test/baudrate.cpp: Change the expected results to the present results. AM still has...
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
58 \retval none
59*/
60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
61{
62 if (ftdi && ftdi->usb_dev)
63 {
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
66 if(ftdi->eeprom)
67 ftdi->eeprom->initialized_for_connected_device = 0;
68 }
69}
70
71/**
72 Initializes a ftdi_context.
73
74 \param ftdi pointer to ftdi_context
75
76 \retval 0: all fine
77 \retval -1: couldn't allocate read buffer
78 \retval -2: couldn't allocate struct buffer
79 \retval -3: libusb_init() failed
80
81 \remark This should be called before all functions
82*/
83int ftdi_init(struct ftdi_context *ftdi)
84{
85 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
86 ftdi->usb_ctx = NULL;
87 ftdi->usb_dev = NULL;
88 ftdi->usb_read_timeout = 5000;
89 ftdi->usb_write_timeout = 5000;
90
91 ftdi->type = TYPE_BM; /* chip type */
92 ftdi->baudrate = -1;
93 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
94
95 ftdi->readbuffer = NULL;
96 ftdi->readbuffer_offset = 0;
97 ftdi->readbuffer_remaining = 0;
98 ftdi->writebuffer_chunksize = 4096;
99 ftdi->max_packet_size = 0;
100 ftdi->error_str = NULL;
101 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
102
103 if (libusb_init(&ftdi->usb_ctx) < 0)
104 ftdi_error_return(-3, "libusb_init() failed");
105
106 ftdi_set_interface(ftdi, INTERFACE_ANY);
107 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
108
109 if (eeprom == 0)
110 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
111 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
112 ftdi->eeprom = eeprom;
113
114 /* All fine. Now allocate the readbuffer */
115 return ftdi_read_data_set_chunksize(ftdi, 4096);
116}
117
118/**
119 Allocate and initialize a new ftdi_context
120
121 \return a pointer to a new ftdi_context, or NULL on failure
122*/
123struct ftdi_context *ftdi_new(void)
124{
125 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
126
127 if (ftdi == NULL)
128 {
129 return NULL;
130 }
131
132 if (ftdi_init(ftdi) != 0)
133 {
134 free(ftdi);
135 return NULL;
136 }
137
138 return ftdi;
139}
140
141/**
142 Open selected channels on a chip, otherwise use first channel.
143
144 \param ftdi pointer to ftdi_context
145 \param interface Interface to use for FT2232C/2232H/4232H chips.
146
147 \retval 0: all fine
148 \retval -1: unknown interface
149 \retval -2: USB device unavailable
150*/
151int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
152{
153 if (ftdi == NULL)
154 ftdi_error_return(-2, "USB device unavailable");
155
156 switch (interface)
157 {
158 case INTERFACE_ANY:
159 case INTERFACE_A:
160 ftdi->interface = 0;
161 ftdi->index = INTERFACE_A;
162 ftdi->in_ep = 0x02;
163 ftdi->out_ep = 0x81;
164 break;
165 case INTERFACE_B:
166 ftdi->interface = 1;
167 ftdi->index = INTERFACE_B;
168 ftdi->in_ep = 0x04;
169 ftdi->out_ep = 0x83;
170 break;
171 case INTERFACE_C:
172 ftdi->interface = 2;
173 ftdi->index = INTERFACE_C;
174 ftdi->in_ep = 0x06;
175 ftdi->out_ep = 0x85;
176 break;
177 case INTERFACE_D:
178 ftdi->interface = 3;
179 ftdi->index = INTERFACE_D;
180 ftdi->in_ep = 0x08;
181 ftdi->out_ep = 0x87;
182 break;
183 default:
184 ftdi_error_return(-1, "Unknown interface");
185 }
186 return 0;
187}
188
189/**
190 Deinitializes a ftdi_context.
191
192 \param ftdi pointer to ftdi_context
193*/
194void ftdi_deinit(struct ftdi_context *ftdi)
195{
196 if (ftdi == NULL)
197 return;
198
199 ftdi_usb_close_internal (ftdi);
200
201 if (ftdi->readbuffer != NULL)
202 {
203 free(ftdi->readbuffer);
204 ftdi->readbuffer = NULL;
205 }
206
207 if (ftdi->eeprom != NULL)
208 {
209 if (ftdi->eeprom->manufacturer != 0)
210 {
211 free(ftdi->eeprom->manufacturer);
212 ftdi->eeprom->manufacturer = 0;
213 }
214 if (ftdi->eeprom->product != 0)
215 {
216 free(ftdi->eeprom->product);
217 ftdi->eeprom->product = 0;
218 }
219 if (ftdi->eeprom->serial != 0)
220 {
221 free(ftdi->eeprom->serial);
222 ftdi->eeprom->serial = 0;
223 }
224 free(ftdi->eeprom);
225 ftdi->eeprom = NULL;
226 }
227
228 if (ftdi->usb_ctx)
229 {
230 libusb_exit(ftdi->usb_ctx);
231 ftdi->usb_ctx = NULL;
232 }
233}
234
235/**
236 Deinitialize and free an ftdi_context.
237
238 \param ftdi pointer to ftdi_context
239*/
240void ftdi_free(struct ftdi_context *ftdi)
241{
242 ftdi_deinit(ftdi);
243 free(ftdi);
244}
245
246/**
247 Use an already open libusb device.
248
249 \param ftdi pointer to ftdi_context
250 \param usb libusb libusb_device_handle to use
251*/
252void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
253{
254 if (ftdi == NULL)
255 return;
256
257 ftdi->usb_dev = usb;
258}
259
260
261/**
262 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
263 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
264 use. With VID:PID 0:0, search for the default devices
265 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014)
266
267 \param ftdi pointer to ftdi_context
268 \param devlist Pointer where to store list of found devices
269 \param vendor Vendor ID to search for
270 \param product Product ID to search for
271
272 \retval >0: number of devices found
273 \retval -3: out of memory
274 \retval -5: libusb_get_device_list() failed
275 \retval -6: libusb_get_device_descriptor() failed
276*/
277int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
278{
279 struct ftdi_device_list **curdev;
280 libusb_device *dev;
281 libusb_device **devs;
282 int count = 0;
283 int i = 0;
284
285 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
286 ftdi_error_return(-5, "libusb_get_device_list() failed");
287
288 curdev = devlist;
289 *curdev = NULL;
290
291 while ((dev = devs[i++]) != NULL)
292 {
293 struct libusb_device_descriptor desc;
294
295 if (libusb_get_device_descriptor(dev, &desc) < 0)
296 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
297
298 if (((vendor != 0 && product != 0) &&
299 desc.idVendor == vendor && desc.idProduct == product) ||
300 ((vendor == 0 && product == 0) &&
301 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
302 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014)))
303 {
304 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
305 if (!*curdev)
306 ftdi_error_return_free_device_list(-3, "out of memory", devs);
307
308 (*curdev)->next = NULL;
309 (*curdev)->dev = dev;
310 libusb_ref_device(dev);
311 curdev = &(*curdev)->next;
312 count++;
313 }
314 }
315 libusb_free_device_list(devs,1);
316 return count;
317}
318
319/**
320 Frees a usb device list.
321
322 \param devlist USB device list created by ftdi_usb_find_all()
323*/
324void ftdi_list_free(struct ftdi_device_list **devlist)
325{
326 struct ftdi_device_list *curdev, *next;
327
328 for (curdev = *devlist; curdev != NULL;)
329 {
330 next = curdev->next;
331 libusb_unref_device(curdev->dev);
332 free(curdev);
333 curdev = next;
334 }
335
336 *devlist = NULL;
337}
338
339/**
340 Frees a usb device list.
341
342 \param devlist USB device list created by ftdi_usb_find_all()
343*/
344void ftdi_list_free2(struct ftdi_device_list *devlist)
345{
346 ftdi_list_free(&devlist);
347}
348
349/**
350 Return device ID strings from the usb device.
351
352 The parameters manufacturer, description and serial may be NULL
353 or pointer to buffers to store the fetched strings.
354
355 \note Use this function only in combination with ftdi_usb_find_all()
356 as it closes the internal "usb_dev" after use.
357
358 \param ftdi pointer to ftdi_context
359 \param dev libusb usb_dev to use
360 \param manufacturer Store manufacturer string here if not NULL
361 \param mnf_len Buffer size of manufacturer string
362 \param description Store product description string here if not NULL
363 \param desc_len Buffer size of product description string
364 \param serial Store serial string here if not NULL
365 \param serial_len Buffer size of serial string
366
367 \retval 0: all fine
368 \retval -1: wrong arguments
369 \retval -4: unable to open device
370 \retval -7: get product manufacturer failed
371 \retval -8: get product description failed
372 \retval -9: get serial number failed
373 \retval -11: libusb_get_device_descriptor() failed
374*/
375int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
376 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
377{
378 struct libusb_device_descriptor desc;
379
380 if ((ftdi==NULL) || (dev==NULL))
381 return -1;
382
383 if (libusb_open(dev, &ftdi->usb_dev) < 0)
384 ftdi_error_return(-4, "libusb_open() failed");
385
386 if (libusb_get_device_descriptor(dev, &desc) < 0)
387 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
388
389 if (manufacturer != NULL)
390 {
391 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
392 {
393 ftdi_usb_close_internal (ftdi);
394 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
395 }
396 }
397
398 if (description != NULL)
399 {
400 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
401 {
402 ftdi_usb_close_internal (ftdi);
403 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
404 }
405 }
406
407 if (serial != NULL)
408 {
409 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
410 {
411 ftdi_usb_close_internal (ftdi);
412 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
413 }
414 }
415
416 ftdi_usb_close_internal (ftdi);
417
418 return 0;
419}
420
421/**
422 * Internal function to determine the maximum packet size.
423 * \param ftdi pointer to ftdi_context
424 * \param dev libusb usb_dev to use
425 * \retval Maximum packet size for this device
426 */
427static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
428{
429 struct libusb_device_descriptor desc;
430 struct libusb_config_descriptor *config0;
431 unsigned int packet_size;
432
433 // Sanity check
434 if (ftdi == NULL || dev == NULL)
435 return 64;
436
437 // Determine maximum packet size. Init with default value.
438 // New hi-speed devices from FTDI use a packet size of 512 bytes
439 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
440 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
441 packet_size = 512;
442 else
443 packet_size = 64;
444
445 if (libusb_get_device_descriptor(dev, &desc) < 0)
446 return packet_size;
447
448 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
449 return packet_size;
450
451 if (desc.bNumConfigurations > 0)
452 {
453 if (ftdi->interface < config0->bNumInterfaces)
454 {
455 struct libusb_interface interface = config0->interface[ftdi->interface];
456 if (interface.num_altsetting > 0)
457 {
458 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
459 if (descriptor.bNumEndpoints > 0)
460 {
461 packet_size = descriptor.endpoint[0].wMaxPacketSize;
462 }
463 }
464 }
465 }
466
467 libusb_free_config_descriptor (config0);
468 return packet_size;
469}
470
471/**
472 Opens a ftdi device given by an usb_device.
473
474 \param ftdi pointer to ftdi_context
475 \param dev libusb usb_dev to use
476
477 \retval 0: all fine
478 \retval -3: unable to config device
479 \retval -4: unable to open device
480 \retval -5: unable to claim device
481 \retval -6: reset failed
482 \retval -7: set baudrate failed
483 \retval -8: ftdi context invalid
484 \retval -9: libusb_get_device_descriptor() failed
485 \retval -10: libusb_get_config_descriptor() failed
486 \retval -11: libusb_detach_kernel_driver() failed
487 \retval -12: libusb_get_configuration() failed
488*/
489int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
490{
491 struct libusb_device_descriptor desc;
492 struct libusb_config_descriptor *config0;
493 int cfg, cfg0, detach_errno = 0;
494
495 if (ftdi == NULL)
496 ftdi_error_return(-8, "ftdi context invalid");
497
498 if (libusb_open(dev, &ftdi->usb_dev) < 0)
499 ftdi_error_return(-4, "libusb_open() failed");
500
501 if (libusb_get_device_descriptor(dev, &desc) < 0)
502 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
503
504 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
505 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
506 cfg0 = config0->bConfigurationValue;
507 libusb_free_config_descriptor (config0);
508
509 // Try to detach ftdi_sio kernel module.
510 //
511 // The return code is kept in a separate variable and only parsed
512 // if usb_set_configuration() or usb_claim_interface() fails as the
513 // detach operation might be denied and everything still works fine.
514 // Likely scenario is a static ftdi_sio kernel module.
515 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
516 {
517 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
518 detach_errno = errno;
519 }
520
521 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
522 ftdi_error_return(-12, "libusb_get_configuration () failed");
523 // set configuration (needed especially for windows)
524 // tolerate EBUSY: one device with one configuration, but two interfaces
525 // and libftdi sessions to both interfaces (e.g. FT2232)
526 if (desc.bNumConfigurations > 0 && cfg != cfg0)
527 {
528 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
529 {
530 ftdi_usb_close_internal (ftdi);
531 if (detach_errno == EPERM)
532 {
533 ftdi_error_return(-8, "inappropriate permissions on device!");
534 }
535 else
536 {
537 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
538 }
539 }
540 }
541
542 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
543 {
544 ftdi_usb_close_internal (ftdi);
545 if (detach_errno == EPERM)
546 {
547 ftdi_error_return(-8, "inappropriate permissions on device!");
548 }
549 else
550 {
551 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
552 }
553 }
554
555 if (ftdi_usb_reset (ftdi) != 0)
556 {
557 ftdi_usb_close_internal (ftdi);
558 ftdi_error_return(-6, "ftdi_usb_reset failed");
559 }
560
561 // Try to guess chip type
562 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
563 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
564 && desc.iSerialNumber == 0))
565 ftdi->type = TYPE_BM;
566 else if (desc.bcdDevice == 0x200)
567 ftdi->type = TYPE_AM;
568 else if (desc.bcdDevice == 0x500)
569 ftdi->type = TYPE_2232C;
570 else if (desc.bcdDevice == 0x600)
571 ftdi->type = TYPE_R;
572 else if (desc.bcdDevice == 0x700)
573 ftdi->type = TYPE_2232H;
574 else if (desc.bcdDevice == 0x800)
575 ftdi->type = TYPE_4232H;
576 else if (desc.bcdDevice == 0x900)
577 ftdi->type = TYPE_232H;
578
579 // Determine maximum packet size
580 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
581
582 if (ftdi_set_baudrate (ftdi, 9600) != 0)
583 {
584 ftdi_usb_close_internal (ftdi);
585 ftdi_error_return(-7, "set baudrate failed");
586 }
587
588 ftdi_error_return(0, "all fine");
589}
590
591/**
592 Opens the first device with a given vendor and product ids.
593
594 \param ftdi pointer to ftdi_context
595 \param vendor Vendor ID
596 \param product Product ID
597
598 \retval same as ftdi_usb_open_desc()
599*/
600int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
601{
602 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
603}
604
605/**
606 Opens the first device with a given, vendor id, product id,
607 description and serial.
