Improve source package generator, remove unused "patch" version level
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2008 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <usb.h>
32#include <string.h>
33#include <errno.h>
34
35#include "ftdi.h"
36
37/* stuff needed for async write */
38#ifdef LIBFTDI_LINUX_ASYNC_MODE
39 #include <sys/ioctl.h>
40 #include <sys/time.h>
41 #include <sys/select.h>
42 #include <sys/types.h>
43 #include <unistd.h>
44 #include <linux/usbdevice_fs.h>
45#endif
46
47#define ftdi_error_return(code, str) do { \
48 ftdi->error_str = str; \
49 return code; \
50 } while(0);
51
52
53/**
54 Initializes a ftdi_context.
55
56 \param ftdi pointer to ftdi_context
57
58 \retval 0: all fine
59 \retval -1: couldn't allocate read buffer
60
61 \remark This should be called before all functions
62*/
63int ftdi_init(struct ftdi_context *ftdi)
64{
65 int i;
66
67 ftdi->usb_dev = NULL;
68 ftdi->usb_read_timeout = 5000;
69 ftdi->usb_write_timeout = 5000;
70
71 ftdi->type = TYPE_BM; /* chip type */
72 ftdi->baudrate = -1;
73 ftdi->bitbang_enabled = 0;
74
75 ftdi->readbuffer = NULL;
76 ftdi->readbuffer_offset = 0;
77 ftdi->readbuffer_remaining = 0;
78 ftdi->writebuffer_chunksize = 4096;
79
80 ftdi->interface = 0;
81 ftdi->index = 0;
82 ftdi->in_ep = 0x02;
83 ftdi->out_ep = 0x81;
84 ftdi->bitbang_mode = 1; /* 1: Normal bitbang mode, 2: SPI bitbang mode */
85
86 ftdi->error_str = NULL;
87
88#ifdef LIBFTDI_LINUX_ASYNC_MODE
89 ftdi->async_usb_buffer_size=10;
90 if ((ftdi->async_usb_buffer=malloc(sizeof(struct usbdevfs_urb)*ftdi->async_usb_buffer_size)) == NULL)
91 ftdi_error_return(-1, "out of memory for async usb buffer");
92
93 /* initialize async usb buffer with unused-marker */
94 for (i=0; i < ftdi->async_usb_buffer_size; i++)
95 ((struct usbdevfs_urb*)ftdi->async_usb_buffer)[i].usercontext = FTDI_URB_USERCONTEXT_COOKIE;
96#else
97 ftdi->async_usb_buffer_size=0;
98 ftdi->async_usb_buffer = NULL;
99#endif
100
101 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
102
103 /* All fine. Now allocate the readbuffer */
104 return ftdi_read_data_set_chunksize(ftdi, 4096);
105}
106
107/**
108 Allocate and initialize a new ftdi_context
109
110 \return a pointer to a new ftdi_context, or NULL on failure
111*/
112struct ftdi_context *ftdi_new()
113{
114 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
115
116 if (ftdi == NULL) {
117 return NULL;
118 }
119
120 if (ftdi_init(ftdi) != 0) {
121 free(ftdi);
122 return NULL;
123 }
124
125 return ftdi;
126}
127
128/**
129 Open selected channels on a chip, otherwise use first channel.
130
131 \param ftdi pointer to ftdi_context
132 \param interface Interface to use for FT2232C chips.
133
134 \retval 0: all fine
135 \retval -1: unknown interface
136*/
137int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
138{
139 switch (interface) {
140 case INTERFACE_ANY:
141 case INTERFACE_A:
142 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
143 break;
144 case INTERFACE_B:
145 ftdi->interface = 1;
146 ftdi->index = INTERFACE_B;
147 ftdi->in_ep = 0x04;
148 ftdi->out_ep = 0x83;
149 break;
150 default:
151 ftdi_error_return(-1, "Unknown interface");
152 }
153 return 0;
154}
155
156/**
157 Deinitializes a ftdi_context.
158
159 \param ftdi pointer to ftdi_context
160*/
161void ftdi_deinit(struct ftdi_context *ftdi)
162{
163 if (ftdi->async_usb_buffer != NULL) {
164 free(ftdi->async_usb_buffer);
165 ftdi->async_usb_buffer = NULL;
166 }
167
168 if (ftdi->readbuffer != NULL) {
169 free(ftdi->readbuffer);
170 ftdi->readbuffer = NULL;
171 }
172}
173
174/**
175 Deinitialize and free an ftdi_context.
176
177 \param ftdi pointer to ftdi_context
178*/
179void ftdi_free(struct ftdi_context *ftdi)
180{
181 ftdi_deinit(ftdi);
182 free(ftdi);
183}
184
185/**
186 Use an already open libusb device.
187
188 \param ftdi pointer to ftdi_context
189 \param usb libusb usb_dev_handle to use
190*/
191void ftdi_set_usbdev (struct ftdi_context *ftdi, usb_dev_handle *usb)
192{
193 ftdi->usb_dev = usb;
194}
195
196
197/**
198 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
199 needs to be deallocated by ftdi_list_free() after use.
200
201 \param ftdi pointer to ftdi_context
202 \param devlist Pointer where to store list of found devices
203 \param vendor Vendor ID to search for
204 \param product Product ID to search for
205
206 \retval >0: number of devices found
207 \retval -1: usb_find_busses() failed
208 \retval -2: usb_find_devices() failed
209 \retval -3: out of memory
210*/
211int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
212{
213 struct ftdi_device_list **curdev;
214 struct usb_bus *bus;
215 struct usb_device *dev;
216 int count = 0;
217
218 usb_init();
219 if (usb_find_busses() < 0)
220 ftdi_error_return(-1, "usb_find_busses() failed");
221 if (usb_find_devices() < 0)
222 ftdi_error_return(-2, "usb_find_devices() failed");
223
224 curdev = devlist;
225 *curdev = NULL;
226 for (bus = usb_get_busses(); bus; bus = bus->next) {
227 for (dev = bus->devices; dev; dev = dev->next) {
228 if (dev->descriptor.idVendor == vendor
229 && dev->descriptor.idProduct == product)
230 {
231 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
232 if (!*curdev)
233 ftdi_error_return(-3, "out of memory");
234
235 (*curdev)->next = NULL;
236 (*curdev)->dev = dev;
237
238 curdev = &(*curdev)->next;
239 count++;
240 }
241 }
242 }
243
244 return count;
245}
246
247/**
248 Frees a usb device list.
249
250 \param devlist USB device list created by ftdi_usb_find_all()
251*/
252void ftdi_list_free(struct ftdi_device_list **devlist)
253{
254 struct ftdi_device_list *curdev, *next;
255
256 for (curdev = *devlist; curdev != NULL;) {
257 next = curdev->next;
258 free(curdev);
259 curdev = next;
260 }
261
262 *devlist = NULL;
263}
264
265/**
266 Frees a usb device list.
267
268 \param devlist USB device list created by ftdi_usb_find_all()
269*/
270void ftdi_list_free2(struct ftdi_device_list *devlist)
271{
272 ftdi_list_free(&devlist);
273}
274
275/**
276 Return device ID strings from the usb device.
277
278 The parameters manufacturer, description and serial may be NULL
279 or pointer to buffers to store the fetched strings.
280
281 \note Use this function only in combination with ftdi_usb_find_all()
282 as it closes the internal "usb_dev" after use.
