Add missing sys/time.h include
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2017 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 https://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi_i.h"
38#include "ftdi.h"
39#include "ftdi_version_i.h"
40
41#define ftdi_error_return(code, str) do { \
42 if ( ftdi ) \
43 ftdi->error_str = str; \
44 else \
45 fprintf(stderr, str); \
46 return code; \
47 } while(0);
48
49#define ftdi_error_return_free_device_list(code, str, devs) do { \
50 libusb_free_device_list(devs,1); \
51 ftdi->error_str = str; \
52 return code; \
53 } while(0);
54
55
56/**
57 Internal function to close usb device pointer.
58 Sets ftdi->usb_dev to NULL.
59 \internal
60
61 \param ftdi pointer to ftdi_context
62
63 \retval none
64*/
65static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
66{
67 if (ftdi && ftdi->usb_dev)
68 {
69 libusb_close (ftdi->usb_dev);
70 ftdi->usb_dev = NULL;
71 if(ftdi->eeprom)
72 ftdi->eeprom->initialized_for_connected_device = 0;
73 }
74}
75
76/**
77 Initializes a ftdi_context.
78
79 \param ftdi pointer to ftdi_context
80
81 \retval 0: all fine
82 \retval -1: couldn't allocate read buffer
83 \retval -2: couldn't allocate struct buffer
84 \retval -3: libusb_init() failed
85
86 \remark This should be called before all functions
87*/
88int ftdi_init(struct ftdi_context *ftdi)
89{
90 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
91 ftdi->usb_ctx = NULL;
92 ftdi->usb_dev = NULL;
93 ftdi->usb_read_timeout = 5000;
94 ftdi->usb_write_timeout = 5000;
95
96 ftdi->type = TYPE_BM; /* chip type */
97 ftdi->baudrate = -1;
98 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
99
100 ftdi->readbuffer = NULL;
101 ftdi->readbuffer_offset = 0;
102 ftdi->readbuffer_remaining = 0;
103 ftdi->writebuffer_chunksize = 4096;
104 ftdi->max_packet_size = 0;
105 ftdi->error_str = NULL;
106 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
107
108 if (libusb_init(&ftdi->usb_ctx) < 0)
109 ftdi_error_return(-3, "libusb_init() failed");
110
111 ftdi_set_interface(ftdi, INTERFACE_ANY);
112 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
113
114 if (eeprom == 0)
115 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
116 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
117 ftdi->eeprom = eeprom;
118
119 /* All fine. Now allocate the readbuffer */
120 return ftdi_read_data_set_chunksize(ftdi, 4096);
121}
122
123/**
124 Allocate and initialize a new ftdi_context
125
126 \return a pointer to a new ftdi_context, or NULL on failure
127*/
128struct ftdi_context *ftdi_new(void)
129{
130 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
131
132 if (ftdi == NULL)
133 {
134 return NULL;
135 }
136
137 if (ftdi_init(ftdi) != 0)
138 {
139 free(ftdi);
140 return NULL;
141 }
142
143 return ftdi;
144}
145
146/**
147 Open selected channels on a chip, otherwise use first channel.
148
149 \param ftdi pointer to ftdi_context
150 \param interface Interface to use for FT2232C/2232H/4232H chips.
151
152 \retval 0: all fine
153 \retval -1: unknown interface
154 \retval -2: USB device unavailable
155 \retval -3: Device already open, interface can't be set in that state
156*/
157int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
158{
159 if (ftdi == NULL)
160 ftdi_error_return(-2, "USB device unavailable");
161
162 if (ftdi->usb_dev != NULL)
163 {
164 int check_interface = interface;
165 if (check_interface == INTERFACE_ANY)
166 check_interface = INTERFACE_A;
167
168 if (ftdi->index != check_interface)
169 ftdi_error_return(-3, "Interface can not be changed on an already open device");
170 }
171
172 switch (interface)
173 {
174 case INTERFACE_ANY:
175 case INTERFACE_A:
176 ftdi->interface = 0;
177 ftdi->index = INTERFACE_A;
178 ftdi->in_ep = 0x02;
179 ftdi->out_ep = 0x81;
180 break;
181 case INTERFACE_B:
182 ftdi->interface = 1;
183 ftdi->index = INTERFACE_B;
184 ftdi->in_ep = 0x04;
185 ftdi->out_ep = 0x83;
186 break;
187 case INTERFACE_C:
188 ftdi->interface = 2;
189 ftdi->index = INTERFACE_C;
190 ftdi->in_ep = 0x06;
191 ftdi->out_ep = 0x85;
192 break;
193 case INTERFACE_D:
194 ftdi->interface = 3;
195 ftdi->index = INTERFACE_D;
196 ftdi->in_ep = 0x08;
197 ftdi->out_ep = 0x87;
198 break;
199 default:
200 ftdi_error_return(-1, "Unknown interface");
201 }
202 return 0;
203}
204
205/**
206 Deinitializes a ftdi_context.
207
208 \param ftdi pointer to ftdi_context
209*/
210void ftdi_deinit(struct ftdi_context *ftdi)
211{
212 if (ftdi == NULL)
213 return;
214
215 ftdi_usb_close_internal (ftdi);
216
217 if (ftdi->readbuffer != NULL)
218 {
219 free(ftdi->readbuffer);
220 ftdi->readbuffer = NULL;
221 }
222
223 if (ftdi->eeprom != NULL)
224 {
225 if (ftdi->eeprom->manufacturer != 0)
226 {
227 free(ftdi->eeprom->manufacturer);
228 ftdi->eeprom->manufacturer = 0;
229 }
230 if (ftdi->eeprom->product != 0)
231 {
232 free(ftdi->eeprom->product);
233 ftdi->eeprom->product = 0;
234 }
235 if (ftdi->eeprom->serial != 0)
236 {
237 free(ftdi->eeprom->serial);
238 ftdi->eeprom->serial = 0;
239 }
240 free(ftdi->eeprom);
241 ftdi->eeprom = NULL;
242 }
243
244 if (ftdi->usb_ctx)
245 {
246 libusb_exit(ftdi->usb_ctx);
247 ftdi->usb_ctx = NULL;
248 }
249}
250
251/**
252 Deinitialize and free an ftdi_context.
253
254 \param ftdi pointer to ftdi_context
255*/
256void ftdi_free(struct ftdi_context *ftdi)
257{
258 ftdi_deinit(ftdi);
259 free(ftdi);
260}
261
262/**
263 Use an already open libusb device.
264
265 \param ftdi pointer to ftdi_context
266 \param usb libusb libusb_device_handle to use
267*/
268void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
269{
270 if (ftdi == NULL)
271 return;
272
273 ftdi->usb_dev = usb;
274}
275
276/**
277 * @brief Get libftdi library version
278 *
279 * @return ftdi_version_info Library version information
280 **/
281struct ftdi_version_info ftdi_get_library_version(void)
282{
283 struct ftdi_version_info ver;
284
285 ver.major = FTDI_MAJOR_VERSION;
286 ver.minor = FTDI_MINOR_VERSION;
287 ver.micro = FTDI_MICRO_VERSION;
288 ver.version_str = FTDI_VERSION_STRING;
289 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
290
291 return ver;
292}
293
294/**
295 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
296 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
297 use. With VID:PID 0:0, search for the default devices
298 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014, 0x403:0x6015)
299
300 \param ftdi pointer to ftdi_context
301 \param devlist Pointer where to store list of found devices
302 \param vendor Vendor ID to search for
303 \param product Product ID to search for
304
305 \retval >0: number of devices found
306 \retval -3: out of memory
307 \retval -5: libusb_get_device_list() failed
308 \retval -6: libusb_get_device_descriptor() failed
309*/
310int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
311{
312 struct ftdi_device_list **curdev;
313 libusb_device *dev;
314 libusb_device **devs;
315 int count = 0;
316 int i = 0;
317
318 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
319 ftdi_error_return(-5, "libusb_get_device_list() failed");
320
321 curdev = devlist;
322 *curdev = NULL;
323
324 while ((dev = devs[i++]) != NULL)
325 {
326 struct libusb_device_descriptor desc;
327
328 if (libusb_get_device_descriptor(dev, &desc) < 0)
329 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
330
331 if (((vendor || product) &&
332 desc.idVendor == vendor && desc.idProduct == product) ||
333 (!(vendor || product) &&
334 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
335 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014
336 || desc.idProduct == 0x6015)))
337 {
338 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
339 if (!*curdev)
340 ftdi_error_return_free_device_list(-3, "out of memory", devs);
341
342 (*curdev)->next = NULL;
343 (*curdev)->dev = dev;
344 libusb_ref_device(dev);
345 curdev = &(*curdev)->next;
346 count++;
347 }
348 }
349 libusb_free_device_list(devs,1);
350 return count;
351}
352
353/**
354 Frees a usb device list.
355
356 \param devlist USB device list created by ftdi_usb_find_all()
357*/
358void ftdi_list_free(struct ftdi_device_list **devlist)
359{
360 struct ftdi_device_list *curdev, *next;
361
362 for (curdev = *devlist; curdev != NULL;)
363 {
364 next = curdev->next;
365 libusb_unref_device(curdev->dev);
366 free(curdev);
367 curdev = next;
368 }
369
370 *devlist = NULL;
371}
372
373/**
374 Frees a usb device list.
375
376 \param devlist USB device list created by ftdi_usb_find_all()
377*/
378void ftdi_list_free2(struct ftdi_device_list *devlist)
379{
380 ftdi_list_free(&devlist);
381}
382
383/**
384 Return device ID strings from the usb device.
385
386 The parameters manufacturer, description and serial may be NULL
387 or pointer to buffers to store the fetched strings.
388
389 \note Use this function only in combination with ftdi_usb_find_all()
390 as it closes the internal "usb_dev" after use.
391
392 \param ftdi pointer to ftdi_context
393 \param dev libusb usb_dev to use
394 \param manufacturer Store manufacturer string here if not NULL
395 \param mnf_len Buffer size of manufacturer string
396 \param description Store product description string here if not NULL
397 \param desc_len Buffer size of product description string
398 \param serial Store serial string here if not NULL
399 \param serial_len Buffer size of serial string
400
401 \retval 0: all fine
402 \retval -1: wrong arguments
403 \retval -4: unable to open device
404 \retval -7: get product manufacturer failed
405 \retval -8: get product description failed
406 \retval -9: get serial number failed
407 \retval -11: libusb_get_device_descriptor() failed
408*/
409int ftdi_usb_get_strings(struct ftdi_context *ftdi,
410 struct libusb_device *dev,
411 char *manufacturer, int mnf_len,
412 char *description, int desc_len,
413 char *serial, int serial_len)
414{
415 int ret;
416
417 if ((ftdi==NULL) || (dev==NULL))
418 return -1;
419
420 if (ftdi->usb_dev == NULL && libusb_open(dev, &ftdi->usb_dev) < 0)
421 ftdi_error_return(-4, "libusb_open() failed");
422
423 // ftdi->usb_dev will not be NULL when entering ftdi_usb_get_strings2(), so
424 // it won't be closed either. This allows us to close it whether we actually
425 // called libusb_open() up above or not. This matches the expected behavior
426 // (and note) for ftdi_usb_get_strings().
427 ret = ftdi_usb_get_strings2(ftdi, dev,
428 manufacturer, mnf_len,
429 description, desc_len,
430 serial, serial_len);
431
432 // only close it if it was successful, as all other return codes close
433 // before returning already.
434 if (ret == 0)
435 ftdi_usb_close_internal(ftdi);
436
437 return ret;
438}
439
440/**
441 Return device ID strings from the usb device.
442
443 The parameters manufacturer, description and serial may be NULL
444 or pointer to buffers to store the fetched strings.
445
446 \note The old function ftdi_usb_get_strings() always closes the device.
447 This version only closes the device if it was opened by it.
448
449 \param ftdi pointer to ftdi_context
450 \param dev libusb usb_dev to use
451 \param manufacturer Store manufacturer string here if not NULL
452 \param mnf_len Buffer size of manufacturer string
453 \param description Store product description string here if not NULL
454 \param desc_len Buffer size of product description string
455 \param serial Store serial string here if not NULL
456 \param serial_len Buffer size of serial string
457
458 \retval 0: all fine
459 \retval -1: wrong arguments
460 \retval -4: unable to open device
461 \retval -7: get product manufacturer failed
462 \retval -8: get product description failed
463 \retval -9: get serial number failed
464 \retval -11: libusb_get_device_descriptor() failed
465*/
466int ftdi_usb_get_strings2(struct ftdi_context *ftdi, struct libusb_device *dev,
467 char *manufacturer, int mnf_len,
468 char *description, int desc_len,
469 char *serial, int serial_len)
470{
471 struct libusb_device_descriptor desc;
472 char need_open;
473
474 if ((ftdi==NULL) || (dev==NULL))
475 return -1;
476
477 need_open = (ftdi->usb_dev == NULL);
478 if (need_open && libusb_open(dev, &ftdi->usb_dev) < 0)
479 ftdi_error_return(-4, "libusb_open() failed");
480
481 if (libusb_get_device_descriptor(dev, &desc) < 0)
482 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
483
484 if (manufacturer != NULL)
485 {
486 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
487 {
488 ftdi_usb_close_internal (ftdi);
489 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
490 }
491 }
492
493 if (description != NULL)
494 {
495 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
496 {
497 ftdi_usb_close_internal (ftdi);
498 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
499 }
500 }
501
502 if (serial != NULL)
503 {
504 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
505 {
506 ftdi_usb_close_internal (ftdi);
507 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
508 }
509 }
510
511 if (need_open)
512 ftdi_usb_close_internal (ftdi);
513
514 return 0;
515}
516
517/**
518 * Internal function to determine the maximum packet size.
519 * \param ftdi pointer to ftdi_context
520 * \param dev libusb usb_dev to use
521 * \retval Maximum packet size for this device
522 */
523static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
524{
525 struct libusb_device_descriptor desc;
526 struct libusb_config_descriptor *config0;
527 unsigned int packet_size;
528
529 // Sanity check
530 if (ftdi == NULL || dev == NULL)
531 return 64;
532
533 // Determine maximum packet size. Init with default value.
534 // New hi-speed devices from FTDI use a packet size of 512 bytes
535 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
536 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
537 packet_size = 512;
538 else
539 packet_size = 64;
540
541 if (libusb_get_device_descriptor(dev, &desc) < 0)
542 return packet_size;
543
544 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
545 return packet_size;
546
547 if (desc.bNumConfigurations > 0)
548 {
549 if (ftdi->interface < config0->bNumInterfaces)
550 {
551 struct libusb_interface interface = config0->interface[ftdi->interface];
552 if (interface.num_altsetting > 0)
553 {
554 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
555 if (descriptor.bNumEndpoints > 0)
556 {
557 packet_size = descriptor.endpoint[0].wMaxPacketSize;
558 }
559 }
560 }
561 }
562
563 libusb_free_config_descriptor (config0);
564 return packet_size;
565}
566
567/**
568 Opens a ftdi device given by an usb_device.
569
570 \param ftdi pointer to ftdi_context
571 \param dev libusb usb_dev to use
572
573 \retval 0: all fine
574 \retval -3: unable to config device
575 \retval -4: unable to open device
576 \retval -5: unable to claim device
577 \retval -6: reset failed
578 \retval -7: set baudrate failed
579 \retval -8: ftdi context invalid
580 \retval -9: libusb_get_device_descriptor() failed
581 \retval -10: libusb_get_config_descriptor() failed
582 \retval -11: libusb_detach_kernel_driver() failed
583 \retval -12: libusb_get_configuration() failed
584*/
585int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
586{
587 struct libusb_device_descriptor desc;
588 struct libusb_config_descriptor *config0;
589 int cfg, cfg0, detach_errno = 0;
590
591 if (ftdi == NULL)
592 ftdi_error_return(-8, "ftdi context invalid");
593
594 if (libusb_open(dev, &ftdi->usb_dev) < 0)
595 ftdi_error_return(-4, "libusb_open() failed");
596
597 if (libusb_get_device_descriptor(dev, &desc) < 0)
598 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
599
600 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
601 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
602 cfg0 = config0->bConfigurationValue;
603 libusb_free_config_descriptor (config0);
604
605 // Try to detach ftdi_sio kernel module.
606 //
607 // The return code is kept in a separate variable and only parsed
608 // if usb_set_configuration() or usb_claim_interface() fails as the
609 // detach operation might be denied and everything still works fine.
610 // Likely scenario is a static ftdi_sio kernel module.
611 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
612 {
613 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
614 detach_errno = errno;
615 }
616
617 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
618 ftdi_error_return(-12, "libusb_get_configuration () failed");
619 // set configuration (needed especially for windows)
620 // tolerate EBUSY: one device with one configuration, but two interfaces
621 // and libftdi sessions to both interfaces (e.g. FT2232)
622 if (desc.bNumConfigurations > 0 && cfg != cfg0)
623 {
624 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
625 {
626 ftdi_usb_close_internal (ftdi);
627 if (detach_errno == EPERM)
628 {
629 ftdi_error_return(-8, "inappropriate permissions on device!");
630 }
631 else
632 {
633 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
634 }
635 }
636 }
637
638 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
639 {
640 ftdi_usb_close_internal (ftdi);
641 if (detach_errno == EPERM)
642 {
643 ftdi_error_return(-8, "inappropriate permissions on device!");
644 }
645 else
646 {
647 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
648 }
649 }
650
651 if (ftdi_usb_reset (ftdi) != 0)
652 {
653 ftdi_usb_close_internal (ftdi);
654 ftdi_error_return(-6, "ftdi_usb_reset failed");
655 }
656
657 // Try to guess chip type
658 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
659 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
660 && desc.iSerialNumber == 0))
661 ftdi->type = TYPE_BM;
662 else if (desc.bcdDevice == 0x200)
663 ftdi->type = TYPE_AM;
664 else if (desc.bcdDevice == 0x500)
665 ftdi->type = TYPE_2232C;
666 else if (desc.bcdDevice == 0x600)
667 ftdi->type = TYPE_R;
668 else if (desc.bcdDevice == 0x700)
669 ftdi->type = TYPE_2232H;
670 else if (desc.bcdDevice == 0x800)
671 ftdi->type = TYPE_4232H;
672 else if (desc.bcdDevice == 0x900)
673 ftdi->type = TYPE_232H;
674 else if (desc.bcdDevice == 0x1000)
675 ftdi->type = TYPE_230X;
676
677 // Determine maximum packet size
678 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
679
680 if (ftdi_set_baudrate (ftdi, 9600) != 0)
681 {
682 ftdi_usb_close_internal (ftdi);
683 ftdi_error_return(-7, "set baudrate failed");
684 }
685
686 ftdi_error_return(0, "all fine");
687}
688
689/**
690 Opens the first device with a given vendor and product ids.
691
692 \param ftdi pointer to ftdi_context
693 \param vendor Vendor ID
694 \param product Product ID
695
696 \retval same as ftdi_usb_open_desc()
697*/
698int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
699{
700 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
701}
702
703/**
704 Opens the first device with a given, vendor id, product id,
705 description and serial.
