Fix small memleak when ftdi_init() fails
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2017 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 https://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi_i.h"
38#include "ftdi.h"
39#include "ftdi_version_i.h"
40
41#define ftdi_error_return(code, str) do { \
42 if ( ftdi ) \
43 ftdi->error_str = str; \
44 else \
45 fprintf(stderr, str); \
46 return code; \
47 } while(0);
48
49#define ftdi_error_return_free_device_list(code, str, devs) do { \
50 libusb_free_device_list(devs,1); \
51 ftdi->error_str = str; \
52 return code; \
53 } while(0);
54
55
56/**
57 Internal function to close usb device pointer.
58 Sets ftdi->usb_dev to NULL.
59 \internal
60
61 \param ftdi pointer to ftdi_context
62
63 \retval none
64*/
65static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
66{
67 if (ftdi && ftdi->usb_dev)
68 {
69 libusb_close (ftdi->usb_dev);
70 ftdi->usb_dev = NULL;
71 if(ftdi->eeprom)
72 ftdi->eeprom->initialized_for_connected_device = 0;
73 }
74}
75
76/**
77 Initializes a ftdi_context.
78
79 \param ftdi pointer to ftdi_context
80
81 \retval 0: all fine
82 \retval -1: couldn't allocate read buffer
83 \retval -2: couldn't allocate struct buffer
84 \retval -3: libusb_init() failed
85
86 \remark This should be called before all functions
87*/
88int ftdi_init(struct ftdi_context *ftdi)
89{
90 struct ftdi_eeprom* eeprom;
91 ftdi->usb_ctx = NULL;
92 ftdi->usb_dev = NULL;
93 ftdi->usb_read_timeout = 5000;
94 ftdi->usb_write_timeout = 5000;
95
96 ftdi->type = TYPE_BM; /* chip type */
97 ftdi->baudrate = -1;
98 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
99
100 ftdi->readbuffer = NULL;
101 ftdi->readbuffer_offset = 0;
102 ftdi->readbuffer_remaining = 0;
103 ftdi->writebuffer_chunksize = 4096;
104 ftdi->max_packet_size = 0;
105 ftdi->error_str = NULL;
106 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
107
108 if (libusb_init(&ftdi->usb_ctx) < 0)
109 ftdi_error_return(-3, "libusb_init() failed");
110
111 ftdi_set_interface(ftdi, INTERFACE_ANY);
112 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
113
114 eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
115 if (eeprom == 0)
116 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
117 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
118 ftdi->eeprom = eeprom;
119
120 /* All fine. Now allocate the readbuffer */
121 return ftdi_read_data_set_chunksize(ftdi, 4096);
122}
123
124/**
125 Allocate and initialize a new ftdi_context
126
127 \return a pointer to a new ftdi_context, or NULL on failure
128*/
129struct ftdi_context *ftdi_new(void)
130{
131 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
132
133 if (ftdi == NULL)
134 {
135 return NULL;
136 }
137
138 if (ftdi_init(ftdi) != 0)
139 {
140 free(ftdi);
141 return NULL;
142 }
143
144 return ftdi;
145}
146
147/**
148 Open selected channels on a chip, otherwise use first channel.
149
150 \param ftdi pointer to ftdi_context
151 \param interface Interface to use for FT2232C/2232H/4232H chips.
152
153 \retval 0: all fine
154 \retval -1: unknown interface
155 \retval -2: USB device unavailable
156 \retval -3: Device already open, interface can't be set in that state
157*/
158int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
159{
160 if (ftdi == NULL)
161 ftdi_error_return(-2, "USB device unavailable");
162
163 if (ftdi->usb_dev != NULL)
164 {
165 int check_interface = interface;
166 if (check_interface == INTERFACE_ANY)
167 check_interface = INTERFACE_A;
168
169 if (ftdi->index != check_interface)
170 ftdi_error_return(-3, "Interface can not be changed on an already open device");
171 }
172
173 switch (interface)
174 {
175 case INTERFACE_ANY:
176 case INTERFACE_A:
177 ftdi->interface = 0;
178 ftdi->index = INTERFACE_A;
179 ftdi->in_ep = 0x02;
180 ftdi->out_ep = 0x81;
181 break;
182 case INTERFACE_B:
183 ftdi->interface = 1;
184 ftdi->index = INTERFACE_B;
185 ftdi->in_ep = 0x04;
186 ftdi->out_ep = 0x83;
187 break;
188 case INTERFACE_C:
189 ftdi->interface = 2;
190 ftdi->index = INTERFACE_C;
191 ftdi->in_ep = 0x06;
192 ftdi->out_ep = 0x85;
193 break;
194 case INTERFACE_D:
195 ftdi->interface = 3;
196 ftdi->index = INTERFACE_D;
197 ftdi->in_ep = 0x08;
198 ftdi->out_ep = 0x87;
199 break;
200 default:
201 ftdi_error_return(-1, "Unknown interface");
202 }
203 return 0;
204}
205
206/**
207 Deinitializes a ftdi_context.
208
209 \param ftdi pointer to ftdi_context
210*/
211void ftdi_deinit(struct ftdi_context *ftdi)
212{
213 if (ftdi == NULL)
214 return;
215
216 ftdi_usb_close_internal (ftdi);
217
218 if (ftdi->readbuffer != NULL)
219 {
220 free(ftdi->readbuffer);
221 ftdi->readbuffer = NULL;
222 }
223
224 if (ftdi->eeprom != NULL)
225 {
226 if (ftdi->eeprom->manufacturer != 0)
227 {
228 free(ftdi->eeprom->manufacturer);
229 ftdi->eeprom->manufacturer = 0;
230 }
231 if (ftdi->eeprom->product != 0)
232 {
233 free(ftdi->eeprom->product);
234 ftdi->eeprom->product = 0;
235 }
236 if (ftdi->eeprom->serial != 0)
237 {
238 free(ftdi->eeprom->serial);
239 ftdi->eeprom->serial = 0;
240 }
241 free(ftdi->eeprom);
242 ftdi->eeprom = NULL;
243 }
244
245 if (ftdi->usb_ctx)
246 {
247 libusb_exit(ftdi->usb_ctx);
248 ftdi->usb_ctx = NULL;
249 }
250}
251
252/**
253 Deinitialize and free an ftdi_context.
254
255 \param ftdi pointer to ftdi_context
256*/
257void ftdi_free(struct ftdi_context *ftdi)
258{
259 ftdi_deinit(ftdi);
260 free(ftdi);
261}
262
263/**
264 Use an already open libusb device.
265
266 \param ftdi pointer to ftdi_context
267 \param usb libusb libusb_device_handle to use
268*/
269void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
270{
271 if (ftdi == NULL)
272 return;
273
274 ftdi->usb_dev = usb;
275}
276
277/**
278 * @brief Get libftdi library version
279 *
280 * @return ftdi_version_info Library version information
281 **/
282struct ftdi_version_info ftdi_get_library_version(void)
283{
284 struct ftdi_version_info ver;
285
286 ver.major = FTDI_MAJOR_VERSION;
287 ver.minor = FTDI_MINOR_VERSION;
288 ver.micro = FTDI_MICRO_VERSION;
289 ver.version_str = FTDI_VERSION_STRING;
290 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
291
292 return ver;
293}
294
295/**
296 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
297 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
298 use. With VID:PID 0:0, search for the default devices
299 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014, 0x403:0x6015)
300
301 \param ftdi pointer to ftdi_context
302 \param devlist Pointer where to store list of found devices
303 \param vendor Vendor ID to search for
304 \param product Product ID to search for
305
306 \retval >0: number of devices found
307 \retval -3: out of memory
308 \retval -5: libusb_get_device_list() failed
309 \retval -6: libusb_get_device_descriptor() failed
310*/
311int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
312{
313 struct ftdi_device_list **curdev;
314 libusb_device *dev;
315 libusb_device **devs;
316 int count = 0;
317 int i = 0;
318
319 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
320 ftdi_error_return(-5, "libusb_get_device_list() failed");
321
322 curdev = devlist;
323 *curdev = NULL;
324
325 while ((dev = devs[i++]) != NULL)
326 {
327 struct libusb_device_descriptor desc;
328
329 if (libusb_get_device_descriptor(dev, &desc) < 0)
330 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
331
332 if (((vendor || product) &&
333 desc.idVendor == vendor && desc.idProduct == product) ||
334 (!(vendor || product) &&
335 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
336 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014
337 || desc.idProduct == 0x6015)))
338 {
339 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
340 if (!*curdev)
341 ftdi_error_return_free_device_list(-3, "out of memory", devs);
342
343 (*curdev)->next = NULL;
344 (*curdev)->dev = dev;
345 libusb_ref_device(dev);
346 curdev = &(*curdev)->next;
347 count++;
348 }
349 }
350 libusb_free_device_list(devs,1);
351 return count;
352}
353
354/**
355 Frees a usb device list.
356
357 \param devlist USB device list created by ftdi_usb_find_all()
358*/
359void ftdi_list_free(struct ftdi_device_list **devlist)
360{
361 struct ftdi_device_list *curdev, *next;
362
363 for (curdev = *devlist; curdev != NULL;)
364 {
365 next = curdev->next;
366 libusb_unref_device(curdev->dev);
367 free(curdev);
368 curdev = next;
369 }
370
371 *devlist = NULL;
372}
373
374/**
375 Frees a usb device list.
376
377 \param devlist USB device list created by ftdi_usb_find_all()
378*/
379void ftdi_list_free2(struct ftdi_device_list *devlist)
380{
381 ftdi_list_free(&devlist);
382}
383
384/**
385 Return device ID strings from the usb device.
386
387 The parameters manufacturer, description and serial may be NULL
388 or pointer to buffers to store the fetched strings.
389
390 \note Use this function only in combination with ftdi_usb_find_all()
391 as it closes the internal "usb_dev" after use.
392
393 \param ftdi pointer to ftdi_context
394 \param dev libusb usb_dev to use
395 \param manufacturer Store manufacturer string here if not NULL
396 \param mnf_len Buffer size of manufacturer string
397 \param description Store product description string here if not NULL
398 \param desc_len Buffer size of product description string
399 \param serial Store serial string here if not NULL
400 \param serial_len Buffer size of serial string
401
402 \retval 0: all fine
403 \retval -1: wrong arguments
404 \retval -4: unable to open device
405 \retval -7: get product manufacturer failed
406 \retval -8: get product description failed
407 \retval -9: get serial number failed
408 \retval -11: libusb_get_device_descriptor() failed
409*/
410int ftdi_usb_get_strings(struct ftdi_context *ftdi,
411 struct libusb_device *dev,
412 char *manufacturer, int mnf_len,
413 char *description, int desc_len,
414 char *serial, int serial_len)
415{
416 int ret;
417
418 if ((ftdi==NULL) || (dev==NULL))
419 return -1;
420
421 if (ftdi->usb_dev == NULL && libusb_open(dev, &ftdi->usb_dev) < 0)
422 ftdi_error_return(-4, "libusb_open() failed");
423
424 // ftdi->usb_dev will not be NULL when entering ftdi_usb_get_strings2(), so
425 // it won't be closed either. This allows us to close it whether we actually
426 // called libusb_open() up above or not. This matches the expected behavior
427 // (and note) for ftdi_usb_get_strings().
428 ret = ftdi_usb_get_strings2(ftdi, dev,
429 manufacturer, mnf_len,
430 description, desc_len,
431 serial, serial_len);
432
433 // only close it if it was successful, as all other return codes close
434 // before returning already.
435 if (ret == 0)
436 ftdi_usb_close_internal(ftdi);
437
438 return ret;
439}
440
441/**
442 Return device ID strings from the usb device.
443
444 The parameters manufacturer, description and serial may be NULL
445 or pointer to buffers to store the fetched strings.
446
447 \note The old function ftdi_usb_get_strings() always closes the device.
448 This version only closes the device if it was opened by it.
449
450 \param ftdi pointer to ftdi_context
451 \param dev libusb usb_dev to use
452 \param manufacturer Store manufacturer string here if not NULL
453 \param mnf_len Buffer size of manufacturer string
454 \param description Store product description string here if not NULL
455 \param desc_len Buffer size of product description string
456 \param serial Store serial string here if not NULL
457 \param serial_len Buffer size of serial string
458
459 \retval 0: all fine
460 \retval -1: wrong arguments
461 \retval -4: unable to open device
462 \retval -7: get product manufacturer failed
463 \retval -8: get product description failed
464 \retval -9: get serial number failed
465 \retval -11: libusb_get_device_descriptor() failed
466*/
467int ftdi_usb_get_strings2(struct ftdi_context *ftdi, struct libusb_device *dev,
468 char *manufacturer, int mnf_len,
469 char *description, int desc_len,
470 char *serial, int serial_len)
471{
472 struct libusb_device_descriptor desc;
473 char need_open;
474
475 if ((ftdi==NULL) || (dev==NULL))
476 return -1;
477
478 need_open = (ftdi->usb_dev == NULL);
479 if (need_open && libusb_open(dev, &ftdi->usb_dev) < 0)
480 ftdi_error_return(-4, "libusb_open() failed");
481
482 if (libusb_get_device_descriptor(dev, &desc) < 0)
483 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
484
485 if (manufacturer != NULL)
486 {
487 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
488 {
489 ftdi_usb_close_internal (ftdi);
490 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
491 }
492 }
493
494 if (description != NULL)
495 {
496 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
497 {
498 ftdi_usb_close_internal (ftdi);
499 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
500 }
501 }
502
503 if (serial != NULL)
504 {
505 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
506 {
507 ftdi_usb_close_internal (ftdi);
508 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
509 }
510 }
511
512 if (need_open)
513 ftdi_usb_close_internal (ftdi);
514
515 return 0;
516}
517
518/**
519 * Internal function to determine the maximum packet size.
520 * \param ftdi pointer to ftdi_context
521 * \param dev libusb usb_dev to use
522 * \retval Maximum packet size for this device
523 */
524static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
525{
526 struct libusb_device_descriptor desc;
527 struct libusb_config_descriptor *config0;
528 unsigned int packet_size;
529
530 // Sanity check
531 if (ftdi == NULL || dev == NULL)
532 return 64;
533
534 // Determine maximum packet size. Init with default value.
535 // New hi-speed devices from FTDI use a packet size of 512 bytes
536 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
537 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
538 packet_size = 512;
539 else
540 packet_size = 64;
541
542 if (libusb_get_device_descriptor(dev, &desc) < 0)
543 return packet_size;
544
545 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
546 return packet_size;
547
548 if (desc.bNumConfigurations > 0)
549 {
550 if (ftdi->interface < config0->bNumInterfaces)
551 {
552 struct libusb_interface interface = config0->interface[ftdi->interface];
553 if (interface.num_altsetting > 0)
554 {
555 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
556 if (descriptor.bNumEndpoints > 0)
557 {
558 packet_size = descriptor.endpoint[0].wMaxPacketSize;
559 }
560 }
561 }
562 }
563
564 libusb_free_config_descriptor (config0);
565 return packet_size;
566}
567
568/**
569 Opens a ftdi device given by an usb_device.
570
571 \param ftdi pointer to ftdi_context
572 \param dev libusb usb_dev to use
573
574 \retval 0: all fine
575 \retval -3: unable to config device
576 \retval -4: unable to open device
577 \retval -5: unable to claim device
578 \retval -6: reset failed
579 \retval -7: set baudrate failed
580 \retval -8: ftdi context invalid
581 \retval -9: libusb_get_device_descriptor() failed
582 \retval -10: libusb_get_config_descriptor() failed
583 \retval -11: libusb_detach_kernel_driver() failed
584 \retval -12: libusb_get_configuration() failed
585*/
586int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
587{
588 struct libusb_device_descriptor desc;
589 struct libusb_config_descriptor *config0;
590 int cfg, cfg0, detach_errno = 0;
591
592 if (ftdi == NULL)
593 ftdi_error_return(-8, "ftdi context invalid");
594
595 if (libusb_open(dev, &ftdi->usb_dev) < 0)
596 ftdi_error_return(-4, "libusb_open() failed");
597
598 if (libusb_get_device_descriptor(dev, &desc) < 0)
599 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
600
601 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
602 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
603 cfg0 = config0->bConfigurationValue;
604 libusb_free_config_descriptor (config0);
605
606 // Try to detach ftdi_sio kernel module.
607 //
608 // The return code is kept in a separate variable and only parsed
609 // if usb_set_configuration() or usb_claim_interface() fails as the
610 // detach operation might be denied and everything still works fine.
611 // Likely scenario is a static ftdi_sio kernel module.
612 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
613 {
614 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
615 detach_errno = errno;
616 }
617
618 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
619 ftdi_error_return(-12, "libusb_get_configuration () failed");
620 // set configuration (needed especially for windows)
621 // tolerate EBUSY: one device with one configuration, but two interfaces
622 // and libftdi sessions to both interfaces (e.g. FT2232)
623 if (desc.bNumConfigurations > 0 && cfg != cfg0)
624 {
625 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
626 {
627 ftdi_usb_close_internal (ftdi);
628 if (detach_errno == EPERM)
629 {
630 ftdi_error_return(-8, "inappropriate permissions on device!");
631 }
632 else
633 {
634 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
635 }
636 }
637 }
638
639 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
640 {
641 ftdi_usb_close_internal (ftdi);
642 if (detach_errno == EPERM)
643 {
644 ftdi_error_return(-8, "inappropriate permissions on device!");
645 }
646 else
647 {
648 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
649 }
650 }
651
652 if (ftdi_usb_reset (ftdi) != 0)
653 {
654 ftdi_usb_close_internal (ftdi);
655 ftdi_error_return(-6, "ftdi_usb_reset failed");
656 }
657
658 // Try to guess chip type
659 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
660 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
661 && desc.iSerialNumber == 0))
662 ftdi->type = TYPE_BM;
663 else if (desc.bcdDevice == 0x200)
664 ftdi->type = TYPE_AM;
665 else if (desc.bcdDevice == 0x500)
666 ftdi->type = TYPE_2232C;
667 else if (desc.bcdDevice == 0x600)
668 ftdi->type = TYPE_R;
669 else if (desc.bcdDevice == 0x700)
670 ftdi->type = TYPE_2232H;
671 else if (desc.bcdDevice == 0x800)
672 ftdi->type = TYPE_4232H;
673 else if (desc.bcdDevice == 0x900)
674 ftdi->type = TYPE_232H;
675 else if (desc.bcdDevice == 0x1000)
676 ftdi->type = TYPE_230X;
677
678 // Determine maximum packet size
679 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
680
681 if (ftdi_set_baudrate (ftdi, 9600) != 0)
682 {
683 ftdi_usb_close_internal (ftdi);
684 ftdi_error_return(-7, "set baudrate failed");
685 }
686
687 ftdi_error_return(0, "all fine");
688}
689
690/**
691 Opens the first device with a given vendor and product ids.
692
693 \param ftdi pointer to ftdi_context
694 \param vendor Vendor ID
695 \param product Product ID
696
697 \retval same as ftdi_usb_open_desc()
698*/
699int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
700{
701 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
702}
703
704/**
705 Opens the first device with a given, vendor id, product id,
706 description and serial.
