Adapt user area size calculation to official FTDI formula
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2010 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
58 \retval none
59*/
60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
61{
62 if (ftdi && ftdi->usb_dev)
63 {
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
66 }
67}
68
69/**
70 Initializes a ftdi_context.
71
72 \param ftdi pointer to ftdi_context
73
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
76 \retval -2: couldn't allocate struct buffer
77
78 \remark This should be called before all functions
79*/
80int ftdi_init(struct ftdi_context *ftdi)
81{
82 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
83 ftdi->usb_ctx = NULL;
84 ftdi->usb_dev = NULL;
85 ftdi->usb_read_timeout = 5000;
86 ftdi->usb_write_timeout = 5000;
87
88 ftdi->type = TYPE_BM; /* chip type */
89 ftdi->baudrate = -1;
90 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
91
92 ftdi->readbuffer = NULL;
93 ftdi->readbuffer_offset = 0;
94 ftdi->readbuffer_remaining = 0;
95 ftdi->writebuffer_chunksize = 4096;
96 ftdi->max_packet_size = 0;
97
98 ftdi->interface = 0;
99 ftdi->index = 0;
100 ftdi->in_ep = 0x02;
101 ftdi->out_ep = 0x81;
102 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
103
104 ftdi->error_str = NULL;
105
106 if (eeprom == 0)
107 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
108 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
109 ftdi->eeprom = eeprom;
110
111 /* All fine. Now allocate the readbuffer */
112 return ftdi_read_data_set_chunksize(ftdi, 4096);
113}
114
115/**
116 Allocate and initialize a new ftdi_context
117
118 \return a pointer to a new ftdi_context, or NULL on failure
119*/
120struct ftdi_context *ftdi_new(void)
121{
122 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
123
124 if (ftdi == NULL)
125 {
126 return NULL;
127 }
128
129 if (ftdi_init(ftdi) != 0)
130 {
131 free(ftdi);
132 return NULL;
133 }
134
135 return ftdi;
136}
137
138/**
139 Open selected channels on a chip, otherwise use first channel.
140
141 \param ftdi pointer to ftdi_context
142 \param interface Interface to use for FT2232C/2232H/4232H chips.
143
144 \retval 0: all fine
145 \retval -1: unknown interface
146 \retval -2: USB device unavailable
147*/
148int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
149{
150 if (ftdi == NULL)
151 ftdi_error_return(-2, "USB device unavailable");
152
153 switch (interface)
154 {
155 case INTERFACE_ANY:
156 case INTERFACE_A:
157 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
158 break;
159 case INTERFACE_B:
160 ftdi->interface = 1;
161 ftdi->index = INTERFACE_B;
162 ftdi->in_ep = 0x04;
163 ftdi->out_ep = 0x83;
164 break;
165 case INTERFACE_C:
166 ftdi->interface = 2;
167 ftdi->index = INTERFACE_C;
168 ftdi->in_ep = 0x06;
169 ftdi->out_ep = 0x85;
170 break;
171 case INTERFACE_D:
172 ftdi->interface = 3;
173 ftdi->index = INTERFACE_D;
174 ftdi->in_ep = 0x08;
175 ftdi->out_ep = 0x87;
176 break;
177 default:
178 ftdi_error_return(-1, "Unknown interface");
179 }
180 return 0;
181}
182
183/**
184 Deinitializes a ftdi_context.
185
186 \param ftdi pointer to ftdi_context
187*/
188void ftdi_deinit(struct ftdi_context *ftdi)
189{
190 if (ftdi == NULL)
191 return;
192
193 ftdi_usb_close_internal (ftdi);
194
195 if (ftdi->readbuffer != NULL)
196 {
197 free(ftdi->readbuffer);
198 ftdi->readbuffer = NULL;
199 }
200
201 if (ftdi->eeprom != NULL)
202 {
203 if (ftdi->eeprom->manufacturer != 0)
204 {
205 free(ftdi->eeprom->manufacturer);
206 ftdi->eeprom->manufacturer = 0;
207 }
208 if (ftdi->eeprom->product != 0)
209 {
210 free(ftdi->eeprom->product);
211 ftdi->eeprom->product = 0;
212 }
213 if (ftdi->eeprom->serial != 0)
214 {
215 free(ftdi->eeprom->serial);
216 ftdi->eeprom->serial = 0;
217 }
218 free(ftdi->eeprom);
219 ftdi->eeprom = NULL;
220 }
221 libusb_exit(ftdi->usb_ctx);
222}
223
224/**
225 Deinitialize and free an ftdi_context.
226
227 \param ftdi pointer to ftdi_context
228*/
229void ftdi_free(struct ftdi_context *ftdi)
230{
231 ftdi_deinit(ftdi);
232 free(ftdi);
233}
234
235/**
236 Use an already open libusb device.
237
238 \param ftdi pointer to ftdi_context
239 \param usb libusb libusb_device_handle to use
240*/
241void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
242{
243 if (ftdi == NULL)
244 return;
245
246 ftdi->usb_dev = usb;
247}
248
249
250/**
251 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
252 needs to be deallocated by ftdi_list_free() after use.
253
254 \param ftdi pointer to ftdi_context
255 \param devlist Pointer where to store list of found devices
256 \param vendor Vendor ID to search for
257 \param product Product ID to search for
258
259 \retval >0: number of devices found
260 \retval -3: out of memory
261 \retval -4: libusb_init() failed
262 \retval -5: libusb_get_device_list() failed
263 \retval -6: libusb_get_device_descriptor() failed
264*/
265int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
266{
267 struct ftdi_device_list **curdev;
268 libusb_device *dev;
269 libusb_device **devs;
270 int count = 0;
271 int i = 0;
272
273 if (libusb_init(&ftdi->usb_ctx) < 0)
274 ftdi_error_return(-4, "libusb_init() failed");
275
276 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
277 ftdi_error_return(-5, "libusb_get_device_list() failed");
278
279 curdev = devlist;
280 *curdev = NULL;
281
282 while ((dev = devs[i++]) != NULL)
283 {
284 struct libusb_device_descriptor desc;
285
286 if (libusb_get_device_descriptor(dev, &desc) < 0)
287 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
288
289 if (desc.idVendor == vendor && desc.idProduct == product)
290 {
291 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
292 if (!*curdev)
293 ftdi_error_return(-3, "out of memory");
294
295 (*curdev)->next = NULL;
296 (*curdev)->dev = dev;
297
298 curdev = &(*curdev)->next;
299 count++;
300 }
301 }
302
303 return count;
304}
305
306/**
307 Frees a usb device list.
308
309 \param devlist USB device list created by ftdi_usb_find_all()
310*/
311void ftdi_list_free(struct ftdi_device_list **devlist)
312{
313 struct ftdi_device_list *curdev, *next;
314
315 for (curdev = *devlist; curdev != NULL;)
316 {
317 next = curdev->next;
318 free(curdev);
319 curdev = next;
320 }
321
322 *devlist = NULL;
323}
324
325/**
326 Frees a usb device list.
327
328 \param devlist USB device list created by ftdi_usb_find_all()
329*/
330void ftdi_list_free2(struct ftdi_device_list *devlist)
331{
332 ftdi_list_free(&devlist);
333}
334
335/**
336 Return device ID strings from the usb device.
337
338 The parameters manufacturer, description and serial may be NULL
339 or pointer to buffers to store the fetched strings.
340
341 \note Use this function only in combination with ftdi_usb_find_all()
342 as it closes the internal "usb_dev" after use.
343
344 \param ftdi pointer to ftdi_context
345 \param dev libusb usb_dev to use
346 \param manufacturer Store manufacturer string here if not NULL
347 \param mnf_len Buffer size of manufacturer string
348 \param description Store product description string here if not NULL
349 \param desc_len Buffer size of product description string
350 \param serial Store serial string here if not NULL
351 \param serial_len Buffer size of serial string
352
353 \retval 0: all fine
354 \retval -1: wrong arguments
355 \retval -4: unable to open device
356 \retval -7: get product manufacturer failed
357 \retval -8: get product description failed
358 \retval -9: get serial number failed
359 \retval -11: libusb_get_device_descriptor() failed
360*/
361int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
362 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
363{
364 struct libusb_device_descriptor desc;
365
366 if ((ftdi==NULL) || (dev==NULL))
367 return -1;
368
369 if (libusb_open(dev, &ftdi->usb_dev) < 0)
370 ftdi_error_return(-4, "libusb_open() failed");
371
372 if (libusb_get_device_descriptor(dev, &desc) < 0)
373 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
374
375 if (manufacturer != NULL)
376 {
377 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
378 {
379 ftdi_usb_close_internal (ftdi);
380 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
381 }
382 }
383
384 if (description != NULL)
385 {
386 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
387 {
388 ftdi_usb_close_internal (ftdi);
389 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
390 }
391 }
392
393 if (serial != NULL)
394 {
395 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
396 {
397 ftdi_usb_close_internal (ftdi);
398 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
399 }
400 }
401
402 ftdi_usb_close_internal (ftdi);
403
404 return 0;
405}
406
407/**
408 * Internal function to determine the maximum packet size.
409 * \param ftdi pointer to ftdi_context
410 * \param dev libusb usb_dev to use
411 * \retval Maximum packet size for this device
412 */
413static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
414{
415 struct libusb_device_descriptor desc;
416 struct libusb_config_descriptor *config0;
417 unsigned int packet_size;
418
419 // Sanity check
420 if (ftdi == NULL || dev == NULL)
421 return 64;
422
423 // Determine maximum packet size. Init with default value.
424 // New hi-speed devices from FTDI use a packet size of 512 bytes
425 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
426 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
427 packet_size = 512;
428 else
429 packet_size = 64;
430
431 if (libusb_get_device_descriptor(dev, &desc) < 0)
432 return packet_size;
433
434 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
435 return packet_size;
436
437 if (desc.bNumConfigurations > 0)
438 {
439 if (ftdi->interface < config0->bNumInterfaces)
440 {
441 struct libusb_interface interface = config0->interface[ftdi->interface];
442 if (interface.num_altsetting > 0)
443 {
444 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
445 if (descriptor.bNumEndpoints > 0)
446 {
447 packet_size = descriptor.endpoint[0].wMaxPacketSize;
448 }
449 }
450 }
451 }
452
453 libusb_free_config_descriptor (config0);
454 return packet_size;
455}
456
457/**
458 Opens a ftdi device given by an usb_device.
459
460 \param ftdi pointer to ftdi_context
461 \param dev libusb usb_dev to use
462
463 \retval 0: all fine
464 \retval -3: unable to config device
465 \retval -4: unable to open device
466 \retval -5: unable to claim device
467 \retval -6: reset failed
468 \retval -7: set baudrate failed
469 \retval -8: ftdi context invalid
470 \retval -9: libusb_get_device_descriptor() failed
471 \retval -10: libusb_get_config_descriptor() failed
472 \retval -11: libusb_etach_kernel_driver() failed
473 \retval -12: libusb_get_configuration() failed
474*/
475int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
476{
477 struct libusb_device_descriptor desc;
478 struct libusb_config_descriptor *config0;
479 int cfg, cfg0, detach_errno = 0;
480
481 if (ftdi == NULL)
482 ftdi_error_return(-8, "ftdi context invalid");
483
484 if (libusb_open(dev, &ftdi->usb_dev) < 0)
485 ftdi_error_return(-4, "libusb_open() failed");
486
487 if (libusb_get_device_descriptor(dev, &desc) < 0)
488 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
489
490 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
491 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
492 cfg0 = config0->bConfigurationValue;
493 libusb_free_config_descriptor (config0);
494
495 // Try to detach ftdi_sio kernel module.
