftdi context invalid
1047*/
1048int ftdi_usb_close(struct ftdi_context *ftdi)
1049{
1050 int rtn = 0;
1051
1052 if (ftdi == NULL)
1053 ftdi_error_return(-3, "ftdi context invalid");
1054
1055 if (ftdi->usb_dev != NULL)
1056 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
1057 rtn = -1;
1058
1059 ftdi_usb_close_internal (ftdi);
1060
1061 return rtn;
1062}
1063
1064/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
1065 to encoded divisor and the achievable baudrate
1066 Function is only used internally
1067 \internal
1068
1069 See AN120
1070 clk/1 -> 0
1071 clk/1.5 -> 1
1072 clk/2 -> 2
1073 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1074 The fractional part has frac_code encoding
1075*/
1076static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1077
1078{
1079 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1080 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1081 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
1082 int divisor, best_divisor, best_baud, best_baud_diff;
1083 int i;
1084 divisor = 24000000 / baudrate;
1085
1086 // Round down to supported fraction (AM only)
1087 divisor -= am_adjust_dn[divisor & 7];
1088
1089 // Try this divisor and the one above it (because division rounds down)
1090 best_divisor = 0;
1091 best_baud = 0;
1092 best_baud_diff = 0;
1093 for (i = 0; i < 2; i++)
1094 {
1095 int try_divisor = divisor + i;
1096 int baud_estimate;
1097 int baud_diff;
1098
1099 // Round up to supported divisor value
1100 if (try_divisor <= 8)
1101 {
1102 // Round up to minimum supported divisor
1103 try_divisor = 8;
1104 }
1105 else if (divisor < 16)
1106 {
1107 // AM doesn't support divisors 9 through 15 inclusive
1108 try_divisor = 16;
1109 }
1110 else
1111 {
1112 // Round up to supported fraction (AM only)
1113 try_divisor += am_adjust_up[try_divisor & 7];
1114 if (try_divisor > 0x1FFF8)
1115 {
1116 // Round down to maximum supported divisor value (for AM)
1117 try_divisor = 0x1FFF8;
1118 }
1119 }
1120 // Get estimated baud rate (to nearest integer)
1121 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1122 // Get absolute difference from requested baud rate
1123 if (baud_estimate < baudrate)
1124 {
1125 baud_diff = baudrate - baud_estimate;
1126 }
1127 else
1128 {
1129 baud_diff = baud_estimate - baudrate;
1130 }
1131 if (i == 0 || baud_diff < best_baud_diff)
1132 {
1133 // Closest to requested baud rate so far
1134 best_divisor = try_divisor;
1135 best_baud = baud_estimate;
1136 best_baud_diff = baud_diff;
1137 if (baud_diff == 0)
1138 {
1139 // Spot on! No point trying
1140 break;
1141 }
1142 }
1143 }
1144 // Encode the best divisor value
1145 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1146 // Deal with special cases for encoded value
1147 if (*encoded_divisor == 1)
1148 {
1149 *encoded_divisor = 0; // 3000000 baud
1150 }
1151 else if (*encoded_divisor == 0x4001)
1152 {
1153 *encoded_divisor = 1; // 2000000 baud (BM only)
1154 }
1155 return best_baud;
1156}
1157
1158/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1159 to encoded divisor and the achievable baudrate
1160 Function is only used internally
1161 \internal
1162
1163 See AN120
1164 clk/1 -> 0
1165 clk/1.5 -> 1
1166 clk/2 -> 2
1167 From /2, 0.125 steps may be taken.
1168 The fractional part has frac_code encoding
1169
1170 value[13:0] of value is the divisor
1171 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1172
1173 H Type have all features above with
1174 {index[8],value[15:14]} is the encoded subdivisor
1175
1176 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
1177 {index[0],value[15:14]} is the encoded subdivisor
1178
1179 AM Type chips have only four fractional subdivisors at value[15:14]
1180 for subdivisors 0, 0.5, 0.25, 0.125
1181*/
1182static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor)
1183{
1184 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1185 int best_baud = 0;
1186 int divisor, best_divisor;
1187 if (baudrate >= clk/clk_div)
1188 {
1189 *encoded_divisor = 0;
1190 best_baud = clk/clk_div;
1191 }
1192 else if (baudrate >= clk/(clk_div + clk_div/2))
1193 {
1194 *encoded_divisor = 1;
1195 best_baud = clk/(clk_div + clk_div/2);
1196 }
1197 else if (baudrate >= clk/(2*clk_div))
1198 {
1199 *encoded_divisor = 2;
1200 best_baud = clk/(2*clk_div);
1201 }
1202 else
1203 {
1204 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1205 divisor = clk*16/clk_div / baudrate;
1206 if (divisor & 1) /* Decide if to round up or down*/
1207 best_divisor = divisor /2 +1;
1208 else
1209 best_divisor = divisor/2;
1210 if(best_divisor > 0x20000)
1211 best_divisor = 0x1ffff;
1212 best_baud = clk*16/clk_div/best_divisor;
1213 if (best_baud & 1) /* Decide if to round up or down*/
1214 best_baud = best_baud /2 +1;
1215 else
1216 best_baud = best_baud /2;
1217 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1218 }
1219 return best_baud;
1220}
1221/**
1222 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1223 Function is only used internally
1224 \internal
1225*/
1226static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1227 unsigned short *value, unsigned short *index)
1228{
1229 int best_baud;
1230 unsigned long encoded_divisor;
1231
1232 if (baudrate <= 0)
1233 {
1234 // Return error
1235 return -1;
1236 }
1237
1238#define H_CLK 120000000
1239#define C_CLK 48000000
1240 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H))
1241 {
1242 if(baudrate*10 > H_CLK /0x3fff)
1243 {
1244 /* On H Devices, use 12 000 000 Baudrate when possible
1245 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
1246 three fractional bits and a 120 MHz clock
1247 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1248 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1249 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1250 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1251 }
1252 else
1253 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1254 }
1255 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R ))
1256 {
1257 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1258 }
1259 else
1260 {
1261 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
1262 }
1263 // Split into "value" and "index" values
1264 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1265 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
1266 {
1267 *index = (unsigned short)(encoded_divisor >> 8);
1268 *index &= 0xFF00;
1269 *index |= ftdi->index;
1270 }
1271 else
1272 *index = (unsigned short)(encoded_divisor >> 16);
1273
1274 // Return the nearest baud rate
1275 return best_baud;
1276}
1277
1278/**
1279 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1280 * Do not use, it's only for the unit test framework
1281 **/
1282int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1283 unsigned short *value, unsigned short *index)
1284{
1285 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1286}
1287
1288/**
1289 Sets the chip baud rate
1290
1291 \param ftdi pointer to ftdi_context
1292 \param baudrate baud rate to set
1293
1294 \retval 0: all fine
1295 \retval -1: invalid baudrate
1296 \retval -2: setting baudrate failed
1297 \retval -3: USB device unavailable
1298*/
1299int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1300{
1301 unsigned short value, index;
1302 int actual_baudrate;
1303
1304 if (ftdi == NULL || ftdi->usb_dev == NULL)
1305 ftdi_error_return(-3, "USB device unavailable");
1306
1307 if (ftdi->bitbang_enabled)
1308 {
1309 baudrate = baudrate*4;
1310 }
1311
1312 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1313 if (actual_baudrate <= 0)
1314 ftdi_error_return (-1, "Silly baudrate <= 0.");
1315
1316 // Check within tolerance (about 5%)
1317 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1318 || ((actual_baudrate < baudrate)
1319 ? (actual_baudrate * 21 < baudrate * 20)
1320 : (baudrate * 21 < actual_baudrate * 20)))
1321 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1322
1323 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1324 SIO_SET_BAUDRATE_REQUEST, value,
1325 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1326 ftdi_error_return (-2, "Setting new baudrate failed");
1327
1328 ftdi->baudrate = baudrate;
1329 return 0;
1330}
1331
1332/**
1333 Set (RS232) line characteristics.
1334 The break type can only be set via ftdi_set_line_property2()
1335 and defaults to "off".
1336
1337 \param ftdi pointer to ftdi_context
1338 \param bits Number of bits
1339 \param sbit Number of stop bits
1340 \param parity Parity mode
1341
1342 \retval 0: all fine
1343 \retval -1: Setting line property failed
1344*/
1345int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1346 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1347{
1348 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1349}
1350
1351/**
1352 Set (RS232) line characteristics
1353
1354 \param ftdi pointer to ftdi_context
1355 \param bits Number of bits
1356 \param sbit Number of stop bits
1357 \param parity Parity mode
1358 \param break_type Break type
1359
1360 \retval 0: all fine
1361 \retval -1: Setting line property failed
1362 \retval -2: USB device unavailable
1363*/
1364int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1365 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1366 enum ftdi_break_type break_type)
1367{
1368 unsigned short value = bits;
1369
1370 if (ftdi == NULL || ftdi->usb_dev == NULL)
1371 ftdi_error_return(-2, "USB device unavailable");
1372
1373 switch (parity)
1374 {
1375 case NONE:
1376 value |= (0x00 << 8);
1377 break;
1378 case ODD:
1379 value |= (0x01 << 8);
1380 break;
1381 case EVEN:
1382 value |= (0x02 << 8);
1383 break;
1384 case MARK:
1385 value |= (0x03 << 8);
1386 break;
1387 case SPACE:
1388 value |= (0x04 << 8);
1389 break;
1390 }
1391
1392 switch (sbit)
1393 {
1394 case STOP_BIT_1:
1395 value |= (0x00 << 11);
1396 break;
1397 case STOP_BIT_15:
1398 value |= (0x01 << 11);
1399 break;
1400 case STOP_BIT_2:
1401 value |= (0x02 << 11);
1402 break;
1403 }
1404
1405 switch (break_type)
1406 {
1407 case BREAK_OFF:
1408 value |= (0x00 << 14);
1409 break;
1410 case BREAK_ON:
1411 value |= (0x01 << 14);
1412 break;
1413 }
1414
1415 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1416 SIO_SET_DATA_REQUEST, value,
1417 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1418 ftdi_error_return (-1, "Setting new line property failed");
1419
1420 return 0;
1421}
1422
1423/**
1424 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1425
1426 \param ftdi pointer to ftdi_context
1427 \param buf Buffer with the data
1428 \param size Size of the buffer
1429
1430 \retval -666: USB device unavailable
1431 \retval <0: error code from usb_bulk_write()
1432 \retval >0: number of bytes written
1433*/
1434int ftdi_write_data(struct ftdi_context *ftdi, const unsigned char *buf, int size)
1435{
1436 int offset = 0;
1437 int actual_length;
1438
1439 if (ftdi == NULL || ftdi->usb_dev == NULL)
1440 ftdi_error_return(-666, "USB device unavailable");
1441
1442 while (offset < size)
1443 {
1444 int write_size = ftdi->writebuffer_chunksize;
1445
1446 if (offset+write_size > size)
1447 write_size = size-offset;
1448
1449 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, (unsigned char *)buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1450 ftdi_error_return(-1, "usb bulk write failed");
1451
1452 offset += actual_length;
1453 }
1454
1455 return offset;
1456}
1457
1458static void LIBUSB_CALL ftdi_read_data_cb(struct libusb_transfer *transfer)
1459{
1460 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1461 struct ftdi_context *ftdi = tc->ftdi;
1462 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1463
1464 packet_size = ftdi->max_packet_size;
1465
1466 actual_length = transfer->actual_length;
1467
1468 if (actual_length > 2)
1469 {
1470 // skip FTDI status bytes.
1471 // Maybe stored in the future to enable modem use
1472 num_of_chunks = actual_length / packet_size;
1473 chunk_remains = actual_length % packet_size;
1474 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1475
1476 ftdi->readbuffer_offset += 2;
1477 actual_length -= 2;
1478
1479 if (actual_length > packet_size - 2)
1480 {
1481 for (i = 1; i < num_of_chunks; i++)
1482 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1483 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1484 packet_size - 2);
1485 if (chunk_remains > 2)
1486 {
1487 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1488 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1489 chunk_remains-2);
1490 actual_length -= 2*num_of_chunks;
1491 }
1492 else
1493 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1494 }
1495
1496 if (actual_length > 0)
1497 {
1498 // data still fits in buf?
1499 if (tc->offset + actual_length <= tc->size)
1500 {
1501 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1502 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1503 tc->offset += actual_length;
1504
1505 ftdi->readbuffer_offset = 0;
1506 ftdi->readbuffer_remaining = 0;
1507
1508 /* Did we read exactly the right amount of bytes? */
1509 if (tc->offset == tc->size)
1510 {
1511 //printf("read_data exact rem %d offset %d\n",
1512 //ftdi->readbuffer_remaining, offset);
1513 tc->completed = 1;
1514 return;
1515 }
1516 }
1517 else
1518 {
1519 // only copy part of the data or size <= readbuffer_chunksize
1520 int part_size = tc->size - tc->offset;
1521 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1522 tc->offset += part_size;
1523
1524 ftdi->readbuffer_offset += part_size;
1525 ftdi->readbuffer_remaining = actual_length - part_size;
1526
1527 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1528 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1529 tc->completed = 1;
1530 return;
1531 }
1532 }
1533 }
1534
1535 if (transfer->status == LIBUSB_TRANSFER_CANCELLED)
1536 tc->completed = LIBUSB_TRANSFER_CANCELLED;
1537 else
1538 {
1539 ret = libusb_submit_transfer (transfer);
1540 if (ret < 0)
1541 tc->completed = 1;
1542 }
1543}
1544
1545
1546static void LIBUSB_CALL ftdi_write_data_cb(struct libusb_transfer *transfer)
1547{
1548 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1549 struct ftdi_context *ftdi = tc->ftdi;
1550
1551 tc->offset += transfer->actual_length;
1552
1553 if (tc->offset == tc->size)
1554 {
1555 tc->completed = 1;
1556 }
1557 else
1558 {
1559 int write_size = ftdi->writebuffer_chunksize;
1560 int ret;
1561
1562 if (tc->offset + write_size > tc->size)
1563 write_size = tc->size - tc->offset;
1564
1565 transfer->length = write_size;
1566 transfer->buffer = tc->buf + tc->offset;
1567
1568 if (transfer->status == LIBUSB_TRANSFER_CANCELLED)
1569 tc->completed = LIBUSB_TRANSFER_CANCELLED;
1570 else
1571 {
1572 ret = libusb_submit_transfer (transfer);
1573 if (ret < 0)
1574 tc->completed = 1;
1575 }
1576 }
1577}
1578
1579
1580/**
1581 Writes data to the chip. Does not wait for completion of the transfer
1582 nor does it make sure that the transfer was successful.
