Updated ChangeLog and AUTHORS
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2008 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <usb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35
36#include "ftdi.h"
37
38/* stuff needed for async write */
39#ifdef LIBFTDI_LINUX_ASYNC_MODE
40#include <sys/ioctl.h>
41#include <sys/time.h>
42#include <sys/select.h>
43#include <sys/types.h>
44#include <unistd.h>
45#include <linux/usbdevice_fs.h>
46#endif
47
48#define ftdi_error_return(code, str) do { \
49 ftdi->error_str = str; \
50 return code; \
51 } while(0);
52
53/**
54 Internal function to close usb device pointer.
55 Sets ftdi->usb_dev to NULL.
56 \internal
57
58 \param ftdi pointer to ftdi_context
59
60 \retval zero if all is fine, otherwise error code from usb_close()
61*/
62static int ftdi_usb_close_internal (struct ftdi_context *ftdi)
63{
64 int ret = 0;
65
66 if (ftdi->usb_dev)
67 {
68 ret = usb_close (ftdi->usb_dev);
69 ftdi->usb_dev = NULL;
70 }
71
72 return ret;
73}
74
75/**
76 Initializes a ftdi_context.
77
78 \param ftdi pointer to ftdi_context
79
80 \retval 0: all fine
81 \retval -1: couldn't allocate read buffer
82
83 \remark This should be called before all functions
84*/
85int ftdi_init(struct ftdi_context *ftdi)
86{
87 unsigned int i;
88
89 ftdi->usb_dev = NULL;
90 ftdi->usb_read_timeout = 5000;
91 ftdi->usb_write_timeout = 5000;
92
93 ftdi->type = TYPE_BM; /* chip type */
94 ftdi->baudrate = -1;
95 ftdi->bitbang_enabled = 0;
96
97 ftdi->readbuffer = NULL;
98 ftdi->readbuffer_offset = 0;
99 ftdi->readbuffer_remaining = 0;
100 ftdi->writebuffer_chunksize = 4096;
101
102 ftdi->interface = 0;
103 ftdi->index = 0;
104 ftdi->in_ep = 0x02;
105 ftdi->out_ep = 0x81;
106 ftdi->bitbang_mode = 1; /* 1: Normal bitbang mode, 2: SPI bitbang mode */
107
108 ftdi->error_str = NULL;
109
110#ifdef LIBFTDI_LINUX_ASYNC_MODE
111 ftdi->async_usb_buffer_size=10;
112 if ((ftdi->async_usb_buffer=malloc(sizeof(struct usbdevfs_urb)*ftdi->async_usb_buffer_size)) == NULL)
113 ftdi_error_return(-1, "out of memory for async usb buffer");
114
115 /* initialize async usb buffer with unused-marker */
116 for (i=0; i < ftdi->async_usb_buffer_size; i++)
117 ((struct usbdevfs_urb*)ftdi->async_usb_buffer)[i].usercontext = FTDI_URB_USERCONTEXT_COOKIE;
118#else
119 ftdi->async_usb_buffer_size=0;
120 ftdi->async_usb_buffer = NULL;
121#endif
122
123 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
124
125 /* All fine. Now allocate the readbuffer */
126 return ftdi_read_data_set_chunksize(ftdi, 4096);
127}
128
129/**
130 Allocate and initialize a new ftdi_context
131
132 \return a pointer to a new ftdi_context, or NULL on failure
133*/
134struct ftdi_context *ftdi_new(void)
135{
136 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
137
138 if (ftdi == NULL)
139 {
140 return NULL;
141 }
142
143 if (ftdi_init(ftdi) != 0)
144 {
145 free(ftdi);
146 return NULL;
147 }
148
149 return ftdi;
150}
151
152/**
153 Open selected channels on a chip, otherwise use first channel.
154
155 \param ftdi pointer to ftdi_context
156 \param interface Interface to use for FT2232C/2232H/4232H chips.
157
158 \retval 0: all fine
159 \retval -1: unknown interface
160*/
161int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
162{
163 switch (interface)
164 {
165 case INTERFACE_ANY:
166 case INTERFACE_A:
167 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
168 break;
169 case INTERFACE_B:
170 ftdi->interface = 1;
171 ftdi->index = INTERFACE_B;
172 ftdi->in_ep = 0x04;
173 ftdi->out_ep = 0x83;
174 break;
175 case INTERFACE_C:
176 ftdi->interface = 2;
177 ftdi->index = INTERFACE_C;
178 ftdi->in_ep = 0x06;
179 ftdi->out_ep = 0x85;
180 break;
181 case INTERFACE_D:
182 ftdi->interface = 3;
183 ftdi->index = INTERFACE_D;
184 ftdi->in_ep = 0x08;
185 ftdi->out_ep = 0x87;
186 break;
187 default:
188 ftdi_error_return(-1, "Unknown interface");
189 }
190 return 0;
191}
192
193/**
194 Deinitializes a ftdi_context.
195
196 \param ftdi pointer to ftdi_context
197*/
198void ftdi_deinit(struct ftdi_context *ftdi)
199{
200 ftdi_usb_close_internal (ftdi);
201
202 if (ftdi->async_usb_buffer != NULL)
203 {
204 free(ftdi->async_usb_buffer);
205 ftdi->async_usb_buffer = NULL;
206 }
207
208 if (ftdi->readbuffer != NULL)
209 {
210 free(ftdi->readbuffer);
211 ftdi->readbuffer = NULL;
212 }
213}
214
215/**
216 Deinitialize and free an ftdi_context.
217
218 \param ftdi pointer to ftdi_context
219*/
220void ftdi_free(struct ftdi_context *ftdi)
221{
222 ftdi_deinit(ftdi);
223 free(ftdi);
224}
225
226/**
227 Use an already open libusb device.
228
229 \param ftdi pointer to ftdi_context
230 \param usb libusb usb_dev_handle to use
231*/
232void ftdi_set_usbdev (struct ftdi_context *ftdi, usb_dev_handle *usb)
233{
234 ftdi->usb_dev = usb;
235}
236
237
238/**
239 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
240 needs to be deallocated by ftdi_list_free() after use.
241
242 \param ftdi pointer to ftdi_context
243 \param devlist Pointer where to store list of found devices
244 \param vendor Vendor ID to search for
245 \param product Product ID to search for
246
247 \retval >0: number of devices found
248 \retval -1: usb_find_busses() failed
249 \retval -2: usb_find_devices() failed
250 \retval -3: out of memory
251*/
252int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
253{
254 struct ftdi_device_list **curdev;
255 struct usb_bus *bus;
256 struct usb_device *dev;
257 int count = 0;
258
259 usb_init();
260 if (usb_find_busses() < 0)
261 ftdi_error_return(-1, "usb_find_busses() failed");
262 if (usb_find_devices() < 0)
263 ftdi_error_return(-2, "usb_find_devices() failed");
264
265 curdev = devlist;
266 *curdev = NULL;
267 for (bus = usb_get_busses(); bus; bus = bus->next)
268 {
269 for (dev = bus->devices; dev; dev = dev->next)
270 {
271 if (dev->descriptor.idVendor == vendor
272 && dev->descriptor.idProduct == product)
273 {
274 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
275 if (!*curdev)
276 ftdi_error_return(-3, "out of memory");
277
278 (*curdev)->next = NULL;
279 (*curdev)->dev = dev;
280
281 curdev = &(*curdev)->next;
282 count++;
283 }
284 }
285 }
286
287 return count;
288}
289
290/**
291 Frees a usb device list.
292
293 \param devlist USB device list created by ftdi_usb_find_all()
294*/
295void ftdi_list_free(struct ftdi_device_list **devlist)
296{
297 struct ftdi_device_list *curdev, *next;
298
299 for (curdev = *devlist; curdev != NULL;)
300 {
301 next = curdev->next;
302 free(curdev);
303 curdev = next;
304 }
305
306 *devlist = NULL;
307}
308
309/**
310 Frees a usb device list.
311
312 \param devlist USB device list created by ftdi_usb_find_all()
313*/
314void ftdi_list_free2(struct ftdi_device_list *devlist)
315{
316 ftdi_list_free(&devlist);
317}
318
319/**
320 Return device ID strings from the usb device.
321
322 The parameters manufacturer, description and serial may be NULL
323 or pointer to buffers to store the fetched strings.
324
325 \note Use this function only in combination with ftdi_usb_find_all()
326 as it closes the internal "usb_dev" after use.
