libftdi: (tomj) fix USB config descriptor
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2008 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/de/produkte/opensource/ftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <usb.h>
32#include <string.h>
33#include <errno.h>
34
35#include "ftdi.h"
36
37/* stuff needed for async write */
38#ifdef LIBFTDI_LINUX_ASYNC_MODE
39 #include <sys/ioctl.h>
40 #include <sys/time.h>
41 #include <sys/select.h>
42 #include <sys/types.h>
43 #include <unistd.h>
44 #include <linux/usbdevice_fs.h>
45#endif
46
47#define ftdi_error_return(code, str) do { \
48 ftdi->error_str = str; \
49 return code; \
50 } while(0);
51
52
53/**
54 Initializes a ftdi_context.
55
56 \param ftdi pointer to ftdi_context
57
58 \retval 0: all fine
59 \retval -1: couldn't allocate read buffer
60
61 \remark This should be called before all functions
62*/
63int ftdi_init(struct ftdi_context *ftdi)
64{
65 int i;
66
67 ftdi->usb_dev = NULL;
68 ftdi->usb_read_timeout = 5000;
69 ftdi->usb_write_timeout = 5000;
70
71 ftdi->type = TYPE_BM; /* chip type */
72 ftdi->baudrate = -1;
73 ftdi->bitbang_enabled = 0;
74
75 ftdi->readbuffer = NULL;
76 ftdi->readbuffer_offset = 0;
77 ftdi->readbuffer_remaining = 0;
78 ftdi->writebuffer_chunksize = 4096;
79
80 ftdi->interface = 0;
81 ftdi->index = 0;
82 ftdi->in_ep = 0x02;
83 ftdi->out_ep = 0x81;
84 ftdi->bitbang_mode = 1; /* 1: Normal bitbang mode, 2: SPI bitbang mode */
85
86 ftdi->error_str = NULL;
87
88#ifdef LIBFTDI_LINUX_ASYNC_MODE
89 ftdi->async_usb_buffer_size=10;
90 if ((ftdi->async_usb_buffer=malloc(sizeof(struct usbdevfs_urb)*ftdi->async_usb_buffer_size)) == NULL)
91 ftdi_error_return(-1, "out of memory for async usb buffer");
92
93 /* initialize async usb buffer with unused-marker */
94 for (i=0; i < ftdi->async_usb_buffer_size; i++)
95 ((struct usbdevfs_urb*)ftdi->async_usb_buffer)[i].usercontext = FTDI_URB_USERCONTEXT_COOKIE;
96#else
97 ftdi->async_usb_buffer_size=0;
98 ftdi->async_usb_buffer = NULL;
99#endif
100
101 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
102
103 /* All fine. Now allocate the readbuffer */
104 return ftdi_read_data_set_chunksize(ftdi, 4096);
105}
106
107/**
108 Allocate and initialize a new ftdi_context
109
110 \return a pointer to a new ftdi_context, or NULL on failure
111*/
112struct ftdi_context *ftdi_new()
113{
114 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
115
116 if (ftdi == NULL) {
117 return NULL;
118 }
119
120 if (ftdi_init(ftdi) != 0) {
121 free(ftdi);
122 return NULL;
123 }
124
125 return ftdi;
126}
127
128/**
129 Open selected channels on a chip, otherwise use first channel.
130
131 \param ftdi pointer to ftdi_context
132 \param interface Interface to use for FT2232C chips.
133
134 \retval 0: all fine
135 \retval -1: unknown interface
136*/
137int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
138{
139 switch (interface) {
140 case INTERFACE_ANY:
141 case INTERFACE_A:
142 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
143 break;
144 case INTERFACE_B:
145 ftdi->interface = 1;
146 ftdi->index = INTERFACE_B;
147 ftdi->in_ep = 0x04;
148 ftdi->out_ep = 0x83;
149 break;
150 default:
151 ftdi_error_return(-1, "Unknown interface");
152 }
153 return 0;
154}
155
156/**
157 Deinitializes a ftdi_context.
158
159 \param ftdi pointer to ftdi_context
160*/
161void ftdi_deinit(struct ftdi_context *ftdi)
162{
163 if (ftdi->async_usb_buffer != NULL) {
164 free(ftdi->async_usb_buffer);
165 ftdi->async_usb_buffer = NULL;
166 }
167
168 if (ftdi->readbuffer != NULL) {
169 free(ftdi->readbuffer);
170 ftdi->readbuffer = NULL;
171 }
172}
173
174/**
175 Deinitialize and free an ftdi_context.
176
177 \param ftdi pointer to ftdi_context
178*/
179void ftdi_free(struct ftdi_context *ftdi)
180{
181 ftdi_deinit(ftdi);
182 free(ftdi);
183}
184
185/**
186 Use an already open libusb device.
187
188 \param ftdi pointer to ftdi_context
189 \param usb libusb usb_dev_handle to use
190*/
191void ftdi_set_usbdev (struct ftdi_context *ftdi, usb_dev_handle *usb)
192{
193 ftdi->usb_dev = usb;
194}
195
196
197/**
198 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
199 needs to be deallocated by ftdi_list_free() after use.
200
201 \param ftdi pointer to ftdi_context
202 \param devlist Pointer where to store list of found devices
203 \param vendor Vendor ID to search for
204 \param product Product ID to search for
205
206 \retval >0: number of devices found
207 \retval -1: usb_find_busses() failed
208 \retval -2: usb_find_devices() failed
209 \retval -3: out of memory
210*/
211int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
212{
213 struct ftdi_device_list **curdev;
214 struct usb_bus *bus;
215 struct usb_device *dev;
216 int count = 0;
217
218 usb_init();
219 if (usb_find_busses() < 0)
220 ftdi_error_return(-1, "usb_find_busses() failed");
221 if (usb_find_devices() < 0)
222 ftdi_error_return(-2, "usb_find_devices() failed");
223
224 curdev = devlist;
225 *curdev = NULL;
226 for (bus = usb_busses; bus; bus = bus->next) {
227 for (dev = bus->devices; dev; dev = dev->next) {
228 if (dev->descriptor.idVendor == vendor
229 && dev->descriptor.idProduct == product)
230 {
231 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
232 if (!*curdev)
233 ftdi_error_return(-3, "out of memory");
234
235 (*curdev)->next = NULL;
236 (*curdev)->dev = dev;
237
238 curdev = &(*curdev)->next;
239 count++;
240 }
241 }
242 }
243
244 return count;
245}
246
247/**
248 Frees a usb device list.
249
250 \param devlist USB device list created by ftdi_usb_find_all()
251*/
252void ftdi_list_free(struct ftdi_device_list **devlist)
253{
254 struct ftdi_device_list *curdev, *next;
255
256 for (curdev = *devlist; curdev != NULL;) {
257 next = curdev->next;
258 free(curdev);
259 curdev = next;
260 }
261
262 *devlist = NULL;
263}
264
265/**
266 Frees a usb device list.
267
268 \param devlist USB device list created by ftdi_usb_find_all()
269*/
270void ftdi_list_free2(struct ftdi_device_list *devlist)
271{
272 ftdi_list_free(&devlist);
273}
274
275/**
276 Return device ID strings from the usb device.
277
278 The parameters manufacturer, description and serial may be NULL
279 or pointer to buffers to store the fetched strings.
