Merge branch 'renames-for-release'
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi_i.h"
38#include "ftdi.h"
39#include "ftdi_version_i.h"
40
41#define ftdi_error_return(code, str) do { \
42 if ( ftdi ) \
43 ftdi->error_str = str; \
44 else \
45 fprintf(stderr, str); \
46 return code; \
47 } while(0);
48
49#define ftdi_error_return_free_device_list(code, str, devs) do { \
50 libusb_free_device_list(devs,1); \
51 ftdi->error_str = str; \
52 return code; \
53 } while(0);
54
55
56/**
57 Internal function to close usb device pointer.
58 Sets ftdi->usb_dev to NULL.
59 \internal
60
61 \param ftdi pointer to ftdi_context
62
63 \retval none
64*/
65static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
66{
67 if (ftdi && ftdi->usb_dev)
68 {
69 libusb_close (ftdi->usb_dev);
70 ftdi->usb_dev = NULL;
71 if(ftdi->eeprom)
72 ftdi->eeprom->initialized_for_connected_device = 0;
73 }
74}
75
76/**
77 Initializes a ftdi_context.
78
79 \param ftdi pointer to ftdi_context
80
81 \retval 0: all fine
82 \retval -1: couldn't allocate read buffer
83 \retval -2: couldn't allocate struct buffer
84 \retval -3: libusb_init() failed
85
86 \remark This should be called before all functions
87*/
88int ftdi_init(struct ftdi_context *ftdi)
89{
90 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
91 ftdi->usb_ctx = NULL;
92 ftdi->usb_dev = NULL;
93 ftdi->usb_read_timeout = 5000;
94 ftdi->usb_write_timeout = 5000;
95
96 ftdi->type = TYPE_BM; /* chip type */
97 ftdi->baudrate = -1;
98 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
99
100 ftdi->readbuffer = NULL;
101 ftdi->readbuffer_offset = 0;
102 ftdi->readbuffer_remaining = 0;
103 ftdi->writebuffer_chunksize = 4096;
104 ftdi->max_packet_size = 0;
105 ftdi->error_str = NULL;
106 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
107
108 if (libusb_init(&ftdi->usb_ctx) < 0)
109 ftdi_error_return(-3, "libusb_init() failed");
110
111 ftdi_set_interface(ftdi, INTERFACE_ANY);
112 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
113
114 if (eeprom == 0)
115 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
116 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
117 ftdi->eeprom = eeprom;
118
119 /* All fine. Now allocate the readbuffer */
120 return ftdi_read_data_set_chunksize(ftdi, 4096);
121}
122
123/**
124 Allocate and initialize a new ftdi_context
125
126 \return a pointer to a new ftdi_context, or NULL on failure
127*/
128struct ftdi_context *ftdi_new(void)
129{
130 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
131
132 if (ftdi == NULL)
133 {
134 return NULL;
135 }
136
137 if (ftdi_init(ftdi) != 0)
138 {
139 free(ftdi);
140 return NULL;
141 }
142
143 return ftdi;
144}
145
146/**
147 Open selected channels on a chip, otherwise use first channel.
148
149 \param ftdi pointer to ftdi_context
150 \param interface Interface to use for FT2232C/2232H/4232H chips.
151
152 \retval 0: all fine
153 \retval -1: unknown interface
154 \retval -2: USB device unavailable
155 \retval -3: Device already open, interface can't be set in that state
156*/
157int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
158{
159 if (ftdi == NULL)
160 ftdi_error_return(-2, "USB device unavailable");
161
162 if (ftdi->usb_dev != NULL)
163 {
164 int check_interface = interface;
165 if (check_interface == INTERFACE_ANY)
166 check_interface = INTERFACE_A;
167
168 if (ftdi->index != check_interface)
169 ftdi_error_return(-3, "Interface can not be changed on an already open device");
170 }
171
172 switch (interface)
173 {
174 case INTERFACE_ANY:
175 case INTERFACE_A:
176 ftdi->interface = 0;
177 ftdi->index = INTERFACE_A;
178 ftdi->in_ep = 0x02;
179 ftdi->out_ep = 0x81;
180 break;
181 case INTERFACE_B:
182 ftdi->interface = 1;
183 ftdi->index = INTERFACE_B;
184 ftdi->in_ep = 0x04;
185 ftdi->out_ep = 0x83;
186 break;
187 case INTERFACE_C:
188 ftdi->interface = 2;
189 ftdi->index = INTERFACE_C;
190 ftdi->in_ep = 0x06;
191 ftdi->out_ep = 0x85;
192 break;
193 case INTERFACE_D:
194 ftdi->interface = 3;
195 ftdi->index = INTERFACE_D;
196 ftdi->in_ep = 0x08;
197 ftdi->out_ep = 0x87;
198 break;
199 default:
200 ftdi_error_return(-1, "Unknown interface");
201 }
202 return 0;
203}
204
205/**
206 Deinitializes a ftdi_context.
207
208 \param ftdi pointer to ftdi_context
209*/
210void ftdi_deinit(struct ftdi_context *ftdi)
211{
212 if (ftdi == NULL)
213 return;
214
215 ftdi_usb_close_internal (ftdi);
216
217 if (ftdi->readbuffer != NULL)
218 {
219 free(ftdi->readbuffer);
220 ftdi->readbuffer = NULL;
221 }
222
223 if (ftdi->eeprom != NULL)
224 {
225 if (ftdi->eeprom->manufacturer != 0)
226 {
227 free(ftdi->eeprom->manufacturer);
228 ftdi->eeprom->manufacturer = 0;
229 }
230 if (ftdi->eeprom->product != 0)
231 {
232 free(ftdi->eeprom->product);
233 ftdi->eeprom->product = 0;
234 }
235 if (ftdi->eeprom->serial != 0)
236 {
237 free(ftdi->eeprom->serial);
238 ftdi->eeprom->serial = 0;
239 }
240 free(ftdi->eeprom);
241 ftdi->eeprom = NULL;
242 }
243
244 if (ftdi->usb_ctx)
245 {
246 libusb_exit(ftdi->usb_ctx);
247 ftdi->usb_ctx = NULL;
248 }
249}
250
251/**
252 Deinitialize and free an ftdi_context.
253
254 \param ftdi pointer to ftdi_context
255*/
256void ftdi_free(struct ftdi_context *ftdi)
257{
258 ftdi_deinit(ftdi);
259 free(ftdi);