608
609 \param ftdi pointer to ftdi_context
610 \param vendor Vendor ID
611 \param product Product ID
612 \param description Description to search for. Use NULL if not needed.
613 \param serial Serial to search for. Use NULL if not needed.
614
615 \retval 0: all fine
616 \retval -3: usb device not found
617 \retval -4: unable to open device
618 \retval -5: unable to claim device
619 \retval -6: reset failed
620 \retval -7: set baudrate failed
621 \retval -8: get product description failed
622 \retval -9: get serial number failed
623 \retval -12: libusb_get_device_list() failed
624 \retval -13: libusb_get_device_descriptor() failed
625*/
626int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
627 const char* description, const char* serial)
628{
629 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
630}
631
632/**
633 Opens the index-th device with a given, vendor id, product id,
634 description and serial.
635
636 \param ftdi pointer to ftdi_context
637 \param vendor Vendor ID
638 \param product Product ID
639 \param description Description to search for. Use NULL if not needed.
640 \param serial Serial to search for. Use NULL if not needed.
641 \param index Number of matching device to open if there are more than one, starts with 0.
642
643 \retval 0: all fine
644 \retval -1: usb_find_busses() failed
645 \retval -2: usb_find_devices() failed
646 \retval -3: usb device not found
647 \retval -4: unable to open device
648 \retval -5: unable to claim device
649 \retval -6: reset failed
650 \retval -7: set baudrate failed
651 \retval -8: get product description failed
652 \retval -9: get serial number failed
653 \retval -10: unable to close device
654 \retval -11: ftdi context invalid
655*/
656int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
657 const char* description, const char* serial, unsigned int index)
658{
659 libusb_device *dev;
660 libusb_device **devs;
661 char string[256];
662 int i = 0;
663
664 if (ftdi == NULL)
665 ftdi_error_return(-11, "ftdi context invalid");
666
667 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
668 ftdi_error_return(-12, "libusb_get_device_list() failed");
669
670 while ((dev = devs[i++]) != NULL)
671 {
672 struct libusb_device_descriptor desc;
673 int res;
674
675 if (libusb_get_device_descriptor(dev, &desc) < 0)
676 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
677
678 if (desc.idVendor == vendor && desc.idProduct == product)
679 {
680 if (libusb_open(dev, &ftdi->usb_dev) < 0)
681 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
682
683 if (description != NULL)
684 {
685 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
686 {
687 ftdi_usb_close_internal (ftdi);
688 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
689 }
690 if (strncmp(string, description, sizeof(string)) != 0)
691 {
692 ftdi_usb_close_internal (ftdi);
693 continue;
694 }
695 }
696 if (serial != NULL)
697 {
698 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
699 {
700 ftdi_usb_close_internal (ftdi);
701 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
702 }
703 if (strncmp(string, serial, sizeof(string)) != 0)
704 {
705 ftdi_usb_close_internal (ftdi);
706 continue;
707 }
708 }
709
710 ftdi_usb_close_internal (ftdi);
711
712 if (index > 0)
713 {
714 index--;
715 continue;
716 }
717
718 res = ftdi_usb_open_dev(ftdi, dev);
719 libusb_free_device_list(devs,1);
720 return res;
721 }
722 }
723
724 // device not found
725 ftdi_error_return_free_device_list(-3, "device not found", devs);
726}
727
728/**
729 Opens the ftdi-device described by a description-string.
730 Intended to be used for parsing a device-description given as commandline argument.
731
732 \param ftdi pointer to ftdi_context
733 \param description NULL-terminated description-string, using this format:
734 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
735 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
736 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
737 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
738
739 \note The description format may be extended in later versions.
740
741 \retval 0: all fine
742 \retval -2: libusb_get_device_list() failed
743 \retval -3: usb device not found
744 \retval -4: unable to open device
745 \retval -5: unable to claim device
746 \retval -6: reset failed
747 \retval -7: set baudrate failed
748 \retval -8: get product description failed
749 \retval -9: get serial number failed
750 \retval -10: unable to close device
751 \retval -11: illegal description format
752 \retval -12: ftdi context invalid
753*/
754int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
755{
756 if (ftdi == NULL)
757 ftdi_error_return(-12, "ftdi context invalid");
758
759 if (description[0] == 0 || description[1] != ':')
760 ftdi_error_return(-11, "illegal description format");
761
762 if (description[0] == 'd')
763 {
764 libusb_device *dev;
765 libusb_device **devs;
766 unsigned int bus_number, device_address;
767 int i = 0;
768
769 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
770 ftdi_error_return(-2, "libusb_get_device_list() failed");
771
772 /* XXX: This doesn't handle symlinks/odd paths/etc... */
773 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
774 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
775
776 while ((dev = devs[i++]) != NULL)
777 {
778 int ret;
779 if (bus_number == libusb_get_bus_number (dev)
780 && device_address == libusb_get_device_address (dev))
781 {
782 ret = ftdi_usb_open_dev(ftdi, dev);
783 libusb_free_device_list(devs,1);
784 return ret;
785 }
786 }
787
788 // device not found
789 ftdi_error_return_free_device_list(-3, "device not found", devs);
790 }
791 else if (description[0] == 'i' || description[0] == 's')
792 {
793 unsigned int vendor;
794 unsigned int product;
795 unsigned int index=0;
796 const char *serial=NULL;
797 const char *startp, *endp;
798
799 errno=0;
800 startp=description+2;
801 vendor=strtoul((char*)startp,(char**)&endp,0);
802 if (*endp != ':' || endp == startp || errno != 0)
803 ftdi_error_return(-11, "illegal description format");
804
805 startp=endp+1;
806 product=strtoul((char*)startp,(char**)&endp,0);
807 if (endp == startp || errno != 0)
808 ftdi_error_return(-11, "illegal description format");
809
810 if (description[0] == 'i' && *endp != 0)
811 {
812 /* optional index field in i-mode */
813 if (*endp != ':')
814 ftdi_error_return(-11, "illegal description format");
815
816 startp=endp+1;
817 index=strtoul((char*)startp,(char**)&endp,0);
818 if (*endp != 0 || endp == startp || errno != 0)
819 ftdi_error_return(-11, "illegal description format");
820 }
821 if (description[0] == 's')
822 {
823 if (*endp != ':')
824 ftdi_error_return(-11, "illegal description format");
825
826 /* rest of the description is the serial */
827 serial=endp+1;
828 }
829
830 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
831 }
832 else
833 {
834 ftdi_error_return(-11, "illegal description format");
835 }
836}
837
838/**
839 Resets the ftdi device.
840
841 \param ftdi pointer to ftdi_context
842
843 \retval 0: all fine
844 \retval -1: FTDI reset failed
845 \retval -2: USB device unavailable
846*/
847int ftdi_usb_reset(struct ftdi_context *ftdi)
848{
849 if (ftdi == NULL || ftdi->usb_dev == NULL)
850 ftdi_error_return(-2, "USB device unavailable");
851
852 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
853 SIO_RESET_REQUEST, SIO_RESET_SIO,
854 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
855 ftdi_error_return(-1,"FTDI reset failed");
856
857 // Invalidate data in the readbuffer
858 ftdi->readbuffer_offset = 0;
859 ftdi->readbuffer_remaining = 0;
860
861 return 0;
862}
863
864/**
865 Clears the read buffer on the chip and the internal read buffer.
866
867 \param ftdi pointer to ftdi_context
868
869 \retval 0: all fine
870 \retval -1: read buffer purge failed
871 \retval -2: USB device unavailable
872*/
873int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
874{
875 if (ftdi == NULL || ftdi->usb_dev == NULL)
876 ftdi_error_return(-2, "USB device unavailable");
877
878 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
879 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
880 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
881 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
882
883 // Invalidate data in the readbuffer
884 ftdi->readbuffer_offset = 0;
885 ftdi->readbuffer_remaining = 0;
886
887 return 0;
888}
889
890/**
891 Clears the write buffer on the chip.
892
893 \param ftdi pointer to ftdi_context
894
895 \retval 0: all fine
896 \retval -1: write buffer purge failed
897 \retval -2: USB device unavailable
898*/
899int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
900{
901 if (ftdi == NULL || ftdi->usb_dev == NULL)
902 ftdi_error_return(-2, "USB device unavailable");
903
904 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
905 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
906 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
907 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
908
909 return 0;
910}
911
912/**
913 Clears the buffers on the chip and the internal read buffer.
914
915 \param ftdi pointer to ftdi_context
916
917 \retval 0: all fine
918 \retval -1: read buffer purge failed
919 \retval -2: write buffer purge failed
920 \retval -3: USB device unavailable
921*/
922int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
923{
924 int result;
925
926 if (ftdi == NULL || ftdi->usb_dev == NULL)
927 ftdi_error_return(-3, "USB device unavailable");
928
929 result = ftdi_usb_purge_rx_buffer(ftdi);
930 if (result < 0)
931 return -1;
932
933 result = ftdi_usb_purge_tx_buffer(ftdi);
934 if (result < 0)
935 return -2;
936
937 return 0;
938}
939
940
941
942/**
943 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
944
945 \param ftdi pointer to ftdi_context
946
947 \retval 0: all fine
948 \retval -1: usb_release failed
949 \retval -3: ftdi context invalid
950*/
951int ftdi_usb_close(struct ftdi_context *ftdi)
952{
953 int rtn = 0;
954
955 if (ftdi == NULL)
956 ftdi_error_return(-3, "ftdi context invalid");
957
958 if (ftdi->usb_dev != NULL)
959 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
960 rtn = -1;
961
962 ftdi_usb_close_internal (ftdi);
963
964 return rtn;
965}
966
967/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
968 to encoded divisor and the achievable baudrate
969 Function is only used internally
970 \internal
971
972 See AN120
973 clk/1 -> 0
974 clk/1.5 -> 1
975 clk/2 -> 2
976 From /2, 0.125/ 0.25 and 0.5 steps may be taken
977 The fractional part has frac_code encoding
978*/
979static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
980
981{
982 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
983 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
984 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
985 int divisor, best_divisor, best_baud, best_baud_diff;
986 divisor = 24000000 / baudrate;
987 int i;
988
989 // Round down to supported fraction (AM only)
990 divisor -= am_adjust_dn[divisor & 7];
991
992 // Try this divisor and the one above it (because division rounds down)
993 best_divisor = 0;
994 best_baud = 0;
995 best_baud_diff = 0;
996 for (i = 0; i < 2; i++)
997 {
998 int try_divisor = divisor + i;
999 int baud_estimate;
1000 int baud_diff;
1001
1002 // Round up to supported divisor value
1003 if (try_divisor <= 8)
1004 {
1005 // Round up to minimum supported divisor
1006 try_divisor = 8;
1007 }
1008 else if (divisor < 16)
1009 {
1010 // AM doesn't support divisors 9 through 15 inclusive
1011 try_divisor = 16;
1012 }
1013 else
1014 {
1015 // Round up to supported fraction (AM only)
1016 try_divisor += am_adjust_up[try_divisor & 7];
1017 if (try_divisor > 0x1FFF8)
1018 {
1019 // Round down to maximum supported divisor value (for AM)
1020 try_divisor = 0x1FFF8;
1021 }
1022 }
1023 // Get estimated baud rate (to nearest integer)
1024 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1025 // Get absolute difference from requested baud rate
1026 if (baud_estimate < baudrate)
1027 {
1028 baud_diff = baudrate - baud_estimate;
1029 }
1030 else
1031 {
1032 baud_diff = baud_estimate - baudrate;
1033 }
1034 if (i == 0 || baud_diff < best_baud_diff)
1035 {
1036 // Closest to requested baud rate so far
1037 best_divisor = try_divisor;
1038 best_baud = baud_estimate;
1039 best_baud_diff = baud_diff;
1040 if (baud_diff == 0)
1041 {
1042 // Spot on! No point trying
1043 break;
1044 }
1045 }
1046 }
1047 // Encode the best divisor value
1048 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1049 // Deal with special cases for encoded value
1050 if (*encoded_divisor == 1)
1051 {
1052 *encoded_divisor = 0; // 3000000 baud
1053 }
1054 else if (*encoded_divisor == 0x4001)
1055 {
1056 *encoded_divisor = 1; // 2000000 baud (BM only)
1057 }
1058 return best_baud;
1059}
1060
1061/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1062 to encoded divisor and the achievable baudrate