280
281 \note Use this function only in combination with ftdi_usb_find_all()
282 as it closes the internal "usb_dev" after use.
283
284 \param ftdi pointer to ftdi_context
285 \param dev libusb usb_dev to use
286 \param manufacturer Store manufacturer string here if not NULL
287 \param mnf_len Buffer size of manufacturer string
288 \param description Store product description string here if not NULL
289 \param desc_len Buffer size of product description string
290 \param serial Store serial string here if not NULL
291 \param serial_len Buffer size of serial string
292
293 \retval 0: all fine
294 \retval -1: wrong arguments
295 \retval -4: unable to open device
296 \retval -7: get product manufacturer failed
297 \retval -8: get product description failed
298 \retval -9: get serial number failed
299 \retval -10: unable to close device
300*/
301int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct usb_device * dev,
302 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
303{
304 if ((ftdi==NULL) || (dev==NULL))
305 return -1;
306
307 if (!(ftdi->usb_dev = usb_open(dev)))
308 ftdi_error_return(-4, usb_strerror());
309
310 if (manufacturer != NULL) {
311 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iManufacturer, manufacturer, mnf_len) <= 0) {
312 usb_close (ftdi->usb_dev);
313 ftdi_error_return(-7, usb_strerror());
314 }
315 }
316
317 if (description != NULL) {
318 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, description, desc_len) <= 0) {
319 usb_close (ftdi->usb_dev);
320 ftdi_error_return(-8, usb_strerror());
321 }
322 }
323
324 if (serial != NULL) {
325 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, serial, serial_len) <= 0) {
326 usb_close (ftdi->usb_dev);
327 ftdi_error_return(-9, usb_strerror());
328 }
329 }
330
331 if (usb_close (ftdi->usb_dev) != 0)
332 ftdi_error_return(-10, usb_strerror());
333
334 return 0;
335}
336
337/**
338 Opens a ftdi device given by a usb_device.
339
340 \param ftdi pointer to ftdi_context
341 \param dev libusb usb_dev to use
342
343 \retval 0: all fine
344 \retval -4: unable to open device
345 \retval -5: unable to claim device
346 \retval -6: reset failed
347 \retval -7: set baudrate failed
348*/
349int ftdi_usb_open_dev(struct ftdi_context *ftdi, struct usb_device *dev)
350{
351 int detach_errno = 0;
352 if (!(ftdi->usb_dev = usb_open(dev)))
353 ftdi_error_return(-4, "usb_open() failed");
354
355#ifdef LIBUSB_HAS_GET_DRIVER_NP
356 // Try to detach ftdi_sio kernel module
357 // Returns ENODATA if driver is not loaded
358 if (usb_detach_kernel_driver_np(ftdi->usb_dev, ftdi->interface) != 0 && errno != ENODATA)
359 detach_errno = errno;
360#endif
361
362 if (usb_claim_interface(ftdi->usb_dev, ftdi->interface) != 0) {
363 usb_close (ftdi->usb_dev);
364 if (detach_errno == EPERM) {
365 ftdi_error_return(-8, "inappropriate permissions on device!");
366 } else {
367 ftdi_error_return(-5, "unable to claim usb device. Make sure ftdi_sio is unloaded!");
368 }
369 }
370
371 if (ftdi_usb_reset (ftdi) != 0) {
372 usb_close (ftdi->usb_dev);
373 ftdi_error_return(-6, "ftdi_usb_reset failed");
374 }
375
376 if (ftdi_set_baudrate (ftdi, 9600) != 0) {
377 usb_close (ftdi->usb_dev);
378 ftdi_error_return(-7, "set baudrate failed");
379 }
380
381 // Try to guess chip type
382 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
383 if (dev->descriptor.bcdDevice == 0x400 || (dev->descriptor.bcdDevice == 0x200
384 && dev->descriptor.iSerialNumber == 0))
385 ftdi->type = TYPE_BM;
386 else if (dev->descriptor.bcdDevice == 0x200)
387 ftdi->type = TYPE_AM;
388 else if (dev->descriptor.bcdDevice == 0x500) {
389 ftdi->type = TYPE_2232C;
390 if (!ftdi->index)
391 ftdi->index = INTERFACE_A;
392 } else if (dev->descriptor.bcdDevice == 0x600)
393 ftdi->type = TYPE_R;
394
395 ftdi_error_return(0, "all fine");
396}
397
398/**
399 Opens the first device with a given vendor and product ids.
400
401 \param ftdi pointer to ftdi_context
402 \param vendor Vendor ID
403 \param product Product ID
404
405 \retval same as ftdi_usb_open_desc()
406*/
407int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
408{
409 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
410}
411
412/**
413 Opens the first device with a given, vendor id, product id,
414 description and serial.
415
416 \param ftdi pointer to ftdi_context
417 \param vendor Vendor ID
418 \param product Product ID
419 \param description Description to search for. Use NULL if not needed.
420 \param serial Serial to search for. Use NULL if not needed.
421
422 \retval 0: all fine
423 \retval -1: usb_find_busses() failed
424 \retval -2: usb_find_devices() failed
425 \retval -3: usb device not found
426 \retval -4: unable to open device
427 \retval -5: unable to claim device
428 \retval -6: reset failed
429 \retval -7: set baudrate failed
430 \retval -8: get product description failed
431 \retval -9: get serial number failed
432 \retval -10: unable to close device
433*/
434int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
435 const char* description, const char* serial)
436{
437 struct usb_bus *bus;
438 struct usb_device *dev;
439 char string[256];
440
441 usb_init();
442
443 if (usb_find_busses() < 0)
444 ftdi_error_return(-1, "usb_find_busses() failed");
445 if (usb_find_devices() < 0)
446 ftdi_error_return(-2, "usb_find_devices() failed");
447
448 for (bus = usb_busses; bus; bus = bus->next) {
449 for (dev = bus->devices; dev; dev = dev->next) {
450 if (dev->descriptor.idVendor == vendor
451 && dev->descriptor.idProduct == product) {
452 if (!(ftdi->usb_dev = usb_open(dev)))
453 ftdi_error_return(-4, "usb_open() failed");
454
455 if (description != NULL) {
456 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, string, sizeof(string)) <= 0) {
457 usb_close (ftdi->usb_dev);
458 ftdi_error_return(-8, "unable to fetch product description");
459 }
460 if (strncmp(string, description, sizeof(string)) != 0) {
461 if (usb_close (ftdi->usb_dev) != 0)
462 ftdi_error_return(-10, "unable to close device");
463 continue;
464 }
465 }
466 if (serial != NULL) {
467 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, string, sizeof(string)) <= 0) {
468 usb_close (ftdi->usb_dev);
469 ftdi_error_return(-9, "unable to fetch serial number");
470 }
471 if (strncmp(string, serial, sizeof(string)) != 0) {
472 if (usb_close (ftdi->usb_dev) != 0)
473 ftdi_error_return(-10, "unable to close device");
474 continue;
475 }
476 }
477
478 if (usb_close (ftdi->usb_dev) != 0)
479 ftdi_error_return(-10, "unable to close device");
480
481 return ftdi_usb_open_dev(ftdi, dev);
482 }
483 }
484 }
485
486 // device not found
487 ftdi_error_return(-3, "device not found");