260}
261
262/**
263 Use an already open libusb device.
264
265 \param ftdi pointer to ftdi_context
266 \param usb libusb libusb_device_handle to use
267*/
268void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
269{
270 if (ftdi == NULL)
271 return;
272
273 ftdi->usb_dev = usb;
274}
275
276/**
277 * @brief Get libftdi library version
278 *
279 * @return ftdi_version_info Library version information
280 **/
281struct ftdi_version_info ftdi_get_library_version()
282{
283 struct ftdi_version_info ver;
284
285 ver.major = FTDI_MAJOR_VERSION;
286 ver.minor = FTDI_MINOR_VERSION;
287 ver.micro = FTDI_MICRO_VERSION;
288 ver.version_str = FTDI_VERSION_STRING;
289 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
290
291 return ver;
292}
293
294/**
295 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
296 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
297 use. With VID:PID 0:0, search for the default devices
298 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014)
299
300 \param ftdi pointer to ftdi_context
301 \param devlist Pointer where to store list of found devices
302 \param vendor Vendor ID to search for
303 \param product Product ID to search for
304
305 \retval >0: number of devices found
306 \retval -3: out of memory
307 \retval -5: libusb_get_device_list() failed
308 \retval -6: libusb_get_device_descriptor() failed
309*/
310int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
311{
312 struct ftdi_device_list **curdev;
313 libusb_device *dev;
314 libusb_device **devs;
315 int count = 0;
316 int i = 0;
317
318 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
319 ftdi_error_return(-5, "libusb_get_device_list() failed");
320
321 curdev = devlist;
322 *curdev = NULL;
323
324 while ((dev = devs[i++]) != NULL)
325 {
326 struct libusb_device_descriptor desc;
327
328 if (libusb_get_device_descriptor(dev, &desc) < 0)
329 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
330
331 if (((vendor != 0 && product != 0) &&
332 desc.idVendor == vendor && desc.idProduct == product) ||
333 ((vendor == 0 && product == 0) &&
334 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
335 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014)))
336 {
337 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
338 if (!*curdev)
339 ftdi_error_return_free_device_list(-3, "out of memory", devs);
340
341 (*curdev)->next = NULL;
342 (*curdev)->dev = dev;
343 libusb_ref_device(dev);
344 curdev = &(*curdev)->next;
345 count++;
346 }
347 }
348 libusb_free_device_list(devs,1);
349 return count;
350}
351
352/**
353 Frees a usb device list.
354
355 \param devlist USB device list created by ftdi_usb_find_all()
356*/
357void ftdi_list_free(struct ftdi_device_list **devlist)
358{
359 struct ftdi_device_list *curdev, *next;
360
361 for (curdev = *devlist; curdev != NULL;)
362 {
363 next = curdev->next;
364 libusb_unref_device(curdev->dev);
365 free(curdev);
366 curdev = next;
367 }
368
369 *devlist = NULL;
370}
371
372/**
373 Frees a usb device list.
374
375 \param devlist USB device list created by ftdi_usb_find_all()
376*/
377void ftdi_list_free2(struct ftdi_device_list *devlist)
378{
379 ftdi_list_free(&devlist);
380}
381
382/**
383 Return device ID strings from the usb device.
384
385 The parameters manufacturer, description and serial may be NULL
386 or pointer to buffers to store the fetched strings.
387
388 \note Use this function only in combination with ftdi_usb_find_all()
389 as it closes the internal "usb_dev" after use.
390
391 \param ftdi pointer to ftdi_context
392 \param dev libusb usb_dev to use
393 \param manufacturer Store manufacturer string here if not NULL
394 \param mnf_len Buffer size of manufacturer string
395 \param description Store product description string here if not NULL
396 \param desc_len Buffer size of product description string
397 \param serial Store serial string here if not NULL
398 \param serial_len Buffer size of serial string
399
400 \retval 0: all fine
401 \retval -1: wrong arguments
402 \retval -4: unable to open device
403 \retval -7: get product manufacturer failed
404 \retval -8: get product description failed
405 \retval -9: get serial number failed
406 \retval -11: libusb_get_device_descriptor() failed
407*/
408int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
409 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
410{
411 struct libusb_device_descriptor desc;
412
413 if ((ftdi==NULL) || (dev==NULL))
414 return -1;
415
416 if (libusb_open(dev, &ftdi->usb_dev) < 0)
417 ftdi_error_return(-4, "libusb_open() failed");
418
419 if (libusb_get_device_descriptor(dev, &desc) < 0)
420 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
421
422 if (manufacturer != NULL)
423 {
424 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
425 {
426 ftdi_usb_close_internal (ftdi);
427 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
428 }
429 }
430
431 if (description != NULL)
432 {
433 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
434 {
435 ftdi_usb_close_internal (ftdi);
436 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
437 }
438 }
439
440 if (serial != NULL)
441 {
442 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
443 {
444 ftdi_usb_close_internal (ftdi);
445 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
446 }
447 }
448
449 ftdi_usb_close_internal (ftdi);
450
451 return 0;
452}
453
454/**
455 * Internal function to determine the maximum packet size.
456 * \param ftdi pointer to ftdi_context
457 * \param dev libusb usb_dev to use
458 * \retval Maximum packet size for this device
459 */
460static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
461{
462 struct libusb_device_descriptor desc;
463 struct libusb_config_descriptor *config0;
464 unsigned int packet_size;
465
466 // Sanity check
467 if (ftdi == NULL || dev == NULL)
468 return 64;
469
470 // Determine maximum packet size. Init with default value.
471 // New hi-speed devices from FTDI use a packet size of 512 bytes
472 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
473 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
474 packet_size = 512;
475 else
476 packet_size = 64;
477
478 if (libusb_get_device_descriptor(dev, &desc) < 0)
479 return packet_size;
480
481 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
482 return packet_size;
483
484 if (desc.bNumConfigurations > 0)
485 {
486 if (ftdi->interface < config0->bNumInterfaces)
487 {
488 struct libusb_interface interface = config0->interface[ftdi->interface];
489 if (interface.num_altsetting > 0)
490 {
491 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
492 if (descriptor.bNumEndpoints > 0)
493 {
494 packet_size = descriptor.endpoint[0].wMaxPacketSize;
495 }
496 }
497 }
498 }
499
500 libusb_free_config_descriptor (config0);
501 return packet_size;
502}
503
504/**
505 Opens a ftdi device given by an usb_device.
506
507 \param ftdi pointer to ftdi_context
508 \param dev libusb usb_dev to use
509
510 \retval 0: all fine
511 \retval -3: unable to config device
512 \retval -4: unable to open device
513 \retval -5: unable to claim device
514 \retval -6: reset failed
515 \retval -7: set baudrate failed
516 \retval -8: ftdi context invalid
517 \retval -9: libusb_get_device_descriptor() failed
518 \retval -10: libusb_get_config_descriptor() failed
519 \retval -11: libusb_detach_kernel_driver() failed
520 \retval -12: libusb_get_configuration() failed
521*/
522int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
523{
524 struct libusb_device_descriptor desc;
525 struct libusb_config_descriptor *config0;
526 int cfg, cfg0, detach_errno = 0;
527
528 if (ftdi == NULL)
529 ftdi_error_return(-8, "ftdi context invalid");
530
531 if (libusb_open(dev, &ftdi->usb_dev) < 0)
532 ftdi_error_return(-4, "libusb_open() failed");
533
534 if (libusb_get_device_descriptor(dev, &desc) < 0)
535 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
536
537 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
538 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
539 cfg0 = config0->bConfigurationValue;
540 libusb_free_config_descriptor (config0);
541
542 // Try to detach ftdi_sio kernel module.
543 //
544 // The return code is kept in a separate variable and only parsed
545 // if usb_set_configuration() or usb_claim_interface() fails as the
546 // detach operation might be denied and everything still works fine.
547 // Likely scenario is a static ftdi_sio kernel module.