706
707 \param ftdi pointer to ftdi_context
708 \param vendor Vendor ID
709 \param product Product ID
710 \param description Description to search for. Use NULL if not needed.
711 \param serial Serial to search for. Use NULL if not needed.
712
713 \retval 0: all fine
714 \retval -3: usb device not found
715 \retval -4: unable to open device
716 \retval -5: unable to claim device
717 \retval -6: reset failed
718 \retval -7: set baudrate failed
719 \retval -8: get product description failed
720 \retval -9: get serial number failed
721 \retval -12: libusb_get_device_list() failed
722 \retval -13: libusb_get_device_descriptor() failed
723*/
724int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
725 const char* description, const char* serial)
726{
727 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
728}
729
730/**
731 Opens the index-th device with a given, vendor id, product id,
732 description and serial.
733
734 \param ftdi pointer to ftdi_context
735 \param vendor Vendor ID
736 \param product Product ID
737 \param description Description to search for. Use NULL if not needed.
738 \param serial Serial to search for. Use NULL if not needed.
739 \param index Number of matching device to open if there are more than one, starts with 0.
740
741 \retval 0: all fine
742 \retval -1: usb_find_busses() failed
743 \retval -2: usb_find_devices() failed
744 \retval -3: usb device not found
745 \retval -4: unable to open device
746 \retval -5: unable to claim device
747 \retval -6: reset failed
748 \retval -7: set baudrate failed
749 \retval -8: get product description failed
750 \retval -9: get serial number failed
751 \retval -10: unable to close device
752 \retval -11: ftdi context invalid
753*/
754int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
755 const char* description, const char* serial, unsigned int index)
756{
757 libusb_device *dev;
758 libusb_device **devs;
759 char string[256];
760 int i = 0;
761
762 if (ftdi == NULL)
763 ftdi_error_return(-11, "ftdi context invalid");
764
765 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
766 ftdi_error_return(-12, "libusb_get_device_list() failed");
767
768 while ((dev = devs[i++]) != NULL)
769 {
770 struct libusb_device_descriptor desc;
771 int res;
772
773 if (libusb_get_device_descriptor(dev, &desc) < 0)
774 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
775
776 if (desc.idVendor == vendor && desc.idProduct == product)
777 {
778 if (libusb_open(dev, &ftdi->usb_dev) < 0)
779 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
780
781 if (description != NULL)
782 {
783 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
784 {
785 ftdi_usb_close_internal (ftdi);
786 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
787 }
788 if (strncmp(string, description, sizeof(string)) != 0)
789 {
790 ftdi_usb_close_internal (ftdi);
791 continue;
792 }
793 }
794 if (serial != NULL)
795 {
796 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
797 {
798 ftdi_usb_close_internal (ftdi);
799 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
800 }
801 if (strncmp(string, serial, sizeof(string)) != 0)
802 {
803 ftdi_usb_close_internal (ftdi);
804 continue;
805 }
806 }
807
808 ftdi_usb_close_internal (ftdi);
809
810 if (index > 0)
811 {
812 index--;
813 continue;
814 }
815
816 res = ftdi_usb_open_dev(ftdi, dev);
817 libusb_free_device_list(devs,1);
818 return res;
819 }
820 }
821
822 // device not found
823 ftdi_error_return_free_device_list(-3, "device not found", devs);
824}
825
826/**
827 Opens the device at a given USB bus and port.
828
829 \param ftdi pointer to ftdi_context
830 \param bus Bus number
831 \param port Port number
832
833 \retval 0: all fine
834 \retval -1: usb_find_busses() failed
835 \retval -2: usb_find_devices() failed
836 \retval -3: usb device not found
837 \retval -4: unable to open device
838 \retval -5: unable to claim device
839 \retval -6: reset failed
840 \retval -7: set baudrate failed
841 \retval -8: get product description failed
842 \retval -9: get serial number failed
843 \retval -10: unable to close device
844 \retval -11: ftdi context invalid
845*/
846int ftdi_usb_open_bus_port(struct ftdi_context *ftdi, uint8_t bus, uint8_t port)
847{
848 libusb_device *dev;
849 libusb_device **devs;
850 int i = 0;
851
852 if (ftdi == NULL)
853 ftdi_error_return(-11, "ftdi context invalid");
854
855 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
856 ftdi_error_return(-12, "libusb_get_device_list() failed");
857
858 while ((dev = devs[i++]) != NULL)
859 {
860 if (libusb_get_bus_number(dev) == bus && libusb_get_port_number(dev) == port)
861 {
862 int res;
863 res = ftdi_usb_open_dev(ftdi, dev);
864 libusb_free_device_list(devs,1);
865 return res;
866 }
867 }
868
869 // device not found
870 ftdi_error_return_free_device_list(-3, "device not found", devs);
871}
872
873/**
874 Opens the ftdi-device described by a description-string.
875 Intended to be used for parsing a device-description given as commandline argument.
876
877 \param ftdi pointer to ftdi_context
878 \param description NULL-terminated description-string, using this format:
879 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
880 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
881 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
882 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
883
884 \note The description format may be extended in later versions.
885
886 \retval 0: all fine
887 \retval -2: libusb_get_device_list() failed
888 \retval -3: usb device not found
889 \retval -4: unable to open device
890 \retval -5: unable to claim device
891 \retval -6: reset failed
892 \retval -7: set baudrate failed
893 \retval -8: get product description failed
894 \retval -9: get serial number failed
895 \retval -10: unable to close device
896 \retval -11: illegal description format
897 \retval -12: ftdi context invalid
898*/
899int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
900{
901 if (ftdi == NULL)
902 ftdi_error_return(-12, "ftdi context invalid");
903
904 if (description[0] == 0 || description[1] != ':')
905 ftdi_error_return(-11, "illegal description format");
906
907 if (description[0] == 'd')
908 {
909 libusb_device *dev;
910 libusb_device **devs;
911 unsigned int bus_number, device_address;
912 int i = 0;
913
914 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
915 ftdi_error_return(-2, "libusb_get_device_list() failed");
916
917 /* XXX: This doesn't handle symlinks/odd paths/etc... */
918 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
919 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
920
921 while ((dev = devs[i++]) != NULL)
922 {
923 int ret;
924 if (bus_number == libusb_get_bus_number (dev)
925 && device_address == libusb_get_device_address (dev))
926 {
927 ret = ftdi_usb_open_dev(ftdi, dev);
928 libusb_free_device_list(devs,1);
929 return ret;
930 }
931 }
932
933 // device not found
934 ftdi_error_return_free_device_list(-3, "device not found", devs);
935 }
936 else if (description[0] == 'i' || description[0] == 's')
937 {
938 unsigned int vendor;
939 unsigned int product;
940 unsigned int index=0;
941 const char *serial=NULL;
942 const char *startp, *endp;
943
944 errno=0;
945 startp=description+2;
946 vendor=strtoul((char*)startp,(char**)&endp,0);
947 if (*endp != ':' || endp == startp || errno != 0)
948 ftdi_error_return(-11, "illegal description format");
949
950 startp=endp+1;
951 product=strtoul((char*)startp,(char**)&endp,0);
952 if (endp == startp || errno != 0)
953 ftdi_error_return(-11, "illegal description format");
954
955 if (description[0] == 'i' && *endp != 0)
956 {
957 /* optional index field in i-mode */
958 if (*endp != ':')
959 ftdi_error_return(-11, "illegal description format");
960
961 startp=endp+1;
962 index=strtoul((char*)startp,(char**)&endp,0);
963 if (*endp != 0 || endp == startp || errno != 0)
964 ftdi_error_return(-11, "illegal description format");
965 }
966 if (description[0] == 's')
967 {
968 if (*endp != ':')
969 ftdi_error_return(-11, "illegal description format");
970
971 /* rest of the description is the serial */
972 serial=endp+1;
973 }
974
975 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
976 }
977 else
978 {
979 ftdi_error_return(-11, "illegal description format");
980 }
981}
982
983/**
984 Resets the ftdi device.
985
986 \param ftdi pointer to ftdi_context
987
988 \retval 0: all fine
989 \retval -1: FTDI reset failed
990 \retval -2: USB device unavailable
991*/
992int ftdi_usb_reset(struct ftdi_context *ftdi)
993{
994 if (ftdi == NULL || ftdi->usb_dev == NULL)
995 ftdi_error_return(-2, "USB device unavailable");
996
997 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
998 SIO_RESET_REQUEST, SIO_RESET_SIO,
999 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1000 ftdi_error_return(-1,"FTDI reset failed");
1001
1002 // Invalidate data in the readbuffer
1003 ftdi->readbuffer_offset = 0;
1004 ftdi->readbuffer_remaining = 0;
1005
1006 return 0;
1007}
1008
1009/**
1010 Clears the read buffer on the chip and the internal read buffer.
1011
1012 \param ftdi pointer to ftdi_context
1013
1014 \retval 0: all fine
1015 \retval -1: read buffer purge failed
1016 \retval -2: USB device unavailable
1017*/
1018int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
1019{
1020 if (ftdi == NULL || ftdi->usb_dev == NULL)
1021 ftdi_error_return(-2, "USB device unavailable");
1022
1023 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1024 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
1025 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1026 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
1027
1028 // Invalidate data in the readbuffer
1029 ftdi->readbuffer_offset = 0;
1030 ftdi->readbuffer_remaining = 0;
1031
1032 return 0;
1033}
1034
1035/**
1036 Clears the write buffer on the chip.
1037
1038 \param ftdi pointer to ftdi_context
1039
1040 \retval 0: all fine
1041 \retval -1: write buffer purge failed
1042 \retval -2: USB device unavailable
1043*/
1044int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
1045{
1046 if (ftdi == NULL || ftdi->usb_dev == NULL)
1047 ftdi_error_return(-2, "USB device unavailable");
1048
1049 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1050 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
1051 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1052 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
1053
1054 return 0;
1055}
1056
1057/**
1058 Clears the buffers on the chip and the internal read buffer.
1059
1060 \param ftdi pointer to ftdi_context
1061
1062 \retval 0: all fine
1063 \retval -1: read buffer purge failed
1064 \retval -2: write buffer purge failed
1065 \retval -3: USB device unavailable
1066*/
1067int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
1068{
1069 int result;
1070
1071 if (ftdi == NULL || ftdi->usb_dev == NULL)
1072 ftdi_error_return(-3, "USB device unavailable");
1073
1074 result = ftdi_usb_purge_rx_buffer(ftdi);
1075 if (result < 0)
1076 return -1;
1077
1078 result = ftdi_usb_purge_tx_buffer(ftdi);
1079 if (result < 0)
1080 return -2;
1081
1082 return 0;
1083}
1084
1085
1086
1087/**
1088 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
1089
1090 \param ftdi pointer to ftdi_context
1091
1092 \retval 0: all fine
1093 \retval -1: usb_release failed
1094 \retval -3: ftdi context invalid
1095*/
1096int ftdi_usb_close(struct ftdi_context *ftdi)
1097{
1098 int rtn = 0;
1099
1100 if (ftdi == NULL)
1101 ftdi_error_return(-3, "ftdi context invalid");
1102
1103 if (ftdi->usb_dev != NULL)
1104 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
1105 rtn = -1;
1106
1107 ftdi_usb_close_internal (ftdi);
1108
1109 return rtn;
1110}
1111
1112/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
1113 to encoded divisor and the achievable baudrate
1114 Function is only used internally
1115 \internal
1116
1117 See AN120
1118 clk/1 -> 0
1119 clk/1.5 -> 1
1120 clk/2 -> 2
1121 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1122 The fractional part has frac_code encoding
1123*/
1124static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1125
1126{
1127 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1128 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1129 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
1130 int divisor, best_divisor, best_baud, best_baud_diff;
1131 int i;
1132 divisor = 24000000 / baudrate;
1133
1134 // Round down to supported fraction (AM only)
1135 divisor -= am_adjust_dn[divisor & 7];
1136
1137 // Try this divisor and the one above it (because division rounds down)
1138 best_divisor = 0;
1139 best_baud = 0;
1140 best_baud_diff = 0;
1141 for (i = 0; i < 2; i++)
1142 {
1143 int try_divisor = divisor + i;
1144 int baud_estimate;
1145 int baud_diff;
1146
1147 // Round up to supported divisor value
1148 if (try_divisor <= 8)
1149 {
1150 // Round up to minimum supported divisor
1151 try_divisor = 8;
1152 }
1153 else if (divisor < 16)
1154 {
1155 // AM doesn't support divisors 9 through 15 inclusive
1156 try_divisor = 16;
1157 }
1158 else
1159 {
1160 // Round up to supported fraction (AM only)
1161 try_divisor += am_adjust_up[try_divisor & 7];
1162 if (try_divisor > 0x1FFF8)
1163 {
1164 // Round down to maximum supported divisor value (for AM)
1165 try_divisor = 0x1FFF8;
1166 }
1167 }
1168 // Get estimated baud rate (to nearest integer)
1169 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1170 // Get absolute difference from requested baud rate
1171 if (baud_estimate < baudrate)
1172 {
1173 baud_diff = baudrate - baud_estimate;
1174 }
1175 else
1176 {
1177 baud_diff = baud_estimate - baudrate;
1178 }
1179 if (i == 0 || baud_diff < best_baud_diff)
1180 {
1181 // Closest to requested baud rate so far
1182 best_divisor = try_divisor;
1183 best_baud = baud_estimate;
1184 best_baud_diff = baud_diff;
1185 if (baud_diff == 0)
1186 {
1187 // Spot on! No point trying
1188 break;
1189 }
1190 }
1191 }
1192 // Encode the best divisor value
1193 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1194 // Deal with special cases for encoded value
1195 if (*encoded_divisor == 1)
1196 {
1197 *encoded_divisor = 0; // 3000000 baud
1198 }
1199 else if (*encoded_divisor == 0x4001)
1200 {
1201 *encoded_divisor = 1; // 2000000 baud (BM only)
1202 }
1203 return best_baud;
1204}
1205
1206/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1207 to encoded divisor and the achievable baudrate
1208 Function is only used internally
1209 \internal
1210
1211 See AN120
1212 clk/1 -> 0
1213 clk/1.5 -> 1
1214 clk/2 -> 2
1215 From /2, 0.125 steps may be taken.
1216 The fractional part has frac_code encoding
1217
1218 value[13:0] of value is the divisor
1219 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1220
1221 H Type have all features above with
1222 {index[8],value[15:14]} is the encoded subdivisor
1223
1224 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
1225 {index[0],value[15:14]} is the encoded subdivisor
1226
1227 AM Type chips have only four fractional subdivisors at value[15:14]
1228 for subdivisors 0, 0.5, 0.25, 0.125
1229*/
1230static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor)
1231{
1232 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1233 int best_baud = 0;
1234 int divisor, best_divisor;
1235 if (baudrate >= clk/clk_div)
1236 {
1237 *encoded_divisor = 0;
1238 best_baud = clk/clk_div;
1239 }
1240 else if (baudrate >= clk/(clk_div + clk_div/2))
1241 {
1242 *encoded_divisor = 1;
1243 best_baud = clk/(clk_div + clk_div/2);
1244 }
1245 else if (baudrate >= clk/(2*clk_div))
1246 {
1247 *encoded_divisor = 2;
1248 best_baud = clk/(2*clk_div);
1249 }
1250 else
1251 {
1252 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1253 divisor = clk*16/clk_div / baudrate;
1254 if (divisor & 1) /* Decide if to round up or down*/
1255 best_divisor = divisor /2 +1;
1256 else
1257 best_divisor = divisor/2;
1258 if(best_divisor > 0x20000)
1259 best_divisor = 0x1ffff;
1260 best_baud = clk*16/clk_div/best_divisor;
1261 if (best_baud & 1) /* Decide if to round up or down*/
1262 best_baud = best_baud /2 +1;
1263 else
1264 best_baud = best_baud /2;
1265 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1266 }
1267 return best_baud;
1268}
1269/**
1270 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1271 Function is only used internally
1272 \internal
1273*/
1274static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1275 unsigned short *value, unsigned short *index)
1276{
1277 int best_baud;
1278 unsigned long encoded_divisor;
1279
1280 if (baudrate <= 0)
1281 {
1282 // Return error
1283 return -1;
1284 }
1285
1286#define H_CLK 120000000
1287#define C_CLK 48000000
1288 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H))
1289 {
1290 if(baudrate*10 > H_CLK /0x3fff)
1291 {
1292 /* On H Devices, use 12 000 000 Baudrate when possible
1293 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
1294 three fractional bits and a 120 MHz clock
1295 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1296 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1297 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1298 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1299 }
1300 else
1301 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1302 }
1303 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R) || (ftdi->type == TYPE_230X))
1304 {
1305 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1306 }
1307 else
1308 {
1309 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
1310 }
1311 // Split into "value" and "index" values
1312 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1313 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
1314 {
1315 *index = (unsigned short)(encoded_divisor >> 8);
1316 *index &= 0xFF00;
1317 *index |= ftdi->index;
1318 }
1319 else
1320 *index = (unsigned short)(encoded_divisor >> 16);
1321
1322 // Return the nearest baud rate
1323 return best_baud;
1324}
1325
1326/**
1327 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1328 * Do not use, it's only for the unit test framework
1329 **/
1330int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1331 unsigned short *value, unsigned short *index)
1332{
1333 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1334}
1335
1336/**
1337 Sets the chip baud rate
1338
1339 \param ftdi pointer to ftdi_context
1340 \param baudrate baud rate to set
1341
1342 \retval 0: all fine
1343 \retval -1: invalid baudrate
1344 \retval -2: setting baudrate failed
1345 \retval -3: USB device unavailable
1346*/
1347int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1348{
1349 unsigned short value, index;
1350 int actual_baudrate;
1351
1352 if (ftdi == NULL || ftdi->usb_dev == NULL)
1353 ftdi_error_return(-3, "USB device unavailable");
1354
1355 if (ftdi->bitbang_enabled)
1356 {
1357 baudrate = baudrate*4;
1358 }
1359
1360 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1361 if (actual_baudrate <= 0)
1362 ftdi_error_return (-1, "Silly baudrate <= 0.");
1363
1364 // Check within tolerance (about 5%)
1365 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1366 || ((actual_baudrate < baudrate)
1367 ? (actual_baudrate * 21 < baudrate * 20)
1368 : (baudrate * 21 < actual_baudrate * 20)))
1369 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1370
1371 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1372 SIO_SET_BAUDRATE_REQUEST, value,
1373 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1374 ftdi_error_return (-2, "Setting new baudrate failed");
1375
1376 ftdi->baudrate = baudrate;
1377 return 0;
1378}
1379
1380/**
1381 Set (RS232) line characteristics.
1382 The break type can only be set via ftdi_set_line_property2()
1383 and defaults to "off".
