add new open functions: ftdi_usb_open_desc_index() and ftdi_usb_open_string()
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2008 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <usb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35
36#include "ftdi.h"
37
38/* stuff needed for async write */
39#ifdef LIBFTDI_LINUX_ASYNC_MODE
40#include <sys/ioctl.h>
41#include <sys/time.h>
42#include <sys/select.h>
43#include <sys/types.h>
44#include <unistd.h>
45#include <linux/usbdevice_fs.h>
46#endif
47
48#define ftdi_error_return(code, str) do { \
49 ftdi->error_str = str; \
50 return code; \
51 } while(0);
52
53/**
54 Internal function to close usb device pointer.
55 Sets ftdi->usb_dev to NULL.
56 \internal
57
58 \param ftdi pointer to ftdi_context
59
60 \retval zero if all is fine, otherwise error code from usb_close()
61*/
62static int ftdi_usb_close_internal (struct ftdi_context *ftdi)
63{
64 int ret = 0;
65
66 if (ftdi->usb_dev)
67 {
68 ret = usb_close (ftdi->usb_dev);
69 ftdi->usb_dev = NULL;
70 }
71
72 return ret;
73}
74
75/**
76 Initializes a ftdi_context.
77
78 \param ftdi pointer to ftdi_context
79
80 \retval 0: all fine
81 \retval -1: couldn't allocate read buffer
82
83 \remark This should be called before all functions
84*/
85int ftdi_init(struct ftdi_context *ftdi)
86{
87 unsigned int i;
88
89 ftdi->usb_dev = NULL;
90 ftdi->usb_read_timeout = 5000;
91 ftdi->usb_write_timeout = 5000;
92
93 ftdi->type = TYPE_BM; /* chip type */
94 ftdi->baudrate = -1;
95 ftdi->bitbang_enabled = 0;
96
97 ftdi->readbuffer = NULL;
98 ftdi->readbuffer_offset = 0;
99 ftdi->readbuffer_remaining = 0;
100 ftdi->writebuffer_chunksize = 4096;
101 ftdi->max_packet_size = 0;
102
103 ftdi->interface = 0;
104 ftdi->index = 0;
105 ftdi->in_ep = 0x02;
106 ftdi->out_ep = 0x81;
107 ftdi->bitbang_mode = 1; /* 1: Normal bitbang mode, 2: SPI bitbang mode */
108
109 ftdi->error_str = NULL;
110
111#ifdef LIBFTDI_LINUX_ASYNC_MODE
112 ftdi->async_usb_buffer_size=10;
113 if ((ftdi->async_usb_buffer=malloc(sizeof(struct usbdevfs_urb)*ftdi->async_usb_buffer_size)) == NULL)
114 ftdi_error_return(-1, "out of memory for async usb buffer");
115
116 /* initialize async usb buffer with unused-marker */
117 for (i=0; i < ftdi->async_usb_buffer_size; i++)
118 ((struct usbdevfs_urb*)ftdi->async_usb_buffer)[i].usercontext = FTDI_URB_USERCONTEXT_COOKIE;
119#else
120 ftdi->async_usb_buffer_size=0;
121 ftdi->async_usb_buffer = NULL;
122#endif
123
124 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
125
126 /* All fine. Now allocate the readbuffer */
127 return ftdi_read_data_set_chunksize(ftdi, 4096);
128}
129
130/**
131 Allocate and initialize a new ftdi_context
132
133 \return a pointer to a new ftdi_context, or NULL on failure
134*/
135struct ftdi_context *ftdi_new(void)
136{
137 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
138
139 if (ftdi == NULL)
140 {
141 return NULL;
142 }
143
144 if (ftdi_init(ftdi) != 0)
145 {
146 free(ftdi);
147 return NULL;
148 }
149
150 return ftdi;
151}
152
153/**
154 Open selected channels on a chip, otherwise use first channel.
155
156 \param ftdi pointer to ftdi_context
157 \param interface Interface to use for FT2232C/2232H/4232H chips.
158
159 \retval 0: all fine
160 \retval -1: unknown interface
161*/
162int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
163{
164 switch (interface)
165 {
166 case INTERFACE_ANY:
167 case INTERFACE_A:
168 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
169 break;
170 case INTERFACE_B:
171 ftdi->interface = 1;
172 ftdi->index = INTERFACE_B;
173 ftdi->in_ep = 0x04;
174 ftdi->out_ep = 0x83;
175 break;
176 case INTERFACE_C:
177 ftdi->interface = 2;
178 ftdi->index = INTERFACE_C;
179 ftdi->in_ep = 0x06;
180 ftdi->out_ep = 0x85;
181 break;
182 case INTERFACE_D:
183 ftdi->interface = 3;
184 ftdi->index = INTERFACE_D;
185 ftdi->in_ep = 0x08;
186 ftdi->out_ep = 0x87;
187 break;
188 default:
189 ftdi_error_return(-1, "Unknown interface");
190 }
191 return 0;
192}
193
194/**
195 Deinitializes a ftdi_context.
196
197 \param ftdi pointer to ftdi_context
198*/
199void ftdi_deinit(struct ftdi_context *ftdi)
200{
201 ftdi_usb_close_internal (ftdi);
202
203 if (ftdi->async_usb_buffer != NULL)
204 {
205 free(ftdi->async_usb_buffer);
206 ftdi->async_usb_buffer = NULL;
207 }
208
209 if (ftdi->readbuffer != NULL)
210 {
211 free(ftdi->readbuffer);
212 ftdi->readbuffer = NULL;
213 }
214}
215
216/**
217 Deinitialize and free an ftdi_context.
218
219 \param ftdi pointer to ftdi_context
220*/
221void ftdi_free(struct ftdi_context *ftdi)
222{
223 ftdi_deinit(ftdi);
224 free(ftdi);
225}
226
227/**
228 Use an already open libusb device.
229
230 \param ftdi pointer to ftdi_context
231 \param usb libusb usb_dev_handle to use
232*/
233void ftdi_set_usbdev (struct ftdi_context *ftdi, usb_dev_handle *usb)
234{
235 ftdi->usb_dev = usb;
236}
237
238
239/**
240 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
241 needs to be deallocated by ftdi_list_free() after use.
242
243 \param ftdi pointer to ftdi_context
244 \param devlist Pointer where to store list of found devices
245 \param vendor Vendor ID to search for
246 \param product Product ID to search for
247
248 \retval >0: number of devices found
249 \retval -1: usb_find_busses() failed
250 \retval -2: usb_find_devices() failed
251 \retval -3: out of memory
252*/
253int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
254{
255 struct ftdi_device_list **curdev;
256 struct usb_bus *bus;
257 struct usb_device *dev;
258 int count = 0;
259
260 usb_init();
261 if (usb_find_busses() < 0)
262 ftdi_error_return(-1, "usb_find_busses() failed");
263 if (usb_find_devices() < 0)
264 ftdi_error_return(-2, "usb_find_devices() failed");
265
266 curdev = devlist;
267 *curdev = NULL;
268 for (bus = usb_get_busses(); bus; bus = bus->next)
269 {
270 for (dev = bus->devices; dev; dev = dev->next)
271 {
272 if (dev->descriptor.idVendor == vendor
273 && dev->descriptor.idProduct == product)
274 {
275 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
276 if (!*curdev)
277 ftdi_error_return(-3, "out of memory");
278
279 (*curdev)->next = NULL;
280 (*curdev)->dev = dev;
281
282 curdev = &(*curdev)->next;
283 count++;
284 }
285 }
286 }
287
288 return count;
289}
290
291/**
292 Frees a usb device list.
293
294 \param devlist USB device list created by ftdi_usb_find_all()
295*/
296void ftdi_list_free(struct ftdi_device_list **devlist)
297{
298 struct ftdi_device_list *curdev, *next;
299
300 for (curdev = *devlist; curdev != NULL;)
301 {
302 next = curdev->next;
303 free(curdev);
304 curdev = next;
305 }
306
307 *devlist = NULL;
308}
309
310/**
311 Frees a usb device list.
312
313 \param devlist USB device list created by ftdi_usb_find_all()
314*/
315void ftdi_list_free2(struct ftdi_device_list *devlist)
316{
317 ftdi_list_free(&devlist);
318}
319
320/**
321 Return device ID strings from the usb device.
322
323 The parameters manufacturer, description and serial may be NULL
324 or pointer to buffers to store the fetched strings.
325
326 \note Use this function only in combination with ftdi_usb_find_all()
327 as it closes the internal "usb_dev" after use.