707
708 \param ftdi pointer to ftdi_context
709 \param vendor Vendor ID
710 \param product Product ID
711 \param description Description to search for. Use NULL if not needed.
712 \param serial Serial to search for. Use NULL if not needed.
713
714 \retval 0: all fine
715 \retval -3: usb device not found
716 \retval -4: unable to open device
717 \retval -5: unable to claim device
718 \retval -6: reset failed
719 \retval -7: set baudrate failed
720 \retval -8: get product description failed
721 \retval -9: get serial number failed
722 \retval -12: libusb_get_device_list() failed
723 \retval -13: libusb_get_device_descriptor() failed
724*/
725int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
726 const char* description, const char* serial)
727{
728 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
729}
730
731/**
732 Opens the index-th device with a given, vendor id, product id,
733 description and serial.
734
735 \param ftdi pointer to ftdi_context
736 \param vendor Vendor ID
737 \param product Product ID
738 \param description Description to search for. Use NULL if not needed.
739 \param serial Serial to search for. Use NULL if not needed.
740 \param index Number of matching device to open if there are more than one, starts with 0.
741
742 \retval 0: all fine
743 \retval -1: usb_find_busses() failed
744 \retval -2: usb_find_devices() failed
745 \retval -3: usb device not found
746 \retval -4: unable to open device
747 \retval -5: unable to claim device
748 \retval -6: reset failed
749 \retval -7: set baudrate failed
750 \retval -8: get product description failed
751 \retval -9: get serial number failed
752 \retval -10: unable to close device
753 \retval -11: ftdi context invalid
754 \retval -12: libusb_get_device_list() failed
755*/
756int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
757 const char* description, const char* serial, unsigned int index)
758{
759 libusb_device *dev;
760 libusb_device **devs;
761 char string[256];
762 int i = 0;
763
764 if (ftdi == NULL)
765 ftdi_error_return(-11, "ftdi context invalid");
766
767 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
768 ftdi_error_return(-12, "libusb_get_device_list() failed");
769
770 while ((dev = devs[i++]) != NULL)
771 {
772 struct libusb_device_descriptor desc;
773 int res;
774
775 if (libusb_get_device_descriptor(dev, &desc) < 0)
776 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
777
778 if (desc.idVendor == vendor && desc.idProduct == product)
779 {
780 if (libusb_open(dev, &ftdi->usb_dev) < 0)
781 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
782
783 if (description != NULL)
784 {
785 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
786 {
787 ftdi_usb_close_internal (ftdi);
788 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
789 }
790 if (strncmp(string, description, sizeof(string)) != 0)
791 {
792 ftdi_usb_close_internal (ftdi);
793 continue;
794 }
795 }
796 if (serial != NULL)
797 {
798 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
799 {
800 ftdi_usb_close_internal (ftdi);
801 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
802 }
803 if (strncmp(string, serial, sizeof(string)) != 0)
804 {
805 ftdi_usb_close_internal (ftdi);
806 continue;
807 }
808 }
809
810 ftdi_usb_close_internal (ftdi);
811
812 if (index > 0)
813 {
814 index--;
815 continue;
816 }
817
818 res = ftdi_usb_open_dev(ftdi, dev);
819 libusb_free_device_list(devs,1);
820 return res;
821 }
822 }
823
824 // device not found
825 ftdi_error_return_free_device_list(-3, "device not found", devs);
826}
827
828/**
829 Opens the device at a given USB bus and device address.
830
831 \param ftdi pointer to ftdi_context
832 \param bus Bus number
833 \param addr Device address
834
835 \retval 0: all fine
836 \retval -1: usb_find_busses() failed
837 \retval -2: usb_find_devices() failed
838 \retval -3: usb device not found
839 \retval -4: unable to open device
840 \retval -5: unable to claim device
841 \retval -6: reset failed
842 \retval -7: set baudrate failed
843 \retval -8: get product description failed
844 \retval -9: get serial number failed
845 \retval -10: unable to close device
846 \retval -11: ftdi context invalid
847 \retval -12: libusb_get_device_list() failed
848*/
849int ftdi_usb_open_bus_addr(struct ftdi_context *ftdi, uint8_t bus, uint8_t addr)
850{
851 libusb_device *dev;
852 libusb_device **devs;
853 int i = 0;
854
855 if (ftdi == NULL)
856 ftdi_error_return(-11, "ftdi context invalid");
857
858 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
859 ftdi_error_return(-12, "libusb_get_device_list() failed");
860
861 while ((dev = devs[i++]) != NULL)
862 {
863 if (libusb_get_bus_number(dev) == bus && libusb_get_device_address(dev) == addr)
864 {
865 int res;
866 res = ftdi_usb_open_dev(ftdi, dev);
867 libusb_free_device_list(devs,1);
868 return res;
869 }
870 }
871
872 // device not found
873 ftdi_error_return_free_device_list(-3, "device not found", devs);
874}
875
876/**
877 Opens the ftdi-device described by a description-string.
878 Intended to be used for parsing a device-description given as commandline argument.
879
880 \param ftdi pointer to ftdi_context
881 \param description NULL-terminated description-string, using this format:
882 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
883 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
884 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
885 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
886
887 \note The description format may be extended in later versions.
888
889 \retval 0: all fine
890 \retval -2: libusb_get_device_list() failed
891 \retval -3: usb device not found
892 \retval -4: unable to open device
893 \retval -5: unable to claim device
894 \retval -6: reset failed
895 \retval -7: set baudrate failed
896 \retval -8: get product description failed
897 \retval -9: get serial number failed
898 \retval -10: unable to close device
899 \retval -11: illegal description format
900 \retval -12: ftdi context invalid
901*/
902int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
903{
904 if (ftdi == NULL)
905 ftdi_error_return(-12, "ftdi context invalid");
906
907 if (description[0] == 0 || description[1] != ':')
908 ftdi_error_return(-11, "illegal description format");
909
910 if (description[0] == 'd')
911 {
912 libusb_device *dev;
913 libusb_device **devs;
914 unsigned int bus_number, device_address;
915 int i = 0;
916
917 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
918 ftdi_error_return(-2, "libusb_get_device_list() failed");
919
920 /* XXX: This doesn't handle symlinks/odd paths/etc... */
921 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
922 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
923
924 while ((dev = devs[i++]) != NULL)
925 {
926 int ret;
927 if (bus_number == libusb_get_bus_number (dev)
928 && device_address == libusb_get_device_address (dev))
929 {
930 ret = ftdi_usb_open_dev(ftdi, dev);
931 libusb_free_device_list(devs,1);
932 return ret;
933 }
934 }
935
936 // device not found
937 ftdi_error_return_free_device_list(-3, "device not found", devs);
938 }
939 else if (description[0] == 'i' || description[0] == 's')
940 {
941 unsigned int vendor;
942 unsigned int product;
943 unsigned int index=0;
944 const char *serial=NULL;
945 const char *startp, *endp;
946
947 errno=0;
948 startp=description+2;
949 vendor=strtoul((char*)startp,(char**)&endp,0);
950 if (*endp != ':' || endp == startp || errno != 0)
951 ftdi_error_return(-11, "illegal description format");
952
953 startp=endp+1;
954 product=strtoul((char*)startp,(char**)&endp,0);
955 if (endp == startp || errno != 0)
956 ftdi_error_return(-11, "illegal description format");
957
958 if (description[0] == 'i' && *endp != 0)
959 {
960 /* optional index field in i-mode */
961 if (*endp != ':')
962 ftdi_error_return(-11, "illegal description format");
963
964 startp=endp+1;
965 index=strtoul((char*)startp,(char**)&endp,0);
966 if (*endp != 0 || endp == startp || errno != 0)
967 ftdi_error_return(-11, "illegal description format");
968 }
969 if (description[0] == 's')
970 {
971 if (*endp != ':')
972 ftdi_error_return(-11, "illegal description format");
973
974 /* rest of the description is the serial */
975 serial=endp+1;
976 }
977
978 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
979 }
980 else
981 {
982 ftdi_error_return(-11, "illegal description format");
983 }
984}
985
986/**
987 Resets the ftdi device.
988
989 \param ftdi pointer to ftdi_context
990
991 \retval 0: all fine
992 \retval -1: FTDI reset failed
993 \retval -2: USB device unavailable
994*/
995int ftdi_usb_reset(struct ftdi_context *ftdi)
996{
997 if (ftdi == NULL || ftdi->usb_dev == NULL)
998 ftdi_error_return(-2, "USB device unavailable");
999
1000 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1001 SIO_RESET_REQUEST, SIO_RESET_SIO,
1002 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1003 ftdi_error_return(-1,"FTDI reset failed");
1004
1005 // Invalidate data in the readbuffer
1006 ftdi->readbuffer_offset = 0;
1007 ftdi->readbuffer_remaining = 0;
1008
1009 return 0;
1010}
1011
1012/**
1013 Clears the read buffer on the chip and the internal read buffer.
1014
1015 \param ftdi pointer to ftdi_context
1016
1017 \retval 0: all fine
1018 \retval -1: read buffer purge failed
1019 \retval -2: USB device unavailable
1020*/
1021int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
1022{
1023 if (ftdi == NULL || ftdi->usb_dev == NULL)
1024 ftdi_error_return(-2, "USB device unavailable");
1025
1026 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1027 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
1028 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1029 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
1030
1031 // Invalidate data in the readbuffer
1032 ftdi->readbuffer_offset = 0;
1033 ftdi->readbuffer_remaining = 0;
1034
1035 return 0;
1036}
1037
1038/**
1039 Clears the write buffer on the chip.
1040
1041 \param ftdi pointer to ftdi_context
1042
1043 \retval 0: all fine
1044 \retval -1: write buffer purge failed
1045 \retval -2: USB device unavailable
1046*/
1047int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
1048{
1049 if (ftdi == NULL || ftdi->usb_dev == NULL)
1050 ftdi_error_return(-2, "USB device unavailable");
1051
1052 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1053 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
1054 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1055 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
1056
1057 return 0;
1058}
1059
1060/**
1061 Clears the buffers on the chip and the internal read buffer.
1062
1063 \param ftdi pointer to ftdi_context
1064
1065 \retval 0: all fine
1066 \retval -1: read buffer purge failed
1067 \retval -2: write buffer purge failed
1068 \retval -3: USB device unavailable
1069*/
1070int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
1071{
1072 int result;
1073
1074 if (ftdi == NULL || ftdi->usb_dev == NULL)
1075 ftdi_error_return(-3, "USB device unavailable");
1076
1077 result = ftdi_usb_purge_rx_buffer(ftdi);
1078 if (result < 0)
1079 return -1;
1080
1081 result = ftdi_usb_purge_tx_buffer(ftdi);
1082 if (result < 0)
1083 return -2;
1084
1085 return 0;
1086}
1087
1088
1089
1090/**
1091 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
1092
1093 \param ftdi pointer to ftdi_context
1094
1095 \retval 0: all fine
1096 \retval -1: usb_release failed
1097 \retval -3: ftdi context invalid
1098*/
1099int ftdi_usb_close(struct ftdi_context *ftdi)
1100{
1101 int rtn = 0;
1102
1103 if (ftdi == NULL)
1104 ftdi_error_return(-3, "ftdi context invalid");
1105
1106 if (ftdi->usb_dev != NULL)
1107 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
1108 rtn = -1;
1109
1110 ftdi_usb_close_internal (ftdi);
1111
1112 return rtn;
1113}
1114
1115/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
1116 to encoded divisor and the achievable baudrate
1117 Function is only used internally
1118 \internal
1119
1120 See AN120
1121 clk/1 -> 0
1122 clk/1.5 -> 1
1123 clk/2 -> 2
1124 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1125 The fractional part has frac_code encoding
1126*/
1127static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1128
1129{
1130 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1131 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1132 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
1133 int divisor, best_divisor, best_baud, best_baud_diff;
1134 int i;
1135 divisor = 24000000 / baudrate;
1136
1137 // Round down to supported fraction (AM only)
1138 divisor -= am_adjust_dn[divisor & 7];
1139
1140 // Try this divisor and the one above it (because division rounds down)
1141 best_divisor = 0;
1142 best_baud = 0;
1143 best_baud_diff = 0;
1144 for (i = 0; i < 2; i++)
1145 {
1146 int try_divisor = divisor + i;
1147 int baud_estimate;
1148 int baud_diff;
1149
1150 // Round up to supported divisor value
1151 if (try_divisor <= 8)
1152 {
1153 // Round up to minimum supported divisor
1154 try_divisor = 8;
1155 }
1156 else if (divisor < 16)
1157 {
1158 // AM doesn't support divisors 9 through 15 inclusive
1159 try_divisor = 16;
1160 }
1161 else
1162 {
1163 // Round up to supported fraction (AM only)
1164 try_divisor += am_adjust_up[try_divisor & 7];
1165 if (try_divisor > 0x1FFF8)
1166 {
1167 // Round down to maximum supported divisor value (for AM)
1168 try_divisor = 0x1FFF8;
1169 }
1170 }
1171 // Get estimated baud rate (to nearest integer)
1172 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1173 // Get absolute difference from requested baud rate
1174 if (baud_estimate < baudrate)
1175 {
1176 baud_diff = baudrate - baud_estimate;
1177 }
1178 else
1179 {
1180 baud_diff = baud_estimate - baudrate;
1181 }
1182 if (i == 0 || baud_diff < best_baud_diff)
1183 {
1184 // Closest to requested baud rate so far
1185 best_divisor = try_divisor;
1186 best_baud = baud_estimate;
1187 best_baud_diff = baud_diff;
1188 if (baud_diff == 0)
1189 {
1190 // Spot on! No point trying
1191 break;
1192 }
1193 }
1194 }
1195 // Encode the best divisor value
1196 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1197 // Deal with special cases for encoded value
1198 if (*encoded_divisor == 1)
1199 {
1200 *encoded_divisor = 0; // 3000000 baud
1201 }
1202 else if (*encoded_divisor == 0x4001)
1203 {
1204 *encoded_divisor = 1; // 2000000 baud (BM only)
1205 }
1206 return best_baud;
1207}
1208
1209/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1210 to encoded divisor and the achievable baudrate
1211 Function is only used internally
1212 \internal
1213
1214 See AN120
1215 clk/1 -> 0
1216 clk/1.5 -> 1
1217 clk/2 -> 2
1218 From /2, 0.125 steps may be taken.
1219 The fractional part has frac_code encoding
1220
1221 value[13:0] of value is the divisor
1222 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1223
1224 H Type have all features above with
1225 {index[8],value[15:14]} is the encoded subdivisor
1226
1227 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
1228 {index[0],value[15:14]} is the encoded subdivisor
1229
1230 AM Type chips have only four fractional subdivisors at value[15:14]
1231 for subdivisors 0, 0.5, 0.25, 0.125
1232*/
1233static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor)
1234{
1235 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1236 int best_baud = 0;
1237 int divisor, best_divisor;
1238 if (baudrate >= clk/clk_div)
1239 {
1240 *encoded_divisor = 0;
1241 best_baud = clk/clk_div;
1242 }
1243 else if (baudrate >= clk/(clk_div + clk_div/2))
1244 {
1245 *encoded_divisor = 1;
1246 best_baud = clk/(clk_div + clk_div/2);
1247 }
1248 else if (baudrate >= clk/(2*clk_div))
1249 {
1250 *encoded_divisor = 2;
1251 best_baud = clk/(2*clk_div);
1252 }
1253 else
1254 {
1255 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1256 divisor = clk*16/clk_div / baudrate;
1257 if (divisor & 1) /* Decide if to round up or down*/
1258 best_divisor = divisor /2 +1;
1259 else
1260 best_divisor = divisor/2;
1261 if(best_divisor > 0x20000)
1262 best_divisor = 0x1ffff;
1263 best_baud = clk*16/clk_div/best_divisor;
1264 if (best_baud & 1) /* Decide if to round up or down*/
1265 best_baud = best_baud /2 +1;
1266 else
1267 best_baud = best_baud /2;
1268 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1269 }
1270 return best_baud;
1271}
1272/**
1273 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1274 Function is only used internally
1275 \internal
1276*/
1277static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1278 unsigned short *value, unsigned short *index)
1279{
1280 int best_baud;
1281 unsigned long encoded_divisor;
1282
1283 if (baudrate <= 0)
1284 {
1285 // Return error
1286 return -1;
1287 }
1288
1289#define H_CLK 120000000
1290#define C_CLK 48000000
1291 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H))
1292 {
1293 if(baudrate*10 > H_CLK /0x3fff)
1294 {
1295 /* On H Devices, use 12 000 000 Baudrate when possible
1296 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
1297 three fractional bits and a 120 MHz clock
1298 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1299 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1300 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1301 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1302 }
1303 else
1304 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1305 }
1306 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R) || (ftdi->type == TYPE_230X))
1307 {
1308 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1309 }
1310 else
1311 {
1312 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
1313 }
1314 // Split into "value" and "index" values
1315 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1316 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
1317 {
1318 *index = (unsigned short)(encoded_divisor >> 8);
1319 *index &= 0xFF00;
1320 *index |= ftdi->index;
1321 }
1322 else
1323 *index = (unsigned short)(encoded_divisor >> 16);
1324
1325 // Return the nearest baud rate
1326 return best_baud;
1327}
1328
1329/**
1330 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1331 * Do not use, it's only for the unit test framework
1332 **/
1333int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1334 unsigned short *value, unsigned short *index)
1335{
1336 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1337}
1338
1339/**
1340 Sets the chip baud rate
1341
1342 \param ftdi pointer to ftdi_context
1343 \param baudrate baud rate to set
1344
1345 \retval 0: all fine
1346 \retval -1: invalid baudrate
1347 \retval -2: setting baudrate failed
1348 \retval -3: USB device unavailable
1349*/
1350int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1351{
1352 unsigned short value, index;
1353 int actual_baudrate;
1354
1355 if (ftdi == NULL || ftdi->usb_dev == NULL)
1356 ftdi_error_return(-3, "USB device unavailable");
1357
1358 if (ftdi->bitbang_enabled)
1359 {
1360 baudrate = baudrate*4;
1361 }
1362
1363 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1364 if (actual_baudrate <= 0)
1365 ftdi_error_return (-1, "Silly baudrate <= 0.");
1366
1367 // Check within tolerance (about 5%)
1368 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1369 || ((actual_baudrate < baudrate)
1370 ? (actual_baudrate * 21 < baudrate * 20)
1371 : (baudrate * 21 < actual_baudrate * 20)))
1372 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1373
1374 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1375 SIO_SET_BAUDRATE_REQUEST, value,
1376 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1377 ftdi_error_return (-2, "Setting new baudrate failed");
1378
1379 ftdi->baudrate = baudrate;
1380 return 0;
1381}
1382
1383/**
1384 Set (RS232) line characteristics.
1385 The break type can only be set via ftdi_set_line_property2()
1386 and defaults to "off".