488}
489
490/**
491 Resets the ftdi device.
492
493 \param ftdi pointer to ftdi_context
494
495 \retval 0: all fine
496 \retval -1: FTDI reset failed
497*/
498int ftdi_usb_reset(struct ftdi_context *ftdi)
499{
500 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
501 ftdi_error_return(-1,"FTDI reset failed");
502
503 // Invalidate data in the readbuffer
504 ftdi->readbuffer_offset = 0;
505 ftdi->readbuffer_remaining = 0;
506
507 return 0;
508}
509
510/**
511 Clears the read buffer on the chip and the internal read buffer.
512
513 \param ftdi pointer to ftdi_context
514
515 \retval 0: all fine
516 \retval -1: read buffer purge failed
517*/
518int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
519{
520 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 1, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
521 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
522
523 // Invalidate data in the readbuffer
524 ftdi->readbuffer_offset = 0;
525 ftdi->readbuffer_remaining = 0;
526
527 return 0;
528}
529
530/**
531 Clears the write buffer on the chip.
532
533 \param ftdi pointer to ftdi_context
534
535 \retval 0: all fine
536 \retval -1: write buffer purge failed
537*/
538int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
539{
540 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 2, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
541 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
542
543 return 0;
544}
545
546/**
547 Clears the buffers on the chip and the internal read buffer.
548
549 \param ftdi pointer to ftdi_context
550
551 \retval 0: all fine
552 \retval -1: read buffer purge failed
553 \retval -2: write buffer purge failed
554*/
555int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
556{
557 int result;
558
559 result = ftdi_usb_purge_rx_buffer(ftdi);
560 if (result < 0)
561 return -1;
562
563 result = ftdi_usb_purge_tx_buffer(ftdi);
564 if (result < 0)
565 return -2;
566
567 return 0;
568}
569
570/**
571 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
572
573 \param ftdi pointer to ftdi_context
574
575 \retval 0: all fine
576 \retval -1: usb_release failed
577 \retval -2: usb_close failed
578*/
579int ftdi_usb_close(struct ftdi_context *ftdi)
580{
581 int rtn = 0;
582
583#ifdef LIBFTDI_LINUX_ASYNC_MODE
584 /* try to release some kernel resources */
585 ftdi_async_complete(ftdi,1);
586#endif
587
588 if (usb_release_interface(ftdi->usb_dev, ftdi->interface) != 0)
589 rtn = -1;
590
591 if (usb_close (ftdi->usb_dev) != 0)
592 rtn = -2;
593
594 return rtn;
595}
596
597/*
598 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
599 Function is only used internally
600 \internal
601*/
602static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
603 unsigned short *value, unsigned short *index)
604{
605 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
606 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
607 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
608 int divisor, best_divisor, best_baud, best_baud_diff;
609 unsigned long encoded_divisor;
610 int i;
611
612 if (baudrate <= 0) {
613 // Return error
614 return -1;
615 }
616
617 divisor = 24000000 / baudrate;
618
619 if (ftdi->type == TYPE_AM) {
620 // Round down to supported fraction (AM only)
621 divisor -= am_adjust_dn[divisor & 7];
622 }
623
624 // Try this divisor and the one above it (because division rounds down)
625 best_divisor = 0;
626 best_baud = 0;
627 best_baud_diff = 0;
628 for (i = 0; i < 2; i++) {
629 int try_divisor = divisor + i;
630 int baud_estimate;
631 int baud_diff;
632
633 // Round up to supported divisor value
634 if (try_divisor <= 8) {
635 // Round up to minimum supported divisor
636 try_divisor = 8;
637 } else if (ftdi->type != TYPE_AM && try_divisor < 12) {
638 // BM doesn't support divisors 9 through 11 inclusive
639 try_divisor = 12;
640 } else if (divisor < 16) {
641 // AM doesn't support divisors 9 through 15 inclusive
642 try_divisor = 16;
643 } else {
644 if (ftdi->type == TYPE_AM) {
645 // Round up to supported fraction (AM only)
646 try_divisor += am_adjust_up[try_divisor & 7];
647 if (try_divisor > 0x1FFF8) {
648 // Round down to maximum supported divisor value (for AM)
649 try_divisor = 0x1FFF8;
650 }
651 } else {
652 if (try_divisor > 0x1FFFF) {
653 // Round down to maximum supported divisor value (for BM)
654 try_divisor = 0x1FFFF;
655 }
656 }
657 }
658 // Get estimated baud rate (to nearest integer)
659 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
660 // Get absolute difference from requested baud rate
661 if (baud_estimate < baudrate) {
662 baud_diff = baudrate - baud_estimate;
663 } else {
664 baud_diff = baud_estimate - baudrate;
665 }
666 if (i == 0 || baud_diff < best_baud_diff) {
667 // Closest to requested baud rate so far
668 best_divisor = try_divisor;
669 best_baud = baud_estimate;
670 best_baud_diff = baud_diff;
671 if (baud_diff == 0) {
672 // Spot on! No point trying
673 break;
674 }
675 }
676 }
677 // Encode the best divisor value
678 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
679 // Deal with special cases for encoded value
680 if (encoded_divisor == 1) {
681 encoded_divisor = 0; // 3000000 baud
682 } else if (encoded_divisor == 0x4001) {
683 encoded_divisor = 1; // 2000000 baud (BM only)
684 }
685 // Split into "value" and "index" values
686 *value = (unsigned short)(encoded_divisor & 0xFFFF);
687 if(ftdi->type == TYPE_2232C) {
688 *index = (unsigned short)(encoded_divisor >> 8);
689 *index &= 0xFF00;
690 *index |= ftdi->index;
691 }
692 else
693 *index = (unsigned short)(encoded_divisor >> 16);
694
695 // Return the nearest baud rate
696 return best_baud;
697}
698
699/**
700 Sets the chip baud rate
701
702 \param ftdi pointer to ftdi_context
703 \param baudrate baud rate to set
704
705 \retval 0: all fine
706 \retval -1: invalid baudrate
707 \retval -2: setting baudrate failed
708*/
709int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
710{
711 unsigned short value, index;
712 int actual_baudrate;
713
714 if (ftdi->bitbang_enabled) {
715 baudrate = baudrate*4;
716 }
717
718 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
719 if (actual_baudrate <= 0)
720 ftdi_error_return (-1, "Silly baudrate <= 0.");
721
722 // Check within tolerance (about 5%)
723 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
724 || ((actual_baudrate < baudrate)
725 ? (actual_baudrate * 21 < baudrate * 20)
726 : (baudrate * 21 < actual_baudrate * 20)))
727 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
728
729 if (usb_control_msg(ftdi->usb_dev, 0x40, 3, value, index, NULL, 0, ftdi->usb_write_timeout) != 0)