283
284 \param ftdi pointer to ftdi_context
285 \param dev libusb usb_dev to use
286 \param manufacturer Store manufacturer string here if not NULL
287 \param mnf_len Buffer size of manufacturer string
288 \param description Store product description string here if not NULL
289 \param desc_len Buffer size of product description string
290 \param serial Store serial string here if not NULL
291 \param serial_len Buffer size of serial string
292
293 \retval 0: all fine
294 \retval -1: wrong arguments
295 \retval -4: unable to open device
296 \retval -7: get product manufacturer failed
297 \retval -8: get product description failed
298 \retval -9: get serial number failed
299 \retval -10: unable to close device
300*/
301int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct usb_device * dev,
302 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
303{
304 if ((ftdi==NULL) || (dev==NULL))
305 return -1;
306
307 if (!(ftdi->usb_dev = usb_open(dev)))
308 ftdi_error_return(-4, usb_strerror());
309
310 if (manufacturer != NULL) {
311 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iManufacturer, manufacturer, mnf_len) <= 0) {
312 usb_close (ftdi->usb_dev);
313 ftdi_error_return(-7, usb_strerror());
314 }
315 }
316
317 if (description != NULL) {
318 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, description, desc_len) <= 0) {
319 usb_close (ftdi->usb_dev);
320 ftdi_error_return(-8, usb_strerror());
321 }
322 }
323
324 if (serial != NULL) {
325 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, serial, serial_len) <= 0) {
326 usb_close (ftdi->usb_dev);
327 ftdi_error_return(-9, usb_strerror());
328 }
329 }
330
331 if (usb_close (ftdi->usb_dev) != 0)
332 ftdi_error_return(-10, usb_strerror());
333
334 return 0;
335}
336
337/**
338 Opens a ftdi device given by a usb_device.
339
340 \param ftdi pointer to ftdi_context
341 \param dev libusb usb_dev to use
342
343 \retval 0: all fine
344 \retval -3: unable to config device
345 \retval -4: unable to open device
346 \retval -5: unable to claim device
347 \retval -6: reset failed
348 \retval -7: set baudrate failed
349*/
350int ftdi_usb_open_dev(struct ftdi_context *ftdi, struct usb_device *dev)
351{
352 int detach_errno = 0;
353 if (!(ftdi->usb_dev = usb_open(dev)))
354 ftdi_error_return(-4, "usb_open() failed");
355
356#ifdef LIBUSB_HAS_GET_DRIVER_NP
357 // Try to detach ftdi_sio kernel module.
358 // Returns ENODATA if driver is not loaded.
359 //
360 // The return code is kept in a separate variable and only parsed
361 // if usb_set_configuration() or usb_claim_interface() fails as the
362 // detach operation might be denied and everything still works fine.
363 // Likely scenario is a static ftdi_sio kernel module.
364 if (usb_detach_kernel_driver_np(ftdi->usb_dev, ftdi->interface) != 0 && errno != ENODATA)
365 detach_errno = errno;
366#endif
367
368 // set configuration (needed especially for windows)
369 // tolerate EBUSY: one device with one configuration, but two interfaces
370 // and libftdi sessions to both interfaces (e.g. FT2232)
371 if (dev->descriptor.bNumConfigurations > 0 &&
372 usb_set_configuration(ftdi->usb_dev, dev->config[0].bConfigurationValue) &&
373 errno != EBUSY)
374 {
375 usb_close (ftdi->usb_dev);
376 if (detach_errno == EPERM) {
377 ftdi_error_return(-8, "inappropriate permissions on device!");
378 } else {
379 ftdi_error_return(-3, "unable to set usb configuration. Make sure ftdi_sio is unloaded!");
380 }
381 }
382
383 if (usb_claim_interface(ftdi->usb_dev, ftdi->interface) != 0) {
384 usb_close (ftdi->usb_dev);
385 if (detach_errno == EPERM) {
386 ftdi_error_return(-8, "inappropriate permissions on device!");
387 } else {
388 ftdi_error_return(-5, "unable to claim usb device. Make sure ftdi_sio is unloaded!");
389 }
390 }
391
392 if (ftdi_usb_reset (ftdi) != 0) {
393 usb_close (ftdi->usb_dev);
394 ftdi_error_return(-6, "ftdi_usb_reset failed");
395 }
396
397 if (ftdi_set_baudrate (ftdi, 9600) != 0) {
398 usb_close (ftdi->usb_dev);
399 ftdi_error_return(-7, "set baudrate failed");
400 }
401
402 // Try to guess chip type
403 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
404 if (dev->descriptor.bcdDevice == 0x400 || (dev->descriptor.bcdDevice == 0x200
405 && dev->descriptor.iSerialNumber == 0))
406 ftdi->type = TYPE_BM;
407 else if (dev->descriptor.bcdDevice == 0x200)
408 ftdi->type = TYPE_AM;
409 else if (dev->descriptor.bcdDevice == 0x500) {
410 ftdi->type = TYPE_2232C;
411 if (!ftdi->index)
412 ftdi->index = INTERFACE_A;
413 } else if (dev->descriptor.bcdDevice == 0x600)
414 ftdi->type = TYPE_R;
415
416 ftdi_error_return(0, "all fine");
417}
418
419/**
420 Opens the first device with a given vendor and product ids.
421
422 \param ftdi pointer to ftdi_context
423 \param vendor Vendor ID
424 \param product Product ID
425
426 \retval same as ftdi_usb_open_desc()
427*/
428int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
429{
430 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
431}
432
433/**
434 Opens the first device with a given, vendor id, product id,
435 description and serial.
436
437 \param ftdi pointer to ftdi_context
438 \param vendor Vendor ID
439 \param product Product ID
440 \param description Description to search for. Use NULL if not needed.
441 \param serial Serial to search for. Use NULL if not needed.
442
443 \retval 0: all fine
444 \retval -1: usb_find_busses() failed
445 \retval -2: usb_find_devices() failed
446 \retval -3: usb device not found
447 \retval -4: unable to open device
448 \retval -5: unable to claim device
449 \retval -6: reset failed
450 \retval -7: set baudrate failed
451 \retval -8: get product description failed
452 \retval -9: get serial number failed
453 \retval -10: unable to close device
454*/
455int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
456 const char* description, const char* serial)
457{
458 struct usb_bus *bus;
459 struct usb_device *dev;
460 char string[256];
461
462 usb_init();
463
464 if (usb_find_busses() < 0)
465 ftdi_error_return(-1, "usb_find_busses() failed");
466 if (usb_find_devices() < 0)
467 ftdi_error_return(-2, "usb_find_devices() failed");
468
469 for (bus = usb_get_busses(); bus; bus = bus->next) {
470 for (dev = bus->devices; dev; dev = dev->next) {
471 if (dev->descriptor.idVendor == vendor
472 && dev->descriptor.idProduct == product) {
473 if (!(ftdi->usb_dev = usb_open(dev)))
474 ftdi_error_return(-4, "usb_open() failed");
475
476 if (description != NULL) {
477 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, string, sizeof(string)) <= 0) {
478 usb_close (ftdi->usb_dev);
479 ftdi_error_return(-8, "unable to fetch product description");
480 }
481 if (strncmp(string, description, sizeof(string)) != 0) {
482 if (usb_close (ftdi->usb_dev) != 0)
483 ftdi_error_return(-10, "unable to close device");
484 continue;
485 }
486 }
487 if (serial != NULL) {
488 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, string, sizeof(string)) <= 0) {
489 usb_close (ftdi->usb_dev);
490 ftdi_error_return(-9, "unable to fetch serial number");
491 }
492 if (strncmp(string, serial, sizeof(string)) != 0) {
493 if (usb_close (ftdi->usb_dev) != 0)
494 ftdi_error_return(-10, "unable to close device");
495 continue;
496 }
497 }
498
499 if (usb_close (ftdi->usb_dev) != 0)
500 ftdi_error_return(-10, "unable to close device");
501
502 return ftdi_usb_open_dev(ftdi, dev);
503 }
504 }
505 }
506
507 // device not found
508 ftdi_error_return(-3, "device not found");