327
328 \param ftdi pointer to ftdi_context
329 \param dev libusb usb_dev to use
330 \param manufacturer Store manufacturer string here if not NULL
331 \param mnf_len Buffer size of manufacturer string
332 \param description Store product description string here if not NULL
333 \param desc_len Buffer size of product description string
334 \param serial Store serial string here if not NULL
335 \param serial_len Buffer size of serial string
336
337 \retval 0: all fine
338 \retval -1: wrong arguments
339 \retval -4: unable to open device
340 \retval -7: get product manufacturer failed
341 \retval -8: get product description failed
342 \retval -9: get serial number failed
343 \retval -10: unable to close device
344*/
345int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct usb_device * dev,
346 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
347{
348 if ((ftdi==NULL) || (dev==NULL))
349 return -1;
350
351 if (!(ftdi->usb_dev = usb_open(dev)))
352 ftdi_error_return(-4, usb_strerror());
353
354 if (manufacturer != NULL)
355 {
356 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iManufacturer, manufacturer, mnf_len) <= 0)
357 {
358 ftdi_usb_close_internal (ftdi);
359 ftdi_error_return(-7, usb_strerror());
360 }
361 }
362
363 if (description != NULL)
364 {
365 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, description, desc_len) <= 0)
366 {
367 ftdi_usb_close_internal (ftdi);
368 ftdi_error_return(-8, usb_strerror());
369 }
370 }
371
372 if (serial != NULL)
373 {
374 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, serial, serial_len) <= 0)
375 {
376 ftdi_usb_close_internal (ftdi);
377 ftdi_error_return(-9, usb_strerror());
378 }
379 }
380
381 if (ftdi_usb_close_internal (ftdi) != 0)
382 ftdi_error_return(-10, usb_strerror());
383
384 return 0;
385}
386
387/**
388 Opens a ftdi device given by a usb_device.
389
390 \param ftdi pointer to ftdi_context
391 \param dev libusb usb_dev to use
392
393 \retval 0: all fine
394 \retval -3: unable to config device
395 \retval -4: unable to open device
396 \retval -5: unable to claim device
397 \retval -6: reset failed
398 \retval -7: set baudrate failed
399*/
400int ftdi_usb_open_dev(struct ftdi_context *ftdi, struct usb_device *dev)
401{
402 int detach_errno = 0;
403 if (!(ftdi->usb_dev = usb_open(dev)))
404 ftdi_error_return(-4, "usb_open() failed");
405
406#ifdef LIBUSB_HAS_GET_DRIVER_NP
407 // Try to detach ftdi_sio kernel module.
408 // Returns ENODATA if driver is not loaded.
409 //
410 // The return code is kept in a separate variable and only parsed
411 // if usb_set_configuration() or usb_claim_interface() fails as the
412 // detach operation might be denied and everything still works fine.
413 // Likely scenario is a static ftdi_sio kernel module.
414 if (usb_detach_kernel_driver_np(ftdi->usb_dev, ftdi->interface) != 0 && errno != ENODATA)
415 detach_errno = errno;
416#endif
417
418 // set configuration (needed especially for windows)
419 // tolerate EBUSY: one device with one configuration, but two interfaces
420 // and libftdi sessions to both interfaces (e.g. FT2232)
421 if (dev->descriptor.bNumConfigurations > 0 &&
422 usb_set_configuration(ftdi->usb_dev, dev->config[0].bConfigurationValue) &&
423 errno != EBUSY)
424 {
425 ftdi_usb_close_internal (ftdi);
426 if (detach_errno == EPERM)
427 {
428 ftdi_error_return(-8, "inappropriate permissions on device!");
429 }
430 else
431 {
432 ftdi_error_return(-3, "unable to set usb configuration. Make sure ftdi_sio is unloaded!");
433 }
434 }
435
436 if (usb_claim_interface(ftdi->usb_dev, ftdi->interface) != 0)
437 {
438 ftdi_usb_close_internal (ftdi);
439 if (detach_errno == EPERM)
440 {
441 ftdi_error_return(-8, "inappropriate permissions on device!");
442 }
443 else
444 {
445 ftdi_error_return(-5, "unable to claim usb device. Make sure ftdi_sio is unloaded!");
446 }
447 }
448
449 if (ftdi_usb_reset (ftdi) != 0)
450 {
451 ftdi_usb_close_internal (ftdi);
452 ftdi_error_return(-6, "ftdi_usb_reset failed");
453 }
454
455 if (ftdi_set_baudrate (ftdi, 9600) != 0)
456 {
457 ftdi_usb_close_internal (ftdi);
458 ftdi_error_return(-7, "set baudrate failed");
459 }
460
461 // Try to guess chip type
462 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
463 if (dev->descriptor.bcdDevice == 0x400 || (dev->descriptor.bcdDevice == 0x200
464 && dev->descriptor.iSerialNumber == 0))
465 ftdi->type = TYPE_BM;
466 else if (dev->descriptor.bcdDevice == 0x200)
467 ftdi->type = TYPE_AM;
468 else if (dev->descriptor.bcdDevice == 0x500)
469 ftdi->type = TYPE_2232C;
470 else if (dev->descriptor.bcdDevice == 0x600)
471 ftdi->type = TYPE_R;
472 else if (dev->descriptor.bcdDevice == 0x700)
473 ftdi->type = TYPE_2232H;
474 else if (dev->descriptor.bcdDevice == 0x800)
475 ftdi->type = TYPE_4232H;
476
477 // Set default interface on dual/quad type chips
478 switch(ftdi->type)
479 {
480 case TYPE_2232C:
481 case TYPE_2232H:
482 case TYPE_4232H:
483 if (!ftdi->index)
484 ftdi->index = INTERFACE_A;
485 break;
486 default:
487 break;
488 }
489
490 ftdi_error_return(0, "all fine");
491}
492
493/**
494 Opens the first device with a given vendor and product ids.
495
496 \param ftdi pointer to ftdi_context
497 \param vendor Vendor ID
498 \param product Product ID
499
500 \retval same as ftdi_usb_open_desc()
501*/
502int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
503{
504 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
505}
506
507/**
508 Opens the first device with a given, vendor id, product id,
509 description and serial.
510
511 \param ftdi pointer to ftdi_context
512 \param vendor Vendor ID
513 \param product Product ID
514 \param description Description to search for. Use NULL if not needed.
515 \param serial Serial to search for. Use NULL if not needed.
516
517 \retval 0: all fine
518 \retval -1: usb_find_busses() failed
519 \retval -2: usb_find_devices() failed
520 \retval -3: usb device not found
521 \retval -4: unable to open device
522 \retval -5: unable to claim device
523 \retval -6: reset failed
524 \retval -7: set baudrate failed
525 \retval -8: get product description failed
526 \retval -9: get serial number failed
527 \retval -10: unable to close device
528*/
529int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
530 const char* description, const char* serial)
531{
532 struct usb_bus *bus;
533 struct usb_device *dev;
534 char string[256];
535
536 usb_init();
537
538 if (usb_find_busses() < 0)
539 ftdi_error_return(-1, "usb_find_busses() failed");
540 if (usb_find_devices() < 0)
541 ftdi_error_return(-2, "usb_find_devices() failed");
542
543 for (bus = usb_get_busses(); bus; bus = bus->next)
544 {
545 for (dev = bus->devices; dev; dev = dev->next)
546 {
547 if (dev->descriptor.idVendor == vendor
548 && dev->descriptor.idProduct == product)
549 {
550 if (!(ftdi->usb_dev = usb_open(dev)))
551 ftdi_error_return(-4, "usb_open() failed");
552
553 if (description != NULL)
554 {
555 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, string, sizeof(string)) <= 0)
556 {
557 ftdi_usb_close_internal (ftdi);
558 ftdi_error_return(-8, "unable to fetch product description");
559 }
560 if (strncmp(string, description, sizeof(string)) != 0)
561 {
562 if (ftdi_usb_close_internal (ftdi) != 0)
563 ftdi_error_return(-10, "unable to close device");
564 continue;
565 }
566 }
567 if (serial != NULL)
568 {
569 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, string, sizeof(string)) <= 0)
570 {
571 ftdi_usb_close_internal (ftdi);
572 ftdi_error_return(-9, "unable to fetch serial number");
573 }
574 if (strncmp(string, serial, sizeof(string)) != 0)
575 {
576 if (ftdi_usb_close_internal (ftdi) != 0)
577 ftdi_error_return(-10, "unable to close device");
578 continue;
579 }
580 }
581
582 if (ftdi_usb_close_internal (ftdi) != 0)
583 ftdi_error_return(-10, "unable to close device");
584
585 return ftdi_usb_open_dev(ftdi, dev);
586 }
587 }
588 }
589
590 // device not found
591 ftdi_error_return(-3, "device not found");