1387
1388 \param ftdi pointer to ftdi_context
1389 \param bits Number of bits
1390 \param sbit Number of stop bits
1391 \param parity Parity mode
1392
1393 \retval 0: all fine
1394 \retval -1: Setting line property failed
1395*/
1396int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1397 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1398{
1399 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1400}
1401
1402/**
1403 Set (RS232) line characteristics
1404
1405 \param ftdi pointer to ftdi_context
1406 \param bits Number of bits
1407 \param sbit Number of stop bits
1408 \param parity Parity mode
1409 \param break_type Break type
1410
1411 \retval 0: all fine
1412 \retval -1: Setting line property failed
1413 \retval -2: USB device unavailable
1414*/
1415int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1416 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1417 enum ftdi_break_type break_type)
1418{
1419 unsigned short value = bits;
1420
1421 if (ftdi == NULL || ftdi->usb_dev == NULL)
1422 ftdi_error_return(-2, "USB device unavailable");
1423
1424 switch (parity)
1425 {
1426 case NONE:
1427 value |= (0x00 << 8);
1428 break;
1429 case ODD:
1430 value |= (0x01 << 8);
1431 break;
1432 case EVEN:
1433 value |= (0x02 << 8);
1434 break;
1435 case MARK:
1436 value |= (0x03 << 8);
1437 break;
1438 case SPACE:
1439 value |= (0x04 << 8);
1440 break;
1441 }
1442
1443 switch (sbit)
1444 {
1445 case STOP_BIT_1:
1446 value |= (0x00 << 11);
1447 break;
1448 case STOP_BIT_15:
1449 value |= (0x01 << 11);
1450 break;
1451 case STOP_BIT_2:
1452 value |= (0x02 << 11);
1453 break;
1454 }
1455
1456 switch (break_type)
1457 {
1458 case BREAK_OFF:
1459 value |= (0x00 << 14);
1460 break;
1461 case BREAK_ON:
1462 value |= (0x01 << 14);
1463 break;
1464 }
1465
1466 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1467 SIO_SET_DATA_REQUEST, value,
1468 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1469 ftdi_error_return (-1, "Setting new line property failed");
1470
1471 return 0;
1472}
1473
1474/**
1475 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1476
1477 \param ftdi pointer to ftdi_context
1478 \param buf Buffer with the data
1479 \param size Size of the buffer
1480
1481 \retval -666: USB device unavailable
1482 \retval <0: error code from usb_bulk_write()
1483 \retval >0: number of bytes written
1484*/
1485int ftdi_write_data(struct ftdi_context *ftdi, const unsigned char *buf, int size)
1486{
1487 int offset = 0;
1488 int actual_length;
1489
1490 if (ftdi == NULL || ftdi->usb_dev == NULL)
1491 ftdi_error_return(-666, "USB device unavailable");
1492
1493 while (offset < size)
1494 {
1495 int write_size = ftdi->writebuffer_chunksize;
1496
1497 if (offset+write_size > size)
1498 write_size = size-offset;
1499
1500 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, (unsigned char *)buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1501 ftdi_error_return(-1, "usb bulk write failed");
1502
1503 offset += actual_length;
1504 }
1505
1506 return offset;
1507}
1508
1509static void LIBUSB_CALL ftdi_read_data_cb(struct libusb_transfer *transfer)
1510{
1511 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1512 struct ftdi_context *ftdi = tc->ftdi;
1513 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1514
1515 packet_size = ftdi->max_packet_size;
1516
1517 actual_length = transfer->actual_length;
1518
1519 if (actual_length > 2)
1520 {
1521 // skip FTDI status bytes.
1522 // Maybe stored in the future to enable modem use
1523 num_of_chunks = actual_length / packet_size;
1524 chunk_remains = actual_length % packet_size;
1525 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1526
1527 ftdi->readbuffer_offset += 2;
1528 actual_length -= 2;
1529
1530 if (actual_length > packet_size - 2)
1531 {
1532 for (i = 1; i < num_of_chunks; i++)
1533 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1534 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1535 packet_size - 2);
1536 if (chunk_remains > 2)
1537 {
1538 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1539 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1540 chunk_remains-2);
1541 actual_length -= 2*num_of_chunks;
1542 }
1543 else
1544 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1545 }
1546
1547 if (actual_length > 0)
1548 {
1549 // data still fits in buf?
1550 if (tc->offset + actual_length <= tc->size)
1551 {
1552 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1553 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1554 tc->offset += actual_length;
1555
1556 ftdi->readbuffer_offset = 0;
1557 ftdi->readbuffer_remaining = 0;
1558
1559 /* Did we read exactly the right amount of bytes? */
1560 if (tc->offset == tc->size)
1561 {
1562 //printf("read_data exact rem %d offset %d\n",
1563 //ftdi->readbuffer_remaining, offset);
1564 tc->completed = 1;
1565 return;
1566 }
1567 }
1568 else
1569 {
1570 // only copy part of the data or size <= readbuffer_chunksize
1571 int part_size = tc->size - tc->offset;
1572 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1573 tc->offset += part_size;
1574
1575 ftdi->readbuffer_offset += part_size;
1576 ftdi->readbuffer_remaining = actual_length - part_size;
1577
1578 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1579 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1580 tc->completed = 1;
1581 return;
1582 }
1583 }
1584 }
1585
1586 if (transfer->status == LIBUSB_TRANSFER_CANCELLED)
1587 tc->completed = LIBUSB_TRANSFER_CANCELLED;
1588 else
1589 {
1590 ret = libusb_submit_transfer (transfer);
1591 if (ret < 0)
1592 tc->completed = 1;
1593 }
1594}
1595
1596
1597static void LIBUSB_CALL ftdi_write_data_cb(struct libusb_transfer *transfer)
1598{
1599 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1600 struct ftdi_context *ftdi = tc->ftdi;
1601
1602 tc->offset += transfer->actual_length;
1603
1604 if (tc->offset == tc->size)
1605 {
1606 tc->completed = 1;
1607 }
1608 else
1609 {
1610 int write_size = ftdi->writebuffer_chunksize;
1611 int ret;
1612
1613 if (tc->offset + write_size > tc->size)
1614 write_size = tc->size - tc->offset;
1615
1616 transfer->length = write_size;
1617 transfer->buffer = tc->buf + tc->offset;
1618
1619 if (transfer->status == LIBUSB_TRANSFER_CANCELLED)
1620 tc->completed = LIBUSB_TRANSFER_CANCELLED;
1621 else
1622 {
1623 ret = libusb_submit_transfer (transfer);
1624 if (ret < 0)
1625 tc->completed = 1;
1626 }
1627 }
1628}
1629
1630
1631/**
1632 Writes data to the chip. Does not wait for completion of the transfer
1633 nor does it make sure that the transfer was successful.
1634
1635 Use libusb 1.0 asynchronous API.
1636
1637 \param ftdi pointer to ftdi_context
1638 \param buf Buffer with the data
1639 \param size Size of the buffer
1640
1641 \retval NULL: Some error happens when submit transfer
1642 \retval !NULL: Pointer to a ftdi_transfer_control
1643*/
1644
1645struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1646{
1647 struct ftdi_transfer_control *tc;
1648 struct libusb_transfer *transfer;
1649 int write_size, ret;
1650
1651 if (ftdi == NULL || ftdi->usb_dev == NULL)
1652 return NULL;
1653
1654 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1655 if (!tc)
1656 return NULL;
1657
1658 transfer = libusb_alloc_transfer(0);
1659 if (!transfer)
1660 {
1661 free(tc);
1662 return NULL;
1663 }
1664
1665 tc->ftdi = ftdi;
1666 tc->completed = 0;
1667 tc->buf = buf;
1668 tc->size = size;
1669 tc->offset = 0;
1670
1671 if (size < (int)ftdi->writebuffer_chunksize)
1672 write_size = size;
1673 else
1674 write_size = ftdi->writebuffer_chunksize;
1675
1676 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1677 write_size, ftdi_write_data_cb, tc,
1678 ftdi->usb_write_timeout);
1679 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1680
1681 ret = libusb_submit_transfer(transfer);
1682 if (ret < 0)
1683 {
1684 libusb_free_transfer(transfer);
1685 free(tc);
1686 return NULL;
1687 }
1688 tc->transfer = transfer;
1689
1690 return tc;
1691}
1692
1693/**
1694 Reads data from the chip. Does not wait for completion of the transfer
1695 nor does it make sure that the transfer was successful.
1696
1697 Use libusb 1.0 asynchronous API.
1698
1699 \param ftdi pointer to ftdi_context
1700 \param buf Buffer with the data
1701 \param size Size of the buffer
1702
1703 \retval NULL: Some error happens when submit transfer
1704 \retval !NULL: Pointer to a ftdi_transfer_control
1705*/
1706
1707struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1708{
1709 struct ftdi_transfer_control *tc;
1710 struct libusb_transfer *transfer;
1711 int ret;
1712
1713 if (ftdi == NULL || ftdi->usb_dev == NULL)
1714 return NULL;
1715
1716 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1717 if (!tc)
1718 return NULL;
1719
1720 tc->ftdi = ftdi;
1721 tc->buf = buf;
1722 tc->size = size;
1723
1724 if (size <= (int)ftdi->readbuffer_remaining)
1725 {
1726 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1727
1728 // Fix offsets
1729 ftdi->readbuffer_remaining -= size;
1730 ftdi->readbuffer_offset += size;
1731
1732 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1733
1734 tc->completed = 1;
1735 tc->offset = size;
1736 tc->transfer = NULL;
1737 return tc;
1738 }
1739
1740 tc->completed = 0;
1741 if (ftdi->readbuffer_remaining != 0)
1742 {
1743 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1744
1745 tc->offset = ftdi->readbuffer_remaining;
1746 }
1747 else
1748 tc->offset = 0;
1749
1750 transfer = libusb_alloc_transfer(0);
1751 if (!transfer)
1752 {
1753 free (tc);
1754 return NULL;
1755 }
1756
1757 ftdi->readbuffer_remaining = 0;
1758 ftdi->readbuffer_offset = 0;
1759
1760 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1761 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1762
1763 ret = libusb_submit_transfer(transfer);
1764 if (ret < 0)
1765 {
1766 libusb_free_transfer(transfer);
1767 free (tc);
1768 return NULL;
1769 }
1770 tc->transfer = transfer;
1771
1772 return tc;
1773}
1774
1775/**
1776 Wait for completion of the transfer.
1777
1778 Use libusb 1.0 asynchronous API.
1779
1780 \param tc pointer to ftdi_transfer_control
1781
1782 \retval < 0: Some error happens
1783 \retval >= 0: Data size transferred
1784*/
1785
1786int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1787{
1788 int ret;
1789 struct timeval to = { 0, 0 };
1790 while (!tc->completed)
1791 {
1792 ret = libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx,
1793 &to, &tc->completed);
1794 if (ret < 0)
1795 {
1796 if (ret == LIBUSB_ERROR_INTERRUPTED)
1797 continue;
1798 libusb_cancel_transfer(tc->transfer);
1799 while (!tc->completed)
1800 if (libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx,
1801 &to, &tc->completed) < 0)
1802 break;
1803 libusb_free_transfer(tc->transfer);
1804 free (tc);
1805 return ret;
1806 }
1807 }
1808
1809 ret = tc->offset;
1810 /**
1811 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1812 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1813 **/
1814 if (tc->transfer)
1815 {
1816 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1817 ret = -1;
1818 libusb_free_transfer(tc->transfer);
1819 }
1820 free(tc);
1821 return ret;
1822}
1823
1824/**
1825 Cancel transfer and wait for completion.
1826
1827 Use libusb 1.0 asynchronous API.
1828
1829 \param tc pointer to ftdi_transfer_control
1830 \param to pointer to timeout value or NULL for infinite
1831*/
1832
1833void ftdi_transfer_data_cancel(struct ftdi_transfer_control *tc,
1834 struct timeval * to)
1835{
1836 struct timeval tv = { 0, 0 };
1837
1838 if (!tc->completed && tc->transfer != NULL)
1839 {
1840 if (to == NULL)
1841 to = &tv;
1842
1843 libusb_cancel_transfer(tc->transfer);
1844 while (!tc->completed)
1845 {
1846 if (libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx, to, &tc->completed) < 0)
1847 break;
1848 }
1849 }
1850
1851 if (tc->transfer)
1852 libusb_free_transfer(tc->transfer);
1853
1854 free (tc);
1855}
1856
1857/**
1858 Configure write buffer chunk size.
1859 Default is 4096.
1860
1861 \param ftdi pointer to ftdi_context
1862 \param chunksize Chunk size
1863
1864 \retval 0: all fine
1865 \retval -1: ftdi context invalid
1866*/
1867int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1868{
1869 if (ftdi == NULL)
1870 ftdi_error_return(-1, "ftdi context invalid");
1871
1872 ftdi->writebuffer_chunksize = chunksize;
1873 return 0;
1874}
1875
1876/**
1877 Get write buffer chunk size.
1878
1879 \param ftdi pointer to ftdi_context
1880 \param chunksize Pointer to store chunk size in
1881
1882 \retval 0: all fine
1883 \retval -1: ftdi context invalid
1884*/
1885int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1886{
1887 if (ftdi == NULL)
1888 ftdi_error_return(-1, "ftdi context invalid");
1889
1890 *chunksize = ftdi->writebuffer_chunksize;
1891 return 0;
1892}
1893
1894/**
1895 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1896
1897 Automatically strips the two modem status bytes transfered during every read.
1898
1899 \param ftdi pointer to ftdi_context
1900 \param buf Buffer to store data in
1901 \param size Size of the buffer
1902
1903 \retval -666: USB device unavailable
1904 \retval <0: error code from libusb_bulk_transfer()
1905 \retval 0: no data was available
1906 \retval >0: number of bytes read
1907
1908*/
1909int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1910{
1911 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1912 int packet_size = ftdi->max_packet_size;
1913 int actual_length = 1;
1914
1915 if (ftdi == NULL || ftdi->usb_dev == NULL)
1916 ftdi_error_return(-666, "USB device unavailable");
1917
1918 // Packet size sanity check (avoid division by zero)
1919 if (packet_size == 0)
1920 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1921
1922 // everything we want is still in the readbuffer?
1923 if (size <= (int)ftdi->readbuffer_remaining)
1924 {
1925 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1926
1927 // Fix offsets
1928 ftdi->readbuffer_remaining -= size;
1929 ftdi->readbuffer_offset += size;
1930
1931 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1932
1933 return size;
1934 }
1935 // something still in the readbuffer, but not enough to satisfy 'size'?
1936 if (ftdi->readbuffer_remaining != 0)
1937 {
1938 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1939
1940 // Fix offset
1941 offset += ftdi->readbuffer_remaining;
1942 }
1943 // do the actual USB read
1944 while (offset < size && actual_length > 0)
1945 {
1946 ftdi->readbuffer_remaining = 0;
1947 ftdi->readbuffer_offset = 0;
1948 /* returns how much received */
1949 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1950 if (ret < 0)
1951 ftdi_error_return(ret, "usb bulk read failed");
1952
1953 if (actual_length > 2)
1954 {
1955 // skip FTDI status bytes.
1956 // Maybe stored in the future to enable modem use
1957 num_of_chunks = actual_length / packet_size;
1958 chunk_remains = actual_length % packet_size;
1959 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1960
1961 ftdi->readbuffer_offset += 2;
1962 actual_length -= 2;
1963
1964 if (actual_length > packet_size - 2)
1965 {
1966 for (i = 1; i < num_of_chunks; i++)
1967 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1968 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1969 packet_size - 2);
1970 if (chunk_remains > 2)
1971 {
1972 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1973 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1974 chunk_remains-2);
1975 actual_length -= 2*num_of_chunks;
1976 }
1977 else
1978 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1979 }
1980 }
1981 else if (actual_length <= 2)
1982 {
1983 // no more data to read?