328
329 \param ftdi pointer to ftdi_context
330 \param dev libusb usb_dev to use
331 \param manufacturer Store manufacturer string here if not NULL
332 \param mnf_len Buffer size of manufacturer string
333 \param description Store product description string here if not NULL
334 \param desc_len Buffer size of product description string
335 \param serial Store serial string here if not NULL
336 \param serial_len Buffer size of serial string
337
338 \retval 0: all fine
339 \retval -1: wrong arguments
340 \retval -4: unable to open device
341 \retval -7: get product manufacturer failed
342 \retval -8: get product description failed
343 \retval -9: get serial number failed
344 \retval -10: unable to close device
345*/
346int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct usb_device * dev,
347 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
348{
349 if ((ftdi==NULL) || (dev==NULL))
350 return -1;
351
352 if (!(ftdi->usb_dev = usb_open(dev)))
353 ftdi_error_return(-4, usb_strerror());
354
355 if (manufacturer != NULL)
356 {
357 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iManufacturer, manufacturer, mnf_len) <= 0)
358 {
359 ftdi_usb_close_internal (ftdi);
360 ftdi_error_return(-7, usb_strerror());
361 }
362 }
363
364 if (description != NULL)
365 {
366 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, description, desc_len) <= 0)
367 {
368 ftdi_usb_close_internal (ftdi);
369 ftdi_error_return(-8, usb_strerror());
370 }
371 }
372
373 if (serial != NULL)
374 {
375 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, serial, serial_len) <= 0)
376 {
377 ftdi_usb_close_internal (ftdi);
378 ftdi_error_return(-9, usb_strerror());
379 }
380 }
381
382 if (ftdi_usb_close_internal (ftdi) != 0)
383 ftdi_error_return(-10, usb_strerror());
384
385 return 0;
386}
387
388/**
389 * Internal function to determine the maximum packet size.
390 * \param ftdi pointer to ftdi_context
391 * \param dev libusb usb_dev to use
392 * \retval Maximum packet size for this device
393 */
394static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, struct usb_device *dev)
395{
396 unsigned int packet_size;
397
398 // Determine maximum packet size. Init with default value.
399 // New hi-speed devices from FTDI use a packet size of 512 bytes
400 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
401 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
402 packet_size = 512;
403 else
404 packet_size = 64;
405
406 if (dev->descriptor.bNumConfigurations > 0 && dev->config)
407 {
408 struct usb_config_descriptor config = dev->config[0];
409
410 if (ftdi->interface < config.bNumInterfaces)
411 {
412 struct usb_interface interface = config.interface[ftdi->interface];
413 if (interface.num_altsetting > 0)
414 {
415 struct usb_interface_descriptor descriptor = interface.altsetting[0];
416 if (descriptor.bNumEndpoints > 0)
417 {
418 packet_size = descriptor.endpoint[0].wMaxPacketSize;
419 }
420 }
421 }
422 }
423
424 return packet_size;
425}
426
427/**
428 Opens a ftdi device given by a usb_device.
429
430 \param ftdi pointer to ftdi_context
431 \param dev libusb usb_dev to use
432
433 \retval 0: all fine
434 \retval -3: unable to config device
435 \retval -4: unable to open device
436 \retval -5: unable to claim device
437 \retval -6: reset failed
438 \retval -7: set baudrate failed
439*/
440int ftdi_usb_open_dev(struct ftdi_context *ftdi, struct usb_device *dev)
441{
442 int detach_errno = 0;
443 int config_val = 1;
444 if (!(ftdi->usb_dev = usb_open(dev)))
445 ftdi_error_return(-4, "usb_open() failed");
446
447#ifdef LIBUSB_HAS_GET_DRIVER_NP
448 // Try to detach ftdi_sio kernel module.
449 // Returns ENODATA if driver is not loaded.
450 //
451 // The return code is kept in a separate variable and only parsed
452 // if usb_set_configuration() or usb_claim_interface() fails as the
453 // detach operation might be denied and everything still works fine.
454 // Likely scenario is a static ftdi_sio kernel module.
455 if (usb_detach_kernel_driver_np(ftdi->usb_dev, ftdi->interface) != 0 && errno != ENODATA)
456 detach_errno = errno;
457#endif
458
459#ifdef __WIN32__
460 // set configuration (needed especially for windows)
461 // tolerate EBUSY: one device with one configuration, but two interfaces
462 // and libftdi sessions to both interfaces (e.g. FT2232)
463
464 if (dev->descriptor.bNumConfigurations > 0)
465 {
466 // libusb-win32 on Windows 64 can return a null pointer for a valid device
467 if (dev->config)
468 config_val = dev->config[0].bConfigurationValue;
469
470 if (usb_set_configuration(ftdi->usb_dev, config_val) &&
471 errno != EBUSY)
472 {
473 ftdi_usb_close_internal (ftdi);
474 if (detach_errno == EPERM)
475 {
476 ftdi_error_return(-8, "inappropriate permissions on device!");
477 }
478 else
479 {
480 ftdi_error_return(-3, "unable to set usb configuration. Make sure ftdi_sio is unloaded!");
481 }
482 }
483 }
484#endif
485
486 if (usb_claim_interface(ftdi->usb_dev, ftdi->interface) != 0)
487 {
488 ftdi_usb_close_internal (ftdi);
489 if (detach_errno == EPERM)
490 {
491 ftdi_error_return(-8, "inappropriate permissions on device!");
492 }
493 else
494 {
495 ftdi_error_return(-5, "unable to claim usb device. Make sure ftdi_sio is unloaded!");
496 }
497 }
498
499 if (ftdi_usb_reset (ftdi) != 0)
500 {
501 ftdi_usb_close_internal (ftdi);
502 ftdi_error_return(-6, "ftdi_usb_reset failed");
503 }
504
505 // Try to guess chip type
506 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
507 if (dev->descriptor.bcdDevice == 0x400 || (dev->descriptor.bcdDevice == 0x200
508 && dev->descriptor.iSerialNumber == 0))
509 ftdi->type = TYPE_BM;
510 else if (dev->descriptor.bcdDevice == 0x200)
511 ftdi->type = TYPE_AM;
512 else if (dev->descriptor.bcdDevice == 0x500)
513 ftdi->type = TYPE_2232C;
514 else if (dev->descriptor.bcdDevice == 0x600)
515 ftdi->type = TYPE_R;
516 else if (dev->descriptor.bcdDevice == 0x700)
517 ftdi->type = TYPE_2232H;
518 else if (dev->descriptor.bcdDevice == 0x800)
519 ftdi->type = TYPE_4232H;
520
521 // Set default interface on dual/quad type chips
522 switch(ftdi->type)
523 {
524 case TYPE_2232C:
525 case TYPE_2232H:
526 case TYPE_4232H:
527 if (!ftdi->index)
528 ftdi->index = INTERFACE_A;
529 break;
530 default:
531 break;
532 }
533
534 // Determine maximum packet size
535 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
536
537 if (ftdi_set_baudrate (ftdi, 9600) != 0)
538 {
539 ftdi_usb_close_internal (ftdi);
540 ftdi_error_return(-7, "set baudrate failed");
541 }
542
543 ftdi_error_return(0, "all fine");
544}
545
546/**
547 Opens the first device with a given vendor and product ids.
548
549 \param ftdi pointer to ftdi_context
550 \param vendor Vendor ID
551 \param product Product ID
552
553 \retval same as ftdi_usb_open_desc()
554*/
555int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
556{
557 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
558}
559
560/**
561 Opens the first device with a given, vendor id, product id,
562 description and serial.
563
564 \param ftdi pointer to ftdi_context
565 \param vendor Vendor ID
566 \param product Product ID
567 \param description Description to search for. Use NULL if not needed.
568 \param serial Serial to search for. Use NULL if not needed.
569
570 \retval 0: all fine
571 \retval -1: usb_find_busses() failed
572 \retval -2: usb_find_devices() failed
573 \retval -3: usb device not found
574 \retval -4: unable to open device
575 \retval -5: unable to claim device
576 \retval -6: reset failed
577 \retval -7: set baudrate failed
578 \retval -8: get product description failed
579 \retval -9: get serial number failed
580 \retval -10: unable to close device
581*/
582int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
583 const char* description, const char* serial)
584{
585 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
586}
587
588/**
589 Opens the index-th device with a given, vendor id, product id,
590 description and serial.
591
592 \param ftdi pointer to ftdi_context
593 \param vendor Vendor ID
594 \param product Product ID
595 \param description Description to search for. Use NULL if not needed.
596 \param serial Serial to search for. Use NULL if not needed.
597 \param index Number of matching device to open if there are more than one, starts with 0.