592}
593
594/**
595 Resets the ftdi device.
596
597 \param ftdi pointer to ftdi_context
598
599 \retval 0: all fine
600 \retval -1: FTDI reset failed
601*/
602int ftdi_usb_reset(struct ftdi_context *ftdi)
603{
604 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
605 SIO_RESET_REQUEST, SIO_RESET_SIO,
606 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
607 ftdi_error_return(-1,"FTDI reset failed");
608
609 // Invalidate data in the readbuffer
610 ftdi->readbuffer_offset = 0;
611 ftdi->readbuffer_remaining = 0;
612
613 return 0;
614}
615
616/**
617 Clears the read buffer on the chip and the internal read buffer.
618
619 \param ftdi pointer to ftdi_context
620
621 \retval 0: all fine
622 \retval -1: read buffer purge failed
623*/
624int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
625{
626 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
627 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
628 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
629 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
630
631 // Invalidate data in the readbuffer
632 ftdi->readbuffer_offset = 0;
633 ftdi->readbuffer_remaining = 0;
634
635 return 0;
636}
637
638/**
639 Clears the write buffer on the chip.
640
641 \param ftdi pointer to ftdi_context
642
643 \retval 0: all fine
644 \retval -1: write buffer purge failed
645*/
646int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
647{
648 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
649 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
650 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
651 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
652
653 return 0;
654}
655
656/**
657 Clears the buffers on the chip and the internal read buffer.
658
659 \param ftdi pointer to ftdi_context
660
661 \retval 0: all fine
662 \retval -1: read buffer purge failed
663 \retval -2: write buffer purge failed
664*/
665int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
666{
667 int result;
668
669 result = ftdi_usb_purge_rx_buffer(ftdi);
670 if (result < 0)
671 return -1;
672
673 result = ftdi_usb_purge_tx_buffer(ftdi);
674 if (result < 0)
675 return -2;
676
677 return 0;
678}
679
680
681
682/**
683 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
684
685 \param ftdi pointer to ftdi_context
686
687 \retval 0: all fine
688 \retval -1: usb_release failed
689 \retval -2: usb_close failed
690*/
691int ftdi_usb_close(struct ftdi_context *ftdi)
692{
693 int rtn = 0;
694
695#ifdef LIBFTDI_LINUX_ASYNC_MODE
696 /* try to release some kernel resources */
697 ftdi_async_complete(ftdi,1);
698#endif
699
700 if (ftdi->usb_dev != NULL)
701 if (usb_release_interface(ftdi->usb_dev, ftdi->interface) != 0)
702 rtn = -1;
703
704 if (ftdi_usb_close_internal (ftdi) != 0)
705 rtn = -2;
706
707 return rtn;
708}
709
710/*
711 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
712 Function is only used internally
713 \internal
714*/
715static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
716 unsigned short *value, unsigned short *index)
717{
718 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
719 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
720 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
721 int divisor, best_divisor, best_baud, best_baud_diff;
722 unsigned long encoded_divisor;
723 int i;
724
725 if (baudrate <= 0)
726 {
727 // Return error
728 return -1;
729 }
730
731 divisor = 24000000 / baudrate;
732
733 if (ftdi->type == TYPE_AM)
734 {
735 // Round down to supported fraction (AM only)
736 divisor -= am_adjust_dn[divisor & 7];
737 }
738
739 // Try this divisor and the one above it (because division rounds down)
740 best_divisor = 0;
741 best_baud = 0;
742 best_baud_diff = 0;
743 for (i = 0; i < 2; i++)
744 {
745 int try_divisor = divisor + i;
746 int baud_estimate;
747 int baud_diff;
748
749 // Round up to supported divisor value
750 if (try_divisor <= 8)
751 {
752 // Round up to minimum supported divisor
753 try_divisor = 8;
754 }
755 else if (ftdi->type != TYPE_AM && try_divisor < 12)
756 {
757 // BM doesn't support divisors 9 through 11 inclusive
758 try_divisor = 12;
759 }
760 else if (divisor < 16)
761 {
762 // AM doesn't support divisors 9 through 15 inclusive
763 try_divisor = 16;
764 }
765 else
766 {
767 if (ftdi->type == TYPE_AM)
768 {
769 // Round up to supported fraction (AM only)
770 try_divisor += am_adjust_up[try_divisor & 7];
771 if (try_divisor > 0x1FFF8)
772 {
773 // Round down to maximum supported divisor value (for AM)
774 try_divisor = 0x1FFF8;
775 }
776 }
777 else
778 {
779 if (try_divisor > 0x1FFFF)
780 {
781 // Round down to maximum supported divisor value (for BM)
782 try_divisor = 0x1FFFF;
783 }
784 }
785 }
786 // Get estimated baud rate (to nearest integer)
787 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
788 // Get absolute difference from requested baud rate
789 if (baud_estimate < baudrate)
790 {
791 baud_diff = baudrate - baud_estimate;
792 }
793 else
794 {
795 baud_diff = baud_estimate - baudrate;
796 }
797 if (i == 0 || baud_diff < best_baud_diff)
798 {
799 // Closest to requested baud rate so far
800 best_divisor = try_divisor;
801 best_baud = baud_estimate;
802 best_baud_diff = baud_diff;
803 if (baud_diff == 0)
804 {
805 // Spot on! No point trying
806 break;
807 }
808 }
809 }
810 // Encode the best divisor value
811 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
812 // Deal with special cases for encoded value
813 if (encoded_divisor == 1)
814 {
815 encoded_divisor = 0; // 3000000 baud
816 }
817 else if (encoded_divisor == 0x4001)
818 {
819 encoded_divisor = 1; // 2000000 baud (BM only)
820 }
821 // Split into "value" and "index" values
822 *value = (unsigned short)(encoded_divisor & 0xFFFF);
823 if (ftdi->type == TYPE_2232C)
824 {
825 *index = (unsigned short)(encoded_divisor >> 8);
826 *index &= 0xFF00;
827 *index |= ftdi->index;
828 }
829 else
830 *index = (unsigned short)(encoded_divisor >> 16);
831
832 // Return the nearest baud rate
833 return best_baud;
834}
835
836/**
837 Sets the chip baud rate
838
839 \param ftdi pointer to ftdi_context
840 \param baudrate baud rate to set
841
842 \retval 0: all fine
843 \retval -1: invalid baudrate
844 \retval -2: setting baudrate failed
845*/
846int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
847{
848 unsigned short value, index;
849 int actual_baudrate;
850
851 if (ftdi->bitbang_enabled)
852 {
853 baudrate = baudrate*4;
854 }
855
856 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
857 if (actual_baudrate <= 0)
858 ftdi_error_return (-1, "Silly baudrate <= 0.");
859
860 // Check within tolerance (about 5%)
861 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
862 || ((actual_baudrate < baudrate)
863 ? (actual_baudrate * 21 < baudrate * 20)
864 : (baudrate * 21 < actual_baudrate * 20)))
865 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
866
867 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
868 SIO_SET_BAUDRATE_REQUEST, value,
869 index, NULL, 0, ftdi->usb_write_timeout) != 0)
870 ftdi_error_return (-2, "Setting new baudrate failed");
871
872 ftdi->baudrate = baudrate;
873 return 0;
874}
875
876/**
877 Set (RS232) line characteristics.
878 The break type can only be set via ftdi_set_line_property2()
879 and defaults to "off".