509}
510
511/**
512 Resets the ftdi device.
513
514 \param ftdi pointer to ftdi_context
515
516 \retval 0: all fine
517 \retval -1: FTDI reset failed
518*/
519int ftdi_usb_reset(struct ftdi_context *ftdi)
520{
521 if (usb_control_msg(ftdi->usb_dev, SIO_RESET_REQUEST_TYPE,
522 SIO_RESET_REQUEST, SIO_RESET_SIO,
523 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
524 ftdi_error_return(-1,"FTDI reset failed");
525
526 // Invalidate data in the readbuffer
527 ftdi->readbuffer_offset = 0;
528 ftdi->readbuffer_remaining = 0;
529
530 return 0;
531}
532
533/**
534 Clears the read buffer on the chip and the internal read buffer.
535
536 \param ftdi pointer to ftdi_context
537
538 \retval 0: all fine
539 \retval -1: read buffer purge failed
540*/
541int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
542{
543 if (usb_control_msg(ftdi->usb_dev, SIO_RESET_REQUEST_TYPE,
544 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
545 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
546 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
547
548 // Invalidate data in the readbuffer
549 ftdi->readbuffer_offset = 0;
550 ftdi->readbuffer_remaining = 0;
551
552 return 0;
553}
554
555/**
556 Clears the write buffer on the chip.
557
558 \param ftdi pointer to ftdi_context
559
560 \retval 0: all fine
561 \retval -1: write buffer purge failed
562*/
563int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
564{
565 if (usb_control_msg(ftdi->usb_dev, SIO_RESET_REQUEST_TYPE,
566 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
567 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
568 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
569
570 return 0;
571}
572
573/**
574 Clears the buffers on the chip and the internal read buffer.
575
576 \param ftdi pointer to ftdi_context
577
578 \retval 0: all fine
579 \retval -1: read buffer purge failed
580 \retval -2: write buffer purge failed
581*/
582int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
583{
584 int result;
585
586 result = ftdi_usb_purge_rx_buffer(ftdi);
587 if (result < 0)
588 return -1;
589
590 result = ftdi_usb_purge_tx_buffer(ftdi);
591 if (result < 0)
592 return -2;
593
594 return 0;
595}
596
597/**
598 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
599
600 \param ftdi pointer to ftdi_context
601
602 \retval 0: all fine
603 \retval -1: usb_release failed
604 \retval -2: usb_close failed
605*/
606int ftdi_usb_close(struct ftdi_context *ftdi)
607{
608 int rtn = 0;
609
610#ifdef LIBFTDI_LINUX_ASYNC_MODE
611 /* try to release some kernel resources */
612 ftdi_async_complete(ftdi,1);
613#endif
614
615 if (usb_release_interface(ftdi->usb_dev, ftdi->interface) != 0)
616 rtn = -1;
617
618 if (usb_close (ftdi->usb_dev) != 0)
619 rtn = -2;
620
621 return rtn;
622}
623
624/*
625 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
626 Function is only used internally
627 \internal
628*/
629static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
630 unsigned short *value, unsigned short *index)
631{
632 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
633 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
634 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
635 int divisor, best_divisor, best_baud, best_baud_diff;
636 unsigned long encoded_divisor;
637 int i;
638
639 if (baudrate <= 0) {
640 // Return error
641 return -1;
642 }
643
644 divisor = 24000000 / baudrate;
645
646 if (ftdi->type == TYPE_AM) {
647 // Round down to supported fraction (AM only)
648 divisor -= am_adjust_dn[divisor & 7];
649 }
650
651 // Try this divisor and the one above it (because division rounds down)
652 best_divisor = 0;
653 best_baud = 0;
654 best_baud_diff = 0;
655 for (i = 0; i < 2; i++) {
656 int try_divisor = divisor + i;
657 int baud_estimate;
658 int baud_diff;
659
660 // Round up to supported divisor value
661 if (try_divisor <= 8) {
662 // Round up to minimum supported divisor
663 try_divisor = 8;
664 } else if (ftdi->type != TYPE_AM && try_divisor < 12) {
665 // BM doesn't support divisors 9 through 11 inclusive
666 try_divisor = 12;
667 } else if (divisor < 16) {
668 // AM doesn't support divisors 9 through 15 inclusive
669 try_divisor = 16;
670 } else {
671 if (ftdi->type == TYPE_AM) {
672 // Round up to supported fraction (AM only)
673 try_divisor += am_adjust_up[try_divisor & 7];
674 if (try_divisor > 0x1FFF8) {
675 // Round down to maximum supported divisor value (for AM)
676 try_divisor = 0x1FFF8;
677 }
678 } else {
679 if (try_divisor > 0x1FFFF) {
680 // Round down to maximum supported divisor value (for BM)
681 try_divisor = 0x1FFFF;
682 }
683 }
684 }
685 // Get estimated baud rate (to nearest integer)
686 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
687 // Get absolute difference from requested baud rate
688 if (baud_estimate < baudrate) {
689 baud_diff = baudrate - baud_estimate;
690 } else {
691 baud_diff = baud_estimate - baudrate;
692 }
693 if (i == 0 || baud_diff < best_baud_diff) {
694 // Closest to requested baud rate so far
695 best_divisor = try_divisor;
696 best_baud = baud_estimate;
697 best_baud_diff = baud_diff;
698 if (baud_diff == 0) {
699 // Spot on! No point trying
700 break;
701 }
702 }
703 }
704 // Encode the best divisor value
705 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
706 // Deal with special cases for encoded value
707 if (encoded_divisor == 1) {
708 encoded_divisor = 0; // 3000000 baud
709 } else if (encoded_divisor == 0x4001) {
710 encoded_divisor = 1; // 2000000 baud (BM only)
711 }
712 // Split into "value" and "index" values
713 *value = (unsigned short)(encoded_divisor & 0xFFFF);
714 if(ftdi->type == TYPE_2232C) {
715 *index = (unsigned short)(encoded_divisor >> 8);
716 *index &= 0xFF00;
717 *index |= ftdi->index;
718 }
719 else
720 *index = (unsigned short)(encoded_divisor >> 16);
721
722 // Return the nearest baud rate
723 return best_baud;
724}
725
726/**
727 Sets the chip baud rate
728
729 \param ftdi pointer to ftdi_context
730 \param baudrate baud rate to set
731
732 \retval 0: all fine
733 \retval -1: invalid baudrate
734 \retval -2: setting baudrate failed
735*/
736int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
737{
738 unsigned short value, index;
739 int actual_baudrate;
740
741 if (ftdi->bitbang_enabled) {
742 baudrate = baudrate*4;
743 }
744
745 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
746 if (actual_baudrate <= 0)
747 ftdi_error_return (-1, "Silly baudrate <= 0.");
748
749 // Check within tolerance (about 5%)
750 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
751 || ((actual_baudrate < baudrate)
752 ? (actual_baudrate * 21 < baudrate * 20)
753 : (baudrate * 21 < actual_baudrate * 20)))
754 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
755
756 if (usb_control_msg(ftdi->usb_dev, SIO_SET_BAUDRATE_REQUEST_TYPE,
757 SIO_SET_BAUDRATE_REQUEST, value,
758 index, NULL, 0, ftdi->usb_write_timeout) != 0)
759 ftdi_error_return (-2, "Setting new baudrate failed");
760
761 ftdi->baudrate = baudrate;
762 return 0;
763}
764
765/**
766 Set (RS232) line characteristics.
767 The break type can only be set via ftdi_set_line_property2()
768 and defaults to "off".