1384
1385 \param ftdi pointer to ftdi_context
1386 \param bits Number of bits
1387 \param sbit Number of stop bits
1388 \param parity Parity mode
1389
1390 \retval 0: all fine
1391 \retval -1: Setting line property failed
1392*/
1393int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1394 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1395{
1396 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1397}
1398
1399/**
1400 Set (RS232) line characteristics
1401
1402 \param ftdi pointer to ftdi_context
1403 \param bits Number of bits
1404 \param sbit Number of stop bits
1405 \param parity Parity mode
1406 \param break_type Break type
1407
1408 \retval 0: all fine
1409 \retval -1: Setting line property failed
1410 \retval -2: USB device unavailable
1411*/
1412int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1413 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1414 enum ftdi_break_type break_type)
1415{
1416 unsigned short value = bits;
1417
1418 if (ftdi == NULL || ftdi->usb_dev == NULL)
1419 ftdi_error_return(-2, "USB device unavailable");
1420
1421 switch (parity)
1422 {
1423 case NONE:
1424 value |= (0x00 << 8);
1425 break;
1426 case ODD:
1427 value |= (0x01 << 8);
1428 break;
1429 case EVEN:
1430 value |= (0x02 << 8);
1431 break;
1432 case MARK:
1433 value |= (0x03 << 8);
1434 break;
1435 case SPACE:
1436 value |= (0x04 << 8);
1437 break;
1438 }
1439
1440 switch (sbit)
1441 {
1442 case STOP_BIT_1:
1443 value |= (0x00 << 11);
1444 break;
1445 case STOP_BIT_15:
1446 value |= (0x01 << 11);
1447 break;
1448 case STOP_BIT_2:
1449 value |= (0x02 << 11);
1450 break;
1451 }
1452
1453 switch (break_type)
1454 {
1455 case BREAK_OFF:
1456 value |= (0x00 << 14);
1457 break;
1458 case BREAK_ON:
1459 value |= (0x01 << 14);
1460 break;
1461 }
1462
1463 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1464 SIO_SET_DATA_REQUEST, value,
1465 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1466 ftdi_error_return (-1, "Setting new line property failed");
1467
1468 return 0;
1469}
1470
1471/**
1472 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1473
1474 \param ftdi pointer to ftdi_context
1475 \param buf Buffer with the data
1476 \param size Size of the buffer
1477
1478 \retval -666: USB device unavailable
1479 \retval <0: error code from usb_bulk_write()
1480 \retval >0: number of bytes written
1481*/
1482int ftdi_write_data(struct ftdi_context *ftdi, const unsigned char *buf, int size)
1483{
1484 int offset = 0;
1485 int actual_length;
1486
1487 if (ftdi == NULL || ftdi->usb_dev == NULL)
1488 ftdi_error_return(-666, "USB device unavailable");
1489
1490 while (offset < size)
1491 {
1492 int write_size = ftdi->writebuffer_chunksize;
1493
1494 if (offset+write_size > size)
1495 write_size = size-offset;
1496
1497 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, (unsigned char *)buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1498 ftdi_error_return(-1, "usb bulk write failed");
1499
1500 offset += actual_length;
1501 }
1502
1503 return offset;
1504}
1505
1506static void LIBUSB_CALL ftdi_read_data_cb(struct libusb_transfer *transfer)
1507{
1508 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1509 struct ftdi_context *ftdi = tc->ftdi;
1510 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1511
1512 packet_size = ftdi->max_packet_size;
1513
1514 actual_length = transfer->actual_length;
1515
1516 if (actual_length > 2)
1517 {
1518 // skip FTDI status bytes.
1519 // Maybe stored in the future to enable modem use
1520 num_of_chunks = actual_length / packet_size;
1521 chunk_remains = actual_length % packet_size;
1522 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1523
1524 ftdi->readbuffer_offset += 2;
1525 actual_length -= 2;
1526
1527 if (actual_length > packet_size - 2)
1528 {
1529 for (i = 1; i < num_of_chunks; i++)
1530 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1531 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1532 packet_size - 2);
1533 if (chunk_remains > 2)
1534 {
1535 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1536 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1537 chunk_remains-2);
1538 actual_length -= 2*num_of_chunks;
1539 }
1540 else
1541 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1542 }
1543
1544 if (actual_length > 0)
1545 {
1546 // data still fits in buf?
1547 if (tc->offset + actual_length <= tc->size)
1548 {
1549 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1550 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1551 tc->offset += actual_length;
1552
1553 ftdi->readbuffer_offset = 0;
1554 ftdi->readbuffer_remaining = 0;
1555
1556 /* Did we read exactly the right amount of bytes? */
1557 if (tc->offset == tc->size)
1558 {
1559 //printf("read_data exact rem %d offset %d\n",
1560 //ftdi->readbuffer_remaining, offset);
1561 tc->completed = 1;
1562 return;
1563 }
1564 }
1565 else
1566 {
1567 // only copy part of the data or size <= readbuffer_chunksize
1568 int part_size = tc->size - tc->offset;
1569 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1570 tc->offset += part_size;
1571
1572 ftdi->readbuffer_offset += part_size;
1573 ftdi->readbuffer_remaining = actual_length - part_size;
1574
1575 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1576 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1577 tc->completed = 1;
1578 return;
1579 }
1580 }
1581 }
1582
1583 if (transfer->status == LIBUSB_TRANSFER_CANCELLED)
1584 tc->completed = LIBUSB_TRANSFER_CANCELLED;
1585 else
1586 {
1587 ret = libusb_submit_transfer (transfer);
1588 if (ret < 0)
1589 tc->completed = 1;
1590 }
1591}
1592
1593
1594static void LIBUSB_CALL ftdi_write_data_cb(struct libusb_transfer *transfer)
1595{
1596 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1597 struct ftdi_context *ftdi = tc->ftdi;
1598
1599 tc->offset += transfer->actual_length;
1600
1601 if (tc->offset == tc->size)
1602 {
1603 tc->completed = 1;
1604 }
1605 else
1606 {
1607 int write_size = ftdi->writebuffer_chunksize;
1608 int ret;
1609
1610 if (tc->offset + write_size > tc->size)
1611 write_size = tc->size - tc->offset;
1612
1613 transfer->length = write_size;
1614 transfer->buffer = tc->buf + tc->offset;
1615
1616 if (transfer->status == LIBUSB_TRANSFER_CANCELLED)
1617 tc->completed = LIBUSB_TRANSFER_CANCELLED;
1618 else
1619 {
1620 ret = libusb_submit_transfer (transfer);
1621 if (ret < 0)
1622 tc->completed = 1;
1623 }
1624 }
1625}
1626
1627
1628/**
1629 Writes data to the chip. Does not wait for completion of the transfer
1630 nor does it make sure that the transfer was successful.
1631
1632 Use libusb 1.0 asynchronous API.
1633
1634 \param ftdi pointer to ftdi_context
1635 \param buf Buffer with the data
1636 \param size Size of the buffer
1637
1638 \retval NULL: Some error happens when submit transfer
1639 \retval !NULL: Pointer to a ftdi_transfer_control
1640*/
1641
1642struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1643{
1644 struct ftdi_transfer_control *tc;
1645 struct libusb_transfer *transfer;
1646 int write_size, ret;
1647
1648 if (ftdi == NULL || ftdi->usb_dev == NULL)
1649 return NULL;
1650
1651 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1652 if (!tc)
1653 return NULL;
1654
1655 transfer = libusb_alloc_transfer(0);
1656 if (!transfer)
1657 {
1658 free(tc);
1659 return NULL;
1660 }
1661
1662 tc->ftdi = ftdi;
1663 tc->completed = 0;
1664 tc->buf = buf;
1665 tc->size = size;
1666 tc->offset = 0;
1667
1668 if (size < (int)ftdi->writebuffer_chunksize)
1669 write_size = size;
1670 else
1671 write_size = ftdi->writebuffer_chunksize;
1672
1673 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1674 write_size, ftdi_write_data_cb, tc,
1675 ftdi->usb_write_timeout);
1676 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1677
1678 ret = libusb_submit_transfer(transfer);
1679 if (ret < 0)
1680 {
1681 libusb_free_transfer(transfer);
1682 free(tc);
1683 return NULL;
1684 }
1685 tc->transfer = transfer;
1686
1687 return tc;
1688}
1689
1690/**
1691 Reads data from the chip. Does not wait for completion of the transfer
1692 nor does it make sure that the transfer was successful.
1693
1694 Use libusb 1.0 asynchronous API.
1695
1696 \param ftdi pointer to ftdi_context
1697 \param buf Buffer with the data
1698 \param size Size of the buffer
1699
1700 \retval NULL: Some error happens when submit transfer
1701 \retval !NULL: Pointer to a ftdi_transfer_control
1702*/
1703
1704struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1705{
1706 struct ftdi_transfer_control *tc;
1707 struct libusb_transfer *transfer;
1708 int ret;
1709
1710 if (ftdi == NULL || ftdi->usb_dev == NULL)
1711 return NULL;
1712
1713 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1714 if (!tc)
1715 return NULL;
1716
1717 tc->ftdi = ftdi;
1718 tc->buf = buf;
1719 tc->size = size;
1720
1721 if (size <= (int)ftdi->readbuffer_remaining)
1722 {
1723 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1724
1725 // Fix offsets
1726 ftdi->readbuffer_remaining -= size;
1727 ftdi->readbuffer_offset += size;
1728
1729 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1730
1731 tc->completed = 1;
1732 tc->offset = size;
1733 tc->transfer = NULL;
1734 return tc;
1735 }
1736
1737 tc->completed = 0;
1738 if (ftdi->readbuffer_remaining != 0)
1739 {
1740 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1741
1742 tc->offset = ftdi->readbuffer_remaining;
1743 }
1744 else
1745 tc->offset = 0;
1746
1747 transfer = libusb_alloc_transfer(0);
1748 if (!transfer)
1749 {
1750 free (tc);
1751 return NULL;
1752 }
1753
1754 ftdi->readbuffer_remaining = 0;
1755 ftdi->readbuffer_offset = 0;
1756
1757 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1758 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1759
1760 ret = libusb_submit_transfer(transfer);
1761 if (ret < 0)
1762 {
1763 libusb_free_transfer(transfer);
1764 free (tc);
1765 return NULL;
1766 }
1767 tc->transfer = transfer;
1768
1769 return tc;
1770}
1771
1772/**
1773 Wait for completion of the transfer.
1774
1775 Use libusb 1.0 asynchronous API.
1776
1777 \param tc pointer to ftdi_transfer_control
1778
1779 \retval < 0: Some error happens
1780 \retval >= 0: Data size transferred
1781*/
1782
1783int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1784{
1785 int ret;
1786 struct timeval to = { 0, 0 };
1787 while (!tc->completed)
1788 {
1789 ret = libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx,
1790 &to, &tc->completed);
1791 if (ret < 0)
1792 {
1793 if (ret == LIBUSB_ERROR_INTERRUPTED)
1794 continue;
1795 libusb_cancel_transfer(tc->transfer);
1796 while (!tc->completed)
1797 if (libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx,
1798 &to, &tc->completed) < 0)
1799 break;
1800 libusb_free_transfer(tc->transfer);
1801 free (tc);
1802 return ret;
1803 }
1804 }
1805
1806 ret = tc->offset;
1807 /**
1808 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1809 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1810 **/
1811 if (tc->transfer)
1812 {
1813 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1814 ret = -1;
1815 libusb_free_transfer(tc->transfer);
1816 }
1817 free(tc);
1818 return ret;
1819}
1820
1821/**
1822 Cancel transfer and wait for completion.
1823
1824 Use libusb 1.0 asynchronous API.
1825
1826 \param tc pointer to ftdi_transfer_control
1827 \param to pointer to timeout value or NULL for infinite
1828*/
1829
1830void ftdi_transfer_data_cancel(struct ftdi_transfer_control *tc,
1831 struct timeval * to)
1832{
1833 struct timeval tv = { 0, 0 };
1834
1835 if (!tc->completed && tc->transfer != NULL)
1836 {
1837 if (to == NULL)
1838 to = &tv;
1839
1840 libusb_cancel_transfer(tc->transfer);
1841 while (!tc->completed)
1842 {
1843 if (libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx, to, &tc->completed) < 0)
1844 break;
1845 }
1846 }
1847
1848 if (tc->transfer)
1849 libusb_free_transfer(tc->transfer);
1850
1851 free (tc);
1852}
1853
1854/**
1855 Configure write buffer chunk size.
1856 Default is 4096.
1857
1858 \param ftdi pointer to ftdi_context
1859 \param chunksize Chunk size
1860
1861 \retval 0: all fine
1862 \retval -1: ftdi context invalid
1863*/
1864int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1865{
1866 if (ftdi == NULL)
1867 ftdi_error_return(-1, "ftdi context invalid");
1868
1869 ftdi->writebuffer_chunksize = chunksize;
1870 return 0;
1871}
1872
1873/**
1874 Get write buffer chunk size.
1875
1876 \param ftdi pointer to ftdi_context
1877 \param chunksize Pointer to store chunk size in
1878
1879 \retval 0: all fine
1880 \retval -1: ftdi context invalid
1881*/
1882int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1883{
1884 if (ftdi == NULL)
1885 ftdi_error_return(-1, "ftdi context invalid");
1886
1887 *chunksize = ftdi->writebuffer_chunksize;
1888 return 0;
1889}
1890
1891/**
1892 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1893
1894 Automatically strips the two modem status bytes transfered during every read.
1895
1896 \param ftdi pointer to ftdi_context
1897 \param buf Buffer to store data in
1898 \param size Size of the buffer
1899
1900 \retval -666: USB device unavailable
1901 \retval <0: error code from libusb_bulk_transfer()
1902 \retval 0: no data was available
1903 \retval >0: number of bytes read
1904
1905*/
1906int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1907{
1908 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1909 int packet_size = ftdi->max_packet_size;
1910 int actual_length = 1;
1911
1912 if (ftdi == NULL || ftdi->usb_dev == NULL)
1913 ftdi_error_return(-666, "USB device unavailable");
1914
1915 // Packet size sanity check (avoid division by zero)
1916 if (packet_size == 0)
1917 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1918
1919 // everything we want is still in the readbuffer?
1920 if (size <= (int)ftdi->readbuffer_remaining)
1921 {
1922 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1923
1924 // Fix offsets
1925 ftdi->readbuffer_remaining -= size;
1926 ftdi->readbuffer_offset += size;
1927
1928 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1929
1930 return size;
1931 }
1932 // something still in the readbuffer, but not enough to satisfy 'size'?
1933 if (ftdi->readbuffer_remaining != 0)
1934 {
1935 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1936
1937 // Fix offset
1938 offset += ftdi->readbuffer_remaining;
1939 }
1940 // do the actual USB read
1941 while (offset < size && actual_length > 0)
1942 {
1943 ftdi->readbuffer_remaining = 0;
1944 ftdi->readbuffer_offset = 0;
1945 /* returns how much received */
1946 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1947 if (ret < 0)
1948 ftdi_error_return(ret, "usb bulk read failed");
1949
1950 if (actual_length > 2)
1951 {
1952 // skip FTDI status bytes.
1953 // Maybe stored in the future to enable modem use
1954 num_of_chunks = actual_length / packet_size;
1955 chunk_remains = actual_length % packet_size;
1956 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1957
1958 ftdi->readbuffer_offset += 2;
1959 actual_length -= 2;
1960
1961 if (actual_length > packet_size - 2)
1962 {
1963 for (i = 1; i < num_of_chunks; i++)
1964 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1965 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1966 packet_size - 2);
1967 if (chunk_remains > 2)
1968 {
1969 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1970 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1971 chunk_remains-2);
1972 actual_length -= 2*num_of_chunks;
1973 }
1974 else
1975 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1976 }
1977 }
1978 else if (actual_length <= 2)
1979 {
1980 // no more data to read?