1063 Function is only used internally
1064 \internal
1065
1066 See AN120
1067 clk/1 -> 0
1068 clk/1.5 -> 1
1069 clk/2 -> 2
1070 From /2, 0.125 steps may be taken.
1071 The fractional part has frac_code encoding
1072
1073 value[13:0] of value is the divisor
1074 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1075
1076 H Type have all features above with
1077 {index[8],value[15:14]} is the encoded subdivisor
1078
1079 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
1080 {index[0],value[15:14]} is the encoded subdivisor
1081
1082 AM Type chips have only four fractional subdivisors at value[15:14]
1083 for subdivisors 0, 0.5, 0.25, 0.125
1084*/
1085static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor)
1086{
1087 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1088 int best_baud = 0;
1089 int divisor, best_divisor;
1090 if (baudrate >= clk/clk_div)
1091 {
1092 *encoded_divisor = 0;
1093 best_baud = clk/clk_div;
1094 }
1095 else if (baudrate >= clk/(clk_div + clk_div/2))
1096 {
1097 *encoded_divisor = 1;
1098 best_baud = clk/(clk_div + clk_div/2);
1099 }
1100 else if (baudrate >= clk/(2*clk_div))
1101 {
1102 *encoded_divisor = 2;
1103 best_baud = clk/(2*clk_div);
1104 }
1105 else
1106 {
1107 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1108 divisor = clk*16/clk_div / baudrate;
1109 if (divisor & 1) /* Decide if to round up or down*/
1110 best_divisor = divisor /2 +1;
1111 else
1112 best_divisor = divisor/2;
1113 if(best_divisor > 0x20000)
1114 best_divisor = 0x1ffff;
1115 best_baud = clk*8/clk_div/best_divisor;
1116 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1117 }
1118 return best_baud;
1119}
1120/**
1121 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1122 Function is only used internally
1123 \internal
1124*/
1125static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1126 unsigned short *value, unsigned short *index)
1127{
1128 int best_baud;
1129 unsigned long encoded_divisor;
1130
1131 if (baudrate <= 0)
1132 {
1133 // Return error
1134 return -1;
1135 }
1136
1137#define H_CLK 120000000
1138#define C_CLK 48000000
1139 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H ))
1140 {
1141 if(baudrate*10 > H_CLK /0x3fff)
1142 {
1143 /* On H Devices, use 12 000 000 Baudrate when possible
1144 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
1145 three fractional bits and a 120 MHz clock
1146 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1147 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1148 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1149 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1150 }
1151 else
1152 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1153 }
1154 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R ))
1155 {
1156 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1157 }
1158 else
1159 {
1160 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
1161 }
1162 // Split into "value" and "index" values
1163 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1164 if (ftdi->type == TYPE_2232H ||
1165 ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
1166 {
1167 *index = (unsigned short)(encoded_divisor >> 8);
1168 *index &= 0xFF00;
1169 *index |= ftdi->index;
1170 }
1171 else
1172 *index = (unsigned short)(encoded_divisor >> 16);
1173
1174 // Return the nearest baud rate
1175 return best_baud;
1176}
1177
1178/**
1179 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1180 * Do not use, it's only for the unit test framework
1181 **/
1182int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1183 unsigned short *value, unsigned short *index)
1184{
1185 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1186}
1187
1188/**
1189 Sets the chip baud rate
1190
1191 \param ftdi pointer to ftdi_context
1192 \param baudrate baud rate to set
1193
1194 \retval 0: all fine
1195 \retval -1: invalid baudrate
1196 \retval -2: setting baudrate failed
1197 \retval -3: USB device unavailable
1198*/
1199int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1200{
1201 unsigned short value, index;
1202 int actual_baudrate;
1203
1204 if (ftdi == NULL || ftdi->usb_dev == NULL)
1205 ftdi_error_return(-3, "USB device unavailable");
1206
1207 if (ftdi->bitbang_enabled)
1208 {
1209 baudrate = baudrate*4;
1210 }
1211
1212 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1213 if (actual_baudrate <= 0)
1214 ftdi_error_return (-1, "Silly baudrate <= 0.");
1215
1216 // Check within tolerance (about 5%)
1217 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1218 || ((actual_baudrate < baudrate)
1219 ? (actual_baudrate * 21 < baudrate * 20)
1220 : (baudrate * 21 < actual_baudrate * 20)))
1221 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1222
1223 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1224 SIO_SET_BAUDRATE_REQUEST, value,
1225 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1226 ftdi_error_return (-2, "Setting new baudrate failed");
1227
1228 ftdi->baudrate = baudrate;
1229 return 0;
1230}
1231
1232/**
1233 Set (RS232) line characteristics.
1234 The break type can only be set via ftdi_set_line_property2()
1235 and defaults to "off".
1236
1237 \param ftdi pointer to ftdi_context
1238 \param bits Number of bits
1239 \param sbit Number of stop bits
1240 \param parity Parity mode
1241
1242 \retval 0: all fine
1243 \retval -1: Setting line property failed
1244*/
1245int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1246 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1247{
1248 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1249}
1250
1251/**
1252 Set (RS232) line characteristics
1253
1254 \param ftdi pointer to ftdi_context
1255 \param bits Number of bits
1256 \param sbit Number of stop bits
1257 \param parity Parity mode
1258 \param break_type Break type
1259
1260 \retval 0: all fine
1261 \retval -1: Setting line property failed
1262 \retval -2: USB device unavailable
1263*/
1264int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1265 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1266 enum ftdi_break_type break_type)
1267{
1268 unsigned short value = bits;
1269
1270 if (ftdi == NULL || ftdi->usb_dev == NULL)
1271 ftdi_error_return(-2, "USB device unavailable");
1272
1273 switch (parity)
1274 {
1275 case NONE:
1276 value |= (0x00 << 8);
1277 break;
1278 case ODD:
1279 value |= (0x01 << 8);
1280 break;
1281 case EVEN:
1282 value |= (0x02 << 8);
1283 break;
1284 case MARK:
1285 value |= (0x03 << 8);
1286 break;
1287 case SPACE:
1288 value |= (0x04 << 8);
1289 break;
1290 }
1291
1292 switch (sbit)
1293 {
1294 case STOP_BIT_1:
1295 value |= (0x00 << 11);
1296 break;
1297 case STOP_BIT_15:
1298 value |= (0x01 << 11);
1299 break;
1300 case STOP_BIT_2:
1301 value |= (0x02 << 11);
1302 break;
1303 }
1304
1305 switch (break_type)
1306 {
1307 case BREAK_OFF:
1308 value |= (0x00 << 14);
1309 break;
1310 case BREAK_ON:
1311 value |= (0x01 << 14);
1312 break;
1313 }
1314
1315 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1316 SIO_SET_DATA_REQUEST, value,
1317 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1318 ftdi_error_return (-1, "Setting new line property failed");
1319
1320 return 0;
1321}
1322
1323/**
1324 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1325
1326 \param ftdi pointer to ftdi_context
1327 \param buf Buffer with the data
1328 \param size Size of the buffer
1329
1330 \retval -666: USB device unavailable
1331 \retval <0: error code from usb_bulk_write()
1332 \retval >0: number of bytes written
1333*/
1334int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1335{
1336 int offset = 0;
1337 int actual_length;
1338
1339 if (ftdi == NULL || ftdi->usb_dev == NULL)
1340 ftdi_error_return(-666, "USB device unavailable");
1341
1342 while (offset < size)
1343 {
1344 int write_size = ftdi->writebuffer_chunksize;
1345
1346 if (offset+write_size > size)
1347 write_size = size-offset;
1348
1349 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1350 ftdi_error_return(-1, "usb bulk write failed");
1351
1352 offset += actual_length;
1353 }
1354
1355 return offset;
1356}
1357
1358static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1359{
1360 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1361 struct ftdi_context *ftdi = tc->ftdi;
1362 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1363
1364 packet_size = ftdi->max_packet_size;
1365
1366 actual_length = transfer->actual_length;
1367
1368 if (actual_length > 2)
1369 {
1370 // skip FTDI status bytes.
1371 // Maybe stored in the future to enable modem use
1372 num_of_chunks = actual_length / packet_size;
1373 chunk_remains = actual_length % packet_size;
1374 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1375
1376 ftdi->readbuffer_offset += 2;
1377 actual_length -= 2;
1378
1379 if (actual_length > packet_size - 2)
1380 {
1381 for (i = 1; i < num_of_chunks; i++)
1382 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1383 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1384 packet_size - 2);
1385 if (chunk_remains > 2)
1386 {
1387 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1388 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1389 chunk_remains-2);
1390 actual_length -= 2*num_of_chunks;
1391 }
1392 else
1393 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1394 }
1395
1396 if (actual_length > 0)
1397 {
1398 // data still fits in buf?
1399 if (tc->offset + actual_length <= tc->size)
1400 {
1401 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1402 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1403 tc->offset += actual_length;
1404
1405 ftdi->readbuffer_offset = 0;
1406 ftdi->readbuffer_remaining = 0;
1407
1408 /* Did we read exactly the right amount of bytes? */
1409 if (tc->offset == tc->size)
1410 {
1411 //printf("read_data exact rem %d offset %d\n",
1412 //ftdi->readbuffer_remaining, offset);
1413 tc->completed = 1;
1414 return;
1415 }
1416 }
1417 else
1418 {
1419 // only copy part of the data or size <= readbuffer_chunksize
1420 int part_size = tc->size - tc->offset;
1421 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1422 tc->offset += part_size;
1423
1424 ftdi->readbuffer_offset += part_size;
1425 ftdi->readbuffer_remaining = actual_length - part_size;
1426
1427 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1428 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1429 tc->completed = 1;
1430 return;
1431 }
1432 }
1433 }
1434 ret = libusb_submit_transfer (transfer);
1435 if (ret < 0)
1436 tc->completed = 1;
1437}
1438
1439
1440static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1441{
1442 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1443 struct ftdi_context *ftdi = tc->ftdi;
1444
1445 tc->offset += transfer->actual_length;
1446
1447 if (tc->offset == tc->size)
1448 {
1449 tc->completed = 1;
1450 }
1451 else
1452 {
1453 int write_size = ftdi->writebuffer_chunksize;
1454 int ret;
1455
1456 if (tc->offset + write_size > tc->size)
1457 write_size = tc->size - tc->offset;
1458
1459 transfer->length = write_size;
1460 transfer->buffer = tc->buf + tc->offset;
1461 ret = libusb_submit_transfer (transfer);
1462 if (ret < 0)
1463 tc->completed = 1;
1464 }
1465}
1466
1467
1468/**
1469 Writes data to the chip. Does not wait for completion of the transfer
1470 nor does it make sure that the transfer was successful.
1471
1472 Use libusb 1.0 asynchronous API.
1473
1474 \param ftdi pointer to ftdi_context
1475 \param buf Buffer with the data
1476 \param size Size of the buffer
1477
1478 \retval NULL: Some error happens when submit transfer
1479 \retval !NULL: Pointer to a ftdi_transfer_control
1480*/
1481
1482struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1483{
1484 struct ftdi_transfer_control *tc;
1485 struct libusb_transfer *transfer;
1486 int write_size, ret;
1487
1488 if (ftdi == NULL || ftdi->usb_dev == NULL)
1489 return NULL;
1490
1491 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1492 if (!tc)
1493 return NULL;
1494
1495 transfer = libusb_alloc_transfer(0);
1496 if (!transfer)
1497 {
1498 free(tc);
1499 return NULL;
1500 }
1501
1502 tc->ftdi = ftdi;
1503 tc->completed = 0;
1504 tc->buf = buf;
1505 tc->size = size;
1506 tc->offset = 0;
1507
1508 if (size < ftdi->writebuffer_chunksize)
1509 write_size = size;
1510 else
1511 write_size = ftdi->writebuffer_chunksize;
1512
1513 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1514 write_size, ftdi_write_data_cb, tc,
1515 ftdi->usb_write_timeout);
1516 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1517
1518 ret = libusb_submit_transfer(transfer);
1519 if (ret < 0)
1520 {
1521 libusb_free_transfer(transfer);
1522 free(tc);
1523 return NULL;
1524 }
1525 tc->transfer = transfer;
1526
1527 return tc;
1528}
1529
1530/**
1531 Reads data from the chip. Does not wait for completion of the transfer
1532 nor does it make sure that the transfer was successful.
1533
1534 Use libusb 1.0 asynchronous API.
1535
1536 \param ftdi pointer to ftdi_context
1537 \param buf Buffer with the data
1538 \param size Size of the buffer
1539
1540 \retval NULL: Some error happens when submit transfer
1541 \retval !NULL: Pointer to a ftdi_transfer_control
1542*/
1543
1544struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1545{
1546 struct ftdi_transfer_control *tc;
1547 struct libusb_transfer *transfer;
1548 int ret;
1549
1550 if (ftdi == NULL || ftdi->usb_dev == NULL)
1551 return NULL;
1552
1553 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1554 if (!tc)
1555 return NULL;
1556
1557 tc->ftdi = ftdi;
1558 tc->buf = buf;
1559 tc->size = size;
1560
1561 if (size <= ftdi->readbuffer_remaining)
1562 {
1563 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1564
1565 // Fix offsets
1566 ftdi->readbuffer_remaining -= size;
1567 ftdi->readbuffer_offset += size;
1568
1569 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1570
1571 tc->completed = 1;
1572 tc->offset = size;
1573 tc->transfer = NULL;
1574 return tc;
1575 }
1576
1577 tc->completed = 0;
1578 if (ftdi->readbuffer_remaining != 0)
1579 {
1580 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1581
1582 tc->offset = ftdi->readbuffer_remaining;
1583 }
1584 else
1585 tc->offset = 0;
1586
1587 transfer = libusb_alloc_transfer(0);
1588 if (!transfer)
1589 {
1590 free (tc);
1591 return NULL;
1592 }
1593
1594 ftdi->readbuffer_remaining = 0;
1595 ftdi->readbuffer_offset = 0;
1596
1597 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1598 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1599
1600 ret = libusb_submit_transfer(transfer);
1601 if (ret < 0)
1602 {
1603 libusb_free_transfer(transfer);
1604 free (tc);
1605 return NULL;
1606 }
1607 tc->transfer = transfer;
1608
1609 return tc;
1610}
1611
1612/**
1613 Wait for completion of the transfer.
1614
1615 Use libusb 1.0 asynchronous API.
1616
1617 \param tc pointer to ftdi_transfer_control
1618
1619 \retval < 0: Some error happens
1620 \retval >= 0: Data size transferred
1621*/
1622
1623int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1624{
1625 int ret;
1626
1627 while (!tc->completed)
1628 {
1629 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1630 if (ret < 0)
1631 {
1632 if (ret == LIBUSB_ERROR_INTERRUPTED)
1633 continue;
1634 libusb_cancel_transfer(tc->transfer);
1635 while (!tc->completed)
1636 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1637 break;
1638 libusb_free_transfer(tc->transfer);
1639 free (tc);
1640 return ret;
1641 }
1642 }
1643
1644 ret = tc->offset;
1645 /**
1646 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1647 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1648 **/
1649 if (tc->transfer)
1650 {
1651 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1652 ret = -1;
1653 libusb_free_transfer(tc->transfer);
1654 }
1655 free(tc);
1656 return ret;
1657}
1658
1659/**
1660 Configure write buffer chunk size.
1661 Default is 4096.
1662
1663 \param ftdi pointer to ftdi_context
1664 \param chunksize Chunk size
1665
1666 \retval 0: all fine
1667 \retval -1: ftdi context invalid
1668*/
1669int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1670{
1671 if (ftdi == NULL)
1672 ftdi_error_return(-1, "ftdi context invalid");
1673
1674 ftdi->writebuffer_chunksize = chunksize;
1675 return 0;
1676}
1677
1678/**
1679 Get write buffer chunk size.
1680
1681 \param ftdi pointer to ftdi_context
1682 \param chunksize Pointer to store chunk size in
1683
1684 \retval 0: all fine
1685 \retval -1: ftdi context invalid
1686*/
1687int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1688{
1689 if (ftdi == NULL)
1690 ftdi_error_return(-1, "ftdi context invalid");
1691
1692 *chunksize = ftdi->writebuffer_chunksize;
1693 return 0;
1694}
1695
1696/**
1697 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1698
1699 Automatically strips the two modem status bytes transfered during every read.
1700
1701 \param ftdi pointer to ftdi_context
1702 \param buf Buffer to store data in
1703 \param size Size of the buffer
1704
1705 \retval -666: USB device unavailable
1706 \retval <0: error code from libusb_bulk_transfer()
1707 \retval 0: no data was available
1708 \retval >0: number of bytes read
1709
1710*/
1711int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1712{
1713 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1714 int packet_size = ftdi->max_packet_size;
1715 int actual_length = 1;
1716
1717 if (ftdi == NULL || ftdi->usb_dev == NULL)
1718 ftdi_error_return(-666, "USB device unavailable");
1719
1720 // Packet size sanity check (avoid division by zero)
1721 if (packet_size == 0)
1722 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1723
1724 // everything we want is still in the readbuffer?