880
881 \param ftdi pointer to ftdi_context
882 \param bits Number of bits
883 \param sbit Number of stop bits
884 \param parity Parity mode
885
886 \retval 0: all fine
887 \retval -1: Setting line property failed
888*/
889int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
890 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
891{
892 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
893}
894
895/**
896 Set (RS232) line characteristics
897
898 \param ftdi pointer to ftdi_context
899 \param bits Number of bits
900 \param sbit Number of stop bits
901 \param parity Parity mode
902 \param break_type Break type
903
904 \retval 0: all fine
905 \retval -1: Setting line property failed
906*/
907int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
908 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
909 enum ftdi_break_type break_type)
910{
911 unsigned short value = bits;
912
913 switch (parity)
914 {
915 case NONE:
916 value |= (0x00 << 8);
917 break;
918 case ODD:
919 value |= (0x01 << 8);
920 break;
921 case EVEN:
922 value |= (0x02 << 8);
923 break;
924 case MARK:
925 value |= (0x03 << 8);
926 break;
927 case SPACE:
928 value |= (0x04 << 8);
929 break;
930 }
931
932 switch (sbit)
933 {
934 case STOP_BIT_1:
935 value |= (0x00 << 11);
936 break;
937 case STOP_BIT_15:
938 value |= (0x01 << 11);
939 break;
940 case STOP_BIT_2:
941 value |= (0x02 << 11);
942 break;
943 }
944
945 switch (break_type)
946 {
947 case BREAK_OFF:
948 value |= (0x00 << 14);
949 break;
950 case BREAK_ON:
951 value |= (0x01 << 14);
952 break;
953 }
954
955 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
956 SIO_SET_DATA_REQUEST, value,
957 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
958 ftdi_error_return (-1, "Setting new line property failed");
959
960 return 0;
961}
962
963/**
964 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
965
966 \param ftdi pointer to ftdi_context
967 \param buf Buffer with the data
968 \param size Size of the buffer
969
970 \retval <0: error code from usb_bulk_write()
971 \retval >0: number of bytes written
972*/
973int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
974{
975 int ret;
976 int offset = 0;
977 int total_written = 0;
978
979 while (offset < size)
980 {
981 int write_size = ftdi->writebuffer_chunksize;
982
983 if (offset+write_size > size)
984 write_size = size-offset;
985
986 ret = usb_bulk_write(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, ftdi->usb_write_timeout);
987 if (ret < 0)
988 ftdi_error_return(ret, "usb bulk write failed");
989
990 total_written += ret;
991 offset += write_size;
992 }
993
994 return total_written;
995}
996
997#ifdef LIBFTDI_LINUX_ASYNC_MODE
998/* this is strongly dependent on libusb using the same struct layout. If libusb
999 changes in some later version this may break horribly (this is for libusb 0.1.12) */
1000struct usb_dev_handle
1001{
1002 int fd;
1003 // some other stuff coming here we don't need
1004};
1005
1006/**
1007 Check for pending async urbs
1008 \internal
1009*/
1010static int _usb_get_async_urbs_pending(struct ftdi_context *ftdi)
1011{
1012 struct usbdevfs_urb *urb;
1013 int pending=0;
1014 unsigned int i;
1015
1016 for (i=0; i < ftdi->async_usb_buffer_size; i++)
1017 {
1018 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
1019 if (urb->usercontext != FTDI_URB_USERCONTEXT_COOKIE)
1020 pending++;
1021 }
1022
1023 return pending;
1024}
1025
1026/**
1027 Wait until one or more async URBs are completed by the kernel and mark their
1028 positions in the async-buffer as unused
1029
1030 \param ftdi pointer to ftdi_context
1031 \param wait_for_more if != 0 wait for more than one write to complete
1032 \param timeout_msec max milliseconds to wait
1033
1034 \internal
1035*/
1036static void _usb_async_cleanup(struct ftdi_context *ftdi, int wait_for_more, int timeout_msec)
1037{
1038 struct timeval tv;
1039 struct usbdevfs_urb *urb=NULL;
1040 int ret;
1041 fd_set writefds;
1042 int keep_going=0;
1043
1044 FD_ZERO(&writefds);
1045 FD_SET(ftdi->usb_dev->fd, &writefds);
1046
1047 /* init timeout only once, select writes time left after call */
1048 tv.tv_sec = timeout_msec / 1000;
1049 tv.tv_usec = (timeout_msec % 1000) * 1000;
1050
1051 do
1052 {
1053 while (_usb_get_async_urbs_pending(ftdi)
1054 && (ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_REAPURBNDELAY, &urb)) == -1
1055 && errno == EAGAIN)
1056 {
1057 if (keep_going && !wait_for_more)
1058 {
1059 /* don't wait if repeating only for keep_going */
1060 keep_going=0;
1061 break;
1062 }
1063
1064 /* wait for timeout msec or something written ready */
1065 select(ftdi->usb_dev->fd+1, NULL, &writefds, NULL, &tv);
1066 }
1067
1068 if (ret == 0 && urb != NULL)
1069 {
1070 /* got a free urb, mark it */
1071 urb->usercontext = FTDI_URB_USERCONTEXT_COOKIE;
1072
1073 /* try to get more urbs that are ready now, but don't wait anymore */
1074 urb=NULL;
1075 keep_going=1;
1076 }
1077 else
1078 {
1079 /* no more urbs waiting */
1080 keep_going=0;
1081 }
1082 }
1083 while (keep_going);
1084}
1085
1086/**
1087 Wait until one or more async URBs are completed by the kernel and mark their
1088 positions in the async-buffer as unused.
1089
1090 \param ftdi pointer to ftdi_context
1091 \param wait_for_more if != 0 wait for more than one write to complete (until write timeout)
1092*/
1093void ftdi_async_complete(struct ftdi_context *ftdi, int wait_for_more)
1094{
1095 _usb_async_cleanup(ftdi,wait_for_more,ftdi->usb_write_timeout);
1096}
1097
1098/**
1099 Stupid libusb does not offer async writes nor does it allow
1100 access to its fd - so we need some hacks here.
1101 \internal
1102*/
1103static int _usb_bulk_write_async(struct ftdi_context *ftdi, int ep, char *bytes, int size)
1104{
1105 struct usbdevfs_urb *urb;
1106 int bytesdone = 0, requested;
1107 int ret, cleanup_count;
1108 unsigned int i;
1109
1110 do
1111 {
1112 /* find a free urb buffer we can use */
1113 urb=NULL;
1114 for (cleanup_count=0; urb==NULL && cleanup_count <= 1; cleanup_count++)
1115 {
1116 if (i==ftdi->async_usb_buffer_size)
1117 {
1118 /* wait until some buffers are free */
1119 _usb_async_cleanup(ftdi,0,ftdi->usb_write_timeout);
1120 }
1121
1122 for (i=0; i < ftdi->async_usb_buffer_size; i++)
1123 {
1124 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
1125 if (urb->usercontext == FTDI_URB_USERCONTEXT_COOKIE)
1126 break; /* found a free urb position */
1127 urb=NULL;
1128 }
1129 }
1130
1131 /* no free urb position found */
1132 if (urb==NULL)
1133 return -1;
1134
1135 requested = size - bytesdone;
1136 if (requested > 4096)
1137 requested = 4096;
1138
1139 memset(urb,0,sizeof(urb));
1140
1141 urb->type = USBDEVFS_URB_TYPE_BULK;
1142 urb->endpoint = ep;
1143 urb->flags = 0;
1144 urb->buffer = bytes + bytesdone;
1145 urb->buffer_length = requested;
1146 urb->signr = 0;
1147 urb->actual_length = 0;
1148 urb->number_of_packets = 0;
1149 urb->usercontext = 0;
1150
1151 do
1152 {
1153 ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_SUBMITURB, urb);
1154 }
1155 while (ret < 0 && errno == EINTR);
1156 if (ret < 0)
1157 return ret; /* the caller can read errno to get more info */
1158
1159 bytesdone += requested;
1160 }
1161 while (bytesdone < size);
1162 return bytesdone;
1163}
1164
1165/**
1166 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip.
1167 Does not wait for completion of the transfer nor does it make sure that
1168 the transfer was successful.
1169
1170 This function could be extended to use signals and callbacks to inform the
1171 caller of completion or error - but this is not done yet, volunteers welcome.