1981 return offset;
1982 }
1983 if (actual_length > 0)
1984 {
1985 // data still fits in buf?
1986 if (offset+actual_length <= size)
1987 {
1988 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1989 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1990 offset += actual_length;
1991
1992 /* Did we read exactly the right amount of bytes? */
1993 if (offset == size)
1994 //printf("read_data exact rem %d offset %d\n",
1995 //ftdi->readbuffer_remaining, offset);
1996 return offset;
1997 }
1998 else
1999 {
2000 // only copy part of the data or size <= readbuffer_chunksize
2001 int part_size = size-offset;
2002 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
2003
2004 ftdi->readbuffer_offset += part_size;
2005 ftdi->readbuffer_remaining = actual_length-part_size;
2006 offset += part_size;
2007
2008 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
2009 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
2010
2011 return offset;
2012 }
2013 }
2014 }
2015 // never reached
2016 return -127;
2017}
2018
2019/**
2020 Configure read buffer chunk size.
2021 Default is 4096.
2022
2023 Automatically reallocates the buffer.
2024
2025 \param ftdi pointer to ftdi_context
2026 \param chunksize Chunk size
2027
2028 \retval 0: all fine
2029 \retval -1: ftdi context invalid
2030*/
2031int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
2032{
2033 unsigned char *new_buf;
2034
2035 if (ftdi == NULL)
2036 ftdi_error_return(-1, "ftdi context invalid");
2037
2038 // Invalidate all remaining data
2039 ftdi->readbuffer_offset = 0;
2040 ftdi->readbuffer_remaining = 0;
2041#ifdef __linux__
2042 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
2043 which is defined in libusb-1.0. Otherwise, each USB read request will
2044 be divided into multiple URBs. This will cause issues on Linux kernel
2045 older than 2.6.32. */
2046 if (chunksize > 16384)
2047 chunksize = 16384;
2048#endif
2049
2050 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
2051 ftdi_error_return(-1, "out of memory for readbuffer");
2052
2053 ftdi->readbuffer = new_buf;
2054 ftdi->readbuffer_chunksize = chunksize;
2055
2056 return 0;
2057}
2058
2059/**
2060 Get read buffer chunk size.
2061
2062 \param ftdi pointer to ftdi_context
2063 \param chunksize Pointer to store chunk size in
2064
2065 \retval 0: all fine
2066 \retval -1: FTDI context invalid
2067*/
2068int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
2069{
2070 if (ftdi == NULL)
2071 ftdi_error_return(-1, "FTDI context invalid");
2072
2073 *chunksize = ftdi->readbuffer_chunksize;
2074 return 0;
2075}
2076
2077/**
2078 Enable/disable bitbang modes.
2079
2080 \param ftdi pointer to ftdi_context
2081 \param bitmask Bitmask to configure lines.
2082 HIGH/ON value configures a line as output.
2083 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
2084
2085 \retval 0: all fine
2086 \retval -1: can't enable bitbang mode
2087 \retval -2: USB device unavailable
2088*/
2089int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
2090{
2091 unsigned short usb_val;
2092
2093 if (ftdi == NULL || ftdi->usb_dev == NULL)
2094 ftdi_error_return(-2, "USB device unavailable");
2095
2096 usb_val = bitmask; // low byte: bitmask
2097 usb_val |= (mode << 8);
2098 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2099 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
2100
2101 ftdi->bitbang_mode = mode;
2102 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
2103 return 0;
2104}
2105
2106/**
2107 Disable bitbang mode.
2108
2109 \param ftdi pointer to ftdi_context
2110
2111 \retval 0: all fine
2112 \retval -1: can't disable bitbang mode
2113 \retval -2: USB device unavailable
2114*/
2115int ftdi_disable_bitbang(struct ftdi_context *ftdi)
2116{
2117 if (ftdi == NULL || ftdi->usb_dev == NULL)
2118 ftdi_error_return(-2, "USB device unavailable");
2119
2120 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2121 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
2122
2123 ftdi->bitbang_enabled = 0;
2124 return 0;
2125}
2126
2127
2128/**
2129 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
2130
2131 \param ftdi pointer to ftdi_context
2132 \param pins Pointer to store pins into
2133
2134 \retval 0: all fine
2135 \retval -1: read pins failed
2136 \retval -2: USB device unavailable
2137*/
2138int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
2139{
2140 if (ftdi == NULL || ftdi->usb_dev == NULL)
2141 ftdi_error_return(-2, "USB device unavailable");
2142
2143 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
2144 ftdi_error_return(-1, "read pins failed");
2145
2146 return 0;
2147}
2148
2149/**
2150 Set latency timer
2151
2152 The FTDI chip keeps data in the internal buffer for a specific
2153 amount of time if the buffer is not full yet to decrease
2154 load on the usb bus.
2155
2156 \param ftdi pointer to ftdi_context
2157 \param latency Value between 1 and 255
2158
2159 \retval 0: all fine
2160 \retval -1: latency out of range
2161 \retval -2: unable to set latency timer
2162 \retval -3: USB device unavailable
2163*/
2164int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2165{
2166 unsigned short usb_val;
2167
2168 if (latency < 1)
2169 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
2170
2171 if (ftdi == NULL || ftdi->usb_dev == NULL)
2172 ftdi_error_return(-3, "USB device unavailable");
2173
2174 usb_val = latency;
2175 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2176 ftdi_error_return(-2, "unable to set latency timer");
2177
2178 return 0;
2179}
2180
2181/**
2182 Get latency timer
2183
2184 \param ftdi pointer to ftdi_context
2185 \param latency Pointer to store latency value in
2186
2187 \retval 0: all fine
2188 \retval -1: unable to get latency timer
2189 \retval -2: USB device unavailable
2190*/
2191int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2192{
2193 unsigned short usb_val;
2194
2195 if (ftdi == NULL || ftdi->usb_dev == NULL)
2196 ftdi_error_return(-2, "USB device unavailable");
2197
2198 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
2199 ftdi_error_return(-1, "reading latency timer failed");
2200
2201 *latency = (unsigned char)usb_val;
2202 return 0;
2203}
2204
2205/**
2206 Poll modem status information
2207
2208 This function allows the retrieve the two status bytes of the device.
2209 The device sends these bytes also as a header for each read access
2210 where they are discarded by ftdi_read_data(). The chip generates
2211 the two stripped status bytes in the absence of data every 40 ms.
2212
2213 Layout of the first byte:
2214 - B0..B3 - must be 0
2215 - B4 Clear to send (CTS)
2216 0 = inactive
2217 1 = active
2218 - B5 Data set ready (DTS)
2219 0 = inactive
2220 1 = active
2221 - B6 Ring indicator (RI)
2222 0 = inactive
2223 1 = active
2224 - B7 Receive line signal detect (RLSD)
2225 0 = inactive
2226 1 = active
2227
2228 Layout of the second byte:
2229 - B0 Data ready (DR)
2230 - B1 Overrun error (OE)
2231 - B2 Parity error (PE)
2232 - B3 Framing error (FE)
2233 - B4 Break interrupt (BI)
2234 - B5 Transmitter holding register (THRE)
2235 - B6 Transmitter empty (TEMT)
2236 - B7 Error in RCVR FIFO
2237
2238 \param ftdi pointer to ftdi_context
2239 \param status Pointer to store status information in. Must be two bytes.
2240
2241 \retval 0: all fine
2242 \retval -1: unable to retrieve status information
2243 \retval -2: USB device unavailable
2244*/
2245int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2246{
2247 char usb_val[2];
2248
2249 if (ftdi == NULL || ftdi->usb_dev == NULL)
2250 ftdi_error_return(-2, "USB device unavailable");
2251
2252 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
2253 ftdi_error_return(-1, "getting modem status failed");
2254
2255 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
2256
2257 return 0;
2258}
2259
2260/**
2261 Set flowcontrol for ftdi chip
2262
2263 \param ftdi pointer to ftdi_context
2264 \param flowctrl flow control to use. should be
2265 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2266
2267 \retval 0: all fine
2268 \retval -1: set flow control failed
2269 \retval -2: USB device unavailable
2270*/
2271int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2272{
2273 if (ftdi == NULL || ftdi->usb_dev == NULL)
2274 ftdi_error_return(-2, "USB device unavailable");
2275
2276 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2277 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2278 NULL, 0, ftdi->usb_write_timeout) < 0)
2279 ftdi_error_return(-1, "set flow control failed");
2280
2281 return 0;
2282}
2283
2284/**
2285 Set dtr line
2286
2287 \param ftdi pointer to ftdi_context
2288 \param state state to set line to (1 or 0)
2289
2290 \retval 0: all fine
2291 \retval -1: set dtr failed
2292 \retval -2: USB device unavailable
2293*/
2294int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2295{
2296 unsigned short usb_val;
2297
2298 if (ftdi == NULL || ftdi->usb_dev == NULL)
2299 ftdi_error_return(-2, "USB device unavailable");
2300
2301 if (state)
2302 usb_val = SIO_SET_DTR_HIGH;
2303 else
2304 usb_val = SIO_SET_DTR_LOW;
2305
2306 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2307 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2308 NULL, 0, ftdi->usb_write_timeout) < 0)
2309 ftdi_error_return(-1, "set dtr failed");
2310
2311 return 0;
2312}
2313
2314/**
2315 Set rts line
2316
2317 \param ftdi pointer to ftdi_context
2318 \param state state to set line to (1 or 0)
2319
2320 \retval 0: all fine
2321 \retval -1: set rts failed
2322 \retval -2: USB device unavailable
2323*/
2324int ftdi_setrts(struct ftdi_context *ftdi, int state)
2325{
2326 unsigned short usb_val;
2327
2328 if (ftdi == NULL || ftdi->usb_dev == NULL)
2329 ftdi_error_return(-2, "USB device unavailable");
2330
2331 if (state)
2332 usb_val = SIO_SET_RTS_HIGH;
2333 else
2334 usb_val = SIO_SET_RTS_LOW;
2335
2336 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2337 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2338 NULL, 0, ftdi->usb_write_timeout) < 0)
2339 ftdi_error_return(-1, "set of rts failed");
2340
2341 return 0;
2342}
2343
2344/**
2345 Set dtr and rts line in one pass
2346
2347 \param ftdi pointer to ftdi_context
2348 \param dtr DTR state to set line to (1 or 0)
2349 \param rts RTS state to set line to (1 or 0)
2350
2351 \retval 0: all fine
2352 \retval -1: set dtr/rts failed
2353 \retval -2: USB device unavailable
2354 */
2355int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2356{
2357 unsigned short usb_val;
2358
2359 if (ftdi == NULL || ftdi->usb_dev == NULL)
2360 ftdi_error_return(-2, "USB device unavailable");
2361
2362 if (dtr)
2363 usb_val = SIO_SET_DTR_HIGH;
2364 else
2365 usb_val = SIO_SET_DTR_LOW;
2366
2367 if (rts)
2368 usb_val |= SIO_SET_RTS_HIGH;
2369 else
2370 usb_val |= SIO_SET_RTS_LOW;
2371
2372 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2373 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2374 NULL, 0, ftdi->usb_write_timeout) < 0)
2375 ftdi_error_return(-1, "set of rts/dtr failed");
2376
2377 return 0;
2378}
2379
2380/**
2381 Set the special event character
2382
2383 \param ftdi pointer to ftdi_context
2384 \param eventch Event character
2385 \param enable 0 to disable the event character, non-zero otherwise
2386
2387 \retval 0: all fine
2388 \retval -1: unable to set event character
2389 \retval -2: USB device unavailable
2390*/
2391int ftdi_set_event_char(struct ftdi_context *ftdi,
2392 unsigned char eventch, unsigned char enable)
2393{
2394 unsigned short usb_val;
2395
2396 if (ftdi == NULL || ftdi->usb_dev == NULL)
2397 ftdi_error_return(-2, "USB device unavailable");
2398
2399 usb_val = eventch;
2400 if (enable)
2401 usb_val |= 1 << 8;
2402
2403 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2404 ftdi_error_return(-1, "setting event character failed");
2405
2406 return 0;
2407}
2408
2409/**
2410 Set error character
2411
2412 \param ftdi pointer to ftdi_context
2413 \param errorch Error character
2414 \param enable 0 to disable the error character, non-zero otherwise
2415
2416 \retval 0: all fine
2417 \retval -1: unable to set error character
2418 \retval -2: USB device unavailable
2419*/
2420int ftdi_set_error_char(struct ftdi_context *ftdi,
2421 unsigned char errorch, unsigned char enable)
2422{
2423 unsigned short usb_val;
2424
2425 if (ftdi == NULL || ftdi->usb_dev == NULL)
2426 ftdi_error_return(-2, "USB device unavailable");
2427
2428 usb_val = errorch;
2429 if (enable)
2430 usb_val |= 1 << 8;
2431
2432 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2433 ftdi_error_return(-1, "setting error character failed");
2434
2435 return 0;
2436}
2437
2438/**
2439 Init eeprom with default values for the connected device
2440 \param ftdi pointer to ftdi_context
2441 \param manufacturer String to use as Manufacturer
2442 \param product String to use as Product description
2443 \param serial String to use as Serial number description
2444
2445 \retval 0: all fine
2446 \retval -1: No struct ftdi_context
2447 \retval -2: No struct ftdi_eeprom
2448 \retval -3: No connected device or device not yet opened
2449*/
2450int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2451 char * product, char * serial)
2452{
2453 struct ftdi_eeprom *eeprom;
2454
2455 if (ftdi == NULL)
2456 ftdi_error_return(-1, "No struct ftdi_context");
2457
2458 if (ftdi->eeprom == NULL)
2459 ftdi_error_return(-2,"No struct ftdi_eeprom");
2460
2461 eeprom = ftdi->eeprom;
2462 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2463
2464 if (ftdi->usb_dev == NULL)
2465 ftdi_error_return(-3, "No connected device or device not yet opened");
2466
2467 eeprom->vendor_id = 0x0403;
2468 eeprom->use_serial = 1;
2469 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2470 (ftdi->type == TYPE_R))
2471 eeprom->product_id = 0x6001;
2472 else if (ftdi->type == TYPE_4232H)
2473 eeprom->product_id = 0x6011;
2474 else if (ftdi->type == TYPE_232H)
2475 eeprom->product_id = 0x6014;
2476 else if (ftdi->type == TYPE_230X)
2477 eeprom->product_id = 0x6015;
2478 else
2479 eeprom->product_id = 0x6010;
2480
2481 if (ftdi->type == TYPE_AM)
2482 eeprom->usb_version = 0x0101;
2483 else
2484 eeprom->usb_version = 0x0200;
2485 eeprom->max_power = 100;
2486
2487 if (eeprom->manufacturer)
2488 free (eeprom->manufacturer);
2489 eeprom->manufacturer = NULL;
2490 if (manufacturer)
2491 {
2492 eeprom->manufacturer = (char *)malloc(strlen(manufacturer)+1);
2493 if (eeprom->manufacturer)
2494 strcpy(eeprom->manufacturer, manufacturer);
2495 }
2496
2497 if (eeprom->product)
2498 free (eeprom->product);
2499 eeprom->product = NULL;
2500 if(product)
2501 {
2502 eeprom->product = (char *)malloc(strlen(product)+1);
2503 if (eeprom->product)
2504 strcpy(eeprom->product, product);
2505 }
2506 else
2507 {
2508 const char* default_product;
2509 switch(ftdi->type)
2510 {
2511 case TYPE_AM: default_product = "AM"; break;
2512 case TYPE_BM: default_product = "BM"; break;
2513 case TYPE_2232C: default_product = "Dual RS232"; break;
2514 case TYPE_R: default_product = "FT232R USB UART"; break;
2515 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2516 case TYPE_4232H: default_product = "FT4232H"; break;
2517 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2518 case TYPE_230X: default_product = "FT230X Basic UART"; break;
2519 default:
2520 ftdi_error_return(-3, "Unknown chip type");
2521 }
2522 eeprom->product = (char *)malloc(strlen(default_product) +1);
2523 if (eeprom->product)
2524 strcpy(eeprom->product, default_product);
2525 }
2526
2527 if (eeprom->serial)
2528 free (eeprom->serial);
2529 eeprom->serial = NULL;
2530 if (serial)
2531 {
2532 eeprom->serial = (char *)malloc(strlen(serial)+1);
2533 if (eeprom->serial)
2534 strcpy(eeprom->serial, serial);
2535 }
2536
2537 if (ftdi->type == TYPE_R)
2538 {
2539 eeprom->max_power = 90;
2540 eeprom->size = 0x80;
2541 eeprom->cbus_function[0] = CBUS_TXLED;
2542 eeprom->cbus_function[1] = CBUS_RXLED;
2543 eeprom->cbus_function[2] = CBUS_TXDEN;
2544 eeprom->cbus_function[3] = CBUS_PWREN;
2545 eeprom->cbus_function[4] = CBUS_SLEEP;
2546 }
2547 else if (ftdi->type == TYPE_230X)
2548 {
2549 eeprom->max_power = 90;
2550 eeprom->size = 0x100;
2551 eeprom->cbus_function[0] = CBUSX_TXDEN;
2552 eeprom->cbus_function[1] = CBUSX_RXLED;
2553 eeprom->cbus_function[2] = CBUSX_TXLED;
2554 eeprom->cbus_function[3] = CBUSX_SLEEP;
2555 }
2556 else
2557 {
2558 if(ftdi->type == TYPE_232H)
2559 {
2560 int i;
2561 for (i=0; i<10; i++)
2562 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2563 }
2564 eeprom->size = -1;
2565 }
2566 switch (ftdi->type)
2567 {
2568 case TYPE_AM:
2569 eeprom->release_number = 0x0200;
2570 break;
2571 case TYPE_BM:
2572 eeprom->release_number = 0x0400;
2573 break;
2574 case TYPE_2232C:
2575 eeprom->release_number = 0x0500;
2576 break;
2577 case TYPE_R:
2578 eeprom->release_number = 0x0600;
2579 break;
2580 case TYPE_2232H:
2581 eeprom->release_number = 0x0700;
2582 break;
2583 case TYPE_4232H:
2584 eeprom->release_number = 0x0800;
2585 break;
2586 case TYPE_232H:
2587 eeprom->release_number = 0x0900;
2588 break;
2589 case TYPE_230X:
2590 eeprom->release_number = 0x1000;
2591 break;
2592 default:
2593 eeprom->release_number = 0x00;
2594 }
2595 return 0;
2596}
2597
2598int ftdi_eeprom_set_strings(struct ftdi_context *ftdi, char * manufacturer,
2599 char * product, char * serial)
2600{
2601 struct ftdi_eeprom *eeprom;
2602
2603 if (ftdi == NULL)
2604 ftdi_error_return(-1, "No struct ftdi_context");
2605
2606 if (ftdi->eeprom == NULL)
2607 ftdi_error_return(-2,"No struct ftdi_eeprom");
2608
2609 eeprom = ftdi->eeprom;
2610
2611 if (ftdi->usb_dev == NULL)
2612 ftdi_error_return(-3, "No connected device or device not yet opened");
2613
2614 if (manufacturer)
2615 {
2616 if (eeprom->manufacturer)
2617 free (eeprom->manufacturer);
2618 eeprom->manufacturer = (char *)malloc(strlen(manufacturer)+1);
2619 if (eeprom->manufacturer)
2620 strcpy(eeprom->manufacturer, manufacturer);
2621 }
2622
2623 if(product)
2624 {
2625 if (eeprom->product)
2626 free (eeprom->product);
2627 eeprom->product = (char *)malloc(strlen(product)+1);
2628 if (eeprom->product)
2629 strcpy(eeprom->product, product);
2630 }
2631
2632 if (serial)
2633 {
2634 if (eeprom->serial)
2635 free (eeprom->serial);
2636 eeprom->serial = (char *)malloc(strlen(serial)+1);
2637 if (eeprom->serial)
2638 {
2639 strcpy(eeprom->serial, serial);
2640 eeprom->use_serial = 1;
2641 }
2642 }
2643 return 0;
2644}
2645
2646/**
2647 Return device ID strings from the eeprom. Device needs to be connected.
2648
2649 The parameters manufacturer, description and serial may be NULL
2650 or pointer to buffers to store the fetched strings.