1725 if (size <= ftdi->readbuffer_remaining)
1726 {
1727 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1728
1729 // Fix offsets
1730 ftdi->readbuffer_remaining -= size;
1731 ftdi->readbuffer_offset += size;
1732
1733 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1734
1735 return size;
1736 }
1737 // something still in the readbuffer, but not enough to satisfy 'size'?
1738 if (ftdi->readbuffer_remaining != 0)
1739 {
1740 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1741
1742 // Fix offset
1743 offset += ftdi->readbuffer_remaining;
1744 }
1745 // do the actual USB read
1746 while (offset < size && actual_length > 0)
1747 {
1748 ftdi->readbuffer_remaining = 0;
1749 ftdi->readbuffer_offset = 0;
1750 /* returns how much received */
1751 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1752 if (ret < 0)
1753 ftdi_error_return(ret, "usb bulk read failed");
1754
1755 if (actual_length > 2)
1756 {
1757 // skip FTDI status bytes.
1758 // Maybe stored in the future to enable modem use
1759 num_of_chunks = actual_length / packet_size;
1760 chunk_remains = actual_length % packet_size;
1761 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1762
1763 ftdi->readbuffer_offset += 2;
1764 actual_length -= 2;
1765
1766 if (actual_length > packet_size - 2)
1767 {
1768 for (i = 1; i < num_of_chunks; i++)
1769 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1770 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1771 packet_size - 2);
1772 if (chunk_remains > 2)
1773 {
1774 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1775 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1776 chunk_remains-2);
1777 actual_length -= 2*num_of_chunks;
1778 }
1779 else
1780 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1781 }
1782 }
1783 else if (actual_length <= 2)
1784 {
1785 // no more data to read?
1786 return offset;
1787 }
1788 if (actual_length > 0)
1789 {
1790 // data still fits in buf?
1791 if (offset+actual_length <= size)
1792 {
1793 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1794 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1795 offset += actual_length;
1796
1797 /* Did we read exactly the right amount of bytes? */
1798 if (offset == size)
1799 //printf("read_data exact rem %d offset %d\n",
1800 //ftdi->readbuffer_remaining, offset);
1801 return offset;
1802 }
1803 else
1804 {
1805 // only copy part of the data or size <= readbuffer_chunksize
1806 int part_size = size-offset;
1807 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1808
1809 ftdi->readbuffer_offset += part_size;
1810 ftdi->readbuffer_remaining = actual_length-part_size;
1811 offset += part_size;
1812
1813 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1814 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1815
1816 return offset;
1817 }
1818 }
1819 }
1820 // never reached
1821 return -127;
1822}
1823
1824/**
1825 Configure read buffer chunk size.
1826 Default is 4096.
1827
1828 Automatically reallocates the buffer.
1829
1830 \param ftdi pointer to ftdi_context
1831 \param chunksize Chunk size
1832
1833 \retval 0: all fine
1834 \retval -1: ftdi context invalid
1835*/
1836int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1837{
1838 unsigned char *new_buf;
1839
1840 if (ftdi == NULL)
1841 ftdi_error_return(-1, "ftdi context invalid");
1842
1843 // Invalidate all remaining data
1844 ftdi->readbuffer_offset = 0;
1845 ftdi->readbuffer_remaining = 0;
1846#ifdef __linux__
1847 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1848 which is defined in libusb-1.0. Otherwise, each USB read request will
1849 be divided into multiple URBs. This will cause issues on Linux kernel
1850 older than 2.6.32. */
1851 if (chunksize > 16384)
1852 chunksize = 16384;
1853#endif
1854
1855 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1856 ftdi_error_return(-1, "out of memory for readbuffer");
1857
1858 ftdi->readbuffer = new_buf;
1859 ftdi->readbuffer_chunksize = chunksize;
1860
1861 return 0;
1862}
1863
1864/**
1865 Get read buffer chunk size.
1866
1867 \param ftdi pointer to ftdi_context
1868 \param chunksize Pointer to store chunk size in
1869
1870 \retval 0: all fine
1871 \retval -1: FTDI context invalid
1872*/
1873int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1874{
1875 if (ftdi == NULL)
1876 ftdi_error_return(-1, "FTDI context invalid");
1877
1878 *chunksize = ftdi->readbuffer_chunksize;
1879 return 0;
1880}
1881
1882
1883/**
1884 Enable bitbang mode.
1885
1886 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1887
1888 \param ftdi pointer to ftdi_context
1889 \param bitmask Bitmask to configure lines.
1890 HIGH/ON value configures a line as output.
1891
1892 \retval 0: all fine
1893 \retval -1: can't enable bitbang mode
1894 \retval -2: USB device unavailable
1895*/
1896int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1897{
1898 unsigned short usb_val;
1899
1900 if (ftdi == NULL || ftdi->usb_dev == NULL)
1901 ftdi_error_return(-2, "USB device unavailable");
1902
1903 usb_val = bitmask; // low byte: bitmask
1904 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1905 usb_val |= (ftdi->bitbang_mode << 8);
1906
1907 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1908 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1909 NULL, 0, ftdi->usb_write_timeout) < 0)
1910 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1911
1912 ftdi->bitbang_enabled = 1;
1913 return 0;
1914}
1915
1916/**
1917 Disable bitbang mode.
1918
1919 \param ftdi pointer to ftdi_context
1920
1921 \retval 0: all fine
1922 \retval -1: can't disable bitbang mode
1923 \retval -2: USB device unavailable
1924*/
1925int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1926{
1927 if (ftdi == NULL || ftdi->usb_dev == NULL)
1928 ftdi_error_return(-2, "USB device unavailable");
1929
1930 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1931 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1932
1933 ftdi->bitbang_enabled = 0;
1934 return 0;
1935}
1936
1937/**
1938 Enable/disable bitbang modes.
1939
1940 \param ftdi pointer to ftdi_context
1941 \param bitmask Bitmask to configure lines.
1942 HIGH/ON value configures a line as output.
1943 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1944
1945 \retval 0: all fine
1946 \retval -1: can't enable bitbang mode
1947 \retval -2: USB device unavailable
1948*/
1949int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1950{
1951 unsigned short usb_val;
1952
1953 if (ftdi == NULL || ftdi->usb_dev == NULL)
1954 ftdi_error_return(-2, "USB device unavailable");
1955
1956 usb_val = bitmask; // low byte: bitmask
1957 usb_val |= (mode << 8);
1958 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1959 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1960
1961 ftdi->bitbang_mode = mode;
1962 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1963 return 0;
1964}
1965
1966/**
1967 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1968
1969 \param ftdi pointer to ftdi_context
1970 \param pins Pointer to store pins into
1971
1972 \retval 0: all fine
1973 \retval -1: read pins failed
1974 \retval -2: USB device unavailable
1975*/
1976int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1977{
1978 if (ftdi == NULL || ftdi->usb_dev == NULL)
1979 ftdi_error_return(-2, "USB device unavailable");
1980
1981 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1982 ftdi_error_return(-1, "read pins failed");
1983
1984 return 0;
1985}
1986
1987/**
1988 Set latency timer
1989
1990 The FTDI chip keeps data in the internal buffer for a specific
1991 amount of time if the buffer is not full yet to decrease
1992 load on the usb bus.
1993
1994 \param ftdi pointer to ftdi_context
1995 \param latency Value between 1 and 255
1996
1997 \retval 0: all fine
1998 \retval -1: latency out of range
1999 \retval -2: unable to set latency timer
2000 \retval -3: USB device unavailable
2001*/
2002int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2003{
2004 unsigned short usb_val;
2005
2006 if (latency < 1)
2007 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
2008
2009 if (ftdi == NULL || ftdi->usb_dev == NULL)
2010 ftdi_error_return(-3, "USB device unavailable");
2011
2012 usb_val = latency;
2013 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2014 ftdi_error_return(-2, "unable to set latency timer");
2015
2016 return 0;
2017}
2018
2019/**
2020 Get latency timer
2021
2022 \param ftdi pointer to ftdi_context
2023 \param latency Pointer to store latency value in
2024
2025 \retval 0: all fine
2026 \retval -1: unable to get latency timer
2027 \retval -2: USB device unavailable
2028*/
2029int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2030{
2031 unsigned short usb_val;
2032
2033 if (ftdi == NULL || ftdi->usb_dev == NULL)
2034 ftdi_error_return(-2, "USB device unavailable");
2035
2036 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
2037 ftdi_error_return(-1, "reading latency timer failed");
2038
2039 *latency = (unsigned char)usb_val;
2040 return 0;
2041}
2042
2043/**
2044 Poll modem status information
2045
2046 This function allows the retrieve the two status bytes of the device.
2047 The device sends these bytes also as a header for each read access
2048 where they are discarded by ftdi_read_data(). The chip generates
2049 the two stripped status bytes in the absence of data every 40 ms.
2050
2051 Layout of the first byte:
2052 - B0..B3 - must be 0
2053 - B4 Clear to send (CTS)
2054 0 = inactive
2055 1 = active
2056 - B5 Data set ready (DTS)
2057 0 = inactive
2058 1 = active
2059 - B6 Ring indicator (RI)
2060 0 = inactive
2061 1 = active
2062 - B7 Receive line signal detect (RLSD)
2063 0 = inactive
2064 1 = active
2065
2066 Layout of the second byte:
2067 - B0 Data ready (DR)
2068 - B1 Overrun error (OE)
2069 - B2 Parity error (PE)
2070 - B3 Framing error (FE)
2071 - B4 Break interrupt (BI)
2072 - B5 Transmitter holding register (THRE)
2073 - B6 Transmitter empty (TEMT)
2074 - B7 Error in RCVR FIFO
2075
2076 \param ftdi pointer to ftdi_context
2077 \param status Pointer to store status information in. Must be two bytes.