1583
1584 Use libusb 1.0 asynchronous API.
1585
1586 \param ftdi pointer to ftdi_context
1587 \param buf Buffer with the data
1588 \param size Size of the buffer
1589
1590 \retval NULL: Some error happens when submit transfer
1591 \retval !NULL: Pointer to a ftdi_transfer_control
1592*/
1593
1594struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1595{
1596 struct ftdi_transfer_control *tc;
1597 struct libusb_transfer *transfer;
1598 int write_size, ret;
1599
1600 if (ftdi == NULL || ftdi->usb_dev == NULL)
1601 return NULL;
1602
1603 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1604 if (!tc)
1605 return NULL;
1606
1607 transfer = libusb_alloc_transfer(0);
1608 if (!transfer)
1609 {
1610 free(tc);
1611 return NULL;
1612 }
1613
1614 tc->ftdi = ftdi;
1615 tc->completed = 0;
1616 tc->buf = buf;
1617 tc->size = size;
1618 tc->offset = 0;
1619
1620 if (size < (int)ftdi->writebuffer_chunksize)
1621 write_size = size;
1622 else
1623 write_size = ftdi->writebuffer_chunksize;
1624
1625 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1626 write_size, ftdi_write_data_cb, tc,
1627 ftdi->usb_write_timeout);
1628 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1629
1630 ret = libusb_submit_transfer(transfer);
1631 if (ret < 0)
1632 {
1633 libusb_free_transfer(transfer);
1634 free(tc);
1635 return NULL;
1636 }
1637 tc->transfer = transfer;
1638
1639 return tc;
1640}
1641
1642/**
1643 Reads data from the chip. Does not wait for completion of the transfer
1644 nor does it make sure that the transfer was successful.
1645
1646 Use libusb 1.0 asynchronous API.
1647
1648 \param ftdi pointer to ftdi_context
1649 \param buf Buffer with the data
1650 \param size Size of the buffer
1651
1652 \retval NULL: Some error happens when submit transfer
1653 \retval !NULL: Pointer to a ftdi_transfer_control
1654*/
1655
1656struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1657{
1658 struct ftdi_transfer_control *tc;
1659 struct libusb_transfer *transfer;
1660 int ret;
1661
1662 if (ftdi == NULL || ftdi->usb_dev == NULL)
1663 return NULL;
1664
1665 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1666 if (!tc)
1667 return NULL;
1668
1669 tc->ftdi = ftdi;
1670 tc->buf = buf;
1671 tc->size = size;
1672
1673 if (size <= (int)ftdi->readbuffer_remaining)
1674 {
1675 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1676
1677 // Fix offsets
1678 ftdi->readbuffer_remaining -= size;
1679 ftdi->readbuffer_offset += size;
1680
1681 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1682
1683 tc->completed = 1;
1684 tc->offset = size;
1685 tc->transfer = NULL;
1686 return tc;
1687 }
1688
1689 tc->completed = 0;
1690 if (ftdi->readbuffer_remaining != 0)
1691 {
1692 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1693
1694 tc->offset = ftdi->readbuffer_remaining;
1695 }
1696 else
1697 tc->offset = 0;
1698
1699 transfer = libusb_alloc_transfer(0);
1700 if (!transfer)
1701 {
1702 free (tc);
1703 return NULL;
1704 }
1705
1706 ftdi->readbuffer_remaining = 0;
1707 ftdi->readbuffer_offset = 0;
1708
1709 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1710 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1711
1712 ret = libusb_submit_transfer(transfer);
1713 if (ret < 0)
1714 {
1715 libusb_free_transfer(transfer);
1716 free (tc);
1717 return NULL;
1718 }
1719 tc->transfer = transfer;
1720
1721 return tc;
1722}
1723
1724/**
1725 Wait for completion of the transfer.
1726
1727 Use libusb 1.0 asynchronous API.
1728
1729 \param tc pointer to ftdi_transfer_control
1730
1731 \retval < 0: Some error happens
1732 \retval >= 0: Data size transferred
1733*/
1734
1735int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1736{
1737 int ret;
1738 struct timeval to = { 0, 0 };
1739 while (!tc->completed)
1740 {
1741 ret = libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx,
1742 &to, &tc->completed);
1743 if (ret < 0)
1744 {
1745 if (ret == LIBUSB_ERROR_INTERRUPTED)
1746 continue;
1747 libusb_cancel_transfer(tc->transfer);
1748 while (!tc->completed)
1749 if (libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx,
1750 &to, &tc->completed) < 0)
1751 break;
1752 libusb_free_transfer(tc->transfer);
1753 free (tc);
1754 return ret;
1755 }
1756 }
1757
1758 ret = tc->offset;
1759 /**
1760 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1761 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1762 **/
1763 if (tc->transfer)
1764 {
1765 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1766 ret = -1;
1767 libusb_free_transfer(tc->transfer);
1768 }
1769 free(tc);
1770 return ret;
1771}
1772
1773/**
1774 Cancel transfer and wait for completion.
1775
1776 Use libusb 1.0 asynchronous API.
1777
1778 \param tc pointer to ftdi_transfer_control
1779 \param to pointer to timeout value or NULL for infinite
1780*/
1781
1782void ftdi_transfer_data_cancel(struct ftdi_transfer_control *tc,
1783 struct timeval * to)
1784{
1785 struct timeval tv = { 0, 0 };
1786
1787 if (!tc->completed && tc->transfer != NULL)
1788 {
1789 if (to == NULL)
1790 to = &tv;
1791
1792 libusb_cancel_transfer(tc->transfer);
1793 while (!tc->completed)
1794 {
1795 if (libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx, to, &tc->completed) < 0)
1796 break;
1797 }
1798 }
1799
1800 if (tc->transfer)
1801 libusb_free_transfer(tc->transfer);
1802
1803 free (tc);
1804}
1805
1806/**
1807 Configure write buffer chunk size.
1808 Default is 4096.
1809
1810 \param ftdi pointer to ftdi_context
1811 \param chunksize Chunk size
1812
1813 \retval 0: all fine
1814 \retval -1: ftdi context invalid
1815*/
1816int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1817{
1818 if (ftdi == NULL)
1819 ftdi_error_return(-1, "ftdi context invalid");
1820
1821 ftdi->writebuffer_chunksize = chunksize;
1822 return 0;
1823}
1824
1825/**
1826 Get write buffer chunk size.
1827
1828 \param ftdi pointer to ftdi_context
1829 \param chunksize Pointer to store chunk size in
1830
1831 \retval 0: all fine
1832 \retval -1: ftdi context invalid
1833*/
1834int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1835{
1836 if (ftdi == NULL)
1837 ftdi_error_return(-1, "ftdi context invalid");
1838
1839 *chunksize = ftdi->writebuffer_chunksize;
1840 return 0;
1841}
1842
1843/**
1844 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1845
1846 Automatically strips the two modem status bytes transfered during every read.
1847
1848 \param ftdi pointer to ftdi_context
1849 \param buf Buffer to store data in
1850 \param size Size of the buffer
1851
1852 \retval -666: USB device unavailable
1853 \retval <0: error code from libusb_bulk_transfer()
1854 \retval 0: no data was available
1855 \retval >0: number of bytes read
1856
1857*/
1858int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1859{
1860 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1861 int packet_size = ftdi->max_packet_size;
1862 int actual_length = 1;
1863
1864 if (ftdi == NULL || ftdi->usb_dev == NULL)
1865 ftdi_error_return(-666, "USB device unavailable");
1866
1867 // Packet size sanity check (avoid division by zero)
1868 if (packet_size == 0)
1869 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1870
1871 // everything we want is still in the readbuffer?
1872 if (size <= (int)ftdi->readbuffer_remaining)
1873 {
1874 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1875
1876 // Fix offsets
1877 ftdi->readbuffer_remaining -= size;
1878 ftdi->readbuffer_offset += size;
1879
1880 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1881
1882 return size;
1883 }
1884 // something still in the readbuffer, but not enough to satisfy 'size'?
1885 if (ftdi->readbuffer_remaining != 0)
1886 {
1887 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1888
1889 // Fix offset
1890 offset += ftdi->readbuffer_remaining;
1891 }
1892 // do the actual USB read
1893 while (offset < size && actual_length > 0)
1894 {
1895 ftdi->readbuffer_remaining = 0;
1896 ftdi->readbuffer_offset = 0;
1897 /* returns how much received */
1898 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1899 if (ret < 0)
1900 ftdi_error_return(ret, "usb bulk read failed");
1901
1902 if (actual_length > 2)
1903 {
1904 // skip FTDI status bytes.
1905 // Maybe stored in the future to enable modem use
1906 num_of_chunks = actual_length / packet_size;
1907 chunk_remains = actual_length % packet_size;
1908 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1909
1910 ftdi->readbuffer_offset += 2;
1911 actual_length -= 2;
1912
1913 if (actual_length > packet_size - 2)
1914 {
1915 for (i = 1; i < num_of_chunks; i++)
1916 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1917 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1918 packet_size - 2);
1919 if (chunk_remains > 2)
1920 {
1921 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1922 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1923 chunk_remains-2);
1924 actual_length -= 2*num_of_chunks;
1925 }
1926 else
1927 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1928 }
1929 }
1930 else if (actual_length <= 2)
1931 {
1932 // no more data to read?
1933 return offset;
1934 }
1935 if (actual_length > 0)
1936 {
1937 // data still fits in buf?
1938 if (offset+actual_length <= size)
1939 {
1940 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1941 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1942 offset += actual_length;
1943
1944 /* Did we read exactly the right amount of bytes? */
1945 if (offset == size)
1946 //printf("read_data exact rem %d offset %d\n",
1947 //ftdi->readbuffer_remaining, offset);
1948 return offset;
1949 }
1950 else
1951 {
1952 // only copy part of the data or size <= readbuffer_chunksize
1953 int part_size = size-offset;
1954 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1955
1956 ftdi->readbuffer_offset += part_size;
1957 ftdi->readbuffer_remaining = actual_length-part_size;
1958 offset += part_size;
1959
1960 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1961 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1962
1963 return offset;
1964 }
1965 }
1966 }
1967 // never reached
1968 return -127;
1969}
1970
1971/**
1972 Configure read buffer chunk size.
1973 Default is 4096.
1974
1975 Automatically reallocates the buffer.
1976
1977 \param ftdi pointer to ftdi_context
1978 \param chunksize Chunk size
1979
1980 \retval 0: all fine
1981 \retval -1: ftdi context invalid
1982*/
1983int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1984{
1985 unsigned char *new_buf;
1986
1987 if (ftdi == NULL)
1988 ftdi_error_return(-1, "ftdi context invalid");
1989
1990 // Invalidate all remaining data
1991 ftdi->readbuffer_offset = 0;
1992 ftdi->readbuffer_remaining = 0;
1993#ifdef __linux__
1994 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1995 which is defined in libusb-1.0. Otherwise, each USB read request will
1996 be divided into multiple URBs. This will cause issues on Linux kernel
1997 older than 2.6.32. */
1998 if (chunksize > 16384)
1999 chunksize = 16384;
2000#endif
2001
2002 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
2003 ftdi_error_return(-1, "out of memory for readbuffer");
2004
2005 ftdi->readbuffer = new_buf;
2006 ftdi->readbuffer_chunksize = chunksize;
2007
2008 return 0;
2009}
2010
2011/**
2012 Get read buffer chunk size.
2013
2014 \param ftdi pointer to ftdi_context
2015 \param chunksize Pointer to store chunk size in
2016
2017 \retval 0: all fine
2018 \retval -1: FTDI context invalid
2019*/
2020int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
2021{
2022 if (ftdi == NULL)
2023 ftdi_error_return(-1, "FTDI context invalid");
2024
2025 *chunksize = ftdi->readbuffer_chunksize;
2026 return 0;
2027}
2028
2029/**
2030 Enable/disable bitbang modes.
2031
2032 \param ftdi pointer to ftdi_context
2033 \param bitmask Bitmask to configure lines.
2034 HIGH/ON value configures a line as output.
2035 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
2036
2037 \retval 0: all fine
2038 \retval -1: can't enable bitbang mode
2039 \retval -2: USB device unavailable
2040*/
2041int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
2042{
2043 unsigned short usb_val;
2044
2045 if (ftdi == NULL || ftdi->usb_dev == NULL)
2046 ftdi_error_return(-2, "USB device unavailable");
2047
2048 usb_val = bitmask; // low byte: bitmask
2049 usb_val |= (mode << 8);
2050 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2051 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
2052
2053 ftdi->bitbang_mode = mode;
2054 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
2055 return 0;
2056}
2057
2058/**
2059 Disable bitbang mode.
2060
2061 \param ftdi pointer to ftdi_context
2062
2063 \retval 0: all fine
2064 \retval -1: can't disable bitbang mode
2065 \retval -2: USB device unavailable
2066*/
2067int ftdi_disable_bitbang(struct ftdi_context *ftdi)
2068{
2069 if (ftdi == NULL || ftdi->usb_dev == NULL)
2070 ftdi_error_return(-2, "USB device unavailable");
2071
2072 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2073 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
2074
2075 ftdi->bitbang_enabled = 0;
2076 return 0;
2077}
2078
2079
2080/**
2081 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
2082
2083 \param ftdi pointer to ftdi_context
2084 \param pins Pointer to store pins into
2085
2086 \retval 0: all fine
2087 \retval -1: read pins failed
2088 \retval -2: USB device unavailable
2089*/
2090int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
2091{
2092 if (ftdi == NULL || ftdi->usb_dev == NULL)
2093 ftdi_error_return(-2, "USB device unavailable");
2094
2095 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
2096 ftdi_error_return(-1, "read pins failed");
2097
2098 return 0;
2099}
2100
2101/**
2102 Set latency timer
2103
2104 The FTDI chip keeps data in the internal buffer for a specific
2105 amount of time if the buffer is not full yet to decrease
2106 load on the usb bus.