1172
1173 Works around libusb and directly accesses functions only available on Linux.
1174 Only available if compiled with --with-async-mode.
1175
1176 \param ftdi pointer to ftdi_context
1177 \param buf Buffer with the data
1178 \param size Size of the buffer
1179
1180 \retval <0: error code from usb_bulk_write()
1181 \retval >0: number of bytes written
1182*/
1183int ftdi_write_data_async(struct ftdi_context *ftdi, unsigned char *buf, int size)
1184{
1185 int ret;
1186 int offset = 0;
1187 int total_written = 0;
1188
1189 while (offset < size)
1190 {
1191 int write_size = ftdi->writebuffer_chunksize;
1192
1193 if (offset+write_size > size)
1194 write_size = size-offset;
1195
1196 ret = _usb_bulk_write_async(ftdi, ftdi->in_ep, buf+offset, write_size);
1197 if (ret < 0)
1198 ftdi_error_return(ret, "usb bulk write async failed");
1199
1200 total_written += ret;
1201 offset += write_size;
1202 }
1203
1204 return total_written;
1205}
1206#endif // LIBFTDI_LINUX_ASYNC_MODE
1207
1208/**
1209 Configure write buffer chunk size.
1210 Default is 4096.
1211
1212 \param ftdi pointer to ftdi_context
1213 \param chunksize Chunk size
1214
1215 \retval 0: all fine
1216*/
1217int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1218{
1219 ftdi->writebuffer_chunksize = chunksize;
1220 return 0;
1221}
1222
1223/**
1224 Get write buffer chunk size.
1225
1226 \param ftdi pointer to ftdi_context
1227 \param chunksize Pointer to store chunk size in
1228
1229 \retval 0: all fine
1230*/
1231int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1232{
1233 *chunksize = ftdi->writebuffer_chunksize;
1234 return 0;
1235}
1236
1237/**
1238 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1239
1240 Automatically strips the two modem status bytes transfered during every read.
1241
1242 \param ftdi pointer to ftdi_context
1243 \param buf Buffer to store data in
1244 \param size Size of the buffer
1245
1246 \retval <0: error code from usb_bulk_read()
1247 \retval 0: no data was available
1248 \retval >0: number of bytes read
1249
1250 \remark This function is not useful in bitbang mode.
1251 Use ftdi_read_pins() to get the current state of the pins.
1252*/
1253int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1254{
1255 int offset = 0, ret = 1, i, num_of_chunks, chunk_remains;
1256 int packet_size;
1257
1258 // New hi-speed devices from FTDI use a packet size of 512 bytes
1259 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1260 packet_size = 512;
1261 else
1262 packet_size = 64;
1263
1264 // everything we want is still in the readbuffer?
1265 if (size <= ftdi->readbuffer_remaining)
1266 {
1267 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1268
1269 // Fix offsets
1270 ftdi->readbuffer_remaining -= size;
1271 ftdi->readbuffer_offset += size;
1272
1273 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1274
1275 return size;
1276 }
1277 // something still in the readbuffer, but not enough to satisfy 'size'?
1278 if (ftdi->readbuffer_remaining != 0)
1279 {
1280 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1281
1282 // Fix offset
1283 offset += ftdi->readbuffer_remaining;
1284 }
1285 // do the actual USB read
1286 while (offset < size && ret > 0)
1287 {
1288 ftdi->readbuffer_remaining = 0;
1289 ftdi->readbuffer_offset = 0;
1290 /* returns how much received */
1291 ret = usb_bulk_read (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi->usb_read_timeout);
1292 if (ret < 0)
1293 ftdi_error_return(ret, "usb bulk read failed");
1294
1295 if (ret > 2)
1296 {
1297 // skip FTDI status bytes.
1298 // Maybe stored in the future to enable modem use
1299 num_of_chunks = ret / packet_size;
1300 chunk_remains = ret % packet_size;
1301 //printf("ret = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", ret, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1302
1303 ftdi->readbuffer_offset += 2;
1304 ret -= 2;
1305
1306 if (ret > packet_size - 2)
1307 {
1308 for (i = 1; i < num_of_chunks; i++)
1309 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1310 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1311 packet_size - 2);
1312 if (chunk_remains > 2)
1313 {
1314 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1315 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1316 chunk_remains-2);
1317 ret -= 2*num_of_chunks;
1318 }
1319 else
1320 ret -= 2*(num_of_chunks-1)+chunk_remains;
1321 }
1322 }
1323 else if (ret <= 2)
1324 {
1325 // no more data to read?
1326 return offset;
1327 }
1328 if (ret > 0)
1329 {
1330 // data still fits in buf?
1331 if (offset+ret <= size)
1332 {
1333 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, ret);
1334 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1335 offset += ret;
1336
1337 /* Did we read exactly the right amount of bytes? */
1338 if (offset == size)
1339 //printf("read_data exact rem %d offset %d\n",
1340 //ftdi->readbuffer_remaining, offset);
1341 return offset;
1342 }
1343 else
1344 {
1345 // only copy part of the data or size <= readbuffer_chunksize
1346 int part_size = size-offset;
1347 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1348
1349 ftdi->readbuffer_offset += part_size;
1350 ftdi->readbuffer_remaining = ret-part_size;
1351 offset += part_size;
1352
1353 /* printf("Returning part: %d - size: %d - offset: %d - ret: %d - remaining: %d\n",
1354 part_size, size, offset, ret, ftdi->readbuffer_remaining); */
1355
1356 return offset;
1357 }
1358 }
1359 }
1360 // never reached
1361 return -127;
1362}
1363
1364/**
1365 Configure read buffer chunk size.
1366 Default is 4096.
1367
1368 Automatically reallocates the buffer.
1369
1370 \param ftdi pointer to ftdi_context
1371 \param chunksize Chunk size
1372
1373 \retval 0: all fine
1374*/
1375int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1376{
1377 unsigned char *new_buf;
1378
1379 // Invalidate all remaining data
1380 ftdi->readbuffer_offset = 0;
1381 ftdi->readbuffer_remaining = 0;
1382
1383 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1384 ftdi_error_return(-1, "out of memory for readbuffer");
1385
1386 ftdi->readbuffer = new_buf;
1387 ftdi->readbuffer_chunksize = chunksize;
1388
1389 return 0;
1390}
1391
1392/**
1393 Get read buffer chunk size.
1394
1395 \param ftdi pointer to ftdi_context
1396 \param chunksize Pointer to store chunk size in
1397
1398 \retval 0: all fine
1399*/
1400int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1401{
1402 *chunksize = ftdi->readbuffer_chunksize;
1403 return 0;
1404}
1405
1406
1407/**
1408 Enable bitbang mode.
1409
1410 For advanced bitbang modes of the FT2232C chip use ftdi_set_bitmode().
1411
1412 \param ftdi pointer to ftdi_context
1413 \param bitmask Bitmask to configure lines.
1414 HIGH/ON value configures a line as output.
1415
1416 \retval 0: all fine
1417 \retval -1: can't enable bitbang mode
1418*/
1419int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1420{
1421 unsigned short usb_val;
1422
1423 usb_val = bitmask; // low byte: bitmask
1424 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1425 usb_val |= (ftdi->bitbang_mode << 8);
1426
1427 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1428 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1429 NULL, 0, ftdi->usb_write_timeout) != 0)
1430 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1431
1432 ftdi->bitbang_enabled = 1;
1433 return 0;
1434}
1435
1436/**
1437 Disable bitbang mode.
1438
1439 \param ftdi pointer to ftdi_context
1440
1441 \retval 0: all fine
1442 \retval -1: can't disable bitbang mode
1443*/
1444int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1445{
1446 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1447 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1448
1449 ftdi->bitbang_enabled = 0;
1450 return 0;
1451}
1452
1453/**
1454 Enable advanced bitbang mode for FT2232C chips.
1455
1456 \param ftdi pointer to ftdi_context
1457 \param bitmask Bitmask to configure lines.
1458 HIGH/ON value configures a line as output.
1459 \param mode Bitbang mode: 1 for normal mode, 2 for SPI mode
1460
1461 \retval 0: all fine
1462 \retval -1: can't enable bitbang mode
1463*/
1464int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1465{
1466 unsigned short usb_val;
1467
1468 usb_val = bitmask; // low byte: bitmask
1469 usb_val |= (mode << 8);
1470 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1471 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1472
1473 ftdi->bitbang_mode = mode;
1474 ftdi->bitbang_enabled = (mode == BITMODE_BITBANG || mode == BITMODE_SYNCBB)?1:0;
1475 return 0;
1476}
1477
1478/**
1479 Directly read pin state. Useful for bitbang mode.
1480
1481 \param ftdi pointer to ftdi_context
1482 \param pins Pointer to store pins into
1483
1484 \retval 0: all fine
1485 \retval -1: read pins failed
1486*/
1487int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1488{
1489 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (char *)pins, 1, ftdi->usb_read_timeout) != 1)
1490 ftdi_error_return(-1, "read pins failed");
1491
1492 return 0;
1493}
1494
1495/**
1496 Set latency timer
1497
1498 The FTDI chip keeps data in the internal buffer for a specific
1499 amount of time if the buffer is not full yet to decrease
1500 load on the usb bus.