598
599 \retval 0: all fine
600 \retval -1: usb_find_busses() failed
601 \retval -2: usb_find_devices() failed
602 \retval -3: usb device not found
603 \retval -4: unable to open device
604 \retval -5: unable to claim device
605 \retval -6: reset failed
606 \retval -7: set baudrate failed
607 \retval -8: get product description failed
608 \retval -9: get serial number failed
609 \retval -10: unable to close device
610*/
611int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
612 const char* description, const char* serial, unsigned int index)
613{
614 struct usb_bus *bus;
615 struct usb_device *dev;
616 char string[256];
617
618 usb_init();
619
620 if (usb_find_busses() < 0)
621 ftdi_error_return(-1, "usb_find_busses() failed");
622 if (usb_find_devices() < 0)
623 ftdi_error_return(-2, "usb_find_devices() failed");
624
625 for (bus = usb_get_busses(); bus; bus = bus->next)
626 {
627 for (dev = bus->devices; dev; dev = dev->next)
628 {
629 if (dev->descriptor.idVendor == vendor
630 && dev->descriptor.idProduct == product)
631 {
632 if (!(ftdi->usb_dev = usb_open(dev)))
633 ftdi_error_return(-4, "usb_open() failed");
634
635 if (description != NULL)
636 {
637 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, string, sizeof(string)) <= 0)
638 {
639 ftdi_usb_close_internal (ftdi);
640 ftdi_error_return(-8, "unable to fetch product description");
641 }
642 if (strncmp(string, description, sizeof(string)) != 0)
643 {
644 if (ftdi_usb_close_internal (ftdi) != 0)
645 ftdi_error_return(-10, "unable to close device");
646 continue;
647 }
648 }
649 if (serial != NULL)
650 {
651 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, string, sizeof(string)) <= 0)
652 {
653 ftdi_usb_close_internal (ftdi);
654 ftdi_error_return(-9, "unable to fetch serial number");
655 }
656 if (strncmp(string, serial, sizeof(string)) != 0)
657 {
658 if (ftdi_usb_close_internal (ftdi) != 0)
659 ftdi_error_return(-10, "unable to close device");
660 continue;
661 }
662 }
663
664 if (ftdi_usb_close_internal (ftdi) != 0)
665 ftdi_error_return(-10, "unable to close device");
666
667 if (index > 0)
668 {
669 index--;
670 continue;
671 }
672
673 return ftdi_usb_open_dev(ftdi, dev);
674 }
675 }
676 }
677
678 // device not found
679 ftdi_error_return(-3, "device not found");
680}
681
682/**
683 Opens the ftdi-device described by a description-string.
684 Intended to be used for parsing a device-description given as commandline argument.
685
686 \param ftdi pointer to ftdi_context
687 \param description NULL-terminated description-string, using this format:
688 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
689 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
690 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
691 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
692
693 \note The description format may be extended in later versions.
694
695 \retval 0: all fine
696 \retval -1: usb_find_busses() failed
697 \retval -2: usb_find_devices() failed
698 \retval -3: usb device not found
699 \retval -4: unable to open device
700 \retval -5: unable to claim device
701 \retval -6: reset failed
702 \retval -7: set baudrate failed
703 \retval -8: get product description failed
704 \retval -9: get serial number failed
705 \retval -10: unable to close device
706 \retval -11: illegal description format
707*/
708int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
709{
710 if (description[0] == 0 || description[1] != ':')
711 ftdi_error_return(-11, "illegal description format");
712
713 if (description[0] == 'd')
714 {
715 struct usb_bus *bus;
716 struct usb_device *dev;
717 char dev_name[PATH_MAX+1];
718
719 usb_init();
720
721 if (usb_find_busses() < 0)
722 ftdi_error_return(-1, "usb_find_busses() failed");
723 if (usb_find_devices() < 0)
724 ftdi_error_return(-2, "usb_find_devices() failed");
725
726 for (bus = usb_get_busses(); bus; bus = bus->next)
727 {
728 for (dev = bus->devices; dev; dev = dev->next)
729 {
730 snprintf(dev_name, sizeof(dev_name), "%s/%s",bus->dirname,dev->filename);
731 if (strcmp(description+2,dev_name) == 0)
732 return ftdi_usb_open_dev(ftdi, dev);
733 }
734 }
735
736 // device not found
737 ftdi_error_return(-3, "device not found");
738 }
739 else if (description[0] == 'i' || description[0] == 's')
740 {
741 unsigned int vendor;
742 unsigned int product;
743 unsigned int index=0;
744 const char *serial;
745 const char *startp, *endp;
746
747 errno=0;
748 startp=description+2;
749 vendor=strtoul((char*)startp,(char**)&endp,0);
750 if (*endp != ':' || endp == startp || errno != 0)
751 ftdi_error_return(-11, "illegal description format");
752
753 startp=endp+1;
754 product=strtoul((char*)startp,(char**)&endp,0);
755 if (endp == startp || errno != 0)
756 ftdi_error_return(-11, "illegal description format");
757
758 if (description[0] == 'i' && *endp != 0)
759 {
760 /* optional index field in i-mode */
761 if (*endp != ':')
762 ftdi_error_return(-11, "illegal description format");
763
764 startp=endp+1;
765 index=strtoul((char*)startp,(char**)&endp,0);
766 if (*endp != 0 || endp == startp || errno != 0)
767 ftdi_error_return(-11, "illegal description format");
768 }
769 if (description[0] == 's')
770 {
771 if (*endp != ':')
772 ftdi_error_return(-11, "illegal description format");
773
774 /* rest of the description is the serial */
775 serial=endp+1;
776 }
777
778 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
779 }
780 else
781 {
782 ftdi_error_return(-11, "illegal description format");
783 }
784}
785
786/**
787 Resets the ftdi device.
788
789 \param ftdi pointer to ftdi_context
790
791 \retval 0: all fine
792 \retval -1: FTDI reset failed
793*/
794int ftdi_usb_reset(struct ftdi_context *ftdi)
795{
796 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
797 SIO_RESET_REQUEST, SIO_RESET_SIO,
798 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
799 ftdi_error_return(-1,"FTDI reset failed");
800
801 // Invalidate data in the readbuffer
802 ftdi->readbuffer_offset = 0;
803 ftdi->readbuffer_remaining = 0;
804
805 return 0;
806}
807
808/**
809 Clears the read buffer on the chip and the internal read buffer.
810
811 \param ftdi pointer to ftdi_context
812
813 \retval 0: all fine
814 \retval -1: read buffer purge failed
815*/
816int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
817{
818 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
819 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
820 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
821 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
822
823 // Invalidate data in the readbuffer
824 ftdi->readbuffer_offset = 0;
825 ftdi->readbuffer_remaining = 0;
826
827 return 0;
828}
829
830/**
831 Clears the write buffer on the chip.
832
833 \param ftdi pointer to ftdi_context
834
835 \retval 0: all fine
836 \retval -1: write buffer purge failed
837*/
838int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
839{
840 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
841 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
842 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
843 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
844
845 return 0;
846}
847
848/**
849 Clears the buffers on the chip and the internal read buffer.
850
851 \param ftdi pointer to ftdi_context
852
853 \retval 0: all fine
854 \retval -1: read buffer purge failed
855 \retval -2: write buffer purge failed
856*/
857int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
858{
859 int result;
860
861 result = ftdi_usb_purge_rx_buffer(ftdi);
862 if (result < 0)
863 return -1;
864
865 result = ftdi_usb_purge_tx_buffer(ftdi);
866 if (result < 0)
867 return -2;
868
869 return 0;
870}
871
872
873
874/**
875 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
876
877 \param ftdi pointer to ftdi_context
878
879 \retval 0: all fine
880 \retval -1: usb_release failed
881 \retval -2: usb_close failed
882*/
883int ftdi_usb_close(struct ftdi_context *ftdi)
884{
885 int rtn = 0;
886
887#ifdef LIBFTDI_LINUX_ASYNC_MODE
888 /* try to release some kernel resources */
889 ftdi_async_complete(ftdi,1);
890#endif
891
892 if (ftdi->usb_dev != NULL)
893 if (usb_release_interface(ftdi->usb_dev, ftdi->interface) != 0)
894 rtn = -1;
895
896 if (ftdi_usb_close_internal (ftdi) != 0)
897 rtn = -2;
898
899 return rtn;
900}
901
902/*
903 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
904 Function is only used internally
905 \internal
906*/
907static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
908 unsigned short *value, unsigned short *index)
909{
910 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
911 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
912 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
913 int divisor, best_divisor, best_baud, best_baud_diff;
914 unsigned long encoded_divisor;
915 int i;
916
917 if (baudrate <= 0)
918 {
919 // Return error
920 return -1;
921 }
922
923 divisor = 24000000 / baudrate;
924
925 if (ftdi->type == TYPE_AM)
926 {
927 // Round down to supported fraction (AM only)
928 divisor -= am_adjust_dn[divisor & 7];
929 }
930
931 // Try this divisor and the one above it (because division rounds down)
932 best_divisor = 0;
933 best_baud = 0;
934 best_baud_diff = 0;
935 for (i = 0; i < 2; i++)
936 {
937 int try_divisor = divisor + i;
938 int baud_estimate;
939 int baud_diff;
940
941 // Round up to supported divisor value
942 if (try_divisor <= 8)
943 {
944 // Round up to minimum supported divisor
945 try_divisor = 8;
946 }
947 else if (ftdi->type != TYPE_AM && try_divisor < 12)
948 {
949 // BM doesn't support divisors 9 through 11 inclusive
950 try_divisor = 12;
951 }
952 else if (divisor < 16)
953 {
954 // AM doesn't support divisors 9 through 15 inclusive
955 try_divisor = 16;
956 }
957 else
958 {
959 if (ftdi->type == TYPE_AM)
960 {
961 // Round up to supported fraction (AM only)
962 try_divisor += am_adjust_up[try_divisor & 7];
963 if (try_divisor > 0x1FFF8)
964 {
965 // Round down to maximum supported divisor value (for AM)
966 try_divisor = 0x1FFF8;
967 }
968 }
969 else
970 {
971 if (try_divisor > 0x1FFFF)
972 {
973 // Round down to maximum supported divisor value (for BM)
974 try_divisor = 0x1FFFF;
975 }
976 }
977 }
978 // Get estimated baud rate (to nearest integer)
979 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
980 // Get absolute difference from requested baud rate
981 if (baud_estimate < baudrate)
982 {
983 baud_diff = baudrate - baud_estimate;
984 }
985 else
986 {
987 baud_diff = baud_estimate - baudrate;
988 }
989 if (i == 0 || baud_diff < best_baud_diff)
990 {
991 // Closest to requested baud rate so far
992 best_divisor = try_divisor;
993 best_baud = baud_estimate;
994 best_baud_diff = baud_diff;
995 if (baud_diff == 0)
996 {
997 // Spot on! No point trying
998 break;
999 }
1000 }
1001 }
1002 // Encode the best divisor value
1003 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1004 // Deal with special cases for encoded value
1005 if (encoded_divisor == 1)
1006 {
1007 encoded_divisor = 0; // 3000000 baud
1008 }
1009 else if (encoded_divisor == 0x4001)
1010 {
1011 encoded_divisor = 1; // 2000000 baud (BM only)
1012 }
1013 // Split into "value" and "index" values
1014 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1015 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1016 {
1017 *index = (unsigned short)(encoded_divisor >> 8);
1018 *index &= 0xFF00;
1019 *index |= ftdi->index;
1020 }
1021 else
1022 *index = (unsigned short)(encoded_divisor >> 16);
1023
1024 // Return the nearest baud rate
1025 return best_baud;
1026}
1027
1028/**
1029 Sets the chip baud rate
1030
1031 \param ftdi pointer to ftdi_context
1032 \param baudrate baud rate to set
1033
1034 \retval 0: all fine
1035 \retval -1: invalid baudrate
1036 \retval -2: setting baudrate failed
1037*/
1038int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1039{
1040 unsigned short value, index;
1041 int actual_baudrate;
1042
1043 if (ftdi->bitbang_enabled)
1044 {
1045 baudrate = baudrate*4;
1046 }
1047
1048 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1049 if (actual_baudrate <= 0)
1050 ftdi_error_return (-1, "Silly baudrate <= 0.");
1051
1052 // Check within tolerance (about 5%)
1053 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1054 || ((actual_baudrate < baudrate)
1055 ? (actual_baudrate * 21 < baudrate * 20)
1056 : (baudrate * 21 < actual_baudrate * 20)))
1057 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1058
1059 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1060 SIO_SET_BAUDRATE_REQUEST, value,
1061 index, NULL, 0, ftdi->usb_write_timeout) != 0)
1062 ftdi_error_return (-2, "Setting new baudrate failed");
1063
1064 ftdi->baudrate = baudrate;
1065 return 0;