2107
2108 \param ftdi pointer to ftdi_context
2109 \param latency Value between 1 and 255
2110
2111 \retval 0: all fine
2112 \retval -1: latency out of range
2113 \retval -2: unable to set latency timer
2114 \retval -3: USB device unavailable
2115*/
2116int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2117{
2118 unsigned short usb_val;
2119
2120 if (latency < 1)
2121 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
2122
2123 if (ftdi == NULL || ftdi->usb_dev == NULL)
2124 ftdi_error_return(-3, "USB device unavailable");
2125
2126 usb_val = latency;
2127 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2128 ftdi_error_return(-2, "unable to set latency timer");
2129
2130 return 0;
2131}
2132
2133/**
2134 Get latency timer
2135
2136 \param ftdi pointer to ftdi_context
2137 \param latency Pointer to store latency value in
2138
2139 \retval 0: all fine
2140 \retval -1: unable to get latency timer
2141 \retval -2: USB device unavailable
2142*/
2143int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2144{
2145 unsigned short usb_val;
2146
2147 if (ftdi == NULL || ftdi->usb_dev == NULL)
2148 ftdi_error_return(-2, "USB device unavailable");
2149
2150 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
2151 ftdi_error_return(-1, "reading latency timer failed");
2152
2153 *latency = (unsigned char)usb_val;
2154 return 0;
2155}
2156
2157/**
2158 Poll modem status information
2159
2160 This function allows the retrieve the two status bytes of the device.
2161 The device sends these bytes also as a header for each read access
2162 where they are discarded by ftdi_read_data(). The chip generates
2163 the two stripped status bytes in the absence of data every 40 ms.
2164
2165 Layout of the first byte:
2166 - B0..B3 - must be 0
2167 - B4 Clear to send (CTS)
2168 0 = inactive
2169 1 = active
2170 - B5 Data set ready (DTS)
2171 0 = inactive
2172 1 = active
2173 - B6 Ring indicator (RI)
2174 0 = inactive
2175 1 = active
2176 - B7 Receive line signal detect (RLSD)
2177 0 = inactive
2178 1 = active
2179
2180 Layout of the second byte:
2181 - B0 Data ready (DR)
2182 - B1 Overrun error (OE)
2183 - B2 Parity error (PE)
2184 - B3 Framing error (FE)
2185 - B4 Break interrupt (BI)
2186 - B5 Transmitter holding register (THRE)
2187 - B6 Transmitter empty (TEMT)
2188 - B7 Error in RCVR FIFO
2189
2190 \param ftdi pointer to ftdi_context
2191 \param status Pointer to store status information in. Must be two bytes.
2192
2193 \retval 0: all fine
2194 \retval -1: unable to retrieve status information
2195 \retval -2: USB device unavailable
2196*/
2197int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2198{
2199 char usb_val[2];
2200
2201 if (ftdi == NULL || ftdi->usb_dev == NULL)
2202 ftdi_error_return(-2, "USB device unavailable");
2203
2204 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
2205 ftdi_error_return(-1, "getting modem status failed");
2206
2207 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
2208
2209 return 0;
2210}
2211
2212/**
2213 Set flowcontrol for ftdi chip
2214
2215 \param ftdi pointer to ftdi_context
2216 \param flowctrl flow control to use. should be
2217 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2218
2219 \retval 0: all fine
2220 \retval -1: set flow control failed
2221 \retval -2: USB device unavailable
2222*/
2223int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2224{
2225 if (ftdi == NULL || ftdi->usb_dev == NULL)
2226 ftdi_error_return(-2, "USB device unavailable");
2227
2228 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2229 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2230 NULL, 0, ftdi->usb_write_timeout) < 0)
2231 ftdi_error_return(-1, "set flow control failed");
2232
2233 return 0;
2234}
2235
2236/**
2237 Set dtr line
2238
2239 \param ftdi pointer to ftdi_context
2240 \param state state to set line to (1 or 0)
2241
2242 \retval 0: all fine
2243 \retval -1: set dtr failed
2244 \retval -2: USB device unavailable
2245*/
2246int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2247{
2248 unsigned short usb_val;
2249
2250 if (ftdi == NULL || ftdi->usb_dev == NULL)
2251 ftdi_error_return(-2, "USB device unavailable");
2252
2253 if (state)
2254 usb_val = SIO_SET_DTR_HIGH;
2255 else
2256 usb_val = SIO_SET_DTR_LOW;
2257
2258 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2259 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2260 NULL, 0, ftdi->usb_write_timeout) < 0)
2261 ftdi_error_return(-1, "set dtr failed");
2262
2263 return 0;
2264}
2265
2266/**
2267 Set rts line
2268
2269 \param ftdi pointer to ftdi_context
2270 \param state state to set line to (1 or 0)
2271
2272 \retval 0: all fine
2273 \retval -1: set rts failed
2274 \retval -2: USB device unavailable
2275*/
2276int ftdi_setrts(struct ftdi_context *ftdi, int state)
2277{
2278 unsigned short usb_val;
2279
2280 if (ftdi == NULL || ftdi->usb_dev == NULL)
2281 ftdi_error_return(-2, "USB device unavailable");
2282
2283 if (state)
2284 usb_val = SIO_SET_RTS_HIGH;
2285 else
2286 usb_val = SIO_SET_RTS_LOW;
2287
2288 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2289 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2290 NULL, 0, ftdi->usb_write_timeout) < 0)
2291 ftdi_error_return(-1, "set of rts failed");
2292
2293 return 0;
2294}
2295
2296/**
2297 Set dtr and rts line in one pass
2298
2299 \param ftdi pointer to ftdi_context
2300 \param dtr DTR state to set line to (1 or 0)
2301 \param rts RTS state to set line to (1 or 0)
2302
2303 \retval 0: all fine
2304 \retval -1: set dtr/rts failed
2305 \retval -2: USB device unavailable
2306 */
2307int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2308{
2309 unsigned short usb_val;
2310
2311 if (ftdi == NULL || ftdi->usb_dev == NULL)
2312 ftdi_error_return(-2, "USB device unavailable");
2313
2314 if (dtr)
2315 usb_val = SIO_SET_DTR_HIGH;
2316 else
2317 usb_val = SIO_SET_DTR_LOW;
2318
2319 if (rts)
2320 usb_val |= SIO_SET_RTS_HIGH;
2321 else
2322 usb_val |= SIO_SET_RTS_LOW;
2323
2324 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2325 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2326 NULL, 0, ftdi->usb_write_timeout) < 0)
2327 ftdi_error_return(-1, "set of rts/dtr failed");
2328
2329 return 0;
2330}
2331
2332/**
2333 Set the special event character
2334
2335 \param ftdi pointer to ftdi_context
2336 \param eventch Event character
2337 \param enable 0 to disable the event character, non-zero otherwise
2338
2339 \retval 0: all fine
2340 \retval -1: unable to set event character
2341 \retval -2: USB device unavailable
2342*/
2343int ftdi_set_event_char(struct ftdi_context *ftdi,
2344 unsigned char eventch, unsigned char enable)
2345{
2346 unsigned short usb_val;
2347
2348 if (ftdi == NULL || ftdi->usb_dev == NULL)
2349 ftdi_error_return(-2, "USB device unavailable");
2350
2351 usb_val = eventch;
2352 if (enable)
2353 usb_val |= 1 << 8;
2354
2355 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2356 ftdi_error_return(-1, "setting event character failed");
2357
2358 return 0;
2359}
2360
2361/**
2362 Set error character
2363
2364 \param ftdi pointer to ftdi_context
2365 \param errorch Error character
2366 \param enable 0 to disable the error character, non-zero otherwise
2367
2368 \retval 0: all fine
2369 \retval -1: unable to set error character
2370 \retval -2: USB device unavailable
2371*/
2372int ftdi_set_error_char(struct ftdi_context *ftdi,
2373 unsigned char errorch, unsigned char enable)
2374{
2375 unsigned short usb_val;
2376
2377 if (ftdi == NULL || ftdi->usb_dev == NULL)
2378 ftdi_error_return(-2, "USB device unavailable");
2379
2380 usb_val = errorch;
2381 if (enable)
2382 usb_val |= 1 << 8;
2383
2384 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2385 ftdi_error_return(-1, "setting error character failed");
2386
2387 return 0;
2388}
2389
2390/**
2391 Init eeprom with default values for the connected device
2392 \param ftdi pointer to ftdi_context
2393 \param manufacturer String to use as Manufacturer
2394 \param product String to use as Product description
2395 \param serial String to use as Serial number description
2396
2397 \retval 0: all fine
2398 \retval -1: No struct ftdi_context
2399 \retval -2: No struct ftdi_eeprom
2400 \retval -3: No connected device or device not yet opened
2401*/
2402int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2403 char * product, char * serial)
2404{
2405 struct ftdi_eeprom *eeprom;
2406
2407 if (ftdi == NULL)
2408 ftdi_error_return(-1, "No struct ftdi_context");
2409
2410 if (ftdi->eeprom == NULL)
2411 ftdi_error_return(-2,"No struct ftdi_eeprom");
2412
2413 eeprom = ftdi->eeprom;
2414 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2415
2416 if (ftdi->usb_dev == NULL)
2417 ftdi_error_return(-3, "No connected device or device not yet opened");
2418
2419 eeprom->vendor_id = 0x0403;
2420 eeprom->use_serial = 1;
2421 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2422 (ftdi->type == TYPE_R))
2423 eeprom->product_id = 0x6001;
2424 else if (ftdi->type == TYPE_4232H)
2425 eeprom->product_id = 0x6011;
2426 else if (ftdi->type == TYPE_232H)
2427 eeprom->product_id = 0x6014;
2428 else if (ftdi->type == TYPE_230X)
2429 eeprom->product_id = 0x6015;
2430 else
2431 eeprom->product_id = 0x6010;
2432
2433 if (ftdi->type == TYPE_AM)
2434 eeprom->usb_version = 0x0101;
2435 else
2436 eeprom->usb_version = 0x0200;
2437 eeprom->max_power = 100;
2438
2439 if (eeprom->manufacturer)
2440 free (eeprom->manufacturer);
2441 eeprom->manufacturer = NULL;
2442 if (manufacturer)
2443 {
2444 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2445 if (eeprom->manufacturer)
2446 strcpy(eeprom->manufacturer, manufacturer);
2447 }
2448
2449 if (eeprom->product)
2450 free (eeprom->product);
2451 eeprom->product = NULL;
2452 if(product)
2453 {
2454 eeprom->product = malloc(strlen(product)+1);
2455 if (eeprom->product)
2456 strcpy(eeprom->product, product);
2457 }
2458 else
2459 {
2460 const char* default_product;
2461 switch(ftdi->type)
2462 {
2463 case TYPE_AM: default_product = "AM"; break;
2464 case TYPE_BM: default_product = "BM"; break;
2465 case TYPE_2232C: default_product = "Dual RS232"; break;
2466 case TYPE_R: default_product = "FT232R USB UART"; break;
2467 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2468 case TYPE_4232H: default_product = "FT4232H"; break;
2469 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2470 case TYPE_230X: default_product = "FT230X Basic UART"; break;
2471 default:
2472 ftdi_error_return(-3, "Unknown chip type");
2473 }
2474 eeprom->product = malloc(strlen(default_product) +1);
2475 if (eeprom->product)
2476 strcpy(eeprom->product, default_product);
2477 }
2478
2479 if (eeprom->serial)
2480 free (eeprom->serial);
2481 eeprom->serial = NULL;
2482 if (serial)
2483 {
2484 eeprom->serial = malloc(strlen(serial)+1);
2485 if (eeprom->serial)
2486 strcpy(eeprom->serial, serial);
2487 }
2488
2489 if (ftdi->type == TYPE_R)
2490 {
2491 eeprom->max_power = 90;
2492 eeprom->size = 0x80;
2493 eeprom->cbus_function[0] = CBUS_TXLED;
2494 eeprom->cbus_function[1] = CBUS_RXLED;
2495 eeprom->cbus_function[2] = CBUS_TXDEN;
2496 eeprom->cbus_function[3] = CBUS_PWREN;
2497 eeprom->cbus_function[4] = CBUS_SLEEP;
2498 }
2499 else if (ftdi->type == TYPE_230X)
2500 {
2501 eeprom->max_power = 90;
2502 eeprom->size = 0x100;
2503 eeprom->cbus_function[0] = CBUSX_TXDEN;