1984 return offset;
1985 }
1986 if (actual_length > 0)
1987 {
1988 // data still fits in buf?
1989 if (offset+actual_length <= size)
1990 {
1991 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1992 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1993 offset += actual_length;
1994
1995 /* Did we read exactly the right amount of bytes? */
1996 if (offset == size)
1997 //printf("read_data exact rem %d offset %d\n",
1998 //ftdi->readbuffer_remaining, offset);
1999 return offset;
2000 }
2001 else
2002 {
2003 // only copy part of the data or size <= readbuffer_chunksize
2004 int part_size = size-offset;
2005 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
2006
2007 ftdi->readbuffer_offset += part_size;
2008 ftdi->readbuffer_remaining = actual_length-part_size;
2009 offset += part_size;
2010
2011 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
2012 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
2013
2014 return offset;
2015 }
2016 }
2017 }
2018 // never reached
2019 return -127;
2020}
2021
2022/**
2023 Configure read buffer chunk size.
2024 Default is 4096.
2025
2026 Automatically reallocates the buffer.
2027
2028 \param ftdi pointer to ftdi_context
2029 \param chunksize Chunk size
2030
2031 \retval 0: all fine
2032 \retval -1: ftdi context invalid
2033*/
2034int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
2035{
2036 unsigned char *new_buf;
2037
2038 if (ftdi == NULL)
2039 ftdi_error_return(-1, "ftdi context invalid");
2040
2041 // Invalidate all remaining data
2042 ftdi->readbuffer_offset = 0;
2043 ftdi->readbuffer_remaining = 0;
2044#ifdef __linux__
2045 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
2046 which is defined in libusb-1.0. Otherwise, each USB read request will
2047 be divided into multiple URBs. This will cause issues on Linux kernel
2048 older than 2.6.32. */
2049 if (chunksize > 16384)
2050 chunksize = 16384;
2051#endif
2052
2053 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
2054 ftdi_error_return(-1, "out of memory for readbuffer");
2055
2056 ftdi->readbuffer = new_buf;
2057 ftdi->readbuffer_chunksize = chunksize;
2058
2059 return 0;
2060}
2061
2062/**
2063 Get read buffer chunk size.
2064
2065 \param ftdi pointer to ftdi_context
2066 \param chunksize Pointer to store chunk size in
2067
2068 \retval 0: all fine
2069 \retval -1: FTDI context invalid
2070*/
2071int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
2072{
2073 if (ftdi == NULL)
2074 ftdi_error_return(-1, "FTDI context invalid");
2075
2076 *chunksize = ftdi->readbuffer_chunksize;
2077 return 0;
2078}
2079
2080/**
2081 Enable/disable bitbang modes.
2082
2083 \param ftdi pointer to ftdi_context
2084 \param bitmask Bitmask to configure lines.
2085 HIGH/ON value configures a line as output.
2086 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
2087
2088 \retval 0: all fine
2089 \retval -1: can't enable bitbang mode
2090 \retval -2: USB device unavailable
2091*/
2092int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
2093{
2094 unsigned short usb_val;
2095
2096 if (ftdi == NULL || ftdi->usb_dev == NULL)
2097 ftdi_error_return(-2, "USB device unavailable");
2098
2099 usb_val = bitmask; // low byte: bitmask
2100 usb_val |= (mode << 8);
2101 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2102 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
2103
2104 ftdi->bitbang_mode = mode;
2105 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
2106 return 0;
2107}
2108
2109/**
2110 Disable bitbang mode.
2111
2112 \param ftdi pointer to ftdi_context
2113
2114 \retval 0: all fine
2115 \retval -1: can't disable bitbang mode
2116 \retval -2: USB device unavailable
2117*/
2118int ftdi_disable_bitbang(struct ftdi_context *ftdi)
2119{
2120 if (ftdi == NULL || ftdi->usb_dev == NULL)
2121 ftdi_error_return(-2, "USB device unavailable");
2122
2123 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2124 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
2125
2126 ftdi->bitbang_enabled = 0;
2127 return 0;
2128}
2129
2130
2131/**
2132 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
2133
2134 \param ftdi pointer to ftdi_context
2135 \param pins Pointer to store pins into
2136
2137 \retval 0: all fine
2138 \retval -1: read pins failed
2139 \retval -2: USB device unavailable
2140*/
2141int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
2142{
2143 if (ftdi == NULL || ftdi->usb_dev == NULL)
2144 ftdi_error_return(-2, "USB device unavailable");
2145
2146 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
2147 ftdi_error_return(-1, "read pins failed");
2148
2149 return 0;
2150}
2151
2152/**
2153 Set latency timer
2154
2155 The FTDI chip keeps data in the internal buffer for a specific
2156 amount of time if the buffer is not full yet to decrease
2157 load on the usb bus.
2158
2159 \param ftdi pointer to ftdi_context
2160 \param latency Value between 1 and 255
2161
2162 \retval 0: all fine
2163 \retval -1: latency out of range
2164 \retval -2: unable to set latency timer
2165 \retval -3: USB device unavailable
2166*/
2167int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2168{
2169 unsigned short usb_val;
2170
2171 if (latency < 1)
2172 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
2173
2174 if (ftdi == NULL || ftdi->usb_dev == NULL)
2175 ftdi_error_return(-3, "USB device unavailable");
2176
2177 usb_val = latency;
2178 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2179 ftdi_error_return(-2, "unable to set latency timer");
2180
2181 return 0;
2182}
2183
2184/**
2185 Get latency timer
2186
2187 \param ftdi pointer to ftdi_context
2188 \param latency Pointer to store latency value in
2189
2190 \retval 0: all fine
2191 \retval -1: unable to get latency timer
2192 \retval -2: USB device unavailable
2193*/
2194int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2195{
2196 unsigned short usb_val;
2197
2198 if (ftdi == NULL || ftdi->usb_dev == NULL)
2199 ftdi_error_return(-2, "USB device unavailable");
2200
2201 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
2202 ftdi_error_return(-1, "reading latency timer failed");
2203
2204 *latency = (unsigned char)usb_val;
2205 return 0;
2206}
2207
2208/**
2209 Poll modem status information
2210
2211 This function allows the retrieve the two status bytes of the device.
2212 The device sends these bytes also as a header for each read access
2213 where they are discarded by ftdi_read_data(). The chip generates
2214 the two stripped status bytes in the absence of data every 40 ms.
2215
2216 Layout of the first byte:
2217 - B0..B3 - must be 0
2218 - B4 Clear to send (CTS)
2219 0 = inactive
2220 1 = active
2221 - B5 Data set ready (DTS)
2222 0 = inactive
2223 1 = active
2224 - B6 Ring indicator (RI)
2225 0 = inactive
2226 1 = active
2227 - B7 Receive line signal detect (RLSD)
2228 0 = inactive
2229 1 = active
2230
2231 Layout of the second byte:
2232 - B0 Data ready (DR)
2233 - B1 Overrun error (OE)
2234 - B2 Parity error (PE)
2235 - B3 Framing error (FE)
2236 - B4 Break interrupt (BI)
2237 - B5 Transmitter holding register (THRE)
2238 - B6 Transmitter empty (TEMT)
2239 - B7 Error in RCVR FIFO
2240
2241 \param ftdi pointer to ftdi_context
2242 \param status Pointer to store status information in. Must be two bytes.
2243
2244 \retval 0: all fine
2245 \retval -1: unable to retrieve status information
2246 \retval -2: USB device unavailable
2247*/
2248int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2249{
2250 char usb_val[2];
2251
2252 if (ftdi == NULL || ftdi->usb_dev == NULL)
2253 ftdi_error_return(-2, "USB device unavailable");
2254
2255 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
2256 ftdi_error_return(-1, "getting modem status failed");
2257
2258 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
2259
2260 return 0;
2261}
2262
2263/**
2264 Set flowcontrol for ftdi chip
2265
2266 \param ftdi pointer to ftdi_context
2267 \param flowctrl flow control to use. should be
2268 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2269
2270 \retval 0: all fine
2271 \retval -1: set flow control failed
2272 \retval -2: USB device unavailable
2273*/
2274int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2275{
2276 if (ftdi == NULL || ftdi->usb_dev == NULL)
2277 ftdi_error_return(-2, "USB device unavailable");
2278
2279 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2280 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2281 NULL, 0, ftdi->usb_write_timeout) < 0)
2282 ftdi_error_return(-1, "set flow control failed");
2283
2284 return 0;
2285}
2286
2287/**
2288 Set dtr line
2289
2290 \param ftdi pointer to ftdi_context
2291 \param state state to set line to (1 or 0)
2292
2293 \retval 0: all fine
2294 \retval -1: set dtr failed
2295 \retval -2: USB device unavailable
2296*/
2297int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2298{
2299 unsigned short usb_val;
2300
2301 if (ftdi == NULL || ftdi->usb_dev == NULL)
2302 ftdi_error_return(-2, "USB device unavailable");
2303
2304 if (state)
2305 usb_val = SIO_SET_DTR_HIGH;
2306 else
2307 usb_val = SIO_SET_DTR_LOW;
2308
2309 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2310 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2311 NULL, 0, ftdi->usb_write_timeout) < 0)
2312 ftdi_error_return(-1, "set dtr failed");
2313
2314 return 0;
2315}
2316
2317/**
2318 Set rts line
2319
2320 \param ftdi pointer to ftdi_context
2321 \param state state to set line to (1 or 0)
2322
2323 \retval 0: all fine
2324 \retval -1: set rts failed
2325 \retval -2: USB device unavailable
2326*/
2327int ftdi_setrts(struct ftdi_context *ftdi, int state)
2328{
2329 unsigned short usb_val;
2330
2331 if (ftdi == NULL || ftdi->usb_dev == NULL)
2332 ftdi_error_return(-2, "USB device unavailable");
2333
2334 if (state)
2335 usb_val = SIO_SET_RTS_HIGH;
2336 else
2337 usb_val = SIO_SET_RTS_LOW;
2338
2339 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2340 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2341 NULL, 0, ftdi->usb_write_timeout) < 0)
2342 ftdi_error_return(-1, "set of rts failed");
2343
2344 return 0;
2345}
2346
2347/**
2348 Set dtr and rts line in one pass
2349
2350 \param ftdi pointer to ftdi_context
2351 \param dtr DTR state to set line to (1 or 0)
2352 \param rts RTS state to set line to (1 or 0)
2353
2354 \retval 0: all fine
2355 \retval -1: set dtr/rts failed
2356 \retval -2: USB device unavailable
2357 */
2358int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2359{
2360 unsigned short usb_val;
2361
2362 if (ftdi == NULL || ftdi->usb_dev == NULL)
2363 ftdi_error_return(-2, "USB device unavailable");
2364
2365 if (dtr)
2366 usb_val = SIO_SET_DTR_HIGH;
2367 else
2368 usb_val = SIO_SET_DTR_LOW;
2369
2370 if (rts)
2371 usb_val |= SIO_SET_RTS_HIGH;
2372 else
2373 usb_val |= SIO_SET_RTS_LOW;
2374
2375 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2376 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2377 NULL, 0, ftdi->usb_write_timeout) < 0)
2378 ftdi_error_return(-1, "set of rts/dtr failed");
2379
2380 return 0;
2381}
2382
2383/**
2384 Set the special event character
2385
2386 \param ftdi pointer to ftdi_context
2387 \param eventch Event character
2388 \param enable 0 to disable the event character, non-zero otherwise
2389
2390 \retval 0: all fine
2391 \retval -1: unable to set event character
2392 \retval -2: USB device unavailable
2393*/
2394int ftdi_set_event_char(struct ftdi_context *ftdi,
2395 unsigned char eventch, unsigned char enable)
2396{
2397 unsigned short usb_val;
2398
2399 if (ftdi == NULL || ftdi->usb_dev == NULL)
2400 ftdi_error_return(-2, "USB device unavailable");
2401
2402 usb_val = eventch;
2403 if (enable)
2404 usb_val |= 1 << 8;
2405
2406 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2407 ftdi_error_return(-1, "setting event character failed");
2408
2409 return 0;
2410}
2411
2412/**
2413 Set error character
2414
2415 \param ftdi pointer to ftdi_context
2416 \param errorch Error character
2417 \param enable 0 to disable the error character, non-zero otherwise
2418
2419 \retval 0: all fine
2420 \retval -1: unable to set error character
2421 \retval -2: USB device unavailable
2422*/
2423int ftdi_set_error_char(struct ftdi_context *ftdi,
2424 unsigned char errorch, unsigned char enable)
2425{
2426 unsigned short usb_val;
2427
2428 if (ftdi == NULL || ftdi->usb_dev == NULL)
2429 ftdi_error_return(-2, "USB device unavailable");
2430
2431 usb_val = errorch;
2432 if (enable)
2433 usb_val |= 1 << 8;
2434
2435 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2436 ftdi_error_return(-1, "setting error character failed");
2437
2438 return 0;
2439}
2440
2441/**
2442 Init eeprom with default values for the connected device
2443 \param ftdi pointer to ftdi_context
2444 \param manufacturer String to use as Manufacturer
2445 \param product String to use as Product description
2446 \param serial String to use as Serial number description
2447
2448 \retval 0: all fine
2449 \retval -1: No struct ftdi_context
2450 \retval -2: No struct ftdi_eeprom
2451 \retval -3: No connected device or device not yet opened
2452*/
2453int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2454 char * product, char * serial)
2455{
2456 struct ftdi_eeprom *eeprom;
2457
2458 if (ftdi == NULL)
2459 ftdi_error_return(-1, "No struct ftdi_context");
2460
2461 if (ftdi->eeprom == NULL)
2462 ftdi_error_return(-2,"No struct ftdi_eeprom");
2463
2464 eeprom = ftdi->eeprom;
2465 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2466
2467 if (ftdi->usb_dev == NULL)
2468 ftdi_error_return(-3, "No connected device or device not yet opened");
2469
2470 eeprom->vendor_id = 0x0403;
2471 eeprom->use_serial = 1;
2472 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2473 (ftdi->type == TYPE_R))
2474 eeprom->product_id = 0x6001;
2475 else if (ftdi->type == TYPE_4232H)
2476 eeprom->product_id = 0x6011;
2477 else if (ftdi->type == TYPE_232H)
2478 eeprom->product_id = 0x6014;
2479 else if (ftdi->type == TYPE_230X)
2480 eeprom->product_id = 0x6015;
2481 else
2482 eeprom->product_id = 0x6010;
2483
2484 if (ftdi->type == TYPE_AM)
2485 eeprom->usb_version = 0x0101;
2486 else
2487 eeprom->usb_version = 0x0200;
2488 eeprom->max_power = 100;
2489
2490 if (eeprom->manufacturer)
2491 free (eeprom->manufacturer);
2492 eeprom->manufacturer = NULL;
2493 if (manufacturer)
2494 {
2495 eeprom->manufacturer = (char *)malloc(strlen(manufacturer)+1);
2496 if (eeprom->manufacturer)
2497 strcpy(eeprom->manufacturer, manufacturer);
2498 }
2499
2500 if (eeprom->product)
2501 free (eeprom->product);
2502 eeprom->product = NULL;
2503 if(product)
2504 {
2505 eeprom->product = (char *)malloc(strlen(product)+1);
2506 if (eeprom->product)
2507 strcpy(eeprom->product, product);
2508 }
2509 else
2510 {
2511 const char* default_product;
2512 switch(ftdi->type)
2513 {
2514 case TYPE_AM: default_product = "AM"; break;
2515 case TYPE_BM: default_product = "BM"; break;
2516 case TYPE_2232C: default_product = "Dual RS232"; break;
2517 case TYPE_R: default_product = "FT232R USB UART"; break;
2518 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2519 case TYPE_4232H: default_product = "FT4232H"; break;
2520 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2521 case TYPE_230X: default_product = "FT230X Basic UART"; break;
2522 default:
2523 ftdi_error_return(-3, "Unknown chip type");
2524 }
2525 eeprom->product = (char *)malloc(strlen(default_product) +1);
2526 if (eeprom->product)
2527 strcpy(eeprom->product, default_product);
2528 }
2529
2530 if (eeprom->serial)
2531 free (eeprom->serial);
2532 eeprom->serial = NULL;
2533 if (serial)
2534 {
2535 eeprom->serial = (char *)malloc(strlen(serial)+1);
2536 if (eeprom->serial)
2537 strcpy(eeprom->serial, serial);
2538 }
2539
2540 if (ftdi->type == TYPE_R)
2541 {
2542 eeprom->max_power = 90;
2543 eeprom->size = 0x80;
2544 eeprom->cbus_function[0] = CBUS_TXLED;
2545 eeprom->cbus_function[1] = CBUS_RXLED;
2546 eeprom->cbus_function[2] = CBUS_TXDEN;
2547 eeprom->cbus_function[3] = CBUS_PWREN;
2548 eeprom->cbus_function[4] = CBUS_SLEEP;
2549 }
2550 else if (ftdi->type == TYPE_230X)
2551 {
2552 eeprom->max_power = 90;
2553 eeprom->size = 0x100;
2554 eeprom->cbus_function[0] = CBUSX_TXDEN;
2555 eeprom->cbus_function[1] = CBUSX_RXLED;
2556 eeprom->cbus_function[2] = CBUSX_TXLED;
2557 eeprom->cbus_function[3] = CBUSX_SLEEP;
2558 }
2559 else
2560 {
2561 if(ftdi->type == TYPE_232H)
2562 {
2563 int i;
2564 for (i=0; i<10; i++)
2565 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2566 }
2567 eeprom->size = -1;
2568 }
2569 switch (ftdi->type)
2570 {
2571 case TYPE_AM:
2572 eeprom->release_number = 0x0200;
2573 break;
2574 case TYPE_BM:
2575 eeprom->release_number = 0x0400;
2576 break;
2577 case TYPE_2232C:
2578 eeprom->release_number = 0x0500;
2579 break;
2580 case TYPE_R:
2581 eeprom->release_number = 0x0600;
2582 break;
2583 case TYPE_2232H:
2584 eeprom->release_number = 0x0700;
2585 break;
2586 case TYPE_4232H:
2587 eeprom->release_number = 0x0800;
2588 break;
2589 case TYPE_232H:
2590 eeprom->release_number = 0x0900;
2591 break;
2592 case TYPE_230X:
2593 eeprom->release_number = 0x1000;
2594 break;
2595 default:
2596 eeprom->release_number = 0x00;
2597 }
2598 return 0;
2599}
2600
2601int ftdi_eeprom_set_strings(struct ftdi_context *ftdi, char * manufacturer,
2602 char * product, char * serial)
2603{
2604 struct ftdi_eeprom *eeprom;
2605
2606 if (ftdi == NULL)
2607 ftdi_error_return(-1, "No struct ftdi_context");
2608
2609 if (ftdi->eeprom == NULL)
2610 ftdi_error_return(-2,"No struct ftdi_eeprom");
2611
2612 eeprom = ftdi->eeprom;
2613
2614 if (ftdi->usb_dev == NULL)
2615 ftdi_error_return(-3, "No connected device or device not yet opened");
2616
2617 if (manufacturer)
2618 {
2619 if (eeprom->manufacturer)
2620 free (eeprom->manufacturer);
2621 eeprom->manufacturer = (char *)malloc(strlen(manufacturer)+1);
2622 if (eeprom->manufacturer)
2623 strcpy(eeprom->manufacturer, manufacturer);
2624 }
2625
2626 if(product)
2627 {
2628 if (eeprom->product)
2629 free (eeprom->product);
2630 eeprom->product = (char *)malloc(strlen(product)+1);
2631 if (eeprom->product)
2632 strcpy(eeprom->product, product);
2633 }
2634
2635 if (serial)
2636 {
2637 if (eeprom->serial)
2638 free (eeprom->serial);
2639 eeprom->serial = (char *)malloc(strlen(serial)+1);
2640 if (eeprom->serial)
2641 {
2642 strcpy(eeprom->serial, serial);
2643 eeprom->use_serial = 1;
2644 }
2645 }
2646 return 0;
2647}
2648
2649/**
2650 Return device ID strings from the eeprom. Device needs to be connected.
2651
2652 The parameters manufacturer, description and serial may be NULL
2653 or pointer to buffers to store the fetched strings.