1066}
1067
1068/**
1069 Set (RS232) line characteristics.
1070 The break type can only be set via ftdi_set_line_property2()
1071 and defaults to "off".
1072
1073 \param ftdi pointer to ftdi_context
1074 \param bits Number of bits
1075 \param sbit Number of stop bits
1076 \param parity Parity mode
1077
1078 \retval 0: all fine
1079 \retval -1: Setting line property failed
1080*/
1081int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1082 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1083{
1084 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1085}
1086
1087/**
1088 Set (RS232) line characteristics
1089
1090 \param ftdi pointer to ftdi_context
1091 \param bits Number of bits
1092 \param sbit Number of stop bits
1093 \param parity Parity mode
1094 \param break_type Break type
1095
1096 \retval 0: all fine
1097 \retval -1: Setting line property failed
1098*/
1099int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1100 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1101 enum ftdi_break_type break_type)
1102{
1103 unsigned short value = bits;
1104
1105 switch (parity)
1106 {
1107 case NONE:
1108 value |= (0x00 << 8);
1109 break;
1110 case ODD:
1111 value |= (0x01 << 8);
1112 break;
1113 case EVEN:
1114 value |= (0x02 << 8);
1115 break;
1116 case MARK:
1117 value |= (0x03 << 8);
1118 break;
1119 case SPACE:
1120 value |= (0x04 << 8);
1121 break;
1122 }
1123
1124 switch (sbit)
1125 {
1126 case STOP_BIT_1:
1127 value |= (0x00 << 11);
1128 break;
1129 case STOP_BIT_15:
1130 value |= (0x01 << 11);
1131 break;
1132 case STOP_BIT_2:
1133 value |= (0x02 << 11);
1134 break;
1135 }
1136
1137 switch (break_type)
1138 {
1139 case BREAK_OFF:
1140 value |= (0x00 << 14);
1141 break;
1142 case BREAK_ON:
1143 value |= (0x01 << 14);
1144 break;
1145 }
1146
1147 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1148 SIO_SET_DATA_REQUEST, value,
1149 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1150 ftdi_error_return (-1, "Setting new line property failed");
1151
1152 return 0;
1153}
1154
1155/**
1156 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1157
1158 \param ftdi pointer to ftdi_context
1159 \param buf Buffer with the data
1160 \param size Size of the buffer
1161
1162 \retval <0: error code from usb_bulk_write()
1163 \retval >0: number of bytes written
1164*/
1165int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1166{
1167 int ret;
1168 int offset = 0;
1169 int total_written = 0;
1170
1171 while (offset < size)
1172 {
1173 int write_size = ftdi->writebuffer_chunksize;
1174
1175 if (offset+write_size > size)
1176 write_size = size-offset;
1177
1178 ret = usb_bulk_write(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, ftdi->usb_write_timeout);
1179 if (ret < 0)
1180 ftdi_error_return(ret, "usb bulk write failed");
1181
1182 total_written += ret;
1183 offset += write_size;
1184 }
1185
1186 return total_written;
1187}
1188
1189#ifdef LIBFTDI_LINUX_ASYNC_MODE
1190#ifdef USB_CLASS_PTP
1191#error LIBFTDI_LINUX_ASYNC_MODE is not compatible with libusb-compat-0.1!
1192#endif
1193/* this is strongly dependent on libusb using the same struct layout. If libusb
1194 changes in some later version this may break horribly (this is for libusb 0.1.12) */
1195struct usb_dev_handle
1196{
1197 int fd;
1198 // some other stuff coming here we don't need
1199};
1200
1201/**
1202 Check for pending async urbs
1203 \internal
1204*/
1205static int _usb_get_async_urbs_pending(struct ftdi_context *ftdi)
1206{
1207 struct usbdevfs_urb *urb;
1208 int pending=0;
1209 unsigned int i;
1210
1211 for (i=0; i < ftdi->async_usb_buffer_size; i++)
1212 {
1213 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
1214 if (urb->usercontext != FTDI_URB_USERCONTEXT_COOKIE)
1215 pending++;
1216 }
1217
1218 return pending;
1219}
1220
1221/**
1222 Wait until one or more async URBs are completed by the kernel and mark their
1223 positions in the async-buffer as unused
1224
1225 \param ftdi pointer to ftdi_context
1226 \param wait_for_more if != 0 wait for more than one write to complete
1227 \param timeout_msec max milliseconds to wait
1228
1229 \internal
1230*/
1231static void _usb_async_cleanup(struct ftdi_context *ftdi, int wait_for_more, int timeout_msec)
1232{
1233 struct timeval tv;
1234 struct usbdevfs_urb *urb=NULL;
1235 int ret;
1236 fd_set writefds;
1237 int keep_going=0;
1238
1239 FD_ZERO(&writefds);
1240 FD_SET(ftdi->usb_dev->fd, &writefds);
1241
1242 /* init timeout only once, select writes time left after call */
1243 tv.tv_sec = timeout_msec / 1000;
1244 tv.tv_usec = (timeout_msec % 1000) * 1000;
1245
1246 do
1247 {
1248 while (_usb_get_async_urbs_pending(ftdi)
1249 && (ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_REAPURBNDELAY, &urb)) == -1
1250 && errno == EAGAIN)
1251 {
1252 if (keep_going && !wait_for_more)
1253 {
1254 /* don't wait if repeating only for keep_going */
1255 keep_going=0;
1256 break;
1257 }
1258
1259 /* wait for timeout msec or something written ready */
1260 select(ftdi->usb_dev->fd+1, NULL, &writefds, NULL, &tv);
1261 }
1262
1263 if (ret == 0 && urb != NULL)
1264 {
1265 /* got a free urb, mark it */
1266 urb->usercontext = FTDI_URB_USERCONTEXT_COOKIE;
1267
1268 /* try to get more urbs that are ready now, but don't wait anymore */
1269 urb=NULL;
1270 keep_going=1;
1271 }
1272 else
1273 {
1274 /* no more urbs waiting */
1275 keep_going=0;
1276 }
1277 }
1278 while (keep_going);
1279}
1280
1281/**
1282 Wait until one or more async URBs are completed by the kernel and mark their
1283 positions in the async-buffer as unused.
1284
1285 \param ftdi pointer to ftdi_context
1286 \param wait_for_more if != 0 wait for more than one write to complete (until write timeout)
1287*/
1288void ftdi_async_complete(struct ftdi_context *ftdi, int wait_for_more)
1289{
1290 _usb_async_cleanup(ftdi,wait_for_more,ftdi->usb_write_timeout);
1291}
1292
1293/**
1294 Stupid libusb does not offer async writes nor does it allow
1295 access to its fd - so we need some hacks here.