2504 eeprom->cbus_function[1] = CBUSX_RXLED;
2505 eeprom->cbus_function[2] = CBUSX_TXLED;
2506 eeprom->cbus_function[3] = CBUSX_SLEEP;
2507 }
2508 else
2509 {
2510 if(ftdi->type == TYPE_232H)
2511 {
2512 int i;
2513 for (i=0; i<10; i++)
2514 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2515 }
2516 eeprom->size = -1;
2517 }
2518 switch (ftdi->type)
2519 {
2520 case TYPE_AM:
2521 eeprom->release_number = 0x0200;
2522 break;
2523 case TYPE_BM:
2524 eeprom->release_number = 0x0400;
2525 break;
2526 case TYPE_2232C:
2527 eeprom->release_number = 0x0500;
2528 break;
2529 case TYPE_R:
2530 eeprom->release_number = 0x0600;
2531 break;
2532 case TYPE_2232H:
2533 eeprom->release_number = 0x0700;
2534 break;
2535 case TYPE_4232H:
2536 eeprom->release_number = 0x0800;
2537 break;
2538 case TYPE_232H:
2539 eeprom->release_number = 0x0900;
2540 break;
2541 case TYPE_230X:
2542 eeprom->release_number = 0x1000;
2543 break;
2544 default:
2545 eeprom->release_number = 0x00;
2546 }
2547 return 0;
2548}
2549
2550int ftdi_eeprom_set_strings(struct ftdi_context *ftdi, char * manufacturer,
2551 char * product, char * serial)
2552{
2553 struct ftdi_eeprom *eeprom;
2554
2555 if (ftdi == NULL)
2556 ftdi_error_return(-1, "No struct ftdi_context");
2557
2558 if (ftdi->eeprom == NULL)
2559 ftdi_error_return(-2,"No struct ftdi_eeprom");
2560
2561 eeprom = ftdi->eeprom;
2562
2563 if (ftdi->usb_dev == NULL)
2564 ftdi_error_return(-3, "No connected device or device not yet opened");
2565
2566 if (manufacturer)
2567 {
2568 if (eeprom->manufacturer)
2569 free (eeprom->manufacturer);
2570 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2571 if (eeprom->manufacturer)
2572 strcpy(eeprom->manufacturer, manufacturer);
2573 }
2574
2575 if(product)
2576 {
2577 if (eeprom->product)
2578 free (eeprom->product);
2579 eeprom->product = malloc(strlen(product)+1);
2580 if (eeprom->product)
2581 strcpy(eeprom->product, product);
2582 }
2583
2584 if (serial)
2585 {
2586 if (eeprom->serial)
2587 free (eeprom->serial);
2588 eeprom->serial = malloc(strlen(serial)+1);
2589 if (eeprom->serial)
2590 {
2591 strcpy(eeprom->serial, serial);
2592 eeprom->use_serial = 1;
2593 }
2594 }
2595 return 0;
2596}
2597
2598
2599/*FTD2XX doesn't check for values not fitting in the ACBUS Signal options*/
2600void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2601{
2602 int i;
2603 for(i=0; i<5; i++)
2604 {
2605 int mode_low, mode_high;
2606 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2607 mode_low = CBUSH_TRISTATE;
2608 else
2609 mode_low = eeprom->cbus_function[2*i];
2610 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2611 mode_high = CBUSH_TRISTATE;
2612 else
2613 mode_high = eeprom->cbus_function[2*i+1];
2614
2615 output[0x18+i] = (mode_high <<4) | mode_low;
2616 }
2617}
2618/* Return the bits for the encoded EEPROM Structure of a requested Mode
2619 *
2620 */
2621static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2622{
2623 switch (chip)
2624 {
2625 case TYPE_2232H:
2626 case TYPE_2232C:
2627 {
2628 switch (type)
2629 {
2630 case CHANNEL_IS_UART: return 0;
2631 case CHANNEL_IS_FIFO: return 0x01;
2632 case CHANNEL_IS_OPTO: return 0x02;
2633 case CHANNEL_IS_CPU : return 0x04;
2634 default: return 0;
2635 }
2636 }
2637 case TYPE_232H:
2638 {
2639 switch (type)
2640 {
2641 case CHANNEL_IS_UART : return 0;
2642 case CHANNEL_IS_FIFO : return 0x01;
2643 case CHANNEL_IS_OPTO : return 0x02;
2644 case CHANNEL_IS_CPU : return 0x04;
2645 case CHANNEL_IS_FT1284 : return 0x08;
2646 default: return 0;
2647 }
2648 }
2649 case TYPE_R:
2650 {
2651 switch (type)
2652 {
2653 case CHANNEL_IS_UART : return 0;
2654 case CHANNEL_IS_FIFO : return 0x01;
2655 default: return 0;
2656 }
2657 }
2658 case TYPE_230X: /* FT230X is only UART */
2659 default: return 0;
2660 }
2661 return 0;
2662}
2663
2664/**
2665 Build binary buffer from ftdi_eeprom structure.
2666 Output is suitable for ftdi_write_eeprom().
2667
2668 \param ftdi pointer to ftdi_context
2669
2670 \retval >=0: size of eeprom user area in bytes
2671 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2672 \retval -2: Invalid eeprom or ftdi pointer
2673 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2674 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2675 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2676 \retval -6: No connected EEPROM or EEPROM Type unknown
2677*/
2678int ftdi_eeprom_build(struct ftdi_context *ftdi)
2679{
2680 unsigned char i, j, eeprom_size_mask;
2681 unsigned short checksum, value;
2682 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2683 int user_area_size, free_start, free_end;
2684 struct ftdi_eeprom *eeprom;
2685 unsigned char * output;
2686
2687 if (ftdi == NULL)
2688 ftdi_error_return(-2,"No context");
2689 if (ftdi->eeprom == NULL)
2690 ftdi_error_return(-2,"No eeprom structure");
2691
2692 eeprom= ftdi->eeprom;
2693 output = eeprom->buf;
2694
2695 if (eeprom->chip == -1)
2696 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2697
2698 if (eeprom->size == -1)
2699 {
2700 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2701 eeprom->size = 0x100;
2702 else
2703 eeprom->size = 0x80;
2704 }
2705
2706 if (eeprom->manufacturer != NULL)
2707 manufacturer_size = strlen(eeprom->manufacturer);
2708 if (eeprom->product != NULL)
2709 product_size = strlen(eeprom->product);
2710 if (eeprom->serial != NULL)
2711 serial_size = strlen(eeprom->serial);
2712
2713 // eeprom size check
2714 switch (ftdi->type)
2715 {
2716 case TYPE_AM:
2717 case TYPE_BM:
2718 case TYPE_R:
2719 user_area_size = 96; // base size for strings (total of 48 characters)
2720 break;
2721 case TYPE_2232C:
2722 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2723 break;
2724 case TYPE_230X:
2725 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2726 break;
2727 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2728 case TYPE_4232H:
2729 user_area_size = 86;
2730 break;
2731 case TYPE_232H:
2732 user_area_size = 80;
2733 break;
2734 default:
2735 user_area_size = 0;
2736 break;
2737 }
2738 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2739
2740 if (user_area_size < 0)
2741 ftdi_error_return(-1,"eeprom size exceeded");
2742
2743 // empty eeprom
2744 if (ftdi->type == TYPE_230X)
2745 {
2746 /* FT230X have a reserved section in the middle of the MTP,
2747 which cannot be written to, but must be included in the checksum */
2748 memset(ftdi->eeprom->buf, 0, 0x80);
2749 memset((ftdi->eeprom->buf + 0xa0), 0, (FTDI_MAX_EEPROM_SIZE - 0xa0));
2750 }
2751 else
2752 {
2753 memset(ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2754 }
2755
2756 // Bytes and Bits set for all Types
2757
2758 // Addr 02: Vendor ID
2759 output[0x02] = eeprom->vendor_id;
2760 output[0x03] = eeprom->vendor_id >> 8;
2761
2762 // Addr 04: Product ID
2763 output[0x04] = eeprom->product_id;
2764 output[0x05] = eeprom->product_id >> 8;
2765
2766 // Addr 06: Device release number (0400h for BM features)
2767 output[0x06] = eeprom->release_number;
2768 output[0x07] = eeprom->release_number >> 8;
2769
2770 // Addr 08: Config descriptor
2771 // Bit 7: always 1
2772 // Bit 6: 1 if this device is self powered, 0 if bus powered
2773 // Bit 5: 1 if this device uses remote wakeup
2774 // Bit 4-0: reserved - 0
2775 j = 0x80;
2776 if (eeprom->self_powered)
2777 j |= 0x40;
2778 if (eeprom->remote_wakeup)
2779 j |= 0x20;
2780 output[0x08] = j;
2781
2782 // Addr 09: Max power consumption: max power = value * 2 mA
2783 output[0x09] = eeprom->max_power / MAX_POWER_MILLIAMP_PER_UNIT;
2784
2785 if ((ftdi->type != TYPE_AM) && (ftdi->type != TYPE_230X))
2786 {
2787 // Addr 0A: Chip configuration
2788 // Bit 7: 0 - reserved
2789 // Bit 6: 0 - reserved
2790 // Bit 5: 0 - reserved
2791 // Bit 4: 1 - Change USB version
2792 // Bit 3: 1 - Use the serial number string
2793 // Bit 2: 1 - Enable suspend pull downs for lower power
2794 // Bit 1: 1 - Out EndPoint is Isochronous
2795 // Bit 0: 1 - In EndPoint is Isochronous
2796 //
2797 j = 0;
2798 if (eeprom->in_is_isochronous)
2799 j = j | 1;
2800 if (eeprom->out_is_isochronous)
2801 j = j | 2;
2802 output[0x0A] = j;
2803 }
2804
2805 // Dynamic content
2806 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2807 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2808 // 0xa0 (TYPE_232H)
2809 i = 0;
2810 switch (ftdi->type)
2811 {
2812 case TYPE_2232H:
2813 case TYPE_4232H:
2814 i += 2;
2815 case TYPE_R:
2816 i += 2;
2817 case TYPE_2232C:
2818 i += 2;
2819 case TYPE_AM:
2820 case TYPE_BM:
2821 i += 0x94;
2822 break;
2823 case TYPE_232H:
2824 case TYPE_230X:
2825 i = 0xa0;
2826 break;
2827 }
2828 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2829 eeprom_size_mask = eeprom->size -1;
2830 free_end = i & eeprom_size_mask;
2831
2832 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2833 // Addr 0F: Length of manufacturer string
2834 // Output manufacturer
2835 output[0x0E] = i; // calculate offset
2836 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2837 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2838 for (j = 0; j < manufacturer_size; j++)
2839 {
2840 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2841 output[i & eeprom_size_mask] = 0x00, i++;
2842 }
2843 output[0x0F] = manufacturer_size*2 + 2;
2844
2845 // Addr 10: Offset of the product string + 0x80, calculated later
2846 // Addr 11: Length of product string
2847 output[0x10] = i | 0x80; // calculate offset
2848 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2849 output[i & eeprom_size_mask] = 0x03, i++;
2850 for (j = 0; j < product_size; j++)
2851 {
2852 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2853 output[i & eeprom_size_mask] = 0x00, i++;
2854 }
2855 output[0x11] = product_size*2 + 2;
2856
2857 // Addr 12: Offset of the serial string + 0x80, calculated later
2858 // Addr 13: Length of serial string
2859 output[0x12] = i | 0x80; // calculate offset
2860 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2861 output[i & eeprom_size_mask] = 0x03, i++;
2862 for (j = 0; j < serial_size; j++)
2863 {
2864 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2865 output[i & eeprom_size_mask] = 0x00, i++;
2866 }
2867
2868 // Legacy port name and PnP fields for FT2232 and newer chips
2869 if (ftdi->type > TYPE_BM)
2870 {
2871 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2872 i++;
2873 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2874 i++;
2875 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2876 i++;
2877 }
2878
2879 output[0x13] = serial_size*2 + 2;
2880
2881 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2882 {
2883 if (eeprom->use_serial)
2884 output[0x0A] |= USE_SERIAL_NUM;
2885 else
2886 output[0x0A] &= ~USE_SERIAL_NUM;
2887 }
2888
2889 /* Bytes and Bits specific to (some) types
2890 Write linear, as this allows easier fixing*/
2891 switch (ftdi->type)
2892 {
2893 case TYPE_AM:
2894 break;
2895 case TYPE_BM:
2896 output[0x0C] = eeprom->usb_version & 0xff;
2897 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2898 if (eeprom->use_usb_version)
2899 output[0x0A] |= USE_USB_VERSION_BIT;
2900 else
2901 output[0x0A] &= ~USE_USB_VERSION_BIT;
2902
2903 break;
2904 case TYPE_2232C:
2905
2906 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
2907 if ( eeprom->channel_a_driver == DRIVER_VCP)
2908 output[0x00] |= DRIVER_VCP;
2909 else