769
770 \param ftdi pointer to ftdi_context
771 \param bits Number of bits
772 \param sbit Number of stop bits
773 \param parity Parity mode
774
775 \retval 0: all fine
776 \retval -1: Setting line property failed
777*/
778int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
779 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
780{
781 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
782}
783
784/**
785 Set (RS232) line characteristics
786
787 \param ftdi pointer to ftdi_context
788 \param bits Number of bits
789 \param sbit Number of stop bits
790 \param parity Parity mode
791 \param break_type Break type
792
793 \retval 0: all fine
794 \retval -1: Setting line property failed
795*/
796int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
797 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
798 enum ftdi_break_type break_type)
799{
800 unsigned short value = bits;
801
802 switch(parity) {
803 case NONE:
804 value |= (0x00 << 8);
805 break;
806 case ODD:
807 value |= (0x01 << 8);
808 break;
809 case EVEN:
810 value |= (0x02 << 8);
811 break;
812 case MARK:
813 value |= (0x03 << 8);
814 break;
815 case SPACE:
816 value |= (0x04 << 8);
817 break;
818 }
819
820 switch(sbit) {
821 case STOP_BIT_1:
822 value |= (0x00 << 11);
823 break;
824 case STOP_BIT_15:
825 value |= (0x01 << 11);
826 break;
827 case STOP_BIT_2:
828 value |= (0x02 << 11);
829 break;
830 }
831
832 switch(break_type) {
833 case BREAK_OFF:
834 value |= (0x00 << 14);
835 break;
836 case BREAK_ON:
837 value |= (0x01 << 14);
838 break;
839 }
840
841 if (usb_control_msg(ftdi->usb_dev, SIO_SET_DATA_REQUEST_TYPE,
842 SIO_SET_DATA_REQUEST, value,
843 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
844 ftdi_error_return (-1, "Setting new line property failed");
845
846 return 0;
847}
848
849/**
850 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
851
852 \param ftdi pointer to ftdi_context
853 \param buf Buffer with the data
854 \param size Size of the buffer
855
856 \retval <0: error code from usb_bulk_write()
857 \retval >0: number of bytes written
858*/
859int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
860{
861 int ret;
862 int offset = 0;
863 int total_written = 0;
864
865 while (offset < size) {
866 int write_size = ftdi->writebuffer_chunksize;
867
868 if (offset+write_size > size)
869 write_size = size-offset;
870
871 ret = usb_bulk_write(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, ftdi->usb_write_timeout);
872 if (ret < 0)
873 ftdi_error_return(ret, "usb bulk write failed");
874
875 total_written += ret;
876 offset += write_size;
877 }
878
879 return total_written;
880}
881
882#ifdef LIBFTDI_LINUX_ASYNC_MODE
883/* this is strongly dependent on libusb using the same struct layout. If libusb
884 changes in some later version this may break horribly (this is for libusb 0.1.12) */
885struct usb_dev_handle {
886 int fd;
887 // some other stuff coming here we don't need
888};
889
890/**
891 Check for pending async urbs
892 \internal
893*/
894static int _usb_get_async_urbs_pending(struct ftdi_context *ftdi)
895{
896 struct usbdevfs_urb *urb;
897 int pending=0;
898 int i;
899
900 for (i=0; i < ftdi->async_usb_buffer_size; i++) {
901 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
902 if (urb->usercontext != FTDI_URB_USERCONTEXT_COOKIE)
903 pending++;
904 }
905
906 return pending;
907}
908
909/**
910 Wait until one or more async URBs are completed by the kernel and mark their
911 positions in the async-buffer as unused
912
913 \param ftdi pointer to ftdi_context
914 \param wait_for_more if != 0 wait for more than one write to complete
915 \param timeout_msec max milliseconds to wait
916
917 \internal
918*/
919static void _usb_async_cleanup(struct ftdi_context *ftdi, int wait_for_more, int timeout_msec)
920{
921 struct timeval tv;
922 struct usbdevfs_urb *urb=NULL;
923 int ret;
924 fd_set writefds;
925 int keep_going=0;
926
927 FD_ZERO(&writefds);
928 FD_SET(ftdi->usb_dev->fd, &writefds);
929
930 /* init timeout only once, select writes time left after call */
931 tv.tv_sec = timeout_msec / 1000;
932 tv.tv_usec = (timeout_msec % 1000) * 1000;
933
934 do {
935 while (_usb_get_async_urbs_pending(ftdi)
936 && (ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_REAPURBNDELAY, &urb)) == -1
937 && errno == EAGAIN)
938 {
939 if (keep_going && !wait_for_more) {
940 /* don't wait if repeating only for keep_going */
941 keep_going=0;
942 break;
943 }
944
945 /* wait for timeout msec or something written ready */
946 select(ftdi->usb_dev->fd+1, NULL, &writefds, NULL, &tv);
947 }
948
949 if (ret == 0 && urb != NULL) {
950 /* got a free urb, mark it */
951 urb->usercontext = FTDI_URB_USERCONTEXT_COOKIE;
952
953 /* try to get more urbs that are ready now, but don't wait anymore */
954 urb=NULL;
955 keep_going=1;
956 } else {
957 /* no more urbs waiting */
958 keep_going=0;
959 }
960 } while (keep_going);
961}
962
963/**
964 Wait until one or more async URBs are completed by the kernel and mark their
965 positions in the async-buffer as unused.
966
967 \param ftdi pointer to ftdi_context
968 \param wait_for_more if != 0 wait for more than one write to complete (until write timeout)
969*/
970void ftdi_async_complete(struct ftdi_context *ftdi, int wait_for_more)
971{
972 _usb_async_cleanup(ftdi,wait_for_more,ftdi->usb_write_timeout);
973}
974
975/**
976 Stupid libusb does not offer async writes nor does it allow
977 access to its fd - so we need some hacks here.