1296 \internal
1297*/
1298static int _usb_bulk_write_async(struct ftdi_context *ftdi, int ep, char *bytes, int size)
1299{
1300 struct usbdevfs_urb *urb;
1301 int bytesdone = 0, requested;
1302 int ret, cleanup_count;
1303 unsigned int i;
1304
1305 do
1306 {
1307 /* find a free urb buffer we can use */
1308 urb=NULL;
1309 for (cleanup_count=0; urb==NULL && cleanup_count <= 1; cleanup_count++)
1310 {
1311 if (i==ftdi->async_usb_buffer_size)
1312 {
1313 /* wait until some buffers are free */
1314 _usb_async_cleanup(ftdi,0,ftdi->usb_write_timeout);
1315 }
1316
1317 for (i=0; i < ftdi->async_usb_buffer_size; i++)
1318 {
1319 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
1320 if (urb->usercontext == FTDI_URB_USERCONTEXT_COOKIE)
1321 break; /* found a free urb position */
1322 urb=NULL;
1323 }
1324 }
1325
1326 /* no free urb position found */
1327 if (urb==NULL)
1328 return -1;
1329
1330 requested = size - bytesdone;
1331 if (requested > 4096)
1332 requested = 4096;
1333
1334 memset(urb,0,sizeof(urb));
1335
1336 urb->type = USBDEVFS_URB_TYPE_BULK;
1337 urb->endpoint = ep;
1338 urb->flags = 0;
1339 urb->buffer = bytes + bytesdone;
1340 urb->buffer_length = requested;
1341 urb->signr = 0;
1342 urb->actual_length = 0;
1343 urb->number_of_packets = 0;
1344 urb->usercontext = 0;
1345
1346 do
1347 {
1348 ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_SUBMITURB, urb);
1349 }
1350 while (ret < 0 && errno == EINTR);
1351 if (ret < 0)
1352 return ret; /* the caller can read errno to get more info */
1353
1354 bytesdone += requested;
1355 }
1356 while (bytesdone < size);
1357 return bytesdone;
1358}
1359
1360/**
1361 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip.
1362 Does not wait for completion of the transfer nor does it make sure that
1363 the transfer was successful.
1364
1365 This function could be extended to use signals and callbacks to inform the
1366 caller of completion or error - but this is not done yet, volunteers welcome.
1367
1368 Works around libusb and directly accesses functions only available on Linux.
1369 Only available if compiled with --with-async-mode.
1370
1371 \param ftdi pointer to ftdi_context
1372 \param buf Buffer with the data
1373 \param size Size of the buffer
1374
1375 \retval <0: error code from usb_bulk_write()
1376 \retval >0: number of bytes written
1377*/
1378int ftdi_write_data_async(struct ftdi_context *ftdi, unsigned char *buf, int size)
1379{
1380 int ret;
1381 int offset = 0;
1382 int total_written = 0;
1383
1384 while (offset < size)
1385 {
1386 int write_size = ftdi->writebuffer_chunksize;
1387
1388 if (offset+write_size > size)
1389 write_size = size-offset;
1390
1391 ret = _usb_bulk_write_async(ftdi, ftdi->in_ep, buf+offset, write_size);
1392 if (ret < 0)
1393 ftdi_error_return(ret, "usb bulk write async failed");
1394
1395 total_written += ret;
1396 offset += write_size;
1397 }
1398
1399 return total_written;
1400}
1401#endif // LIBFTDI_LINUX_ASYNC_MODE
1402
1403/**
1404 Configure write buffer chunk size.
1405 Default is 4096.
1406
1407 \param ftdi pointer to ftdi_context
1408 \param chunksize Chunk size
1409
1410 \retval 0: all fine
1411*/
1412int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1413{
1414 ftdi->writebuffer_chunksize = chunksize;
1415 return 0;
1416}
1417
1418/**
1419 Get write buffer chunk size.
1420
1421 \param ftdi pointer to ftdi_context
1422 \param chunksize Pointer to store chunk size in
1423
1424 \retval 0: all fine
1425*/
1426int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1427{
1428 *chunksize = ftdi->writebuffer_chunksize;
1429 return 0;
1430}
1431
1432/**
1433 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1434
1435 Automatically strips the two modem status bytes transfered during every read.
1436
1437 \param ftdi pointer to ftdi_context
1438 \param buf Buffer to store data in
1439 \param size Size of the buffer
1440
1441 \retval <0: error code from usb_bulk_read()
1442 \retval 0: no data was available
1443 \retval >0: number of bytes read
1444
1445 \remark This function is not useful in bitbang mode.
1446 Use ftdi_read_pins() to get the current state of the pins.
1447*/
1448int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1449{
1450 int offset = 0, ret = 1, i, num_of_chunks, chunk_remains;
1451 int packet_size = ftdi->max_packet_size;
1452
1453 // Packet size sanity check (avoid division by zero)
1454 if (packet_size == 0)
1455 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1456
1457 // everything we want is still in the readbuffer?
1458 if (size <= ftdi->readbuffer_remaining)
1459 {
1460 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1461
1462 // Fix offsets
1463 ftdi->readbuffer_remaining -= size;
1464 ftdi->readbuffer_offset += size;
1465
1466 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1467
1468 return size;
1469 }
1470 // something still in the readbuffer, but not enough to satisfy 'size'?
1471 if (ftdi->readbuffer_remaining != 0)
1472 {
1473 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1474
1475 // Fix offset
1476 offset += ftdi->readbuffer_remaining;
1477 }
1478 // do the actual USB read
1479 while (offset < size && ret > 0)
1480 {
1481 ftdi->readbuffer_remaining = 0;
1482 ftdi->readbuffer_offset = 0;
1483 /* returns how much received */
1484 ret = usb_bulk_read (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi->usb_read_timeout);
1485 if (ret < 0)
1486 ftdi_error_return(ret, "usb bulk read failed");
1487
1488 if (ret > 2)
1489 {
1490 // skip FTDI status bytes.
1491 // Maybe stored in the future to enable modem use
1492 num_of_chunks = ret / packet_size;
1493 chunk_remains = ret % packet_size;
1494 //printf("ret = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", ret, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1495
1496 ftdi->readbuffer_offset += 2;
1497 ret -= 2;
1498
1499 if (ret > packet_size - 2)
1500 {
1501 for (i = 1; i < num_of_chunks; i++)
1502 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1503 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1504 packet_size - 2);
1505 if (chunk_remains > 2)
1506 {
1507 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1508 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1509 chunk_remains-2);
1510 ret -= 2*num_of_chunks;
1511 }
1512 else
1513 ret -= 2*(num_of_chunks-1)+chunk_remains;
1514 }
1515 }
1516 else if (ret <= 2)
1517 {
1518 // no more data to read?
1519 return offset;
1520 }
1521 if (ret > 0)
1522 {
1523 // data still fits in buf?
1524 if (offset+ret <= size)
1525 {
1526 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, ret);
1527 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1528 offset += ret;
1529
1530 /* Did we read exactly the right amount of bytes? */
1531 if (offset == size)
1532 //printf("read_data exact rem %d offset %d\n",
1533 //ftdi->readbuffer_remaining, offset);
1534 return offset;
1535 }
1536 else
1537 {
1538 // only copy part of the data or size <= readbuffer_chunksize
1539 int part_size = size-offset;
1540 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1541
1542 ftdi->readbuffer_offset += part_size;
1543 ftdi->readbuffer_remaining = ret-part_size;
1544 offset += part_size;
1545
1546 /* printf("Returning part: %d - size: %d - offset: %d - ret: %d - remaining: %d\n",
1547 part_size, size, offset, ret, ftdi->readbuffer_remaining); */
1548
1549 return offset;
1550 }
1551 }
1552 }
1553 // never reached
1554 return -127;
1555}
1556
1557/**
1558 Configure read buffer chunk size.
1559 Default is 4096.
1560
1561 Automatically reallocates the buffer.
1562
1563 \param ftdi pointer to ftdi_context
1564 \param chunksize Chunk size
1565
1566 \retval 0: all fine
1567*/
1568int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1569{
1570 unsigned char *new_buf;
1571
1572 // Invalidate all remaining data
1573 ftdi->readbuffer_offset = 0;
1574 ftdi->readbuffer_remaining = 0;
1575
1576 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1577 ftdi_error_return(-1, "out of memory for readbuffer");
1578
1579 ftdi->readbuffer = new_buf;
1580 ftdi->readbuffer_chunksize = chunksize;
1581
1582 return 0;
1583}
1584
1585/**
1586 Get read buffer chunk size.
1587
1588 \param ftdi pointer to ftdi_context
1589 \param chunksize Pointer to store chunk size in
1590
1591 \retval 0: all fine
1592*/
1593int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1594{
1595 *chunksize = ftdi->readbuffer_chunksize;
1596 return 0;
1597}
1598
1599
1600/**
1601 Enable bitbang mode.
1602
1603 For advanced bitbang modes of the FT2232C chip use ftdi_set_bitmode().
1604
1605 \param ftdi pointer to ftdi_context
1606 \param bitmask Bitmask to configure lines.