496 //
497 // The return code is kept in a separate variable and only parsed
498 // if usb_set_configuration() or usb_claim_interface() fails as the
499 // detach operation might be denied and everything still works fine.
500 // Likely scenario is a static ftdi_sio kernel module.
501 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
502 detach_errno = errno;
503
504 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
505 ftdi_error_return(-12, "libusb_get_configuration () failed");
506 // set configuration (needed especially for windows)
507 // tolerate EBUSY: one device with one configuration, but two interfaces
508 // and libftdi sessions to both interfaces (e.g. FT2232)
509 if (desc.bNumConfigurations > 0 && cfg != cfg0)
510 {
511 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
512 {
513 ftdi_usb_close_internal (ftdi);
514 if(detach_errno == EPERM)
515 {
516 ftdi_error_return(-8, "inappropriate permissions on device!");
517 }
518 else
519 {
520 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
521 }
522 }
523 }
524
525 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
526 {
527 ftdi_usb_close_internal (ftdi);
528 if(detach_errno == EPERM)
529 {
530 ftdi_error_return(-8, "inappropriate permissions on device!");
531 }
532 else
533 {
534 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
535 }
536 }
537
538 if (ftdi_usb_reset (ftdi) != 0)
539 {
540 ftdi_usb_close_internal (ftdi);
541 ftdi_error_return(-6, "ftdi_usb_reset failed");
542 }
543
544 // Try to guess chip type
545 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
546 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
547 && desc.iSerialNumber == 0))
548 ftdi->type = TYPE_BM;
549 else if (desc.bcdDevice == 0x200)
550 ftdi->type = TYPE_AM;
551 else if (desc.bcdDevice == 0x500)
552 ftdi->type = TYPE_2232C;
553 else if (desc.bcdDevice == 0x600)
554 ftdi->type = TYPE_R;
555 else if (desc.bcdDevice == 0x700)
556 ftdi->type = TYPE_2232H;
557 else if (desc.bcdDevice == 0x800)
558 ftdi->type = TYPE_4232H;
559
560 // Set default interface on dual/quad type chips
561 switch(ftdi->type)
562 {
563 case TYPE_2232C:
564 case TYPE_2232H:
565 case TYPE_4232H:
566 if (!ftdi->index)
567 ftdi->index = INTERFACE_A;
568 break;
569 default:
570 break;
571 }
572
573 // Determine maximum packet size
574 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
575
576 if (ftdi_set_baudrate (ftdi, 9600) != 0)
577 {
578 ftdi_usb_close_internal (ftdi);
579 ftdi_error_return(-7, "set baudrate failed");
580 }
581
582 ftdi_error_return(0, "all fine");
583}
584
585/**
586 Opens the first device with a given vendor and product ids.
587
588 \param ftdi pointer to ftdi_context
589 \param vendor Vendor ID
590 \param product Product ID
591
592 \retval same as ftdi_usb_open_desc()
593*/
594int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
595{
596 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
597}
598
599/**
600 Opens the first device with a given, vendor id, product id,
601 description and serial.
602
603 \param ftdi pointer to ftdi_context
604 \param vendor Vendor ID
605 \param product Product ID
606 \param description Description to search for. Use NULL if not needed.
607 \param serial Serial to search for. Use NULL if not needed.
608
609 \retval 0: all fine
610 \retval -3: usb device not found
611 \retval -4: unable to open device
612 \retval -5: unable to claim device
613 \retval -6: reset failed
614 \retval -7: set baudrate failed
615 \retval -8: get product description failed
616 \retval -9: get serial number failed
617 \retval -11: libusb_init() failed
618 \retval -12: libusb_get_device_list() failed
619 \retval -13: libusb_get_device_descriptor() failed
620*/
621int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
622 const char* description, const char* serial)
623{
624 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
625}
626
627/**
628 Opens the index-th device with a given, vendor id, product id,
629 description and serial.
630
631 \param ftdi pointer to ftdi_context
632 \param vendor Vendor ID
633 \param product Product ID
634 \param description Description to search for. Use NULL if not needed.
635 \param serial Serial to search for. Use NULL if not needed.
636 \param index Number of matching device to open if there are more than one, starts with 0.
637
638 \retval 0: all fine
639 \retval -1: usb_find_busses() failed
640 \retval -2: usb_find_devices() failed
641 \retval -3: usb device not found
642 \retval -4: unable to open device
643 \retval -5: unable to claim device
644 \retval -6: reset failed
645 \retval -7: set baudrate failed
646 \retval -8: get product description failed
647 \retval -9: get serial number failed
648 \retval -10: unable to close device
649 \retval -11: ftdi context invalid
650*/
651int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
652 const char* description, const char* serial, unsigned int index)
653{
654 libusb_device *dev;
655 libusb_device **devs;
656 char string[256];
657 int i = 0;
658
659 if (libusb_init(&ftdi->usb_ctx) < 0)
660 ftdi_error_return(-11, "libusb_init() failed");
661
662 if (ftdi == NULL)
663 ftdi_error_return(-11, "ftdi context invalid");
664
665 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
666 ftdi_error_return(-12, "libusb_get_device_list() failed");
667
668 while ((dev = devs[i++]) != NULL)
669 {
670 struct libusb_device_descriptor desc;
671 int res;
672
673 if (libusb_get_device_descriptor(dev, &desc) < 0)
674 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
675
676 if (desc.idVendor == vendor && desc.idProduct == product)
677 {
678 if (libusb_open(dev, &ftdi->usb_dev) < 0)
679 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
680
681 if (description != NULL)
682 {
683 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
684 {
685 libusb_close (ftdi->usb_dev);
686 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
687 }
688 if (strncmp(string, description, sizeof(string)) != 0)
689 {
690 libusb_close (ftdi->usb_dev);
691 continue;
692 }
693 }
694 if (serial != NULL)
695 {
696 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
697 {
698 ftdi_usb_close_internal (ftdi);
699 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
700 }
701 if (strncmp(string, serial, sizeof(string)) != 0)
702 {
703 ftdi_usb_close_internal (ftdi);
704 continue;
705 }
706 }
707
708 ftdi_usb_close_internal (ftdi);
709
710 if (index > 0)
711 {
712 index--;
713 continue;
714 }
715
716 res = ftdi_usb_open_dev(ftdi, dev);
717 libusb_free_device_list(devs,1);
718 return res;
719 }
720 }
721
722 // device not found
723 ftdi_error_return_free_device_list(-3, "device not found", devs);
724}
725
726/**
727 Opens the ftdi-device described by a description-string.
728 Intended to be used for parsing a device-description given as commandline argument.
729
730 \param ftdi pointer to ftdi_context
731 \param description NULL-terminated description-string, using this format:
732 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
733 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
734 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
735 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
736
737 \note The description format may be extended in later versions.
738
739 \retval 0: all fine
740 \retval -1: libusb_init() failed
741 \retval -2: libusb_get_device_list() failed
742 \retval -3: usb device not found
743 \retval -4: unable to open device
744 \retval -5: unable to claim device
745 \retval -6: reset failed
746 \retval -7: set baudrate failed
747 \retval -8: get product description failed
748 \retval -9: get serial number failed
749 \retval -10: unable to close device
750 \retval -11: illegal description format
751 \retval -12: ftdi context invalid
752*/
753int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
754{
755 if (ftdi == NULL)
756 ftdi_error_return(-12, "ftdi context invalid");
757
758 if (description[0] == 0 || description[1] != ':')
759 ftdi_error_return(-11, "illegal description format");
760
761 if (description[0] == 'd')
762 {
763 libusb_device *dev;
764 libusb_device **devs;
765 unsigned int bus_number, device_address;
766 int i = 0;
767
768 if (libusb_init (&ftdi->usb_ctx) < 0)
769 ftdi_error_return(-1, "libusb_init() failed");
770
771 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
772 ftdi_error_return(-2, "libusb_get_device_list() failed");
773
774 /* XXX: This doesn't handle symlinks/odd paths/etc... */
775 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
776 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
777
778 while ((dev = devs[i++]) != NULL)
779 {
780 int ret;
781 if (bus_number == libusb_get_bus_number (dev)
782 && device_address == libusb_get_device_address (dev))
783 {
784 ret = ftdi_usb_open_dev(ftdi, dev);
785 libusb_free_device_list(devs,1);
786 return ret;
787 }
788 }
789
790 // device not found
791 ftdi_error_return_free_device_list(-3, "device not found", devs);
792 }
793 else if (description[0] == 'i' || description[0] == 's')
794 {
795 unsigned int vendor;
796 unsigned int product;
797 unsigned int index=0;
798 const char *serial=NULL;
799 const char *startp, *endp;
800
801 errno=0;
802 startp=description+2;
803 vendor=strtoul((char*)startp,(char**)&endp,0);
804 if (*endp != ':' || endp == startp || errno != 0)
805 ftdi_error_return(-11, "illegal description format");
806
807 startp=endp+1;
808 product=strtoul((char*)startp,(char**)&endp,0);
809 if (endp == startp || errno != 0)
810 ftdi_error_return(-11, "illegal description format");
811
812 if (description[0] == 'i' && *endp != 0)
813 {
814 /* optional index field in i-mode */
815 if (*endp != ':')
816 ftdi_error_return(-11, "illegal description format");
817
818 startp=endp+1;
819 index=strtoul((char*)startp,(char**)&endp,0);
820 if (*endp != 0 || endp == startp || errno != 0)
821 ftdi_error_return(-11, "illegal description format");
822 }
823 if (description[0] == 's')
824 {
825 if (*endp != ':')
826 ftdi_error_return(-11, "illegal description format");
827
828 /* rest of the description is the serial */
829 serial=endp+1;
830 }
831
832 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
833 }
834 else
835 {
836 ftdi_error_return(-11, "illegal description format");
837 }
838}
839
840/**
841 Resets the ftdi device.
842
843 \param ftdi pointer to ftdi_context
844
845 \retval 0: all fine
846 \retval -1: FTDI reset failed
847 \retval -2: USB device unavailable
848*/
849int ftdi_usb_reset(struct ftdi_context *ftdi)
850{
851 if (ftdi == NULL || ftdi->usb_dev == NULL)
852 ftdi_error_return(-2, "USB device unavailable");
853
854 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
855 SIO_RESET_REQUEST, SIO_RESET_SIO,
856 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
857 ftdi_error_return(-1,"FTDI reset failed");
858
859 // Invalidate data in the readbuffer
860 ftdi->readbuffer_offset = 0;
861 ftdi->readbuffer_remaining = 0;
862
863 return 0;
864}
865
866/**
867 Clears the read buffer on the chip and the internal read buffer.
868
869 \param ftdi pointer to ftdi_context
870
871 \retval 0: all fine
872 \retval -1: read buffer purge failed
873 \retval -2: USB device unavailable
874*/
875int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
876{
877 if (ftdi == NULL || ftdi->usb_dev == NULL)
878 ftdi_error_return(-2, "USB device unavailable");
879
880 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
881 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
882 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
883 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
884
885 // Invalidate data in the readbuffer
886 ftdi->readbuffer_offset = 0;
887 ftdi->readbuffer_remaining = 0;
888
889 return 0;
890}
891
892/**
893 Clears the write buffer on the chip.
894
895 \param ftdi pointer to ftdi_context
896
897 \retval 0: all fine
898 \retval -1: write buffer purge failed
899 \retval -2: USB device unavailable
900*/
901int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
902{
903 if (ftdi == NULL || ftdi->usb_dev == NULL)
904 ftdi_error_return(-2, "USB device unavailable");
905
906 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
907 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
908 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
909 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
910
911 return 0;