2078
2079 \retval 0: all fine
2080 \retval -1: unable to retrieve status information
2081 \retval -2: USB device unavailable
2082*/
2083int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2084{
2085 char usb_val[2];
2086
2087 if (ftdi == NULL || ftdi->usb_dev == NULL)
2088 ftdi_error_return(-2, "USB device unavailable");
2089
2090 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
2091 ftdi_error_return(-1, "getting modem status failed");
2092
2093 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
2094
2095 return 0;
2096}
2097
2098/**
2099 Set flowcontrol for ftdi chip
2100
2101 \param ftdi pointer to ftdi_context
2102 \param flowctrl flow control to use. should be
2103 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2104
2105 \retval 0: all fine
2106 \retval -1: set flow control failed
2107 \retval -2: USB device unavailable
2108*/
2109int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2110{
2111 if (ftdi == NULL || ftdi->usb_dev == NULL)
2112 ftdi_error_return(-2, "USB device unavailable");
2113
2114 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2115 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2116 NULL, 0, ftdi->usb_write_timeout) < 0)
2117 ftdi_error_return(-1, "set flow control failed");
2118
2119 return 0;
2120}
2121
2122/**
2123 Set dtr line
2124
2125 \param ftdi pointer to ftdi_context
2126 \param state state to set line to (1 or 0)
2127
2128 \retval 0: all fine
2129 \retval -1: set dtr failed
2130 \retval -2: USB device unavailable
2131*/
2132int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2133{
2134 unsigned short usb_val;
2135
2136 if (ftdi == NULL || ftdi->usb_dev == NULL)
2137 ftdi_error_return(-2, "USB device unavailable");
2138
2139 if (state)
2140 usb_val = SIO_SET_DTR_HIGH;
2141 else
2142 usb_val = SIO_SET_DTR_LOW;
2143
2144 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2145 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2146 NULL, 0, ftdi->usb_write_timeout) < 0)
2147 ftdi_error_return(-1, "set dtr failed");
2148
2149 return 0;
2150}
2151
2152/**
2153 Set rts line
2154
2155 \param ftdi pointer to ftdi_context
2156 \param state state to set line to (1 or 0)
2157
2158 \retval 0: all fine
2159 \retval -1: set rts failed
2160 \retval -2: USB device unavailable
2161*/
2162int ftdi_setrts(struct ftdi_context *ftdi, int state)
2163{
2164 unsigned short usb_val;
2165
2166 if (ftdi == NULL || ftdi->usb_dev == NULL)
2167 ftdi_error_return(-2, "USB device unavailable");
2168
2169 if (state)
2170 usb_val = SIO_SET_RTS_HIGH;
2171 else
2172 usb_val = SIO_SET_RTS_LOW;
2173
2174 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2175 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2176 NULL, 0, ftdi->usb_write_timeout) < 0)
2177 ftdi_error_return(-1, "set of rts failed");
2178
2179 return 0;
2180}
2181
2182/**
2183 Set dtr and rts line in one pass
2184
2185 \param ftdi pointer to ftdi_context
2186 \param dtr DTR state to set line to (1 or 0)
2187 \param rts RTS state to set line to (1 or 0)
2188
2189 \retval 0: all fine
2190 \retval -1: set dtr/rts failed
2191 \retval -2: USB device unavailable
2192 */
2193int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2194{
2195 unsigned short usb_val;
2196
2197 if (ftdi == NULL || ftdi->usb_dev == NULL)
2198 ftdi_error_return(-2, "USB device unavailable");
2199
2200 if (dtr)
2201 usb_val = SIO_SET_DTR_HIGH;
2202 else
2203 usb_val = SIO_SET_DTR_LOW;
2204
2205 if (rts)
2206 usb_val |= SIO_SET_RTS_HIGH;
2207 else
2208 usb_val |= SIO_SET_RTS_LOW;
2209
2210 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2211 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2212 NULL, 0, ftdi->usb_write_timeout) < 0)
2213 ftdi_error_return(-1, "set of rts/dtr failed");
2214
2215 return 0;
2216}
2217
2218/**
2219 Set the special event character
2220
2221 \param ftdi pointer to ftdi_context
2222 \param eventch Event character
2223 \param enable 0 to disable the event character, non-zero otherwise
2224
2225 \retval 0: all fine
2226 \retval -1: unable to set event character
2227 \retval -2: USB device unavailable
2228*/
2229int ftdi_set_event_char(struct ftdi_context *ftdi,
2230 unsigned char eventch, unsigned char enable)
2231{
2232 unsigned short usb_val;
2233
2234 if (ftdi == NULL || ftdi->usb_dev == NULL)
2235 ftdi_error_return(-2, "USB device unavailable");
2236
2237 usb_val = eventch;
2238 if (enable)
2239 usb_val |= 1 << 8;
2240
2241 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2242 ftdi_error_return(-1, "setting event character failed");
2243
2244 return 0;
2245}
2246
2247/**
2248 Set error character
2249
2250 \param ftdi pointer to ftdi_context
2251 \param errorch Error character
2252 \param enable 0 to disable the error character, non-zero otherwise
2253
2254 \retval 0: all fine
2255 \retval -1: unable to set error character
2256 \retval -2: USB device unavailable
2257*/
2258int ftdi_set_error_char(struct ftdi_context *ftdi,
2259 unsigned char errorch, unsigned char enable)
2260{
2261 unsigned short usb_val;
2262
2263 if (ftdi == NULL || ftdi->usb_dev == NULL)
2264 ftdi_error_return(-2, "USB device unavailable");
2265
2266 usb_val = errorch;
2267 if (enable)
2268 usb_val |= 1 << 8;
2269
2270 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2271 ftdi_error_return(-1, "setting error character failed");
2272
2273 return 0;
2274}
2275
2276/**
2277 Init eeprom with default values for the connected device
2278 \param ftdi pointer to ftdi_context
2279 \param manufacturer String to use as Manufacturer
2280 \param product String to use as Product description
2281 \param serial String to use as Serial number description
2282
2283 \retval 0: all fine
2284 \retval -1: No struct ftdi_context
2285 \retval -2: No struct ftdi_eeprom
2286 \retval -3: No connected device or device not yet opened
2287*/
2288int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2289 char * product, char * serial)
2290{
2291 struct ftdi_eeprom *eeprom;
2292
2293 if (ftdi == NULL)
2294 ftdi_error_return(-1, "No struct ftdi_context");
2295
2296 if (ftdi->eeprom == NULL)
2297 ftdi_error_return(-2,"No struct ftdi_eeprom");
2298
2299 eeprom = ftdi->eeprom;
2300 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2301
2302 if (ftdi->usb_dev == NULL)
2303 ftdi_error_return(-3, "No connected device or device not yet opened");
2304
2305 eeprom->vendor_id = 0x0403;
2306 eeprom->use_serial = 1;
2307 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2308 (ftdi->type == TYPE_R))
2309 eeprom->product_id = 0x6001;
2310 else if (ftdi->type == TYPE_4232H)
2311 eeprom->product_id = 0x6011;
2312 else if (ftdi->type == TYPE_232H)
2313 eeprom->product_id = 0x6014;
2314 else
2315 eeprom->product_id = 0x6010;
2316 if (ftdi->type == TYPE_AM)
2317 eeprom->usb_version = 0x0101;
2318 else
2319 eeprom->usb_version = 0x0200;
2320 eeprom->max_power = 100;
2321
2322 if (eeprom->manufacturer)
2323 free (eeprom->manufacturer);
2324 eeprom->manufacturer = NULL;
2325 if (manufacturer)
2326 {
2327 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2328 if (eeprom->manufacturer)
2329 strcpy(eeprom->manufacturer, manufacturer);
2330 }
2331
2332 if (eeprom->product)
2333 free (eeprom->product);
2334 eeprom->product = NULL;
2335 if(product)
2336 {
2337 eeprom->product = malloc(strlen(product)+1);
2338 if (eeprom->product)
2339 strcpy(eeprom->product, product);
2340 }
2341 else
2342 {
2343 const char* default_product;
2344 switch(ftdi->type)
2345 {
2346 case TYPE_AM: default_product = "AM"; break;
2347 case TYPE_BM: default_product = "BM"; break;
2348 case TYPE_2232C: default_product = "Dual RS232"; break;
2349 case TYPE_R: default_product = "FT232R USB UART"; break;
2350 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2351 case TYPE_4232H: default_product = "FT4232H"; break;
2352 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2353 default:
2354 ftdi_error_return(-3, "Unknown chip type");
2355 }
2356 eeprom->product = malloc(strlen(default_product) +1);
2357 if (eeprom->product)
2358 strcpy(eeprom->product, default_product);
2359 }
2360
2361 if (eeprom->serial)
2362 free (eeprom->serial);
2363 eeprom->serial = NULL;
2364 if (serial)
2365 {
2366 eeprom->serial = malloc(strlen(serial)+1);
2367 if (eeprom->serial)
2368 strcpy(eeprom->serial, serial);
2369 }
2370
2371
2372 if (ftdi->type == TYPE_R)
2373 {
2374 eeprom->max_power = 90;
2375 eeprom->size = 0x80;
2376 eeprom->cbus_function[0] = CBUS_TXLED;
2377 eeprom->cbus_function[1] = CBUS_RXLED;
2378 eeprom->cbus_function[2] = CBUS_TXDEN;
2379 eeprom->cbus_function[3] = CBUS_PWREN;
2380 eeprom->cbus_function[4] = CBUS_SLEEP;
2381 }
2382 else
2383 {
2384 if(ftdi->type == TYPE_232H)
2385 {
2386 int i;
2387 for (i=0; i<10; i++)
2388 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2389 }
2390 eeprom->size = -1;
2391 }
2392 eeprom->initialized_for_connected_device = 1;
2393 return 0;
2394}
2395/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2396void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2397{
2398 int i;
2399 for(i=0; i<5;i++)
2400 {
2401 int mode_low, mode_high;
2402 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2403 mode_low = CBUSH_TRISTATE;
2404 else
2405 mode_low = eeprom->cbus_function[2*i];
2406 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2407 mode_high = CBUSH_TRISTATE;
2408 else
2409 mode_high = eeprom->cbus_function[2*i];
2410
2411 output[0x18+i] = mode_high <<4 | mode_low;
2412 }
2413}
2414/* Return the bits for the encoded EEPROM Structure of a requested Mode
2415 *
2416 */
2417static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2418{
2419 switch (chip)
2420 {
2421 case TYPE_2232H:
2422 case TYPE_2232C:
2423 {
2424 switch (type)
2425 {
2426 case CHANNEL_IS_UART: return 0;
2427 case CHANNEL_IS_FIFO: return 0x01;
2428 case CHANNEL_IS_OPTO: return 0x02;
2429 case CHANNEL_IS_CPU : return 0x04;
2430 default: return 0;
2431 }
2432 }
2433 case TYPE_232H:
2434 {
2435 switch (type)
2436 {
2437 case CHANNEL_IS_UART : return 0;
2438 case CHANNEL_IS_FIFO : return 0x01;
2439 case CHANNEL_IS_OPTO : return 0x02;
2440 case CHANNEL_IS_CPU : return 0x04;
2441 case CHANNEL_IS_FT1284 : return 0x08;
2442 default: return 0;
2443 }
2444 }
2445 default: return 0;
2446 }
2447 return 0;
2448}
2449
2450/**
2451 Build binary buffer from ftdi_eeprom structure.
2452 Output is suitable for ftdi_write_eeprom().
2453
2454 \param ftdi pointer to ftdi_context
2455
2456 \retval >=0: size of eeprom user area in bytes
2457 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2458 \retval -2: Invalid eeprom or ftdi pointer
2459 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2460 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2461 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2462 \retval -6: No connected EEPROM or EEPROM Type unknown
2463*/
2464int ftdi_eeprom_build(struct ftdi_context *ftdi)
2465{
2466 unsigned char i, j, eeprom_size_mask;
2467 unsigned short checksum, value;
2468 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2469 int user_area_size;
2470 struct ftdi_eeprom *eeprom;
2471 unsigned char * output;
2472
2473 if (ftdi == NULL)
2474 ftdi_error_return(-2,"No context");
2475 if (ftdi->eeprom == NULL)
2476 ftdi_error_return(-2,"No eeprom structure");
2477
2478 eeprom= ftdi->eeprom;
2479 output = eeprom->buf;
2480
2481 if (eeprom->chip == -1)
2482 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2483
2484 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2485 eeprom->size = 0x100;
2486 else
2487 eeprom->size = 0x80;
2488
2489 if (eeprom->manufacturer != NULL)
2490 manufacturer_size = strlen(eeprom->manufacturer);
2491 if (eeprom->product != NULL)
2492 product_size = strlen(eeprom->product);
2493 if (eeprom->serial != NULL)
2494 serial_size = strlen(eeprom->serial);
2495
2496 // eeprom size check
2497 switch (ftdi->type)
2498 {
2499 case TYPE_AM:
2500 case TYPE_BM:
2501 user_area_size = 96; // base size for strings (total of 48 characters)
2502 break;
2503 case TYPE_2232C:
2504 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2505 break;
2506 case TYPE_R:
2507 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2508 break;
2509 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2510 case TYPE_4232H:
2511 user_area_size = 86;
2512 break;
2513 case TYPE_232H:
2514 user_area_size = 80;
2515 break;
2516 default:
2517 user_area_size = 0;
2518 break;
2519 }
2520 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2521
2522 if (user_area_size < 0)
2523 ftdi_error_return(-1,"eeprom size exceeded");
2524
2525 // empty eeprom
2526 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2527
2528 // Bytes and Bits set for all Types
2529
2530 // Addr 02: Vendor ID
2531 output[0x02] = eeprom->vendor_id;
2532 output[0x03] = eeprom->vendor_id >> 8;
2533
2534 // Addr 04: Product ID
2535 output[0x04] = eeprom->product_id;
2536 output[0x05] = eeprom->product_id >> 8;
2537
2538 // Addr 06: Device release number (0400h for BM features)
2539 output[0x06] = 0x00;
2540 switch (ftdi->type)
2541 {
2542 case TYPE_AM:
2543 output[0x07] = 0x02;
2544 break;
2545 case TYPE_BM:
2546 output[0x07] = 0x04;
2547 break;
2548 case TYPE_2232C:
2549 output[0x07] = 0x05;
2550 break;
2551 case TYPE_R:
2552 output[0x07] = 0x06;
2553 break;
2554 case TYPE_2232H:
2555 output[0x07] = 0x07;
2556 break;
2557 case TYPE_4232H:
2558 output[0x07] = 0x08;
2559 break;
2560 case TYPE_232H:
2561 output[0x07] = 0x09;
2562 break;
2563 default:
2564 output[0x07] = 0x00;
2565 }
2566
2567 // Addr 08: Config descriptor
2568 // Bit 7: always 1
2569 // Bit 6: 1 if this device is self powered, 0 if bus powered
2570 // Bit 5: 1 if this device uses remote wakeup
2571 // Bit 4-0: reserved - 0
2572 j = 0x80;
2573 if (eeprom->self_powered == 1)
2574 j |= 0x40;
2575 if (eeprom->remote_wakeup == 1)
2576 j |= 0x20;
2577 output[0x08] = j;
2578
2579 // Addr 09: Max power consumption: max power = value * 2 mA
2580 output[0x09] = eeprom->max_power>>1;
2581
2582 if (ftdi->type != TYPE_AM)
2583 {
2584 // Addr 0A: Chip configuration
2585 // Bit 7: 0 - reserved
2586 // Bit 6: 0 - reserved
2587 // Bit 5: 0 - reserved
2588 // Bit 4: 1 - Change USB version
2589 // Bit 3: 1 - Use the serial number string
2590 // Bit 2: 1 - Enable suspend pull downs for lower power