2654
2655 \param ftdi pointer to ftdi_context
2656 \param manufacturer Store manufacturer string here if not NULL
2657 \param mnf_len Buffer size of manufacturer string
2658 \param product Store product description string here if not NULL
2659 \param prod_len Buffer size of product description string
2660 \param serial Store serial string here if not NULL
2661 \param serial_len Buffer size of serial string
2662
2663 \retval 0: all fine
2664 \retval -1: ftdi context invalid
2665 \retval -2: ftdi eeprom buffer invalid
2666*/
2667int ftdi_eeprom_get_strings(struct ftdi_context *ftdi,
2668 char *manufacturer, int mnf_len,
2669 char *product, int prod_len,
2670 char *serial, int serial_len)
2671{
2672 struct ftdi_eeprom *eeprom;
2673
2674 if (ftdi == NULL)
2675 ftdi_error_return(-1, "No struct ftdi_context");
2676 if (ftdi->eeprom == NULL)
2677 ftdi_error_return(-2, "No struct ftdi_eeprom");
2678
2679 eeprom = ftdi->eeprom;
2680
2681 if (manufacturer)
2682 {
2683 strncpy(manufacturer, eeprom->manufacturer, mnf_len);
2684 if (mnf_len > 0)
2685 manufacturer[mnf_len - 1] = '\0';
2686 }
2687
2688 if (product)
2689 {
2690 strncpy(product, eeprom->product, prod_len);
2691 if (prod_len > 0)
2692 product[prod_len - 1] = '\0';
2693 }
2694
2695 if (serial)
2696 {
2697 strncpy(serial, eeprom->serial, serial_len);
2698 if (serial_len > 0)
2699 serial[serial_len - 1] = '\0';
2700 }
2701
2702 return 0;
2703}
2704
2705/*FTD2XX doesn't check for values not fitting in the ACBUS Signal options*/
2706void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2707{
2708 int i;
2709 for(i=0; i<5; i++)
2710 {
2711 int mode_low, mode_high;
2712 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2713 mode_low = CBUSH_TRISTATE;
2714 else
2715 mode_low = eeprom->cbus_function[2*i];
2716 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2717 mode_high = CBUSH_TRISTATE;
2718 else
2719 mode_high = eeprom->cbus_function[2*i+1];
2720
2721 output[0x18+i] = (mode_high <<4) | mode_low;
2722 }
2723}
2724/* Return the bits for the encoded EEPROM Structure of a requested Mode
2725 *
2726 */
2727static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2728{
2729 switch (chip)
2730 {
2731 case TYPE_2232H:
2732 case TYPE_2232C:
2733 {
2734 switch (type)
2735 {
2736 case CHANNEL_IS_UART: return 0;
2737 case CHANNEL_IS_FIFO: return 0x01;
2738 case CHANNEL_IS_OPTO: return 0x02;
2739 case CHANNEL_IS_CPU : return 0x04;
2740 default: return 0;
2741 }
2742 }
2743 case TYPE_232H:
2744 {
2745 switch (type)
2746 {
2747 case CHANNEL_IS_UART : return 0;
2748 case CHANNEL_IS_FIFO : return 0x01;
2749 case CHANNEL_IS_OPTO : return 0x02;
2750 case CHANNEL_IS_CPU : return 0x04;
2751 case CHANNEL_IS_FT1284 : return 0x08;
2752 default: return 0;
2753 }
2754 }
2755 case TYPE_R:
2756 {
2757 switch (type)
2758 {
2759 case CHANNEL_IS_UART : return 0;
2760 case CHANNEL_IS_FIFO : return 0x01;
2761 default: return 0;
2762 }
2763 }
2764 case TYPE_230X: /* FT230X is only UART */
2765 default: return 0;
2766 }
2767 return 0;
2768}
2769
2770/**
2771 Build binary buffer from ftdi_eeprom structure.
2772 Output is suitable for ftdi_write_eeprom().
2773
2774 \param ftdi pointer to ftdi_context
2775
2776 \retval >=0: size of eeprom user area in bytes
2777 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2778 \retval -2: Invalid eeprom or ftdi pointer
2779 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2780 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2781 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2782 \retval -6: No connected EEPROM or EEPROM Type unknown
2783*/
2784int ftdi_eeprom_build(struct ftdi_context *ftdi)
2785{
2786 unsigned char i, j, eeprom_size_mask;
2787 unsigned short checksum, value;
2788 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2789 int user_area_size, free_start, free_end;
2790 struct ftdi_eeprom *eeprom;
2791 unsigned char * output;
2792
2793 if (ftdi == NULL)
2794 ftdi_error_return(-2,"No context");
2795 if (ftdi->eeprom == NULL)
2796 ftdi_error_return(-2,"No eeprom structure");
2797
2798 eeprom= ftdi->eeprom;
2799 output = eeprom->buf;
2800
2801 if (eeprom->chip == -1)
2802 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2803
2804 if (eeprom->size == -1)
2805 {
2806 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2807 eeprom->size = 0x100;
2808 else
2809 eeprom->size = 0x80;
2810 }
2811
2812 if (eeprom->manufacturer != NULL)
2813 manufacturer_size = strlen(eeprom->manufacturer);
2814 if (eeprom->product != NULL)
2815 product_size = strlen(eeprom->product);
2816 if (eeprom->serial != NULL)
2817 serial_size = strlen(eeprom->serial);
2818
2819 // eeprom size check
2820 switch (ftdi->type)
2821 {
2822 case TYPE_AM:
2823 case TYPE_BM:
2824 case TYPE_R:
2825 user_area_size = 96; // base size for strings (total of 48 characters)
2826 break;
2827 case TYPE_2232C:
2828 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2829 break;
2830 case TYPE_230X:
2831 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2832 break;
2833 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2834 case TYPE_4232H:
2835 user_area_size = 86;
2836 break;
2837 case TYPE_232H:
2838 user_area_size = 80;
2839 break;
2840 default:
2841 user_area_size = 0;
2842 break;
2843 }
2844 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2845
2846 if (user_area_size < 0)
2847 ftdi_error_return(-1,"eeprom size exceeded");
2848
2849 // empty eeprom
2850 if (ftdi->type == TYPE_230X)
2851 {
2852 /* FT230X have a reserved section in the middle of the MTP,
2853 which cannot be written to, but must be included in the checksum */
2854 memset(ftdi->eeprom->buf, 0, 0x80);
2855 memset((ftdi->eeprom->buf + 0xa0), 0, (FTDI_MAX_EEPROM_SIZE - 0xa0));
2856 }
2857 else
2858 {
2859 memset(ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2860 }
2861
2862 // Bytes and Bits set for all Types
2863
2864 // Addr 02: Vendor ID
2865 output[0x02] = eeprom->vendor_id;
2866 output[0x03] = eeprom->vendor_id >> 8;
2867
2868 // Addr 04: Product ID
2869 output[0x04] = eeprom->product_id;
2870 output[0x05] = eeprom->product_id >> 8;
2871
2872 // Addr 06: Device release number (0400h for BM features)
2873 output[0x06] = eeprom->release_number;
2874 output[0x07] = eeprom->release_number >> 8;
2875
2876 // Addr 08: Config descriptor
2877 // Bit 7: always 1
2878 // Bit 6: 1 if this device is self powered, 0 if bus powered
2879 // Bit 5: 1 if this device uses remote wakeup
2880 // Bit 4-0: reserved - 0
2881 j = 0x80;
2882 if (eeprom->self_powered)
2883 j |= 0x40;
2884 if (eeprom->remote_wakeup)
2885 j |= 0x20;
2886 output[0x08] = j;
2887
2888 // Addr 09: Max power consumption: max power = value * 2 mA
2889 output[0x09] = eeprom->max_power / MAX_POWER_MILLIAMP_PER_UNIT;
2890
2891 if ((ftdi->type != TYPE_AM) && (ftdi->type != TYPE_230X))
2892 {
2893 // Addr 0A: Chip configuration
2894 // Bit 7: 0 - reserved
2895 // Bit 6: 0 - reserved
2896 // Bit 5: 0 - reserved
2897 // Bit 4: 1 - Change USB version
2898 // Bit 3: 1 - Use the serial number string
2899 // Bit 2: 1 - Enable suspend pull downs for lower power
2900 // Bit 1: 1 - Out EndPoint is Isochronous
2901 // Bit 0: 1 - In EndPoint is Isochronous
2902 //
2903 j = 0;
2904 if (eeprom->in_is_isochronous)
2905 j = j | 1;
2906 if (eeprom->out_is_isochronous)
2907 j = j | 2;
2908 output[0x0A] = j;
2909 }
2910
2911 // Dynamic content
2912 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2913 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2914 // 0xa0 (TYPE_232H)
2915 i = 0;
2916 switch (ftdi->type)
2917 {
2918 case TYPE_2232H:
2919 case TYPE_4232H:
2920 i += 2;
2921 case TYPE_R:
2922 i += 2;
2923 case TYPE_2232C:
2924 i += 2;
2925 case TYPE_AM:
2926 case TYPE_BM:
2927 i += 0x94;
2928 break;
2929 case TYPE_232H:
2930 case TYPE_230X:
2931 i = 0xa0;
2932 break;
2933 }
2934 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2935 eeprom_size_mask = eeprom->size -1;
2936 free_end = i & eeprom_size_mask;
2937
2938 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2939 // Addr 0F: Length of manufacturer string
2940 // Output manufacturer
2941 output[0x0E] = i; // calculate offset
2942 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2943 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2944 for (j = 0; j < manufacturer_size; j++)
2945 {
2946 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2947 output[i & eeprom_size_mask] = 0x00, i++;
2948 }
2949 output[0x0F] = manufacturer_size*2 + 2;
2950
2951 // Addr 10: Offset of the product string + 0x80, calculated later
2952 // Addr 11: Length of product string
2953 output[0x10] = i | 0x80; // calculate offset
2954 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2955 output[i & eeprom_size_mask] = 0x03, i++;
2956 for (j = 0; j < product_size; j++)
2957 {
2958 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2959 output[i & eeprom_size_mask] = 0x00, i++;
2960 }
2961 output[0x11] = product_size*2 + 2;
2962
2963 // Addr 12: Offset of the serial string + 0x80, calculated later
2964 // Addr 13: Length of serial string
2965 output[0x12] = i | 0x80; // calculate offset
2966 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2967 output[i & eeprom_size_mask] = 0x03, i++;
2968 for (j = 0; j < serial_size; j++)
2969 {
2970 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2971 output[i & eeprom_size_mask] = 0x00, i++;
2972 }
2973
2974 // Legacy port name and PnP fields for FT2232 and newer chips
2975 if (ftdi->type > TYPE_BM)
2976 {
2977 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2978 i++;
2979 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2980 i++;
2981 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2982 i++;
2983 }
2984
2985 output[0x13] = serial_size*2 + 2;
2986
2987 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2988 {
2989 if (eeprom->use_serial)
2990 output[0x0A] |= USE_SERIAL_NUM;
2991 else
2992 output[0x0A] &= ~USE_SERIAL_NUM;
2993 }
2994
2995 /* Bytes and Bits specific to (some) types
2996 Write linear, as this allows easier fixing*/
2997 switch (ftdi->type)
2998 {
2999 case TYPE_AM:
3000 break;
3001 case TYPE_BM:
3002 output[0x0C] = eeprom->usb_version & 0xff;
3003 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3004 if (eeprom->use_usb_version)
3005 output[0x0A] |= USE_USB_VERSION_BIT;
3006 else
3007 output[0x0A] &= ~USE_USB_VERSION_BIT;
3008
3009 break;
3010 case TYPE_2232C:
3011
3012 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
3013 if ( eeprom->channel_a_driver == DRIVER_VCP)
3014 output[0x00] |= DRIVER_VCP;
3015 else
3016 output[0x00] &= ~DRIVER_VCP;
3017
3018 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
3019 output[0x00] |= HIGH_CURRENT_DRIVE;
3020 else
3021 output[0x00] &= ~HIGH_CURRENT_DRIVE;
3022
3023 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
3024 if ( eeprom->channel_b_driver == DRIVER_VCP)
3025 output[0x01] |= DRIVER_VCP;
3026 else
3027 output[0x01] &= ~DRIVER_VCP;
3028
3029 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
3030 output[0x01] |= HIGH_CURRENT_DRIVE;
3031 else
3032 output[0x01] &= ~HIGH_CURRENT_DRIVE;
3033
3034 if (eeprom->in_is_isochronous)
3035 output[0x0A] |= 0x1;
3036 else
3037 output[0x0A] &= ~0x1;
3038 if (eeprom->out_is_isochronous)
3039 output[0x0A] |= 0x2;
3040 else
3041 output[0x0A] &= ~0x2;
3042 if (eeprom->suspend_pull_downs)
3043 output[0x0A] |= 0x4;
3044 else
3045 output[0x0A] &= ~0x4;
3046 if (eeprom->use_usb_version)
3047 output[0x0A] |= USE_USB_VERSION_BIT;
3048 else
3049 output[0x0A] &= ~USE_USB_VERSION_BIT;
3050
3051 output[0x0C] = eeprom->usb_version & 0xff;
3052 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3053 output[0x14] = eeprom->chip;
3054 break;
3055 case TYPE_R:
3056 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_R);
3057 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
3058 output[0x00] |= HIGH_CURRENT_DRIVE_R;
3059 if (eeprom->external_oscillator)
3060 output[0x00] |= 0x02;
3061 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
3062
3063 if (eeprom->suspend_pull_downs)
3064 output[0x0A] |= 0x4;
3065 else
3066 output[0x0A] &= ~0x4;
3067 output[0x0B] = eeprom->invert;
3068 output[0x0C] = eeprom->usb_version & 0xff;
3069 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3070
3071 if (eeprom->cbus_function[0] > CBUS_BB_RD)
3072 output[0x14] = CBUS_TXLED;
3073 else
3074 output[0x14] = eeprom->cbus_function[0];
3075
3076 if (eeprom->cbus_function[1] > CBUS_BB_RD)
3077 output[0x14] |= CBUS_RXLED<<4;
3078 else
3079 output[0x14] |= eeprom->cbus_function[1]<<4;
3080
3081 if (eeprom->cbus_function[2] > CBUS_BB_RD)
3082 output[0x15] = CBUS_TXDEN;
3083 else
3084 output[0x15] = eeprom->cbus_function[2];
3085
3086 if (eeprom->cbus_function[3] > CBUS_BB_RD)
3087 output[0x15] |= CBUS_PWREN<<4;
3088 else
3089 output[0x15] |= eeprom->cbus_function[3]<<4;
3090
3091 if (eeprom->cbus_function[4] > CBUS_CLK6)
3092 output[0x16] = CBUS_SLEEP;
3093 else
3094 output[0x16] = eeprom->cbus_function[4];
3095 break;
3096 case TYPE_2232H:
3097 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
3098 if ( eeprom->channel_a_driver == DRIVER_VCP)
3099 output[0x00] |= DRIVER_VCP;
3100 else
3101 output[0x00] &= ~DRIVER_VCP;
3102
3103 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
3104 if ( eeprom->channel_b_driver == DRIVER_VCP)
3105 output[0x01] |= DRIVER_VCP;
3106 else
3107 output[0x01] &= ~DRIVER_VCP;
3108 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
3109 output[0x01] |= SUSPEND_DBUS7_BIT;
3110 else
3111 output[0x01] &= ~SUSPEND_DBUS7_BIT;
3112
3113 if (eeprom->suspend_pull_downs)
3114 output[0x0A] |= 0x4;
3115 else
3116 output[0x0A] &= ~0x4;
3117
3118 if (eeprom->group0_drive > DRIVE_16MA)
3119 output[0x0c] |= DRIVE_16MA;
3120 else
3121 output[0x0c] |= eeprom->group0_drive;
3122 if (eeprom->group0_schmitt == IS_SCHMITT)
3123 output[0x0c] |= IS_SCHMITT;
3124 if (eeprom->group0_slew == SLOW_SLEW)
3125 output[0x0c] |= SLOW_SLEW;
3126
3127 if (eeprom->group1_drive > DRIVE_16MA)
3128 output[0x0c] |= DRIVE_16MA<<4;
3129 else
3130 output[0x0c] |= eeprom->group1_drive<<4;
3131 if (eeprom->group1_schmitt == IS_SCHMITT)
3132 output[0x0c] |= IS_SCHMITT<<4;
3133 if (eeprom->group1_slew == SLOW_SLEW)
3134 output[0x0c] |= SLOW_SLEW<<4;
3135
3136 if (eeprom->group2_drive > DRIVE_16MA)
3137 output[0x0d] |= DRIVE_16MA;
3138 else
3139 output[0x0d] |= eeprom->group2_drive;
3140 if (eeprom->group2_schmitt == IS_SCHMITT)
3141 output[0x0d] |= IS_SCHMITT;
3142 if (eeprom->group2_slew == SLOW_SLEW)
3143 output[0x0d] |= SLOW_SLEW;
3144
3145 if (eeprom->group3_drive > DRIVE_16MA)
3146 output[0x0d] |= DRIVE_16MA<<4;
3147 else
3148 output[0x0d] |= eeprom->group3_drive<<4;
3149 if (eeprom->group3_schmitt == IS_SCHMITT)
3150 output[0x0d] |= IS_SCHMITT<<4;
3151 if (eeprom->group3_slew == SLOW_SLEW)
3152 output[0x0d] |= SLOW_SLEW<<4;
3153
3154 output[0x18] = eeprom->chip;