2910 output[0x00] &= ~DRIVER_VCP;
2911
2912 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2913 output[0x00] |= HIGH_CURRENT_DRIVE;
2914 else
2915 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2916
2917 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
2918 if ( eeprom->channel_b_driver == DRIVER_VCP)
2919 output[0x01] |= DRIVER_VCP;
2920 else
2921 output[0x01] &= ~DRIVER_VCP;
2922
2923 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2924 output[0x01] |= HIGH_CURRENT_DRIVE;
2925 else
2926 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2927
2928 if (eeprom->in_is_isochronous)
2929 output[0x0A] |= 0x1;
2930 else
2931 output[0x0A] &= ~0x1;
2932 if (eeprom->out_is_isochronous)
2933 output[0x0A] |= 0x2;
2934 else
2935 output[0x0A] &= ~0x2;
2936 if (eeprom->suspend_pull_downs)
2937 output[0x0A] |= 0x4;
2938 else
2939 output[0x0A] &= ~0x4;
2940 if (eeprom->use_usb_version)
2941 output[0x0A] |= USE_USB_VERSION_BIT;
2942 else
2943 output[0x0A] &= ~USE_USB_VERSION_BIT;
2944
2945 output[0x0C] = eeprom->usb_version & 0xff;
2946 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2947 output[0x14] = eeprom->chip;
2948 break;
2949 case TYPE_R:
2950 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_R);
2951 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2952 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2953 if (eeprom->external_oscillator)
2954 output[0x00] |= 0x02;
2955 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2956
2957 if (eeprom->suspend_pull_downs)
2958 output[0x0A] |= 0x4;
2959 else
2960 output[0x0A] &= ~0x4;
2961 output[0x0B] = eeprom->invert;
2962 output[0x0C] = eeprom->usb_version & 0xff;
2963 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2964
2965 if (eeprom->cbus_function[0] > CBUS_BB_RD)
2966 output[0x14] = CBUS_TXLED;
2967 else
2968 output[0x14] = eeprom->cbus_function[0];
2969
2970 if (eeprom->cbus_function[1] > CBUS_BB_RD)
2971 output[0x14] |= CBUS_RXLED<<4;
2972 else
2973 output[0x14] |= eeprom->cbus_function[1]<<4;
2974
2975 if (eeprom->cbus_function[2] > CBUS_BB_RD)
2976 output[0x15] = CBUS_TXDEN;
2977 else
2978 output[0x15] = eeprom->cbus_function[2];
2979
2980 if (eeprom->cbus_function[3] > CBUS_BB_RD)
2981 output[0x15] |= CBUS_PWREN<<4;
2982 else
2983 output[0x15] |= eeprom->cbus_function[3]<<4;
2984
2985 if (eeprom->cbus_function[4] > CBUS_CLK6)
2986 output[0x16] = CBUS_SLEEP;
2987 else
2988 output[0x16] = eeprom->cbus_function[4];
2989 break;
2990 case TYPE_2232H:
2991 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
2992 if ( eeprom->channel_a_driver == DRIVER_VCP)
2993 output[0x00] |= DRIVER_VCP;
2994 else
2995 output[0x00] &= ~DRIVER_VCP;
2996
2997 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
2998 if ( eeprom->channel_b_driver == DRIVER_VCP)
2999 output[0x01] |= DRIVER_VCP;
3000 else
3001 output[0x01] &= ~DRIVER_VCP;
3002 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
3003 output[0x01] |= SUSPEND_DBUS7_BIT;
3004 else
3005 output[0x01] &= ~SUSPEND_DBUS7_BIT;
3006
3007 if (eeprom->suspend_pull_downs)
3008 output[0x0A] |= 0x4;
3009 else
3010 output[0x0A] &= ~0x4;
3011
3012 if (eeprom->group0_drive > DRIVE_16MA)
3013 output[0x0c] |= DRIVE_16MA;
3014 else
3015 output[0x0c] |= eeprom->group0_drive;
3016 if (eeprom->group0_schmitt == IS_SCHMITT)
3017 output[0x0c] |= IS_SCHMITT;
3018 if (eeprom->group0_slew == SLOW_SLEW)
3019 output[0x0c] |= SLOW_SLEW;
3020
3021 if (eeprom->group1_drive > DRIVE_16MA)
3022 output[0x0c] |= DRIVE_16MA<<4;
3023 else
3024 output[0x0c] |= eeprom->group1_drive<<4;
3025 if (eeprom->group1_schmitt == IS_SCHMITT)
3026 output[0x0c] |= IS_SCHMITT<<4;
3027 if (eeprom->group1_slew == SLOW_SLEW)
3028 output[0x0c] |= SLOW_SLEW<<4;
3029
3030 if (eeprom->group2_drive > DRIVE_16MA)
3031 output[0x0d] |= DRIVE_16MA;
3032 else
3033 output[0x0d] |= eeprom->group2_drive;
3034 if (eeprom->group2_schmitt == IS_SCHMITT)
3035 output[0x0d] |= IS_SCHMITT;
3036 if (eeprom->group2_slew == SLOW_SLEW)
3037 output[0x0d] |= SLOW_SLEW;
3038
3039 if (eeprom->group3_drive > DRIVE_16MA)
3040 output[0x0d] |= DRIVE_16MA<<4;
3041 else
3042 output[0x0d] |= eeprom->group3_drive<<4;
3043 if (eeprom->group3_schmitt == IS_SCHMITT)
3044 output[0x0d] |= IS_SCHMITT<<4;
3045 if (eeprom->group3_slew == SLOW_SLEW)
3046 output[0x0d] |= SLOW_SLEW<<4;
3047
3048 output[0x18] = eeprom->chip;
3049
3050 break;
3051 case TYPE_4232H:
3052 if (eeprom->channel_a_driver == DRIVER_VCP)
3053 output[0x00] |= DRIVER_VCP;
3054 else
3055 output[0x00] &= ~DRIVER_VCP;
3056 if (eeprom->channel_b_driver == DRIVER_VCP)
3057 output[0x01] |= DRIVER_VCP;
3058 else
3059 output[0x01] &= ~DRIVER_VCP;
3060 if (eeprom->channel_c_driver == DRIVER_VCP)
3061 output[0x00] |= (DRIVER_VCP << 4);
3062 else
3063 output[0x00] &= ~(DRIVER_VCP << 4);
3064 if (eeprom->channel_d_driver == DRIVER_VCP)
3065 output[0x01] |= (DRIVER_VCP << 4);
3066 else
3067 output[0x01] &= ~(DRIVER_VCP << 4);
3068
3069 if (eeprom->suspend_pull_downs)
3070 output[0x0a] |= 0x4;
3071 else
3072 output[0x0a] &= ~0x4;
3073
3074 if (eeprom->channel_a_rs485enable)
3075 output[0x0b] |= CHANNEL_IS_RS485 << 0;
3076 else
3077 output[0x0b] &= ~(CHANNEL_IS_RS485 << 0);
3078 if (eeprom->channel_b_rs485enable)
3079 output[0x0b] |= CHANNEL_IS_RS485 << 1;
3080 else
3081 output[0x0b] &= ~(CHANNEL_IS_RS485 << 1);
3082 if (eeprom->channel_c_rs485enable)
3083 output[0x0b] |= CHANNEL_IS_RS485 << 2;
3084 else
3085 output[0x0b] &= ~(CHANNEL_IS_RS485 << 2);
3086 if (eeprom->channel_d_rs485enable)
3087 output[0x0b] |= CHANNEL_IS_RS485 << 3;
3088 else
3089 output[0x0b] &= ~(CHANNEL_IS_RS485 << 3);
3090
3091 if (eeprom->group0_drive > DRIVE_16MA)
3092 output[0x0c] |= DRIVE_16MA;
3093 else
3094 output[0x0c] |= eeprom->group0_drive;
3095 if (eeprom->group0_schmitt == IS_SCHMITT)
3096 output[0x0c] |= IS_SCHMITT;
3097 if (eeprom->group0_slew == SLOW_SLEW)
3098 output[0x0c] |= SLOW_SLEW;
3099
3100 if (eeprom->group1_drive > DRIVE_16MA)
3101 output[0x0c] |= DRIVE_16MA<<4;
3102 else
3103 output[0x0c] |= eeprom->group1_drive<<4;
3104 if (eeprom->group1_schmitt == IS_SCHMITT)
3105 output[0x0c] |= IS_SCHMITT<<4;
3106 if (eeprom->group1_slew == SLOW_SLEW)
3107 output[0x0c] |= SLOW_SLEW<<4;
3108
3109 if (eeprom->group2_drive > DRIVE_16MA)
3110 output[0x0d] |= DRIVE_16MA;
3111 else
3112 output[0x0d] |= eeprom->group2_drive;
3113 if (eeprom->group2_schmitt == IS_SCHMITT)
3114 output[0x0d] |= IS_SCHMITT;
3115 if (eeprom->group2_slew == SLOW_SLEW)
3116 output[0x0d] |= SLOW_SLEW;
3117
3118 if (eeprom->group3_drive > DRIVE_16MA)
3119 output[0x0d] |= DRIVE_16MA<<4;
3120 else
3121 output[0x0d] |= eeprom->group3_drive<<4;
3122 if (eeprom->group3_schmitt == IS_SCHMITT)
3123 output[0x0d] |= IS_SCHMITT<<4;
3124 if (eeprom->group3_slew == SLOW_SLEW)
3125 output[0x0d] |= SLOW_SLEW<<4;
3126
3127 output[0x18] = eeprom->chip;
3128
3129 break;
3130 case TYPE_232H:
3131 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
3132 if ( eeprom->channel_a_driver == DRIVER_VCP)
3133 output[0x00] |= DRIVER_VCPH;
3134 else
3135 output[0x00] &= ~DRIVER_VCPH;
3136 if (eeprom->powersave)
3137 output[0x01] |= POWER_SAVE_DISABLE_H;
3138 else
3139 output[0x01] &= ~POWER_SAVE_DISABLE_H;
3140
3141 if (eeprom->suspend_pull_downs)
3142 output[0x0a] |= 0x4;
3143 else
3144 output[0x0a] &= ~0x4;
3145
3146 if (eeprom->clock_polarity)
3147 output[0x01] |= FT1284_CLK_IDLE_STATE;
3148 else
3149 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
3150 if (eeprom->data_order)
3151 output[0x01] |= FT1284_DATA_LSB;
3152 else
3153 output[0x01] &= ~FT1284_DATA_LSB;
3154 if (eeprom->flow_control)
3155 output[0x01] |= FT1284_FLOW_CONTROL;
3156 else
3157 output[0x01] &= ~FT1284_FLOW_CONTROL;
3158 if (eeprom->group0_drive > DRIVE_16MA)
3159 output[0x0c] |= DRIVE_16MA;
3160 else
3161 output[0x0c] |= eeprom->group0_drive;
3162 if (eeprom->group0_schmitt == IS_SCHMITT)
3163 output[0x0c] |= IS_SCHMITT;
3164 if (eeprom->group0_slew == SLOW_SLEW)
3165 output[0x0c] |= SLOW_SLEW;
3166
3167 if (eeprom->group1_drive > DRIVE_16MA)
3168 output[0x0d] |= DRIVE_16MA;
3169 else
3170 output[0x0d] |= eeprom->group1_drive;
3171 if (eeprom->group1_schmitt == IS_SCHMITT)
3172 output[0x0d] |= IS_SCHMITT;
3173 if (eeprom->group1_slew == SLOW_SLEW)
3174 output[0x0d] |= SLOW_SLEW;
3175
3176 set_ft232h_cbus(eeprom, output);
3177
3178 output[0x1e] = eeprom->chip;
3179 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
3180 break;
3181 case TYPE_230X:
3182 output[0x00] = 0x80; /* Actually, leave the default value */
3183 output[0x0a] = 0x08; /* Enable USB Serial Number */
3184 /*FIXME: Make DBUS & CBUS Control configurable*/
3185 output[0x0c] = 0; /* DBUS drive 4mA, CBUS drive 4 mA like factory default */
3186 for (j = 0; j <= 6; j++)
3187 {
3188 output[0x1a + j] = eeprom->cbus_function[j];
3189 }
3190 output[0x0b] = eeprom->invert;
3191 break;
3192 }
3193
3194 /* First address without use */
3195 free_start = 0;
3196 switch (ftdi->type)
3197 {
3198 case TYPE_230X:
3199 free_start += 2;
3200 case TYPE_232H:
3201 free_start += 6;
3202 case TYPE_2232H:
3203 case TYPE_4232H:
3204 free_start += 2;
3205 case TYPE_R:
3206 free_start += 2;
3207 case TYPE_2232C:
3208 free_start++;
3209 case TYPE_AM:
3210 case TYPE_BM:
3211 free_start += 0x14;
3212 }
3213
3214 /* Arbitrary user data */
3215 if (eeprom->user_data && eeprom->user_data_size >= 0)
3216 {
3217 if (eeprom->user_data_addr < free_start)
3218 fprintf(stderr,"Warning, user data starts inside the generated data!\n");
3219 if (eeprom->user_data_addr + eeprom->user_data_size >= free_end)
3220 fprintf(stderr,"Warning, user data overlaps the strings area!\n");
3221 if (eeprom->user_data_addr + eeprom->user_data_size > eeprom->size)
3222 ftdi_error_return(-1,"eeprom size exceeded");
3223 memcpy(output + eeprom->user_data_addr, eeprom->user_data, eeprom->user_data_size);
3224 }
3225
3226 // calculate checksum
3227 checksum = 0xAAAA;
3228
3229 for (i = 0; i < eeprom->size/2-1; i++)
3230 {
3231 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3232 {
3233 /* FT230X has a user section in the MTP which is not part of the checksum */
3234 i = 0x40;
3235 }
3236 if ((ftdi->type == TYPE_230X) && (i >= 0x40) && (i < 0x50)) {
3237 uint16_t data;
3238 if (ftdi_read_eeprom_location(ftdi, i, &data)) {
3239 fprintf(stderr, "Reading Factory Configuration Data failed\n");
3240 i = 0x50;
3241 }
3242 value = data;
3243 }
3244 else {
3245 value = output[i*2];
3246 value += output[(i*2)+1] << 8;
3247 }
3248 checksum = value^checksum;
3249 checksum = (checksum << 1) | (checksum >> 15);
3250 }
3251
3252 output[eeprom->size-2] = checksum;
3253 output[eeprom->size-1] = checksum >> 8;
3254
3255 eeprom->initialized_for_connected_device = 1;
3256 return user_area_size;
3257}
3258/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
3259 * EEPROM structure
3260 *
3261 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
3262 */
3263static unsigned char bit2type(unsigned char bits)
3264{
3265 switch (bits)
3266 {
3267 case 0: return CHANNEL_IS_UART;
3268 case 1: return CHANNEL_IS_FIFO;
3269 case 2: return CHANNEL_IS_OPTO;
3270 case 4: return CHANNEL_IS_CPU;
3271 case 8: return CHANNEL_IS_FT1284;
3272 default:
3273 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
3274 bits);
3275 }
3276 return 0;
3277}
3278/* Decode 230X / 232R type chips invert bits
3279 * Prints directly to stdout.