978 \internal
979*/
980static int _usb_bulk_write_async(struct ftdi_context *ftdi, int ep, char *bytes, int size)
981{
982 struct usbdevfs_urb *urb;
983 int bytesdone = 0, requested;
984 int ret, i;
985 int cleanup_count;
986
987 do {
988 /* find a free urb buffer we can use */
989 urb=NULL;
990 for (cleanup_count=0; urb==NULL && cleanup_count <= 1; cleanup_count++)
991 {
992 if (i==ftdi->async_usb_buffer_size) {
993 /* wait until some buffers are free */
994 _usb_async_cleanup(ftdi,0,ftdi->usb_write_timeout);
995 }
996
997 for (i=0; i < ftdi->async_usb_buffer_size; i++) {
998 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
999 if (urb->usercontext == FTDI_URB_USERCONTEXT_COOKIE)
1000 break; /* found a free urb position */
1001 urb=NULL;
1002 }
1003 }
1004
1005 /* no free urb position found */
1006 if (urb==NULL)
1007 return -1;
1008
1009 requested = size - bytesdone;
1010 if (requested > 4096)
1011 requested = 4096;
1012
1013 memset(urb,0,sizeof(urb));
1014
1015 urb->type = USBDEVFS_URB_TYPE_BULK;
1016 urb->endpoint = ep;
1017 urb->flags = 0;
1018 urb->buffer = bytes + bytesdone;
1019 urb->buffer_length = requested;
1020 urb->signr = 0;
1021 urb->actual_length = 0;
1022 urb->number_of_packets = 0;
1023 urb->usercontext = 0;
1024
1025 do {
1026 ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_SUBMITURB, urb);
1027 } while (ret < 0 && errno == EINTR);
1028 if (ret < 0)
1029 return ret; /* the caller can read errno to get more info */
1030
1031 bytesdone += requested;
1032 } while (bytesdone < size);
1033 return bytesdone;
1034}
1035
1036/**
1037 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip.
1038 Does not wait for completion of the transfer nor does it make sure that
1039 the transfer was successful.
1040
1041 This function could be extended to use signals and callbacks to inform the
1042 caller of completion or error - but this is not done yet, volunteers welcome.
1043
1044 Works around libusb and directly accesses functions only available on Linux.
1045 Only available if compiled with --with-async-mode.
1046
1047 \param ftdi pointer to ftdi_context
1048 \param buf Buffer with the data
1049 \param size Size of the buffer
1050
1051 \retval <0: error code from usb_bulk_write()
1052 \retval >0: number of bytes written
1053*/
1054int ftdi_write_data_async(struct ftdi_context *ftdi, unsigned char *buf, int size)
1055{
1056 int ret;
1057 int offset = 0;
1058 int total_written = 0;
1059
1060 while (offset < size) {
1061 int write_size = ftdi->writebuffer_chunksize;
1062
1063 if (offset+write_size > size)
1064 write_size = size-offset;
1065
1066 ret = _usb_bulk_write_async(ftdi, ftdi->in_ep, buf+offset, write_size);
1067 if (ret < 0)
1068 ftdi_error_return(ret, "usb bulk write async failed");
1069
1070 total_written += ret;
1071 offset += write_size;
1072 }
1073
1074 return total_written;
1075}
1076#endif // LIBFTDI_LINUX_ASYNC_MODE
1077
1078/**
1079 Configure write buffer chunk size.
1080 Default is 4096.
1081
1082 \param ftdi pointer to ftdi_context
1083 \param chunksize Chunk size
1084
1085 \retval 0: all fine
1086*/
1087int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1088{
1089 ftdi->writebuffer_chunksize = chunksize;
1090 return 0;
1091}
1092
1093/**
1094 Get write buffer chunk size.
1095
1096 \param ftdi pointer to ftdi_context
1097 \param chunksize Pointer to store chunk size in
1098
1099 \retval 0: all fine
1100*/
1101int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1102{
1103 *chunksize = ftdi->writebuffer_chunksize;
1104 return 0;
1105}
1106
1107/**
1108 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1109
1110 Automatically strips the two modem status bytes transfered during every read.
1111
1112 \param ftdi pointer to ftdi_context
1113 \param buf Buffer to store data in
1114 \param size Size of the buffer
1115
1116 \retval <0: error code from usb_bulk_read()
1117 \retval 0: no data was available
1118 \retval >0: number of bytes read
1119
1120 \remark This function is not useful in bitbang mode.
1121 Use ftdi_read_pins() to get the current state of the pins.
1122*/
1123int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1124{
1125 int offset = 0, ret = 1, i, num_of_chunks, chunk_remains;
1126
1127 // everything we want is still in the readbuffer?
1128 if (size <= ftdi->readbuffer_remaining) {
1129 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1130
1131 // Fix offsets
1132 ftdi->readbuffer_remaining -= size;
1133 ftdi->readbuffer_offset += size;
1134
1135 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1136
1137 return size;
1138 }
1139 // something still in the readbuffer, but not enough to satisfy 'size'?
1140 if (ftdi->readbuffer_remaining != 0) {
1141 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1142
1143 // Fix offset
1144 offset += ftdi->readbuffer_remaining;
1145 }
1146 // do the actual USB read
1147 while (offset < size && ret > 0) {
1148 ftdi->readbuffer_remaining = 0;
1149 ftdi->readbuffer_offset = 0;
1150 /* returns how much received */
1151 ret = usb_bulk_read (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi->usb_read_timeout);
1152 if (ret < 0)
1153 ftdi_error_return(ret, "usb bulk read failed");
1154
1155 if (ret > 2) {
1156 // skip FTDI status bytes.
1157 // Maybe stored in the future to enable modem use
1158 num_of_chunks = ret / 64;
1159 chunk_remains = ret % 64;
1160 //printf("ret = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", ret, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1161
1162 ftdi->readbuffer_offset += 2;
1163 ret -= 2;
1164
1165 if (ret > 62) {
1166 for (i = 1; i < num_of_chunks; i++)
1167 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
1168 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
1169 62);
1170 if (chunk_remains > 2) {
1171 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
1172 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
1173 chunk_remains-2);
1174 ret -= 2*num_of_chunks;
1175 } else
1176 ret -= 2*(num_of_chunks-1)+chunk_remains;
1177 }
1178 } else if (ret <= 2) {
1179 // no more data to read?
1180 return offset;
1181 }
1182 if (ret > 0) {
1183 // data still fits in buf?
1184 if (offset+ret <= size) {
1185 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, ret);
1186 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1187 offset += ret;
1188
1189 /* Did we read exactly the right amount of bytes? */
1190 if (offset == size)
1191 //printf("read_data exact rem %d offset %d\n",
1192 //ftdi->readbuffer_remaining, offset);
1193 return offset;
1194 } else {
1195 // only copy part of the data or size <= readbuffer_chunksize
1196 int part_size = size-offset;
1197 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1198
1199 ftdi->readbuffer_offset += part_size;
1200 ftdi->readbuffer_remaining = ret-part_size;
1201 offset += part_size;
1202
1203 /* printf("Returning part: %d - size: %d - offset: %d - ret: %d - remaining: %d\n",
1204 part_size, size, offset, ret, ftdi->readbuffer_remaining); */
1205
1206 return offset;
1207 }
1208 }
1209 }
1210 // never reached
1211 return -127;
1212}
1213
1214/**
1215 Configure read buffer chunk size.
1216 Default is 4096.
1217
1218 Automatically reallocates the buffer.
1219
1220 \param ftdi pointer to ftdi_context
1221 \param chunksize Chunk size
1222
1223 \retval 0: all fine
1224*/
1225int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1226{
1227 unsigned char *new_buf;
1228
1229 // Invalidate all remaining data
1230 ftdi->readbuffer_offset = 0;
1231 ftdi->readbuffer_remaining = 0;
1232
1233 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1234 ftdi_error_return(-1, "out of memory for readbuffer");
1235
1236 ftdi->readbuffer = new_buf;
1237 ftdi->readbuffer_chunksize = chunksize;
1238
1239 return 0;
1240}
1241
1242/**
1243 Get read buffer chunk size.
1244
1245 \param ftdi pointer to ftdi_context
1246 \param chunksize Pointer to store chunk size in
1247
1248 \retval 0: all fine
1249*/
1250int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1251{
1252 *chunksize = ftdi->readbuffer_chunksize;
1253 return 0;
1254}
1255
1256
1257/**
1258 Enable bitbang mode.
1259
1260 For advanced bitbang modes of the FT2232C chip use ftdi_set_bitmode().
1261
1262 \param ftdi pointer to ftdi_context
1263 \param bitmask Bitmask to configure lines.