3155
3156 break;
3157 case TYPE_4232H:
3158 if (eeprom->channel_a_driver == DRIVER_VCP)
3159 output[0x00] |= DRIVER_VCP;
3160 else
3161 output[0x00] &= ~DRIVER_VCP;
3162 if (eeprom->channel_b_driver == DRIVER_VCP)
3163 output[0x01] |= DRIVER_VCP;
3164 else
3165 output[0x01] &= ~DRIVER_VCP;
3166 if (eeprom->channel_c_driver == DRIVER_VCP)
3167 output[0x00] |= (DRIVER_VCP << 4);
3168 else
3169 output[0x00] &= ~(DRIVER_VCP << 4);
3170 if (eeprom->channel_d_driver == DRIVER_VCP)
3171 output[0x01] |= (DRIVER_VCP << 4);
3172 else
3173 output[0x01] &= ~(DRIVER_VCP << 4);
3174
3175 if (eeprom->suspend_pull_downs)
3176 output[0x0a] |= 0x4;
3177 else
3178 output[0x0a] &= ~0x4;
3179
3180 if (eeprom->channel_a_rs485enable)
3181 output[0x0b] |= CHANNEL_IS_RS485 << 0;
3182 else
3183 output[0x0b] &= ~(CHANNEL_IS_RS485 << 0);
3184 if (eeprom->channel_b_rs485enable)
3185 output[0x0b] |= CHANNEL_IS_RS485 << 1;
3186 else
3187 output[0x0b] &= ~(CHANNEL_IS_RS485 << 1);
3188 if (eeprom->channel_c_rs485enable)
3189 output[0x0b] |= CHANNEL_IS_RS485 << 2;
3190 else
3191 output[0x0b] &= ~(CHANNEL_IS_RS485 << 2);
3192 if (eeprom->channel_d_rs485enable)
3193 output[0x0b] |= CHANNEL_IS_RS485 << 3;
3194 else
3195 output[0x0b] &= ~(CHANNEL_IS_RS485 << 3);
3196
3197 if (eeprom->group0_drive > DRIVE_16MA)
3198 output[0x0c] |= DRIVE_16MA;
3199 else
3200 output[0x0c] |= eeprom->group0_drive;
3201 if (eeprom->group0_schmitt == IS_SCHMITT)
3202 output[0x0c] |= IS_SCHMITT;
3203 if (eeprom->group0_slew == SLOW_SLEW)
3204 output[0x0c] |= SLOW_SLEW;
3205
3206 if (eeprom->group1_drive > DRIVE_16MA)
3207 output[0x0c] |= DRIVE_16MA<<4;
3208 else
3209 output[0x0c] |= eeprom->group1_drive<<4;
3210 if (eeprom->group1_schmitt == IS_SCHMITT)
3211 output[0x0c] |= IS_SCHMITT<<4;
3212 if (eeprom->group1_slew == SLOW_SLEW)
3213 output[0x0c] |= SLOW_SLEW<<4;
3214
3215 if (eeprom->group2_drive > DRIVE_16MA)
3216 output[0x0d] |= DRIVE_16MA;
3217 else
3218 output[0x0d] |= eeprom->group2_drive;
3219 if (eeprom->group2_schmitt == IS_SCHMITT)
3220 output[0x0d] |= IS_SCHMITT;
3221 if (eeprom->group2_slew == SLOW_SLEW)
3222 output[0x0d] |= SLOW_SLEW;
3223
3224 if (eeprom->group3_drive > DRIVE_16MA)
3225 output[0x0d] |= DRIVE_16MA<<4;
3226 else
3227 output[0x0d] |= eeprom->group3_drive<<4;
3228 if (eeprom->group3_schmitt == IS_SCHMITT)
3229 output[0x0d] |= IS_SCHMITT<<4;
3230 if (eeprom->group3_slew == SLOW_SLEW)
3231 output[0x0d] |= SLOW_SLEW<<4;
3232
3233 output[0x18] = eeprom->chip;
3234
3235 break;
3236 case TYPE_232H:
3237 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
3238 if ( eeprom->channel_a_driver == DRIVER_VCP)
3239 output[0x00] |= DRIVER_VCPH;
3240 else
3241 output[0x00] &= ~DRIVER_VCPH;
3242 if (eeprom->powersave)
3243 output[0x01] |= POWER_SAVE_DISABLE_H;
3244 else
3245 output[0x01] &= ~POWER_SAVE_DISABLE_H;
3246
3247 if (eeprom->suspend_pull_downs)
3248 output[0x0a] |= 0x4;
3249 else
3250 output[0x0a] &= ~0x4;
3251
3252 if (eeprom->clock_polarity)
3253 output[0x01] |= FT1284_CLK_IDLE_STATE;
3254 else
3255 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
3256 if (eeprom->data_order)
3257 output[0x01] |= FT1284_DATA_LSB;
3258 else
3259 output[0x01] &= ~FT1284_DATA_LSB;
3260 if (eeprom->flow_control)
3261 output[0x01] |= FT1284_FLOW_CONTROL;
3262 else
3263 output[0x01] &= ~FT1284_FLOW_CONTROL;
3264 if (eeprom->group0_drive > DRIVE_16MA)
3265 output[0x0c] |= DRIVE_16MA;
3266 else
3267 output[0x0c] |= eeprom->group0_drive;
3268 if (eeprom->group0_schmitt == IS_SCHMITT)
3269 output[0x0c] |= IS_SCHMITT;
3270 if (eeprom->group0_slew == SLOW_SLEW)
3271 output[0x0c] |= SLOW_SLEW;
3272
3273 if (eeprom->group1_drive > DRIVE_16MA)
3274 output[0x0d] |= DRIVE_16MA;
3275 else
3276 output[0x0d] |= eeprom->group1_drive;
3277 if (eeprom->group1_schmitt == IS_SCHMITT)
3278 output[0x0d] |= IS_SCHMITT;
3279 if (eeprom->group1_slew == SLOW_SLEW)
3280 output[0x0d] |= SLOW_SLEW;
3281
3282 set_ft232h_cbus(eeprom, output);
3283
3284 output[0x1e] = eeprom->chip;
3285 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
3286 break;
3287 case TYPE_230X:
3288 output[0x00] = 0x80; /* Actually, leave the default value */
3289 /*FIXME: Make DBUS & CBUS Control configurable*/
3290 output[0x0c] = 0; /* DBUS drive 4mA, CBUS drive 4 mA like factory default */
3291 for (j = 0; j <= 6; j++)
3292 {
3293 output[0x1a + j] = eeprom->cbus_function[j];
3294 }
3295 output[0x0b] = eeprom->invert;
3296 break;
3297 }
3298
3299 /* First address without use */
3300 free_start = 0;
3301 switch (ftdi->type)
3302 {
3303 case TYPE_230X:
3304 free_start += 2;
3305 case TYPE_232H:
3306 free_start += 6;
3307 case TYPE_2232H:
3308 case TYPE_4232H:
3309 free_start += 2;
3310 case TYPE_R:
3311 free_start += 2;
3312 case TYPE_2232C:
3313 free_start++;
3314 case TYPE_AM:
3315 case TYPE_BM:
3316 free_start += 0x14;
3317 }
3318
3319 /* Arbitrary user data */
3320 if (eeprom->user_data && eeprom->user_data_size >= 0)
3321 {
3322 if (eeprom->user_data_addr < free_start)
3323 fprintf(stderr,"Warning, user data starts inside the generated data!\n");
3324 if (eeprom->user_data_addr + eeprom->user_data_size >= free_end)
3325 fprintf(stderr,"Warning, user data overlaps the strings area!\n");
3326 if (eeprom->user_data_addr + eeprom->user_data_size > eeprom->size)
3327 ftdi_error_return(-1,"eeprom size exceeded");
3328 memcpy(output + eeprom->user_data_addr, eeprom->user_data, eeprom->user_data_size);
3329 }
3330
3331 // calculate checksum
3332 checksum = 0xAAAA;
3333
3334 for (i = 0; i < eeprom->size/2-1; i++)
3335 {
3336 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3337 {
3338 /* FT230X has a user section in the MTP which is not part of the checksum */
3339 i = 0x40;
3340 }
3341 if ((ftdi->type == TYPE_230X) && (i >= 0x40) && (i < 0x50)) {
3342 uint16_t data;
3343 if (ftdi_read_eeprom_location(ftdi, i, &data)) {
3344 fprintf(stderr, "Reading Factory Configuration Data failed\n");
3345 i = 0x50;
3346 }
3347 value = data;
3348 }
3349 else {
3350 value = output[i*2];
3351 value += output[(i*2)+1] << 8;
3352 }
3353 checksum = value^checksum;
3354 checksum = (checksum << 1) | (checksum >> 15);
3355 }
3356
3357 output[eeprom->size-2] = checksum;
3358 output[eeprom->size-1] = checksum >> 8;
3359
3360 eeprom->initialized_for_connected_device = 1;
3361 return user_area_size;
3362}
3363/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
3364 * EEPROM structure
3365 *
3366 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
3367 */
3368static unsigned char bit2type(unsigned char bits)
3369{
3370 switch (bits)
3371 {
3372 case 0: return CHANNEL_IS_UART;
3373 case 1: return CHANNEL_IS_FIFO;
3374 case 2: return CHANNEL_IS_OPTO;
3375 case 4: return CHANNEL_IS_CPU;
3376 case 8: return CHANNEL_IS_FT1284;
3377 default:
3378 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
3379 bits);
3380 }
3381 return 0;
3382}
3383/* Decode 230X / 232R type chips invert bits
3384 * Prints directly to stdout.
3385*/
3386static void print_inverted_bits(int invert)
3387{
3388 const char *r_bits[] = {"TXD","RXD","RTS","CTS","DTR","DSR","DCD","RI"};
3389 int i;
3390
3391 fprintf(stdout,"Inverted bits:");
3392 for (i=0; i<8; i++)
3393 if ((invert & (1<<i)) == (1<<i))
3394 fprintf(stdout," %s",r_bits[i]);
3395
3396 fprintf(stdout,"\n");
3397}
3398/**
3399 Decode binary EEPROM image into an ftdi_eeprom structure.
3400
3401 For FT-X devices use AN_201 FT-X MTP memory Configuration to decode.
3402
3403 \param ftdi pointer to ftdi_context
3404 \param verbose Decode EEPROM on stdout
3405
3406 \retval 0: all fine
3407 \retval -1: something went wrong
3408
3409 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
3410 FIXME: Strings are malloc'ed here and should be freed somewhere
3411*/
3412int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
3413{
3414 int i, j;
3415 unsigned short checksum, eeprom_checksum, value;
3416 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
3417 int eeprom_size;
3418 struct ftdi_eeprom *eeprom;
3419 unsigned char *buf = NULL;
3420
3421 if (ftdi == NULL)
3422 ftdi_error_return(-1,"No context");
3423 if (ftdi->eeprom == NULL)
3424 ftdi_error_return(-1,"No eeprom structure");
3425
3426 eeprom = ftdi->eeprom;
3427 eeprom_size = eeprom->size;
3428 buf = ftdi->eeprom->buf;
3429
3430 // Addr 02: Vendor ID
3431 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
3432
3433 // Addr 04: Product ID
3434 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
3435
3436 // Addr 06: Device release number
3437 eeprom->release_number = buf[0x06] + (buf[0x07]<<8);
3438
3439 // Addr 08: Config descriptor
3440 // Bit 7: always 1
3441 // Bit 6: 1 if this device is self powered, 0 if bus powered
3442 // Bit 5: 1 if this device uses remote wakeup
3443 eeprom->self_powered = buf[0x08] & 0x40;
3444 eeprom->remote_wakeup = buf[0x08] & 0x20;
3445
3446 // Addr 09: Max power consumption: max power = value * 2 mA
3447 eeprom->max_power = MAX_POWER_MILLIAMP_PER_UNIT * buf[0x09];
3448
3449 // Addr 0A: Chip configuration
3450 // Bit 7: 0 - reserved
3451 // Bit 6: 0 - reserved
3452 // Bit 5: 0 - reserved
3453 // Bit 4: 1 - Change USB version on BM and 2232C
3454 // Bit 3: 1 - Use the serial number string
3455 // Bit 2: 1 - Enable suspend pull downs for lower power
3456 // Bit 1: 1 - Out EndPoint is Isochronous
3457 // Bit 0: 1 - In EndPoint is Isochronous
3458 //
3459 eeprom->in_is_isochronous = buf[0x0A]&0x01;
3460 eeprom->out_is_isochronous = buf[0x0A]&0x02;
3461 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
3462 eeprom->use_serial = !!(buf[0x0A] & USE_SERIAL_NUM);
3463 eeprom->use_usb_version = !!(buf[0x0A] & USE_USB_VERSION_BIT);
3464
3465 // Addr 0C: USB version low byte when 0x0A
3466 // Addr 0D: USB version high byte when 0x0A
3467 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
3468
3469 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3470 // Addr 0F: Length of manufacturer string
3471 manufacturer_size = buf[0x0F]/2;
3472 if (eeprom->manufacturer)
3473 free(eeprom->manufacturer);
3474 if (manufacturer_size > 0)
3475 {
3476 eeprom->manufacturer = (char *)malloc(manufacturer_size);
3477 if (eeprom->manufacturer)
3478 {
3479 // Decode manufacturer
3480 i = buf[0x0E] & (eeprom_size -1); // offset
3481 for (j=0; j<manufacturer_size-1; j++)
3482 {
3483 eeprom->manufacturer[j] = buf[2*j+i+2];
3484 }
3485 eeprom->manufacturer[j] = '\0';
3486 }
3487 }
3488 else eeprom->manufacturer = NULL;
3489
3490 // Addr 10: Offset of the product string + 0x80, calculated later
3491 // Addr 11: Length of product string
3492 if (eeprom->product)
3493 free(eeprom->product);
3494 product_size = buf[0x11]/2;
3495 if (product_size > 0)
3496 {
3497 eeprom->product = (char *)malloc(product_size);
3498 if (eeprom->product)
3499 {
3500 // Decode product name
3501 i = buf[0x10] & (eeprom_size -1); // offset
3502 for (j=0; j<product_size-1; j++)
3503 {
3504 eeprom->product[j] = buf[2*j+i+2];
3505 }
3506 eeprom->product[j] = '\0';
3507 }
3508 }
3509 else eeprom->product = NULL;
3510
3511 // Addr 12: Offset of the serial string + 0x80, calculated later
3512 // Addr 13: Length of serial string
3513 if (eeprom->serial)
3514 free(eeprom->serial);
3515 serial_size = buf[0x13]/2;
3516 if (serial_size > 0)
3517 {
3518 eeprom->serial = (char *)malloc(serial_size);
3519 if (eeprom->serial)
3520 {
3521 // Decode serial
3522 i = buf[0x12] & (eeprom_size -1); // offset
3523 for (j=0; j<serial_size-1; j++)
3524 {
3525 eeprom->serial[j] = buf[2*j+i+2];
3526 }
3527 eeprom->serial[j] = '\0';
3528 }
3529 }
3530 else eeprom->serial = NULL;
3531
3532 // verify checksum
3533 checksum = 0xAAAA;
3534
3535 for (i = 0; i < eeprom_size/2-1; i++)
3536 {
3537 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3538 {
3539 /* FT230X has a user section in the MTP which is not part of the checksum */
3540 i = 0x40;
3541 }
3542 value = buf[i*2];
3543 value += buf[(i*2)+1] << 8;
3544
3545 checksum = value^checksum;
3546 checksum = (checksum << 1) | (checksum >> 15);
3547 }
3548
3549 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3550
3551 if (eeprom_checksum != checksum)
3552 {
3553 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
3554 ftdi_error_return(-1,"EEPROM checksum error");
3555 }
3556
3557 eeprom->channel_a_type = 0;
3558 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
3559 {
3560 eeprom->chip = -1;
3561 }
3562 else if (ftdi->type == TYPE_2232C)
3563 {
3564 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3565 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3566 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
3567 eeprom->channel_b_type = buf[0x01] & 0x7;
3568 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3569 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
3570 eeprom->chip = buf[0x14];
3571 }
3572 else if (ftdi->type == TYPE_R)
3573 {
3574 /* TYPE_R flags D2XX, not VCP as all others*/
3575 eeprom->channel_a_driver = ~buf[0x00] & DRIVER_VCP;
3576 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
3577 eeprom->external_oscillator = buf[0x00] & 0x02;
3578 if ( (buf[0x01]&0x40) != 0x40)
3579 fprintf(stderr,
3580 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3581 " If this happened with the\n"
3582 " EEPROM programmed by FTDI tools, please report "
3583 "to libftdi@developer.intra2net.com\n");
3584
3585 eeprom->chip = buf[0x16];
3586 // Addr 0B: Invert data lines
3587 // Works only on FT232R, not FT245R, but no way to distinguish
3588 eeprom->invert = buf[0x0B];
3589 // Addr 14: CBUS function: CBUS0, CBUS1
3590 // Addr 15: CBUS function: CBUS2, CBUS3
3591 // Addr 16: CBUS function: CBUS5
3592 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3593 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3594 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3595 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3596 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
3597 }
3598 else if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3599 {
3600 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3601 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3602
3603 if (ftdi->type == TYPE_2232H)
3604 {
3605 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3606 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3607 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
3608 }
3609 else
3610 {
3611 eeprom->channel_c_driver = (buf[0x00] >> 4) & DRIVER_VCP;
3612 eeprom->channel_d_driver = (buf[0x01] >> 4) & DRIVER_VCP;
3613 eeprom->channel_a_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 0);
3614 eeprom->channel_b_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 1);
3615 eeprom->channel_c_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 2);
3616 eeprom->channel_d_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 3);
3617 }
3618
3619 eeprom->chip = buf[0x18];