548 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
549 {
550 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
551 detach_errno = errno;
552 }
553
554 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
555 ftdi_error_return(-12, "libusb_get_configuration () failed");
556 // set configuration (needed especially for windows)
557 // tolerate EBUSY: one device with one configuration, but two interfaces
558 // and libftdi sessions to both interfaces (e.g. FT2232)
559 if (desc.bNumConfigurations > 0 && cfg != cfg0)
560 {
561 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
562 {
563 ftdi_usb_close_internal (ftdi);
564 if (detach_errno == EPERM)
565 {
566 ftdi_error_return(-8, "inappropriate permissions on device!");
567 }
568 else
569 {
570 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
571 }
572 }
573 }
574
575 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
576 {
577 ftdi_usb_close_internal (ftdi);
578 if (detach_errno == EPERM)
579 {
580 ftdi_error_return(-8, "inappropriate permissions on device!");
581 }
582 else
583 {
584 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
585 }
586 }
587
588 if (ftdi_usb_reset (ftdi) != 0)
589 {
590 ftdi_usb_close_internal (ftdi);
591 ftdi_error_return(-6, "ftdi_usb_reset failed");
592 }
593
594 // Try to guess chip type
595 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
596 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
597 && desc.iSerialNumber == 0))
598 ftdi->type = TYPE_BM;
599 else if (desc.bcdDevice == 0x200)
600 ftdi->type = TYPE_AM;
601 else if (desc.bcdDevice == 0x500)
602 ftdi->type = TYPE_2232C;
603 else if (desc.bcdDevice == 0x600)
604 ftdi->type = TYPE_R;
605 else if (desc.bcdDevice == 0x700)
606 ftdi->type = TYPE_2232H;
607 else if (desc.bcdDevice == 0x800)
608 ftdi->type = TYPE_4232H;
609 else if (desc.bcdDevice == 0x900)
610 ftdi->type = TYPE_232H;
611
612 // Determine maximum packet size
613 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
614
615 if (ftdi_set_baudrate (ftdi, 9600) != 0)
616 {
617 ftdi_usb_close_internal (ftdi);
618 ftdi_error_return(-7, "set baudrate failed");
619 }
620
621 ftdi_error_return(0, "all fine");
622}
623
624/**
625 Opens the first device with a given vendor and product ids.
626
627 \param ftdi pointer to ftdi_context
628 \param vendor Vendor ID
629 \param product Product ID
630
631 \retval same as ftdi_usb_open_desc()
632*/
633int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
634{
635 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
636}
637
638/**
639 Opens the first device with a given, vendor id, product id,
640 description and serial.
641
642 \param ftdi pointer to ftdi_context
643 \param vendor Vendor ID
644 \param product Product ID
645 \param description Description to search for. Use NULL if not needed.
646 \param serial Serial to search for. Use NULL if not needed.
647
648 \retval 0: all fine
649 \retval -3: usb device not found
650 \retval -4: unable to open device
651 \retval -5: unable to claim device
652 \retval -6: reset failed
653 \retval -7: set baudrate failed
654 \retval -8: get product description failed
655 \retval -9: get serial number failed
656 \retval -12: libusb_get_device_list() failed
657 \retval -13: libusb_get_device_descriptor() failed
658*/
659int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
660 const char* description, const char* serial)
661{
662 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
663}
664
665/**
666 Opens the index-th device with a given, vendor id, product id,
667 description and serial.
668
669 \param ftdi pointer to ftdi_context
670 \param vendor Vendor ID
671 \param product Product ID
672 \param description Description to search for. Use NULL if not needed.
673 \param serial Serial to search for. Use NULL if not needed.
674 \param index Number of matching device to open if there are more than one, starts with 0.
675
676 \retval 0: all fine
677 \retval -1: usb_find_busses() failed
678 \retval -2: usb_find_devices() failed
679 \retval -3: usb device not found
680 \retval -4: unable to open device
681 \retval -5: unable to claim device
682 \retval -6: reset failed
683 \retval -7: set baudrate failed
684 \retval -8: get product description failed
685 \retval -9: get serial number failed
686 \retval -10: unable to close device
687 \retval -11: ftdi context invalid
688*/
689int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
690 const char* description, const char* serial, unsigned int index)
691{
692 libusb_device *dev;
693 libusb_device **devs;
694 char string[256];
695 int i = 0;
696
697 if (ftdi == NULL)
698 ftdi_error_return(-11, "ftdi context invalid");
699
700 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
701 ftdi_error_return(-12, "libusb_get_device_list() failed");
702
703 while ((dev = devs[i++]) != NULL)
704 {
705 struct libusb_device_descriptor desc;
706 int res;
707
708 if (libusb_get_device_descriptor(dev, &desc) < 0)
709 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
710
711 if (desc.idVendor == vendor && desc.idProduct == product)
712 {
713 if (libusb_open(dev, &ftdi->usb_dev) < 0)
714 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
715
716 if (description != NULL)
717 {
718 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
719 {
720 ftdi_usb_close_internal (ftdi);
721 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
722 }
723 if (strncmp(string, description, sizeof(string)) != 0)
724 {
725 ftdi_usb_close_internal (ftdi);
726 continue;
727 }
728 }
729 if (serial != NULL)
730 {
731 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
732 {
733 ftdi_usb_close_internal (ftdi);
734 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
735 }
736 if (strncmp(string, serial, sizeof(string)) != 0)
737 {
738 ftdi_usb_close_internal (ftdi);
739 continue;
740 }
741 }
742
743 ftdi_usb_close_internal (ftdi);
744
745 if (index > 0)
746 {
747 index--;
748 continue;
749 }
750
751 res = ftdi_usb_open_dev(ftdi, dev);
752 libusb_free_device_list(devs,1);
753 return res;
754 }
755 }
756
757 // device not found
758 ftdi_error_return_free_device_list(-3, "device not found", devs);
759}
760
761/**
762 Opens the ftdi-device described by a description-string.
763 Intended to be used for parsing a device-description given as commandline argument.
764
765 \param ftdi pointer to ftdi_context
766 \param description NULL-terminated description-string, using this format:
767 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
768 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
769 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
770 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
771
772 \note The description format may be extended in later versions.