912}
913
914/**
915 Clears the buffers on the chip and the internal read buffer.
916
917 \param ftdi pointer to ftdi_context
918
919 \retval 0: all fine
920 \retval -1: read buffer purge failed
921 \retval -2: write buffer purge failed
922 \retval -3: USB device unavailable
923*/
924int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
925{
926 int result;
927
928 if (ftdi == NULL || ftdi->usb_dev == NULL)
929 ftdi_error_return(-3, "USB device unavailable");
930
931 result = ftdi_usb_purge_rx_buffer(ftdi);
932 if (result < 0)
933 return -1;
934
935 result = ftdi_usb_purge_tx_buffer(ftdi);
936 if (result < 0)
937 return -2;
938
939 return 0;
940}
941
942
943
944/**
945 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
946
947 \param ftdi pointer to ftdi_context
948
949 \retval 0: all fine
950 \retval -1: usb_release failed
951 \retval -3: ftdi context invalid
952*/
953int ftdi_usb_close(struct ftdi_context *ftdi)
954{
955 int rtn = 0;
956
957 if (ftdi == NULL)
958 ftdi_error_return(-3, "ftdi context invalid");
959
960 if (ftdi->usb_dev != NULL)
961 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
962 rtn = -1;
963
964 ftdi_usb_close_internal (ftdi);
965
966 return rtn;
967}
968
969/**
970 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
971 Function is only used internally
972 \internal
973*/
974static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
975 unsigned short *value, unsigned short *index)
976{
977 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
978 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
979 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
980 int divisor, best_divisor, best_baud, best_baud_diff;
981 unsigned long encoded_divisor;
982 int i;
983
984 if (baudrate <= 0)
985 {
986 // Return error
987 return -1;
988 }
989
990 divisor = 24000000 / baudrate;
991
992 if (ftdi->type == TYPE_AM)
993 {
994 // Round down to supported fraction (AM only)
995 divisor -= am_adjust_dn[divisor & 7];
996 }
997
998 // Try this divisor and the one above it (because division rounds down)
999 best_divisor = 0;
1000 best_baud = 0;
1001 best_baud_diff = 0;
1002 for (i = 0; i < 2; i++)
1003 {
1004 int try_divisor = divisor + i;
1005 int baud_estimate;
1006 int baud_diff;
1007
1008 // Round up to supported divisor value
1009 if (try_divisor <= 8)
1010 {
1011 // Round up to minimum supported divisor
1012 try_divisor = 8;
1013 }
1014 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1015 {
1016 // BM doesn't support divisors 9 through 11 inclusive
1017 try_divisor = 12;
1018 }
1019 else if (divisor < 16)
1020 {
1021 // AM doesn't support divisors 9 through 15 inclusive
1022 try_divisor = 16;
1023 }
1024 else
1025 {
1026 if (ftdi->type == TYPE_AM)
1027 {
1028 // Round up to supported fraction (AM only)
1029 try_divisor += am_adjust_up[try_divisor & 7];
1030 if (try_divisor > 0x1FFF8)
1031 {
1032 // Round down to maximum supported divisor value (for AM)
1033 try_divisor = 0x1FFF8;
1034 }
1035 }
1036 else
1037 {
1038 if (try_divisor > 0x1FFFF)
1039 {
1040 // Round down to maximum supported divisor value (for BM)
1041 try_divisor = 0x1FFFF;
1042 }
1043 }
1044 }
1045 // Get estimated baud rate (to nearest integer)
1046 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1047 // Get absolute difference from requested baud rate
1048 if (baud_estimate < baudrate)
1049 {
1050 baud_diff = baudrate - baud_estimate;
1051 }
1052 else
1053 {
1054 baud_diff = baud_estimate - baudrate;
1055 }
1056 if (i == 0 || baud_diff < best_baud_diff)
1057 {
1058 // Closest to requested baud rate so far
1059 best_divisor = try_divisor;
1060 best_baud = baud_estimate;
1061 best_baud_diff = baud_diff;
1062 if (baud_diff == 0)
1063 {
1064 // Spot on! No point trying
1065 break;
1066 }
1067 }
1068 }
1069 // Encode the best divisor value
1070 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1071 // Deal with special cases for encoded value
1072 if (encoded_divisor == 1)
1073 {
1074 encoded_divisor = 0; // 3000000 baud
1075 }
1076 else if (encoded_divisor == 0x4001)
1077 {
1078 encoded_divisor = 1; // 2000000 baud (BM only)
1079 }
1080 // Split into "value" and "index" values
1081 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1082 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1083 {
1084 *index = (unsigned short)(encoded_divisor >> 8);
1085 *index &= 0xFF00;
1086 *index |= ftdi->index;
1087 }
1088 else
1089 *index = (unsigned short)(encoded_divisor >> 16);
1090
1091 // Return the nearest baud rate
1092 return best_baud;
1093}
1094
1095/**
1096 Sets the chip baud rate
1097
1098 \param ftdi pointer to ftdi_context
1099 \param baudrate baud rate to set
1100
1101 \retval 0: all fine
1102 \retval -1: invalid baudrate
1103 \retval -2: setting baudrate failed
1104 \retval -3: USB device unavailable
1105*/
1106int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1107{
1108 unsigned short value, index;
1109 int actual_baudrate;
1110
1111 if (ftdi == NULL || ftdi->usb_dev == NULL)
1112 ftdi_error_return(-3, "USB device unavailable");
1113
1114 if (ftdi->bitbang_enabled)
1115 {
1116 baudrate = baudrate*4;
1117 }
1118
1119 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1120 if (actual_baudrate <= 0)
1121 ftdi_error_return (-1, "Silly baudrate <= 0.");
1122
1123 // Check within tolerance (about 5%)
1124 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1125 || ((actual_baudrate < baudrate)
1126 ? (actual_baudrate * 21 < baudrate * 20)
1127 : (baudrate * 21 < actual_baudrate * 20)))
1128 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1129
1130 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1131 SIO_SET_BAUDRATE_REQUEST, value,
1132 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1133 ftdi_error_return (-2, "Setting new baudrate failed");
1134
1135 ftdi->baudrate = baudrate;
1136 return 0;
1137}
1138
1139/**
1140 Set (RS232) line characteristics.
1141 The break type can only be set via ftdi_set_line_property2()
1142 and defaults to "off".
1143
1144 \param ftdi pointer to ftdi_context
1145 \param bits Number of bits
1146 \param sbit Number of stop bits
1147 \param parity Parity mode
1148
1149 \retval 0: all fine
1150 \retval -1: Setting line property failed
1151*/
1152int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1153 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1154{
1155 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1156}
1157
1158/**
1159 Set (RS232) line characteristics
1160
1161 \param ftdi pointer to ftdi_context
1162 \param bits Number of bits
1163 \param sbit Number of stop bits
1164 \param parity Parity mode
1165 \param break_type Break type
1166
1167 \retval 0: all fine
1168 \retval -1: Setting line property failed
1169 \retval -2: USB device unavailable
1170*/
1171int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1172 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1173 enum ftdi_break_type break_type)
1174{
1175 unsigned short value = bits;
1176
1177 if (ftdi == NULL || ftdi->usb_dev == NULL)
1178 ftdi_error_return(-2, "USB device unavailable");
1179
1180 switch (parity)
1181 {
1182 case NONE:
1183 value |= (0x00 << 8);
1184 break;
1185 case ODD:
1186 value |= (0x01 << 8);
1187 break;
1188 case EVEN:
1189 value |= (0x02 << 8);
1190 break;
1191 case MARK:
1192 value |= (0x03 << 8);
1193 break;
1194 case SPACE:
1195 value |= (0x04 << 8);
1196 break;
1197 }
1198
1199 switch (sbit)
1200 {
1201 case STOP_BIT_1:
1202 value |= (0x00 << 11);
1203 break;
1204 case STOP_BIT_15:
1205 value |= (0x01 << 11);
1206 break;
1207 case STOP_BIT_2:
1208 value |= (0x02 << 11);
1209 break;
1210 }
1211
1212 switch (break_type)
1213 {
1214 case BREAK_OFF:
1215 value |= (0x00 << 14);
1216 break;
1217 case BREAK_ON:
1218 value |= (0x01 << 14);
1219 break;
1220 }
1221
1222 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1223 SIO_SET_DATA_REQUEST, value,
1224 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1225 ftdi_error_return (-1, "Setting new line property failed");
1226
1227 return 0;
1228}
1229
1230/**
1231 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1232
1233 \param ftdi pointer to ftdi_context
1234 \param buf Buffer with the data
1235 \param size Size of the buffer
1236
1237 \retval -666: USB device unavailable
1238 \retval <0: error code from usb_bulk_write()
1239 \retval >0: number of bytes written
1240*/
1241int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1242{
1243 int offset = 0;
1244 int actual_length;
1245
1246 if (ftdi == NULL || ftdi->usb_dev == NULL)
1247 ftdi_error_return(-666, "USB device unavailable");
1248
1249 while (offset < size)
1250 {
1251 int write_size = ftdi->writebuffer_chunksize;
1252
1253 if (offset+write_size > size)
1254 write_size = size-offset;
1255
1256 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1257 ftdi_error_return(-1, "usb bulk write failed");
1258
1259 offset += actual_length;
1260 }
1261
1262 return offset;
1263}
1264
1265static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1266{
1267 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1268 struct ftdi_context *ftdi = tc->ftdi;
1269 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1270
1271 packet_size = ftdi->max_packet_size;
1272
1273 actual_length = transfer->actual_length;
1274
1275 if (actual_length > 2)
1276 {
1277 // skip FTDI status bytes.
1278 // Maybe stored in the future to enable modem use
1279 num_of_chunks = actual_length / packet_size;
1280 chunk_remains = actual_length % packet_size;
1281 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1282
1283 ftdi->readbuffer_offset += 2;
1284 actual_length -= 2;
1285
1286 if (actual_length > packet_size - 2)
1287 {
1288 for (i = 1; i < num_of_chunks; i++)
1289 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1290 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1291 packet_size - 2);
1292 if (chunk_remains > 2)
1293 {
1294 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1295 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1296 chunk_remains-2);
1297 actual_length -= 2*num_of_chunks;
1298 }
1299 else
1300 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1301 }
1302
1303 if (actual_length > 0)
1304 {
1305 // data still fits in buf?
1306 if (tc->offset + actual_length <= tc->size)
1307 {
1308 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1309 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1310 tc->offset += actual_length;
1311
1312 ftdi->readbuffer_offset = 0;
1313 ftdi->readbuffer_remaining = 0;
1314
1315 /* Did we read exactly the right amount of bytes? */
1316 if (tc->offset == tc->size)
1317 {
1318 //printf("read_data exact rem %d offset %d\n",
1319 //ftdi->readbuffer_remaining, offset);
1320 tc->completed = 1;
1321 return;
1322 }
1323 }
1324 else
1325 {
1326 // only copy part of the data or size <= readbuffer_chunksize
1327 int part_size = tc->size - tc->offset;
1328 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1329 tc->offset += part_size;
1330
1331 ftdi->readbuffer_offset += part_size;
1332 ftdi->readbuffer_remaining = actual_length - part_size;
1333
1334 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1335 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1336 tc->completed = 1;
1337 return;
1338 }
1339 }
1340 }
1341 ret = libusb_submit_transfer (transfer);
1342 if (ret < 0)
1343 tc->completed = 1;
1344}
1345
1346
1347static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1348{
1349 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1350 struct ftdi_context *ftdi = tc->ftdi;
1351
1352 tc->offset += transfer->actual_length;
1353
1354 if (tc->offset == tc->size)
1355 {
1356 tc->completed = 1;
1357 }
1358 else
1359 {
1360 int write_size = ftdi->writebuffer_chunksize;
1361 int ret;
1362
1363 if (tc->offset + write_size > tc->size)
1364 write_size = tc->size - tc->offset;
1365
1366 transfer->length = write_size;
1367 transfer->buffer = tc->buf + tc->offset;
1368 ret = libusb_submit_transfer (transfer);
1369 if (ret < 0)
1370 tc->completed = 1;
1371 }
1372}
1373
1374
1375/**
1376 Writes data to the chip. Does not wait for completion of the transfer
1377 nor does it make sure that the transfer was successful.