3620 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3621 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3622 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3623 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3624 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3625 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3626 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3627 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3628 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3629 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3630 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3631 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
3632 }
3633 else if (ftdi->type == TYPE_232H)
3634 {
3635 eeprom->channel_a_type = buf[0x00] & 0xf;
3636 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
3637 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3638 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3639 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
3640 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
3641 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3642 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3643 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3644 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3645 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3646 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3647
3648 for(i=0; i<5; i++)
3649 {
3650 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3651 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3652 }
3653 eeprom->chip = buf[0x1e];
3654 /*FIXME: Decipher more values*/
3655 }
3656 else if (ftdi->type == TYPE_230X)
3657 {
3658 for(i=0; i<4; i++)
3659 {
3660 eeprom->cbus_function[i] = buf[0x1a + i] & 0xFF;
3661 }
3662 eeprom->group0_drive = buf[0x0c] & 0x03;
3663 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3664 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3665 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x03;
3666 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3667 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3668
3669 eeprom->invert = buf[0xb];
3670 }
3671
3672 if (verbose)
3673 {
3674 const char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3675 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3676 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3677 fprintf(stdout, "Release: 0x%04x\n",eeprom->release_number);
3678
3679 if (eeprom->self_powered)
3680 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3681 else
3682 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power,
3683 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3684 if (eeprom->manufacturer)
3685 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3686 if (eeprom->product)
3687 fprintf(stdout, "Product: %s\n",eeprom->product);
3688 if (eeprom->serial)
3689 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3690 fprintf(stdout, "Checksum : %04x\n", checksum);
3691 if (ftdi->type == TYPE_R) {
3692 fprintf(stdout, "Internal EEPROM\n");
3693 fprintf(stdout,"Oscillator: %s\n", eeprom->external_oscillator?"External":"Internal");
3694 }
3695 else if (eeprom->chip >= 0x46)
3696 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3697 if (eeprom->suspend_dbus7)
3698 fprintf(stdout, "Suspend on DBUS7\n");
3699 if (eeprom->suspend_pull_downs)
3700 fprintf(stdout, "Pull IO pins low during suspend\n");
3701 if(eeprom->powersave)
3702 {
3703 if(ftdi->type >= TYPE_232H)
3704 fprintf(stdout,"Enter low power state on ACBUS7\n");
3705 }
3706 if (eeprom->remote_wakeup)
3707 fprintf(stdout, "Enable Remote Wake Up\n");
3708 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3709 if (ftdi->type >= TYPE_2232C)
3710 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3711 channel_mode[eeprom->channel_a_type],
3712 (eeprom->channel_a_driver)?" VCP":"",
3713 (eeprom->high_current_a)?" High Current IO":"");
3714 if (ftdi->type == TYPE_232H)
3715 {
3716 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3717 (eeprom->clock_polarity)?"HIGH":"LOW",
3718 (eeprom->data_order)?"LSB":"MSB",
3719 (eeprom->flow_control)?"":"No ");
3720 }
3721 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3722 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3723 channel_mode[eeprom->channel_b_type],
3724 (eeprom->channel_b_driver)?" VCP":"",
3725 (eeprom->high_current_b)?" High Current IO":"");
3726 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3727 eeprom->use_usb_version)
3728 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3729
3730 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3731 {
3732 fprintf(stdout,"%s has %d mA drive%s%s\n",
3733 (ftdi->type == TYPE_2232H)?"AL":"A",
3734 (eeprom->group0_drive+1) *4,
3735 (eeprom->group0_schmitt)?" Schmitt Input":"",
3736 (eeprom->group0_slew)?" Slow Slew":"");
3737 fprintf(stdout,"%s has %d mA drive%s%s\n",
3738 (ftdi->type == TYPE_2232H)?"AH":"B",
3739 (eeprom->group1_drive+1) *4,
3740 (eeprom->group1_schmitt)?" Schmitt Input":"",
3741 (eeprom->group1_slew)?" Slow Slew":"");
3742 fprintf(stdout,"%s has %d mA drive%s%s\n",
3743 (ftdi->type == TYPE_2232H)?"BL":"C",
3744 (eeprom->group2_drive+1) *4,
3745 (eeprom->group2_schmitt)?" Schmitt Input":"",
3746 (eeprom->group2_slew)?" Slow Slew":"");
3747 fprintf(stdout,"%s has %d mA drive%s%s\n",
3748 (ftdi->type == TYPE_2232H)?"BH":"D",
3749 (eeprom->group3_drive+1) *4,
3750 (eeprom->group3_schmitt)?" Schmitt Input":"",
3751 (eeprom->group3_slew)?" Slow Slew":"");
3752 }
3753 else if (ftdi->type == TYPE_232H)
3754 {
3755 const char *cbush_mux[] = {"TRISTATE","TXLED","RXLED", "TXRXLED","PWREN",
3756 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3757 "CLK30","CLK15","CLK7_5"
3758 };
3759 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3760 (eeprom->group0_drive+1) *4,
3761 (eeprom->group0_schmitt)?" Schmitt Input":"",
3762 (eeprom->group0_slew)?" Slow Slew":"");
3763 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3764 (eeprom->group1_drive+1) *4,
3765 (eeprom->group1_schmitt)?" Schmitt Input":"",
3766 (eeprom->group1_slew)?" Slow Slew":"");
3767 for (i=0; i<10; i++)
3768 {
3769 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3770 fprintf(stdout,"C%d Function: %s\n", i,
3771 cbush_mux[eeprom->cbus_function[i]]);
3772 }
3773 }
3774 else if (ftdi->type == TYPE_230X)
3775 {
3776 const char *cbusx_mux[] = {"TRISTATE","TXLED","RXLED", "TXRXLED","PWREN",
3777 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3778 "CLK24","CLK12","CLK6","BAT_DETECT","BAT_DETECT#",
3779 "I2C_TXE#", "I2C_RXF#", "VBUS_SENSE", "BB_WR#",
3780 "BBRD#", "TIME_STAMP", "AWAKE#",
3781 };
3782 fprintf(stdout,"DBUS has %d mA drive%s%s\n",
3783 (eeprom->group0_drive+1) *4,
3784 (eeprom->group0_schmitt)?" Schmitt Input":"",
3785 (eeprom->group0_slew)?" Slow Slew":"");
3786 fprintf(stdout,"CBUS has %d mA drive%s%s\n",
3787 (eeprom->group1_drive+1) *4,
3788 (eeprom->group1_schmitt)?" Schmitt Input":"",
3789 (eeprom->group1_slew)?" Slow Slew":"");
3790 for (i=0; i<4; i++)
3791 {
3792 if (eeprom->cbus_function[i]<= CBUSX_AWAKE)
3793 fprintf(stdout,"CBUS%d Function: %s\n", i, cbusx_mux[eeprom->cbus_function[i]]);
3794 }
3795
3796 if (eeprom->invert)
3797 print_inverted_bits(eeprom->invert);
3798 }
3799
3800 if (ftdi->type == TYPE_R)
3801 {
3802 const char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3803 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3804 "IOMODE","BB_WR","BB_RD"
3805 };
3806 const char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3807
3808 if (eeprom->invert)
3809 print_inverted_bits(eeprom->invert);
3810
3811 for (i=0; i<5; i++)
3812 {
3813 if (eeprom->cbus_function[i]<=CBUS_BB_RD)
3814 fprintf(stdout,"C%d Function: %s\n", i,
3815 cbus_mux[eeprom->cbus_function[i]]);
3816 else
3817 {
3818 if (i < 4)
3819 /* Running MPROG show that C0..3 have fixed function Synchronous
3820 Bit Bang mode */
3821 fprintf(stdout,"C%d BB Function: %s\n", i,
3822 cbus_BB[i]);
3823 else
3824 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3825 }
3826 }
3827 }
3828 }
3829 return 0;
3830}
3831
3832/**
3833 Get a value from the decoded EEPROM structure
3834
3835 \param ftdi pointer to ftdi_context
3836 \param value_name Enum of the value to query
3837 \param value Pointer to store read value
3838
3839 \retval 0: all fine
3840 \retval -1: Value doesn't exist
3841*/
3842int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3843{
3844 switch (value_name)
3845 {
3846 case VENDOR_ID:
3847 *value = ftdi->eeprom->vendor_id;
3848 break;
3849 case PRODUCT_ID:
3850 *value = ftdi->eeprom->product_id;
3851 break;
3852 case RELEASE_NUMBER:
3853 *value = ftdi->eeprom->release_number;
3854 break;
3855 case SELF_POWERED:
3856 *value = ftdi->eeprom->self_powered;
3857 break;
3858 case REMOTE_WAKEUP:
3859 *value = ftdi->eeprom->remote_wakeup;
3860 break;
3861 case IS_NOT_PNP:
3862 *value = ftdi->eeprom->is_not_pnp;
3863 break;
3864 case SUSPEND_DBUS7:
3865 *value = ftdi->eeprom->suspend_dbus7;
3866 break;
3867 case IN_IS_ISOCHRONOUS:
3868 *value = ftdi->eeprom->in_is_isochronous;
3869 break;
3870 case OUT_IS_ISOCHRONOUS:
3871 *value = ftdi->eeprom->out_is_isochronous;
3872 break;
3873 case SUSPEND_PULL_DOWNS:
3874 *value = ftdi->eeprom->suspend_pull_downs;
3875 break;
3876 case USE_SERIAL:
3877 *value = ftdi->eeprom->use_serial;
3878 break;
3879 case USB_VERSION:
3880 *value = ftdi->eeprom->usb_version;
3881 break;
3882 case USE_USB_VERSION:
3883 *value = ftdi->eeprom->use_usb_version;
3884 break;
3885 case MAX_POWER:
3886 *value = ftdi->eeprom->max_power;
3887 break;
3888 case CHANNEL_A_TYPE:
3889 *value = ftdi->eeprom->channel_a_type;
3890 break;
3891 case CHANNEL_B_TYPE:
3892 *value = ftdi->eeprom->channel_b_type;
3893 break;
3894 case CHANNEL_A_DRIVER:
3895 *value = ftdi->eeprom->channel_a_driver;
3896 break;
3897 case CHANNEL_B_DRIVER:
3898 *value = ftdi->eeprom->channel_b_driver;
3899 break;
3900 case CHANNEL_C_DRIVER:
3901 *value = ftdi->eeprom->channel_c_driver;
3902 break;
3903 case CHANNEL_D_DRIVER:
3904 *value = ftdi->eeprom->channel_d_driver;
3905 break;
3906 case CHANNEL_A_RS485:
3907 *value = ftdi->eeprom->channel_a_rs485enable;
3908 break;
3909 case CHANNEL_B_RS485:
3910 *value = ftdi->eeprom->channel_b_rs485enable;
3911 break;
3912 case CHANNEL_C_RS485:
3913 *value = ftdi->eeprom->channel_c_rs485enable;
3914 break;
3915 case CHANNEL_D_RS485:
3916 *value = ftdi->eeprom->channel_d_rs485enable;
3917 break;
3918 case CBUS_FUNCTION_0:
3919 *value = ftdi->eeprom->cbus_function[0];
3920 break;
3921 case CBUS_FUNCTION_1:
3922 *value = ftdi->eeprom->cbus_function[1];
3923 break;
3924 case CBUS_FUNCTION_2:
3925 *value = ftdi->eeprom->cbus_function[2];
3926 break;
3927 case CBUS_FUNCTION_3:
3928 *value = ftdi->eeprom->cbus_function[3];
3929 break;
3930 case CBUS_FUNCTION_4:
3931 *value = ftdi->eeprom->cbus_function[4];
3932 break;
3933 case CBUS_FUNCTION_5:
3934 *value = ftdi->eeprom->cbus_function[5];
3935 break;
3936 case CBUS_FUNCTION_6:
3937 *value = ftdi->eeprom->cbus_function[6];
3938 break;
3939 case CBUS_FUNCTION_7:
3940 *value = ftdi->eeprom->cbus_function[7];
3941 break;
3942 case CBUS_FUNCTION_8:
3943 *value = ftdi->eeprom->cbus_function[8];
3944 break;
3945 case CBUS_FUNCTION_9:
3946 *value = ftdi->eeprom->cbus_function[9];
3947 break;
3948 case HIGH_CURRENT:
3949 *value = ftdi->eeprom->high_current;
3950 break;
3951 case HIGH_CURRENT_A:
3952 *value = ftdi->eeprom->high_current_a;
3953 break;
3954 case HIGH_CURRENT_B:
3955 *value = ftdi->eeprom->high_current_b;
3956 break;
3957 case INVERT:
3958 *value = ftdi->eeprom->invert;
3959 break;
3960 case GROUP0_DRIVE:
3961 *value = ftdi->eeprom->group0_drive;
3962 break;
3963 case GROUP0_SCHMITT:
3964 *value = ftdi->eeprom->group0_schmitt;
3965 break;
3966 case GROUP0_SLEW:
3967 *value = ftdi->eeprom->group0_slew;
3968 break;
3969 case GROUP1_DRIVE:
3970 *value = ftdi->eeprom->group1_drive;
3971 break;
3972 case GROUP1_SCHMITT:
3973 *value = ftdi->eeprom->group1_schmitt;
3974 break;
3975 case GROUP1_SLEW:
3976 *value = ftdi->eeprom->group1_slew;
3977 break;
3978 case GROUP2_DRIVE:
3979 *value = ftdi->eeprom->group2_drive;
3980 break;
3981 case GROUP2_SCHMITT:
3982 *value = ftdi->eeprom->group2_schmitt;
3983 break;
3984 case GROUP2_SLEW:
3985 *value = ftdi->eeprom->group2_slew;
3986 break;
3987 case GROUP3_DRIVE:
3988 *value = ftdi->eeprom->group3_drive;
3989 break;
3990 case GROUP3_SCHMITT:
3991 *value = ftdi->eeprom->group3_schmitt;
3992 break;
3993 case GROUP3_SLEW:
3994 *value = ftdi->eeprom->group3_slew;
3995 break;
3996 case POWER_SAVE:
3997 *value = ftdi->eeprom->powersave;
3998 break;
3999 case CLOCK_POLARITY:
4000 *value = ftdi->eeprom->clock_polarity;
4001 break;
4002 case DATA_ORDER:
4003 *value = ftdi->eeprom->data_order;
4004 break;
4005 case FLOW_CONTROL:
4006 *value = ftdi->eeprom->flow_control;
4007 break;
4008 case CHIP_TYPE:
4009 *value = ftdi->eeprom->chip;
4010 break;
4011 case CHIP_SIZE:
4012 *value = ftdi->eeprom->size;
4013 break;
4014 case EXTERNAL_OSCILLATOR:
4015 *value = ftdi->eeprom->external_oscillator;
4016 break;
4017 default:
4018 ftdi_error_return(-1, "Request for unknown EEPROM value");
4019 }
4020 return 0;
4021}
4022
4023/**
4024 Set a value in the decoded EEPROM Structure
4025 No parameter checking is performed
4026
4027 \param ftdi pointer to ftdi_context
4028 \param value_name Enum of the value to set
4029 \param value to set
4030
4031 \retval 0: all fine
4032 \retval -1: Value doesn't exist
4033 \retval -2: Value not user settable
4034*/
4035int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
4036{
4037 switch (value_name)
4038 {
4039 case VENDOR_ID:
4040 ftdi->eeprom->vendor_id = value;
4041 break;
4042 case PRODUCT_ID:
4043 ftdi->eeprom->product_id = value;
4044 break;
4045 case RELEASE_NUMBER:
4046 ftdi->eeprom->release_number = value;
4047 break;
4048 case SELF_POWERED:
4049 ftdi->eeprom->self_powered = value;
4050 break;
4051 case REMOTE_WAKEUP:
4052 ftdi->eeprom->remote_wakeup = value;
4053 break;
4054 case IS_NOT_PNP:
4055 ftdi->eeprom->is_not_pnp = value;
4056 break;
4057 case SUSPEND_DBUS7:
4058 ftdi->eeprom->suspend_dbus7 = value;
4059 break;
4060 case IN_IS_ISOCHRONOUS:
4061 ftdi->eeprom->in_is_isochronous = value;
4062 break;
4063 case OUT_IS_ISOCHRONOUS:
4064 ftdi->eeprom->out_is_isochronous = value;
4065 break;
4066 case SUSPEND_PULL_DOWNS:
4067 ftdi->eeprom->suspend_pull_downs = value;
4068 break;
4069 case USE_SERIAL:
4070 ftdi->eeprom->use_serial = value;
4071 break;
4072 case USB_VERSION:
4073 ftdi->eeprom->usb_version = value;
4074 break;
4075 case USE_USB_VERSION:
4076 ftdi->eeprom->use_usb_version = value;
4077 break;
4078 case MAX_POWER:
4079 ftdi->eeprom->max_power = value;
4080 break;
4081 case CHANNEL_A_TYPE:
4082 ftdi->eeprom->channel_a_type = value;