2591 // Bit 1: 1 - Out EndPoint is Isochronous
2592 // Bit 0: 1 - In EndPoint is Isochronous
2593 //
2594 j = 0;
2595 if (eeprom->in_is_isochronous == 1)
2596 j = j | 1;
2597 if (eeprom->out_is_isochronous == 1)
2598 j = j | 2;
2599 output[0x0A] = j;
2600 }
2601
2602 // Dynamic content
2603 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2604 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2605 // 0xa0 (TYPE_232H)
2606 i = 0;
2607 switch (ftdi->type)
2608 {
2609 case TYPE_232H:
2610 i += 2;
2611 case TYPE_2232H:
2612 case TYPE_4232H:
2613 i += 2;
2614 case TYPE_R:
2615 i += 2;
2616 case TYPE_2232C:
2617 i += 2;
2618 case TYPE_AM:
2619 case TYPE_BM:
2620 i += 0x94;
2621 }
2622 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2623 eeprom_size_mask = eeprom->size -1;
2624
2625 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2626 // Addr 0F: Length of manufacturer string
2627 // Output manufacturer
2628 output[0x0E] = i; // calculate offset
2629 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2630 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2631 for (j = 0; j < manufacturer_size; j++)
2632 {
2633 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2634 output[i & eeprom_size_mask] = 0x00, i++;
2635 }
2636 output[0x0F] = manufacturer_size*2 + 2;
2637
2638 // Addr 10: Offset of the product string + 0x80, calculated later
2639 // Addr 11: Length of product string
2640 output[0x10] = i | 0x80; // calculate offset
2641 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2642 output[i & eeprom_size_mask] = 0x03, i++;
2643 for (j = 0; j < product_size; j++)
2644 {
2645 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2646 output[i & eeprom_size_mask] = 0x00, i++;
2647 }
2648 output[0x11] = product_size*2 + 2;
2649
2650 // Addr 12: Offset of the serial string + 0x80, calculated later
2651 // Addr 13: Length of serial string
2652 output[0x12] = i | 0x80; // calculate offset
2653 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2654 output[i & eeprom_size_mask] = 0x03, i++;
2655 for (j = 0; j < serial_size; j++)
2656 {
2657 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2658 output[i & eeprom_size_mask] = 0x00, i++;
2659 }
2660
2661 // Legacy port name and PnP fields for FT2232 and newer chips
2662 if (ftdi->type > TYPE_BM)
2663 {
2664 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2665 i++;
2666 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2667 i++;
2668 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2669 i++;
2670 }
2671
2672 output[0x13] = serial_size*2 + 2;
2673
2674 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2675 {
2676 if (eeprom->use_serial)
2677 output[0x0A] |= USE_SERIAL_NUM;
2678 else
2679 output[0x0A] &= ~USE_SERIAL_NUM;
2680 }
2681
2682 /* Bytes and Bits specific to (some) types
2683 Write linear, as this allows easier fixing*/
2684 switch (ftdi->type)
2685 {
2686 case TYPE_AM:
2687 break;
2688 case TYPE_BM:
2689 output[0x0C] = eeprom->usb_version & 0xff;
2690 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2691 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2692 output[0x0A] |= USE_USB_VERSION_BIT;
2693 else
2694 output[0x0A] &= ~USE_USB_VERSION_BIT;
2695
2696 break;
2697 case TYPE_2232C:
2698
2699 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
2700 if ( eeprom->channel_a_driver == DRIVER_VCP)
2701 output[0x00] |= DRIVER_VCP;
2702 else
2703 output[0x00] &= ~DRIVER_VCP;
2704
2705 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2706 output[0x00] |= HIGH_CURRENT_DRIVE;
2707 else
2708 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2709
2710 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
2711 if ( eeprom->channel_b_driver == DRIVER_VCP)
2712 output[0x01] |= DRIVER_VCP;
2713 else
2714 output[0x01] &= ~DRIVER_VCP;
2715
2716 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2717 output[0x01] |= HIGH_CURRENT_DRIVE;
2718 else
2719 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2720
2721 if (eeprom->in_is_isochronous == 1)
2722 output[0x0A] |= 0x1;
2723 else
2724 output[0x0A] &= ~0x1;
2725 if (eeprom->out_is_isochronous == 1)
2726 output[0x0A] |= 0x2;
2727 else
2728 output[0x0A] &= ~0x2;
2729 if (eeprom->suspend_pull_downs == 1)
2730 output[0x0A] |= 0x4;
2731 else
2732 output[0x0A] &= ~0x4;
2733 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2734 output[0x0A] |= USE_USB_VERSION_BIT;
2735 else
2736 output[0x0A] &= ~USE_USB_VERSION_BIT;
2737
2738 output[0x0C] = eeprom->usb_version & 0xff;
2739 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2740 output[0x14] = eeprom->chip;
2741 break;
2742 case TYPE_R:
2743 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2744 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2745 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2746
2747 if (eeprom->suspend_pull_downs == 1)
2748 output[0x0A] |= 0x4;
2749 else
2750 output[0x0A] &= ~0x4;
2751 output[0x0B] = eeprom->invert;
2752 output[0x0C] = eeprom->usb_version & 0xff;
2753 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2754
2755 if (eeprom->cbus_function[0] > CBUS_BB)
2756 output[0x14] = CBUS_TXLED;
2757 else
2758 output[0x14] = eeprom->cbus_function[0];
2759
2760 if (eeprom->cbus_function[1] > CBUS_BB)
2761 output[0x14] |= CBUS_RXLED<<4;
2762 else
2763 output[0x14] |= eeprom->cbus_function[1]<<4;
2764
2765 if (eeprom->cbus_function[2] > CBUS_BB)
2766 output[0x15] = CBUS_TXDEN;
2767 else
2768 output[0x15] = eeprom->cbus_function[2];
2769
2770 if (eeprom->cbus_function[3] > CBUS_BB)
2771 output[0x15] |= CBUS_PWREN<<4;
2772 else
2773 output[0x15] |= eeprom->cbus_function[3]<<4;
2774
2775 if (eeprom->cbus_function[4] > CBUS_CLK6)
2776 output[0x16] = CBUS_SLEEP;
2777 else
2778 output[0x16] = eeprom->cbus_function[4];
2779 break;
2780 case TYPE_2232H:
2781 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
2782 if ( eeprom->channel_a_driver == DRIVER_VCP)
2783 output[0x00] |= DRIVER_VCP;
2784 else
2785 output[0x00] &= ~DRIVER_VCP;
2786
2787 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
2788 if ( eeprom->channel_b_driver == DRIVER_VCP)
2789 output[0x01] |= DRIVER_VCP;
2790 else
2791 output[0x01] &= ~DRIVER_VCP;
2792 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2793 output[0x01] |= SUSPEND_DBUS7_BIT;
2794 else
2795 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2796
2797 if (eeprom->suspend_pull_downs == 1)
2798 output[0x0A] |= 0x4;
2799 else
2800 output[0x0A] &= ~0x4;
2801
2802 if (eeprom->group0_drive > DRIVE_16MA)
2803 output[0x0c] |= DRIVE_16MA;
2804 else
2805 output[0x0c] |= eeprom->group0_drive;
2806 if (eeprom->group0_schmitt == IS_SCHMITT)
2807 output[0x0c] |= IS_SCHMITT;
2808 if (eeprom->group0_slew == SLOW_SLEW)
2809 output[0x0c] |= SLOW_SLEW;
2810
2811 if (eeprom->group1_drive > DRIVE_16MA)
2812 output[0x0c] |= DRIVE_16MA<<4;
2813 else
2814 output[0x0c] |= eeprom->group1_drive<<4;
2815 if (eeprom->group1_schmitt == IS_SCHMITT)
2816 output[0x0c] |= IS_SCHMITT<<4;
2817 if (eeprom->group1_slew == SLOW_SLEW)
2818 output[0x0c] |= SLOW_SLEW<<4;
2819
2820 if (eeprom->group2_drive > DRIVE_16MA)
2821 output[0x0d] |= DRIVE_16MA;
2822 else
2823 output[0x0d] |= eeprom->group2_drive;
2824 if (eeprom->group2_schmitt == IS_SCHMITT)
2825 output[0x0d] |= IS_SCHMITT;
2826 if (eeprom->group2_slew == SLOW_SLEW)
2827 output[0x0d] |= SLOW_SLEW;
2828
2829 if (eeprom->group3_drive > DRIVE_16MA)
2830 output[0x0d] |= DRIVE_16MA<<4;
2831 else
2832 output[0x0d] |= eeprom->group3_drive<<4;
2833 if (eeprom->group3_schmitt == IS_SCHMITT)
2834 output[0x0d] |= IS_SCHMITT<<4;
2835 if (eeprom->group3_slew == SLOW_SLEW)
2836 output[0x0d] |= SLOW_SLEW<<4;
2837
2838 output[0x18] = eeprom->chip;
2839
2840 break;
2841 case TYPE_4232H:
2842 output[0x18] = eeprom->chip;
2843 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
2844 break;
2845 case TYPE_232H:
2846 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
2847 if ( eeprom->channel_a_driver == DRIVER_VCP)
2848 output[0x00] |= DRIVER_VCPH;
2849 else
2850 output[0x00] &= ~DRIVER_VCPH;
2851 if (eeprom->powersave)
2852 output[0x01] |= POWER_SAVE_DISABLE_H;
2853 else
2854 output[0x01] &= ~POWER_SAVE_DISABLE_H;
2855 if (eeprom->clock_polarity)
2856 output[0x01] |= FT1284_CLK_IDLE_STATE;
2857 else
2858 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
2859 if (eeprom->data_order)
2860 output[0x01] |= FT1284_DATA_LSB;
2861 else
2862 output[0x01] &= ~FT1284_DATA_LSB;
2863 if (eeprom->flow_control)
2864 output[0x01] |= FT1284_FLOW_CONTROL;
2865 else
2866 output[0x01] &= ~FT1284_FLOW_CONTROL;
2867 if (eeprom->group0_drive > DRIVE_16MA)
2868 output[0x0c] |= DRIVE_16MA;
2869 else
2870 output[0x0c] |= eeprom->group0_drive;
2871 if (eeprom->group0_schmitt == IS_SCHMITT)
2872 output[0x0c] |= IS_SCHMITT;
2873 if (eeprom->group0_slew == SLOW_SLEW)
2874 output[0x0c] |= SLOW_SLEW;
2875
2876 if (eeprom->group1_drive > DRIVE_16MA)
2877 output[0x0d] |= DRIVE_16MA;
2878 else
2879 output[0x0d] |= eeprom->group1_drive;
2880 if (eeprom->group1_schmitt == IS_SCHMITT)
2881 output[0x0d] |= IS_SCHMITT;
2882 if (eeprom->group1_slew == SLOW_SLEW)
2883 output[0x0d] |= SLOW_SLEW;
2884
2885 set_ft232h_cbus(eeprom, output);
2886
2887 output[0x1e] = eeprom->chip;
2888 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
2889 break;
2890
2891 }
2892
2893 // calculate checksum
2894 checksum = 0xAAAA;
2895
2896 for (i = 0; i < eeprom->size/2-1; i++)
2897 {
2898 value = output[i*2];
2899 value += output[(i*2)+1] << 8;
2900
2901 checksum = value^checksum;
2902 checksum = (checksum << 1) | (checksum >> 15);
2903 }
2904
2905 output[eeprom->size-2] = checksum;
2906 output[eeprom->size-1] = checksum >> 8;
2907
2908 return user_area_size;
2909}
2910/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
2911 * EEPROM structure
2912 *
2913 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
2914 */
2915static unsigned char bit2type(unsigned char bits)
2916{
2917 switch (bits)
2918 {
2919 case 0: return CHANNEL_IS_UART;
2920 case 1: return CHANNEL_IS_FIFO;
2921 case 2: return CHANNEL_IS_OPTO;
2922 case 4: return CHANNEL_IS_CPU;
2923 case 8: return CHANNEL_IS_FT1284;
2924 default:
2925 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
2926 bits);
2927 }
2928 return 0;
2929}
2930/**
2931 Decode binary EEPROM image into an ftdi_eeprom structure.
2932
2933 \param ftdi pointer to ftdi_context
2934 \param verbose Decode EEPROM on stdout
2935
2936 \retval 0: all fine
2937 \retval -1: something went wrong
2938
2939 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2940 FIXME: Strings are malloc'ed here and should be freed somewhere
2941*/
2942int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2943{
2944 unsigned char i, j;
2945 unsigned short checksum, eeprom_checksum, value;
2946 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2947 int eeprom_size;
2948 struct ftdi_eeprom *eeprom;
2949 unsigned char *buf = ftdi->eeprom->buf;
2950 int release;
2951
2952 if (ftdi == NULL)
2953 ftdi_error_return(-1,"No context");
2954 if (ftdi->eeprom == NULL)
2955 ftdi_error_return(-1,"No eeprom structure");
2956
2957 eeprom = ftdi->eeprom;
2958 eeprom_size = eeprom->size;
2959
2960 // Addr 02: Vendor ID
2961 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2962
2963 // Addr 04: Product ID
2964 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2965
2966 release = buf[0x06] + (buf[0x07]<<8);
2967
2968 // Addr 08: Config descriptor
2969 // Bit 7: always 1
2970 // Bit 6: 1 if this device is self powered, 0 if bus powered
2971 // Bit 5: 1 if this device uses remote wakeup
2972 eeprom->self_powered = buf[0x08] & 0x40;
2973 eeprom->remote_wakeup = buf[0x08] & 0x20;
2974
2975 // Addr 09: Max power consumption: max power = value * 2 mA
2976 eeprom->max_power = buf[0x09];
2977
2978 // Addr 0A: Chip configuration
2979 // Bit 7: 0 - reserved
2980 // Bit 6: 0 - reserved
2981 // Bit 5: 0 - reserved
2982 // Bit 4: 1 - Change USB version on BM and 2232C
2983 // Bit 3: 1 - Use the serial number string
2984 // Bit 2: 1 - Enable suspend pull downs for lower power
2985 // Bit 1: 1 - Out EndPoint is Isochronous
2986 // Bit 0: 1 - In EndPoint is Isochronous
2987 //
2988 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2989 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2990 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2991 eeprom->use_serial = (buf[0x0A] & USE_SERIAL_NUM)?1:0;
2992 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
2993
2994 // Addr 0C: USB version low byte when 0x0A
2995 // Addr 0D: USB version high byte when 0x0A
2996 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2997
2998 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2999 // Addr 0F: Length of manufacturer string
3000 manufacturer_size = buf[0x0F]/2;
3001 if (eeprom->manufacturer)
3002 free(eeprom->manufacturer);
3003 if (manufacturer_size > 0)
3004 {
3005 eeprom->manufacturer = malloc(manufacturer_size);
3006 if (eeprom->manufacturer)
3007 {
3008 // Decode manufacturer
3009 i = buf[0x0E] & (eeprom_size -1); // offset
3010 for (j=0;j<manufacturer_size-1;j++)
3011 {
3012 eeprom->manufacturer[j] = buf[2*j+i+2];
3013 }
3014 eeprom->manufacturer[j] = '\0';
3015 }
3016 }
3017 else eeprom->manufacturer = NULL;
3018
3019 // Addr 10: Offset of the product string + 0x80, calculated later
3020 // Addr 11: Length of product string
3021 if (eeprom->product)
3022 free(eeprom->product);
3023 product_size = buf[0x11]/2;
3024 if (product_size > 0)
3025 {
3026 eeprom->product = malloc(product_size);
3027 if (eeprom->product)
3028 {
3029 // Decode product name
3030 i = buf[0x10] & (eeprom_size -1); // offset
3031 for (j=0;j<product_size-1;j++)
3032 {
3033 eeprom->product[j] = buf[2*j+i+2];
3034 }
3035 eeprom->product[j] = '\0';
3036 }
3037 }
3038 else eeprom->product = NULL;
3039
3040 // Addr 12: Offset of the serial string + 0x80, calculated later
3041 // Addr 13: Length of serial string
3042 if (eeprom->serial)
3043 free(eeprom->serial);
3044 serial_size = buf[0x13]/2;
3045 if (serial_size > 0)
3046 {
3047 eeprom->serial = malloc(serial_size);
3048 if (eeprom->serial)
3049 {
3050 // Decode serial
3051 i = buf[0x12] & (eeprom_size -1); // offset
3052 for (j=0;j<serial_size-1;j++)
3053 {