1501
1502 \param ftdi pointer to ftdi_context
1503 \param latency Value between 1 and 255
1504
1505 \retval 0: all fine
1506 \retval -1: latency out of range
1507 \retval -2: unable to set latency timer
1508*/
1509int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1510{
1511 unsigned short usb_val;
1512
1513 if (latency < 1)
1514 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1515
1516 usb_val = latency;
1517 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1518 ftdi_error_return(-2, "unable to set latency timer");
1519
1520 return 0;
1521}
1522
1523/**
1524 Get latency timer
1525
1526 \param ftdi pointer to ftdi_context
1527 \param latency Pointer to store latency value in
1528
1529 \retval 0: all fine
1530 \retval -1: unable to get latency timer
1531*/
1532int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1533{
1534 unsigned short usb_val;
1535 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1536 ftdi_error_return(-1, "reading latency timer failed");
1537
1538 *latency = (unsigned char)usb_val;
1539 return 0;
1540}
1541
1542/**
1543 Poll modem status information
1544
1545 This function allows the retrieve the two status bytes of the device.
1546 The device sends these bytes also as a header for each read access
1547 where they are discarded by ftdi_read_data(). The chip generates
1548 the two stripped status bytes in the absence of data every 40 ms.
1549
1550 Layout of the first byte:
1551 - B0..B3 - must be 0
1552 - B4 Clear to send (CTS)
1553 0 = inactive
1554 1 = active
1555 - B5 Data set ready (DTS)
1556 0 = inactive
1557 1 = active
1558 - B6 Ring indicator (RI)
1559 0 = inactive
1560 1 = active
1561 - B7 Receive line signal detect (RLSD)
1562 0 = inactive
1563 1 = active
1564
1565 Layout of the second byte:
1566 - B0 Data ready (DR)
1567 - B1 Overrun error (OE)
1568 - B2 Parity error (PE)
1569 - B3 Framing error (FE)
1570 - B4 Break interrupt (BI)
1571 - B5 Transmitter holding register (THRE)
1572 - B6 Transmitter empty (TEMT)
1573 - B7 Error in RCVR FIFO
1574
1575 \param ftdi pointer to ftdi_context
1576 \param status Pointer to store status information in. Must be two bytes.
1577
1578 \retval 0: all fine
1579 \retval -1: unable to retrieve status information
1580*/
1581int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1582{
1583 char usb_val[2];
1584
1585 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, usb_val, 2, ftdi->usb_read_timeout) != 2)
1586 ftdi_error_return(-1, "getting modem status failed");
1587
1588 *status = (usb_val[1] << 8) | usb_val[0];
1589
1590 return 0;
1591}
1592
1593/**
1594 Set flowcontrol for ftdi chip
1595
1596 \param ftdi pointer to ftdi_context
1597 \param flowctrl flow control to use. should be
1598 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
1599
1600 \retval 0: all fine
1601 \retval -1: set flow control failed
1602*/
1603int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1604{
1605 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1606 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
1607 NULL, 0, ftdi->usb_write_timeout) != 0)
1608 ftdi_error_return(-1, "set flow control failed");
1609
1610 return 0;
1611}
1612
1613/**
1614 Set dtr line
1615
1616 \param ftdi pointer to ftdi_context
1617 \param state state to set line to (1 or 0)
1618
1619 \retval 0: all fine
1620 \retval -1: set dtr failed
1621*/
1622int ftdi_setdtr(struct ftdi_context *ftdi, int state)
1623{
1624 unsigned short usb_val;
1625
1626 if (state)
1627 usb_val = SIO_SET_DTR_HIGH;
1628 else
1629 usb_val = SIO_SET_DTR_LOW;
1630
1631 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1632 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1633 NULL, 0, ftdi->usb_write_timeout) != 0)
1634 ftdi_error_return(-1, "set dtr failed");
1635
1636 return 0;
1637}
1638
1639/**
1640 Set rts line
1641
1642 \param ftdi pointer to ftdi_context
1643 \param state state to set line to (1 or 0)
1644
1645 \retval 0: all fine
1646 \retval -1 set rts failed
1647*/
1648int ftdi_setrts(struct ftdi_context *ftdi, int state)
1649{
1650 unsigned short usb_val;
1651
1652 if (state)
1653 usb_val = SIO_SET_RTS_HIGH;
1654 else
1655 usb_val = SIO_SET_RTS_LOW;
1656
1657 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1658 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1659 NULL, 0, ftdi->usb_write_timeout) != 0)
1660 ftdi_error_return(-1, "set of rts failed");
1661
1662 return 0;
1663}
1664
1665/**
1666 Set dtr and rts line in one pass
1667
1668 \param ftdi pointer to ftdi_context
1669 \param dtr DTR state to set line to (1 or 0)
1670 \param rts RTS state to set line to (1 or 0)
1671
1672 \retval 0: all fine
1673 \retval -1 set dtr/rts failed
1674 */
1675int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
1676{
1677 unsigned short usb_val;
1678
1679 if (dtr)
1680 usb_val = SIO_SET_DTR_HIGH;
1681 else
1682 usb_val = SIO_SET_DTR_LOW;
1683
1684 if (rts)
1685 usb_val |= SIO_SET_RTS_HIGH;
1686 else
1687 usb_val |= SIO_SET_RTS_LOW;
1688
1689 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1690 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1691 NULL, 0, ftdi->usb_write_timeout) != 0)
1692 ftdi_error_return(-1, "set of rts/dtr failed");
1693
1694 return 0;
1695}
1696
1697/**
1698 Set the special event character
1699
1700 \param ftdi pointer to ftdi_context
1701 \param eventch Event character
1702 \param enable 0 to disable the event character, non-zero otherwise
1703
1704 \retval 0: all fine
1705 \retval -1: unable to set event character
1706*/
1707int ftdi_set_event_char(struct ftdi_context *ftdi,
1708 unsigned char eventch, unsigned char enable)
1709{
1710 unsigned short usb_val;
1711
1712 usb_val = eventch;
1713 if (enable)
1714 usb_val |= 1 << 8;
1715
1716 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1717 ftdi_error_return(-1, "setting event character failed");
1718
1719 return 0;
1720}
1721
1722/**
1723 Set error character
1724
1725 \param ftdi pointer to ftdi_context
1726 \param errorch Error character
1727 \param enable 0 to disable the error character, non-zero otherwise
1728
1729 \retval 0: all fine
1730 \retval -1: unable to set error character
1731*/
1732int ftdi_set_error_char(struct ftdi_context *ftdi,
1733 unsigned char errorch, unsigned char enable)
1734{
1735 unsigned short usb_val;
1736
1737 usb_val = errorch;
1738 if (enable)
1739 usb_val |= 1 << 8;
1740
1741 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1742 ftdi_error_return(-1, "setting error character failed");
1743
1744 return 0;
1745}
1746
1747/**
1748 Set the eeprom size
1749
1750 \param ftdi pointer to ftdi_context
1751 \param eeprom Pointer to ftdi_eeprom
1752 \param size
1753
1754*/
1755void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
1756{
1757 ftdi->eeprom_size=size;
1758 eeprom->size=size;
1759}
1760
1761/**
1762 Init eeprom with default values.
1763
1764 \param eeprom Pointer to ftdi_eeprom
1765*/
1766void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
1767{
1768 eeprom->vendor_id = 0x0403;
1769 eeprom->product_id = 0x6001;
1770
1771 eeprom->self_powered = 1;
1772 eeprom->remote_wakeup = 1;
1773 eeprom->BM_type_chip = 1;
1774
1775 eeprom->in_is_isochronous = 0;
1776 eeprom->out_is_isochronous = 0;
1777 eeprom->suspend_pull_downs = 0;
1778
1779 eeprom->use_serial = 0;
1780 eeprom->change_usb_version = 0;
1781 eeprom->usb_version = 0x0200;
1782 eeprom->max_power = 0;
1783
1784 eeprom->manufacturer = NULL;
1785 eeprom->product = NULL;
1786 eeprom->serial = NULL;