1378
1379 Use libusb 1.0 asynchronous API.
1380
1381 \param ftdi pointer to ftdi_context
1382 \param buf Buffer with the data
1383 \param size Size of the buffer
1384
1385 \retval NULL: Some error happens when submit transfer
1386 \retval !NULL: Pointer to a ftdi_transfer_control
1387*/
1388
1389struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1390{
1391 struct ftdi_transfer_control *tc;
1392 struct libusb_transfer *transfer = libusb_alloc_transfer(0);
1393 int write_size, ret;
1394
1395 if (ftdi == NULL || ftdi->usb_dev == NULL)
1396 {
1397 libusb_free_transfer(transfer);
1398 return NULL;
1399 }
1400
1401 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1402
1403 if (!tc || !transfer)
1404 return NULL;
1405
1406 tc->ftdi = ftdi;
1407 tc->completed = 0;
1408 tc->buf = buf;
1409 tc->size = size;
1410 tc->offset = 0;
1411
1412 if (size < ftdi->writebuffer_chunksize)
1413 write_size = size;
1414 else
1415 write_size = ftdi->writebuffer_chunksize;
1416
1417 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1418 write_size, ftdi_write_data_cb, tc,
1419 ftdi->usb_write_timeout);
1420 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1421
1422 ret = libusb_submit_transfer(transfer);
1423 if (ret < 0)
1424 {
1425 libusb_free_transfer(transfer);
1426 tc->completed = 1;
1427 tc->transfer = NULL;
1428 return NULL;
1429 }
1430 tc->transfer = transfer;
1431
1432 return tc;
1433}
1434
1435/**
1436 Reads data from the chip. Does not wait for completion of the transfer
1437 nor does it make sure that the transfer was successful.
1438
1439 Use libusb 1.0 asynchronous API.
1440
1441 \param ftdi pointer to ftdi_context
1442 \param buf Buffer with the data
1443 \param size Size of the buffer
1444
1445 \retval NULL: Some error happens when submit transfer
1446 \retval !NULL: Pointer to a ftdi_transfer_control
1447*/
1448
1449struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1450{
1451 struct ftdi_transfer_control *tc;
1452 struct libusb_transfer *transfer;
1453 int ret;
1454
1455 if (ftdi == NULL || ftdi->usb_dev == NULL)
1456 return NULL;
1457
1458 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1459 if (!tc)
1460 return NULL;
1461
1462 tc->ftdi = ftdi;
1463 tc->buf = buf;
1464 tc->size = size;
1465
1466 if (size <= ftdi->readbuffer_remaining)
1467 {
1468 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1469
1470 // Fix offsets
1471 ftdi->readbuffer_remaining -= size;
1472 ftdi->readbuffer_offset += size;
1473
1474 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1475
1476 tc->completed = 1;
1477 tc->offset = size;
1478 tc->transfer = NULL;
1479 return tc;
1480 }
1481
1482 tc->completed = 0;
1483 if (ftdi->readbuffer_remaining != 0)
1484 {
1485 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1486
1487 tc->offset = ftdi->readbuffer_remaining;
1488 }
1489 else
1490 tc->offset = 0;
1491
1492 transfer = libusb_alloc_transfer(0);
1493 if (!transfer)
1494 {
1495 free (tc);
1496 return NULL;
1497 }
1498
1499 ftdi->readbuffer_remaining = 0;
1500 ftdi->readbuffer_offset = 0;
1501
1502 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1503 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1504
1505 ret = libusb_submit_transfer(transfer);
1506 if (ret < 0)
1507 {
1508 libusb_free_transfer(transfer);
1509 free (tc);
1510 return NULL;
1511 }
1512 tc->transfer = transfer;
1513
1514 return tc;
1515}
1516
1517/**
1518 Wait for completion of the transfer.
1519
1520 Use libusb 1.0 asynchronous API.
1521
1522 \param tc pointer to ftdi_transfer_control
1523
1524 \retval < 0: Some error happens
1525 \retval >= 0: Data size transferred
1526*/
1527
1528int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1529{
1530 int ret;
1531
1532 while (!tc->completed)
1533 {
1534 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1535 if (ret < 0)
1536 {
1537 if (ret == LIBUSB_ERROR_INTERRUPTED)
1538 continue;
1539 libusb_cancel_transfer(tc->transfer);
1540 while (!tc->completed)
1541 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1542 break;
1543 libusb_free_transfer(tc->transfer);
1544 free (tc);
1545 return ret;
1546 }
1547 }
1548
1549 ret = tc->offset;
1550 /**
1551 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1552 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1553 **/
1554 if (tc->transfer)
1555 {
1556 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1557 ret = -1;
1558 libusb_free_transfer(tc->transfer);
1559 }
1560 free(tc);
1561 return ret;
1562}
1563
1564/**
1565 Configure write buffer chunk size.
1566 Default is 4096.
1567
1568 \param ftdi pointer to ftdi_context
1569 \param chunksize Chunk size
1570
1571 \retval 0: all fine
1572 \retval -1: ftdi context invalid
1573*/
1574int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1575{
1576 if (ftdi == NULL)
1577 ftdi_error_return(-1, "ftdi context invalid");
1578
1579 ftdi->writebuffer_chunksize = chunksize;
1580 return 0;
1581}
1582
1583/**
1584 Get write buffer chunk size.
1585
1586 \param ftdi pointer to ftdi_context
1587 \param chunksize Pointer to store chunk size in
1588
1589 \retval 0: all fine
1590 \retval -1: ftdi context invalid
1591*/
1592int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1593{
1594 if (ftdi == NULL)
1595 ftdi_error_return(-1, "ftdi context invalid");
1596
1597 *chunksize = ftdi->writebuffer_chunksize;
1598 return 0;
1599}
1600
1601/**
1602 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1603
1604 Automatically strips the two modem status bytes transfered during every read.
1605
1606 \param ftdi pointer to ftdi_context
1607 \param buf Buffer to store data in
1608 \param size Size of the buffer
1609
1610 \retval -666: USB device unavailable
1611 \retval <0: error code from libusb_bulk_transfer()
1612 \retval 0: no data was available
1613 \retval >0: number of bytes read
1614
1615*/
1616int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1617{
1618 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1619 int packet_size = ftdi->max_packet_size;
1620 int actual_length = 1;
1621
1622 if (ftdi == NULL || ftdi->usb_dev == NULL)
1623 ftdi_error_return(-666, "USB device unavailable");
1624
1625 // Packet size sanity check (avoid division by zero)
1626 if (packet_size == 0)
1627 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1628
1629 // everything we want is still in the readbuffer?
1630 if (size <= ftdi->readbuffer_remaining)
1631 {
1632 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1633
1634 // Fix offsets
1635 ftdi->readbuffer_remaining -= size;
1636 ftdi->readbuffer_offset += size;
1637
1638 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1639
1640 return size;
1641 }
1642 // something still in the readbuffer, but not enough to satisfy 'size'?
1643 if (ftdi->readbuffer_remaining != 0)
1644 {
1645 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1646
1647 // Fix offset
1648 offset += ftdi->readbuffer_remaining;
1649 }
1650 // do the actual USB read
1651 while (offset < size && actual_length > 0)
1652 {
1653 ftdi->readbuffer_remaining = 0;
1654 ftdi->readbuffer_offset = 0;
1655 /* returns how much received */
1656 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1657 if (ret < 0)
1658 ftdi_error_return(ret, "usb bulk read failed");
1659
1660 if (actual_length > 2)
1661 {
1662 // skip FTDI status bytes.
1663 // Maybe stored in the future to enable modem use
1664 num_of_chunks = actual_length / packet_size;
1665 chunk_remains = actual_length % packet_size;
1666 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1667
1668 ftdi->readbuffer_offset += 2;
1669 actual_length -= 2;
1670
1671 if (actual_length > packet_size - 2)
1672 {
1673 for (i = 1; i < num_of_chunks; i++)
1674 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1675 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1676 packet_size - 2);
1677 if (chunk_remains > 2)
1678 {
1679 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1680 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1681 chunk_remains-2);
1682 actual_length -= 2*num_of_chunks;
1683 }
1684 else
1685 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1686 }
1687 }
1688 else if (actual_length <= 2)
1689 {
1690 // no more data to read?
1691 return offset;
1692 }
1693 if (actual_length > 0)
1694 {
1695 // data still fits in buf?
1696 if (offset+actual_length <= size)
1697 {
1698 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1699 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1700 offset += actual_length;
1701
1702 /* Did we read exactly the right amount of bytes? */
1703 if (offset == size)
1704 //printf("read_data exact rem %d offset %d\n",
1705 //ftdi->readbuffer_remaining, offset);
1706 return offset;
1707 }
1708 else
1709 {
1710 // only copy part of the data or size <= readbuffer_chunksize
1711 int part_size = size-offset;
1712 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1713
1714 ftdi->readbuffer_offset += part_size;
1715 ftdi->readbuffer_remaining = actual_length-part_size;
1716 offset += part_size;
1717
1718 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1719 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1720
1721 return offset;
1722 }
1723 }
1724 }
1725 // never reached
1726 return -127;
1727}
1728
1729/**
1730 Configure read buffer chunk size.
1731 Default is 4096.
1732
1733 Automatically reallocates the buffer.
1734
1735 \param ftdi pointer to ftdi_context
1736 \param chunksize Chunk size
1737
1738 \retval 0: all fine
1739 \retval -1: ftdi context invalid
1740*/
1741int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1742{
1743 unsigned char *new_buf;
1744
1745 if (ftdi == NULL)
1746 ftdi_error_return(-1, "ftdi context invalid");
1747
1748 // Invalidate all remaining data
1749 ftdi->readbuffer_offset = 0;
1750 ftdi->readbuffer_remaining = 0;
1751#ifdef __linux__
1752 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1753 which is defined in libusb-1.0. Otherwise, each USB read request will
1754 be divided into multiple URBs. This will cause issues on Linux kernel
1755 older than 2.6.32. */
1756 if (chunksize > 16384)
1757 chunksize = 16384;
1758#endif
1759
1760 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1761 ftdi_error_return(-1, "out of memory for readbuffer");
1762
1763 ftdi->readbuffer = new_buf;
1764 ftdi->readbuffer_chunksize = chunksize;
1765
1766 return 0;
1767}
1768
1769/**
1770 Get read buffer chunk size.
1771
1772 \param ftdi pointer to ftdi_context
1773 \param chunksize Pointer to store chunk size in
1774
1775 \retval 0: all fine
1776 \retval -1: FTDI context invalid
1777*/
1778int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1779{
1780 if (ftdi == NULL)
1781 ftdi_error_return(-1, "FTDI context invalid");
1782
1783 *chunksize = ftdi->readbuffer_chunksize;
1784 return 0;
1785}
1786
1787
1788/**
1789 Enable bitbang mode.
1790
1791 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1792
1793 \param ftdi pointer to ftdi_context
1794 \param bitmask Bitmask to configure lines.