773
774 \retval 0: all fine
775 \retval -2: libusb_get_device_list() failed
776 \retval -3: usb device not found
777 \retval -4: unable to open device
778 \retval -5: unable to claim device
779 \retval -6: reset failed
780 \retval -7: set baudrate failed
781 \retval -8: get product description failed
782 \retval -9: get serial number failed
783 \retval -10: unable to close device
784 \retval -11: illegal description format
785 \retval -12: ftdi context invalid
786*/
787int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
788{
789 if (ftdi == NULL)
790 ftdi_error_return(-12, "ftdi context invalid");
791
792 if (description[0] == 0 || description[1] != ':')
793 ftdi_error_return(-11, "illegal description format");
794
795 if (description[0] == 'd')
796 {
797 libusb_device *dev;
798 libusb_device **devs;
799 unsigned int bus_number, device_address;
800 int i = 0;
801
802 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
803 ftdi_error_return(-2, "libusb_get_device_list() failed");
804
805 /* XXX: This doesn't handle symlinks/odd paths/etc... */
806 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
807 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
808
809 while ((dev = devs[i++]) != NULL)
810 {
811 int ret;
812 if (bus_number == libusb_get_bus_number (dev)
813 && device_address == libusb_get_device_address (dev))
814 {
815 ret = ftdi_usb_open_dev(ftdi, dev);
816 libusb_free_device_list(devs,1);
817 return ret;
818 }
819 }
820
821 // device not found
822 ftdi_error_return_free_device_list(-3, "device not found", devs);
823 }
824 else if (description[0] == 'i' || description[0] == 's')
825 {
826 unsigned int vendor;
827 unsigned int product;
828 unsigned int index=0;
829 const char *serial=NULL;
830 const char *startp, *endp;
831
832 errno=0;
833 startp=description+2;
834 vendor=strtoul((char*)startp,(char**)&endp,0);
835 if (*endp != ':' || endp == startp || errno != 0)
836 ftdi_error_return(-11, "illegal description format");
837
838 startp=endp+1;
839 product=strtoul((char*)startp,(char**)&endp,0);
840 if (endp == startp || errno != 0)
841 ftdi_error_return(-11, "illegal description format");
842
843 if (description[0] == 'i' && *endp != 0)
844 {
845 /* optional index field in i-mode */
846 if (*endp != ':')
847 ftdi_error_return(-11, "illegal description format");
848
849 startp=endp+1;
850 index=strtoul((char*)startp,(char**)&endp,0);
851 if (*endp != 0 || endp == startp || errno != 0)
852 ftdi_error_return(-11, "illegal description format");
853 }
854 if (description[0] == 's')
855 {
856 if (*endp != ':')
857 ftdi_error_return(-11, "illegal description format");
858
859 /* rest of the description is the serial */
860 serial=endp+1;
861 }
862
863 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
864 }
865 else
866 {
867 ftdi_error_return(-11, "illegal description format");
868 }
869}
870
871/**
872 Resets the ftdi device.
873
874 \param ftdi pointer to ftdi_context
875
876 \retval 0: all fine
877 \retval -1: FTDI reset failed
878 \retval -2: USB device unavailable
879*/
880int ftdi_usb_reset(struct ftdi_context *ftdi)
881{
882 if (ftdi == NULL || ftdi->usb_dev == NULL)
883 ftdi_error_return(-2, "USB device unavailable");
884
885 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
886 SIO_RESET_REQUEST, SIO_RESET_SIO,
887 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
888 ftdi_error_return(-1,"FTDI reset failed");
889
890 // Invalidate data in the readbuffer
891 ftdi->readbuffer_offset = 0;
892 ftdi->readbuffer_remaining = 0;
893
894 return 0;
895}
896
897/**
898 Clears the read buffer on the chip and the internal read buffer.
899
900 \param ftdi pointer to ftdi_context
901
902 \retval 0: all fine
903 \retval -1: read buffer purge failed
904 \retval -2: USB device unavailable
905*/
906int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
907{
908 if (ftdi == NULL || ftdi->usb_dev == NULL)
909 ftdi_error_return(-2, "USB device unavailable");
910
911 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
912 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
913 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
914 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
915
916 // Invalidate data in the readbuffer
917 ftdi->readbuffer_offset = 0;
918 ftdi->readbuffer_remaining = 0;
919
920 return 0;
921}
922
923/**
924 Clears the write buffer on the chip.
925
926 \param ftdi pointer to ftdi_context
927
928 \retval 0: all fine
929 \retval -1: write buffer purge failed
930 \retval -2: USB device unavailable
931*/
932int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
933{
934 if (ftdi == NULL || ftdi->usb_dev == NULL)
935 ftdi_error_return(-2, "USB device unavailable");
936
937 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
938 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
939 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
940 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
941
942 return 0;
943}
944
945/**
946 Clears the buffers on the chip and the internal read buffer.
947
948 \param ftdi pointer to ftdi_context
949
950 \retval 0: all fine
951 \retval -1: read buffer purge failed
952 \retval -2: write buffer purge failed
953 \retval -3: USB device unavailable
954*/
955int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
956{
957 int result;
958
959 if (ftdi == NULL || ftdi->usb_dev == NULL)
960 ftdi_error_return(-3, "USB device unavailable");
961
962 result = ftdi_usb_purge_rx_buffer(ftdi);
963 if (result < 0)
964 return -1;
965
966 result = ftdi_usb_purge_tx_buffer(ftdi);
967 if (result < 0)
968 return -2;
969
970 return 0;
971}
972
973
974
975/**
976 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
977
978 \param ftdi pointer to ftdi_context
979
980 \retval 0: all fine
981 \retval -1: usb_release failed
982 \retval -3: ftdi context invalid
983*/
984int ftdi_usb_close(struct ftdi_context *ftdi)
985{
986 int rtn = 0;
987
988 if (ftdi == NULL)
989 ftdi_error_return(-3, "ftdi context invalid");
990
991 if (ftdi->usb_dev != NULL)
992 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
993 rtn = -1;
994
995 ftdi_usb_close_internal (ftdi);
996
997 return rtn;
998}
999
1000/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
1001 to encoded divisor and the achievable baudrate
1002 Function is only used internally
1003 \internal
1004
1005 See AN120
1006 clk/1 -> 0
1007 clk/1.5 -> 1
1008 clk/2 -> 2
1009 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1010 The fractional part has frac_code encoding
1011*/
1012static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1013
1014{
1015 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1016 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1017 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
1018 int divisor, best_divisor, best_baud, best_baud_diff;
1019 divisor = 24000000 / baudrate;
1020 int i;
1021
1022 // Round down to supported fraction (AM only)
1023 divisor -= am_adjust_dn[divisor & 7];
1024
1025 // Try this divisor and the one above it (because division rounds down)
1026 best_divisor = 0;
1027 best_baud = 0;
1028 best_baud_diff = 0;
1029 for (i = 0; i < 2; i++)
1030 {
1031 int try_divisor = divisor + i;
1032 int baud_estimate;
1033 int baud_diff;
1034
1035 // Round up to supported divisor value
1036 if (try_divisor <= 8)
1037 {
1038 // Round up to minimum supported divisor
1039 try_divisor = 8;
1040 }
1041 else if (divisor < 16)
1042 {
1043 // AM doesn't support divisors 9 through 15 inclusive
1044 try_divisor = 16;
1045 }
1046 else
1047 {
1048 // Round up to supported fraction (AM only)
1049 try_divisor += am_adjust_up[try_divisor & 7];
1050 if (try_divisor > 0x1FFF8)
1051 {
1052 // Round down to maximum supported divisor value (for AM)
1053 try_divisor = 0x1FFF8;
1054 }
1055 }
1056 // Get estimated baud rate (to nearest integer)
1057 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1058 // Get absolute difference from requested baud rate
1059 if (baud_estimate < baudrate)
1060 {
1061 baud_diff = baudrate - baud_estimate;
1062 }
1063 else
1064 {
1065 baud_diff = baud_estimate - baudrate;
1066 }
1067 if (i == 0 || baud_diff < best_baud_diff)
1068 {
1069 // Closest to requested baud rate so far
1070 best_divisor = try_divisor;
1071 best_baud = baud_estimate;
1072 best_baud_diff = baud_diff;
1073 if (baud_diff == 0)
1074 {
1075 // Spot on! No point trying
1076 break;
1077 }
1078 }
1079 }
1080 // Encode the best divisor value
1081 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1082 // Deal with special cases for encoded value
1083 if (*encoded_divisor == 1)
1084 {
1085 *encoded_divisor = 0; // 3000000 baud
1086 }
1087 else if (*encoded_divisor == 0x4001)
1088 {
1089 *encoded_divisor = 1; // 2000000 baud (BM only)
1090 }
1091 return best_baud;
1092}
1093
1094/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1095 to encoded divisor and the achievable baudrate