1787
1788 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
1789}
1790
1791/**
1792 Build binary output from ftdi_eeprom structure.
1793 Output is suitable for ftdi_write_eeprom().
1794
1795 \param eeprom Pointer to ftdi_eeprom
1796 \param output Buffer of 128 bytes to store eeprom image to
1797
1798 \retval >0: used eeprom size
1799 \retval -1: eeprom size (128 bytes) exceeded by custom strings
1800*/
1801int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
1802{
1803 unsigned char i, j;
1804 unsigned short checksum, value;
1805 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
1806 int size_check;
1807
1808 if (eeprom->manufacturer != NULL)
1809 manufacturer_size = strlen(eeprom->manufacturer);
1810 if (eeprom->product != NULL)
1811 product_size = strlen(eeprom->product);
1812 if (eeprom->serial != NULL)
1813 serial_size = strlen(eeprom->serial);
1814
1815 size_check = eeprom->size;
1816 size_check -= 28; // 28 are always in use (fixed)
1817
1818 // Top half of a 256byte eeprom is used just for strings and checksum
1819 // it seems that the FTDI chip will not read these strings from the lower half
1820 // Each string starts with two bytes; offset and type (0x03 for string)
1821 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
1822 if (eeprom->size>=256)size_check = 120;
1823 size_check -= manufacturer_size*2;
1824 size_check -= product_size*2;
1825 size_check -= serial_size*2;
1826
1827 // eeprom size exceeded?
1828 if (size_check < 0)
1829 return (-1);
1830
1831 // empty eeprom
1832 memset (output, 0, eeprom->size);
1833
1834 // Addr 00: Stay 00 00
1835 // Addr 02: Vendor ID
1836 output[0x02] = eeprom->vendor_id;
1837 output[0x03] = eeprom->vendor_id >> 8;
1838
1839 // Addr 04: Product ID
1840 output[0x04] = eeprom->product_id;
1841 output[0x05] = eeprom->product_id >> 8;
1842
1843 // Addr 06: Device release number (0400h for BM features)
1844 output[0x06] = 0x00;
1845
1846 if (eeprom->BM_type_chip == 1)
1847 output[0x07] = 0x04;
1848 else
1849 output[0x07] = 0x02;
1850
1851 // Addr 08: Config descriptor
1852 // Bit 7: always 1
1853 // Bit 6: 1 if this device is self powered, 0 if bus powered
1854 // Bit 5: 1 if this device uses remote wakeup
1855 // Bit 4: 1 if this device is battery powered
1856 j = 0x80;
1857 if (eeprom->self_powered == 1)
1858 j |= 0x40;
1859 if (eeprom->remote_wakeup == 1)
1860 j |= 0x20;
1861 output[0x08] = j;
1862
1863 // Addr 09: Max power consumption: max power = value * 2 mA
1864 output[0x09] = eeprom->max_power;
1865
1866 // Addr 0A: Chip configuration
1867 // Bit 7: 0 - reserved
1868 // Bit 6: 0 - reserved
1869 // Bit 5: 0 - reserved
1870 // Bit 4: 1 - Change USB version
1871 // Bit 3: 1 - Use the serial number string
1872 // Bit 2: 1 - Enable suspend pull downs for lower power
1873 // Bit 1: 1 - Out EndPoint is Isochronous
1874 // Bit 0: 1 - In EndPoint is Isochronous
1875 //
1876 j = 0;
1877 if (eeprom->in_is_isochronous == 1)
1878 j = j | 1;
1879 if (eeprom->out_is_isochronous == 1)
1880 j = j | 2;
1881 if (eeprom->suspend_pull_downs == 1)
1882 j = j | 4;
1883 if (eeprom->use_serial == 1)
1884 j = j | 8;
1885 if (eeprom->change_usb_version == 1)
1886 j = j | 16;
1887 output[0x0A] = j;
1888
1889 // Addr 0B: reserved
1890 output[0x0B] = 0x00;
1891
1892 // Addr 0C: USB version low byte when 0x0A bit 4 is set
1893 // Addr 0D: USB version high byte when 0x0A bit 4 is set
1894 if (eeprom->change_usb_version == 1)
1895 {
1896 output[0x0C] = eeprom->usb_version;
1897 output[0x0D] = eeprom->usb_version >> 8;
1898 }
1899
1900
1901 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
1902 // Addr 0F: Length of manufacturer string
1903 output[0x0F] = manufacturer_size*2 + 2;
1904
1905 // Addr 10: Offset of the product string + 0x80, calculated later
1906 // Addr 11: Length of product string
1907 output[0x11] = product_size*2 + 2;
1908
1909 // Addr 12: Offset of the serial string + 0x80, calculated later
1910 // Addr 13: Length of serial string
1911 output[0x13] = serial_size*2 + 2;
1912
1913 // Dynamic content
1914 i=0x14;
1915 if (eeprom->size>=256) i = 0x80;
1916
1917
1918 // Output manufacturer
1919 output[0x0E] = i | 0x80; // calculate offset
1920 output[i++] = manufacturer_size*2 + 2;
1921 output[i++] = 0x03; // type: string
1922 for (j = 0; j < manufacturer_size; j++)
1923 {
1924 output[i] = eeprom->manufacturer[j], i++;
1925 output[i] = 0x00, i++;
1926 }
1927
1928 // Output product name
1929 output[0x10] = i | 0x80; // calculate offset
1930 output[i] = product_size*2 + 2, i++;
1931 output[i] = 0x03, i++;
1932 for (j = 0; j < product_size; j++)
1933 {
1934 output[i] = eeprom->product[j], i++;
1935 output[i] = 0x00, i++;
1936 }
1937
1938 // Output serial
1939 output[0x12] = i | 0x80; // calculate offset
1940 output[i] = serial_size*2 + 2, i++;
1941 output[i] = 0x03, i++;
1942 for (j = 0; j < serial_size; j++)
1943 {
1944 output[i] = eeprom->serial[j], i++;
1945 output[i] = 0x00, i++;
1946 }
1947
1948 // calculate checksum
1949 checksum = 0xAAAA;
1950
1951 for (i = 0; i < eeprom->size/2-1; i++)
1952 {
1953 value = output[i*2];
1954 value += output[(i*2)+1] << 8;
1955
1956 checksum = value^checksum;
1957 checksum = (checksum << 1) | (checksum >> 15);
1958 }
1959
1960 output[eeprom->size-2] = checksum;
1961 output[eeprom->size-1] = checksum >> 8;
1962
1963 return size_check;
1964}
1965
1966/**
1967 Decode binary EEPROM image into an ftdi_eeprom structure.
1968
1969 \param eeprom Pointer to ftdi_eeprom which will be filled in.
1970 \param buf Buffer of \a size bytes of raw eeprom data
1971 \param size size size of eeprom data in bytes
1972
1973 \retval 0: all fine
1974 \retval -1: something went wrong
1975
1976 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
1977 FIXME: Strings are malloc'ed here and should be freed somewhere
1978*/
1979int ftdi_eeprom_decode(struct ftdi_eeprom *eeprom, unsigned char *buf, int size)
1980{
1981 unsigned char i, j;
1982 unsigned short checksum, eeprom_checksum, value;
1983 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
1984 int size_check;
1985 int eeprom_size = 128;
1986#if 0
1987 size_check = eeprom->size;
1988 size_check -= 28; // 28 are always in use (fixed)
1989
1990 // Top half of a 256byte eeprom is used just for strings and checksum
1991 // it seems that the FTDI chip will not read these strings from the lower half
1992 // Each string starts with two bytes; offset and type (0x03 for string)
1993 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
1994 if (eeprom->size>=256)size_check = 120;
1995 size_check -= manufacturer_size*2;
1996 size_check -= product_size*2;
1997 size_check -= serial_size*2;
1998
1999 // eeprom size exceeded?