2651
2652 \param ftdi pointer to ftdi_context
2653 \param manufacturer Store manufacturer string here if not NULL
2654 \param mnf_len Buffer size of manufacturer string
2655 \param product Store product description string here if not NULL
2656 \param prod_len Buffer size of product description string
2657 \param serial Store serial string here if not NULL
2658 \param serial_len Buffer size of serial string
2659
2660 \retval 0: all fine
2661 \retval -1: ftdi context invalid
2662 \retval -2: ftdi eeprom buffer invalid
2663*/
2664int ftdi_eeprom_get_strings(struct ftdi_context *ftdi,
2665 char *manufacturer, int mnf_len,
2666 char *product, int prod_len,
2667 char *serial, int serial_len)
2668{
2669 struct ftdi_eeprom *eeprom;
2670
2671 if (ftdi == NULL)
2672 ftdi_error_return(-1, "No struct ftdi_context");
2673 if (ftdi->eeprom == NULL)
2674 ftdi_error_return(-2, "No struct ftdi_eeprom");
2675
2676 eeprom = ftdi->eeprom;
2677
2678 if (manufacturer)
2679 {
2680 strncpy(manufacturer, eeprom->manufacturer, mnf_len);
2681 if (mnf_len > 0)
2682 manufacturer[mnf_len - 1] = '\0';
2683 }
2684
2685 if (product)
2686 {
2687 strncpy(product, eeprom->product, prod_len);
2688 if (prod_len > 0)
2689 product[prod_len - 1] = '\0';
2690 }
2691
2692 if (serial)
2693 {
2694 strncpy(serial, eeprom->serial, serial_len);
2695 if (serial_len > 0)
2696 serial[serial_len - 1] = '\0';
2697 }
2698
2699 return 0;
2700}
2701
2702/*FTD2XX doesn't check for values not fitting in the ACBUS Signal options*/
2703void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2704{
2705 int i;
2706 for(i=0; i<5; i++)
2707 {
2708 int mode_low, mode_high;
2709 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2710 mode_low = CBUSH_TRISTATE;
2711 else
2712 mode_low = eeprom->cbus_function[2*i];
2713 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2714 mode_high = CBUSH_TRISTATE;
2715 else
2716 mode_high = eeprom->cbus_function[2*i+1];
2717
2718 output[0x18+i] = (mode_high <<4) | mode_low;
2719 }
2720}
2721/* Return the bits for the encoded EEPROM Structure of a requested Mode
2722 *
2723 */
2724static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2725{
2726 switch (chip)
2727 {
2728 case TYPE_2232H:
2729 case TYPE_2232C:
2730 {
2731 switch (type)
2732 {
2733 case CHANNEL_IS_UART: return 0;
2734 case CHANNEL_IS_FIFO: return 0x01;
2735 case CHANNEL_IS_OPTO: return 0x02;
2736 case CHANNEL_IS_CPU : return 0x04;
2737 default: return 0;
2738 }
2739 }
2740 case TYPE_232H:
2741 {
2742 switch (type)
2743 {
2744 case CHANNEL_IS_UART : return 0;
2745 case CHANNEL_IS_FIFO : return 0x01;
2746 case CHANNEL_IS_OPTO : return 0x02;
2747 case CHANNEL_IS_CPU : return 0x04;
2748 case CHANNEL_IS_FT1284 : return 0x08;
2749 default: return 0;
2750 }
2751 }
2752 case TYPE_R:
2753 {
2754 switch (type)
2755 {
2756 case CHANNEL_IS_UART : return 0;
2757 case CHANNEL_IS_FIFO : return 0x01;
2758 default: return 0;
2759 }
2760 }
2761 case TYPE_230X: /* FT230X is only UART */
2762 default: return 0;
2763 }
2764 return 0;
2765}
2766
2767/**
2768 Build binary buffer from ftdi_eeprom structure.
2769 Output is suitable for ftdi_write_eeprom().
2770
2771 \param ftdi pointer to ftdi_context
2772
2773 \retval >=0: size of eeprom user area in bytes
2774 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2775 \retval -2: Invalid eeprom or ftdi pointer
2776 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2777 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2778 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2779 \retval -6: No connected EEPROM or EEPROM Type unknown
2780*/
2781int ftdi_eeprom_build(struct ftdi_context *ftdi)
2782{
2783 unsigned char i, j, eeprom_size_mask;
2784 unsigned short checksum, value;
2785 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2786 int user_area_size, free_start, free_end;
2787 struct ftdi_eeprom *eeprom;
2788 unsigned char * output;
2789
2790 if (ftdi == NULL)
2791 ftdi_error_return(-2,"No context");
2792 if (ftdi->eeprom == NULL)
2793 ftdi_error_return(-2,"No eeprom structure");
2794
2795 eeprom= ftdi->eeprom;
2796 output = eeprom->buf;
2797
2798 if (eeprom->chip == -1)
2799 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2800
2801 if (eeprom->size == -1)
2802 {
2803 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2804 eeprom->size = 0x100;
2805 else
2806 eeprom->size = 0x80;
2807 }
2808
2809 if (eeprom->manufacturer != NULL)
2810 manufacturer_size = strlen(eeprom->manufacturer);
2811 if (eeprom->product != NULL)
2812 product_size = strlen(eeprom->product);
2813 if (eeprom->serial != NULL)
2814 serial_size = strlen(eeprom->serial);
2815
2816 // eeprom size check
2817 switch (ftdi->type)
2818 {
2819 case TYPE_AM:
2820 case TYPE_BM:
2821 case TYPE_R:
2822 user_area_size = 96; // base size for strings (total of 48 characters)
2823 break;
2824 case TYPE_2232C:
2825 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2826 break;
2827 case TYPE_230X:
2828 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2829 break;
2830 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2831 case TYPE_4232H:
2832 user_area_size = 86;
2833 break;
2834 case TYPE_232H:
2835 user_area_size = 80;
2836 break;
2837 default:
2838 user_area_size = 0;
2839 break;
2840 }
2841 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2842
2843 if (user_area_size < 0)
2844 ftdi_error_return(-1,"eeprom size exceeded");
2845
2846 // empty eeprom
2847 if (ftdi->type == TYPE_230X)
2848 {
2849 /* FT230X have a reserved section in the middle of the MTP,
2850 which cannot be written to, but must be included in the checksum */
2851 memset(ftdi->eeprom->buf, 0, 0x80);
2852 memset((ftdi->eeprom->buf + 0xa0), 0, (FTDI_MAX_EEPROM_SIZE - 0xa0));
2853 }
2854 else
2855 {
2856 memset(ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2857 }
2858
2859 // Bytes and Bits set for all Types
2860
2861 // Addr 02: Vendor ID
2862 output[0x02] = eeprom->vendor_id;
2863 output[0x03] = eeprom->vendor_id >> 8;
2864
2865 // Addr 04: Product ID
2866 output[0x04] = eeprom->product_id;
2867 output[0x05] = eeprom->product_id >> 8;
2868
2869 // Addr 06: Device release number (0400h for BM features)
2870 output[0x06] = eeprom->release_number;
2871 output[0x07] = eeprom->release_number >> 8;
2872
2873 // Addr 08: Config descriptor
2874 // Bit 7: always 1
2875 // Bit 6: 1 if this device is self powered, 0 if bus powered
2876 // Bit 5: 1 if this device uses remote wakeup
2877 // Bit 4-0: reserved - 0
2878 j = 0x80;
2879 if (eeprom->self_powered)
2880 j |= 0x40;
2881 if (eeprom->remote_wakeup)
2882 j |= 0x20;
2883 output[0x08] = j;
2884
2885 // Addr 09: Max power consumption: max power = value * 2 mA
2886 output[0x09] = eeprom->max_power / MAX_POWER_MILLIAMP_PER_UNIT;
2887
2888 if ((ftdi->type != TYPE_AM) && (ftdi->type != TYPE_230X))
2889 {
2890 // Addr 0A: Chip configuration
2891 // Bit 7: 0 - reserved
2892 // Bit 6: 0 - reserved
2893 // Bit 5: 0 - reserved
2894 // Bit 4: 1 - Change USB version
2895 // Bit 3: 1 - Use the serial number string
2896 // Bit 2: 1 - Enable suspend pull downs for lower power
2897 // Bit 1: 1 - Out EndPoint is Isochronous
2898 // Bit 0: 1 - In EndPoint is Isochronous
2899 //
2900 j = 0;
2901 if (eeprom->in_is_isochronous)
2902 j = j | 1;
2903 if (eeprom->out_is_isochronous)
2904 j = j | 2;
2905 output[0x0A] = j;
2906 }
2907
2908 // Dynamic content
2909 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2910 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2911 // 0xa0 (TYPE_232H)
2912 i = 0;
2913 switch (ftdi->type)
2914 {
2915 case TYPE_2232H:
2916 case TYPE_4232H:
2917 i += 2;
2918 case TYPE_R:
2919 i += 2;
2920 case TYPE_2232C:
2921 i += 2;
2922 case TYPE_AM:
2923 case TYPE_BM:
2924 i += 0x94;
2925 break;
2926 case TYPE_232H:
2927 case TYPE_230X:
2928 i = 0xa0;
2929 break;
2930 }
2931 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2932 eeprom_size_mask = eeprom->size -1;
2933 free_end = i & eeprom_size_mask;
2934
2935 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2936 // Addr 0F: Length of manufacturer string
2937 // Output manufacturer
2938 output[0x0E] = i; // calculate offset
2939 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2940 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2941 for (j = 0; j < manufacturer_size; j++)
2942 {
2943 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2944 output[i & eeprom_size_mask] = 0x00, i++;
2945 }
2946 output[0x0F] = manufacturer_size*2 + 2;
2947
2948 // Addr 10: Offset of the product string + 0x80, calculated later
2949 // Addr 11: Length of product string
2950 output[0x10] = i | 0x80; // calculate offset
2951 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2952 output[i & eeprom_size_mask] = 0x03, i++;
2953 for (j = 0; j < product_size; j++)
2954 {
2955 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2956 output[i & eeprom_size_mask] = 0x00, i++;
2957 }
2958 output[0x11] = product_size*2 + 2;
2959
2960 // Addr 12: Offset of the serial string + 0x80, calculated later
2961 // Addr 13: Length of serial string
2962 output[0x12] = i | 0x80; // calculate offset
2963 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2964 output[i & eeprom_size_mask] = 0x03, i++;
2965 for (j = 0; j < serial_size; j++)
2966 {
2967 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2968 output[i & eeprom_size_mask] = 0x00, i++;
2969 }
2970
2971 // Legacy port name and PnP fields for FT2232 and newer chips
2972 if (ftdi->type > TYPE_BM)
2973 {
2974 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2975 i++;
2976 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2977 i++;
2978 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2979 i++;
2980 }
2981
2982 output[0x13] = serial_size*2 + 2;
2983
2984 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2985 {
2986 if (eeprom->use_serial)
2987 output[0x0A] |= USE_SERIAL_NUM;
2988 else
2989 output[0x0A] &= ~USE_SERIAL_NUM;
2990 }
2991
2992 /* Bytes and Bits specific to (some) types
2993 Write linear, as this allows easier fixing*/
2994 switch (ftdi->type)
2995 {
2996 case TYPE_AM:
2997 break;
2998 case TYPE_BM:
2999 output[0x0C] = eeprom->usb_version & 0xff;
3000 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3001 if (eeprom->use_usb_version)
3002 output[0x0A] |= USE_USB_VERSION_BIT;
3003 else
3004 output[0x0A] &= ~USE_USB_VERSION_BIT;
3005
3006 break;
3007 case TYPE_2232C:
3008
3009 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
3010 if ( eeprom->channel_a_driver == DRIVER_VCP)
3011 output[0x00] |= DRIVER_VCP;
3012 else
3013 output[0x00] &= ~DRIVER_VCP;
3014
3015 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
3016 output[0x00] |= HIGH_CURRENT_DRIVE;
3017 else
3018 output[0x00] &= ~HIGH_CURRENT_DRIVE;
3019
3020 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
3021 if ( eeprom->channel_b_driver == DRIVER_VCP)
3022 output[0x01] |= DRIVER_VCP;
3023 else
3024 output[0x01] &= ~DRIVER_VCP;
3025
3026 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
3027 output[0x01] |= HIGH_CURRENT_DRIVE;
3028 else
3029 output[0x01] &= ~HIGH_CURRENT_DRIVE;
3030
3031 if (eeprom->in_is_isochronous)
3032 output[0x0A] |= 0x1;
3033 else
3034 output[0x0A] &= ~0x1;
3035 if (eeprom->out_is_isochronous)
3036 output[0x0A] |= 0x2;
3037 else
3038 output[0x0A] &= ~0x2;
3039 if (eeprom->suspend_pull_downs)
3040 output[0x0A] |= 0x4;
3041 else
3042 output[0x0A] &= ~0x4;
3043 if (eeprom->use_usb_version)
3044 output[0x0A] |= USE_USB_VERSION_BIT;
3045 else
3046 output[0x0A] &= ~USE_USB_VERSION_BIT;
3047
3048 output[0x0C] = eeprom->usb_version & 0xff;
3049 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3050 output[0x14] = eeprom->chip;
3051 break;
3052 case TYPE_R:
3053 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_R);
3054 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
3055 output[0x00] |= HIGH_CURRENT_DRIVE_R;
3056 if (eeprom->external_oscillator)
3057 output[0x00] |= 0x02;
3058 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
3059
3060 if (eeprom->suspend_pull_downs)
3061 output[0x0A] |= 0x4;
3062 else
3063 output[0x0A] &= ~0x4;
3064 output[0x0B] = eeprom->invert;
3065 output[0x0C] = eeprom->usb_version & 0xff;
3066 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3067
3068 if (eeprom->cbus_function[0] > CBUS_BB_RD)
3069 output[0x14] = CBUS_TXLED;
3070 else
3071 output[0x14] = eeprom->cbus_function[0];
3072
3073 if (eeprom->cbus_function[1] > CBUS_BB_RD)
3074 output[0x14] |= CBUS_RXLED<<4;
3075 else
3076 output[0x14] |= eeprom->cbus_function[1]<<4;
3077
3078 if (eeprom->cbus_function[2] > CBUS_BB_RD)
3079 output[0x15] = CBUS_TXDEN;
3080 else
3081 output[0x15] = eeprom->cbus_function[2];
3082
3083 if (eeprom->cbus_function[3] > CBUS_BB_RD)
3084 output[0x15] |= CBUS_PWREN<<4;
3085 else
3086 output[0x15] |= eeprom->cbus_function[3]<<4;
3087
3088 if (eeprom->cbus_function[4] > CBUS_CLK6)
3089 output[0x16] = CBUS_SLEEP;
3090 else
3091 output[0x16] = eeprom->cbus_function[4];
3092 break;
3093 case TYPE_2232H:
3094 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
3095 if ( eeprom->channel_a_driver == DRIVER_VCP)
3096 output[0x00] |= DRIVER_VCP;
3097 else
3098 output[0x00] &= ~DRIVER_VCP;
3099
3100 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
3101 if ( eeprom->channel_b_driver == DRIVER_VCP)
3102 output[0x01] |= DRIVER_VCP;
3103 else
3104 output[0x01] &= ~DRIVER_VCP;
3105 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
3106 output[0x01] |= SUSPEND_DBUS7_BIT;
3107 else
3108 output[0x01] &= ~SUSPEND_DBUS7_BIT;
3109
3110 if (eeprom->suspend_pull_downs)
3111 output[0x0A] |= 0x4;
3112 else
3113 output[0x0A] &= ~0x4;
3114
3115 if (eeprom->group0_drive > DRIVE_16MA)
3116 output[0x0c] |= DRIVE_16MA;
3117 else
3118 output[0x0c] |= eeprom->group0_drive;
3119 if (eeprom->group0_schmitt == IS_SCHMITT)
3120 output[0x0c] |= IS_SCHMITT;
3121 if (eeprom->group0_slew == SLOW_SLEW)
3122 output[0x0c] |= SLOW_SLEW;
3123
3124 if (eeprom->group1_drive > DRIVE_16MA)
3125 output[0x0c] |= DRIVE_16MA<<4;
3126 else
3127 output[0x0c] |= eeprom->group1_drive<<4;
3128 if (eeprom->group1_schmitt == IS_SCHMITT)
3129 output[0x0c] |= IS_SCHMITT<<4;
3130 if (eeprom->group1_slew == SLOW_SLEW)
3131 output[0x0c] |= SLOW_SLEW<<4;
3132
3133 if (eeprom->group2_drive > DRIVE_16MA)
3134 output[0x0d] |= DRIVE_16MA;
3135 else
3136 output[0x0d] |= eeprom->group2_drive;
3137 if (eeprom->group2_schmitt == IS_SCHMITT)
3138 output[0x0d] |= IS_SCHMITT;
3139 if (eeprom->group2_slew == SLOW_SLEW)
3140 output[0x0d] |= SLOW_SLEW;
3141
3142 if (eeprom->group3_drive > DRIVE_16MA)
3143 output[0x0d] |= DRIVE_16MA<<4;
3144 else
3145 output[0x0d] |= eeprom->group3_drive<<4;
3146 if (eeprom->group3_schmitt == IS_SCHMITT)
3147 output[0x0d] |= IS_SCHMITT<<4;
3148 if (eeprom->group3_slew == SLOW_SLEW)
3149 output[0x0d] |= SLOW_SLEW<<4;
3150
3151 output[0x18] = eeprom->chip;