1096 Function is only used internally
1097 \internal
1098
1099 See AN120
1100 clk/1 -> 0
1101 clk/1.5 -> 1
1102 clk/2 -> 2
1103 From /2, 0.125 steps may be taken.
1104 The fractional part has frac_code encoding
1105
1106 value[13:0] of value is the divisor
1107 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1108
1109 H Type have all features above with
1110 {index[8],value[15:14]} is the encoded subdivisor
1111
1112 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
1113 {index[0],value[15:14]} is the encoded subdivisor
1114
1115 AM Type chips have only four fractional subdivisors at value[15:14]
1116 for subdivisors 0, 0.5, 0.25, 0.125
1117*/
1118static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor)
1119{
1120 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1121 int best_baud = 0;
1122 int divisor, best_divisor;
1123 if (baudrate >= clk/clk_div)
1124 {
1125 *encoded_divisor = 0;
1126 best_baud = clk/clk_div;
1127 }
1128 else if (baudrate >= clk/(clk_div + clk_div/2))
1129 {
1130 *encoded_divisor = 1;
1131 best_baud = clk/(clk_div + clk_div/2);
1132 }
1133 else if (baudrate >= clk/(2*clk_div))
1134 {
1135 *encoded_divisor = 2;
1136 best_baud = clk/(2*clk_div);
1137 }
1138 else
1139 {
1140 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1141 divisor = clk*16/clk_div / baudrate;
1142 if (divisor & 1) /* Decide if to round up or down*/
1143 best_divisor = divisor /2 +1;
1144 else
1145 best_divisor = divisor/2;
1146 if(best_divisor > 0x20000)
1147 best_divisor = 0x1ffff;
1148 best_baud = clk*16/clk_div/best_divisor;
1149 if (best_baud & 1) /* Decide if to round up or down*/
1150 best_baud = best_baud /2 +1;
1151 else
1152 best_baud = best_baud /2;
1153 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1154 }
1155 return best_baud;
1156}
1157/**
1158 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1159 Function is only used internally
1160 \internal
1161*/
1162static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1163 unsigned short *value, unsigned short *index)
1164{
1165 int best_baud;
1166 unsigned long encoded_divisor;
1167
1168 if (baudrate <= 0)
1169 {
1170 // Return error
1171 return -1;
1172 }
1173
1174#define H_CLK 120000000
1175#define C_CLK 48000000
1176 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H ))
1177 {
1178 if(baudrate*10 > H_CLK /0x3fff)
1179 {
1180 /* On H Devices, use 12 000 000 Baudrate when possible
1181 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
1182 three fractional bits and a 120 MHz clock
1183 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1184 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1185 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1186 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1187 }
1188 else
1189 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1190 }
1191 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R ))
1192 {
1193 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1194 }
1195 else
1196 {
1197 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
1198 }
1199 // Split into "value" and "index" values
1200 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1201 if (ftdi->type == TYPE_2232H ||
1202 ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
1203 {
1204 *index = (unsigned short)(encoded_divisor >> 8);
1205 *index &= 0xFF00;
1206 *index |= ftdi->index;
1207 }
1208 else
1209 *index = (unsigned short)(encoded_divisor >> 16);
1210
1211 // Return the nearest baud rate
1212 return best_baud;
1213}
1214
1215/**
1216 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1217 * Do not use, it's only for the unit test framework
1218 **/
1219int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1220 unsigned short *value, unsigned short *index)
1221{
1222 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1223}
1224
1225/**
1226 Sets the chip baud rate
1227
1228 \param ftdi pointer to ftdi_context
1229 \param baudrate baud rate to set
1230
1231 \retval 0: all fine
1232 \retval -1: invalid baudrate
1233 \retval -2: setting baudrate failed
1234 \retval -3: USB device unavailable
1235*/
1236int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1237{
1238 unsigned short value, index;
1239 int actual_baudrate;
1240
1241 if (ftdi == NULL || ftdi->usb_dev == NULL)
1242 ftdi_error_return(-3, "USB device unavailable");
1243
1244 if (ftdi->bitbang_enabled)
1245 {
1246 baudrate = baudrate*4;
1247 }
1248
1249 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1250 if (actual_baudrate <= 0)
1251 ftdi_error_return (-1, "Silly baudrate <= 0.");
1252
1253 // Check within tolerance (about 5%)
1254 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1255 || ((actual_baudrate < baudrate)
1256 ? (actual_baudrate * 21 < baudrate * 20)
1257 : (baudrate * 21 < actual_baudrate * 20)))
1258 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1259
1260 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1261 SIO_SET_BAUDRATE_REQUEST, value,
1262 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1263 ftdi_error_return (-2, "Setting new baudrate failed");
1264
1265 ftdi->baudrate = baudrate;
1266 return 0;
1267}
1268
1269/**
1270 Set (RS232) line characteristics.
1271 The break type can only be set via ftdi_set_line_property2()
1272 and defaults to "off".
1273
1274 \param ftdi pointer to ftdi_context
1275 \param bits Number of bits
1276 \param sbit Number of stop bits
1277 \param parity Parity mode
1278
1279 \retval 0: all fine
1280 \retval -1: Setting line property failed
1281*/
1282int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1283 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1284{
1285 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1286}
1287
1288/**
1289 Set (RS232) line characteristics
1290
1291 \param ftdi pointer to ftdi_context
1292 \param bits Number of bits
1293 \param sbit Number of stop bits
1294 \param parity Parity mode
1295 \param break_type Break type
1296
1297 \retval 0: all fine
1298 \retval -1: Setting line property failed
1299 \retval -2: USB device unavailable
1300*/
1301int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1302 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1303 enum ftdi_break_type break_type)
1304{
1305 unsigned short value = bits;
1306
1307 if (ftdi == NULL || ftdi->usb_dev == NULL)
1308 ftdi_error_return(-2, "USB device unavailable");
1309
1310 switch (parity)
1311 {
1312 case NONE:
1313 value |= (0x00 << 8);
1314 break;
1315 case ODD:
1316 value |= (0x01 << 8);
1317 break;
1318 case EVEN:
1319 value |= (0x02 << 8);
1320 break;
1321 case MARK:
1322 value |= (0x03 << 8);
1323 break;
1324 case SPACE:
1325 value |= (0x04 << 8);
1326 break;
1327 }
1328
1329 switch (sbit)
1330 {
1331 case STOP_BIT_1:
1332 value |= (0x00 << 11);
1333 break;
1334 case STOP_BIT_15:
1335 value |= (0x01 << 11);
1336 break;
1337 case STOP_BIT_2:
1338 value |= (0x02 << 11);
1339 break;
1340 }
1341
1342 switch (break_type)
1343 {
1344 case BREAK_OFF:
1345 value |= (0x00 << 14);
1346 break;
1347 case BREAK_ON:
1348 value |= (0x01 << 14);
1349 break;
1350 }
1351
1352 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1353 SIO_SET_DATA_REQUEST, value,
1354 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1355 ftdi_error_return (-1, "Setting new line property failed");
1356
1357 return 0;
1358}
1359
1360/**
1361 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1362
1363 \param ftdi pointer to ftdi_context
1364 \param buf Buffer with the data
1365 \param size Size of the buffer
1366
1367 \retval -666: USB device unavailable
1368 \retval <0: error code from usb_bulk_write()
1369 \retval >0: number of bytes written
1370*/
1371int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1372{
1373 int offset = 0;
1374 int actual_length;
1375
1376 if (ftdi == NULL || ftdi->usb_dev == NULL)
1377 ftdi_error_return(-666, "USB device unavailable");
1378
1379 while (offset < size)
1380 {
1381 int write_size = ftdi->writebuffer_chunksize;
1382
1383 if (offset+write_size > size)
1384 write_size = size-offset;
1385
1386 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1387 ftdi_error_return(-1, "usb bulk write failed");
1388
1389 offset += actual_length;
1390 }
1391
1392 return offset;
1393}
1394
1395static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1396{
1397 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1398 struct ftdi_context *ftdi = tc->ftdi;
1399 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1400
1401 packet_size = ftdi->max_packet_size;
1402
1403 actual_length = transfer->actual_length;
1404
1405 if (actual_length > 2)
1406 {
1407 // skip FTDI status bytes.