730 ftdi_error_return (-2, "Setting new baudrate failed");
731
732 ftdi->baudrate = baudrate;
733 return 0;
734}
735
736/**
737 Set (RS232) line characteristics by Alain Abbas
738
739 \param ftdi pointer to ftdi_context
740 \param bits Number of bits
741 \param sbit Number of stop bits
742 \param parity Parity mode
743
744 \retval 0: all fine
745 \retval -1: Setting line property failed
746*/
747int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
748 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
749{
750 unsigned short value = bits;
751
752 switch(parity) {
753 case NONE:
754 value |= (0x00 << 8);
755 break;
756 case ODD:
757 value |= (0x01 << 8);
758 break;
759 case EVEN:
760 value |= (0x02 << 8);
761 break;
762 case MARK:
763 value |= (0x03 << 8);
764 break;
765 case SPACE:
766 value |= (0x04 << 8);
767 break;
768 }
769
770 switch(sbit) {
771 case STOP_BIT_1:
772 value |= (0x00 << 11);
773 break;
774 case STOP_BIT_15:
775 value |= (0x01 << 11);
776 break;
777 case STOP_BIT_2:
778 value |= (0x02 << 11);
779 break;
780 }
781
782 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x04, value, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
783 ftdi_error_return (-1, "Setting new line property failed");
784
785 return 0;
786}
787
788/**
789 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
790
791 \param ftdi pointer to ftdi_context
792 \param buf Buffer with the data
793 \param size Size of the buffer
794
795 \retval <0: error code from usb_bulk_write()
796 \retval >0: number of bytes written
797*/
798int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
799{
800 int ret;
801 int offset = 0;
802 int total_written = 0;
803
804 while (offset < size) {
805 int write_size = ftdi->writebuffer_chunksize;
806
807 if (offset+write_size > size)
808 write_size = size-offset;
809
810 ret = usb_bulk_write(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, ftdi->usb_write_timeout);
811 if (ret < 0)
812 ftdi_error_return(ret, "usb bulk write failed");
813
814 total_written += ret;
815 offset += write_size;
816 }
817
818 return total_written;
819}
820
821#ifdef LIBFTDI_LINUX_ASYNC_MODE
822/* this is strongly dependent on libusb using the same struct layout. If libusb
823 changes in some later version this may break horribly (this is for libusb 0.1.12) */
824struct usb_dev_handle {
825 int fd;
826 // some other stuff coming here we don't need
827};
828
829/**
830 Check for pending async urbs
831 \internal
832*/
833static int _usb_get_async_urbs_pending(struct ftdi_context *ftdi)
834{
835 struct usbdevfs_urb *urb;
836 int pending=0;
837 int i;
838
839 for (i=0; i < ftdi->async_usb_buffer_size; i++) {
840 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
841 if (urb->usercontext != FTDI_URB_USERCONTEXT_COOKIE)
842 pending++;
843 }
844
845 return pending;
846}
847
848/**
849 Wait until one or more async URBs are completed by the kernel and mark their
850 positions in the async-buffer as unused
851
852 \param ftdi pointer to ftdi_context
853 \param wait_for_more if != 0 wait for more than one write to complete
854 \param timeout_msec max milliseconds to wait
855
856 \internal
857*/
858static void _usb_async_cleanup(struct ftdi_context *ftdi, int wait_for_more, int timeout_msec)
859{
860 struct timeval tv;
861 struct usbdevfs_urb *urb=NULL;
862 int ret;
863 fd_set writefds;
864 int keep_going=0;
865
866 FD_ZERO(&writefds);
867 FD_SET(ftdi->usb_dev->fd, &writefds);
868
869 /* init timeout only once, select writes time left after call */
870 tv.tv_sec = timeout_msec / 1000;
871 tv.tv_usec = (timeout_msec % 1000) * 1000;
872
873 do {
874 while (_usb_get_async_urbs_pending(ftdi)
875 && (ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_REAPURBNDELAY, &urb)) == -1
876 && errno == EAGAIN)
877 {
878 if (keep_going && !wait_for_more) {
879 /* don't wait if repeating only for keep_going */
880 keep_going=0;
881 break;
882 }
883
884 /* wait for timeout msec or something written ready */
885 select(ftdi->usb_dev->fd+1, NULL, &writefds, NULL, &tv);
886 }
887
888 if (ret == 0 && urb != NULL) {
889 /* got a free urb, mark it */
890 urb->usercontext = FTDI_URB_USERCONTEXT_COOKIE;
891
892 /* try to get more urbs that are ready now, but don't wait anymore */
893 urb=NULL;
894 keep_going=1;
895 } else {
896 /* no more urbs waiting */
897 keep_going=0;
898 }
899 } while (keep_going);
900}
901
902/**
903 Wait until one or more async URBs are completed by the kernel and mark their
904 positions in the async-buffer as unused.
905
906 \param ftdi pointer to ftdi_context
907 \param wait_for_more if != 0 wait for more than one write to complete (until write timeout)
908*/
909void ftdi_async_complete(struct ftdi_context *ftdi, int wait_for_more)
910{
911 _usb_async_cleanup(ftdi,wait_for_more,ftdi->usb_write_timeout);
912}
913
914/**
915 Stupid libusb does not offer async writes nor does it allow
916 access to its fd - so we need some hacks here.
917 \internal
918*/
919static int _usb_bulk_write_async(struct ftdi_context *ftdi, int ep, char *bytes, int size)
920{
921 struct usbdevfs_urb *urb;
922 int bytesdone = 0, requested;
923 int ret, i;
924 int cleanup_count;
925
926 do {
927 /* find a free urb buffer we can use */
928 urb=NULL;
929 for (cleanup_count=0; urb==NULL && cleanup_count <= 1; cleanup_count++)
930 {
931 if (i==ftdi->async_usb_buffer_size) {
932 /* wait until some buffers are free */
933 _usb_async_cleanup(ftdi,0,ftdi->usb_write_timeout);
934 }
935
936 for (i=0; i < ftdi->async_usb_buffer_size; i++) {
937 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
938 if (urb->usercontext == FTDI_URB_USERCONTEXT_COOKIE)
939 break; /* found a free urb position */
940 urb=NULL;
941 }
942 }
943
944 /* no free urb position found */
945 if (urb==NULL)
946 return -1;
947
948 requested = size - bytesdone;
949 if (requested > 4096)
950 requested = 4096;
951
952 memset(urb,0,sizeof(urb));
953
954 urb->type = USBDEVFS_URB_TYPE_BULK;
955 urb->endpoint = ep;
956 urb->flags = 0;
957 urb->buffer = bytes + bytesdone;
958 urb->buffer_length = requested;
959 urb->signr = 0;
960 urb->actual_length = 0;
961 urb->number_of_packets = 0;
962 urb->usercontext = 0;
963
964 do {
965 ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_SUBMITURB, urb);
966 } while (ret < 0 && errno == EINTR);
967 if (ret < 0)
968 return ret; /* the caller can read errno to get more info */
969
970 bytesdone += requested;
971 } while (bytesdone < size);
972 return bytesdone;
973}
974
975/**
976 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip.