3152
3153 break;
3154 case TYPE_4232H:
3155 if (eeprom->channel_a_driver == DRIVER_VCP)
3156 output[0x00] |= DRIVER_VCP;
3157 else
3158 output[0x00] &= ~DRIVER_VCP;
3159 if (eeprom->channel_b_driver == DRIVER_VCP)
3160 output[0x01] |= DRIVER_VCP;
3161 else
3162 output[0x01] &= ~DRIVER_VCP;
3163 if (eeprom->channel_c_driver == DRIVER_VCP)
3164 output[0x00] |= (DRIVER_VCP << 4);
3165 else
3166 output[0x00] &= ~(DRIVER_VCP << 4);
3167 if (eeprom->channel_d_driver == DRIVER_VCP)
3168 output[0x01] |= (DRIVER_VCP << 4);
3169 else
3170 output[0x01] &= ~(DRIVER_VCP << 4);
3171
3172 if (eeprom->suspend_pull_downs)
3173 output[0x0a] |= 0x4;
3174 else
3175 output[0x0a] &= ~0x4;
3176
3177 if (eeprom->channel_a_rs485enable)
3178 output[0x0b] |= CHANNEL_IS_RS485 << 0;
3179 else
3180 output[0x0b] &= ~(CHANNEL_IS_RS485 << 0);
3181 if (eeprom->channel_b_rs485enable)
3182 output[0x0b] |= CHANNEL_IS_RS485 << 1;
3183 else
3184 output[0x0b] &= ~(CHANNEL_IS_RS485 << 1);
3185 if (eeprom->channel_c_rs485enable)
3186 output[0x0b] |= CHANNEL_IS_RS485 << 2;
3187 else
3188 output[0x0b] &= ~(CHANNEL_IS_RS485 << 2);
3189 if (eeprom->channel_d_rs485enable)
3190 output[0x0b] |= CHANNEL_IS_RS485 << 3;
3191 else
3192 output[0x0b] &= ~(CHANNEL_IS_RS485 << 3);
3193
3194 if (eeprom->group0_drive > DRIVE_16MA)
3195 output[0x0c] |= DRIVE_16MA;
3196 else
3197 output[0x0c] |= eeprom->group0_drive;
3198 if (eeprom->group0_schmitt == IS_SCHMITT)
3199 output[0x0c] |= IS_SCHMITT;
3200 if (eeprom->group0_slew == SLOW_SLEW)
3201 output[0x0c] |= SLOW_SLEW;
3202
3203 if (eeprom->group1_drive > DRIVE_16MA)
3204 output[0x0c] |= DRIVE_16MA<<4;
3205 else
3206 output[0x0c] |= eeprom->group1_drive<<4;
3207 if (eeprom->group1_schmitt == IS_SCHMITT)
3208 output[0x0c] |= IS_SCHMITT<<4;
3209 if (eeprom->group1_slew == SLOW_SLEW)
3210 output[0x0c] |= SLOW_SLEW<<4;
3211
3212 if (eeprom->group2_drive > DRIVE_16MA)
3213 output[0x0d] |= DRIVE_16MA;
3214 else
3215 output[0x0d] |= eeprom->group2_drive;
3216 if (eeprom->group2_schmitt == IS_SCHMITT)
3217 output[0x0d] |= IS_SCHMITT;
3218 if (eeprom->group2_slew == SLOW_SLEW)
3219 output[0x0d] |= SLOW_SLEW;
3220
3221 if (eeprom->group3_drive > DRIVE_16MA)
3222 output[0x0d] |= DRIVE_16MA<<4;
3223 else
3224 output[0x0d] |= eeprom->group3_drive<<4;
3225 if (eeprom->group3_schmitt == IS_SCHMITT)
3226 output[0x0d] |= IS_SCHMITT<<4;
3227 if (eeprom->group3_slew == SLOW_SLEW)
3228 output[0x0d] |= SLOW_SLEW<<4;
3229
3230 output[0x18] = eeprom->chip;
3231
3232 break;
3233 case TYPE_232H:
3234 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
3235 if ( eeprom->channel_a_driver == DRIVER_VCP)
3236 output[0x00] |= DRIVER_VCPH;
3237 else
3238 output[0x00] &= ~DRIVER_VCPH;
3239 if (eeprom->powersave)
3240 output[0x01] |= POWER_SAVE_DISABLE_H;
3241 else
3242 output[0x01] &= ~POWER_SAVE_DISABLE_H;
3243
3244 if (eeprom->suspend_pull_downs)
3245 output[0x0a] |= 0x4;
3246 else
3247 output[0x0a] &= ~0x4;
3248
3249 if (eeprom->clock_polarity)
3250 output[0x01] |= FT1284_CLK_IDLE_STATE;
3251 else
3252 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
3253 if (eeprom->data_order)
3254 output[0x01] |= FT1284_DATA_LSB;
3255 else
3256 output[0x01] &= ~FT1284_DATA_LSB;
3257 if (eeprom->flow_control)
3258 output[0x01] |= FT1284_FLOW_CONTROL;
3259 else
3260 output[0x01] &= ~FT1284_FLOW_CONTROL;
3261 if (eeprom->group0_drive > DRIVE_16MA)
3262 output[0x0c] |= DRIVE_16MA;
3263 else
3264 output[0x0c] |= eeprom->group0_drive;
3265 if (eeprom->group0_schmitt == IS_SCHMITT)
3266 output[0x0c] |= IS_SCHMITT;
3267 if (eeprom->group0_slew == SLOW_SLEW)
3268 output[0x0c] |= SLOW_SLEW;
3269
3270 if (eeprom->group1_drive > DRIVE_16MA)
3271 output[0x0d] |= DRIVE_16MA;
3272 else
3273 output[0x0d] |= eeprom->group1_drive;
3274 if (eeprom->group1_schmitt == IS_SCHMITT)
3275 output[0x0d] |= IS_SCHMITT;
3276 if (eeprom->group1_slew == SLOW_SLEW)
3277 output[0x0d] |= SLOW_SLEW;
3278
3279 set_ft232h_cbus(eeprom, output);
3280
3281 output[0x1e] = eeprom->chip;
3282 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
3283 break;
3284 case TYPE_230X:
3285 output[0x00] = 0x80; /* Actually, leave the default value */
3286 /*FIXME: Make DBUS & CBUS Control configurable*/
3287 output[0x0c] = 0; /* DBUS drive 4mA, CBUS drive 4 mA like factory default */
3288 for (j = 0; j <= 6; j++)
3289 {
3290 output[0x1a + j] = eeprom->cbus_function[j];
3291 }
3292 output[0x0b] = eeprom->invert;
3293 break;
3294 }
3295
3296 /* First address without use */
3297 free_start = 0;
3298 switch (ftdi->type)
3299 {
3300 case TYPE_230X:
3301 free_start += 2;
3302 case TYPE_232H:
3303 free_start += 6;
3304 case TYPE_2232H:
3305 case TYPE_4232H:
3306 free_start += 2;
3307 case TYPE_R:
3308 free_start += 2;
3309 case TYPE_2232C:
3310 free_start++;
3311 case TYPE_AM:
3312 case TYPE_BM:
3313 free_start += 0x14;
3314 }
3315
3316 /* Arbitrary user data */
3317 if (eeprom->user_data && eeprom->user_data_size >= 0)
3318 {
3319 if (eeprom->user_data_addr < free_start)
3320 fprintf(stderr,"Warning, user data starts inside the generated data!\n");
3321 if (eeprom->user_data_addr + eeprom->user_data_size >= free_end)
3322 fprintf(stderr,"Warning, user data overlaps the strings area!\n");
3323 if (eeprom->user_data_addr + eeprom->user_data_size > eeprom->size)
3324 ftdi_error_return(-1,"eeprom size exceeded");
3325 memcpy(output + eeprom->user_data_addr, eeprom->user_data, eeprom->user_data_size);
3326 }
3327
3328 // calculate checksum
3329 checksum = 0xAAAA;
3330
3331 for (i = 0; i < eeprom->size/2-1; i++)
3332 {
3333 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3334 {
3335 /* FT230X has a user section in the MTP which is not part of the checksum */
3336 i = 0x40;
3337 }
3338 if ((ftdi->type == TYPE_230X) && (i >= 0x40) && (i < 0x50)) {
3339 uint16_t data;
3340 if (ftdi_read_eeprom_location(ftdi, i, &data)) {
3341 fprintf(stderr, "Reading Factory Configuration Data failed\n");
3342 i = 0x50;
3343 }
3344 value = data;
3345 }
3346 else {
3347 value = output[i*2];
3348 value += output[(i*2)+1] << 8;
3349 }
3350 checksum = value^checksum;
3351 checksum = (checksum << 1) | (checksum >> 15);
3352 }
3353
3354 output[eeprom->size-2] = checksum;
3355 output[eeprom->size-1] = checksum >> 8;
3356
3357 eeprom->initialized_for_connected_device = 1;
3358 return user_area_size;
3359}
3360/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
3361 * EEPROM structure
3362 *
3363 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
3364 */
3365static unsigned char bit2type(unsigned char bits)
3366{
3367 switch (bits)
3368 {
3369 case 0: return CHANNEL_IS_UART;
3370 case 1: return CHANNEL_IS_FIFO;
3371 case 2: return CHANNEL_IS_OPTO;
3372 case 4: return CHANNEL_IS_CPU;
3373 case 8: return CHANNEL_IS_FT1284;
3374 default:
3375 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
3376 bits);
3377 }
3378 return 0;
3379}
3380/* Decode 230X / 232R type chips invert bits
3381 * Prints directly to stdout.
3382*/
3383static void print_inverted_bits(int invert)
3384{
3385 const char *r_bits[] = {"TXD","RXD","RTS","CTS","DTR","DSR","DCD","RI"};
3386 int i;
3387
3388 fprintf(stdout,"Inverted bits:");
3389 for (i=0; i<8; i++)
3390 if ((invert & (1<<i)) == (1<<i))
3391 fprintf(stdout," %s",r_bits[i]);
3392
3393 fprintf(stdout,"\n");
3394}
3395/**
3396 Decode binary EEPROM image into an ftdi_eeprom structure.
3397
3398 For FT-X devices use AN_201 FT-X MTP memory Configuration to decode.
3399
3400 \param ftdi pointer to ftdi_context
3401 \param verbose Decode EEPROM on stdout
3402
3403 \retval 0: all fine
3404 \retval -1: something went wrong
3405
3406 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
3407 FIXME: Strings are malloc'ed here and should be freed somewhere
3408*/
3409int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
3410{
3411 int i, j;
3412 unsigned short checksum, eeprom_checksum, value;
3413 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
3414 int eeprom_size;
3415 struct ftdi_eeprom *eeprom;
3416 unsigned char *buf = NULL;
3417
3418 if (ftdi == NULL)
3419 ftdi_error_return(-1,"No context");
3420 if (ftdi->eeprom == NULL)
3421 ftdi_error_return(-1,"No eeprom structure");
3422
3423 eeprom = ftdi->eeprom;
3424 eeprom_size = eeprom->size;
3425 buf = ftdi->eeprom->buf;
3426
3427 // Addr 02: Vendor ID
3428 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
3429
3430 // Addr 04: Product ID
3431 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
3432
3433 // Addr 06: Device release number
3434 eeprom->release_number = buf[0x06] + (buf[0x07]<<8);
3435
3436 // Addr 08: Config descriptor
3437 // Bit 7: always 1
3438 // Bit 6: 1 if this device is self powered, 0 if bus powered
3439 // Bit 5: 1 if this device uses remote wakeup
3440 eeprom->self_powered = buf[0x08] & 0x40;
3441 eeprom->remote_wakeup = buf[0x08] & 0x20;
3442
3443 // Addr 09: Max power consumption: max power = value * 2 mA
3444 eeprom->max_power = MAX_POWER_MILLIAMP_PER_UNIT * buf[0x09];
3445
3446 // Addr 0A: Chip configuration
3447 // Bit 7: 0 - reserved
3448 // Bit 6: 0 - reserved
3449 // Bit 5: 0 - reserved
3450 // Bit 4: 1 - Change USB version on BM and 2232C
3451 // Bit 3: 1 - Use the serial number string
3452 // Bit 2: 1 - Enable suspend pull downs for lower power
3453 // Bit 1: 1 - Out EndPoint is Isochronous
3454 // Bit 0: 1 - In EndPoint is Isochronous
3455 //
3456 eeprom->in_is_isochronous = buf[0x0A]&0x01;
3457 eeprom->out_is_isochronous = buf[0x0A]&0x02;
3458 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
3459 eeprom->use_serial = !!(buf[0x0A] & USE_SERIAL_NUM);
3460 eeprom->use_usb_version = !!(buf[0x0A] & USE_USB_VERSION_BIT);
3461
3462 // Addr 0C: USB version low byte when 0x0A
3463 // Addr 0D: USB version high byte when 0x0A
3464 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
3465
3466 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3467 // Addr 0F: Length of manufacturer string
3468 manufacturer_size = buf[0x0F]/2;
3469 if (eeprom->manufacturer)
3470 free(eeprom->manufacturer);
3471 if (manufacturer_size > 0)
3472 {
3473 eeprom->manufacturer = (char *)malloc(manufacturer_size);
3474 if (eeprom->manufacturer)
3475 {
3476 // Decode manufacturer
3477 i = buf[0x0E] & (eeprom_size -1); // offset
3478 for (j=0; j<manufacturer_size-1; j++)
3479 {
3480 eeprom->manufacturer[j] = buf[2*j+i+2];
3481 }
3482 eeprom->manufacturer[j] = '\0';
3483 }
3484 }
3485 else eeprom->manufacturer = NULL;
3486
3487 // Addr 10: Offset of the product string + 0x80, calculated later
3488 // Addr 11: Length of product string
3489 if (eeprom->product)
3490 free(eeprom->product);
3491 product_size = buf[0x11]/2;
3492 if (product_size > 0)
3493 {
3494 eeprom->product = (char *)malloc(product_size);
3495 if (eeprom->product)
3496 {
3497 // Decode product name
3498 i = buf[0x10] & (eeprom_size -1); // offset
3499 for (j=0; j<product_size-1; j++)
3500 {
3501 eeprom->product[j] = buf[2*j+i+2];
3502 }
3503 eeprom->product[j] = '\0';
3504 }
3505 }
3506 else eeprom->product = NULL;
3507
3508 // Addr 12: Offset of the serial string + 0x80, calculated later
3509 // Addr 13: Length of serial string
3510 if (eeprom->serial)
3511 free(eeprom->serial);
3512 serial_size = buf[0x13]/2;
3513 if (serial_size > 0)
3514 {
3515 eeprom->serial = (char *)malloc(serial_size);
3516 if (eeprom->serial)
3517 {
3518 // Decode serial
3519 i = buf[0x12] & (eeprom_size -1); // offset
3520 for (j=0; j<serial_size-1; j++)
3521 {
3522 eeprom->serial[j] = buf[2*j+i+2];
3523 }
3524 eeprom->serial[j] = '\0';
3525 }
3526 }
3527 else eeprom->serial = NULL;
3528
3529 // verify checksum
3530 checksum = 0xAAAA;
3531
3532 for (i = 0; i < eeprom_size/2-1; i++)
3533 {
3534 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3535 {
3536 /* FT230X has a user section in the MTP which is not part of the checksum */
3537 i = 0x40;
3538 }
3539 value = buf[i*2];
3540 value += buf[(i*2)+1] << 8;
3541
3542 checksum = value^checksum;
3543 checksum = (checksum << 1) | (checksum >> 15);
3544 }
3545
3546 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3547
3548 if (eeprom_checksum != checksum)
3549 {
3550 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
3551 ftdi_error_return(-1,"EEPROM checksum error");
3552 }
3553
3554 eeprom->channel_a_type = 0;
3555 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
3556 {
3557 eeprom->chip = -1;
3558 }
3559 else if (ftdi->type == TYPE_2232C)
3560 {
3561 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3562 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3563 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
3564 eeprom->channel_b_type = buf[0x01] & 0x7;
3565 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3566 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
3567 eeprom->chip = buf[0x14];
3568 }
3569 else if (ftdi->type == TYPE_R)
3570 {
3571 /* TYPE_R flags D2XX, not VCP as all others*/
3572 eeprom->channel_a_driver = ~buf[0x00] & DRIVER_VCP;
3573 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
3574 eeprom->external_oscillator = buf[0x00] & 0x02;
3575 if ( (buf[0x01]&0x40) != 0x40)
3576 fprintf(stderr,
3577 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3578 " If this happened with the\n"
3579 " EEPROM programmed by FTDI tools, please report "
3580 "to libftdi@developer.intra2net.com\n");
3581
3582 eeprom->chip = buf[0x16];
3583 // Addr 0B: Invert data lines
3584 // Works only on FT232R, not FT245R, but no way to distinguish
3585 eeprom->invert = buf[0x0B];
3586 // Addr 14: CBUS function: CBUS0, CBUS1
3587 // Addr 15: CBUS function: CBUS2, CBUS3
3588 // Addr 16: CBUS function: CBUS5
3589 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3590 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3591 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3592 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3593 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
3594 }
3595 else if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3596 {
3597 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3598 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3599
3600 if (ftdi->type == TYPE_2232H)
3601 {
3602 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3603 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3604 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
3605 }
3606 else
3607 {
3608 eeprom->channel_c_driver = (buf[0x00] >> 4) & DRIVER_VCP;
3609 eeprom->channel_d_driver = (buf[0x01] >> 4) & DRIVER_VCP;
3610 eeprom->channel_a_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 0);
3611 eeprom->channel_b_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 1);
3612 eeprom->channel_c_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 2);
3613 eeprom->channel_d_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 3);
3614 }
3615
3616 eeprom->chip = buf[0x18];