3054 eeprom->serial[j] = buf[2*j+i+2];
3055 }
3056 eeprom->serial[j] = '\0';
3057 }
3058 }
3059 else eeprom->serial = NULL;
3060
3061 // verify checksum
3062 checksum = 0xAAAA;
3063
3064 for (i = 0; i < eeprom_size/2-1; i++)
3065 {
3066 value = buf[i*2];
3067 value += buf[(i*2)+1] << 8;
3068
3069 checksum = value^checksum;
3070 checksum = (checksum << 1) | (checksum >> 15);
3071 }
3072
3073 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3074
3075 if (eeprom_checksum != checksum)
3076 {
3077 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
3078 ftdi_error_return(-1,"EEPROM checksum error");
3079 }
3080
3081 eeprom->channel_a_type = 0;
3082 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
3083 {
3084 eeprom->chip = -1;
3085 }
3086 else if (ftdi->type == TYPE_2232C)
3087 {
3088 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3089 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3090 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
3091 eeprom->channel_b_type = buf[0x01] & 0x7;
3092 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3093 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
3094 eeprom->chip = buf[0x14];
3095 }
3096 else if (ftdi->type == TYPE_R)
3097 {
3098 /* TYPE_R flags D2XX, not VCP as all others*/
3099 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
3100 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
3101 if ( (buf[0x01]&0x40) != 0x40)
3102 fprintf(stderr,
3103 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3104 " If this happened with the\n"
3105 " EEPROM programmed by FTDI tools, please report "
3106 "to libftdi@developer.intra2net.com\n");
3107
3108 eeprom->chip = buf[0x16];
3109 // Addr 0B: Invert data lines
3110 // Works only on FT232R, not FT245R, but no way to distinguish
3111 eeprom->invert = buf[0x0B];
3112 // Addr 14: CBUS function: CBUS0, CBUS1
3113 // Addr 15: CBUS function: CBUS2, CBUS3
3114 // Addr 16: CBUS function: CBUS5
3115 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3116 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3117 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3118 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3119 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
3120 }
3121 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
3122 {
3123 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3124 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3125 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3126 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3127
3128 if (ftdi->type == TYPE_2232H)
3129 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
3130
3131 eeprom->chip = buf[0x18];
3132 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3133 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3134 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3135 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3136 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3137 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3138 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3139 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3140 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3141 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3142 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3143 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
3144 }
3145 else if (ftdi->type == TYPE_232H)
3146 {
3147 int i;
3148
3149 eeprom->channel_a_type = buf[0x00] & 0xf;
3150 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
3151 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3152 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3153 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
3154 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
3155 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3156 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3157 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3158 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3159 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3160 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3161
3162 for(i=0; i<5; i++)
3163 {
3164 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3165 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3166 }
3167 eeprom->chip = buf[0x1e];
3168 /*FIXME: Decipher more values*/
3169 }
3170
3171 if (verbose)
3172 {
3173 char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3174 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3175 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3176 fprintf(stdout, "Release: 0x%04x\n",release);
3177
3178 if (eeprom->self_powered)
3179 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3180 else
3181 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
3182 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3183 if (eeprom->manufacturer)
3184 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3185 if (eeprom->product)
3186 fprintf(stdout, "Product: %s\n",eeprom->product);
3187 if (eeprom->serial)
3188 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3189 fprintf(stdout, "Checksum : %04x\n", checksum);
3190 if (ftdi->type == TYPE_R)
3191 fprintf(stdout, "Internal EEPROM\n");
3192 else if (eeprom->chip >= 0x46)
3193 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3194 if (eeprom->suspend_dbus7)
3195 fprintf(stdout, "Suspend on DBUS7\n");
3196 if (eeprom->suspend_pull_downs)
3197 fprintf(stdout, "Pull IO pins low during suspend\n");
3198 if(eeprom->powersave)
3199 {
3200 if(ftdi->type >= TYPE_232H)
3201 fprintf(stdout,"Enter low power state on ACBUS7\n");
3202 }
3203 if (eeprom->remote_wakeup)
3204 fprintf(stdout, "Enable Remote Wake Up\n");
3205 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3206 if (ftdi->type >= TYPE_2232C)
3207 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3208 channel_mode[eeprom->channel_a_type],
3209 (eeprom->channel_a_driver)?" VCP":"",
3210 (eeprom->high_current_a)?" High Current IO":"");
3211 if (ftdi->type >= TYPE_232H)
3212 {
3213 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3214 (eeprom->clock_polarity)?"HIGH":"LOW",
3215 (eeprom->data_order)?"LSB":"MSB",
3216 (eeprom->flow_control)?"":"No ");
3217 }
3218 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
3219 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3220 channel_mode[eeprom->channel_b_type],
3221 (eeprom->channel_b_driver)?" VCP":"",
3222 (eeprom->high_current_b)?" High Current IO":"");
3223 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3224 eeprom->use_usb_version == USE_USB_VERSION_BIT)
3225 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3226
3227 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3228 {
3229 fprintf(stdout,"%s has %d mA drive%s%s\n",
3230 (ftdi->type == TYPE_2232H)?"AL":"A",
3231 (eeprom->group0_drive+1) *4,
3232 (eeprom->group0_schmitt)?" Schmitt Input":"",
3233 (eeprom->group0_slew)?" Slow Slew":"");
3234 fprintf(stdout,"%s has %d mA drive%s%s\n",
3235 (ftdi->type == TYPE_2232H)?"AH":"B",
3236 (eeprom->group1_drive+1) *4,
3237 (eeprom->group1_schmitt)?" Schmitt Input":"",
3238 (eeprom->group1_slew)?" Slow Slew":"");
3239 fprintf(stdout,"%s has %d mA drive%s%s\n",
3240 (ftdi->type == TYPE_2232H)?"BL":"C",
3241 (eeprom->group2_drive+1) *4,
3242 (eeprom->group2_schmitt)?" Schmitt Input":"",
3243 (eeprom->group2_slew)?" Slow Slew":"");
3244 fprintf(stdout,"%s has %d mA drive%s%s\n",
3245 (ftdi->type == TYPE_2232H)?"BH":"D",
3246 (eeprom->group3_drive+1) *4,
3247 (eeprom->group3_schmitt)?" Schmitt Input":"",
3248 (eeprom->group3_slew)?" Slow Slew":"");
3249 }
3250 else if (ftdi->type == TYPE_232H)
3251 {
3252 int i;
3253 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3254 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3255 "CLK30","CLK15","CLK7_5"
3256 };
3257 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3258 (eeprom->group0_drive+1) *4,
3259 (eeprom->group0_schmitt)?" Schmitt Input":"",
3260 (eeprom->group0_slew)?" Slow Slew":"");
3261 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3262 (eeprom->group1_drive+1) *4,
3263 (eeprom->group1_schmitt)?" Schmitt Input":"",
3264 (eeprom->group1_slew)?" Slow Slew":"");
3265 for (i=0; i<10; i++)
3266 {
3267 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3268 fprintf(stdout,"C%d Function: %s\n", i,
3269 cbush_mux[eeprom->cbus_function[i]]);
3270 }
3271
3272 }
3273
3274 if (ftdi->type == TYPE_R)
3275 {
3276 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3277 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3278 "IOMODE","BB_WR","BB_RD"
3279 };
3280 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3281
3282 if (eeprom->invert)
3283 {
3284 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3285 fprintf(stdout,"Inverted bits:");
3286 for (i=0; i<8; i++)
3287 if ((eeprom->invert & (1<<i)) == (1<<i))
3288 fprintf(stdout," %s",r_bits[i]);
3289 fprintf(stdout,"\n");
3290 }
3291 for (i=0; i<5; i++)
3292 {
3293 if (eeprom->cbus_function[i]<CBUS_BB)
3294 fprintf(stdout,"C%d Function: %s\n", i,
3295 cbus_mux[eeprom->cbus_function[i]]);
3296 else
3297 {
3298 if (i < 4)
3299 /* Running MPROG show that C0..3 have fixed function Synchronous
3300 Bit Bang mode */
3301 fprintf(stdout,"C%d BB Function: %s\n", i,
3302 cbus_BB[i]);
3303 else
3304 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3305 }
3306 }
3307 }
3308 }
3309 return 0;
3310}
3311
3312/**
3313 Get a value from the decoded EEPROM structure
3314
3315 \param ftdi pointer to ftdi_context
3316 \param value_name Enum of the value to query
3317 \param value Pointer to store read value
3318
3319 \retval 0: all fine
3320 \retval -1: Value doesn't exist
3321*/
3322int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3323{
3324 switch (value_name)
3325 {
3326 case VENDOR_ID:
3327 *value = ftdi->eeprom->vendor_id;
3328 break;
3329 case PRODUCT_ID:
3330 *value = ftdi->eeprom->product_id;
3331 break;
3332 case SELF_POWERED:
3333 *value = ftdi->eeprom->self_powered;
3334 break;
3335 case REMOTE_WAKEUP:
3336 *value = ftdi->eeprom->remote_wakeup;
3337 break;
3338 case IS_NOT_PNP:
3339 *value = ftdi->eeprom->is_not_pnp;
3340 break;
3341 case SUSPEND_DBUS7:
3342 *value = ftdi->eeprom->suspend_dbus7;
3343 break;
3344 case IN_IS_ISOCHRONOUS:
3345 *value = ftdi->eeprom->in_is_isochronous;
3346 break;
3347 case OUT_IS_ISOCHRONOUS:
3348 *value = ftdi->eeprom->out_is_isochronous;
3349 break;
3350 case SUSPEND_PULL_DOWNS:
3351 *value = ftdi->eeprom->suspend_pull_downs;
3352 break;
3353 case USE_SERIAL:
3354 *value = ftdi->eeprom->use_serial;
3355 break;
3356 case USB_VERSION:
3357 *value = ftdi->eeprom->usb_version;
3358 break;
3359 case USE_USB_VERSION:
3360 *value = ftdi->eeprom->use_usb_version;
3361 break;
3362 case MAX_POWER:
3363 *value = ftdi->eeprom->max_power;
3364 break;
3365 case CHANNEL_A_TYPE:
3366 *value = ftdi->eeprom->channel_a_type;
3367 break;
3368 case CHANNEL_B_TYPE:
3369 *value = ftdi->eeprom->channel_b_type;
3370 break;
3371 case CHANNEL_A_DRIVER:
3372 *value = ftdi->eeprom->channel_a_driver;
3373 break;
3374 case CHANNEL_B_DRIVER:
3375 *value = ftdi->eeprom->channel_b_driver;
3376 break;
3377 case CBUS_FUNCTION_0:
3378 *value = ftdi->eeprom->cbus_function[0];
3379 break;
3380 case CBUS_FUNCTION_1:
3381 *value = ftdi->eeprom->cbus_function[1];
3382 break;
3383 case CBUS_FUNCTION_2:
3384 *value = ftdi->eeprom->cbus_function[2];
3385 break;
3386 case CBUS_FUNCTION_3:
3387 *value = ftdi->eeprom->cbus_function[3];
3388 break;
3389 case CBUS_FUNCTION_4:
3390 *value = ftdi->eeprom->cbus_function[4];
3391 break;
3392 case CBUS_FUNCTION_5:
3393 *value = ftdi->eeprom->cbus_function[5];
3394 break;
3395 case CBUS_FUNCTION_6:
3396 *value = ftdi->eeprom->cbus_function[6];
3397 break;
3398 case CBUS_FUNCTION_7:
3399 *value = ftdi->eeprom->cbus_function[7];
3400 break;
3401 case CBUS_FUNCTION_8:
3402 *value = ftdi->eeprom->cbus_function[8];
3403 break;
3404 case CBUS_FUNCTION_9:
3405 *value = ftdi->eeprom->cbus_function[8];
3406 break;
3407 case HIGH_CURRENT:
3408 *value = ftdi->eeprom->high_current;
3409 break;
3410 case HIGH_CURRENT_A:
3411 *value = ftdi->eeprom->high_current_a;
3412 break;
3413 case HIGH_CURRENT_B:
3414 *value = ftdi->eeprom->high_current_b;
3415 break;
3416 case INVERT:
3417 *value = ftdi->eeprom->invert;
3418 break;
3419 case GROUP0_DRIVE:
3420 *value = ftdi->eeprom->group0_drive;
3421 break;
3422 case GROUP0_SCHMITT:
3423 *value = ftdi->eeprom->group0_schmitt;
3424 break;
3425 case GROUP0_SLEW:
3426 *value = ftdi->eeprom->group0_slew;
3427 break;
3428 case GROUP1_DRIVE:
3429 *value = ftdi->eeprom->group1_drive;
3430 break;
3431 case GROUP1_SCHMITT:
3432 *value = ftdi->eeprom->group1_schmitt;
3433 break;
3434 case GROUP1_SLEW:
3435 *value = ftdi->eeprom->group1_slew;
3436 break;
3437 case GROUP2_DRIVE:
3438 *value = ftdi->eeprom->group2_drive;
3439 break;
3440 case GROUP2_SCHMITT:
3441 *value = ftdi->eeprom->group2_schmitt;
3442 break;
3443 case GROUP2_SLEW:
3444 *value = ftdi->eeprom->group2_slew;
3445 break;
3446 case GROUP3_DRIVE:
3447 *value = ftdi->eeprom->group3_drive;
3448 break;
3449 case GROUP3_SCHMITT:
3450 *value = ftdi->eeprom->group3_schmitt;
3451 break;
3452 case GROUP3_SLEW:
3453 *value = ftdi->eeprom->group3_slew;
3454 break;
3455 case POWER_SAVE:
3456 *value = ftdi->eeprom->powersave;
3457 break;
3458 case CLOCK_POLARITY:
3459 *value = ftdi->eeprom->clock_polarity;
3460 break;
3461 case DATA_ORDER:
3462 *value = ftdi->eeprom->data_order;
3463 break;
3464 case FLOW_CONTROL:
3465 *value = ftdi->eeprom->flow_control;
3466 break;
3467 case CHIP_TYPE:
3468 *value = ftdi->eeprom->chip;
3469 break;
3470 case CHIP_SIZE:
3471 *value = ftdi->eeprom->size;
3472 break;
3473 default:
3474 ftdi_error_return(-1, "Request for unknown EEPROM value");
3475 }
3476 return 0;
3477}
3478
3479/**
3480 Set a value in the decoded EEPROM Structure
3481 No parameter checking is performed
3482
3483 \param ftdi pointer to ftdi_context
3484 \param value_name Enum of the value to set
3485 \param value to set
3486
3487 \retval 0: all fine
3488 \retval -1: Value doesn't exist
3489 \retval -2: Value not user settable
3490*/
3491int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3492{
3493 switch (value_name)