1607 HIGH/ON value configures a line as output.
1608
1609 \retval 0: all fine
1610 \retval -1: can't enable bitbang mode
1611*/
1612int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1613{
1614 unsigned short usb_val;
1615
1616 usb_val = bitmask; // low byte: bitmask
1617 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1618 usb_val |= (ftdi->bitbang_mode << 8);
1619
1620 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1621 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1622 NULL, 0, ftdi->usb_write_timeout) != 0)
1623 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1624
1625 ftdi->bitbang_enabled = 1;
1626 return 0;
1627}
1628
1629/**
1630 Disable bitbang mode.
1631
1632 \param ftdi pointer to ftdi_context
1633
1634 \retval 0: all fine
1635 \retval -1: can't disable bitbang mode
1636*/
1637int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1638{
1639 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1640 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1641
1642 ftdi->bitbang_enabled = 0;
1643 return 0;
1644}
1645
1646/**
1647 Enable advanced bitbang mode for FT2232C chips.
1648
1649 \param ftdi pointer to ftdi_context
1650 \param bitmask Bitmask to configure lines.
1651 HIGH/ON value configures a line as output.
1652 \param mode Bitbang mode: 1 for normal mode, 2 for SPI mode
1653
1654 \retval 0: all fine
1655 \retval -1: can't enable bitbang mode
1656*/
1657int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1658{
1659 unsigned short usb_val;
1660
1661 usb_val = bitmask; // low byte: bitmask
1662 usb_val |= (mode << 8);
1663 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1664 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1665
1666 ftdi->bitbang_mode = mode;
1667 ftdi->bitbang_enabled = (mode == BITMODE_BITBANG || mode == BITMODE_SYNCBB)?1:0;
1668 return 0;
1669}
1670
1671/**
1672 Directly read pin state. Useful for bitbang mode.
1673
1674 \param ftdi pointer to ftdi_context
1675 \param pins Pointer to store pins into
1676
1677 \retval 0: all fine
1678 \retval -1: read pins failed
1679*/
1680int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1681{
1682 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (char *)pins, 1, ftdi->usb_read_timeout) != 1)
1683 ftdi_error_return(-1, "read pins failed");
1684
1685 return 0;
1686}
1687
1688/**
1689 Set latency timer
1690
1691 The FTDI chip keeps data in the internal buffer for a specific
1692 amount of time if the buffer is not full yet to decrease
1693 load on the usb bus.
1694
1695 \param ftdi pointer to ftdi_context
1696 \param latency Value between 1 and 255
1697
1698 \retval 0: all fine
1699 \retval -1: latency out of range
1700 \retval -2: unable to set latency timer
1701*/
1702int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1703{
1704 unsigned short usb_val;
1705
1706 if (latency < 1)
1707 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1708
1709 usb_val = latency;
1710 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1711 ftdi_error_return(-2, "unable to set latency timer");
1712
1713 return 0;
1714}
1715
1716/**
1717 Get latency timer
1718
1719 \param ftdi pointer to ftdi_context
1720 \param latency Pointer to store latency value in
1721
1722 \retval 0: all fine
1723 \retval -1: unable to get latency timer
1724*/
1725int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1726{
1727 unsigned short usb_val;
1728 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1729 ftdi_error_return(-1, "reading latency timer failed");
1730
1731 *latency = (unsigned char)usb_val;
1732 return 0;
1733}
1734
1735/**
1736 Poll modem status information
1737
1738 This function allows the retrieve the two status bytes of the device.
1739 The device sends these bytes also as a header for each read access
1740 where they are discarded by ftdi_read_data(). The chip generates
1741 the two stripped status bytes in the absence of data every 40 ms.
1742
1743 Layout of the first byte:
1744 - B0..B3 - must be 0
1745 - B4 Clear to send (CTS)
1746 0 = inactive
1747 1 = active
1748 - B5 Data set ready (DTS)
1749 0 = inactive
1750 1 = active
1751 - B6 Ring indicator (RI)
1752 0 = inactive
1753 1 = active
1754 - B7 Receive line signal detect (RLSD)
1755 0 = inactive
1756 1 = active
1757
1758 Layout of the second byte:
1759 - B0 Data ready (DR)
1760 - B1 Overrun error (OE)
1761 - B2 Parity error (PE)
1762 - B3 Framing error (FE)
1763 - B4 Break interrupt (BI)
1764 - B5 Transmitter holding register (THRE)
1765 - B6 Transmitter empty (TEMT)
1766 - B7 Error in RCVR FIFO
1767
1768 \param ftdi pointer to ftdi_context
1769 \param status Pointer to store status information in. Must be two bytes.
1770
1771 \retval 0: all fine
1772 \retval -1: unable to retrieve status information
1773*/
1774int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1775{
1776 char usb_val[2];
1777
1778 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, usb_val, 2, ftdi->usb_read_timeout) != 2)
1779 ftdi_error_return(-1, "getting modem status failed");
1780
1781 *status = (usb_val[1] << 8) | usb_val[0];
1782
1783 return 0;
1784}
1785
1786/**
1787 Set flowcontrol for ftdi chip
1788
1789 \param ftdi pointer to ftdi_context
1790 \param flowctrl flow control to use. should be
1791 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
1792
1793 \retval 0: all fine
1794 \retval -1: set flow control failed
1795*/
1796int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1797{
1798 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1799 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
1800 NULL, 0, ftdi->usb_write_timeout) != 0)
1801 ftdi_error_return(-1, "set flow control failed");
1802
1803 return 0;
1804}
1805
1806/**
1807 Set dtr line
1808
1809 \param ftdi pointer to ftdi_context
1810 \param state state to set line to (1 or 0)
1811
1812 \retval 0: all fine
1813 \retval -1: set dtr failed
1814*/
1815int ftdi_setdtr(struct ftdi_context *ftdi, int state)
1816{
1817 unsigned short usb_val;
1818
1819 if (state)
1820 usb_val = SIO_SET_DTR_HIGH;
1821 else
1822 usb_val = SIO_SET_DTR_LOW;
1823
1824 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1825 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1826 NULL, 0, ftdi->usb_write_timeout) != 0)
1827 ftdi_error_return(-1, "set dtr failed");
1828
1829 return 0;
1830}
1831
1832/**
1833 Set rts line
1834
1835 \param ftdi pointer to ftdi_context
1836 \param state state to set line to (1 or 0)
1837
1838 \retval 0: all fine
1839 \retval -1 set rts failed
1840*/
1841int ftdi_setrts(struct ftdi_context *ftdi, int state)
1842{
1843 unsigned short usb_val;
1844
1845 if (state)
1846 usb_val = SIO_SET_RTS_HIGH;
1847 else
1848 usb_val = SIO_SET_RTS_LOW;
1849
1850 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1851 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1852 NULL, 0, ftdi->usb_write_timeout) != 0)
1853 ftdi_error_return(-1, "set of rts failed");
1854
1855 return 0;
1856}
1857
1858/**
1859 Set dtr and rts line in one pass
1860
1861 \param ftdi pointer to ftdi_context
1862 \param dtr DTR state to set line to (1 or 0)
1863 \param rts RTS state to set line to (1 or 0)
1864
1865 \retval 0: all fine
1866 \retval -1 set dtr/rts failed
1867 */
1868int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
1869{
1870 unsigned short usb_val;
1871
1872 if (dtr)
1873 usb_val = SIO_SET_DTR_HIGH;
1874 else
1875 usb_val = SIO_SET_DTR_LOW;
1876
1877 if (rts)
1878 usb_val |= SIO_SET_RTS_HIGH;
1879 else
1880 usb_val |= SIO_SET_RTS_LOW;
1881
1882 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1883 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1884 NULL, 0, ftdi->usb_write_timeout) != 0)
1885 ftdi_error_return(-1, "set of rts/dtr failed");
1886
1887 return 0;
1888}
1889
1890/**
1891 Set the special event character
1892
1893 \param ftdi pointer to ftdi_context
1894 \param eventch Event character
1895 \param enable 0 to disable the event character, non-zero otherwise
1896
1897 \retval 0: all fine
1898 \retval -1: unable to set event character
1899*/
1900int ftdi_set_event_char(struct ftdi_context *ftdi,
1901 unsigned char eventch, unsigned char enable)
1902{
1903 unsigned short usb_val;
1904
1905 usb_val = eventch;
1906 if (enable)
1907 usb_val |= 1 << 8;
1908
1909 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1910 ftdi_error_return(-1, "setting event character failed");
1911
1912 return 0;
1913}
1914
1915/**
1916 Set error character
1917
1918 \param ftdi pointer to ftdi_context
1919 \param errorch Error character
1920 \param enable 0 to disable the error character, non-zero otherwise
1921
1922 \retval 0: all fine
1923 \retval -1: unable to set error character
1924*/
1925int ftdi_set_error_char(struct ftdi_context *ftdi,
1926 unsigned char errorch, unsigned char enable)
1927{
1928 unsigned short usb_val;
1929
1930 usb_val = errorch;
1931 if (enable)
1932 usb_val |= 1 << 8;
1933
1934 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1935 ftdi_error_return(-1, "setting error character failed");
1936
1937 return 0;
1938}
1939
1940/**
1941 Set the eeprom size
1942
1943 \param ftdi pointer to ftdi_context
1944 \param eeprom Pointer to ftdi_eeprom
1945 \param size
1946
1947*/
1948void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
1949{
1950 ftdi->eeprom_size=size;
1951 eeprom->size=size;