1795 HIGH/ON value configures a line as output.
1796
1797 \retval 0: all fine
1798 \retval -1: can't enable bitbang mode
1799 \retval -2: USB device unavailable
1800*/
1801int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1802{
1803 unsigned short usb_val;
1804
1805 if (ftdi == NULL || ftdi->usb_dev == NULL)
1806 ftdi_error_return(-2, "USB device unavailable");
1807
1808 usb_val = bitmask; // low byte: bitmask
1809 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1810 usb_val |= (ftdi->bitbang_mode << 8);
1811
1812 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1813 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1814 NULL, 0, ftdi->usb_write_timeout) < 0)
1815 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1816
1817 ftdi->bitbang_enabled = 1;
1818 return 0;
1819}
1820
1821/**
1822 Disable bitbang mode.
1823
1824 \param ftdi pointer to ftdi_context
1825
1826 \retval 0: all fine
1827 \retval -1: can't disable bitbang mode
1828 \retval -2: USB device unavailable
1829*/
1830int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1831{
1832 if (ftdi == NULL || ftdi->usb_dev == NULL)
1833 ftdi_error_return(-2, "USB device unavailable");
1834
1835 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1836 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1837
1838 ftdi->bitbang_enabled = 0;
1839 return 0;
1840}
1841
1842/**
1843 Enable/disable bitbang modes.
1844
1845 \param ftdi pointer to ftdi_context
1846 \param bitmask Bitmask to configure lines.
1847 HIGH/ON value configures a line as output.
1848 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1849
1850 \retval 0: all fine
1851 \retval -1: can't enable bitbang mode
1852 \retval -2: USB device unavailable
1853*/
1854int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1855{
1856 unsigned short usb_val;
1857
1858 if (ftdi == NULL || ftdi->usb_dev == NULL)
1859 ftdi_error_return(-2, "USB device unavailable");
1860
1861 usb_val = bitmask; // low byte: bitmask
1862 usb_val |= (mode << 8);
1863 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1864 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1865
1866 ftdi->bitbang_mode = mode;
1867 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1868 return 0;
1869}
1870
1871/**
1872 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1873
1874 \param ftdi pointer to ftdi_context
1875 \param pins Pointer to store pins into
1876
1877 \retval 0: all fine
1878 \retval -1: read pins failed
1879 \retval -2: USB device unavailable
1880*/
1881int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1882{
1883 if (ftdi == NULL || ftdi->usb_dev == NULL)
1884 ftdi_error_return(-2, "USB device unavailable");
1885
1886 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1887 ftdi_error_return(-1, "read pins failed");
1888
1889 return 0;
1890}
1891
1892/**
1893 Set latency timer
1894
1895 The FTDI chip keeps data in the internal buffer for a specific
1896 amount of time if the buffer is not full yet to decrease
1897 load on the usb bus.
1898
1899 \param ftdi pointer to ftdi_context
1900 \param latency Value between 1 and 255
1901
1902 \retval 0: all fine
1903 \retval -1: latency out of range
1904 \retval -2: unable to set latency timer
1905 \retval -3: USB device unavailable
1906*/
1907int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1908{
1909 unsigned short usb_val;
1910
1911 if (latency < 1)
1912 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1913
1914 if (ftdi == NULL || ftdi->usb_dev == NULL)
1915 ftdi_error_return(-3, "USB device unavailable");
1916
1917 usb_val = latency;
1918 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1919 ftdi_error_return(-2, "unable to set latency timer");
1920
1921 return 0;
1922}
1923
1924/**
1925 Get latency timer
1926
1927 \param ftdi pointer to ftdi_context
1928 \param latency Pointer to store latency value in
1929
1930 \retval 0: all fine
1931 \retval -1: unable to get latency timer
1932 \retval -2: USB device unavailable
1933*/
1934int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1935{
1936 unsigned short usb_val;
1937
1938 if (ftdi == NULL || ftdi->usb_dev == NULL)
1939 ftdi_error_return(-2, "USB device unavailable");
1940
1941 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1942 ftdi_error_return(-1, "reading latency timer failed");
1943
1944 *latency = (unsigned char)usb_val;
1945 return 0;
1946}
1947
1948/**
1949 Poll modem status information
1950
1951 This function allows the retrieve the two status bytes of the device.
1952 The device sends these bytes also as a header for each read access
1953 where they are discarded by ftdi_read_data(). The chip generates
1954 the two stripped status bytes in the absence of data every 40 ms.
1955
1956 Layout of the first byte:
1957 - B0..B3 - must be 0
1958 - B4 Clear to send (CTS)
1959 0 = inactive
1960 1 = active
1961 - B5 Data set ready (DTS)
1962 0 = inactive
1963 1 = active
1964 - B6 Ring indicator (RI)
1965 0 = inactive
1966 1 = active
1967 - B7 Receive line signal detect (RLSD)
1968 0 = inactive
1969 1 = active
1970
1971 Layout of the second byte:
1972 - B0 Data ready (DR)
1973 - B1 Overrun error (OE)
1974 - B2 Parity error (PE)
1975 - B3 Framing error (FE)
1976 - B4 Break interrupt (BI)
1977 - B5 Transmitter holding register (THRE)
1978 - B6 Transmitter empty (TEMT)
1979 - B7 Error in RCVR FIFO
1980
1981 \param ftdi pointer to ftdi_context
1982 \param status Pointer to store status information in. Must be two bytes.
1983
1984 \retval 0: all fine
1985 \retval -1: unable to retrieve status information
1986 \retval -2: USB device unavailable
1987*/
1988int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1989{
1990 char usb_val[2];
1991
1992 if (ftdi == NULL || ftdi->usb_dev == NULL)
1993 ftdi_error_return(-2, "USB device unavailable");
1994
1995 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1996 ftdi_error_return(-1, "getting modem status failed");
1997
1998 *status = (usb_val[1] << 8) | usb_val[0];
1999
2000 return 0;
2001}
2002
2003/**
2004 Set flowcontrol for ftdi chip
2005
2006 \param ftdi pointer to ftdi_context
2007 \param flowctrl flow control to use. should be
2008 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2009
2010 \retval 0: all fine
2011 \retval -1: set flow control failed
2012 \retval -2: USB device unavailable
2013*/
2014int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2015{
2016 if (ftdi == NULL || ftdi->usb_dev == NULL)
2017 ftdi_error_return(-2, "USB device unavailable");
2018
2019 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2020 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2021 NULL, 0, ftdi->usb_write_timeout) < 0)
2022 ftdi_error_return(-1, "set flow control failed");
2023
2024 return 0;
2025}
2026
2027/**
2028 Set dtr line
2029
2030 \param ftdi pointer to ftdi_context
2031 \param state state to set line to (1 or 0)
2032
2033 \retval 0: all fine
2034 \retval -1: set dtr failed
2035 \retval -2: USB device unavailable
2036*/
2037int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2038{
2039 unsigned short usb_val;
2040
2041 if (ftdi == NULL || ftdi->usb_dev == NULL)
2042 ftdi_error_return(-2, "USB device unavailable");
2043
2044 if (state)
2045 usb_val = SIO_SET_DTR_HIGH;
2046 else
2047 usb_val = SIO_SET_DTR_LOW;
2048
2049 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2050 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2051 NULL, 0, ftdi->usb_write_timeout) < 0)
2052 ftdi_error_return(-1, "set dtr failed");
2053
2054 return 0;
2055}
2056
2057/**
2058 Set rts line
2059
2060 \param ftdi pointer to ftdi_context
2061 \param state state to set line to (1 or 0)
2062
2063 \retval 0: all fine
2064 \retval -1: set rts failed
2065 \retval -2: USB device unavailable
2066*/
2067int ftdi_setrts(struct ftdi_context *ftdi, int state)
2068{
2069 unsigned short usb_val;
2070
2071 if (ftdi == NULL || ftdi->usb_dev == NULL)
2072 ftdi_error_return(-2, "USB device unavailable");
2073
2074 if (state)
2075 usb_val = SIO_SET_RTS_HIGH;
2076 else
2077 usb_val = SIO_SET_RTS_LOW;
2078
2079 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2080 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2081 NULL, 0, ftdi->usb_write_timeout) < 0)
2082 ftdi_error_return(-1, "set of rts failed");
2083
2084 return 0;
2085}
2086
2087/**
2088 Set dtr and rts line in one pass
2089
2090 \param ftdi pointer to ftdi_context
2091 \param dtr DTR state to set line to (1 or 0)
2092 \param rts RTS state to set line to (1 or 0)
2093
2094 \retval 0: all fine
2095 \retval -1: set dtr/rts failed
2096 \retval -2: USB device unavailable
2097 */
2098int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2099{
2100 unsigned short usb_val;
2101
2102 if (ftdi == NULL || ftdi->usb_dev == NULL)
2103 ftdi_error_return(-2, "USB device unavailable");
2104
2105 if (dtr)
2106 usb_val = SIO_SET_DTR_HIGH;
2107 else
2108 usb_val = SIO_SET_DTR_LOW;
2109
2110 if (rts)
2111 usb_val |= SIO_SET_RTS_HIGH;
2112 else
2113 usb_val |= SIO_SET_RTS_LOW;
2114
2115 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2116 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2117 NULL, 0, ftdi->usb_write_timeout) < 0)
2118 ftdi_error_return(-1, "set of rts/dtr failed");
2119
2120 return 0;
2121}
2122
2123/**
2124 Set the special event character
2125
2126 \param ftdi pointer to ftdi_context
2127 \param eventch Event character
2128 \param enable 0 to disable the event character, non-zero otherwise
2129
2130 \retval 0: all fine
2131 \retval -1: unable to set event character
2132 \retval -2: USB device unavailable
2133*/
2134int ftdi_set_event_char(struct ftdi_context *ftdi,
2135 unsigned char eventch, unsigned char enable)
2136{
2137 unsigned short usb_val;
2138
2139 if (ftdi == NULL || ftdi->usb_dev == NULL)
2140 ftdi_error_return(-2, "USB device unavailable");
2141
2142 usb_val = eventch;
2143 if (enable)
2144 usb_val |= 1 << 8;
2145
2146 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2147 ftdi_error_return(-1, "setting event character failed");
2148
2149 return 0;
2150}
2151
2152/**
2153 Set error character
2154
2155 \param ftdi pointer to ftdi_context
2156 \param errorch Error character
2157 \param enable 0 to disable the error character, non-zero otherwise
2158
2159 \retval 0: all fine
2160 \retval -1: unable to set error character
2161 \retval -2: USB device unavailable
2162*/
2163int ftdi_set_error_char(struct ftdi_context *ftdi,
2164 unsigned char errorch, unsigned char enable)
2165{
2166 unsigned short usb_val;
2167
2168 if (ftdi == NULL || ftdi->usb_dev == NULL)
2169 ftdi_error_return(-2, "USB device unavailable");
2170
2171 usb_val = errorch;
2172 if (enable)
2173 usb_val |= 1 << 8;
2174
2175 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2176 ftdi_error_return(-1, "setting error character failed");
2177
2178 return 0;