977 Does not wait for completion of the transfer nor does it make sure that
978 the transfer was successful.
979
980 This function could be extended to use signals and callbacks to inform the
981 caller of completion or error - but this is not done yet, volunteers welcome.
982
983 Works around libusb and directly accesses functions only available on Linux.
984 Only available if compiled with --with-async-mode.
985
986 \param ftdi pointer to ftdi_context
987 \param buf Buffer with the data
988 \param size Size of the buffer
989
990 \retval <0: error code from usb_bulk_write()
991 \retval >0: number of bytes written
992*/
993int ftdi_write_data_async(struct ftdi_context *ftdi, unsigned char *buf, int size)
994{
995 int ret;
996 int offset = 0;
997 int total_written = 0;
998
999 while (offset < size) {
1000 int write_size = ftdi->writebuffer_chunksize;
1001
1002 if (offset+write_size > size)
1003 write_size = size-offset;
1004
1005 ret = _usb_bulk_write_async(ftdi, ftdi->in_ep, buf+offset, write_size);
1006 if (ret < 0)
1007 ftdi_error_return(ret, "usb bulk write async failed");
1008
1009 total_written += ret;
1010 offset += write_size;
1011 }
1012
1013 return total_written;
1014}
1015#endif // LIBFTDI_LINUX_ASYNC_MODE
1016
1017/**
1018 Configure write buffer chunk size.
1019 Default is 4096.
1020
1021 \param ftdi pointer to ftdi_context
1022 \param chunksize Chunk size
1023
1024 \retval 0: all fine
1025*/
1026int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1027{
1028 ftdi->writebuffer_chunksize = chunksize;
1029 return 0;
1030}
1031
1032/**
1033 Get write buffer chunk size.
1034
1035 \param ftdi pointer to ftdi_context
1036 \param chunksize Pointer to store chunk size in
1037
1038 \retval 0: all fine
1039*/
1040int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1041{
1042 *chunksize = ftdi->writebuffer_chunksize;
1043 return 0;
1044}
1045
1046/**
1047 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1048
1049 Automatically strips the two modem status bytes transfered during every read.
1050
1051 \param ftdi pointer to ftdi_context
1052 \param buf Buffer to store data in
1053 \param size Size of the buffer
1054
1055 \retval <0: error code from usb_bulk_read()
1056 \retval 0: no data was available
1057 \retval >0: number of bytes read
1058
1059 \remark This function is not useful in bitbang mode.
1060 Use ftdi_read_pins() to get the current state of the pins.
1061*/
1062int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1063{
1064 int offset = 0, ret = 1, i, num_of_chunks, chunk_remains;
1065
1066 // everything we want is still in the readbuffer?
1067 if (size <= ftdi->readbuffer_remaining) {
1068 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1069
1070 // Fix offsets
1071 ftdi->readbuffer_remaining -= size;
1072 ftdi->readbuffer_offset += size;
1073
1074 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1075
1076 return size;
1077 }
1078 // something still in the readbuffer, but not enough to satisfy 'size'?
1079 if (ftdi->readbuffer_remaining != 0) {
1080 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1081
1082 // Fix offset
1083 offset += ftdi->readbuffer_remaining;
1084 }
1085 // do the actual USB read
1086 while (offset < size && ret > 0) {
1087 ftdi->readbuffer_remaining = 0;
1088 ftdi->readbuffer_offset = 0;
1089 /* returns how much received */
1090 ret = usb_bulk_read (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi->usb_read_timeout);
1091 if (ret < 0)
1092 ftdi_error_return(ret, "usb bulk read failed");
1093
1094 if (ret > 2) {
1095 // skip FTDI status bytes.
1096 // Maybe stored in the future to enable modem use
1097 num_of_chunks = ret / 64;
1098 chunk_remains = ret % 64;
1099 //printf("ret = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", ret, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1100
1101 ftdi->readbuffer_offset += 2;
1102 ret -= 2;
1103
1104 if (ret > 62) {
1105 for (i = 1; i < num_of_chunks; i++)
1106 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
1107 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
1108 62);
1109 if (chunk_remains > 2) {
1110 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
1111 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
1112 chunk_remains-2);
1113 ret -= 2*num_of_chunks;
1114 } else
1115 ret -= 2*(num_of_chunks-1)+chunk_remains;
1116 }
1117 } else if (ret <= 2) {
1118 // no more data to read?
1119 return offset;
1120 }
1121 if (ret > 0) {
1122 // data still fits in buf?
1123 if (offset+ret <= size) {
1124 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, ret);
1125 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1126 offset += ret;
1127
1128 /* Did we read exactly the right amount of bytes? */
1129 if (offset == size)
1130 //printf("read_data exact rem %d offset %d\n",
1131 //ftdi->readbuffer_remaining, offset);
1132 return offset;
1133 } else {
1134 // only copy part of the data or size <= readbuffer_chunksize
1135 int part_size = size-offset;
1136 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1137
1138 ftdi->readbuffer_offset += part_size;
1139 ftdi->readbuffer_remaining = ret-part_size;
1140 offset += part_size;
1141
1142 /* printf("Returning part: %d - size: %d - offset: %d - ret: %d - remaining: %d\n",
1143 part_size, size, offset, ret, ftdi->readbuffer_remaining); */
1144
1145 return offset;
1146 }
1147 }
1148 }
1149 // never reached
1150 return -127;
1151}
1152
1153/**
1154 Configure read buffer chunk size.
1155 Default is 4096.
1156
1157 Automatically reallocates the buffer.
1158
1159 \param ftdi pointer to ftdi_context
1160 \param chunksize Chunk size
1161
1162 \retval 0: all fine
1163*/
1164int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1165{
1166 unsigned char *new_buf;
1167
1168 // Invalidate all remaining data
1169 ftdi->readbuffer_offset = 0;
1170 ftdi->readbuffer_remaining = 0;
1171
1172 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1173 ftdi_error_return(-1, "out of memory for readbuffer");
1174
1175 ftdi->readbuffer = new_buf;
1176 ftdi->readbuffer_chunksize = chunksize;
1177
1178 return 0;
1179}
1180
1181/**
1182 Get read buffer chunk size.
1183
1184 \param ftdi pointer to ftdi_context
1185 \param chunksize Pointer to store chunk size in
1186
1187 \retval 0: all fine
1188*/
1189int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1190{
1191 *chunksize = ftdi->readbuffer_chunksize;
1192 return 0;
1193}
1194
1195
1196/**
1197 Enable bitbang mode.
1198
1199 For advanced bitbang modes of the FT2232C chip use ftdi_set_bitmode().
1200
1201 \param ftdi pointer to ftdi_context
1202 \param bitmask Bitmask to configure lines.