1408 // Maybe stored in the future to enable modem use
1409 num_of_chunks = actual_length / packet_size;
1410 chunk_remains = actual_length % packet_size;
1411 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1412
1413 ftdi->readbuffer_offset += 2;
1414 actual_length -= 2;
1415
1416 if (actual_length > packet_size - 2)
1417 {
1418 for (i = 1; i < num_of_chunks; i++)
1419 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1420 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1421 packet_size - 2);
1422 if (chunk_remains > 2)
1423 {
1424 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1425 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1426 chunk_remains-2);
1427 actual_length -= 2*num_of_chunks;
1428 }
1429 else
1430 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1431 }
1432
1433 if (actual_length > 0)
1434 {
1435 // data still fits in buf?
1436 if (tc->offset + actual_length <= tc->size)
1437 {
1438 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1439 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1440 tc->offset += actual_length;
1441
1442 ftdi->readbuffer_offset = 0;
1443 ftdi->readbuffer_remaining = 0;
1444
1445 /* Did we read exactly the right amount of bytes? */
1446 if (tc->offset == tc->size)
1447 {
1448 //printf("read_data exact rem %d offset %d\n",
1449 //ftdi->readbuffer_remaining, offset);
1450 tc->completed = 1;
1451 return;
1452 }
1453 }
1454 else
1455 {
1456 // only copy part of the data or size <= readbuffer_chunksize
1457 int part_size = tc->size - tc->offset;
1458 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1459 tc->offset += part_size;
1460
1461 ftdi->readbuffer_offset += part_size;
1462 ftdi->readbuffer_remaining = actual_length - part_size;
1463
1464 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1465 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1466 tc->completed = 1;
1467 return;
1468 }
1469 }
1470 }
1471 ret = libusb_submit_transfer (transfer);
1472 if (ret < 0)
1473 tc->completed = 1;
1474}
1475
1476
1477static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1478{
1479 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1480 struct ftdi_context *ftdi = tc->ftdi;
1481
1482 tc->offset += transfer->actual_length;
1483
1484 if (tc->offset == tc->size)
1485 {
1486 tc->completed = 1;
1487 }
1488 else
1489 {
1490 int write_size = ftdi->writebuffer_chunksize;
1491 int ret;
1492
1493 if (tc->offset + write_size > tc->size)
1494 write_size = tc->size - tc->offset;
1495
1496 transfer->length = write_size;
1497 transfer->buffer = tc->buf + tc->offset;
1498 ret = libusb_submit_transfer (transfer);
1499 if (ret < 0)
1500 tc->completed = 1;
1501 }
1502}
1503
1504
1505/**
1506 Writes data to the chip. Does not wait for completion of the transfer
1507 nor does it make sure that the transfer was successful.
1508
1509 Use libusb 1.0 asynchronous API.
1510
1511 \param ftdi pointer to ftdi_context
1512 \param buf Buffer with the data
1513 \param size Size of the buffer
1514
1515 \retval NULL: Some error happens when submit transfer
1516 \retval !NULL: Pointer to a ftdi_transfer_control
1517*/
1518
1519struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1520{
1521 struct ftdi_transfer_control *tc;
1522 struct libusb_transfer *transfer;
1523 int write_size, ret;
1524
1525 if (ftdi == NULL || ftdi->usb_dev == NULL)
1526 return NULL;
1527
1528 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1529 if (!tc)
1530 return NULL;
1531
1532 transfer = libusb_alloc_transfer(0);
1533 if (!transfer)
1534 {
1535 free(tc);
1536 return NULL;
1537 }
1538
1539 tc->ftdi = ftdi;
1540 tc->completed = 0;
1541 tc->buf = buf;
1542 tc->size = size;
1543 tc->offset = 0;
1544
1545 if (size < ftdi->writebuffer_chunksize)
1546 write_size = size;
1547 else
1548 write_size = ftdi->writebuffer_chunksize;
1549
1550 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1551 write_size, ftdi_write_data_cb, tc,
1552 ftdi->usb_write_timeout);
1553 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1554
1555 ret = libusb_submit_transfer(transfer);
1556 if (ret < 0)
1557 {
1558 libusb_free_transfer(transfer);
1559 free(tc);
1560 return NULL;
1561 }
1562 tc->transfer = transfer;
1563
1564 return tc;
1565}
1566
1567/**
1568 Reads data from the chip. Does not wait for completion of the transfer
1569 nor does it make sure that the transfer was successful.
1570
1571 Use libusb 1.0 asynchronous API.
1572
1573 \param ftdi pointer to ftdi_context
1574 \param buf Buffer with the data
1575 \param size Size of the buffer
1576
1577 \retval NULL: Some error happens when submit transfer
1578 \retval !NULL: Pointer to a ftdi_transfer_control
1579*/
1580
1581struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1582{
1583 struct ftdi_transfer_control *tc;
1584 struct libusb_transfer *transfer;
1585 int ret;
1586
1587 if (ftdi == NULL || ftdi->usb_dev == NULL)
1588 return NULL;
1589
1590 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1591 if (!tc)
1592 return NULL;
1593
1594 tc->ftdi = ftdi;
1595 tc->buf = buf;
1596 tc->size = size;
1597
1598 if (size <= ftdi->readbuffer_remaining)
1599 {
1600 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1601
1602 // Fix offsets
1603 ftdi->readbuffer_remaining -= size;
1604 ftdi->readbuffer_offset += size;
1605
1606 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1607
1608 tc->completed = 1;
1609 tc->offset = size;
1610 tc->transfer = NULL;
1611 return tc;
1612 }
1613
1614 tc->completed = 0;
1615 if (ftdi->readbuffer_remaining != 0)
1616 {
1617 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1618
1619 tc->offset = ftdi->readbuffer_remaining;
1620 }
1621 else
1622 tc->offset = 0;
1623
1624 transfer = libusb_alloc_transfer(0);
1625 if (!transfer)
1626 {
1627 free (tc);
1628 return NULL;
1629 }
1630
1631 ftdi->readbuffer_remaining = 0;
1632 ftdi->readbuffer_offset = 0;
1633
1634 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1635 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1636
1637 ret = libusb_submit_transfer(transfer);
1638 if (ret < 0)
1639 {
1640 libusb_free_transfer(transfer);
1641 free (tc);
1642 return NULL;
1643 }
1644 tc->transfer = transfer;
1645
1646 return tc;