2000 if (size_check < 0)
2001 return (-1);
2002#endif
2003
2004 // empty eeprom struct
2005 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2006
2007 // Addr 00: Stay 00 00
2008
2009 // Addr 02: Vendor ID
2010 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2011
2012 // Addr 04: Product ID
2013 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2014
2015 value = buf[0x06] + (buf[0x07]<<8);
2016 switch (value)
2017 {
2018 case 0x0400:
2019 eeprom->BM_type_chip = 1;
2020 break;
2021 case 0x0200:
2022 eeprom->BM_type_chip = 0;
2023 break;
2024 default: // Unknown device
2025 eeprom->BM_type_chip = 0;
2026 break;
2027 }
2028
2029 // Addr 08: Config descriptor
2030 // Bit 7: always 1
2031 // Bit 6: 1 if this device is self powered, 0 if bus powered
2032 // Bit 5: 1 if this device uses remote wakeup
2033 // Bit 4: 1 if this device is battery powered
2034 j = buf[0x08];
2035 if (j&0x40) eeprom->self_powered = 1;
2036 if (j&0x20) eeprom->remote_wakeup = 1;
2037
2038 // Addr 09: Max power consumption: max power = value * 2 mA
2039 eeprom->max_power = buf[0x09];
2040
2041 // Addr 0A: Chip configuration
2042 // Bit 7: 0 - reserved
2043 // Bit 6: 0 - reserved
2044 // Bit 5: 0 - reserved
2045 // Bit 4: 1 - Change USB version
2046 // Bit 3: 1 - Use the serial number string
2047 // Bit 2: 1 - Enable suspend pull downs for lower power
2048 // Bit 1: 1 - Out EndPoint is Isochronous
2049 // Bit 0: 1 - In EndPoint is Isochronous
2050 //
2051 j = buf[0x0A];
2052 if (j&0x01) eeprom->in_is_isochronous = 1;
2053 if (j&0x02) eeprom->out_is_isochronous = 1;
2054 if (j&0x04) eeprom->suspend_pull_downs = 1;
2055 if (j&0x08) eeprom->use_serial = 1;
2056 if (j&0x10) eeprom->change_usb_version = 1;
2057
2058 // Addr 0B: reserved
2059
2060 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2061 // Addr 0D: USB version high byte when 0x0A bit 4 is set
2062 if (eeprom->change_usb_version == 1)
2063 {
2064 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2065 }
2066
2067 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2068 // Addr 0F: Length of manufacturer string
2069 manufacturer_size = buf[0x0F]/2;
2070 if (manufacturer_size > 0) eeprom->manufacturer = malloc(manufacturer_size);
2071 else eeprom->manufacturer = NULL;
2072
2073 // Addr 10: Offset of the product string + 0x80, calculated later
2074 // Addr 11: Length of product string
2075 product_size = buf[0x11]/2;
2076 if (product_size > 0) eeprom->product = malloc(product_size);
2077 else eeprom->product = NULL;
2078
2079 // Addr 12: Offset of the serial string + 0x80, calculated later
2080 // Addr 13: Length of serial string
2081 serial_size = buf[0x13]/2;
2082 if (serial_size > 0) eeprom->serial = malloc(serial_size);
2083 else eeprom->serial = NULL;
2084
2085 // Decode manufacturer
2086 i = buf[0x0E] & 0x7f; // offset
2087 for (j=0;j<manufacturer_size-1;j++)
2088 {
2089 eeprom->manufacturer[j] = buf[2*j+i+2];
2090 }
2091 eeprom->manufacturer[j] = '\0';
2092
2093 // Decode product name
2094 i = buf[0x10] & 0x7f; // offset
2095 for (j=0;j<product_size-1;j++)
2096 {
2097 eeprom->product[j] = buf[2*j+i+2];
2098 }
2099 eeprom->product[j] = '\0';
2100
2101 // Decode serial
2102 i = buf[0x12] & 0x7f; // offset
2103 for (j=0;j<serial_size-1;j++)
2104 {
2105 eeprom->serial[j] = buf[2*j+i+2];
2106 }
2107 eeprom->serial[j] = '\0';
2108
2109 // verify checksum
2110 checksum = 0xAAAA;
2111
2112 for (i = 0; i < eeprom_size/2-1; i++)
2113 {
2114 value = buf[i*2];
2115 value += buf[(i*2)+1] << 8;
2116
2117 checksum = value^checksum;
2118 checksum = (checksum << 1) | (checksum >> 15);
2119 }
2120
2121 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2122
2123 if (eeprom_checksum != checksum)
2124 {
2125 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2126 return -1;
2127 }
2128
2129 return 0;
2130}
2131
2132/**
2133 Read eeprom
2134
2135 \param ftdi pointer to ftdi_context
2136 \param eeprom Pointer to store eeprom into
2137
2138 \retval 0: all fine
2139 \retval -1: read failed
2140*/
2141int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2142{
2143 int i;
2144
2145 for (i = 0; i < ftdi->eeprom_size/2; i++)
2146 {
2147 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
2148 ftdi_error_return(-1, "reading eeprom failed");
2149 }
2150
2151 return 0;
2152}
2153
2154/*
2155 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
2156 Function is only used internally
2157 \internal
2158*/
2159static unsigned char ftdi_read_chipid_shift(unsigned char value)
2160{
2161 return ((value & 1) << 1) |
2162 ((value & 2) << 5) |
2163 ((value & 4) >> 2) |
2164 ((value & 8) << 4) |
2165 ((value & 16) >> 1) |
2166 ((value & 32) >> 1) |
2167 ((value & 64) >> 4) |
2168 ((value & 128) >> 2);
2169}
2170
2171/**
2172 Read the FTDIChip-ID from R-type devices
2173
2174 \param ftdi pointer to ftdi_context
2175 \param chipid Pointer to store FTDIChip-ID
2176
2177 \retval 0: all fine
2178 \retval -1: read failed
2179*/
2180int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
2181{
2182 unsigned int a = 0, b = 0;
2183
2184 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (char *)&a, 2, ftdi->usb_read_timeout) == 2)
2185 {
2186 a = a << 8 | a >> 8;
2187 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (char *)&b, 2, ftdi->usb_read_timeout) == 2)
2188 {
2189 b = b << 8 | b >> 8;
2190 a = (a << 16) | (b & 0xFFFF);
2191 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
2192 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
2193 *chipid = a ^ 0xa5f0f7d1;
2194 return 0;
2195 }
2196 }
2197
2198 ftdi_error_return(-1, "read of FTDIChip-ID failed");
2199}
2200
2201/**
2202 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
2203 Call this function then do a write then call again to see if size changes, if so write again.
2204
2205 \param ftdi pointer to ftdi_context
2206 \param eeprom Pointer to store eeprom into
2207 \param maxsize the size of the buffer to read into
2208
2209 \retval size of eeprom
2210*/
2211int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
2212{
2213 int i=0,j,minsize=32;
2214 int size=minsize;
2215
2216 do
2217 {
2218 for (j = 0; i < maxsize/2 && j<size; j++)
2219 {
2220 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,
2221 SIO_READ_EEPROM_REQUEST, 0, i,
2222 eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
2223 ftdi_error_return(-1, "reading eeprom failed");
2224 i++;
2225 }
2226 size*=2;
2227 }
2228 while (size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
2229
2230 return size/2;
2231}
2232
2233/**
2234 Write eeprom
2235
2236 \param ftdi pointer to ftdi_context
2237 \param eeprom Pointer to read eeprom from
2238
2239 \retval 0: all fine
2240 \retval -1: read failed
2241*/
2242int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2243{
2244 unsigned short usb_val, status;
2245 int i, ret;
2246
2247 /* These commands were traced while running MProg */
2248 if ((ret = ftdi_usb_reset(ftdi)) != 0)
2249 return ret;
2250 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
2251 return ret;
2252 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
2253 return ret;
2254
2255 for (i = 0; i < ftdi->eeprom_size/2; i++)
2256 {
2257 usb_val = eeprom[i*2];
2258 usb_val += eeprom[(i*2)+1] << 8;
2259 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2260 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
2261 NULL, 0, ftdi->usb_write_timeout) != 0)
2262 ftdi_error_return(-1, "unable to write eeprom");
2263 }
2264
2265 return 0;
2266}
2267
2268/**
2269 Erase eeprom
2270
2271 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
2272
2273 \param ftdi pointer to ftdi_context
2274
2275 \retval 0: all fine
2276 \retval -1: erase failed
2277*/
2278int ftdi_erase_eeprom(struct ftdi_context *ftdi)
2279{
2280 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST, 0, 0, NULL, 0, ftdi->usb_write_timeout) != 0)
2281 ftdi_error_return(-1, "unable to erase eeprom");
2282
2283 return 0;
2284}
2285
2286/**
2287 Get string representation for last error code
2288
2289 \param ftdi pointer to ftdi_context
2290
2291 \retval Pointer to error string
2292*/
2293char *ftdi_get_error_string (struct ftdi_context *ftdi)
2294{
2295 return ftdi->error_str;
2296}
2297
2298/* @} end of doxygen libftdi group */