2179}
2180
2181/**
2182 Init eeprom with default values.
2183 \param ftdi pointer to ftdi_context
2184 \param manufacturer String to use as Manufacturer
2185 \param product String to use as Product description
2186 \param serial String to use as Serial number description
2187
2188 \retval 0: all fine
2189 \retval -1: No struct ftdi_context
2190 \retval -2: No struct ftdi_eeprom
2191*/
2192int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2193 char * product, char * serial)
2194{
2195 struct ftdi_eeprom *eeprom;
2196
2197 if (ftdi == NULL)
2198 ftdi_error_return(-1, "No struct ftdi_context");
2199
2200 if (ftdi->eeprom == NULL)
2201 ftdi_error_return(-2,"No struct ftdi_eeprom");
2202
2203 eeprom = ftdi->eeprom;
2204 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2205
2206 eeprom->vendor_id = 0x0403;
2207 eeprom->use_serial = USE_SERIAL_NUM;
2208 if((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2209 (ftdi->type == TYPE_R))
2210 eeprom->product_id = 0x6001;
2211 else
2212 eeprom->product_id = 0x6010;
2213 if (ftdi->type == TYPE_AM)
2214 eeprom->usb_version = 0x0101;
2215 else
2216 eeprom->usb_version = 0x0200;
2217 eeprom->max_power = 100;
2218
2219 if (eeprom->manufacturer)
2220 free (eeprom->manufacturer);
2221 eeprom->manufacturer = NULL;
2222 if (manufacturer)
2223 {
2224 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2225 if (eeprom->manufacturer)
2226 strcpy(eeprom->manufacturer, manufacturer);
2227 }
2228
2229 if (eeprom->product)
2230 free (eeprom->product);
2231 eeprom->product = NULL;
2232 {
2233 eeprom->product = malloc(strlen(product)+1);
2234 if (eeprom->product)
2235 strcpy(eeprom->product, product);
2236 }
2237
2238 if (eeprom->serial)
2239 free (eeprom->serial);
2240 eeprom->serial = NULL;
2241 if (serial)
2242 {
2243 eeprom->serial = malloc(strlen(serial)+1);
2244 if (eeprom->serial)
2245 strcpy(eeprom->serial, serial);
2246 }
2247
2248
2249 if(ftdi->type == TYPE_R)
2250 {
2251 eeprom->max_power = 90;
2252 eeprom->size = 0x80;
2253 eeprom->cbus_function[0] = CBUS_TXLED;
2254 eeprom->cbus_function[1] = CBUS_RXLED;
2255 eeprom->cbus_function[2] = CBUS_TXDEN;
2256 eeprom->cbus_function[3] = CBUS_PWREN;
2257 eeprom->cbus_function[4] = CBUS_SLEEP;
2258 }
2259 else
2260 eeprom->size = -1;
2261 return 0;
2262}
2263
2264/**
2265 Build binary buffer from ftdi_eeprom structure.
2266 Output is suitable for ftdi_write_eeprom().
2267
2268 \param ftdi pointer to ftdi_context
2269
2270 \retval >=0: size of eeprom user area in bytes
2271 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2272 \retval -2: Invalid eeprom pointer
2273 \retval -3: Invalid cbus function setting
2274 \retval -4: Chip doesn't support invert
2275 \retval -5: Chip doesn't support high current drive
2276 \retval -6: No connected EEPROM or EEPROM Type unknown
2277*/
2278int ftdi_eeprom_build(struct ftdi_context *ftdi)
2279{
2280 unsigned char i, j, eeprom_size_mask;
2281 unsigned short checksum, value;
2282 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2283 int user_area_size;
2284 struct ftdi_eeprom *eeprom;
2285 unsigned char * output;
2286
2287 if (ftdi == NULL)
2288 ftdi_error_return(-2,"No context");
2289 if (ftdi->eeprom == NULL)
2290 ftdi_error_return(-2,"No eeprom structure");
2291
2292 eeprom= ftdi->eeprom;
2293 output = eeprom->buf;
2294
2295 if(eeprom->chip == -1)
2296 ftdi_error_return(-5,"No connected EEPROM or EEPROM type unknown");
2297
2298 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2299 eeprom->size = 0x100;
2300 else
2301 eeprom->size = 0x80;
2302
2303 if (eeprom->manufacturer != NULL)
2304 manufacturer_size = strlen(eeprom->manufacturer);
2305 if (eeprom->product != NULL)
2306 product_size = strlen(eeprom->product);
2307 if (eeprom->serial != NULL)
2308 serial_size = strlen(eeprom->serial);
2309
2310 // eeprom size exceeded?
2311 user_area_size = (48 - (manufacturer_size + product_size + serial_size)) * 2;
2312 if (user_area_size < 0)
2313 ftdi_error_return(-1,"eeprom size exceeded");
2314
2315 // empty eeprom
2316 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2317
2318 // Bytes and Bits set for all Types
2319
2320 // Addr 02: Vendor ID
2321 output[0x02] = eeprom->vendor_id;
2322 output[0x03] = eeprom->vendor_id >> 8;
2323
2324 // Addr 04: Product ID
2325 output[0x04] = eeprom->product_id;
2326 output[0x05] = eeprom->product_id >> 8;
2327
2328 // Addr 06: Device release number (0400h for BM features)
2329 output[0x06] = 0x00;
2330 switch (ftdi->type) {
2331 case TYPE_AM:
2332 output[0x07] = 0x02;
2333 break;
2334 case TYPE_BM:
2335 output[0x07] = 0x04;
2336 break;
2337 case TYPE_2232C:
2338 output[0x07] = 0x05;
2339 break;
2340 case TYPE_R:
2341 output[0x07] = 0x06;
2342 break;
2343 case TYPE_2232H:
2344 output[0x07] = 0x07;
2345 break;
2346 case TYPE_4232H:
2347 output[0x07] = 0x08;
2348 break;
2349 default:
2350 output[0x07] = 0x00;
2351 }
2352
2353 // Addr 08: Config descriptor
2354 // Bit 7: always 1
2355 // Bit 6: 1 if this device is self powered, 0 if bus powered
2356 // Bit 5: 1 if this device uses remote wakeup
2357 // Bit 4-0: reserved - 0
2358 j = 0x80;
2359 if (eeprom->self_powered == 1)
2360 j |= 0x40;
2361 if (eeprom->remote_wakeup == 1)
2362 j |= 0x20;
2363 output[0x08] = j;
2364
2365 // Addr 09: Max power consumption: max power = value * 2 mA
2366 output[0x09] = eeprom->max_power>>1;
2367
2368 if(ftdi->type != TYPE_AM)
2369 {
2370 // Addr 0A: Chip configuration
2371 // Bit 7: 0 - reserved
2372 // Bit 6: 0 - reserved
2373 // Bit 5: 0 - reserved
2374 // Bit 4: 1 - Change USB version
2375 // Bit 3: 1 - Use the serial number string
2376 // Bit 2: 1 - Enable suspend pull downs for lower power
2377 // Bit 1: 1 - Out EndPoint is Isochronous
2378 // Bit 0: 1 - In EndPoint is Isochronous
2379 //
2380 j = 0;
2381 if (eeprom->in_is_isochronous == 1)
2382 j = j | 1;
2383 if (eeprom->out_is_isochronous == 1)
2384 j = j | 2;
2385 output[0x0A] = j;
2386 }
2387
2388 // Dynamic content
2389 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2390 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2391 i = 0;
2392 switch(ftdi->type)
2393 {
2394 case TYPE_2232H:
2395 case TYPE_4232H:
2396 i += 2;
2397 case TYPE_R:
2398 i += 2;
2399 case TYPE_2232C:
2400 i += 2;
2401 case TYPE_AM:
2402 case TYPE_BM:
2403 i += 0x94;
2404 }
2405 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2406 eeprom_size_mask = eeprom->size -1;
2407
2408 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2409 // Addr 0F: Length of manufacturer string
2410 // Output manufacturer
2411 output[0x0E] = i; // calculate offset
2412 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2413 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2414 for (j = 0; j < manufacturer_size; j++)
2415 {
2416 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2417 output[i & eeprom_size_mask] = 0x00, i++;
2418 }
2419 output[0x0F] = manufacturer_size*2 + 2;
2420
2421 // Addr 10: Offset of the product string + 0x80, calculated later
2422 // Addr 11: Length of product string
2423 output[0x10] = i | 0x80; // calculate offset
2424 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2425 output[i & eeprom_size_mask] = 0x03, i++;
2426 for (j = 0; j < product_size; j++)
2427 {
2428 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2429 output[i & eeprom_size_mask] = 0x00, i++;
2430 }
2431 output[0x11] = product_size*2 + 2;
2432
2433 // Addr 12: Offset of the serial string + 0x80, calculated later
2434 // Addr 13: Length of serial string
2435 output[0x12] = i | 0x80; // calculate offset
2436 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2437 output[i & eeprom_size_mask] = 0x03, i++;
2438 for (j = 0; j < serial_size; j++)
2439 {
2440 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2441 output[i & eeprom_size_mask] = 0x00, i++;
2442 }
2443 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2444 i++;
2445 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2446 i++;
2447 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2448 i++;
2449
2450 output[0x13] = serial_size*2 + 2;
2451
2452 if(ftdi->type > TYPE_AM) /*use_serial not used in AM devices*/
2453 {
2454 if (eeprom->use_serial == USE_SERIAL_NUM )
2455 output[0x0A] |= USE_SERIAL_NUM;
2456 else
2457 output[0x0A] &= ~USE_SERIAL_NUM;
2458 }
2459 /* Fixme: ftd2xx seems to append 0x02, 0x03 and 0x01 for PnP = 0 or 0x00 else */
2460 // calculate checksum
2461
2462 /* Bytes and Bits specific to (some) types
2463 Write linear, as this allows easier fixing*/
2464 switch(ftdi->type)
2465 {
2466 case TYPE_AM:
2467 break;
2468 case TYPE_BM:
2469 output[0x0C] = eeprom->usb_version & 0xff;
2470 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2471 output[0x14] = eeprom->chip;
2472 break;
2473 case TYPE_2232C:
2474
2475 output[0x00] = (eeprom->channel_a_type);
2476 if ( eeprom->channel_a_driver == DRIVER_VCP)
2477 output[0x00] |= DRIVER_VCP;
2478 else
2479 output[0x00] &= ~DRIVER_VCP;
2480
2481 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2482 output[0x00] |= HIGH_CURRENT_DRIVE;
2483 else
2484 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2485
2486 output[0x01] = (eeprom->channel_b_type);
2487 if ( eeprom->channel_b_driver == DRIVER_VCP)
2488 output[0x01] |= DRIVER_VCP;
2489 else
2490 output[0x01] &= ~DRIVER_VCP;
2491
2492 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2493 output[0x01] |= HIGH_CURRENT_DRIVE;
2494 else
2495 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2496
2497 if (eeprom->in_is_isochronous == 1)
2498 output[0x0A] |= 0x1;
2499 else
2500 output[0x0A] &= ~0x1;
2501 if (eeprom->out_is_isochronous == 1)
2502 output[0x0A] |= 0x2;
2503 else
2504 output[0x0A] &= ~0x2;
2505 if (eeprom->suspend_pull_downs == 1)
2506 output[0x0A] |= 0x4;
2507 else
2508 output[0x0A] &= ~0x4;
2509 output[0x0C] = eeprom->usb_version & 0xff;
2510 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2511 output[0x14] = eeprom->chip;
2512 break;
2513 case TYPE_R:
2514 if(eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2515 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2516 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2517
2518 if (eeprom->suspend_pull_downs == 1)
2519 output[0x0A] |= 0x4;
2520 else
2521 output[0x0A] &= ~0x4;
2522 output[0x0B] = eeprom->invert;
2523 output[0x0C] = eeprom->usb_version & 0xff;
2524 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2525
2526 if(eeprom->cbus_function[0] > CBUS_BB)
2527 output[0x14] = CBUS_TXLED;
2528 else
2529 output[0x14] = eeprom->cbus_function[0];
2530
2531 if(eeprom->cbus_function[1] > CBUS_BB)
2532 output[0x14] |= CBUS_RXLED<<4;
2533 else
2534 output[0x14] |= eeprom->cbus_function[1]<<4;
2535
2536 if(eeprom->cbus_function[2] > CBUS_BB)
2537 output[0x15] = CBUS_TXDEN;
2538 else
2539 output[0x15] = eeprom->cbus_function[2];
2540
2541 if(eeprom->cbus_function[3] > CBUS_BB)
2542 output[0x15] |= CBUS_PWREN<<4;
2543 else
2544 output[0x15] |= eeprom->cbus_function[3]<<4;
2545