1203 HIGH/ON value configures a line as output.
1204
1205 \retval 0: all fine
1206 \retval -1: can't enable bitbang mode
1207*/
1208int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1209{
1210 unsigned short usb_val;
1211
1212 usb_val = bitmask; // low byte: bitmask
1213 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1214 usb_val |= (ftdi->bitbang_mode << 8);
1215
1216 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1217 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1218
1219 ftdi->bitbang_enabled = 1;
1220 return 0;
1221}
1222
1223/**
1224 Disable bitbang mode.
1225
1226 \param ftdi pointer to ftdi_context
1227
1228 \retval 0: all fine
1229 \retval -1: can't disable bitbang mode
1230*/
1231int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1232{
1233 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1234 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1235
1236 ftdi->bitbang_enabled = 0;
1237 return 0;
1238}
1239
1240/**
1241 Enable advanced bitbang mode for FT2232C chips.
1242
1243 \param ftdi pointer to ftdi_context
1244 \param bitmask Bitmask to configure lines.
1245 HIGH/ON value configures a line as output.
1246 \param mode Bitbang mode: 1 for normal mode, 2 for SPI mode
1247
1248 \retval 0: all fine
1249 \retval -1: can't enable bitbang mode
1250*/
1251int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1252{
1253 unsigned short usb_val;
1254
1255 usb_val = bitmask; // low byte: bitmask
1256 usb_val |= (mode << 8);
1257 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1258 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1259
1260 ftdi->bitbang_mode = mode;
1261 ftdi->bitbang_enabled = (mode == BITMODE_BITBANG || mode == BITMODE_SYNCBB)?1:0;
1262 return 0;
1263}
1264
1265/**
1266 Directly read pin state. Useful for bitbang mode.
1267
1268 \param ftdi pointer to ftdi_context
1269 \param pins Pointer to store pins into
1270
1271 \retval 0: all fine
1272 \retval -1: read pins failed
1273*/
1274int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1275{
1276 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0C, 0, ftdi->index, (char *)pins, 1, ftdi->usb_read_timeout) != 1)
1277 ftdi_error_return(-1, "read pins failed");
1278
1279 return 0;
1280}
1281
1282/**
1283 Set latency timer
1284
1285 The FTDI chip keeps data in the internal buffer for a specific
1286 amount of time if the buffer is not full yet to decrease
1287 load on the usb bus.
1288
1289 \param ftdi pointer to ftdi_context
1290 \param latency Value between 1 and 255
1291
1292 \retval 0: all fine
1293 \retval -1: latency out of range
1294 \retval -2: unable to set latency timer
1295*/
1296int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1297{
1298 unsigned short usb_val;
1299
1300 if (latency < 1)
1301 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1302
1303 usb_val = latency;
1304 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x09, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1305 ftdi_error_return(-2, "unable to set latency timer");
1306
1307 return 0;
1308}
1309
1310/**
1311 Get latency timer
1312
1313 \param ftdi pointer to ftdi_context
1314 \param latency Pointer to store latency value in
1315
1316 \retval 0: all fine
1317 \retval -1: unable to get latency timer
1318*/
1319int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1320{
1321 unsigned short usb_val;
1322 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0A, 0, ftdi->index, (char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1323 ftdi_error_return(-1, "reading latency timer failed");
1324
1325 *latency = (unsigned char)usb_val;
1326 return 0;
1327}
1328
1329/**
1330 Poll modem status information
1331
1332 This function allows the retrieve the two status bytes of the device.
1333 The device sends these bytes also as a header for each read access
1334 where they are discarded by ftdi_read_data(). The chip generates
1335 the two stripped status bytes in the absence of data every 40 ms.
1336
1337 Layout of the first byte:
1338 - B0..B3 - must be 0
1339 - B4 Clear to send (CTS)
1340 0 = inactive
1341 1 = active
1342 - B5 Data set ready (DTS)
1343 0 = inactive
1344 1 = active
1345 - B6 Ring indicator (RI)
1346 0 = inactive
1347 1 = active
1348 - B7 Receive line signal detect (RLSD)
1349 0 = inactive
1350 1 = active
1351
1352 Layout of the second byte:
1353 - B0 Data ready (DR)
1354 - B1 Overrun error (OE)
1355 - B2 Parity error (PE)
1356 - B3 Framing error (FE)
1357 - B4 Break interrupt (BI)
1358 - B5 Transmitter holding register (THRE)
1359 - B6 Transmitter empty (TEMT)
1360 - B7 Error in RCVR FIFO
1361
1362 \param ftdi pointer to ftdi_context
1363 \param status Pointer to store status information in. Must be two bytes.
1364
1365 \retval 0: all fine
1366 \retval -1: unable to retrieve status information
1367*/
1368int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1369{
1370 char usb_val[2];
1371
1372 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x05, 0, ftdi->index, usb_val, 2, ftdi->usb_read_timeout) != 2)
1373 ftdi_error_return(-1, "getting modem status failed");
1374
1375 *status = (usb_val[1] << 8) | usb_val[0];
1376
1377 return 0;
1378}
1379
1380/**
1381 Set the special event character
1382
1383 \param ftdi pointer to ftdi_context
1384 \param eventch Event character
1385 \param enable 0 to disable the event character, non-zero otherwise
1386
1387 \retval 0: all fine
1388 \retval -1: unable to set event character
1389*/
1390int ftdi_set_event_char(struct ftdi_context *ftdi,
1391 unsigned char eventch, unsigned char enable)
1392{
1393 unsigned short usb_val;
1394
1395 usb_val = eventch;
1396 if (enable)
1397 usb_val |= 1 << 8;
1398
1399 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x06, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1400 ftdi_error_return(-1, "setting event character failed");
1401
1402 return 0;
1403}
1404
1405/**
1406 Set error character
1407
1408 \param ftdi pointer to ftdi_context
1409 \param errorch Error character
1410 \param enable 0 to disable the error character, non-zero otherwise
1411
1412 \retval 0: all fine
1413 \retval -1: unable to set error character
1414*/
1415int ftdi_set_error_char(struct ftdi_context *ftdi,
1416 unsigned char errorch, unsigned char enable)
1417{
1418 unsigned short usb_val;
1419
1420 usb_val = errorch;
1421 if (enable)
1422 usb_val |= 1 << 8;
1423
1424 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x07, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1425 ftdi_error_return(-1, "setting error character failed");
1426
1427 return 0;
1428}
1429
1430/**
1431 Set the eeprom size
1432
1433 \param ftdi pointer to ftdi_context
1434 \param eeprom Pointer to ftdi_eeprom
1435 \param size
1436
1437*/
1438void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
1439{
1440 ftdi->eeprom_size=size;
1441 eeprom->size=size;