1647}
1648
1649/**
1650 Wait for completion of the transfer.
1651
1652 Use libusb 1.0 asynchronous API.
1653
1654 \param tc pointer to ftdi_transfer_control
1655
1656 \retval < 0: Some error happens
1657 \retval >= 0: Data size transferred
1658*/
1659
1660int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1661{
1662 int ret;
1663
1664 while (!tc->completed)
1665 {
1666 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1667 if (ret < 0)
1668 {
1669 if (ret == LIBUSB_ERROR_INTERRUPTED)
1670 continue;
1671 libusb_cancel_transfer(tc->transfer);
1672 while (!tc->completed)
1673 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1674 break;
1675 libusb_free_transfer(tc->transfer);
1676 free (tc);
1677 return ret;
1678 }
1679 }
1680
1681 ret = tc->offset;
1682 /**
1683 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1684 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1685 **/
1686 if (tc->transfer)
1687 {
1688 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1689 ret = -1;
1690 libusb_free_transfer(tc->transfer);
1691 }
1692 free(tc);
1693 return ret;
1694}
1695
1696/**
1697 Configure write buffer chunk size.
1698 Default is 4096.
1699
1700 \param ftdi pointer to ftdi_context
1701 \param chunksize Chunk size
1702
1703 \retval 0: all fine
1704 \retval -1: ftdi context invalid
1705*/
1706int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1707{
1708 if (ftdi == NULL)
1709 ftdi_error_return(-1, "ftdi context invalid");
1710
1711 ftdi->writebuffer_chunksize = chunksize;
1712 return 0;
1713}
1714
1715/**
1716 Get write buffer chunk size.
1717
1718 \param ftdi pointer to ftdi_context
1719 \param chunksize Pointer to store chunk size in
1720
1721 \retval 0: all fine
1722 \retval -1: ftdi context invalid
1723*/
1724int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1725{
1726 if (ftdi == NULL)
1727 ftdi_error_return(-1, "ftdi context invalid");
1728
1729 *chunksize = ftdi->writebuffer_chunksize;
1730 return 0;
1731}
1732
1733/**
1734 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1735
1736 Automatically strips the two modem status bytes transfered during every read.
1737
1738 \param ftdi pointer to ftdi_context
1739 \param buf Buffer to store data in
1740 \param size Size of the buffer
1741
1742 \retval -666: USB device unavailable
1743 \retval <0: error code from libusb_bulk_transfer()
1744 \retval 0: no data was available
1745 \retval >0: number of bytes read
1746
1747*/
1748int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1749{
1750 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1751 int packet_size = ftdi->max_packet_size;
1752 int actual_length = 1;
1753
1754 if (ftdi == NULL || ftdi->usb_dev == NULL)
1755 ftdi_error_return(-666, "USB device unavailable");
1756
1757 // Packet size sanity check (avoid division by zero)
1758 if (packet_size == 0)
1759 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1760
1761 // everything we want is still in the readbuffer?
1762 if (size <= ftdi->readbuffer_remaining)
1763 {
1764 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1765
1766 // Fix offsets
1767 ftdi->readbuffer_remaining -= size;
1768 ftdi->readbuffer_offset += size;
1769
1770 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1771
1772 return size;
1773 }
1774 // something still in the readbuffer, but not enough to satisfy 'size'?
1775 if (ftdi->readbuffer_remaining != 0)
1776 {
1777 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1778
1779 // Fix offset
1780 offset += ftdi->readbuffer_remaining;
1781 }
1782 // do the actual USB read
1783 while (offset < size && actual_length > 0)
1784 {
1785 ftdi->readbuffer_remaining = 0;
1786 ftdi->readbuffer_offset = 0;
1787 /* returns how much received */
1788 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1789 if (ret < 0)
1790 ftdi_error_return(ret, "usb bulk read failed");
1791
1792 if (actual_length > 2)
1793 {
1794 // skip FTDI status bytes.
1795 // Maybe stored in the future to enable modem use
1796 num_of_chunks = actual_length / packet_size;
1797 chunk_remains = actual_length % packet_size;
1798 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1799
1800 ftdi->readbuffer_offset += 2;
1801 actual_length -= 2;
1802
1803 if (actual_length > packet_size - 2)
1804 {
1805 for (i = 1; i < num_of_chunks; i++)
1806 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1807 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1808 packet_size - 2);
1809 if (chunk_remains > 2)
1810 {
1811 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1812 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1813 chunk_remains-2);
1814 actual_length -= 2*num_of_chunks;
1815 }
1816 else
1817 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1818 }
1819 }
1820 else if (actual_length <= 2)
1821 {
1822 // no more data to read?
1823 return offset;
1824 }
1825 if (actual_length > 0)
1826 {
1827 // data still fits in buf?
1828 if (offset+actual_length <= size)
1829 {
1830 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1831 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1832 offset += actual_length;
1833
1834 /* Did we read exactly the right amount of bytes? */
1835 if (offset == size)
1836 //printf("read_data exact rem %d offset %d\n",
1837 //ftdi->readbuffer_remaining, offset);
1838 return offset;
1839 }
1840 else
1841 {
1842 // only copy part of the data or size <= readbuffer_chunksize
1843 int part_size = size-offset;
1844 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1845
1846 ftdi->readbuffer_offset += part_size;
1847 ftdi->readbuffer_remaining = actual_length-part_size;
1848 offset += part_size;
1849
1850 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1851 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1852
1853 return offset;
1854 }
1855 }
1856 }
1857 // never reached
1858 return -127;
1859}
1860
1861/**
1862 Configure read buffer chunk size.
1863 Default is 4096.
1864
1865 Automatically reallocates the buffer.
1866
1867 \param ftdi pointer to ftdi_context
1868 \param chunksize Chunk size
1869
1870 \retval 0: all fine
1871 \retval -1: ftdi context invalid
1872*/
1873int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1874{
1875 unsigned char *new_buf;
1876
1877 if (ftdi == NULL)
1878 ftdi_error_return(-1, "ftdi context invalid");
1879
1880 // Invalidate all remaining data
1881 ftdi->readbuffer_offset = 0;
1882 ftdi->readbuffer_remaining = 0;
1883#ifdef __linux__
1884 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1885 which is defined in libusb-1.0. Otherwise, each USB read request will
1886 be divided into multiple URBs. This will cause issues on Linux kernel
1887 older than 2.6.32. */
1888 if (chunksize > 16384)
1889 chunksize = 16384;
1890#endif
1891
1892 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1893 ftdi_error_return(-1, "out of memory for readbuffer");
1894
1895 ftdi->readbuffer = new_buf;
1896 ftdi->readbuffer_chunksize = chunksize;
1897
1898 return 0;
1899}
1900
1901/**
1902 Get read buffer chunk size.
1903
1904 \param ftdi pointer to ftdi_context
1905 \param chunksize Pointer to store chunk size in
1906
1907 \retval 0: all fine
1908 \retval -1: FTDI context invalid
1909*/
1910int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1911{
1912 if (ftdi == NULL)
1913 ftdi_error_return(-1, "FTDI context invalid");
1914
1915 *chunksize = ftdi->readbuffer_chunksize;
1916 return 0;
1917}
1918
1919/**
1920 Enable/disable bitbang modes.
1921
1922 \param ftdi pointer to ftdi_context
1923 \param bitmask Bitmask to configure lines.