3280*/
3281static void print_inverted_bits(int invert)
3282{
3283 char *r_bits[] = {"TXD","RXD","RTS","CTS","DTR","DSR","DCD","RI"};
3284 int i;
3285
3286 fprintf(stdout,"Inverted bits:");
3287 for (i=0; i<8; i++)
3288 if ((invert & (1<<i)) == (1<<i))
3289 fprintf(stdout," %s",r_bits[i]);
3290
3291 fprintf(stdout,"\n");
3292}
3293/**
3294 Decode binary EEPROM image into an ftdi_eeprom structure.
3295
3296 For FT-X devices use AN_201 FT-X MTP memory Configuration to decode.
3297
3298 \param ftdi pointer to ftdi_context
3299 \param verbose Decode EEPROM on stdout
3300
3301 \retval 0: all fine
3302 \retval -1: something went wrong
3303
3304 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
3305 FIXME: Strings are malloc'ed here and should be freed somewhere
3306*/
3307int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
3308{
3309 int i, j;
3310 unsigned short checksum, eeprom_checksum, value;
3311 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
3312 int eeprom_size;
3313 struct ftdi_eeprom *eeprom;
3314 unsigned char *buf = NULL;
3315
3316 if (ftdi == NULL)
3317 ftdi_error_return(-1,"No context");
3318 if (ftdi->eeprom == NULL)
3319 ftdi_error_return(-1,"No eeprom structure");
3320
3321 eeprom = ftdi->eeprom;
3322 eeprom_size = eeprom->size;
3323 buf = ftdi->eeprom->buf;
3324
3325 // Addr 02: Vendor ID
3326 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
3327
3328 // Addr 04: Product ID
3329 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
3330
3331 // Addr 06: Device release number
3332 eeprom->release_number = buf[0x06] + (buf[0x07]<<8);
3333
3334 // Addr 08: Config descriptor
3335 // Bit 7: always 1
3336 // Bit 6: 1 if this device is self powered, 0 if bus powered
3337 // Bit 5: 1 if this device uses remote wakeup
3338 eeprom->self_powered = buf[0x08] & 0x40;
3339 eeprom->remote_wakeup = buf[0x08] & 0x20;
3340
3341 // Addr 09: Max power consumption: max power = value * 2 mA
3342 eeprom->max_power = MAX_POWER_MILLIAMP_PER_UNIT * buf[0x09];
3343
3344 // Addr 0A: Chip configuration
3345 // Bit 7: 0 - reserved
3346 // Bit 6: 0 - reserved
3347 // Bit 5: 0 - reserved
3348 // Bit 4: 1 - Change USB version on BM and 2232C
3349 // Bit 3: 1 - Use the serial number string
3350 // Bit 2: 1 - Enable suspend pull downs for lower power
3351 // Bit 1: 1 - Out EndPoint is Isochronous
3352 // Bit 0: 1 - In EndPoint is Isochronous
3353 //
3354 eeprom->in_is_isochronous = buf[0x0A]&0x01;
3355 eeprom->out_is_isochronous = buf[0x0A]&0x02;
3356 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
3357 eeprom->use_serial = !!(buf[0x0A] & USE_SERIAL_NUM);
3358 eeprom->use_usb_version = !!(buf[0x0A] & USE_USB_VERSION_BIT);
3359
3360 // Addr 0C: USB version low byte when 0x0A
3361 // Addr 0D: USB version high byte when 0x0A
3362 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
3363
3364 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3365 // Addr 0F: Length of manufacturer string
3366 manufacturer_size = buf[0x0F]/2;
3367 if (eeprom->manufacturer)
3368 free(eeprom->manufacturer);
3369 if (manufacturer_size > 0)
3370 {
3371 eeprom->manufacturer = malloc(manufacturer_size);
3372 if (eeprom->manufacturer)
3373 {
3374 // Decode manufacturer
3375 i = buf[0x0E] & (eeprom_size -1); // offset
3376 for (j=0; j<manufacturer_size-1; j++)
3377 {
3378 eeprom->manufacturer[j] = buf[2*j+i+2];
3379 }
3380 eeprom->manufacturer[j] = '\0';
3381 }
3382 }
3383 else eeprom->manufacturer = NULL;
3384
3385 // Addr 10: Offset of the product string + 0x80, calculated later
3386 // Addr 11: Length of product string
3387 if (eeprom->product)
3388 free(eeprom->product);
3389 product_size = buf[0x11]/2;
3390 if (product_size > 0)
3391 {
3392 eeprom->product = malloc(product_size);
3393 if (eeprom->product)
3394 {
3395 // Decode product name
3396 i = buf[0x10] & (eeprom_size -1); // offset
3397 for (j=0; j<product_size-1; j++)
3398 {
3399 eeprom->product[j] = buf[2*j+i+2];
3400 }
3401 eeprom->product[j] = '\0';
3402 }
3403 }
3404 else eeprom->product = NULL;
3405
3406 // Addr 12: Offset of the serial string + 0x80, calculated later
3407 // Addr 13: Length of serial string
3408 if (eeprom->serial)
3409 free(eeprom->serial);
3410 serial_size = buf[0x13]/2;
3411 if (serial_size > 0)
3412 {
3413 eeprom->serial = malloc(serial_size);
3414 if (eeprom->serial)
3415 {
3416 // Decode serial
3417 i = buf[0x12] & (eeprom_size -1); // offset
3418 for (j=0; j<serial_size-1; j++)
3419 {
3420 eeprom->serial[j] = buf[2*j+i+2];
3421 }
3422 eeprom->serial[j] = '\0';
3423 }
3424 }
3425 else eeprom->serial = NULL;
3426
3427 // verify checksum
3428 checksum = 0xAAAA;
3429
3430 for (i = 0; i < eeprom_size/2-1; i++)
3431 {
3432 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3433 {
3434 /* FT230X has a user section in the MTP which is not part of the checksum */
3435 i = 0x40;
3436 }
3437 value = buf[i*2];
3438 value += buf[(i*2)+1] << 8;
3439
3440 checksum = value^checksum;
3441 checksum = (checksum << 1) | (checksum >> 15);
3442 }
3443
3444 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3445
3446 if (eeprom_checksum != checksum)
3447 {
3448 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
3449 ftdi_error_return(-1,"EEPROM checksum error");
3450 }
3451
3452 eeprom->channel_a_type = 0;
3453 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
3454 {
3455 eeprom->chip = -1;
3456 }
3457 else if (ftdi->type == TYPE_2232C)
3458 {
3459 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3460 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3461 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
3462 eeprom->channel_b_type = buf[0x01] & 0x7;
3463 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3464 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
3465 eeprom->chip = buf[0x14];
3466 }
3467 else if (ftdi->type == TYPE_R)
3468 {
3469 /* TYPE_R flags D2XX, not VCP as all others*/
3470 eeprom->channel_a_driver = ~buf[0x00] & DRIVER_VCP;
3471 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
3472 eeprom->external_oscillator = buf[0x00] & 0x02;
3473 if ( (buf[0x01]&0x40) != 0x40)
3474 fprintf(stderr,
3475 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3476 " If this happened with the\n"
3477 " EEPROM programmed by FTDI tools, please report "
3478 "to libftdi@developer.intra2net.com\n");
3479
3480 eeprom->chip = buf[0x16];
3481 // Addr 0B: Invert data lines
3482 // Works only on FT232R, not FT245R, but no way to distinguish
3483 eeprom->invert = buf[0x0B];
3484 // Addr 14: CBUS function: CBUS0, CBUS1
3485 // Addr 15: CBUS function: CBUS2, CBUS3
3486 // Addr 16: CBUS function: CBUS5
3487 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3488 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3489 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3490 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3491 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
3492 }
3493 else if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3494 {
3495 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3496 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3497
3498 if (ftdi->type == TYPE_2232H)
3499 {
3500 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3501 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3502 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
3503 }
3504 else
3505 {
3506 eeprom->channel_c_driver = (buf[0x00] >> 4) & DRIVER_VCP;
3507 eeprom->channel_d_driver = (buf[0x01] >> 4) & DRIVER_VCP;
3508 eeprom->channel_a_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 0);
3509 eeprom->channel_b_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 1);
3510 eeprom->channel_c_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 2);
3511 eeprom->channel_d_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 3);
3512 }
3513
3514 eeprom->chip = buf[0x18];
3515 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3516 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3517 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3518 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3519 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3520 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3521 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3522 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3523 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3524 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3525 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3526 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
3527 }
3528 else if (ftdi->type == TYPE_232H)
3529 {
3530 eeprom->channel_a_type = buf[0x00] & 0xf;
3531 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
3532 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3533 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3534 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
3535 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
3536 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3537 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3538 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3539 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3540 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3541 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3542
3543 for(i=0; i<5; i++)
3544 {
3545 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3546 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3547 }
3548 eeprom->chip = buf[0x1e];
3549 /*FIXME: Decipher more values*/
3550 }
3551 else if (ftdi->type == TYPE_230X)
3552 {
3553 for(i=0; i<4; i++)
3554 {
3555 eeprom->cbus_function[i] = buf[0x1a + i] & 0xFF;
3556 }
3557 eeprom->group0_drive = buf[0x0c] & 0x03;
3558 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3559 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3560 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x03;
3561 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3562 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3563
3564 eeprom->invert = buf[0xb];
3565 }
3566
3567 if (verbose)
3568 {
3569 char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3570 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3571 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3572 fprintf(stdout, "Release: 0x%04x\n",eeprom->release_number);
3573
3574 if (eeprom->self_powered)
3575 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3576 else
3577 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power,
3578 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3579 if (eeprom->manufacturer)
3580 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3581 if (eeprom->product)
3582 fprintf(stdout, "Product: %s\n",eeprom->product);
3583 if (eeprom->serial)
3584 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3585 fprintf(stdout, "Checksum : %04x\n", checksum);
3586 if (ftdi->type == TYPE_R) {
3587 fprintf(stdout, "Internal EEPROM\n");
3588 fprintf(stdout,"Oscillator: %s\n", eeprom->external_oscillator?"External":"Internal");
3589 }
3590 else if (eeprom->chip >= 0x46)
3591 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3592 if (eeprom->suspend_dbus7)
3593 fprintf(stdout, "Suspend on DBUS7\n");
3594 if (eeprom->suspend_pull_downs)
3595 fprintf(stdout, "Pull IO pins low during suspend\n");
3596 if(eeprom->powersave)
3597 {
3598 if(ftdi->type >= TYPE_232H)
3599 fprintf(stdout,"Enter low power state on ACBUS7\n");
3600 }
3601 if (eeprom->remote_wakeup)
3602 fprintf(stdout, "Enable Remote Wake Up\n");
3603 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3604 if (ftdi->type >= TYPE_2232C)
3605 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3606 channel_mode[eeprom->channel_a_type],
3607 (eeprom->channel_a_driver)?" VCP":"",
3608 (eeprom->high_current_a)?" High Current IO":"");
3609 if (ftdi->type == TYPE_232H)
3610 {
3611 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3612 (eeprom->clock_polarity)?"HIGH":"LOW",
3613 (eeprom->data_order)?"LSB":"MSB",
3614 (eeprom->flow_control)?"":"No ");
3615 }
3616 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3617 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3618 channel_mode[eeprom->channel_b_type],
3619 (eeprom->channel_b_driver)?" VCP":"",
3620 (eeprom->high_current_b)?" High Current IO":"");
3621 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3622 eeprom->use_usb_version)
3623 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3624