1264 HIGH/ON value configures a line as output.
1265
1266 \retval 0: all fine
1267 \retval -1: can't enable bitbang mode
1268*/
1269int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1270{
1271 unsigned short usb_val;
1272
1273 usb_val = bitmask; // low byte: bitmask
1274 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1275 usb_val |= (ftdi->bitbang_mode << 8);
1276
1277 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1278 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1279
1280 ftdi->bitbang_enabled = 1;
1281 return 0;
1282}
1283
1284/**
1285 Disable bitbang mode.
1286
1287 \param ftdi pointer to ftdi_context
1288
1289 \retval 0: all fine
1290 \retval -1: can't disable bitbang mode
1291*/
1292int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1293{
1294 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1295 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1296
1297 ftdi->bitbang_enabled = 0;
1298 return 0;
1299}
1300
1301/**
1302 Enable advanced bitbang mode for FT2232C chips.
1303
1304 \param ftdi pointer to ftdi_context
1305 \param bitmask Bitmask to configure lines.
1306 HIGH/ON value configures a line as output.
1307 \param mode Bitbang mode: 1 for normal mode, 2 for SPI mode
1308
1309 \retval 0: all fine
1310 \retval -1: can't enable bitbang mode
1311*/
1312int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1313{
1314 unsigned short usb_val;
1315
1316 usb_val = bitmask; // low byte: bitmask
1317 usb_val |= (mode << 8);
1318 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1319 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1320
1321 ftdi->bitbang_mode = mode;
1322 ftdi->bitbang_enabled = (mode == BITMODE_BITBANG || mode == BITMODE_SYNCBB)?1:0;
1323 return 0;
1324}
1325
1326/**
1327 Directly read pin state. Useful for bitbang mode.
1328
1329 \param ftdi pointer to ftdi_context
1330 \param pins Pointer to store pins into
1331
1332 \retval 0: all fine
1333 \retval -1: read pins failed
1334*/
1335int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1336{
1337 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0C, 0, ftdi->index, (char *)pins, 1, ftdi->usb_read_timeout) != 1)
1338 ftdi_error_return(-1, "read pins failed");
1339
1340 return 0;
1341}
1342
1343/**
1344 Set latency timer
1345
1346 The FTDI chip keeps data in the internal buffer for a specific
1347 amount of time if the buffer is not full yet to decrease
1348 load on the usb bus.
1349
1350 \param ftdi pointer to ftdi_context
1351 \param latency Value between 1 and 255
1352
1353 \retval 0: all fine
1354 \retval -1: latency out of range
1355 \retval -2: unable to set latency timer
1356*/
1357int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1358{
1359 unsigned short usb_val;
1360
1361 if (latency < 1)
1362 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1363
1364 usb_val = latency;
1365 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x09, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1366 ftdi_error_return(-2, "unable to set latency timer");
1367
1368 return 0;
1369}
1370
1371/**
1372 Get latency timer
1373
1374 \param ftdi pointer to ftdi_context
1375 \param latency Pointer to store latency value in
1376
1377 \retval 0: all fine
1378 \retval -1: unable to get latency timer
1379*/
1380int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1381{
1382 unsigned short usb_val;
1383 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0A, 0, ftdi->index, (char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1384 ftdi_error_return(-1, "reading latency timer failed");
1385
1386 *latency = (unsigned char)usb_val;
1387 return 0;
1388}
1389
1390/**
1391 Poll modem status information
1392
1393 This function allows the retrieve the two status bytes of the device.
1394 The device sends these bytes also as a header for each read access
1395 where they are discarded by ftdi_read_data(). The chip generates
1396 the two stripped status bytes in the absence of data every 40 ms.
1397
1398 Layout of the first byte:
1399 - B0..B3 - must be 0
1400 - B4 Clear to send (CTS)
1401 0 = inactive
1402 1 = active
1403 - B5 Data set ready (DTS)
1404 0 = inactive
1405 1 = active
1406 - B6 Ring indicator (RI)
1407 0 = inactive
1408 1 = active
1409 - B7 Receive line signal detect (RLSD)
1410 0 = inactive
1411 1 = active
1412
1413 Layout of the second byte:
1414 - B0 Data ready (DR)
1415 - B1 Overrun error (OE)
1416 - B2 Parity error (PE)
1417 - B3 Framing error (FE)
1418 - B4 Break interrupt (BI)
1419 - B5 Transmitter holding register (THRE)
1420 - B6 Transmitter empty (TEMT)
1421 - B7 Error in RCVR FIFO
1422
1423 \param ftdi pointer to ftdi_context
1424 \param status Pointer to store status information in. Must be two bytes.