1442}
1443
1444/**
1445 Init eeprom with default values.
1446
1447 \param eeprom Pointer to ftdi_eeprom
1448*/
1449void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
1450{
1451 eeprom->vendor_id = 0x0403;
1452 eeprom->product_id = 0x6001;
1453
1454 eeprom->self_powered = 1;
1455 eeprom->remote_wakeup = 1;
1456 eeprom->BM_type_chip = 1;
1457
1458 eeprom->in_is_isochronous = 0;
1459 eeprom->out_is_isochronous = 0;
1460 eeprom->suspend_pull_downs = 0;
1461
1462 eeprom->use_serial = 0;
1463 eeprom->change_usb_version = 0;
1464 eeprom->usb_version = 0x0200;
1465 eeprom->max_power = 0;
1466
1467 eeprom->manufacturer = NULL;
1468 eeprom->product = NULL;
1469 eeprom->serial = NULL;
1470
1471 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
1472}
1473
1474/**
1475 Build binary output from ftdi_eeprom structure.
1476 Output is suitable for ftdi_write_eeprom().
1477
1478 \param eeprom Pointer to ftdi_eeprom
1479 \param output Buffer of 128 bytes to store eeprom image to
1480
1481 \retval >0: used eeprom size
1482 \retval -1: eeprom size (128 bytes) exceeded by custom strings
1483*/
1484int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
1485{
1486 unsigned char i, j;
1487 unsigned short checksum, value;
1488 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
1489 int size_check;
1490
1491 if (eeprom->manufacturer != NULL)
1492 manufacturer_size = strlen(eeprom->manufacturer);
1493 if (eeprom->product != NULL)
1494 product_size = strlen(eeprom->product);
1495 if (eeprom->serial != NULL)
1496 serial_size = strlen(eeprom->serial);
1497
1498 size_check = eeprom->size;
1499 size_check -= 28; // 28 are always in use (fixed)
1500
1501 // Top half of a 256byte eeprom is used just for strings and checksum
1502 // it seems that the FTDI chip will not read these strings from the lower half
1503 // Each string starts with two bytes; offset and type (0x03 for string)
1504 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
1505 if(eeprom->size>=256)size_check = 120;
1506 size_check -= manufacturer_size*2;
1507 size_check -= product_size*2;
1508 size_check -= serial_size*2;
1509
1510 // eeprom size exceeded?
1511 if (size_check < 0)
1512 return (-1);
1513
1514 // empty eeprom
1515 memset (output, 0, eeprom->size);
1516
1517 // Addr 00: Stay 00 00
1518 // Addr 02: Vendor ID
1519 output[0x02] = eeprom->vendor_id;
1520 output[0x03] = eeprom->vendor_id >> 8;
1521
1522 // Addr 04: Product ID
1523 output[0x04] = eeprom->product_id;
1524 output[0x05] = eeprom->product_id >> 8;
1525
1526 // Addr 06: Device release number (0400h for BM features)
1527 output[0x06] = 0x00;
1528
1529 if (eeprom->BM_type_chip == 1)
1530 output[0x07] = 0x04;
1531 else
1532 output[0x07] = 0x02;
1533
1534 // Addr 08: Config descriptor
1535    // Bit 7: always 1
1536    // Bit 6: 1 if this device is self powered, 0 if bus powered
1537    // Bit 5: 1 if this device uses remote wakeup
1538    // Bit 4: 1 if this device is battery powered
1539 j = 0x80;
1540 if (eeprom->self_powered == 1)
1541 j |= 0x40;
1542 if (eeprom->remote_wakeup == 1)
1543 j |= 0x20;
1544 output[0x08] = j;
1545
1546 // Addr 09: Max power consumption: max power = value * 2 mA
1547 output[0x09] = eeprom->max_power;
1548
1549 // Addr 0A: Chip configuration
1550 // Bit 7: 0 - reserved
1551 // Bit 6: 0 - reserved
1552 // Bit 5: 0 - reserved
1553 // Bit 4: 1 - Change USB version
1554 // Bit 3: 1 - Use the serial number string
1555 // Bit 2: 1 - Enable suspend pull downs for lower power
1556 // Bit 1: 1 - Out EndPoint is Isochronous
1557 // Bit 0: 1 - In EndPoint is Isochronous
1558 //
1559 j = 0;
1560 if (eeprom->in_is_isochronous == 1)
1561 j = j | 1;
1562 if (eeprom->out_is_isochronous == 1)
1563 j = j | 2;
1564 if (eeprom->suspend_pull_downs == 1)
1565 j = j | 4;
1566 if (eeprom->use_serial == 1)
1567 j = j | 8;
1568 if (eeprom->change_usb_version == 1)
1569 j = j | 16;
1570 output[0x0A] = j;
1571
1572 // Addr 0B: reserved
1573 output[0x0B] = 0x00;
1574
1575 // Addr 0C: USB version low byte when 0x0A bit 4 is set
1576 // Addr 0D: USB version high byte when 0x0A bit 4 is set
1577 if (eeprom->change_usb_version == 1) {
1578 output[0x0C] = eeprom->usb_version;
1579 output[0x0D] = eeprom->usb_version >> 8;
1580 }
1581
1582
1583 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
1584 // Addr 0F: Length of manufacturer string
1585 output[0x0F] = manufacturer_size*2 + 2;
1586
1587 // Addr 10: Offset of the product string + 0x80, calculated later
1588 // Addr 11: Length of product string
1589 output[0x11] = product_size*2 + 2;
1590
1591 // Addr 12: Offset of the serial string + 0x80, calculated later
1592 // Addr 13: Length of serial string
1593 output[0x13] = serial_size*2 + 2;
1594
1595 // Dynamic content
1596 i=0x14;
1597 if(eeprom->size>=256) i = 0x80;
1598
1599
1600 // Output manufacturer
1601 output[0x0E] = i | 0x80; // calculate offset
1602 output[i++] = manufacturer_size*2 + 2;
1603 output[i++] = 0x03; // type: string
1604 for (j = 0; j < manufacturer_size; j++) {
1605 output[i] = eeprom->manufacturer[j], i++;
1606 output[i] = 0x00, i++;
1607 }
1608
1609 // Output product name
1610 output[0x10] = i | 0x80; // calculate offset
1611 output[i] = product_size*2 + 2, i++;
1612 output[i] = 0x03, i++;
1613 for (j = 0; j < product_size; j++) {
1614 output[i] = eeprom->product[j], i++;
1615 output[i] = 0x00, i++;
1616 }
1617
1618 // Output serial
1619 output[0x12] = i | 0x80; // calculate offset
1620 output[i] = serial_size*2 + 2, i++;
1621 output[i] = 0x03, i++;
1622 for (j = 0; j < serial_size; j++) {
1623 output[i] = eeprom->serial[j], i++;
1624 output[i] = 0x00, i++;
1625 }
1626
1627 // calculate checksum
1628 checksum = 0xAAAA;
1629
1630 for (i = 0; i < eeprom->size/2-1; i++) {
1631 value = output[i*2];
1632 value += output[(i*2)+1] << 8;
1633
1634 checksum = value^checksum;
1635 checksum = (checksum << 1) | (checksum >> 15);
1636 }
1637
1638 output[eeprom->size-2] = checksum;
1639 output[eeprom->size-1] = checksum >> 8;