2546 if(eeprom->cbus_function[4] > CBUS_CLK6)
2547 output[0x16] = CBUS_SLEEP;
2548 else
2549 output[0x16] = eeprom->cbus_function[4];
2550 break;
2551 case TYPE_2232H:
2552 output[0x00] = (eeprom->channel_a_type);
2553 if ( eeprom->channel_a_driver == DRIVER_VCP)
2554 output[0x00] |= DRIVER_VCP;
2555 else
2556 output[0x00] &= ~DRIVER_VCP;
2557
2558 output[0x01] = (eeprom->channel_b_type);
2559 if ( eeprom->channel_b_driver == DRIVER_VCP)
2560 output[0x01] |= DRIVER_VCP;
2561 else
2562 output[0x01] &= ~DRIVER_VCP;
2563 if(eeprom->suspend_dbus7 == SUSPEND_DBUS7)
2564 output[0x01] |= SUSPEND_DBUS7;
2565 else
2566 output[0x01] &= ~SUSPEND_DBUS7;
2567
2568 if (eeprom->suspend_pull_downs == 1)
2569 output[0x0A] |= 0x4;
2570 else
2571 output[0x0A] &= ~0x4;
2572
2573 if(eeprom->group0_drive > DRIVE_16MA)
2574 output[0x0c] |= DRIVE_16MA;
2575 else
2576 output[0x0c] |= eeprom->group0_drive;
2577 if (eeprom->group0_schmitt == IS_SCHMITT)
2578 output[0x0c] |= IS_SCHMITT;
2579 if (eeprom->group0_slew == SLOW_SLEW)
2580 output[0x0c] |= SLOW_SLEW;
2581
2582 if(eeprom->group1_drive > DRIVE_16MA)
2583 output[0x0c] |= DRIVE_16MA<<4;
2584 else
2585 output[0x0c] |= eeprom->group1_drive<<4;
2586 if (eeprom->group1_schmitt == IS_SCHMITT)
2587 output[0x0c] |= IS_SCHMITT<<4;
2588 if (eeprom->group1_slew == SLOW_SLEW)
2589 output[0x0c] |= SLOW_SLEW<<4;
2590
2591 if(eeprom->group2_drive > DRIVE_16MA)
2592 output[0x0d] |= DRIVE_16MA;
2593 else
2594 output[0x0d] |= eeprom->group2_drive;
2595 if (eeprom->group2_schmitt == IS_SCHMITT)
2596 output[0x0d] |= IS_SCHMITT;
2597 if (eeprom->group2_slew == SLOW_SLEW)
2598 output[0x0d] |= SLOW_SLEW;
2599
2600 if(eeprom->group3_drive > DRIVE_16MA)
2601 output[0x0d] |= DRIVE_16MA<<4;
2602 else
2603 output[0x0d] |= eeprom->group3_drive<<4;
2604 if (eeprom->group3_schmitt == IS_SCHMITT)
2605 output[0x0d] |= IS_SCHMITT<<4;
2606 if (eeprom->group3_slew == SLOW_SLEW)
2607 output[0x0d] |= SLOW_SLEW<<4;
2608
2609 output[0x18] = eeprom->chip;
2610
2611 break;
2612 case TYPE_4232H:
2613 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
2614 }
2615
2616 // calculate checksum
2617 checksum = 0xAAAA;
2618
2619 for (i = 0; i < eeprom->size/2-1; i++)
2620 {
2621 value = output[i*2];
2622 value += output[(i*2)+1] << 8;
2623
2624 checksum = value^checksum;
2625 checksum = (checksum << 1) | (checksum >> 15);
2626 }
2627
2628 output[eeprom->size-2] = checksum;
2629 output[eeprom->size-1] = checksum >> 8;
2630
2631 return user_area_size;
2632}
2633
2634/**
2635 Decode binary EEPROM image into an ftdi_eeprom structure.
2636
2637 \param ftdi pointer to ftdi_context
2638 \param verbose Decode EEPROM on stdout
2639
2640 \retval 0: all fine
2641 \retval -1: something went wrong
2642
2643 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2644 FIXME: Strings are malloc'ed here and should be freed somewhere
2645*/
2646int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2647{
2648 unsigned char i, j;
2649 unsigned short checksum, eeprom_checksum, value;
2650 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2651 int eeprom_size;
2652 struct ftdi_eeprom *eeprom;
2653 unsigned char *buf = ftdi->eeprom->buf;
2654 int release;
2655
2656 if (ftdi == NULL)
2657 ftdi_error_return(-1,"No context");
2658 if (ftdi->eeprom == NULL)
2659 ftdi_error_return(-1,"No eeprom structure");
2660
2661 eeprom = ftdi->eeprom;
2662 eeprom_size = eeprom->size;
2663
2664 // Addr 02: Vendor ID
2665 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2666
2667 // Addr 04: Product ID
2668 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2669
2670 release = buf[0x06] + (buf[0x07]<<8);
2671
2672 // Addr 08: Config descriptor
2673 // Bit 7: always 1
2674 // Bit 6: 1 if this device is self powered, 0 if bus powered
2675 // Bit 5: 1 if this device uses remote wakeup
2676 eeprom->self_powered = buf[0x08] & 0x40;
2677 eeprom->remote_wakeup = buf[0x08] & 0x20;;
2678
2679 // Addr 09: Max power consumption: max power = value * 2 mA
2680 eeprom->max_power = buf[0x09];
2681
2682 // Addr 0A: Chip configuration
2683 // Bit 7: 0 - reserved
2684 // Bit 6: 0 - reserved
2685 // Bit 5: 0 - reserved
2686 // Bit 4: 1 - Change USB version
2687 // Not seen on FT2232(D)
2688 // Bit 3: 1 - Use the serial number string
2689 // Bit 2: 1 - Enable suspend pull downs for lower power
2690 // Bit 1: 1 - Out EndPoint is Isochronous
2691 // Bit 0: 1 - In EndPoint is Isochronous
2692 //
2693 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2694 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2695 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2696 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
2697 if(buf[0x0A]&0x10)
2698 fprintf(stderr,
2699 "EEPROM byte[0x0a] Bit 4 unexpected set. If this happened with the EEPROM\n"
2700 "programmed by FTDI tools, please report to libftdi@developer.intra2net.com\n");
2701
2702
2703 // Addr 0C: USB version low byte when 0x0A
2704 // Addr 0D: USB version high byte when 0x0A
2705 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2706
2707 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2708 // Addr 0F: Length of manufacturer string
2709 manufacturer_size = buf[0x0F]/2;
2710 if(eeprom->manufacturer)
2711 free(eeprom->manufacturer);
2712 if (manufacturer_size > 0)
2713 {
2714 eeprom->manufacturer = malloc(manufacturer_size);
2715 if (eeprom->manufacturer)
2716 {
2717 // Decode manufacturer
2718 i = buf[0x0E] & (eeprom_size -1); // offset
2719 for (j=0;j<manufacturer_size-1;j++)
2720 {
2721 eeprom->manufacturer[j] = buf[2*j+i+2];
2722 }
2723 eeprom->manufacturer[j] = '\0';
2724 }
2725 }
2726 else eeprom->manufacturer = NULL;
2727
2728 // Addr 10: Offset of the product string + 0x80, calculated later
2729 // Addr 11: Length of product string
2730 if(eeprom->product)
2731 free(eeprom->product);
2732 product_size = buf[0x11]/2;
2733 if (product_size > 0)
2734 {
2735 eeprom->product = malloc(product_size);
2736 if(eeprom->product)
2737 {
2738 // Decode product name
2739 i = buf[0x10] & (eeprom_size -1); // offset
2740 for (j=0;j<product_size-1;j++)
2741 {
2742 eeprom->product[j] = buf[2*j+i+2];
2743 }
2744 eeprom->product[j] = '\0';
2745 }
2746 }
2747 else eeprom->product = NULL;
2748
2749 // Addr 12: Offset of the serial string + 0x80, calculated later
2750 // Addr 13: Length of serial string
2751 if(eeprom->serial)
2752 free(eeprom->serial);
2753 serial_size = buf[0x13]/2;
2754 if (serial_size > 0)
2755 {
2756 eeprom->serial = malloc(serial_size);
2757 if(eeprom->serial)
2758 {
2759 // Decode serial
2760 i = buf[0x12] & (eeprom_size -1); // offset
2761 for (j=0;j<serial_size-1;j++)
2762 {
2763 eeprom->serial[j] = buf[2*j+i+2];
2764 }
2765 eeprom->serial[j] = '\0';
2766 }
2767 }
2768 else eeprom->serial = NULL;
2769
2770 // verify checksum
2771 checksum = 0xAAAA;
2772
2773 for (i = 0; i < eeprom_size/2-1; i++)
2774 {
2775 value = buf[i*2];
2776 value += buf[(i*2)+1] << 8;
2777
2778 checksum = value^checksum;
2779 checksum = (checksum << 1) | (checksum >> 15);
2780 }
2781
2782 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2783
2784 if (eeprom_checksum != checksum)
2785 {
2786 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2787 ftdi_error_return(-1,"EEPROM checksum error");
2788 }
2789
2790 eeprom->channel_a_type = 0;
2791 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
2792 {
2793 eeprom->chip = -1;
2794 }
2795 else if(ftdi->type == TYPE_2232C)
2796 {
2797 eeprom->channel_a_type = buf[0x00] & 0x7;
2798 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2799 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2800 eeprom->channel_b_type = buf[0x01] & 0x7;
2801 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2802 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
2803 eeprom->chip = buf[0x14];
2804 }
2805 else if(ftdi->type == TYPE_R)
2806 {
2807 /* TYPE_R flags D2XX, not VCP as all others*/
2808 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2809 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2810 if( (buf[0x01]&0x40) != 0x40)
2811 fprintf(stderr,
2812 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2813 " If this happened with the\n"
2814 " EEPROM programmed by FTDI tools, please report "
2815 "to libftdi@developer.intra2net.com\n");
2816
2817 eeprom->chip = buf[0x16];
2818 // Addr 0B: Invert data lines
2819 // Works only on FT232R, not FT245R, but no way to distinguish
2820 eeprom->invert = buf[0x0B];
2821 // Addr 14: CBUS function: CBUS0, CBUS1
2822 // Addr 15: CBUS function: CBUS2, CBUS3
2823 // Addr 16: CBUS function: CBUS5
2824 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2825 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2826 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2827 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2828 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
2829 }
2830 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
2831 {
2832 eeprom->channel_a_type = buf[0x00] & 0x7;
2833 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2834 eeprom->channel_b_type = buf[0x01] & 0x7;
2835 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2836
2837 if(ftdi->type == TYPE_2232H)
2838 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7;
2839
2840 eeprom->chip = buf[0x18];
2841 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2842 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2843 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2844 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2845 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2846 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2847 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2848 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2849 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2850 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2851 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2852 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
2853 }
2854
2855 if(verbose)
2856 {
2857 char *channel_mode[] = {"UART","245","CPU", "unknown", "OPTO"};
2858 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
2859 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
2860 fprintf(stdout, "Release: 0x%04x\n",release);
2861
2862 if(eeprom->self_powered)
2863 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
2864 else
2865 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
2866 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
2867 if(eeprom->manufacturer)
2868 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
2869 if(eeprom->product)
2870 fprintf(stdout, "Product: %s\n",eeprom->product);
2871 if(eeprom->serial)
2872 fprintf(stdout, "Serial: %s\n",eeprom->serial);
2873 fprintf(stdout, "Checksum : %04x\n", checksum);
2874 if (ftdi->type == TYPE_R)
2875 fprintf(stdout, "Internal EEPROM\n");
2876 else if (eeprom->chip >= 0x46)
2877 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
2878 if(eeprom->suspend_dbus7)