3494 {
3495 case VENDOR_ID:
3496 ftdi->eeprom->vendor_id = value;
3497 break;
3498 case PRODUCT_ID:
3499 ftdi->eeprom->product_id = value;
3500 break;
3501 case SELF_POWERED:
3502 ftdi->eeprom->self_powered = value;
3503 break;
3504 case REMOTE_WAKEUP:
3505 ftdi->eeprom->remote_wakeup = value;
3506 break;
3507 case IS_NOT_PNP:
3508 ftdi->eeprom->is_not_pnp = value;
3509 break;
3510 case SUSPEND_DBUS7:
3511 ftdi->eeprom->suspend_dbus7 = value;
3512 break;
3513 case IN_IS_ISOCHRONOUS:
3514 ftdi->eeprom->in_is_isochronous = value;
3515 break;
3516 case OUT_IS_ISOCHRONOUS:
3517 ftdi->eeprom->out_is_isochronous = value;
3518 break;
3519 case SUSPEND_PULL_DOWNS:
3520 ftdi->eeprom->suspend_pull_downs = value;
3521 break;
3522 case USE_SERIAL:
3523 ftdi->eeprom->use_serial = value;
3524 break;
3525 case USB_VERSION:
3526 ftdi->eeprom->usb_version = value;
3527 break;
3528 case USE_USB_VERSION:
3529 ftdi->eeprom->use_usb_version = value;
3530 break;
3531 case MAX_POWER:
3532 ftdi->eeprom->max_power = value;
3533 break;
3534 case CHANNEL_A_TYPE:
3535 ftdi->eeprom->channel_a_type = value;
3536 break;
3537 case CHANNEL_B_TYPE:
3538 ftdi->eeprom->channel_b_type = value;
3539 break;
3540 case CHANNEL_A_DRIVER:
3541 ftdi->eeprom->channel_a_driver = value;
3542 break;
3543 case CHANNEL_B_DRIVER:
3544 ftdi->eeprom->channel_b_driver = value;
3545 break;
3546 case CBUS_FUNCTION_0:
3547 ftdi->eeprom->cbus_function[0] = value;
3548 break;
3549 case CBUS_FUNCTION_1:
3550 ftdi->eeprom->cbus_function[1] = value;
3551 break;
3552 case CBUS_FUNCTION_2:
3553 ftdi->eeprom->cbus_function[2] = value;
3554 break;
3555 case CBUS_FUNCTION_3:
3556 ftdi->eeprom->cbus_function[3] = value;
3557 break;
3558 case CBUS_FUNCTION_4:
3559 ftdi->eeprom->cbus_function[4] = value;
3560 break;
3561 case CBUS_FUNCTION_5:
3562 ftdi->eeprom->cbus_function[5] = value;
3563 break;
3564 case CBUS_FUNCTION_6:
3565 ftdi->eeprom->cbus_function[6] = value;
3566 break;
3567 case CBUS_FUNCTION_7:
3568 ftdi->eeprom->cbus_function[7] = value;
3569 break;
3570 case CBUS_FUNCTION_8:
3571 ftdi->eeprom->cbus_function[8] = value;
3572 break;
3573 case CBUS_FUNCTION_9:
3574 ftdi->eeprom->cbus_function[9] = value;
3575 break;
3576 case HIGH_CURRENT:
3577 ftdi->eeprom->high_current = value;
3578 break;
3579 case HIGH_CURRENT_A:
3580 ftdi->eeprom->high_current_a = value;
3581 break;
3582 case HIGH_CURRENT_B:
3583 ftdi->eeprom->high_current_b = value;
3584 break;
3585 case INVERT:
3586 ftdi->eeprom->invert = value;
3587 break;
3588 case GROUP0_DRIVE:
3589 ftdi->eeprom->group0_drive = value;
3590 break;
3591 case GROUP0_SCHMITT:
3592 ftdi->eeprom->group0_schmitt = value;
3593 break;
3594 case GROUP0_SLEW:
3595 ftdi->eeprom->group0_slew = value;
3596 break;
3597 case GROUP1_DRIVE:
3598 ftdi->eeprom->group1_drive = value;
3599 break;
3600 case GROUP1_SCHMITT:
3601 ftdi->eeprom->group1_schmitt = value;
3602 break;
3603 case GROUP1_SLEW:
3604 ftdi->eeprom->group1_slew = value;
3605 break;
3606 case GROUP2_DRIVE:
3607 ftdi->eeprom->group2_drive = value;
3608 break;
3609 case GROUP2_SCHMITT:
3610 ftdi->eeprom->group2_schmitt = value;
3611 break;
3612 case GROUP2_SLEW:
3613 ftdi->eeprom->group2_slew = value;
3614 break;
3615 case GROUP3_DRIVE:
3616 ftdi->eeprom->group3_drive = value;
3617 break;
3618 case GROUP3_SCHMITT:
3619 ftdi->eeprom->group3_schmitt = value;
3620 break;
3621 case GROUP3_SLEW:
3622 ftdi->eeprom->group3_slew = value;
3623 break;
3624 case CHIP_TYPE:
3625 ftdi->eeprom->chip = value;
3626 break;
3627 case POWER_SAVE:
3628 ftdi->eeprom->powersave = value;
3629 break;
3630 case CLOCK_POLARITY:
3631 ftdi->eeprom->clock_polarity = value;
3632 break;
3633 case DATA_ORDER:
3634 ftdi->eeprom->data_order = value;
3635 break;
3636 case FLOW_CONTROL:
3637 ftdi->eeprom->flow_control = value;
3638 break;
3639 case CHIP_SIZE:
3640 ftdi_error_return(-2, "EEPROM Value can't be changed");
3641 default :
3642 ftdi_error_return(-1, "Request to unknown EEPROM value");
3643 }
3644 return 0;
3645}
3646
3647/** Get the read-only buffer to the binary EEPROM content
3648
3649 \param ftdi pointer to ftdi_context
3650 \param buf buffer to receive EEPROM content
3651 \param size Size of receiving buffer
3652
3653 \retval 0: All fine
3654 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3655 \retval -2: Not enough room to store eeprom
3656*/
3657int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3658{
3659 if (!ftdi || !(ftdi->eeprom))
3660 ftdi_error_return(-1, "No appropriate structure");
3661
3662 if (!buf || size < ftdi->eeprom->size)
3663 ftdi_error_return(-1, "Not enough room to store eeprom");
3664
3665 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3666 if (size > FTDI_MAX_EEPROM_SIZE)
3667 size = FTDI_MAX_EEPROM_SIZE;
3668
3669 memcpy(buf, ftdi->eeprom->buf, size);
3670
3671 return 0;
3672}
3673
3674/** Set the EEPROM content from the user-supplied prefilled buffer
3675
3676 \param ftdi pointer to ftdi_context
3677 \param buf buffer to read EEPROM content
3678 \param size Size of buffer
3679
3680 \retval 0: All fine
3681 \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing
3682*/
3683int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
3684{
3685 if (!ftdi || !(ftdi->eeprom) || !buf)
3686 ftdi_error_return(-1, "No appropriate structure");
3687
3688 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3689 if (size > FTDI_MAX_EEPROM_SIZE)
3690 size = FTDI_MAX_EEPROM_SIZE;
3691
3692 memcpy(ftdi->eeprom->buf, buf, size);
3693
3694 return 0;
3695}
3696
3697/**
3698 Read eeprom location
3699
3700 \param ftdi pointer to ftdi_context
3701 \param eeprom_addr Address of eeprom location to be read
3702 \param eeprom_val Pointer to store read eeprom location
3703
3704 \retval 0: all fine
3705 \retval -1: read failed
3706 \retval -2: USB device unavailable
3707*/
3708int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3709{
3710 if (ftdi == NULL || ftdi->usb_dev == NULL)
3711 ftdi_error_return(-2, "USB device unavailable");
3712
3713 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3714 ftdi_error_return(-1, "reading eeprom failed");
3715
3716 return 0;
3717}
3718
3719/**
3720 Read eeprom
3721
3722 \param ftdi pointer to ftdi_context
3723
3724 \retval 0: all fine
3725 \retval -1: read failed
3726 \retval -2: USB device unavailable
3727*/
3728int ftdi_read_eeprom(struct ftdi_context *ftdi)
3729{
3730 int i;
3731 unsigned char *buf;
3732
3733 if (ftdi == NULL || ftdi->usb_dev == NULL)
3734 ftdi_error_return(-2, "USB device unavailable");
3735 buf = ftdi->eeprom->buf;
3736
3737 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
3738 {
3739 if (libusb_control_transfer(
3740 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3741 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
3742 ftdi_error_return(-1, "reading eeprom failed");
3743 }
3744
3745 if (ftdi->type == TYPE_R)
3746 ftdi->eeprom->size = 0x80;
3747 /* Guesses size of eeprom by comparing halves
3748 - will not work with blank eeprom */
3749 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3750 ftdi->eeprom->size = -1;
3751 else if (memcmp(buf,&buf[0x80],0x80) == 0)
3752 ftdi->eeprom->size = 0x80;
3753 else if (memcmp(buf,&buf[0x40],0x40) == 0)
3754 ftdi->eeprom->size = 0x40;
3755 else
3756 ftdi->eeprom->size = 0x100;
3757 return 0;
3758}
3759
3760/*
3761 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3762 Function is only used internally
3763 \internal
3764*/
3765static unsigned char ftdi_read_chipid_shift(unsigned char value)
3766{
3767 return ((value & 1) << 1) |
3768 ((value & 2) << 5) |
3769 ((value & 4) >> 2) |
3770 ((value & 8) << 4) |
3771 ((value & 16) >> 1) |
3772 ((value & 32) >> 1) |
3773 ((value & 64) >> 4) |
3774 ((value & 128) >> 2);
3775}
3776
3777/**
3778 Read the FTDIChip-ID from R-type devices
3779
3780 \param ftdi pointer to ftdi_context
3781 \param chipid Pointer to store FTDIChip-ID
3782
3783 \retval 0: all fine
3784 \retval -1: read failed
3785 \retval -2: USB device unavailable
3786*/
3787int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3788{
3789 unsigned int a = 0, b = 0;
3790
3791 if (ftdi == NULL || ftdi->usb_dev == NULL)
3792 ftdi_error_return(-2, "USB device unavailable");
3793
3794 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3795 {
3796 a = a << 8 | a >> 8;
3797 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3798 {
3799 b = b << 8 | b >> 8;
3800 a = (a << 16) | (b & 0xFFFF);
3801 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3802 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3803 *chipid = a ^ 0xa5f0f7d1;
3804 return 0;
3805 }
3806 }
3807
3808 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3809}
3810
3811/**
3812 Write eeprom location
3813
3814 \param ftdi pointer to ftdi_context
3815 \param eeprom_addr Address of eeprom location to be written
3816 \param eeprom_val Value to be written
3817
3818 \retval 0: all fine
3819 \retval -1: write failed
3820 \retval -2: USB device unavailable
3821 \retval -3: Invalid access to checksum protected area below 0x80
3822 \retval -4: Device can't access unprotected area
3823 \retval -5: Reading chip type failed
3824*/
3825int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3826 unsigned short eeprom_val)
3827{
3828 int chip_type_location;
3829 unsigned short chip_type;
3830
3831 if (ftdi == NULL || ftdi->usb_dev == NULL)
3832 ftdi_error_return(-2, "USB device unavailable");
3833
3834 if (eeprom_addr <0x80)
3835 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3836
3837
3838 switch (ftdi->type)
3839 {
3840 case TYPE_BM:
3841 case TYPE_2232C:
3842 chip_type_location = 0x14;
3843 break;
3844 case TYPE_2232H:
3845 case TYPE_4232H:
3846 chip_type_location = 0x18;
3847 break;
3848 case TYPE_232H:
3849 chip_type_location = 0x1e;
3850 break;
3851 default:
3852 ftdi_error_return(-4, "Device can't access unprotected area");
3853 }
3854
3855 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3856 ftdi_error_return(-5, "Reading failed failed");
3857 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3858 if ((chip_type & 0xff) != 0x66)
3859 {
3860 ftdi_error_return(-6, "EEPROM is not of 93x66");
3861 }
3862
3863 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3864 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3865 NULL, 0, ftdi->usb_write_timeout) != 0)
3866 ftdi_error_return(-1, "unable to write eeprom");
3867
3868 return 0;
3869}
3870
3871/**
3872 Write eeprom
3873
3874 \param ftdi pointer to ftdi_context
3875
3876 \retval 0: all fine
3877 \retval -1: read failed
3878 \retval -2: USB device unavailable
3879 \retval -3: EEPROM not initialized for the connected device;
3880*/
3881int ftdi_write_eeprom(struct ftdi_context *ftdi)
3882{
3883 unsigned short usb_val, status;
3884 int i, ret;
3885 unsigned char *eeprom;
3886
3887 if (ftdi == NULL || ftdi->usb_dev == NULL)
3888 ftdi_error_return(-2, "USB device unavailable");
3889
3890 if(ftdi->eeprom->initialized_for_connected_device == 0)
3891 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
3892
3893 eeprom = ftdi->eeprom->buf;
3894
3895 /* These commands were traced while running MProg */
3896 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3897 return ret;
3898 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3899 return ret;
3900 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3901 return ret;
3902
3903 for (i = 0; i < ftdi->eeprom->size/2; i++)
3904 {
3905 usb_val = eeprom[i*2];
3906 usb_val += eeprom[(i*2)+1] << 8;
3907 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3908 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3909 NULL, 0, ftdi->usb_write_timeout) < 0)
3910 ftdi_error_return(-1, "unable to write eeprom");
3911 }
3912
3913 return 0;
3914}
3915
3916/**
3917 Erase eeprom
3918
3919 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3920
3921 \param ftdi pointer to ftdi_context
3922
3923 \retval 0: all fine
3924 \retval -1: erase failed
3925 \retval -2: USB device unavailable
3926 \retval -3: Writing magic failed
3927 \retval -4: Read EEPROM failed
3928 \retval -5: Unexpected EEPROM value
3929*/
3930#define MAGIC 0x55aa
3931int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3932{
3933 unsigned short eeprom_value;
3934 if (ftdi == NULL || ftdi->usb_dev == NULL)
3935 ftdi_error_return(-2, "USB device unavailable");
3936
3937 if (ftdi->type == TYPE_R)
3938 {
3939 ftdi->eeprom->chip = 0;
3940 return 0;
3941 }
3942
3943 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3944 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3945 ftdi_error_return(-1, "unable to erase eeprom");
3946
3947
3948 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3949 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3950 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3951 Chip is 93x66 if magic is only read at word position 0xc0*/
3952 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3953 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3954 NULL, 0, ftdi->usb_write_timeout) != 0)
3955 ftdi_error_return(-3, "Writing magic failed");
3956 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3957 ftdi_error_return(-4, "Reading failed failed");
3958 if (eeprom_value == MAGIC)
3959 {
3960 ftdi->eeprom->chip = 0x46;
3961 }
3962 else
3963 {
3964 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3965 ftdi_error_return(-4, "Reading failed failed");
3966 if (eeprom_value == MAGIC)
3967 ftdi->eeprom->chip = 0x56;
3968 else
3969 {
3970 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3971 ftdi_error_return(-4, "Reading failed failed");
3972 if (eeprom_value == MAGIC)
3973 ftdi->eeprom->chip = 0x66;
3974 else
3975 {
3976 ftdi->eeprom->chip = -1;
3977 }
3978 }
3979 }
3980 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3981 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3982 ftdi_error_return(-1, "unable to erase eeprom");
3983 return 0;
3984}
3985
3986/**
3987 Get string representation for last error code
3988
3989 \param ftdi pointer to ftdi_context
3990
3991 \retval Pointer to error string
3992*/
3993char *ftdi_get_error_string (struct ftdi_context *ftdi)
3994{
3995 if (ftdi == NULL)
3996 return "";
3997
3998 return ftdi->error_str;
3999}
4000
4001/* @} end of doxygen libftdi group */