1952}
1953
1954/**
1955 Init eeprom with default values.
1956
1957 \param eeprom Pointer to ftdi_eeprom
1958*/
1959void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
1960{
1961 eeprom->vendor_id = 0x0403;
1962 eeprom->product_id = 0x6001;
1963
1964 eeprom->self_powered = 1;
1965 eeprom->remote_wakeup = 1;
1966 eeprom->BM_type_chip = 1;
1967
1968 eeprom->in_is_isochronous = 0;
1969 eeprom->out_is_isochronous = 0;
1970 eeprom->suspend_pull_downs = 0;
1971
1972 eeprom->use_serial = 0;
1973 eeprom->change_usb_version = 0;
1974 eeprom->usb_version = 0x0200;
1975 eeprom->max_power = 0;
1976
1977 eeprom->manufacturer = NULL;
1978 eeprom->product = NULL;
1979 eeprom->serial = NULL;
1980
1981 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
1982}
1983
1984/**
1985 Build binary output from ftdi_eeprom structure.
1986 Output is suitable for ftdi_write_eeprom().
1987
1988 \param eeprom Pointer to ftdi_eeprom
1989 \param output Buffer of 128 bytes to store eeprom image to
1990
1991 \retval >0: used eeprom size
1992 \retval -1: eeprom size (128 bytes) exceeded by custom strings
1993*/
1994int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
1995{
1996 unsigned char i, j;
1997 unsigned short checksum, value;
1998 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
1999 int size_check;
2000
2001 if (eeprom->manufacturer != NULL)
2002 manufacturer_size = strlen(eeprom->manufacturer);
2003 if (eeprom->product != NULL)
2004 product_size = strlen(eeprom->product);
2005 if (eeprom->serial != NULL)
2006 serial_size = strlen(eeprom->serial);
2007
2008 size_check = eeprom->size;
2009 size_check -= 28; // 28 are always in use (fixed)
2010
2011 // Top half of a 256byte eeprom is used just for strings and checksum
2012 // it seems that the FTDI chip will not read these strings from the lower half
2013 // Each string starts with two bytes; offset and type (0x03 for string)
2014 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
2015 if (eeprom->size>=256)size_check = 120;
2016 size_check -= manufacturer_size*2;
2017 size_check -= product_size*2;
2018 size_check -= serial_size*2;
2019
2020 // eeprom size exceeded?
2021 if (size_check < 0)
2022 return (-1);
2023
2024 // empty eeprom
2025 memset (output, 0, eeprom->size);
2026
2027 // Addr 00: Stay 00 00
2028 // Addr 02: Vendor ID
2029 output[0x02] = eeprom->vendor_id;
2030 output[0x03] = eeprom->vendor_id >> 8;
2031
2032 // Addr 04: Product ID
2033 output[0x04] = eeprom->product_id;
2034 output[0x05] = eeprom->product_id >> 8;
2035
2036 // Addr 06: Device release number (0400h for BM features)
2037 output[0x06] = 0x00;
2038
2039 if (eeprom->BM_type_chip == 1)
2040 output[0x07] = 0x04;
2041 else
2042 output[0x07] = 0x02;
2043
2044 // Addr 08: Config descriptor
2045 // Bit 7: always 1
2046 // Bit 6: 1 if this device is self powered, 0 if bus powered
2047 // Bit 5: 1 if this device uses remote wakeup
2048 // Bit 4: 1 if this device is battery powered
2049 j = 0x80;
2050 if (eeprom->self_powered == 1)
2051 j |= 0x40;
2052 if (eeprom->remote_wakeup == 1)
2053 j |= 0x20;
2054 output[0x08] = j;
2055
2056 // Addr 09: Max power consumption: max power = value * 2 mA
2057 output[0x09] = eeprom->max_power;
2058
2059 // Addr 0A: Chip configuration
2060 // Bit 7: 0 - reserved
2061 // Bit 6: 0 - reserved
2062 // Bit 5: 0 - reserved
2063 // Bit 4: 1 - Change USB version
2064 // Bit 3: 1 - Use the serial number string
2065 // Bit 2: 1 - Enable suspend pull downs for lower power
2066 // Bit 1: 1 - Out EndPoint is Isochronous
2067 // Bit 0: 1 - In EndPoint is Isochronous
2068 //
2069 j = 0;
2070 if (eeprom->in_is_isochronous == 1)
2071 j = j | 1;
2072 if (eeprom->out_is_isochronous == 1)
2073 j = j | 2;
2074 if (eeprom->suspend_pull_downs == 1)
2075 j = j | 4;
2076 if (eeprom->use_serial == 1)
2077 j = j | 8;
2078 if (eeprom->change_usb_version == 1)
2079 j = j | 16;
2080 output[0x0A] = j;
2081
2082 // Addr 0B: reserved
2083 output[0x0B] = 0x00;
2084
2085 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2086 // Addr 0D: USB version high byte when 0x0A bit 4 is set
2087 if (eeprom->change_usb_version == 1)
2088 {
2089 output[0x0C] = eeprom->usb_version;
2090 output[0x0D] = eeprom->usb_version >> 8;
2091 }
2092
2093
2094 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2095 // Addr 0F: Length of manufacturer string
2096 output[0x0F] = manufacturer_size*2 + 2;
2097
2098 // Addr 10: Offset of the product string + 0x80, calculated later
2099 // Addr 11: Length of product string
2100 output[0x11] = product_size*2 + 2;
2101
2102 // Addr 12: Offset of the serial string + 0x80, calculated later
2103 // Addr 13: Length of serial string
2104 output[0x13] = serial_size*2 + 2;
2105
2106 // Dynamic content
2107 i=0x14;
2108 if (eeprom->size>=256) i = 0x80;
2109
2110
2111 // Output manufacturer
2112 output[0x0E] = i | 0x80; // calculate offset
2113 output[i++] = manufacturer_size*2 + 2;
2114 output[i++] = 0x03; // type: string
2115 for (j = 0; j < manufacturer_size; j++)
2116 {
2117 output[i] = eeprom->manufacturer[j], i++;
2118 output[i] = 0x00, i++;
2119 }
2120
2121 // Output product name
2122 output[0x10] = i | 0x80; // calculate offset
2123 output[i] = product_size*2 + 2, i++;
2124 output[i] = 0x03, i++;
2125 for (j = 0; j < product_size; j++)
2126 {
2127 output[i] = eeprom->product[j], i++;
2128 output[i] = 0x00, i++;
2129 }
2130
2131 // Output serial
2132 output[0x12] = i | 0x80; // calculate offset
2133 output[i] = serial_size*2 + 2, i++;
2134 output[i] = 0x03, i++;
2135 for (j = 0; j < serial_size; j++)
2136 {
2137 output[i] = eeprom->serial[j], i++;
2138 output[i] = 0x00, i++;
2139 }
2140
2141 // calculate checksum
2142 checksum = 0xAAAA;
2143
2144 for (i = 0; i < eeprom->size/2-1; i++)
2145 {
2146 value = output[i*2];
2147 value += output[(i*2)+1] << 8;
2148
2149 checksum = value^checksum;
2150 checksum = (checksum << 1) | (checksum >> 15);
2151 }
2152
2153 output[eeprom->size-2] = checksum;
2154 output[eeprom->size-1] = checksum >> 8;
2155
2156 return size_check;
2157}
2158
2159/**
2160 Decode binary EEPROM image into an ftdi_eeprom structure.
2161
2162 \param eeprom Pointer to ftdi_eeprom which will be filled in.
2163 \param buf Buffer of \a size bytes of raw eeprom data
2164 \param size size size of eeprom data in bytes
2165
2166 \retval 0: all fine
2167 \retval -1: something went wrong
2168
2169 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2170 FIXME: Strings are malloc'ed here and should be freed somewhere
2171*/
2172int ftdi_eeprom_decode(struct ftdi_eeprom *eeprom, unsigned char *buf, int size)
2173{
2174 unsigned char i, j;
2175 unsigned short checksum, eeprom_checksum, value;
2176 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2177 int size_check;
2178 int eeprom_size = 128;
2179#if 0
2180 size_check = eeprom->size;
2181 size_check -= 28; // 28 are always in use (fixed)
2182
2183 // Top half of a 256byte eeprom is used just for strings and checksum
2184 // it seems that the FTDI chip will not read these strings from the lower half
2185 // Each string starts with two bytes; offset and type (0x03 for string)
2186 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
2187 if (eeprom->size>=256)size_check = 120;
2188 size_check -= manufacturer_size*2;
2189 size_check -= product_size*2;
2190 size_check -= serial_size*2;
2191
2192 // eeprom size exceeded?