2879 fprintf(stdout, "Suspend on DBUS7\n");
2880 if(eeprom->suspend_pull_downs)
2881 fprintf(stdout, "Pull IO pins low during suspend\n");
2882 if(eeprom->remote_wakeup)
2883 fprintf(stdout, "Enable Remote Wake Up\n");
2884 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
2885 if (ftdi->type >= TYPE_2232C)
2886 fprintf(stdout,"Channel A has Mode %s%s%s\n",
2887 channel_mode[eeprom->channel_a_type],
2888 (eeprom->channel_a_driver)?" VCP":"",
2889 (eeprom->high_current_a)?" High Current IO":"");
2890 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R))
2891 fprintf(stdout,"Channel B has Mode %s%s%s\n",
2892 channel_mode[eeprom->channel_b_type],
2893 (eeprom->channel_b_driver)?" VCP":"",
2894 (eeprom->high_current_b)?" High Current IO":"");
2895 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
2896 {
2897 fprintf(stdout,"%s has %d mA drive%s%s\n",
2898 (ftdi->type == TYPE_2232H)?"AL":"A",
2899 (eeprom->group0_drive+1) *4,
2900 (eeprom->group0_schmitt)?" Schmitt Input":"",
2901 (eeprom->group0_slew)?" Slow Slew":"");
2902 fprintf(stdout,"%s has %d mA drive%s%s\n",
2903 (ftdi->type == TYPE_2232H)?"AH":"B",
2904 (eeprom->group1_drive+1) *4,
2905 (eeprom->group1_schmitt)?" Schmitt Input":"",
2906 (eeprom->group1_slew)?" Slow Slew":"");
2907 fprintf(stdout,"%s has %d mA drive%s%s\n",
2908 (ftdi->type == TYPE_2232H)?"BL":"C",
2909 (eeprom->group2_drive+1) *4,
2910 (eeprom->group2_schmitt)?" Schmitt Input":"",
2911 (eeprom->group2_slew)?" Slow Slew":"");
2912 fprintf(stdout,"%s has %d mA drive%s%s\n",
2913 (ftdi->type == TYPE_2232H)?"BH":"D",
2914 (eeprom->group3_drive+1) *4,
2915 (eeprom->group3_schmitt)?" Schmitt Input":"",
2916 (eeprom->group3_slew)?" Slow Slew":"");
2917 }
2918 if (ftdi->type == TYPE_R)
2919 {
2920 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
2921 "SLEEP","CLK48","CLK24","CLK12","CLK6",
2922 "IOMODE","BB_WR","BB_RD"};
2923 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
2924 int i;
2925
2926 if(eeprom->invert)
2927 {
2928 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
2929 fprintf(stdout,"Inverted bits:");
2930 for (i=0; i<8; i++)
2931 if((eeprom->invert & (1<<i)) == (1<<i))
2932 fprintf(stdout," %s",r_bits[i]);
2933 fprintf(stdout,"\n");
2934 }
2935 for(i=0; i<5; i++)
2936 {
2937 if(eeprom->cbus_function[i]<CBUS_BB)
2938 fprintf(stdout,"C%d Function: %s\n", i,
2939 cbus_mux[eeprom->cbus_function[i]]);
2940 else
2941 fprintf(stdout,"C%d BB Function: %s\n", i,
2942 cbus_BB[i]);
2943 }
2944 }
2945 }
2946 return 0;
2947}
2948
2949/**
2950 Read eeprom location
2951
2952 \param ftdi pointer to ftdi_context
2953 \param eeprom_addr Address of eeprom location to be read
2954 \param eeprom_val Pointer to store read eeprom location
2955
2956 \retval 0: all fine
2957 \retval -1: read failed
2958 \retval -2: USB device unavailable
2959*/
2960int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
2961{
2962 if (ftdi == NULL || ftdi->usb_dev == NULL)
2963 ftdi_error_return(-2, "USB device unavailable");
2964
2965 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
2966 ftdi_error_return(-1, "reading eeprom failed");
2967
2968 return 0;
2969}
2970
2971/**
2972 Read eeprom
2973
2974 \param ftdi pointer to ftdi_context
2975
2976 \retval 0: all fine
2977 \retval -1: read failed
2978 \retval -2: USB device unavailable
2979*/
2980int ftdi_read_eeprom(struct ftdi_context *ftdi)
2981{
2982 int i;
2983 unsigned char *buf;
2984
2985 if (ftdi == NULL || ftdi->usb_dev == NULL)
2986 ftdi_error_return(-2, "USB device unavailable");
2987 buf = ftdi->eeprom->buf;
2988
2989 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
2990 {
2991 if (libusb_control_transfer(
2992 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
2993 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
2994 ftdi_error_return(-1, "reading eeprom failed");
2995 }
2996
2997 if (ftdi->type == TYPE_R)
2998 ftdi->eeprom->size = 0x80;
2999 /* Guesses size of eeprom by comparing halves
3000 - will not work with blank eeprom */
3001 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3002 ftdi->eeprom->size = -1;
3003 else if(memcmp(buf,&buf[0x80],0x80) == 0)
3004 ftdi->eeprom->size = 0x80;
3005 else if(memcmp(buf,&buf[0x40],0x40) == 0)
3006 ftdi->eeprom->size = 0x40;
3007 else
3008 ftdi->eeprom->size = 0x100;
3009 return 0;
3010}
3011
3012/*
3013 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3014 Function is only used internally
3015 \internal
3016*/
3017static unsigned char ftdi_read_chipid_shift(unsigned char value)
3018{
3019 return ((value & 1) << 1) |
3020 ((value & 2) << 5) |
3021 ((value & 4) >> 2) |
3022 ((value & 8) << 4) |
3023 ((value & 16) >> 1) |
3024 ((value & 32) >> 1) |
3025 ((value & 64) >> 4) |
3026 ((value & 128) >> 2);
3027}
3028
3029/**
3030 Read the FTDIChip-ID from R-type devices
3031
3032 \param ftdi pointer to ftdi_context
3033 \param chipid Pointer to store FTDIChip-ID
3034
3035 \retval 0: all fine
3036 \retval -1: read failed
3037 \retval -2: USB device unavailable
3038*/
3039int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3040{
3041 unsigned int a = 0, b = 0;
3042
3043 if (ftdi == NULL || ftdi->usb_dev == NULL)
3044 ftdi_error_return(-2, "USB device unavailable");
3045
3046 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3047 {
3048 a = a << 8 | a >> 8;
3049 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3050 {
3051 b = b << 8 | b >> 8;
3052 a = (a << 16) | (b & 0xFFFF);
3053 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3054 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3055 *chipid = a ^ 0xa5f0f7d1;
3056 return 0;
3057 }
3058 }
3059
3060 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3061}
3062
3063/**
3064 Write eeprom location
3065
3066 \param ftdi pointer to ftdi_context
3067 \param eeprom_addr Address of eeprom location to be written
3068 \param eeprom_val Value to be written
3069
3070 \retval 0: all fine
3071 \retval -1: write failed
3072 \retval -2: USB device unavailable
3073 \retval -3: Invalid access to checksum protected area below 0x80
3074 \retval -4: Device can't access unprotected area
3075 \retval -5: Reading chip type failed
3076*/
3077int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3078 unsigned short eeprom_val)
3079{
3080 int chip_type_location;
3081 unsigned short chip_type;
3082
3083 if (ftdi == NULL || ftdi->usb_dev == NULL)
3084 ftdi_error_return(-2, "USB device unavailable");
3085
3086 if(eeprom_addr <0x80)
3087 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3088
3089
3090 switch (ftdi->type)
3091 {
3092 case TYPE_BM:
3093 case TYPE_2232C:
3094 chip_type_location = 0x14;
3095 break;
3096 case TYPE_2232H:
3097 case TYPE_4232H:
3098 chip_type_location = 0x18;
3099 break;
3100 default:
3101 ftdi_error_return(-4, "Device can't access unprotected area");
3102 }
3103
3104 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3105 ftdi_error_return(-5, "Reading failed failed");
3106 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3107 if((chip_type & 0xff) != 0x66)
3108 {
3109 ftdi_error_return(-6, "EEPROM is not of 93x66");
3110 }
3111
3112 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3113 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3114 NULL, 0, ftdi->usb_write_timeout) != 0)
3115 ftdi_error_return(-1, "unable to write eeprom");
3116
3117 return 0;
3118}
3119
3120/**
3121 Write eeprom
3122
3123 \param ftdi pointer to ftdi_context
3124
3125 \retval 0: all fine
3126 \retval -1: read failed
3127 \retval -2: USB device unavailable
3128*/
3129int ftdi_write_eeprom(struct ftdi_context *ftdi)
3130{
3131 unsigned short usb_val, status;
3132 int i, ret;
3133 unsigned char *eeprom;
3134
3135 if (ftdi == NULL || ftdi->usb_dev == NULL)
3136 ftdi_error_return(-2, "USB device unavailable");
3137 eeprom = ftdi->eeprom->buf;
3138
3139 /* These commands were traced while running MProg */
3140 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3141 return ret;
3142 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3143 return ret;
3144 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3145 return ret;
3146
3147 for (i = 0; i < ftdi->eeprom->size/2; i++)
3148 {
3149 usb_val = eeprom[i*2];
3150 usb_val += eeprom[(i*2)+1] << 8;
3151 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3152 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3153 NULL, 0, ftdi->usb_write_timeout) < 0)
3154 ftdi_error_return(-1, "unable to write eeprom");
3155 }
3156
3157 return 0;
3158}
3159
3160/**
3161 Erase eeprom
3162
3163 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3164
3165 \param ftdi pointer to ftdi_context
3166
3167 \retval 0: all fine
3168 \retval -1: erase failed
3169 \retval -2: USB device unavailable
3170 \retval -3: Writing magic failed
3171 \retval -4: Read EEPROM failed
3172 \retval -5: Unexpected EEPROM value
3173*/
3174#define MAGIC 0x55aa
3175int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3176{
3177 unsigned short eeprom_value;
3178 if (ftdi == NULL || ftdi->usb_dev == NULL)
3179 ftdi_error_return(-2, "USB device unavailable");
3180
3181 if(ftdi->type == TYPE_R)
3182 {
3183 ftdi->eeprom->chip = 0;
3184 return 0;
3185 }
3186
3187 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3188 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3189 ftdi_error_return(-1, "unable to erase eeprom");
3190
3191
3192 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3193 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3194 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3195 Chip is 93x66 if magic is only read at word position 0xc0*/
3196 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3197 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3198 NULL, 0, ftdi->usb_write_timeout) != 0)
3199 ftdi_error_return(-3, "Writing magic failed");
3200 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3201 ftdi_error_return(-4, "Reading failed failed");
3202 if(eeprom_value == MAGIC)
3203 {
3204 ftdi->eeprom->chip = 0x46;
3205 }
3206 else
3207 {
3208 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3209 ftdi_error_return(-4, "Reading failed failed");
3210 if(eeprom_value == MAGIC)
3211 ftdi->eeprom->chip = 0x56;
3212 else
3213 {
3214 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3215 ftdi_error_return(-4, "Reading failed failed");
3216 if(eeprom_value == MAGIC)
3217 ftdi->eeprom->chip = 0x66;
3218 else
3219 {
3220 ftdi->eeprom->chip = -1;
3221 }
3222 }
3223 }
3224 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3225 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3226 ftdi_error_return(-1, "unable to erase eeprom");
3227 return 0;
3228}
3229
3230/**
3231 Get string representation for last error code
3232
3233 \param ftdi pointer to ftdi_context
3234
3235 \retval Pointer to error string
3236*/
3237char *ftdi_get_error_string (struct ftdi_context *ftdi)
3238{
3239 if (ftdi == NULL)
3240 return "";
3241
3242 return ftdi->error_str;
3243}
3244
3245/* @} end of doxygen libftdi group */