1425
1426 \retval 0: all fine
1427 \retval -1: unable to retrieve status information
1428*/
1429int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1430{
1431 char usb_val[2];
1432
1433 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x05, 0, ftdi->index, usb_val, 2, ftdi->usb_read_timeout) != 2)
1434 ftdi_error_return(-1, "getting modem status failed");
1435
1436 *status = (usb_val[1] << 8) | usb_val[0];
1437
1438 return 0;
1439}
1440
1441/**
1442 Set flowcontrol for ftdi chip
1443
1444 \param ftdi pointer to ftdi_context
1445 \param flowctrl flow control to use. should be
1446 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
1447
1448 \retval 0: all fine
1449 \retval -1: set flow control failed
1450*/
1451int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1452{
1453 if (usb_control_msg(ftdi->usb_dev, SIO_SET_FLOW_CTRL_REQUEST_TYPE,
1454 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
1455 NULL, 0, ftdi->usb_write_timeout) != 0)
1456 ftdi_error_return(-1, "set flow control failed");
1457
1458 return 0;
1459}
1460
1461/**
1462 Set dtr line
1463
1464 \param ftdi pointer to ftdi_context
1465 \param state state to set line to (1 or 0)
1466
1467 \retval 0: all fine
1468 \retval -1: set dtr failed
1469*/
1470int ftdi_setdtr(struct ftdi_context *ftdi, int state)
1471{
1472 unsigned short usb_val;
1473
1474 if (state)
1475 usb_val = SIO_SET_DTR_HIGH;
1476 else
1477 usb_val = SIO_SET_DTR_LOW;
1478
1479 if (usb_control_msg(ftdi->usb_dev, SIO_SET_MODEM_CTRL_REQUEST_TYPE,
1480 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1481 NULL, 0, ftdi->usb_write_timeout) != 0)
1482 ftdi_error_return(-1, "set dtr failed");
1483
1484 return 0;
1485}
1486
1487/**
1488 Set rts line
1489
1490 \param ftdi pointer to ftdi_context
1491 \param state state to set line to (1 or 0)
1492
1493 \retval 0: all fine
1494 \retval -1 set rts failed
1495*/
1496int ftdi_setrts(struct ftdi_context *ftdi, int state)
1497{
1498 unsigned short usb_val;
1499
1500 if (state)
1501 usb_val = SIO_SET_RTS_HIGH;
1502 else
1503 usb_val = SIO_SET_RTS_LOW;
1504
1505 if (usb_control_msg(ftdi->usb_dev, SIO_SET_MODEM_CTRL_REQUEST_TYPE,
1506 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1507 NULL, 0, ftdi->usb_write_timeout) != 0)
1508 ftdi_error_return(-1, "set of rts failed");
1509
1510 return 0;
1511}
1512
1513/**
1514 Set dtr and rts line in one pass
1515
1516 \param ftdi pointer to ftdi_context
1517 \param dtr DTR state to set line to (1 or 0)
1518 \param rts RTS state to set line to (1 or 0)
1519
1520 \retval 0: all fine
1521 \retval -1 set dtr/rts failed
1522 */
1523int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
1524{
1525 unsigned short usb_val;
1526
1527 if (dtr)
1528 usb_val = SIO_SET_DTR_HIGH;
1529 else
1530 usb_val = SIO_SET_DTR_LOW;
1531
1532 if (rts)
1533 usb_val |= SIO_SET_RTS_HIGH;
1534 else
1535 usb_val |= SIO_SET_RTS_LOW;
1536
1537 if (usb_control_msg(ftdi->usb_dev, SIO_SET_MODEM_CTRL_REQUEST_TYPE,
1538 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1539 NULL, 0, ftdi->usb_write_timeout) != 0)
1540 ftdi_error_return(-1, "set of rts/dtr failed");
1541
1542 return 0;
1543}
1544
1545/**
1546 Set the special event character
1547
1548 \param ftdi pointer to ftdi_context
1549 \param eventch Event character
1550 \param enable 0 to disable the event character, non-zero otherwise
1551
1552 \retval 0: all fine
1553 \retval -1: unable to set event character
1554*/
1555int ftdi_set_event_char(struct ftdi_context *ftdi,
1556 unsigned char eventch, unsigned char enable)
1557{
1558 unsigned short usb_val;
1559
1560 usb_val = eventch;
1561 if (enable)
1562 usb_val |= 1 << 8;
1563
1564 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x06, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1565 ftdi_error_return(-1, "setting event character failed");
1566
1567 return 0;
1568}
1569
1570/**
1571 Set error character
1572
1573 \param ftdi pointer to ftdi_context
1574 \param errorch Error character
1575 \param enable 0 to disable the error character, non-zero otherwise
1576
1577 \retval 0: all fine
1578 \retval -1: unable to set error character
1579*/
1580int ftdi_set_error_char(struct ftdi_context *ftdi,
1581 unsigned char errorch, unsigned char enable)
1582{
1583 unsigned short usb_val;
1584
1585 usb_val = errorch;
1586 if (enable)
1587 usb_val |= 1 << 8;
1588
1589 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x07, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1590 ftdi_error_return(-1, "setting error character failed");
1591
1592 return 0;
1593}
1594
1595/**
1596 Set the eeprom size
1597
1598 \param ftdi pointer to ftdi_context
1599 \param eeprom Pointer to ftdi_eeprom
1600 \param size
1601
1602*/
1603void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
1604{
1605 ftdi->eeprom_size=size;
1606 eeprom->size=size;
1607}
1608
1609/**
1610 Init eeprom with default values.
1611
1612 \param eeprom Pointer to ftdi_eeprom
1613*/
1614void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
1615{
1616 eeprom->vendor_id = 0x0403;
1617 eeprom->product_id = 0x6001;
1618
1619 eeprom->self_powered = 1;
1620 eeprom->remote_wakeup = 1;
1621 eeprom->BM_type_chip = 1;
1622
1623 eeprom->in_is_isochronous = 0;
1624 eeprom->out_is_isochronous = 0;
1625 eeprom->suspend_pull_downs = 0;
1626
1627 eeprom->use_serial = 0;
1628 eeprom->change_usb_version = 0;
1629 eeprom->usb_version = 0x0200;
1630 eeprom->max_power = 0;
1631
1632 eeprom->manufacturer = NULL;
1633 eeprom->product = NULL;
1634 eeprom->serial = NULL;
1635
1636 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
1637}
1638
1639/**
1640 Build binary output from ftdi_eeprom structure.
1641 Output is suitable for ftdi_write_eeprom().
1642
1643 \param eeprom Pointer to ftdi_eeprom
1644 \param output Buffer of 128 bytes to store eeprom image to
1645
1646 \retval >0: used eeprom size
1647 \retval -1: eeprom size (128 bytes) exceeded by custom strings
1648*/
1649int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
1650{
1651 unsigned char i, j;
1652 unsigned short checksum, value;
1653 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
1654 int size_check;
1655
1656 if (eeprom->manufacturer != NULL)
1657 manufacturer_size = strlen(eeprom->manufacturer);
1658 if (eeprom->product != NULL)
1659 product_size = strlen(eeprom->product);
1660 if (eeprom->serial != NULL)
1661 serial_size = strlen(eeprom->serial);
1662
1663 size_check = eeprom->size;
1664 size_check -= 28; // 28 are always in use (fixed)
1665
1666 // Top half of a 256byte eeprom is used just for strings and checksum
1667 // it seems that the FTDI chip will not read these strings from the lower half
1668 // Each string starts with two bytes; offset and type (0x03 for string)
1669 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
1670 if(eeprom->size>=256)size_check = 120;
1671 size_check -= manufacturer_size*2;
1672 size_check -= product_size*2;
1673 size_check -= serial_size*2;
1674
1675 // eeprom size exceeded?