4083 break;
4084 case CHANNEL_B_TYPE:
4085 ftdi->eeprom->channel_b_type = value;
4086 break;
4087 case CHANNEL_A_DRIVER:
4088 ftdi->eeprom->channel_a_driver = value;
4089 break;
4090 case CHANNEL_B_DRIVER:
4091 ftdi->eeprom->channel_b_driver = value;
4092 break;
4093 case CHANNEL_C_DRIVER:
4094 ftdi->eeprom->channel_c_driver = value;
4095 break;
4096 case CHANNEL_D_DRIVER:
4097 ftdi->eeprom->channel_d_driver = value;
4098 break;
4099 case CHANNEL_A_RS485:
4100 ftdi->eeprom->channel_a_rs485enable = value;
4101 break;
4102 case CHANNEL_B_RS485:
4103 ftdi->eeprom->channel_b_rs485enable = value;
4104 break;
4105 case CHANNEL_C_RS485:
4106 ftdi->eeprom->channel_c_rs485enable = value;
4107 break;
4108 case CHANNEL_D_RS485:
4109 ftdi->eeprom->channel_d_rs485enable = value;
4110 break;
4111 case CBUS_FUNCTION_0:
4112 ftdi->eeprom->cbus_function[0] = value;
4113 break;
4114 case CBUS_FUNCTION_1:
4115 ftdi->eeprom->cbus_function[1] = value;
4116 break;
4117 case CBUS_FUNCTION_2:
4118 ftdi->eeprom->cbus_function[2] = value;
4119 break;
4120 case CBUS_FUNCTION_3:
4121 ftdi->eeprom->cbus_function[3] = value;
4122 break;
4123 case CBUS_FUNCTION_4:
4124 ftdi->eeprom->cbus_function[4] = value;
4125 break;
4126 case CBUS_FUNCTION_5:
4127 ftdi->eeprom->cbus_function[5] = value;
4128 break;
4129 case CBUS_FUNCTION_6:
4130 ftdi->eeprom->cbus_function[6] = value;
4131 break;
4132 case CBUS_FUNCTION_7:
4133 ftdi->eeprom->cbus_function[7] = value;
4134 break;
4135 case CBUS_FUNCTION_8:
4136 ftdi->eeprom->cbus_function[8] = value;
4137 break;
4138 case CBUS_FUNCTION_9:
4139 ftdi->eeprom->cbus_function[9] = value;
4140 break;
4141 case HIGH_CURRENT:
4142 ftdi->eeprom->high_current = value;
4143 break;
4144 case HIGH_CURRENT_A:
4145 ftdi->eeprom->high_current_a = value;
4146 break;
4147 case HIGH_CURRENT_B:
4148 ftdi->eeprom->high_current_b = value;
4149 break;
4150 case INVERT:
4151 ftdi->eeprom->invert = value;
4152 break;
4153 case GROUP0_DRIVE:
4154 ftdi->eeprom->group0_drive = value;
4155 break;
4156 case GROUP0_SCHMITT:
4157 ftdi->eeprom->group0_schmitt = value;
4158 break;
4159 case GROUP0_SLEW:
4160 ftdi->eeprom->group0_slew = value;
4161 break;
4162 case GROUP1_DRIVE:
4163 ftdi->eeprom->group1_drive = value;
4164 break;
4165 case GROUP1_SCHMITT:
4166 ftdi->eeprom->group1_schmitt = value;
4167 break;
4168 case GROUP1_SLEW:
4169 ftdi->eeprom->group1_slew = value;
4170 break;
4171 case GROUP2_DRIVE:
4172 ftdi->eeprom->group2_drive = value;
4173 break;
4174 case GROUP2_SCHMITT:
4175 ftdi->eeprom->group2_schmitt = value;
4176 break;
4177 case GROUP2_SLEW:
4178 ftdi->eeprom->group2_slew = value;
4179 break;
4180 case GROUP3_DRIVE:
4181 ftdi->eeprom->group3_drive = value;
4182 break;
4183 case GROUP3_SCHMITT:
4184 ftdi->eeprom->group3_schmitt = value;
4185 break;
4186 case GROUP3_SLEW:
4187 ftdi->eeprom->group3_slew = value;
4188 break;
4189 case CHIP_TYPE:
4190 ftdi->eeprom->chip = value;
4191 break;
4192 case POWER_SAVE:
4193 ftdi->eeprom->powersave = value;
4194 break;
4195 case CLOCK_POLARITY:
4196 ftdi->eeprom->clock_polarity = value;
4197 break;
4198 case DATA_ORDER:
4199 ftdi->eeprom->data_order = value;
4200 break;
4201 case FLOW_CONTROL:
4202 ftdi->eeprom->flow_control = value;
4203 break;
4204 case CHIP_SIZE:
4205 ftdi_error_return(-2, "EEPROM Value can't be changed");
4206 break;
4207 case EXTERNAL_OSCILLATOR:
4208 ftdi->eeprom->external_oscillator = value;
4209 break;
4210 case USER_DATA_ADDR:
4211 ftdi->eeprom->user_data_addr = value;
4212 break;
4213
4214 default :
4215 ftdi_error_return(-1, "Request to unknown EEPROM value");
4216 }
4217 ftdi->eeprom->initialized_for_connected_device = 0;
4218 return 0;
4219}
4220
4221/** Get the read-only buffer to the binary EEPROM content
4222
4223 \param ftdi pointer to ftdi_context
4224 \param buf buffer to receive EEPROM content
4225 \param size Size of receiving buffer
4226
4227 \retval 0: All fine
4228 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
4229 \retval -2: Not enough room to store eeprom
4230*/
4231int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
4232{
4233 if (!ftdi || !(ftdi->eeprom))
4234 ftdi_error_return(-1, "No appropriate structure");
4235
4236 if (!buf || size < ftdi->eeprom->size)
4237 ftdi_error_return(-1, "Not enough room to store eeprom");
4238
4239 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
4240 if (size > FTDI_MAX_EEPROM_SIZE)
4241 size = FTDI_MAX_EEPROM_SIZE;
4242
4243 memcpy(buf, ftdi->eeprom->buf, size);
4244
4245 return 0;
4246}
4247
4248/** Set the EEPROM content from the user-supplied prefilled buffer
4249
4250 \param ftdi pointer to ftdi_context
4251 \param buf buffer to read EEPROM content
4252 \param size Size of buffer
4253
4254 \retval 0: All fine
4255 \retval -1: struct ftdi_context or ftdi_eeprom or buf missing
4256*/
4257int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
4258{
4259 if (!ftdi || !(ftdi->eeprom) || !buf)
4260 ftdi_error_return(-1, "No appropriate structure");
4261
4262 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
4263 if (size > FTDI_MAX_EEPROM_SIZE)
4264 size = FTDI_MAX_EEPROM_SIZE;
4265
4266 memcpy(ftdi->eeprom->buf, buf, size);
4267
4268 return 0;
4269}
4270
4271/** Set the EEPROM user data content from the user-supplied prefilled buffer
4272
4273 \param ftdi pointer to ftdi_context
4274 \param buf buffer to read EEPROM user data content
4275 \param size Size of buffer
4276
4277 \retval 0: All fine
4278 \retval -1: struct ftdi_context or ftdi_eeprom or buf missing
4279*/
4280int ftdi_set_eeprom_user_data(struct ftdi_context *ftdi, const char * buf, int size)
4281{
4282 if (!ftdi || !(ftdi->eeprom) || !buf)
4283 ftdi_error_return(-1, "No appropriate structure");
4284
4285 ftdi->eeprom->user_data_size = size;
4286 ftdi->eeprom->user_data = buf;
4287 return 0;
4288}
4289
4290/**
4291 Read eeprom location
4292
4293 \param ftdi pointer to ftdi_context
4294 \param eeprom_addr Address of eeprom location to be read
4295 \param eeprom_val Pointer to store read eeprom location
4296
4297 \retval 0: all fine
4298 \retval -1: read failed
4299 \retval -2: USB device unavailable
4300*/
4301int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
4302{
4303 unsigned char buf[2];
4304
4305 if (ftdi == NULL || ftdi->usb_dev == NULL)
4306 ftdi_error_return(-2, "USB device unavailable");
4307
4308 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, buf, 2, ftdi->usb_read_timeout) != 2)
4309 ftdi_error_return(-1, "reading eeprom failed");
4310
4311 *eeprom_val = (0xff & buf[0]) | (buf[1] << 8);
4312
4313 return 0;
4314}
4315
4316/**
4317 Read eeprom
4318
4319 \param ftdi pointer to ftdi_context
4320
4321 \retval 0: all fine
4322 \retval -1: read failed
4323 \retval -2: USB device unavailable
4324*/
4325int ftdi_read_eeprom(struct ftdi_context *ftdi)
4326{
4327 int i;
4328 unsigned char *buf;
4329
4330 if (ftdi == NULL || ftdi->usb_dev == NULL)
4331 ftdi_error_return(-2, "USB device unavailable");
4332 buf = ftdi->eeprom->buf;
4333
4334 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
4335 {
4336 if (libusb_control_transfer(
4337 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
4338 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
4339 ftdi_error_return(-1, "reading eeprom failed");
4340 }
4341
4342 if (ftdi->type == TYPE_R)
4343 ftdi->eeprom->size = 0x80;
4344 /* Guesses size of eeprom by comparing halves
4345 - will not work with blank eeprom */
4346 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
4347 ftdi->eeprom->size = -1;
4348 else if (memcmp(buf,&buf[0x80],0x80) == 0)
4349 ftdi->eeprom->size = 0x80;
4350 else if (memcmp(buf,&buf[0x40],0x40) == 0)
4351 ftdi->eeprom->size = 0x40;
4352 else
4353 ftdi->eeprom->size = 0x100;
4354 return 0;
4355}
4356
4357/*
4358 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
4359 Function is only used internally
4360 \internal
4361*/
4362static unsigned char ftdi_read_chipid_shift(unsigned char value)
4363{
4364 return ((value & 1) << 1) |
4365 ((value & 2) << 5) |
4366 ((value & 4) >> 2) |
4367 ((value & 8) << 4) |
4368 ((value & 16) >> 1) |
4369 ((value & 32) >> 1) |
4370 ((value & 64) >> 4) |
4371 ((value & 128) >> 2);
4372}
4373
4374/**
4375 Read the FTDIChip-ID from R-type devices
4376
4377 \param ftdi pointer to ftdi_context
4378 \param chipid Pointer to store FTDIChip-ID
4379
4380 \retval 0: all fine
4381 \retval -1: read failed
4382 \retval -2: USB device unavailable
4383*/
4384int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
4385{
4386 unsigned int a = 0, b = 0;
4387
4388 if (ftdi == NULL || ftdi->usb_dev == NULL)
4389 ftdi_error_return(-2, "USB device unavailable");
4390
4391 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
4392 {
4393 a = a << 8 | a >> 8;
4394 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
4395 {
4396 b = b << 8 | b >> 8;
4397 a = (a << 16) | (b & 0xFFFF);
4398 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
4399 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
4400 *chipid = a ^ 0xa5f0f7d1;
4401 return 0;
4402 }
4403 }
4404
4405 ftdi_error_return(-1, "read of FTDIChip-ID failed");
4406}
4407
4408/**
4409 Write eeprom location
4410
4411 \param ftdi pointer to ftdi_context
4412 \param eeprom_addr Address of eeprom location to be written
4413 \param eeprom_val Value to be written
4414
4415 \retval 0: all fine
4416 \retval -1: write failed
4417 \retval -2: USB device unavailable
4418 \retval -3: Invalid access to checksum protected area below 0x80
4419 \retval -4: Device can't access unprotected area
4420 \retval -5: Reading chip type failed
4421*/
4422int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
4423 unsigned short eeprom_val)
4424{
4425 int chip_type_location;
4426 unsigned short chip_type;
4427
4428 if (ftdi == NULL || ftdi->usb_dev == NULL)
4429 ftdi_error_return(-2, "USB device unavailable");
4430
4431 if (eeprom_addr <0x80)
4432 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
4433
4434
4435 switch (ftdi->type)
4436 {
4437 case TYPE_BM:
4438 case TYPE_2232C:
4439 chip_type_location = 0x14;
4440 break;
4441 case TYPE_2232H:
4442 case TYPE_4232H:
4443 chip_type_location = 0x18;
4444 break;
4445 case TYPE_232H:
4446 chip_type_location = 0x1e;
4447 break;
4448 default:
4449 ftdi_error_return(-4, "Device can't access unprotected area");
4450 }
4451
4452 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
4453 ftdi_error_return(-5, "Reading failed");
4454 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
4455 if ((chip_type & 0xff) != 0x66)
4456 {
4457 ftdi_error_return(-6, "EEPROM is not of 93x66");
4458 }
4459
4460 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4461 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
4462 NULL, 0, ftdi->usb_write_timeout) != 0)
4463 ftdi_error_return(-1, "unable to write eeprom");
4464
4465 return 0;
4466}
4467
4468/**
4469 Write eeprom
4470
4471 \param ftdi pointer to ftdi_context
4472
4473 \retval 0: all fine
4474 \retval -1: read failed
4475 \retval -2: USB device unavailable
4476 \retval -3: EEPROM not initialized for the connected device;
4477*/
4478int ftdi_write_eeprom(struct ftdi_context *ftdi)
4479{
4480 unsigned short usb_val, status;
4481 int i, ret;
4482 unsigned char *eeprom;
4483
4484 if (ftdi == NULL || ftdi->usb_dev == NULL)
4485 ftdi_error_return(-2, "USB device unavailable");
4486
4487 if(ftdi->eeprom->initialized_for_connected_device == 0)
4488 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
4489
4490 eeprom = ftdi->eeprom->buf;
4491
4492 /* These commands were traced while running MProg */
4493 if ((ret = ftdi_usb_reset(ftdi)) != 0)
4494 return ret;
4495 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
4496 return ret;
4497 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
4498 return ret;
4499
4500 for (i = 0; i < ftdi->eeprom->size/2; i++)
4501 {
4502 /* Do not try to write to reserved area */
4503 if ((ftdi->type == TYPE_230X) && (i == 0x40))
4504 {
4505 i = 0x50;
4506 }
4507 usb_val = eeprom[i*2];
4508 usb_val += eeprom[(i*2)+1] << 8;
4509 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4510 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
4511 NULL, 0, ftdi->usb_write_timeout) < 0)
4512 ftdi_error_return(-1, "unable to write eeprom");
4513 }
4514
4515 return 0;
4516}
4517
4518/**
4519 Erase eeprom
4520
4521 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
4522
4523 \param ftdi pointer to ftdi_context
4524
4525 \retval 0: all fine
4526 \retval -1: erase failed
4527 \retval -2: USB device unavailable
4528 \retval -3: Writing magic failed
4529 \retval -4: Read EEPROM failed
4530 \retval -5: Unexpected EEPROM value
4531*/
4532#define MAGIC 0x55aa
4533int ftdi_erase_eeprom(struct ftdi_context *ftdi)
4534{
4535 unsigned short eeprom_value;
4536 if (ftdi == NULL || ftdi->usb_dev == NULL)
4537 ftdi_error_return(-2, "USB device unavailable");
4538
4539 if ((ftdi->type == TYPE_R) || (ftdi->type == TYPE_230X))
4540 {
4541 ftdi->eeprom->chip = 0;
4542 return 0;
4543 }
4544
4545 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4546 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4547 ftdi_error_return(-1, "unable to erase eeprom");
4548
4549
4550 /* detect chip type by writing 0x55AA as magic at word position 0xc0
4551 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
4552 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
4553 Chip is 93x66 if magic is only read at word position 0xc0*/
4554 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4555 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
4556 NULL, 0, ftdi->usb_write_timeout) != 0)
4557 ftdi_error_return(-3, "Writing magic failed");
4558 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
4559 ftdi_error_return(-4, "Reading failed");
4560 if (eeprom_value == MAGIC)
4561 {
4562 ftdi->eeprom->chip = 0x46;
4563 }
4564 else
4565 {
4566 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
4567 ftdi_error_return(-4, "Reading failed");
4568 if (eeprom_value == MAGIC)
4569 ftdi->eeprom->chip = 0x56;
4570 else
4571 {
4572 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
4573 ftdi_error_return(-4, "Reading failed");
4574 if (eeprom_value == MAGIC)
4575 ftdi->eeprom->chip = 0x66;
4576 else
4577 {
4578 ftdi->eeprom->chip = -1;
4579 }
4580 }
4581 }
4582 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4583 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4584 ftdi_error_return(-1, "unable to erase eeprom");
4585 return 0;
4586}
4587
4588/**
4589 Get string representation for last error code
4590
4591 \param ftdi pointer to ftdi_context
4592
4593 \retval Pointer to error string
4594*/
4595const char *ftdi_get_error_string (struct ftdi_context *ftdi)
4596{
4597 if (ftdi == NULL)
4598 return "";
4599
4600 return ftdi->error_str;
4601}
4602
4603/* @} end of doxygen libftdi group */