2193 if (size_check < 0)
2194 return (-1);
2195#endif
2196
2197 // empty eeprom struct
2198 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2199
2200 // Addr 00: Stay 00 00
2201
2202 // Addr 02: Vendor ID
2203 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2204
2205 // Addr 04: Product ID
2206 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2207
2208 value = buf[0x06] + (buf[0x07]<<8);
2209 switch (value)
2210 {
2211 case 0x0400:
2212 eeprom->BM_type_chip = 1;
2213 break;
2214 case 0x0200:
2215 eeprom->BM_type_chip = 0;
2216 break;
2217 default: // Unknown device
2218 eeprom->BM_type_chip = 0;
2219 break;
2220 }
2221
2222 // Addr 08: Config descriptor
2223 // Bit 7: always 1
2224 // Bit 6: 1 if this device is self powered, 0 if bus powered
2225 // Bit 5: 1 if this device uses remote wakeup
2226 // Bit 4: 1 if this device is battery powered
2227 j = buf[0x08];
2228 if (j&0x40) eeprom->self_powered = 1;
2229 if (j&0x20) eeprom->remote_wakeup = 1;
2230
2231 // Addr 09: Max power consumption: max power = value * 2 mA
2232 eeprom->max_power = buf[0x09];
2233
2234 // Addr 0A: Chip configuration
2235 // Bit 7: 0 - reserved
2236 // Bit 6: 0 - reserved
2237 // Bit 5: 0 - reserved
2238 // Bit 4: 1 - Change USB version
2239 // Bit 3: 1 - Use the serial number string
2240 // Bit 2: 1 - Enable suspend pull downs for lower power
2241 // Bit 1: 1 - Out EndPoint is Isochronous
2242 // Bit 0: 1 - In EndPoint is Isochronous
2243 //
2244 j = buf[0x0A];
2245 if (j&0x01) eeprom->in_is_isochronous = 1;
2246 if (j&0x02) eeprom->out_is_isochronous = 1;
2247 if (j&0x04) eeprom->suspend_pull_downs = 1;
2248 if (j&0x08) eeprom->use_serial = 1;
2249 if (j&0x10) eeprom->change_usb_version = 1;
2250
2251 // Addr 0B: reserved
2252
2253 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2254 // Addr 0D: USB version high byte when 0x0A bit 4 is set
2255 if (eeprom->change_usb_version == 1)
2256 {
2257 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2258 }
2259
2260 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2261 // Addr 0F: Length of manufacturer string
2262 manufacturer_size = buf[0x0F]/2;
2263 if (manufacturer_size > 0) eeprom->manufacturer = malloc(manufacturer_size);
2264 else eeprom->manufacturer = NULL;
2265
2266 // Addr 10: Offset of the product string + 0x80, calculated later
2267 // Addr 11: Length of product string
2268 product_size = buf[0x11]/2;
2269 if (product_size > 0) eeprom->product = malloc(product_size);
2270 else eeprom->product = NULL;
2271
2272 // Addr 12: Offset of the serial string + 0x80, calculated later
2273 // Addr 13: Length of serial string
2274 serial_size = buf[0x13]/2;
2275 if (serial_size > 0) eeprom->serial = malloc(serial_size);
2276 else eeprom->serial = NULL;
2277
2278 // Decode manufacturer
2279 i = buf[0x0E] & 0x7f; // offset
2280 for (j=0;j<manufacturer_size-1;j++)
2281 {
2282 eeprom->manufacturer[j] = buf[2*j+i+2];
2283 }
2284 eeprom->manufacturer[j] = '\0';
2285
2286 // Decode product name
2287 i = buf[0x10] & 0x7f; // offset
2288 for (j=0;j<product_size-1;j++)
2289 {
2290 eeprom->product[j] = buf[2*j+i+2];
2291 }
2292 eeprom->product[j] = '\0';
2293
2294 // Decode serial
2295 i = buf[0x12] & 0x7f; // offset
2296 for (j=0;j<serial_size-1;j++)
2297 {
2298 eeprom->serial[j] = buf[2*j+i+2];
2299 }
2300 eeprom->serial[j] = '\0';
2301
2302 // verify checksum
2303 checksum = 0xAAAA;
2304
2305 for (i = 0; i < eeprom_size/2-1; i++)
2306 {
2307 value = buf[i*2];
2308 value += buf[(i*2)+1] << 8;
2309
2310 checksum = value^checksum;
2311 checksum = (checksum << 1) | (checksum >> 15);
2312 }
2313
2314 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2315
2316 if (eeprom_checksum != checksum)
2317 {
2318 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2319 return -1;
2320 }
2321
2322 return 0;
2323}
2324
2325/**
2326 Read eeprom location
2327
2328 \param ftdi pointer to ftdi_context
2329 \param eeprom_addr Address of eeprom location to be read
2330 \param eeprom_val Pointer to store read eeprom location
2331
2332 \retval 0: all fine
2333 \retval -1: read failed
2334*/
2335int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
2336{
2337 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
2338 ftdi_error_return(-1, "reading eeprom failed");
2339
2340 return 0;
2341}
2342
2343/**
2344 Read eeprom
2345
2346 \param ftdi pointer to ftdi_context
2347 \param eeprom Pointer to store eeprom into
2348
2349 \retval 0: all fine
2350 \retval -1: read failed
2351*/
2352int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2353{
2354 int i;
2355
2356 for (i = 0; i < ftdi->eeprom_size/2; i++)
2357 {
2358 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
2359 ftdi_error_return(-1, "reading eeprom failed");
2360 }
2361
2362 return 0;
2363}
2364
2365/*
2366 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
2367 Function is only used internally
2368 \internal
2369*/
2370static unsigned char ftdi_read_chipid_shift(unsigned char value)
2371{
2372 return ((value & 1) << 1) |
2373 ((value & 2) << 5) |
2374 ((value & 4) >> 2) |
2375 ((value & 8) << 4) |
2376 ((value & 16) >> 1) |
2377 ((value & 32) >> 1) |
2378 ((value & 64) >> 4) |
2379 ((value & 128) >> 2);
2380}
2381
2382/**
2383 Read the FTDIChip-ID from R-type devices
2384
2385 \param ftdi pointer to ftdi_context
2386 \param chipid Pointer to store FTDIChip-ID
2387
2388 \retval 0: all fine
2389 \retval -1: read failed
2390*/
2391int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
2392{
2393 unsigned int a = 0, b = 0;
2394
2395 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (char *)&a, 2, ftdi->usb_read_timeout) == 2)
2396 {
2397 a = a << 8 | a >> 8;
2398 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (char *)&b, 2, ftdi->usb_read_timeout) == 2)
2399 {
2400 b = b << 8 | b >> 8;
2401 a = (a << 16) | (b & 0xFFFF);
2402 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
2403 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
2404 *chipid = a ^ 0xa5f0f7d1;
2405 return 0;
2406 }
2407 }
2408
2409 ftdi_error_return(-1, "read of FTDIChip-ID failed");
2410}
2411
2412/**
2413 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
2414 Call this function then do a write then call again to see if size changes, if so write again.
2415
2416 \param ftdi pointer to ftdi_context
2417 \param eeprom Pointer to store eeprom into
2418 \param maxsize the size of the buffer to read into
2419
2420 \retval size of eeprom
2421*/
2422int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
2423{
2424 int i=0,j,minsize=32;
2425 int size=minsize;
2426
2427 do
2428 {
2429 for (j = 0; i < maxsize/2 && j<size; j++)
2430 {
2431 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,
2432 SIO_READ_EEPROM_REQUEST, 0, i,
2433 eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
2434 ftdi_error_return(-1, "reading eeprom failed");
2435 i++;
2436 }
2437 size*=2;
2438 }
2439 while (size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
2440
2441 return size/2;
2442}
2443
2444/**
2445 Write eeprom location
2446
2447 \param ftdi pointer to ftdi_context
2448 \param eeprom_addr Address of eeprom location to be written
2449 \param eeprom_val Value to be written
2450
2451 \retval 0: all fine
2452 \retval -1: read failed
2453*/
2454int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr, unsigned short eeprom_val)
2455{
2456 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2457 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
2458 NULL, 0, ftdi->usb_write_timeout) != 0)
2459 ftdi_error_return(-1, "unable to write eeprom");
2460
2461 return 0;
2462}
2463
2464/**
2465 Write eeprom
2466
2467 \param ftdi pointer to ftdi_context
2468 \param eeprom Pointer to read eeprom from
2469
2470 \retval 0: all fine
2471 \retval -1: read failed
2472*/
2473int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2474{
2475 unsigned short usb_val, status;
2476 int i, ret;
2477
2478 /* These commands were traced while running MProg */
2479 if ((ret = ftdi_usb_reset(ftdi)) != 0)
2480 return ret;
2481 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
2482 return ret;
2483 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
2484 return ret;
2485
2486 for (i = 0; i < ftdi->eeprom_size/2; i++)
2487 {
2488 usb_val = eeprom[i*2];
2489 usb_val += eeprom[(i*2)+1] << 8;
2490 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2491 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
2492 NULL, 0, ftdi->usb_write_timeout) != 0)
2493 ftdi_error_return(-1, "unable to write eeprom");
2494 }
2495
2496 return 0;
2497}
2498
2499/**
2500 Erase eeprom
2501
2502 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
2503
2504 \param ftdi pointer to ftdi_context
2505
2506 \retval 0: all fine
2507 \retval -1: erase failed
2508*/
2509int ftdi_erase_eeprom(struct ftdi_context *ftdi)
2510{
2511 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST, 0, 0, NULL, 0, ftdi->usb_write_timeout) != 0)
2512 ftdi_error_return(-1, "unable to erase eeprom");
2513
2514 return 0;
2515}
2516
2517/**
2518 Get string representation for last error code
2519
2520 \param ftdi pointer to ftdi_context
2521
2522 \retval Pointer to error string
2523*/
2524char *ftdi_get_error_string (struct ftdi_context *ftdi)
2525{
2526 return ftdi->error_str;
2527}
2528
2529/* @} end of doxygen libftdi group */