1676 if (size_check < 0)
1677 return (-1);
1678
1679 // empty eeprom
1680 memset (output, 0, eeprom->size);
1681
1682 // Addr 00: Stay 00 00
1683 // Addr 02: Vendor ID
1684 output[0x02] = eeprom->vendor_id;
1685 output[0x03] = eeprom->vendor_id >> 8;
1686
1687 // Addr 04: Product ID
1688 output[0x04] = eeprom->product_id;
1689 output[0x05] = eeprom->product_id >> 8;
1690
1691 // Addr 06: Device release number (0400h for BM features)
1692 output[0x06] = 0x00;
1693
1694 if (eeprom->BM_type_chip == 1)
1695 output[0x07] = 0x04;
1696 else
1697 output[0x07] = 0x02;
1698
1699 // Addr 08: Config descriptor
1700 // Bit 7: always 1
1701 // Bit 6: 1 if this device is self powered, 0 if bus powered
1702 // Bit 5: 1 if this device uses remote wakeup
1703 // Bit 4: 1 if this device is battery powered
1704 j = 0x80;
1705 if (eeprom->self_powered == 1)
1706 j |= 0x40;
1707 if (eeprom->remote_wakeup == 1)
1708 j |= 0x20;
1709 output[0x08] = j;
1710
1711 // Addr 09: Max power consumption: max power = value * 2 mA
1712 output[0x09] = eeprom->max_power;
1713
1714 // Addr 0A: Chip configuration
1715 // Bit 7: 0 - reserved
1716 // Bit 6: 0 - reserved
1717 // Bit 5: 0 - reserved
1718 // Bit 4: 1 - Change USB version
1719 // Bit 3: 1 - Use the serial number string
1720 // Bit 2: 1 - Enable suspend pull downs for lower power
1721 // Bit 1: 1 - Out EndPoint is Isochronous
1722 // Bit 0: 1 - In EndPoint is Isochronous
1723 //
1724 j = 0;
1725 if (eeprom->in_is_isochronous == 1)
1726 j = j | 1;
1727 if (eeprom->out_is_isochronous == 1)
1728 j = j | 2;
1729 if (eeprom->suspend_pull_downs == 1)
1730 j = j | 4;
1731 if (eeprom->use_serial == 1)
1732 j = j | 8;
1733 if (eeprom->change_usb_version == 1)
1734 j = j | 16;
1735 output[0x0A] = j;
1736
1737 // Addr 0B: reserved
1738 output[0x0B] = 0x00;
1739
1740 // Addr 0C: USB version low byte when 0x0A bit 4 is set
1741 // Addr 0D: USB version high byte when 0x0A bit 4 is set
1742 if (eeprom->change_usb_version == 1) {
1743 output[0x0C] = eeprom->usb_version;
1744 output[0x0D] = eeprom->usb_version >> 8;
1745 }
1746
1747
1748 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
1749 // Addr 0F: Length of manufacturer string
1750 output[0x0F] = manufacturer_size*2 + 2;
1751
1752 // Addr 10: Offset of the product string + 0x80, calculated later
1753 // Addr 11: Length of product string
1754 output[0x11] = product_size*2 + 2;
1755
1756 // Addr 12: Offset of the serial string + 0x80, calculated later
1757 // Addr 13: Length of serial string
1758 output[0x13] = serial_size*2 + 2;
1759
1760 // Dynamic content
1761 i=0x14;
1762 if(eeprom->size>=256) i = 0x80;
1763
1764
1765 // Output manufacturer
1766 output[0x0E] = i | 0x80; // calculate offset
1767 output[i++] = manufacturer_size*2 + 2;
1768 output[i++] = 0x03; // type: string
1769 for (j = 0; j < manufacturer_size; j++) {
1770 output[i] = eeprom->manufacturer[j], i++;
1771 output[i] = 0x00, i++;
1772 }
1773
1774 // Output product name
1775 output[0x10] = i | 0x80; // calculate offset
1776 output[i] = product_size*2 + 2, i++;
1777 output[i] = 0x03, i++;
1778 for (j = 0; j < product_size; j++) {
1779 output[i] = eeprom->product[j], i++;
1780 output[i] = 0x00, i++;
1781 }
1782
1783 // Output serial
1784 output[0x12] = i | 0x80; // calculate offset
1785 output[i] = serial_size*2 + 2, i++;
1786 output[i] = 0x03, i++;
1787 for (j = 0; j < serial_size; j++) {
1788 output[i] = eeprom->serial[j], i++;
1789 output[i] = 0x00, i++;
1790 }
1791
1792 // calculate checksum
1793 checksum = 0xAAAA;
1794
1795 for (i = 0; i < eeprom->size/2-1; i++) {
1796 value = output[i*2];
1797 value += output[(i*2)+1] << 8;
1798
1799 checksum = value^checksum;
1800 checksum = (checksum << 1) | (checksum >> 15);
1801 }
1802
1803 output[eeprom->size-2] = checksum;
1804 output[eeprom->size-1] = checksum >> 8;
1805
1806 return size_check;
1807}
1808
1809/**
1810 Read eeprom
1811
1812 \param ftdi pointer to ftdi_context
1813 \param eeprom Pointer to store eeprom into
1814
1815 \retval 0: all fine
1816 \retval -1: read failed
1817*/
1818int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
1819{
1820 int i;
1821
1822 for (i = 0; i < ftdi->eeprom_size/2; i++) {
1823 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
1824 ftdi_error_return(-1, "reading eeprom failed");
1825 }
1826
1827 return 0;
1828}
1829
1830/*
1831 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
1832 Function is only used internally
1833 \internal
1834*/
1835static unsigned char ftdi_read_chipid_shift(unsigned char value)
1836{
1837 return ((value & 1) << 1) |
1838 ((value & 2) << 5) |
1839 ((value & 4) >> 2) |
1840 ((value & 8) << 4) |
1841 ((value & 16) >> 1) |
1842 ((value & 32) >> 1) |
1843 ((value & 64) >> 4) |
1844 ((value & 128) >> 2);
1845}
1846
1847/**
1848 Read the FTDIChip-ID from R-type devices
1849
1850 \param ftdi pointer to ftdi_context
1851 \param chipid Pointer to store FTDIChip-ID
1852
1853 \retval 0: all fine
1854 \retval -1: read failed
1855*/
1856int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
1857{
1858 unsigned int a = 0, b = 0;
1859
1860 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, 0x43, (char *)&a, 2, ftdi->usb_read_timeout) == 2)
1861 {
1862 a = a << 8 | a >> 8;
1863 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, 0x44, (char *)&b, 2, ftdi->usb_read_timeout) == 2)
1864 {
1865 b = b << 8 | b >> 8;
1866 a = (a << 16) | b;
1867 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
1868 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
1869 *chipid = a ^ 0xa5f0f7d1;
1870 return 0;
1871 }
1872 }
1873
1874 ftdi_error_return(-1, "read of FTDIChip-ID failed");
1875}
1876
1877/**
1878 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
1879 Call this function then do a write then call again to see if size changes, if so write again.
1880
1881 \param ftdi pointer to ftdi_context
1882 \param eeprom Pointer to store eeprom into
1883 \param maxsize the size of the buffer to read into
1884
1885 \retval size of eeprom
1886*/
1887int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
1888{
1889 int i=0,j,minsize=32;
1890 int size=minsize;
1891
1892 do{
1893 for (j = 0; i < maxsize/2 && j<size; j++) {
1894 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
1895 ftdi_error_return(-1, "reading eeprom failed");
1896 i++;
1897 }
1898 size*=2;
1899 }while(size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
1900
1901 return size/2;
1902}
1903
1904/**
1905 Write eeprom
1906
1907 \param ftdi pointer to ftdi_context
1908 \param eeprom Pointer to read eeprom from
1909
1910 \retval 0: all fine
1911 \retval -1: read failed
1912*/
1913int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
1914{
1915 unsigned short usb_val;
1916 int i;
1917
1918 for (i = 0; i < ftdi->eeprom_size/2; i++) {
1919 usb_val = eeprom[i*2];
1920 usb_val += eeprom[(i*2)+1] << 8;
1921 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x91, usb_val, i, NULL, 0, ftdi->usb_write_timeout) != 0)
1922 ftdi_error_return(-1, "unable to write eeprom");
1923 }
1924
1925 return 0;
1926}
1927
1928/**
1929 Erase eeprom
1930
1931 \param ftdi pointer to ftdi_context
1932
1933 \retval 0: all fine
1934 \retval -1: erase failed
1935*/
1936int ftdi_erase_eeprom(struct ftdi_context *ftdi)
1937{
1938 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x92, 0, 0, NULL, 0, ftdi->usb_write_timeout) != 0)
1939 ftdi_error_return(-1, "unable to erase eeprom");
1940
1941 return 0;
1942}
1943
1944/**
1945 Get string representation for last error code
1946
1947 \param ftdi pointer to ftdi_context
1948
1949 \retval Pointer to error string
1950*/
1951char *ftdi_get_error_string (struct ftdi_context *ftdi)
1952{
1953 return ftdi->error_str;
1954}
1955
1956/* @} end of doxygen libftdi group */