3625 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3626 {
3627 fprintf(stdout,"%s has %d mA drive%s%s\n",
3628 (ftdi->type == TYPE_2232H)?"AL":"A",
3629 (eeprom->group0_drive+1) *4,
3630 (eeprom->group0_schmitt)?" Schmitt Input":"",
3631 (eeprom->group0_slew)?" Slow Slew":"");
3632 fprintf(stdout,"%s has %d mA drive%s%s\n",
3633 (ftdi->type == TYPE_2232H)?"AH":"B",
3634 (eeprom->group1_drive+1) *4,
3635 (eeprom->group1_schmitt)?" Schmitt Input":"",
3636 (eeprom->group1_slew)?" Slow Slew":"");
3637 fprintf(stdout,"%s has %d mA drive%s%s\n",
3638 (ftdi->type == TYPE_2232H)?"BL":"C",
3639 (eeprom->group2_drive+1) *4,
3640 (eeprom->group2_schmitt)?" Schmitt Input":"",
3641 (eeprom->group2_slew)?" Slow Slew":"");
3642 fprintf(stdout,"%s has %d mA drive%s%s\n",
3643 (ftdi->type == TYPE_2232H)?"BH":"D",
3644 (eeprom->group3_drive+1) *4,
3645 (eeprom->group3_schmitt)?" Schmitt Input":"",
3646 (eeprom->group3_slew)?" Slow Slew":"");
3647 }
3648 else if (ftdi->type == TYPE_232H)
3649 {
3650 char *cbush_mux[] = {"TRISTATE","TXLED","RXLED", "TXRXLED","PWREN",
3651 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3652 "CLK30","CLK15","CLK7_5"
3653 };
3654 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3655 (eeprom->group0_drive+1) *4,
3656 (eeprom->group0_schmitt)?" Schmitt Input":"",
3657 (eeprom->group0_slew)?" Slow Slew":"");
3658 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3659 (eeprom->group1_drive+1) *4,
3660 (eeprom->group1_schmitt)?" Schmitt Input":"",
3661 (eeprom->group1_slew)?" Slow Slew":"");
3662 for (i=0; i<10; i++)
3663 {
3664 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3665 fprintf(stdout,"C%d Function: %s\n", i,
3666 cbush_mux[eeprom->cbus_function[i]]);
3667 }
3668 }
3669 else if (ftdi->type == TYPE_230X)
3670 {
3671 char *cbusx_mux[] = {"TRISTATE","TXLED","RXLED", "TXRXLED","PWREN",
3672 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3673 "CLK24","CLK12","CLK6","BAT_DETECT","BAT_DETECT#",
3674 "I2C_TXE#", "I2C_RXF#", "VBUS_SENSE", "BB_WR#",
3675 "BBRD#", "TIME_STAMP", "AWAKE#",
3676 };
3677 fprintf(stdout,"DBUS has %d mA drive%s%s\n",
3678 (eeprom->group0_drive+1) *4,
3679 (eeprom->group0_schmitt)?" Schmitt Input":"",
3680 (eeprom->group0_slew)?" Slow Slew":"");
3681 fprintf(stdout,"CBUS has %d mA drive%s%s\n",
3682 (eeprom->group1_drive+1) *4,
3683 (eeprom->group1_schmitt)?" Schmitt Input":"",
3684 (eeprom->group1_slew)?" Slow Slew":"");
3685 for (i=0; i<4; i++)
3686 {
3687 if (eeprom->cbus_function[i]<= CBUSX_AWAKE)
3688 fprintf(stdout,"CBUS%d Function: %s\n", i, cbusx_mux[eeprom->cbus_function[i]]);
3689 }
3690
3691 if (eeprom->invert)
3692 print_inverted_bits(eeprom->invert);
3693 }
3694
3695 if (ftdi->type == TYPE_R)
3696 {
3697 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3698 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3699 "IOMODE","BB_WR","BB_RD"
3700 };
3701 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3702
3703 if (eeprom->invert)
3704 print_inverted_bits(eeprom->invert);
3705
3706 for (i=0; i<5; i++)
3707 {
3708 if (eeprom->cbus_function[i]<=CBUS_BB_RD)
3709 fprintf(stdout,"C%d Function: %s\n", i,
3710 cbus_mux[eeprom->cbus_function[i]]);
3711 else
3712 {
3713 if (i < 4)
3714 /* Running MPROG show that C0..3 have fixed function Synchronous
3715 Bit Bang mode */
3716 fprintf(stdout,"C%d BB Function: %s\n", i,
3717 cbus_BB[i]);
3718 else
3719 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3720 }
3721 }
3722 }
3723 }
3724 return 0;
3725}
3726
3727/**
3728 Get a value from the decoded EEPROM structure
3729
3730 \param ftdi pointer to ftdi_context
3731 \param value_name Enum of the value to query
3732 \param value Pointer to store read value
3733
3734 \retval 0: all fine
3735 \retval -1: Value doesn't exist
3736*/
3737int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3738{
3739 switch (value_name)
3740 {
3741 case VENDOR_ID:
3742 *value = ftdi->eeprom->vendor_id;
3743 break;
3744 case PRODUCT_ID:
3745 *value = ftdi->eeprom->product_id;
3746 break;
3747 case RELEASE_NUMBER:
3748 *value = ftdi->eeprom->release_number;
3749 break;
3750 case SELF_POWERED:
3751 *value = ftdi->eeprom->self_powered;
3752 break;
3753 case REMOTE_WAKEUP:
3754 *value = ftdi->eeprom->remote_wakeup;
3755 break;
3756 case IS_NOT_PNP:
3757 *value = ftdi->eeprom->is_not_pnp;
3758 break;
3759 case SUSPEND_DBUS7:
3760 *value = ftdi->eeprom->suspend_dbus7;
3761 break;
3762 case IN_IS_ISOCHRONOUS:
3763 *value = ftdi->eeprom->in_is_isochronous;
3764 break;
3765 case OUT_IS_ISOCHRONOUS:
3766 *value = ftdi->eeprom->out_is_isochronous;
3767 break;
3768 case SUSPEND_PULL_DOWNS:
3769 *value = ftdi->eeprom->suspend_pull_downs;
3770 break;
3771 case USE_SERIAL:
3772 *value = ftdi->eeprom->use_serial;
3773 break;
3774 case USB_VERSION:
3775 *value = ftdi->eeprom->usb_version;
3776 break;
3777 case USE_USB_VERSION:
3778 *value = ftdi->eeprom->use_usb_version;
3779 break;
3780 case MAX_POWER:
3781 *value = ftdi->eeprom->max_power;
3782 break;
3783 case CHANNEL_A_TYPE:
3784 *value = ftdi->eeprom->channel_a_type;
3785 break;
3786 case CHANNEL_B_TYPE:
3787 *value = ftdi->eeprom->channel_b_type;
3788 break;
3789 case CHANNEL_A_DRIVER:
3790 *value = ftdi->eeprom->channel_a_driver;
3791 break;
3792 case CHANNEL_B_DRIVER:
3793 *value = ftdi->eeprom->channel_b_driver;
3794 break;
3795 case CHANNEL_C_DRIVER:
3796 *value = ftdi->eeprom->channel_c_driver;
3797 break;
3798 case CHANNEL_D_DRIVER:
3799 *value = ftdi->eeprom->channel_d_driver;
3800 break;
3801 case CHANNEL_A_RS485:
3802 *value = ftdi->eeprom->channel_a_rs485enable;
3803 break;
3804 case CHANNEL_B_RS485:
3805 *value = ftdi->eeprom->channel_b_rs485enable;
3806 break;
3807 case CHANNEL_C_RS485:
3808 *value = ftdi->eeprom->channel_c_rs485enable;
3809 break;
3810 case CHANNEL_D_RS485:
3811 *value = ftdi->eeprom->channel_d_rs485enable;
3812 break;
3813 case CBUS_FUNCTION_0:
3814 *value = ftdi->eeprom->cbus_function[0];
3815 break;
3816 case CBUS_FUNCTION_1:
3817 *value = ftdi->eeprom->cbus_function[1];
3818 break;
3819 case CBUS_FUNCTION_2:
3820 *value = ftdi->eeprom->cbus_function[2];
3821 break;
3822 case CBUS_FUNCTION_3:
3823 *value = ftdi->eeprom->cbus_function[3];
3824 break;
3825 case CBUS_FUNCTION_4:
3826 *value = ftdi->eeprom->cbus_function[4];
3827 break;
3828 case CBUS_FUNCTION_5:
3829 *value = ftdi->eeprom->cbus_function[5];
3830 break;
3831 case CBUS_FUNCTION_6:
3832 *value = ftdi->eeprom->cbus_function[6];
3833 break;
3834 case CBUS_FUNCTION_7:
3835 *value = ftdi->eeprom->cbus_function[7];
3836 break;
3837 case CBUS_FUNCTION_8:
3838 *value = ftdi->eeprom->cbus_function[8];
3839 break;
3840 case CBUS_FUNCTION_9:
3841 *value = ftdi->eeprom->cbus_function[9];
3842 break;
3843 case HIGH_CURRENT:
3844 *value = ftdi->eeprom->high_current;
3845 break;
3846 case HIGH_CURRENT_A:
3847 *value = ftdi->eeprom->high_current_a;
3848 break;
3849 case HIGH_CURRENT_B:
3850 *value = ftdi->eeprom->high_current_b;
3851 break;
3852 case INVERT:
3853 *value = ftdi->eeprom->invert;
3854 break;
3855 case GROUP0_DRIVE:
3856 *value = ftdi->eeprom->group0_drive;
3857 break;
3858 case GROUP0_SCHMITT:
3859 *value = ftdi->eeprom->group0_schmitt;
3860 break;
3861 case GROUP0_SLEW:
3862 *value = ftdi->eeprom->group0_slew;
3863 break;
3864 case GROUP1_DRIVE:
3865 *value = ftdi->eeprom->group1_drive;
3866 break;
3867 case GROUP1_SCHMITT:
3868 *value = ftdi->eeprom->group1_schmitt;
3869 break;
3870 case GROUP1_SLEW:
3871 *value = ftdi->eeprom->group1_slew;
3872 break;
3873 case GROUP2_DRIVE:
3874 *value = ftdi->eeprom->group2_drive;
3875 break;
3876 case GROUP2_SCHMITT:
3877 *value = ftdi->eeprom->group2_schmitt;
3878 break;
3879 case GROUP2_SLEW:
3880 *value = ftdi->eeprom->group2_slew;
3881 break;
3882 case GROUP3_DRIVE:
3883 *value = ftdi->eeprom->group3_drive;
3884 break;
3885 case GROUP3_SCHMITT:
3886 *value = ftdi->eeprom->group3_schmitt;
3887 break;
3888 case GROUP3_SLEW:
3889 *value = ftdi->eeprom->group3_slew;
3890 break;
3891 case POWER_SAVE:
3892 *value = ftdi->eeprom->powersave;
3893 break;
3894 case CLOCK_POLARITY:
3895 *value = ftdi->eeprom->clock_polarity;
3896 break;
3897 case DATA_ORDER:
3898 *value = ftdi->eeprom->data_order;
3899 break;
3900 case FLOW_CONTROL:
3901 *value = ftdi->eeprom->flow_control;
3902 break;
3903 case CHIP_TYPE:
3904 *value = ftdi->eeprom->chip;
3905 break;
3906 case CHIP_SIZE:
3907 *value = ftdi->eeprom->size;
3908 break;
3909 case EXTERNAL_OSCILLATOR:
3910 *value = ftdi->eeprom->external_oscillator;
3911 break;
3912 default:
3913 ftdi_error_return(-1, "Request for unknown EEPROM value");
3914 }
3915 return 0;
3916}
3917
3918/**
3919 Set a value in the decoded EEPROM Structure
3920 No parameter checking is performed
3921
3922 \param ftdi pointer to ftdi_context
3923 \param value_name Enum of the value to set
3924 \param value to set
3925
3926 \retval 0: all fine
3927 \retval -1: Value doesn't exist
3928 \retval -2: Value not user settable
3929*/
3930int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3931{
3932 switch (value_name)
3933 {
3934 case VENDOR_ID:
3935 ftdi->eeprom->vendor_id = value;
3936 break;
3937 case PRODUCT_ID:
3938 ftdi->eeprom->product_id = value;
3939 break;
3940 case RELEASE_NUMBER:
3941 ftdi->eeprom->release_number = value;
3942 break;
3943 case SELF_POWERED:
3944 ftdi->eeprom->self_powered = value;
3945 break;
3946 case REMOTE_WAKEUP:
3947 ftdi->eeprom->remote_wakeup = value;
3948 break;
3949 case IS_NOT_PNP:
3950 ftdi->eeprom->is_not_pnp = value;
3951 break;
3952 case SUSPEND_DBUS7:
3953 ftdi->eeprom->suspend_dbus7 = value;
3954 break;
3955 case IN_IS_ISOCHRONOUS:
3956 ftdi->eeprom->in_is_isochronous = value;
3957 break;
3958 case OUT_IS_ISOCHRONOUS:
3959 ftdi->eeprom->out_is_isochronous = value;
3960 break;
3961 case SUSPEND_PULL_DOWNS:
3962 ftdi->eeprom->suspend_pull_downs = value;
3963 break;
3964 case USE_SERIAL:
3965 ftdi->eeprom->use_serial = value;
3966 break;
3967 case USB_VERSION:
3968 ftdi->eeprom->usb_version = value;
3969 break;
3970 case USE_USB_VERSION:
3971 ftdi->eeprom->use_usb_version = value;
3972 break;
3973 case MAX_POWER:
3974 ftdi->eeprom->max_power = value;
3975 break;
3976 case CHANNEL_A_TYPE:
3977 ftdi->eeprom->channel_a_type = value;
3978 break;
3979 case CHANNEL_B_TYPE:
3980 ftdi->eeprom->channel_b_type = value;
3981 break;
3982 case CHANNEL_A_DRIVER:
3983 ftdi->eeprom->channel_a_driver = value;
3984 break;
3985 case CHANNEL_B_DRIVER:
3986 ftdi->eeprom->channel_b_driver = value;
3987 break;
3988 case CHANNEL_C_DRIVER:
3989 ftdi->eeprom->channel_c_driver = value;
3990 break;
3991 case CHANNEL_D_DRIVER:
3992 ftdi->eeprom->channel_d_driver = value;
3993 break;
3994 case CHANNEL_A_RS485:
3995 ftdi->eeprom->channel_a_rs485enable = value;
3996 break;
3997 case CHANNEL_B_RS485:
3998 ftdi->eeprom->channel_b_rs485enable = value;
3999 break;
4000 case CHANNEL_C_RS485:
4001 ftdi->eeprom->channel_c_rs485enable = value;
4002 break;
4003 case CHANNEL_D_RS485:
4004 ftdi->eeprom->channel_d_rs485enable = value;
4005 break;
4006 case CBUS_FUNCTION_0:
4007 ftdi->eeprom->cbus_function[0] = value;
4008 break;
4009 case CBUS_FUNCTION_1:
4010 ftdi->eeprom->cbus_function[1] = value;
4011 break;
4012 case CBUS_FUNCTION_2:
4013 ftdi->eeprom->cbus_function[2] = value;
4014 break;
4015 case CBUS_FUNCTION_3:
4016 ftdi->eeprom->cbus_function[3] = value;
4017 break;
4018 case CBUS_FUNCTION_4:
4019 ftdi->eeprom->cbus_function[4] = value;
4020 break;
4021 case CBUS_FUNCTION_5:
4022 ftdi->eeprom->cbus_function[5] = value;
4023 break;
4024 case CBUS_FUNCTION_6:
4025 ftdi->eeprom->cbus_function[6] = value;
4026 break;
4027 case CBUS_FUNCTION_7:
4028 ftdi->eeprom->cbus_function[7] = value;
4029 break;
4030 case CBUS_FUNCTION_8:
4031 ftdi->eeprom->cbus_function[8] = value;
4032 break;
4033 case CBUS_FUNCTION_9:
4034 ftdi->eeprom->cbus_function[9] = value;
4035 break;
4036 case HIGH_CURRENT:
4037 ftdi->eeprom->high_current = value;
4038 break;
4039 case HIGH_CURRENT_A:
4040 ftdi->eeprom->high_current_a = value;
4041 break;
4042 case HIGH_CURRENT_B:
4043 ftdi->eeprom->high_current_b = value;
4044 break;
4045 case INVERT:
4046 ftdi->eeprom->invert = value;
4047 break;
4048 case GROUP0_DRIVE:
4049 ftdi->eeprom->group0_drive = value;
4050 break;
4051 case GROUP0_SCHMITT:
4052 ftdi->eeprom->group0_schmitt = value;
4053 break;
4054 case GROUP0_SLEW:
4055 ftdi->eeprom->group0_slew = value;
4056 break;
4057 case GROUP1_DRIVE:
4058 ftdi->eeprom->group1_drive = value;