3617 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3618 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3619 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3620 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3621 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3622 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3623 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3624 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3625 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3626 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3627 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3628 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
3629 }
3630 else if (ftdi->type == TYPE_232H)
3631 {
3632 eeprom->channel_a_type = buf[0x00] & 0xf;
3633 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
3634 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3635 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3636 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
3637 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
3638 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3639 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3640 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3641 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3642 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3643 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3644
3645 for(i=0; i<5; i++)
3646 {
3647 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3648 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3649 }
3650 eeprom->chip = buf[0x1e];
3651 /*FIXME: Decipher more values*/
3652 }
3653 else if (ftdi->type == TYPE_230X)
3654 {
3655 for(i=0; i<4; i++)
3656 {
3657 eeprom->cbus_function[i] = buf[0x1a + i] & 0xFF;
3658 }
3659 eeprom->group0_drive = buf[0x0c] & 0x03;
3660 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3661 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3662 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x03;
3663 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3664 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3665
3666 eeprom->invert = buf[0xb];
3667 }
3668
3669 if (verbose)
3670 {
3671 const char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3672 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3673 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3674 fprintf(stdout, "Release: 0x%04x\n",eeprom->release_number);
3675
3676 if (eeprom->self_powered)
3677 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3678 else
3679 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power,
3680 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3681 if (eeprom->manufacturer)
3682 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3683 if (eeprom->product)
3684 fprintf(stdout, "Product: %s\n",eeprom->product);
3685 if (eeprom->serial)
3686 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3687 fprintf(stdout, "Checksum : %04x\n", checksum);
3688 if (ftdi->type == TYPE_R) {
3689 fprintf(stdout, "Internal EEPROM\n");
3690 fprintf(stdout,"Oscillator: %s\n", eeprom->external_oscillator?"External":"Internal");
3691 }
3692 else if (eeprom->chip >= 0x46)
3693 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3694 if (eeprom->suspend_dbus7)
3695 fprintf(stdout, "Suspend on DBUS7\n");
3696 if (eeprom->suspend_pull_downs)
3697 fprintf(stdout, "Pull IO pins low during suspend\n");
3698 if(eeprom->powersave)
3699 {
3700 if(ftdi->type >= TYPE_232H)
3701 fprintf(stdout,"Enter low power state on ACBUS7\n");
3702 }
3703 if (eeprom->remote_wakeup)
3704 fprintf(stdout, "Enable Remote Wake Up\n");
3705 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3706 if (ftdi->type >= TYPE_2232C)
3707 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3708 channel_mode[eeprom->channel_a_type],
3709 (eeprom->channel_a_driver)?" VCP":"",
3710 (eeprom->high_current_a)?" High Current IO":"");
3711 if (ftdi->type == TYPE_232H)
3712 {
3713 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3714 (eeprom->clock_polarity)?"HIGH":"LOW",
3715 (eeprom->data_order)?"LSB":"MSB",
3716 (eeprom->flow_control)?"":"No ");
3717 }
3718 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3719 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3720 channel_mode[eeprom->channel_b_type],
3721 (eeprom->channel_b_driver)?" VCP":"",
3722 (eeprom->high_current_b)?" High Current IO":"");
3723 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3724 eeprom->use_usb_version)
3725 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3726
3727 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3728 {
3729 fprintf(stdout,"%s has %d mA drive%s%s\n",
3730 (ftdi->type == TYPE_2232H)?"AL":"A",
3731 (eeprom->group0_drive+1) *4,
3732 (eeprom->group0_schmitt)?" Schmitt Input":"",
3733 (eeprom->group0_slew)?" Slow Slew":"");
3734 fprintf(stdout,"%s has %d mA drive%s%s\n",
3735 (ftdi->type == TYPE_2232H)?"AH":"B",
3736 (eeprom->group1_drive+1) *4,
3737 (eeprom->group1_schmitt)?" Schmitt Input":"",
3738 (eeprom->group1_slew)?" Slow Slew":"");
3739 fprintf(stdout,"%s has %d mA drive%s%s\n",
3740 (ftdi->type == TYPE_2232H)?"BL":"C",
3741 (eeprom->group2_drive+1) *4,
3742 (eeprom->group2_schmitt)?" Schmitt Input":"",
3743 (eeprom->group2_slew)?" Slow Slew":"");
3744 fprintf(stdout,"%s has %d mA drive%s%s\n",
3745 (ftdi->type == TYPE_2232H)?"BH":"D",
3746 (eeprom->group3_drive+1) *4,
3747 (eeprom->group3_schmitt)?" Schmitt Input":"",
3748 (eeprom->group3_slew)?" Slow Slew":"");
3749 }
3750 else if (ftdi->type == TYPE_232H)
3751 {
3752 const char *cbush_mux[] = {"TRISTATE","TXLED","RXLED", "TXRXLED","PWREN",
3753 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3754 "CLK30","CLK15","CLK7_5"
3755 };
3756 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3757 (eeprom->group0_drive+1) *4,
3758 (eeprom->group0_schmitt)?" Schmitt Input":"",
3759 (eeprom->group0_slew)?" Slow Slew":"");
3760 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3761 (eeprom->group1_drive+1) *4,
3762 (eeprom->group1_schmitt)?" Schmitt Input":"",
3763 (eeprom->group1_slew)?" Slow Slew":"");
3764 for (i=0; i<10; i++)
3765 {
3766 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3767 fprintf(stdout,"C%d Function: %s\n", i,
3768 cbush_mux[eeprom->cbus_function[i]]);
3769 }
3770 }
3771 else if (ftdi->type == TYPE_230X)
3772 {
3773 const char *cbusx_mux[] = {"TRISTATE","TXLED","RXLED", "TXRXLED","PWREN",
3774 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3775 "CLK24","CLK12","CLK6","BAT_DETECT","BAT_DETECT#",
3776 "I2C_TXE#", "I2C_RXF#", "VBUS_SENSE", "BB_WR#",
3777 "BBRD#", "TIME_STAMP", "AWAKE#",
3778 };
3779 fprintf(stdout,"DBUS has %d mA drive%s%s\n",
3780 (eeprom->group0_drive+1) *4,
3781 (eeprom->group0_schmitt)?" Schmitt Input":"",
3782 (eeprom->group0_slew)?" Slow Slew":"");
3783 fprintf(stdout,"CBUS has %d mA drive%s%s\n",
3784 (eeprom->group1_drive+1) *4,
3785 (eeprom->group1_schmitt)?" Schmitt Input":"",
3786 (eeprom->group1_slew)?" Slow Slew":"");
3787 for (i=0; i<4; i++)
3788 {
3789 if (eeprom->cbus_function[i]<= CBUSX_AWAKE)
3790 fprintf(stdout,"CBUS%d Function: %s\n", i, cbusx_mux[eeprom->cbus_function[i]]);
3791 }
3792
3793 if (eeprom->invert)
3794 print_inverted_bits(eeprom->invert);
3795 }
3796
3797 if (ftdi->type == TYPE_R)
3798 {
3799 const char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3800 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3801 "IOMODE","BB_WR","BB_RD"
3802 };
3803 const char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3804
3805 if (eeprom->invert)
3806 print_inverted_bits(eeprom->invert);
3807
3808 for (i=0; i<5; i++)
3809 {
3810 if (eeprom->cbus_function[i]<=CBUS_BB_RD)
3811 fprintf(stdout,"C%d Function: %s\n", i,
3812 cbus_mux[eeprom->cbus_function[i]]);
3813 else
3814 {
3815 if (i < 4)
3816 /* Running MPROG show that C0..3 have fixed function Synchronous
3817 Bit Bang mode */
3818 fprintf(stdout,"C%d BB Function: %s\n", i,
3819 cbus_BB[i]);
3820 else
3821 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3822 }
3823 }
3824 }
3825 }
3826 return 0;
3827}
3828
3829/**
3830 Get a value from the decoded EEPROM structure
3831
3832 \param ftdi pointer to ftdi_context
3833 \param value_name Enum of the value to query
3834 \param value Pointer to store read value
3835
3836 \retval 0: all fine
3837 \retval -1: Value doesn't exist
3838*/
3839int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3840{
3841 switch (value_name)
3842 {
3843 case VENDOR_ID:
3844 *value = ftdi->eeprom->vendor_id;
3845 break;
3846 case PRODUCT_ID:
3847 *value = ftdi->eeprom->product_id;
3848 break;
3849 case RELEASE_NUMBER:
3850 *value = ftdi->eeprom->release_number;
3851 break;
3852 case SELF_POWERED:
3853 *value = ftdi->eeprom->self_powered;
3854 break;
3855 case REMOTE_WAKEUP:
3856 *value = ftdi->eeprom->remote_wakeup;
3857 break;
3858 case IS_NOT_PNP:
3859 *value = ftdi->eeprom->is_not_pnp;
3860 break;
3861 case SUSPEND_DBUS7:
3862 *value = ftdi->eeprom->suspend_dbus7;
3863 break;
3864 case IN_IS_ISOCHRONOUS:
3865 *value = ftdi->eeprom->in_is_isochronous;
3866 break;
3867 case OUT_IS_ISOCHRONOUS:
3868 *value = ftdi->eeprom->out_is_isochronous;
3869 break;
3870 case SUSPEND_PULL_DOWNS:
3871 *value = ftdi->eeprom->suspend_pull_downs;
3872 break;
3873 case USE_SERIAL:
3874 *value = ftdi->eeprom->use_serial;
3875 break;
3876 case USB_VERSION:
3877 *value = ftdi->eeprom->usb_version;
3878 break;
3879 case USE_USB_VERSION:
3880 *value = ftdi->eeprom->use_usb_version;
3881 break;
3882 case MAX_POWER:
3883 *value = ftdi->eeprom->max_power;
3884 break;
3885 case CHANNEL_A_TYPE:
3886 *value = ftdi->eeprom->channel_a_type;
3887 break;
3888 case CHANNEL_B_TYPE:
3889 *value = ftdi->eeprom->channel_b_type;
3890 break;
3891 case CHANNEL_A_DRIVER:
3892 *value = ftdi->eeprom->channel_a_driver;
3893 break;
3894 case CHANNEL_B_DRIVER:
3895 *value = ftdi->eeprom->channel_b_driver;
3896 break;
3897 case CHANNEL_C_DRIVER:
3898 *value = ftdi->eeprom->channel_c_driver;
3899 break;
3900 case CHANNEL_D_DRIVER:
3901 *value = ftdi->eeprom->channel_d_driver;
3902 break;
3903 case CHANNEL_A_RS485:
3904 *value = ftdi->eeprom->channel_a_rs485enable;
3905 break;
3906 case CHANNEL_B_RS485:
3907 *value = ftdi->eeprom->channel_b_rs485enable;
3908 break;
3909 case CHANNEL_C_RS485:
3910 *value = ftdi->eeprom->channel_c_rs485enable;
3911 break;
3912 case CHANNEL_D_RS485:
3913 *value = ftdi->eeprom->channel_d_rs485enable;
3914 break;
3915 case CBUS_FUNCTION_0:
3916 *value = ftdi->eeprom->cbus_function[0];
3917 break;
3918 case CBUS_FUNCTION_1:
3919 *value = ftdi->eeprom->cbus_function[1];
3920 break;
3921 case CBUS_FUNCTION_2:
3922 *value = ftdi->eeprom->cbus_function[2];
3923 break;
3924 case CBUS_FUNCTION_3:
3925 *value = ftdi->eeprom->cbus_function[3];
3926 break;
3927 case CBUS_FUNCTION_4:
3928 *value = ftdi->eeprom->cbus_function[4];
3929 break;
3930 case CBUS_FUNCTION_5:
3931 *value = ftdi->eeprom->cbus_function[5];
3932 break;
3933 case CBUS_FUNCTION_6:
3934 *value = ftdi->eeprom->cbus_function[6];
3935 break;
3936 case CBUS_FUNCTION_7:
3937 *value = ftdi->eeprom->cbus_function[7];
3938 break;
3939 case CBUS_FUNCTION_8:
3940 *value = ftdi->eeprom->cbus_function[8];
3941 break;
3942 case CBUS_FUNCTION_9:
3943 *value = ftdi->eeprom->cbus_function[9];
3944 break;
3945 case HIGH_CURRENT:
3946 *value = ftdi->eeprom->high_current;
3947 break;
3948 case HIGH_CURRENT_A:
3949 *value = ftdi->eeprom->high_current_a;
3950 break;
3951 case HIGH_CURRENT_B:
3952 *value = ftdi->eeprom->high_current_b;
3953 break;
3954 case INVERT:
3955 *value = ftdi->eeprom->invert;
3956 break;
3957 case GROUP0_DRIVE:
3958 *value = ftdi->eeprom->group0_drive;
3959 break;
3960 case GROUP0_SCHMITT:
3961 *value = ftdi->eeprom->group0_schmitt;
3962 break;
3963 case GROUP0_SLEW:
3964 *value = ftdi->eeprom->group0_slew;
3965 break;
3966 case GROUP1_DRIVE:
3967 *value = ftdi->eeprom->group1_drive;
3968 break;
3969 case GROUP1_SCHMITT:
3970 *value = ftdi->eeprom->group1_schmitt;
3971 break;
3972 case GROUP1_SLEW:
3973 *value = ftdi->eeprom->group1_slew;
3974 break;
3975 case GROUP2_DRIVE:
3976 *value = ftdi->eeprom->group2_drive;
3977 break;
3978 case GROUP2_SCHMITT:
3979 *value = ftdi->eeprom->group2_schmitt;
3980 break;
3981 case GROUP2_SLEW:
3982 *value = ftdi->eeprom->group2_slew;
3983 break;
3984 case GROUP3_DRIVE:
3985 *value = ftdi->eeprom->group3_drive;
3986 break;
3987 case GROUP3_SCHMITT:
3988 *value = ftdi->eeprom->group3_schmitt;
3989 break;
3990 case GROUP3_SLEW:
3991 *value = ftdi->eeprom->group3_slew;
3992 break;
3993 case POWER_SAVE:
3994 *value = ftdi->eeprom->powersave;
3995 break;
3996 case CLOCK_POLARITY:
3997 *value = ftdi->eeprom->clock_polarity;
3998 break;
3999 case DATA_ORDER:
4000 *value = ftdi->eeprom->data_order;
4001 break;
4002 case FLOW_CONTROL:
4003 *value = ftdi->eeprom->flow_control;
4004 break;
4005 case CHIP_TYPE:
4006 *value = ftdi->eeprom->chip;
4007 break;
4008 case CHIP_SIZE:
4009 *value = ftdi->eeprom->size;
4010 break;
4011 case EXTERNAL_OSCILLATOR:
4012 *value = ftdi->eeprom->external_oscillator;
4013 break;
4014 default:
4015 ftdi_error_return(-1, "Request for unknown EEPROM value");
4016 }
4017 return 0;
4018}
4019
4020/**
4021 Set a value in the decoded EEPROM Structure
4022 No parameter checking is performed
4023
4024 \param ftdi pointer to ftdi_context
4025 \param value_name Enum of the value to set
4026 \param value to set
4027
4028 \retval 0: all fine
4029 \retval -1: Value doesn't exist
4030 \retval -2: Value not user settable
4031*/
4032int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
4033{
4034 switch (value_name)
4035 {
4036 case VENDOR_ID:
4037 ftdi->eeprom->vendor_id = value;
4038 break;
4039 case PRODUCT_ID:
4040 ftdi->eeprom->product_id = value;
4041 break;
4042 case RELEASE_NUMBER:
4043 ftdi->eeprom->release_number = value;
4044 break;
4045 case SELF_POWERED:
4046 ftdi->eeprom->self_powered = value;
4047 break;
4048 case REMOTE_WAKEUP:
4049 ftdi->eeprom->remote_wakeup = value;
4050 break;
4051 case IS_NOT_PNP:
4052 ftdi->eeprom->is_not_pnp = value;
4053 break;
4054 case SUSPEND_DBUS7:
4055 ftdi->eeprom->suspend_dbus7 = value;
4056 break;
4057 case IN_IS_ISOCHRONOUS:
4058 ftdi->eeprom->in_is_isochronous = value;
4059 break;
4060 case OUT_IS_ISOCHRONOUS:
4061 ftdi->eeprom->out_is_isochronous = value;
4062 break;
4063 case SUSPEND_PULL_DOWNS:
4064 ftdi->eeprom->suspend_pull_downs = value;
4065 break;
4066 case USE_SERIAL:
4067 ftdi->eeprom->use_serial = value;
4068 break;
4069 case USB_VERSION:
4070 ftdi->eeprom->usb_version = value;
4071 break;
4072 case USE_USB_VERSION:
4073 ftdi->eeprom->use_usb_version = value;
4074 break;
4075 case MAX_POWER:
4076 ftdi->eeprom->max_power = value;
4077 break;
4078 case CHANNEL_A_TYPE:
4079 ftdi->eeprom->channel_a_type = value;