1640
1641 return size_check;
1642}
1643
1644/**
1645 Read eeprom
1646
1647 \param ftdi pointer to ftdi_context
1648 \param eeprom Pointer to store eeprom into
1649
1650 \retval 0: all fine
1651 \retval -1: read failed
1652*/
1653int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
1654{
1655 int i;
1656
1657 for (i = 0; i < ftdi->eeprom_size/2; i++) {
1658 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
1659 ftdi_error_return(-1, "reading eeprom failed");
1660 }
1661
1662 return 0;
1663}
1664
1665/*
1666 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
1667 Function is only used internally
1668 \internal
1669*/
1670static unsigned char ftdi_read_chipid_shift(unsigned char value)
1671{
1672 return ((value & 1) << 1) |
1673 ((value & 2) << 5) |
1674 ((value & 4) >> 2) |
1675 ((value & 8) << 4) |
1676 ((value & 16) >> 1) |
1677 ((value & 32) >> 1) |
1678 ((value & 64) >> 4) |
1679 ((value & 128) >> 2);
1680}
1681
1682/**
1683 Read the FTDIChip-ID from R-type devices
1684
1685 \param ftdi pointer to ftdi_context
1686 \param chipid Pointer to store FTDIChip-ID
1687
1688 \retval 0: all fine
1689 \retval -1: read failed
1690*/
1691int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
1692{
1693 unsigned int a = 0, b = 0;
1694
1695 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, 0x43, (char *)&a, 2, ftdi->usb_read_timeout) == 2)
1696 {
1697 a = a << 8 | a >> 8;
1698 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, 0x44, (char *)&b, 2, ftdi->usb_read_timeout) == 2)
1699 {
1700 b = b << 8 | b >> 8;
1701 a = (a << 16) | b;
1702 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
1703 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
1704 *chipid = a ^ 0xa5f0f7d1;
1705 return 0;
1706 }
1707 }
1708
1709 ftdi_error_return(-1, "read of FTDIChip-ID failed");
1710}
1711
1712/**
1713 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
1714 Call this function then do a write then call again to see if size changes, if so write again.
1715
1716 \param ftdi pointer to ftdi_context
1717 \param eeprom Pointer to store eeprom into
1718 \param maxsize the size of the buffer to read into
1719
1720 \retval size of eeprom
1721*/
1722int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
1723{
1724 int i=0,j,minsize=32;
1725 int size=minsize;
1726
1727 do{
1728 for (j = 0; i < maxsize/2 && j<size; j++) {
1729 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
1730 ftdi_error_return(-1, "reading eeprom failed");
1731 i++;
1732 }
1733 size*=2;
1734 }while(size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
1735
1736 return size/2;
1737}
1738
1739/**
1740 Write eeprom
1741
1742 \param ftdi pointer to ftdi_context
1743 \param eeprom Pointer to read eeprom from
1744
1745 \retval 0: all fine
1746 \retval -1: read failed
1747*/
1748int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
1749{
1750 unsigned short usb_val;
1751 int i;
1752
1753 for (i = 0; i < ftdi->eeprom_size/2; i++) {
1754 usb_val = eeprom[i*2];
1755 usb_val += eeprom[(i*2)+1] << 8;
1756 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x91, usb_val, i, NULL, 0, ftdi->usb_write_timeout) != 0)
1757 ftdi_error_return(-1, "unable to write eeprom");
1758 }
1759
1760 return 0;
1761}
1762
1763/**
1764 Erase eeprom
1765
1766 \param ftdi pointer to ftdi_context
1767
1768 \retval 0: all fine
1769 \retval -1: erase failed
1770*/
1771int ftdi_erase_eeprom(struct ftdi_context *ftdi)
1772{
1773 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x92, 0, 0, NULL, 0, ftdi->usb_write_timeout) != 0)
1774 ftdi_error_return(-1, "unable to erase eeprom");
1775
1776 return 0;
1777}
1778
1779/**
1780 Get string representation for last error code
1781
1782 \param ftdi pointer to ftdi_context
1783
1784 \retval Pointer to error string
1785*/
1786char *ftdi_get_error_string (struct ftdi_context *ftdi)
1787{
1788 return ftdi->error_str;
1789}
1790
1791/*
1792 Flow control code by Lorenz Moesenlechner (lorenz@hcilab.org)
1793 and Matthias Kranz (matthias@hcilab.org)
1794*/
1795/**
1796 Set flowcontrol for ftdi chip
1797
1798 \param ftdi pointer to ftdi_context
1799 \param flowctrl flow control to use. should be
1800 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
1801
1802 \retval 0: all fine
1803 \retval -1: set flow control failed
1804*/
1805int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1806{
1807 if (usb_control_msg(ftdi->usb_dev, SIO_SET_FLOW_CTRL_REQUEST_TYPE,
1808 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->interface),
1809 NULL, 0, ftdi->usb_write_timeout) != 0)
1810 ftdi_error_return(-1, "set flow control failed");
1811
1812 return 0;
1813}
1814
1815/**
1816 Set dtr line
1817
1818 \param ftdi pointer to ftdi_context
1819 \param state state to set line to (1 or 0)
1820
1821 \retval 0: all fine
1822 \retval -1: set dtr failed
1823*/
1824int ftdi_setdtr(struct ftdi_context *ftdi, int state)
1825{
1826 unsigned short usb_val;
1827
1828 if (state)
1829 usb_val = SIO_SET_DTR_HIGH;
1830 else
1831 usb_val = SIO_SET_DTR_LOW;
1832
1833 if (usb_control_msg(ftdi->usb_dev, SIO_SET_MODEM_CTRL_REQUEST_TYPE,
1834 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->interface,
1835 NULL, 0, ftdi->usb_write_timeout) != 0)
1836 ftdi_error_return(-1, "set dtr failed");
1837
1838 return 0;
1839}
1840
1841/**
1842 Set rts line
1843
1844 \param ftdi pointer to ftdi_context
1845 \param state state to set line to (1 or 0)
1846
1847 \retval 0: all fine
1848 \retval -1 set rts failed
1849*/
1850int ftdi_setrts(struct ftdi_context *ftdi, int state)
1851{
1852 unsigned short usb_val;
1853
1854 if (state)
1855 usb_val = SIO_SET_RTS_HIGH;
1856 else
1857 usb_val = SIO_SET_RTS_LOW;
1858
1859 if (usb_control_msg(ftdi->usb_dev, SIO_SET_MODEM_CTRL_REQUEST_TYPE,
1860 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->interface,
1861 NULL, 0, ftdi->usb_write_timeout) != 0)
1862 ftdi_error_return(-1, "set of rts failed");
1863
1864 return 0;
1865}
1866
1867/* @} end of doxygen libftdi group */