4059 break;
4060 case GROUP1_SCHMITT:
4061 ftdi->eeprom->group1_schmitt = value;
4062 break;
4063 case GROUP1_SLEW:
4064 ftdi->eeprom->group1_slew = value;
4065 break;
4066 case GROUP2_DRIVE:
4067 ftdi->eeprom->group2_drive = value;
4068 break;
4069 case GROUP2_SCHMITT:
4070 ftdi->eeprom->group2_schmitt = value;
4071 break;
4072 case GROUP2_SLEW:
4073 ftdi->eeprom->group2_slew = value;
4074 break;
4075 case GROUP3_DRIVE:
4076 ftdi->eeprom->group3_drive = value;
4077 break;
4078 case GROUP3_SCHMITT:
4079 ftdi->eeprom->group3_schmitt = value;
4080 break;
4081 case GROUP3_SLEW:
4082 ftdi->eeprom->group3_slew = value;
4083 break;
4084 case CHIP_TYPE:
4085 ftdi->eeprom->chip = value;
4086 break;
4087 case POWER_SAVE:
4088 ftdi->eeprom->powersave = value;
4089 break;
4090 case CLOCK_POLARITY:
4091 ftdi->eeprom->clock_polarity = value;
4092 break;
4093 case DATA_ORDER:
4094 ftdi->eeprom->data_order = value;
4095 break;
4096 case FLOW_CONTROL:
4097 ftdi->eeprom->flow_control = value;
4098 break;
4099 case CHIP_SIZE:
4100 ftdi_error_return(-2, "EEPROM Value can't be changed");
4101 break;
4102 case EXTERNAL_OSCILLATOR:
4103 ftdi->eeprom->external_oscillator = value;
4104 break;
4105 case USER_DATA_ADDR:
4106 ftdi->eeprom->user_data_addr = value;
4107 break;
4108
4109 default :
4110 ftdi_error_return(-1, "Request to unknown EEPROM value");
4111 }
4112 ftdi->eeprom->initialized_for_connected_device = 0;
4113 return 0;
4114}
4115
4116/** Get the read-only buffer to the binary EEPROM content
4117
4118 \param ftdi pointer to ftdi_context
4119 \param buf buffer to receive EEPROM content
4120 \param size Size of receiving buffer
4121
4122 \retval 0: All fine
4123 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
4124 \retval -2: Not enough room to store eeprom
4125*/
4126int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
4127{
4128 if (!ftdi || !(ftdi->eeprom))
4129 ftdi_error_return(-1, "No appropriate structure");
4130
4131 if (!buf || size < ftdi->eeprom->size)
4132 ftdi_error_return(-1, "Not enough room to store eeprom");
4133
4134 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
4135 if (size > FTDI_MAX_EEPROM_SIZE)
4136 size = FTDI_MAX_EEPROM_SIZE;
4137
4138 memcpy(buf, ftdi->eeprom->buf, size);
4139
4140 return 0;
4141}
4142
4143/** Set the EEPROM content from the user-supplied prefilled buffer
4144
4145 \param ftdi pointer to ftdi_context
4146 \param buf buffer to read EEPROM content
4147 \param size Size of buffer
4148
4149 \retval 0: All fine
4150 \retval -1: struct ftdi_context or ftdi_eeprom or buf missing
4151*/
4152int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
4153{
4154 if (!ftdi || !(ftdi->eeprom) || !buf)
4155 ftdi_error_return(-1, "No appropriate structure");
4156
4157 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
4158 if (size > FTDI_MAX_EEPROM_SIZE)
4159 size = FTDI_MAX_EEPROM_SIZE;
4160
4161 memcpy(ftdi->eeprom->buf, buf, size);
4162
4163 return 0;
4164}
4165
4166/** Set the EEPROM user data content from the user-supplied prefilled buffer
4167
4168 \param ftdi pointer to ftdi_context
4169 \param buf buffer to read EEPROM user data content
4170 \param size Size of buffer
4171
4172 \retval 0: All fine
4173 \retval -1: struct ftdi_context or ftdi_eeprom or buf missing
4174*/
4175int ftdi_set_eeprom_user_data(struct ftdi_context *ftdi, const char * buf, int size)
4176{
4177 if (!ftdi || !(ftdi->eeprom) || !buf)
4178 ftdi_error_return(-1, "No appropriate structure");
4179
4180 ftdi->eeprom->user_data_size = size;
4181 ftdi->eeprom->user_data = buf;
4182 return 0;
4183}
4184
4185/**
4186 Read eeprom location
4187
4188 \param ftdi pointer to ftdi_context
4189 \param eeprom_addr Address of eeprom location to be read
4190 \param eeprom_val Pointer to store read eeprom location
4191
4192 \retval 0: all fine
4193 \retval -1: read failed
4194 \retval -2: USB device unavailable
4195*/
4196int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
4197{
4198 if (ftdi == NULL || ftdi->usb_dev == NULL)
4199 ftdi_error_return(-2, "USB device unavailable");
4200
4201 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
4202 ftdi_error_return(-1, "reading eeprom failed");
4203
4204 return 0;
4205}
4206
4207/**
4208 Read eeprom
4209
4210 \param ftdi pointer to ftdi_context
4211
4212 \retval 0: all fine
4213 \retval -1: read failed
4214 \retval -2: USB device unavailable
4215*/
4216int ftdi_read_eeprom(struct ftdi_context *ftdi)
4217{
4218 int i;
4219 unsigned char *buf;
4220
4221 if (ftdi == NULL || ftdi->usb_dev == NULL)
4222 ftdi_error_return(-2, "USB device unavailable");
4223 buf = ftdi->eeprom->buf;
4224
4225 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
4226 {
4227 if (libusb_control_transfer(
4228 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
4229 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
4230 ftdi_error_return(-1, "reading eeprom failed");
4231 }
4232
4233 if (ftdi->type == TYPE_R)
4234 ftdi->eeprom->size = 0x80;
4235 /* Guesses size of eeprom by comparing halves
4236 - will not work with blank eeprom */
4237 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
4238 ftdi->eeprom->size = -1;
4239 else if (memcmp(buf,&buf[0x80],0x80) == 0)
4240 ftdi->eeprom->size = 0x80;
4241 else if (memcmp(buf,&buf[0x40],0x40) == 0)
4242 ftdi->eeprom->size = 0x40;
4243 else
4244 ftdi->eeprom->size = 0x100;
4245 return 0;
4246}
4247
4248/*
4249 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
4250 Function is only used internally
4251 \internal
4252*/
4253static unsigned char ftdi_read_chipid_shift(unsigned char value)
4254{
4255 return ((value & 1) << 1) |
4256 ((value & 2) << 5) |
4257 ((value & 4) >> 2) |
4258 ((value & 8) << 4) |
4259 ((value & 16) >> 1) |
4260 ((value & 32) >> 1) |
4261 ((value & 64) >> 4) |
4262 ((value & 128) >> 2);
4263}
4264
4265/**
4266 Read the FTDIChip-ID from R-type devices
4267
4268 \param ftdi pointer to ftdi_context
4269 \param chipid Pointer to store FTDIChip-ID
4270
4271 \retval 0: all fine
4272 \retval -1: read failed
4273 \retval -2: USB device unavailable
4274*/
4275int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
4276{
4277 unsigned int a = 0, b = 0;
4278
4279 if (ftdi == NULL || ftdi->usb_dev == NULL)
4280 ftdi_error_return(-2, "USB device unavailable");
4281
4282 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
4283 {
4284 a = a << 8 | a >> 8;
4285 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
4286 {
4287 b = b << 8 | b >> 8;
4288 a = (a << 16) | (b & 0xFFFF);
4289 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
4290 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
4291 *chipid = a ^ 0xa5f0f7d1;
4292 return 0;
4293 }
4294 }
4295
4296 ftdi_error_return(-1, "read of FTDIChip-ID failed");
4297}
4298
4299/**
4300 Write eeprom location
4301
4302 \param ftdi pointer to ftdi_context
4303 \param eeprom_addr Address of eeprom location to be written
4304 \param eeprom_val Value to be written
4305
4306 \retval 0: all fine
4307 \retval -1: write failed
4308 \retval -2: USB device unavailable
4309 \retval -3: Invalid access to checksum protected area below 0x80
4310 \retval -4: Device can't access unprotected area
4311 \retval -5: Reading chip type failed
4312*/
4313int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
4314 unsigned short eeprom_val)
4315{
4316 int chip_type_location;
4317 unsigned short chip_type;
4318
4319 if (ftdi == NULL || ftdi->usb_dev == NULL)
4320 ftdi_error_return(-2, "USB device unavailable");
4321
4322 if (eeprom_addr <0x80)
4323 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
4324
4325
4326 switch (ftdi->type)
4327 {
4328 case TYPE_BM:
4329 case TYPE_2232C:
4330 chip_type_location = 0x14;
4331 break;
4332 case TYPE_2232H:
4333 case TYPE_4232H:
4334 chip_type_location = 0x18;
4335 break;
4336 case TYPE_232H:
4337 chip_type_location = 0x1e;
4338 break;
4339 default:
4340 ftdi_error_return(-4, "Device can't access unprotected area");
4341 }
4342
4343 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
4344 ftdi_error_return(-5, "Reading failed");
4345 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
4346 if ((chip_type & 0xff) != 0x66)
4347 {
4348 ftdi_error_return(-6, "EEPROM is not of 93x66");
4349 }
4350
4351 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4352 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
4353 NULL, 0, ftdi->usb_write_timeout) != 0)
4354 ftdi_error_return(-1, "unable to write eeprom");
4355
4356 return 0;
4357}
4358
4359/**
4360 Write eeprom
4361
4362 \param ftdi pointer to ftdi_context
4363
4364 \retval 0: all fine
4365 \retval -1: read failed
4366 \retval -2: USB device unavailable
4367 \retval -3: EEPROM not initialized for the connected device;
4368*/
4369int ftdi_write_eeprom(struct ftdi_context *ftdi)
4370{
4371 unsigned short usb_val, status;
4372 int i, ret;
4373 unsigned char *eeprom;
4374
4375 if (ftdi == NULL || ftdi->usb_dev == NULL)
4376 ftdi_error_return(-2, "USB device unavailable");
4377
4378 if(ftdi->eeprom->initialized_for_connected_device == 0)
4379 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
4380
4381 eeprom = ftdi->eeprom->buf;
4382
4383 /* These commands were traced while running MProg */
4384 if ((ret = ftdi_usb_reset(ftdi)) != 0)
4385 return ret;
4386 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
4387 return ret;
4388 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
4389 return ret;
4390
4391 for (i = 0; i < ftdi->eeprom->size/2; i++)
4392 {
4393 /* Do not try to write to reserved area */
4394 if ((ftdi->type == TYPE_230X) && (i == 0x40))
4395 {
4396 i = 0x50;
4397 }
4398 usb_val = eeprom[i*2];
4399 usb_val += eeprom[(i*2)+1] << 8;
4400 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4401 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
4402 NULL, 0, ftdi->usb_write_timeout) < 0)
4403 ftdi_error_return(-1, "unable to write eeprom");
4404 }
4405
4406 return 0;
4407}
4408
4409/**
4410 Erase eeprom
4411
4412 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
4413
4414 \param ftdi pointer to ftdi_context
4415
4416 \retval 0: all fine
4417 \retval -1: erase failed
4418 \retval -2: USB device unavailable
4419 \retval -3: Writing magic failed
4420 \retval -4: Read EEPROM failed
4421 \retval -5: Unexpected EEPROM value
4422*/
4423#define MAGIC 0x55aa
4424int ftdi_erase_eeprom(struct ftdi_context *ftdi)
4425{
4426 unsigned short eeprom_value;
4427 if (ftdi == NULL || ftdi->usb_dev == NULL)
4428 ftdi_error_return(-2, "USB device unavailable");
4429
4430 if ((ftdi->type == TYPE_R) || (ftdi->type == TYPE_230X))
4431 {
4432 ftdi->eeprom->chip = 0;
4433 return 0;
4434 }
4435
4436 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4437 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4438 ftdi_error_return(-1, "unable to erase eeprom");
4439
4440
4441 /* detect chip type by writing 0x55AA as magic at word position 0xc0
4442 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
4443 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
4444 Chip is 93x66 if magic is only read at word position 0xc0*/
4445 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4446 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
4447 NULL, 0, ftdi->usb_write_timeout) != 0)
4448 ftdi_error_return(-3, "Writing magic failed");
4449 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
4450 ftdi_error_return(-4, "Reading failed");
4451 if (eeprom_value == MAGIC)
4452 {
4453 ftdi->eeprom->chip = 0x46;
4454 }
4455 else
4456 {
4457 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
4458 ftdi_error_return(-4, "Reading failed");
4459 if (eeprom_value == MAGIC)
4460 ftdi->eeprom->chip = 0x56;
4461 else
4462 {
4463 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
4464 ftdi_error_return(-4, "Reading failed");
4465 if (eeprom_value == MAGIC)
4466 ftdi->eeprom->chip = 0x66;
4467 else
4468 {
4469 ftdi->eeprom->chip = -1;
4470 }
4471 }
4472 }
4473 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4474 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4475 ftdi_error_return(-1, "unable to erase eeprom");
4476 return 0;
4477}
4478
4479/**
4480 Get string representation for last error code
4481
4482 \param ftdi pointer to ftdi_context
4483
4484 \retval Pointer to error string
4485*/
4486char *ftdi_get_error_string (struct ftdi_context *ftdi)
4487{
4488 if (ftdi == NULL)
4489 return "";
4490
4491 return ftdi->error_str;
4492}
4493
4494/* @} end of doxygen libftdi group */