4080 break;
4081 case CHANNEL_B_TYPE:
4082 ftdi->eeprom->channel_b_type = value;
4083 break;
4084 case CHANNEL_A_DRIVER:
4085 ftdi->eeprom->channel_a_driver = value;
4086 break;
4087 case CHANNEL_B_DRIVER:
4088 ftdi->eeprom->channel_b_driver = value;
4089 break;
4090 case CHANNEL_C_DRIVER:
4091 ftdi->eeprom->channel_c_driver = value;
4092 break;
4093 case CHANNEL_D_DRIVER:
4094 ftdi->eeprom->channel_d_driver = value;
4095 break;
4096 case CHANNEL_A_RS485:
4097 ftdi->eeprom->channel_a_rs485enable = value;
4098 break;
4099 case CHANNEL_B_RS485:
4100 ftdi->eeprom->channel_b_rs485enable = value;
4101 break;
4102 case CHANNEL_C_RS485:
4103 ftdi->eeprom->channel_c_rs485enable = value;
4104 break;
4105 case CHANNEL_D_RS485:
4106 ftdi->eeprom->channel_d_rs485enable = value;
4107 break;
4108 case CBUS_FUNCTION_0:
4109 ftdi->eeprom->cbus_function[0] = value;
4110 break;
4111 case CBUS_FUNCTION_1:
4112 ftdi->eeprom->cbus_function[1] = value;
4113 break;
4114 case CBUS_FUNCTION_2:
4115 ftdi->eeprom->cbus_function[2] = value;
4116 break;
4117 case CBUS_FUNCTION_3:
4118 ftdi->eeprom->cbus_function[3] = value;
4119 break;
4120 case CBUS_FUNCTION_4:
4121 ftdi->eeprom->cbus_function[4] = value;
4122 break;
4123 case CBUS_FUNCTION_5:
4124 ftdi->eeprom->cbus_function[5] = value;
4125 break;
4126 case CBUS_FUNCTION_6:
4127 ftdi->eeprom->cbus_function[6] = value;
4128 break;
4129 case CBUS_FUNCTION_7:
4130 ftdi->eeprom->cbus_function[7] = value;
4131 break;
4132 case CBUS_FUNCTION_8:
4133 ftdi->eeprom->cbus_function[8] = value;
4134 break;
4135 case CBUS_FUNCTION_9:
4136 ftdi->eeprom->cbus_function[9] = value;
4137 break;
4138 case HIGH_CURRENT:
4139 ftdi->eeprom->high_current = value;
4140 break;
4141 case HIGH_CURRENT_A:
4142 ftdi->eeprom->high_current_a = value;
4143 break;
4144 case HIGH_CURRENT_B:
4145 ftdi->eeprom->high_current_b = value;
4146 break;
4147 case INVERT:
4148 ftdi->eeprom->invert = value;
4149 break;
4150 case GROUP0_DRIVE:
4151 ftdi->eeprom->group0_drive = value;
4152 break;
4153 case GROUP0_SCHMITT:
4154 ftdi->eeprom->group0_schmitt = value;
4155 break;
4156 case GROUP0_SLEW:
4157 ftdi->eeprom->group0_slew = value;
4158 break;
4159 case GROUP1_DRIVE:
4160 ftdi->eeprom->group1_drive = value;
4161 break;
4162 case GROUP1_SCHMITT:
4163 ftdi->eeprom->group1_schmitt = value;
4164 break;
4165 case GROUP1_SLEW:
4166 ftdi->eeprom->group1_slew = value;
4167 break;
4168 case GROUP2_DRIVE:
4169 ftdi->eeprom->group2_drive = value;
4170 break;
4171 case GROUP2_SCHMITT:
4172 ftdi->eeprom->group2_schmitt = value;
4173 break;
4174 case GROUP2_SLEW:
4175 ftdi->eeprom->group2_slew = value;
4176 break;
4177 case GROUP3_DRIVE:
4178 ftdi->eeprom->group3_drive = value;
4179 break;
4180 case GROUP3_SCHMITT:
4181 ftdi->eeprom->group3_schmitt = value;
4182 break;
4183 case GROUP3_SLEW:
4184 ftdi->eeprom->group3_slew = value;
4185 break;
4186 case CHIP_TYPE:
4187 ftdi->eeprom->chip = value;
4188 break;
4189 case POWER_SAVE:
4190 ftdi->eeprom->powersave = value;
4191 break;
4192 case CLOCK_POLARITY:
4193 ftdi->eeprom->clock_polarity = value;
4194 break;
4195 case DATA_ORDER:
4196 ftdi->eeprom->data_order = value;
4197 break;
4198 case FLOW_CONTROL:
4199 ftdi->eeprom->flow_control = value;
4200 break;
4201 case CHIP_SIZE:
4202 ftdi_error_return(-2, "EEPROM Value can't be changed");
4203 break;
4204 case EXTERNAL_OSCILLATOR:
4205 ftdi->eeprom->external_oscillator = value;
4206 break;
4207 case USER_DATA_ADDR:
4208 ftdi->eeprom->user_data_addr = value;
4209 break;
4210
4211 default :
4212 ftdi_error_return(-1, "Request to unknown EEPROM value");
4213 }
4214 ftdi->eeprom->initialized_for_connected_device = 0;
4215 return 0;
4216}
4217
4218/** Get the read-only buffer to the binary EEPROM content
4219
4220 \param ftdi pointer to ftdi_context
4221 \param buf buffer to receive EEPROM content
4222 \param size Size of receiving buffer
4223
4224 \retval 0: All fine
4225 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
4226 \retval -2: Not enough room to store eeprom
4227*/
4228int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
4229{
4230 if (!ftdi || !(ftdi->eeprom))
4231 ftdi_error_return(-1, "No appropriate structure");
4232
4233 if (!buf || size < ftdi->eeprom->size)
4234 ftdi_error_return(-1, "Not enough room to store eeprom");
4235
4236 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
4237 if (size > FTDI_MAX_EEPROM_SIZE)
4238 size = FTDI_MAX_EEPROM_SIZE;
4239
4240 memcpy(buf, ftdi->eeprom->buf, size);
4241
4242 return 0;
4243}
4244
4245/** Set the EEPROM content from the user-supplied prefilled buffer
4246
4247 \param ftdi pointer to ftdi_context
4248 \param buf buffer to read EEPROM content
4249 \param size Size of buffer
4250
4251 \retval 0: All fine
4252 \retval -1: struct ftdi_context or ftdi_eeprom or buf missing
4253*/
4254int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
4255{
4256 if (!ftdi || !(ftdi->eeprom) || !buf)
4257 ftdi_error_return(-1, "No appropriate structure");
4258
4259 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
4260 if (size > FTDI_MAX_EEPROM_SIZE)
4261 size = FTDI_MAX_EEPROM_SIZE;
4262
4263 memcpy(ftdi->eeprom->buf, buf, size);
4264
4265 return 0;
4266}
4267
4268/** Set the EEPROM user data content from the user-supplied prefilled buffer
4269
4270 \param ftdi pointer to ftdi_context
4271 \param buf buffer to read EEPROM user data content
4272 \param size Size of buffer
4273
4274 \retval 0: All fine
4275 \retval -1: struct ftdi_context or ftdi_eeprom or buf missing
4276*/
4277int ftdi_set_eeprom_user_data(struct ftdi_context *ftdi, const char * buf, int size)
4278{
4279 if (!ftdi || !(ftdi->eeprom) || !buf)
4280 ftdi_error_return(-1, "No appropriate structure");
4281
4282 ftdi->eeprom->user_data_size = size;
4283 ftdi->eeprom->user_data = buf;
4284 return 0;
4285}
4286
4287/**
4288 Read eeprom location
4289
4290 \param ftdi pointer to ftdi_context
4291 \param eeprom_addr Address of eeprom location to be read
4292 \param eeprom_val Pointer to store read eeprom location
4293
4294 \retval 0: all fine
4295 \retval -1: read failed
4296 \retval -2: USB device unavailable
4297*/
4298int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
4299{
4300 unsigned char buf[2];
4301
4302 if (ftdi == NULL || ftdi->usb_dev == NULL)
4303 ftdi_error_return(-2, "USB device unavailable");
4304
4305 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, buf, 2, ftdi->usb_read_timeout) != 2)
4306 ftdi_error_return(-1, "reading eeprom failed");
4307
4308 *eeprom_val = (0xff & buf[0]) | (buf[1] << 8);
4309
4310 return 0;
4311}
4312
4313/**
4314 Read eeprom
4315
4316 \param ftdi pointer to ftdi_context
4317
4318 \retval 0: all fine
4319 \retval -1: read failed
4320 \retval -2: USB device unavailable
4321*/
4322int ftdi_read_eeprom(struct ftdi_context *ftdi)
4323{
4324 int i;
4325 unsigned char *buf;
4326
4327 if (ftdi == NULL || ftdi->usb_dev == NULL)
4328 ftdi_error_return(-2, "USB device unavailable");
4329 buf = ftdi->eeprom->buf;
4330
4331 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
4332 {
4333 if (libusb_control_transfer(
4334 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
4335 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
4336 ftdi_error_return(-1, "reading eeprom failed");
4337 }
4338
4339 if (ftdi->type == TYPE_R)
4340 ftdi->eeprom->size = 0x80;
4341 /* Guesses size of eeprom by comparing halves
4342 - will not work with blank eeprom */
4343 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
4344 ftdi->eeprom->size = -1;
4345 else if (memcmp(buf,&buf[0x80],0x80) == 0)
4346 ftdi->eeprom->size = 0x80;
4347 else if (memcmp(buf,&buf[0x40],0x40) == 0)
4348 ftdi->eeprom->size = 0x40;
4349 else
4350 ftdi->eeprom->size = 0x100;
4351 return 0;
4352}
4353
4354/*
4355 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
4356 Function is only used internally
4357 \internal
4358*/
4359static unsigned char ftdi_read_chipid_shift(unsigned char value)
4360{
4361 return ((value & 1) << 1) |
4362 ((value & 2) << 5) |
4363 ((value & 4) >> 2) |
4364 ((value & 8) << 4) |
4365 ((value & 16) >> 1) |
4366 ((value & 32) >> 1) |
4367 ((value & 64) >> 4) |
4368 ((value & 128) >> 2);
4369}
4370
4371/**
4372 Read the FTDIChip-ID from R-type devices
4373
4374 \param ftdi pointer to ftdi_context
4375 \param chipid Pointer to store FTDIChip-ID
4376
4377 \retval 0: all fine
4378 \retval -1: read failed
4379 \retval -2: USB device unavailable
4380*/
4381int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
4382{
4383 unsigned int a = 0, b = 0;
4384
4385 if (ftdi == NULL || ftdi->usb_dev == NULL)
4386 ftdi_error_return(-2, "USB device unavailable");
4387
4388 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
4389 {
4390 a = a << 8 | a >> 8;
4391 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
4392 {
4393 b = b << 8 | b >> 8;
4394 a = (a << 16) | (b & 0xFFFF);
4395 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
4396 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
4397 *chipid = a ^ 0xa5f0f7d1;
4398 return 0;
4399 }
4400 }
4401
4402 ftdi_error_return(-1, "read of FTDIChip-ID failed");
4403}
4404
4405/**
4406 Write eeprom location
4407
4408 \param ftdi pointer to ftdi_context
4409 \param eeprom_addr Address of eeprom location to be written
4410 \param eeprom_val Value to be written
4411
4412 \retval 0: all fine
4413 \retval -1: write failed
4414 \retval -2: USB device unavailable
4415 \retval -3: Invalid access to checksum protected area below 0x80
4416 \retval -4: Device can't access unprotected area
4417 \retval -5: Reading chip type failed
4418*/
4419int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
4420 unsigned short eeprom_val)
4421{
4422 int chip_type_location;
4423 unsigned short chip_type;
4424
4425 if (ftdi == NULL || ftdi->usb_dev == NULL)
4426 ftdi_error_return(-2, "USB device unavailable");
4427
4428 if (eeprom_addr <0x80)
4429 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
4430
4431
4432 switch (ftdi->type)
4433 {
4434 case TYPE_BM:
4435 case TYPE_2232C:
4436 chip_type_location = 0x14;
4437 break;
4438 case TYPE_2232H:
4439 case TYPE_4232H:
4440 chip_type_location = 0x18;
4441 break;
4442 case TYPE_232H:
4443 chip_type_location = 0x1e;
4444 break;
4445 default:
4446 ftdi_error_return(-4, "Device can't access unprotected area");
4447 }
4448
4449 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
4450 ftdi_error_return(-5, "Reading failed");
4451 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
4452 if ((chip_type & 0xff) != 0x66)
4453 {
4454 ftdi_error_return(-6, "EEPROM is not of 93x66");
4455 }
4456
4457 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4458 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
4459 NULL, 0, ftdi->usb_write_timeout) != 0)
4460 ftdi_error_return(-1, "unable to write eeprom");
4461
4462 return 0;
4463}
4464
4465/**
4466 Write eeprom
4467
4468 \param ftdi pointer to ftdi_context
4469
4470 \retval 0: all fine
4471 \retval -1: read failed
4472 \retval -2: USB device unavailable
4473 \retval -3: EEPROM not initialized for the connected device;
4474*/
4475int ftdi_write_eeprom(struct ftdi_context *ftdi)
4476{
4477 unsigned short usb_val, status;
4478 int i, ret;
4479 unsigned char *eeprom;
4480
4481 if (ftdi == NULL || ftdi->usb_dev == NULL)
4482 ftdi_error_return(-2, "USB device unavailable");
4483
4484 if(ftdi->eeprom->initialized_for_connected_device == 0)
4485 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
4486
4487 eeprom = ftdi->eeprom->buf;
4488
4489 /* These commands were traced while running MProg */
4490 if ((ret = ftdi_usb_reset(ftdi)) != 0)
4491 return ret;
4492 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
4493 return ret;
4494 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
4495 return ret;
4496
4497 for (i = 0; i < ftdi->eeprom->size/2; i++)
4498 {
4499 /* Do not try to write to reserved area */
4500 if ((ftdi->type == TYPE_230X) && (i == 0x40))
4501 {
4502 i = 0x50;
4503 }
4504 usb_val = eeprom[i*2];
4505 usb_val += eeprom[(i*2)+1] << 8;
4506 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4507 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
4508 NULL, 0, ftdi->usb_write_timeout) < 0)
4509 ftdi_error_return(-1, "unable to write eeprom");
4510 }
4511
4512 return 0;
4513}
4514
4515/**
4516 Erase eeprom
4517
4518 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
4519
4520 \param ftdi pointer to ftdi_context
4521
4522 \retval 0: all fine
4523 \retval -1: erase failed
4524 \retval -2: USB device unavailable
4525 \retval -3: Writing magic failed
4526 \retval -4: Read EEPROM failed
4527 \retval -5: Unexpected EEPROM value
4528*/
4529#define MAGIC 0x55aa
4530int ftdi_erase_eeprom(struct ftdi_context *ftdi)
4531{
4532 unsigned short eeprom_value;
4533 if (ftdi == NULL || ftdi->usb_dev == NULL)
4534 ftdi_error_return(-2, "USB device unavailable");
4535
4536 if ((ftdi->type == TYPE_R) || (ftdi->type == TYPE_230X))
4537 {
4538 ftdi->eeprom->chip = 0;
4539 return 0;
4540 }
4541
4542 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4543 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4544 ftdi_error_return(-1, "unable to erase eeprom");
4545
4546
4547 /* detect chip type by writing 0x55AA as magic at word position 0xc0
4548 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
4549 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
4550 Chip is 93x66 if magic is only read at word position 0xc0*/
4551 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4552 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
4553 NULL, 0, ftdi->usb_write_timeout) != 0)
4554 ftdi_error_return(-3, "Writing magic failed");
4555 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
4556 ftdi_error_return(-4, "Reading failed");
4557 if (eeprom_value == MAGIC)
4558 {
4559 ftdi->eeprom->chip = 0x46;
4560 }
4561 else
4562 {
4563 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
4564 ftdi_error_return(-4, "Reading failed");
4565 if (eeprom_value == MAGIC)
4566 ftdi->eeprom->chip = 0x56;
4567 else
4568 {
4569 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
4570 ftdi_error_return(-4, "Reading failed");
4571 if (eeprom_value == MAGIC)
4572 ftdi->eeprom->chip = 0x66;
4573 else
4574 {
4575 ftdi->eeprom->chip = -1;
4576 }
4577 }
4578 }
4579 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4580 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4581 ftdi_error_return(-1, "unable to erase eeprom");
4582 return 0;
4583}
4584
4585/**
4586 Get string representation for last error code
4587
4588 \param ftdi pointer to ftdi_context
4589
4590 \retval Pointer to error string
4591*/
4592const char *ftdi_get_error_string (struct ftdi_context *ftdi)
4593{
4594 if (ftdi == NULL)
4595 return "";
4596
4597 return ftdi->error_str;
4598}
4599
4600/* @} end of doxygen libftdi group */