1924 HIGH/ON value configures a line as output.
1925 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1926
1927 \retval 0: all fine
1928 \retval -1: can't enable bitbang mode
1929 \retval -2: USB device unavailable
1930*/
1931int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1932{
1933 unsigned short usb_val;
1934
1935 if (ftdi == NULL || ftdi->usb_dev == NULL)
1936 ftdi_error_return(-2, "USB device unavailable");
1937
1938 usb_val = bitmask; // low byte: bitmask
1939 usb_val |= (mode << 8);
1940 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1941 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
1942
1943 ftdi->bitbang_mode = mode;
1944 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1945 return 0;
1946}
1947
1948/**
1949 Disable bitbang mode.
1950
1951 \param ftdi pointer to ftdi_context
1952
1953 \retval 0: all fine
1954 \retval -1: can't disable bitbang mode
1955 \retval -2: USB device unavailable
1956*/
1957int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1958{
1959 if (ftdi == NULL || ftdi->usb_dev == NULL)
1960 ftdi_error_return(-2, "USB device unavailable");
1961
1962 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1963 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1964
1965 ftdi->bitbang_enabled = 0;
1966 return 0;
1967}
1968
1969
1970/**
1971 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1972
1973 \param ftdi pointer to ftdi_context
1974 \param pins Pointer to store pins into
1975
1976 \retval 0: all fine
1977 \retval -1: read pins failed
1978 \retval -2: USB device unavailable
1979*/
1980int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1981{
1982 if (ftdi == NULL || ftdi->usb_dev == NULL)
1983 ftdi_error_return(-2, "USB device unavailable");
1984
1985 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1986 ftdi_error_return(-1, "read pins failed");
1987
1988 return 0;
1989}
1990
1991/**
1992 Set latency timer
1993
1994 The FTDI chip keeps data in the internal buffer for a specific
1995 amount of time if the buffer is not full yet to decrease
1996 load on the usb bus.
1997
1998 \param ftdi pointer to ftdi_context
1999 \param latency Value between 1 and 255
2000
2001 \retval 0: all fine
2002 \retval -1: latency out of range
2003 \retval -2: unable to set latency timer
2004 \retval -3: USB device unavailable
2005*/
2006int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2007{
2008 unsigned short usb_val;
2009
2010 if (latency < 1)
2011 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
2012
2013 if (ftdi == NULL || ftdi->usb_dev == NULL)
2014 ftdi_error_return(-3, "USB device unavailable");
2015
2016 usb_val = latency;
2017 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2018 ftdi_error_return(-2, "unable to set latency timer");
2019
2020 return 0;
2021}
2022
2023/**
2024 Get latency timer
2025
2026 \param ftdi pointer to ftdi_context
2027 \param latency Pointer to store latency value in
2028
2029 \retval 0: all fine
2030 \retval -1: unable to get latency timer
2031 \retval -2: USB device unavailable
2032*/
2033int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2034{
2035 unsigned short usb_val;
2036
2037 if (ftdi == NULL || ftdi->usb_dev == NULL)
2038 ftdi_error_return(-2, "USB device unavailable");
2039
2040 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
2041 ftdi_error_return(-1, "reading latency timer failed");
2042
2043 *latency = (unsigned char)usb_val;
2044 return 0;
2045}
2046
2047/**
2048 Poll modem status information
2049
2050 This function allows the retrieve the two status bytes of the device.
2051 The device sends these bytes also as a header for each read access
2052 where they are discarded by ftdi_read_data(). The chip generates
2053 the two stripped status bytes in the absence of data every 40 ms.
2054
2055 Layout of the first byte:
2056 - B0..B3 - must be 0
2057 - B4 Clear to send (CTS)
2058 0 = inactive
2059 1 = active
2060 - B5 Data set ready (DTS)
2061 0 = inactive
2062 1 = active
2063 - B6 Ring indicator (RI)
2064 0 = inactive
2065 1 = active
2066 - B7 Receive line signal detect (RLSD)
2067 0 = inactive
2068 1 = active
2069
2070 Layout of the second byte:
2071 - B0 Data ready (DR)
2072 - B1 Overrun error (OE)
2073 - B2 Parity error (PE)
2074 - B3 Framing error (FE)
2075 - B4 Break interrupt (BI)
2076 - B5 Transmitter holding register (THRE)
2077 - B6 Transmitter empty (TEMT)
2078 - B7 Error in RCVR FIFO
2079
2080 \param ftdi pointer to ftdi_context
2081 \param status Pointer to store status information in. Must be two bytes.
2082
2083 \retval 0: all fine
2084 \retval -1: unable to retrieve status information
2085 \retval -2: USB device unavailable
2086*/
2087int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2088{
2089 char usb_val[2];
2090
2091 if (ftdi == NULL || ftdi->usb_dev == NULL)
2092 ftdi_error_return(-2, "USB device unavailable");
2093
2094 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
2095 ftdi_error_return(-1, "getting modem status failed");
2096
2097 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
2098
2099 return 0;
2100}
2101
2102/**
2103 Set flowcontrol for ftdi chip
2104
2105 \param ftdi pointer to ftdi_context
2106 \param flowctrl flow control to use. should be
2107 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2108
2109 \retval 0: all fine
2110 \retval -1: set flow control failed
2111 \retval -2: USB device unavailable
2112*/
2113int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2114{
2115 if (ftdi == NULL || ftdi->usb_dev == NULL)
2116 ftdi_error_return(-2, "USB device unavailable");
2117
2118 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2119 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2120 NULL, 0, ftdi->usb_write_timeout) < 0)
2121 ftdi_error_return(-1, "set flow control failed");
2122
2123 return 0;
2124}
2125
2126/**
2127 Set dtr line
2128
2129 \param ftdi pointer to ftdi_context
2130 \param state state to set line to (1 or 0)
2131
2132 \retval 0: all fine
2133 \retval -1: set dtr failed
2134 \retval -2: USB device unavailable
2135*/
2136int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2137{
2138 unsigned short usb_val;
2139
2140 if (ftdi == NULL || ftdi->usb_dev == NULL)
2141 ftdi_error_return(-2, "USB device unavailable");
2142
2143 if (state)
2144 usb_val = SIO_SET_DTR_HIGH;
2145 else
2146 usb_val = SIO_SET_DTR_LOW;
2147
2148 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2149 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2150 NULL, 0, ftdi->usb_write_timeout) < 0)
2151 ftdi_error_return(-1, "set dtr failed");
2152
2153 return 0;
2154}
2155
2156/**
2157 Set rts line
2158
2159 \param ftdi pointer to ftdi_context
2160 \param state state to set line to (1 or 0)
2161
2162 \retval 0: all fine
2163 \retval -1: set rts failed
2164 \retval -2: USB device unavailable
2165*/
2166int ftdi_setrts(struct ftdi_context *ftdi, int state)
2167{
2168 unsigned short usb_val;
2169
2170 if (ftdi == NULL || ftdi->usb_dev == NULL)
2171 ftdi_error_return(-2, "USB device unavailable");
2172
2173 if (state)
2174 usb_val = SIO_SET_RTS_HIGH;
2175 else
2176 usb_val = SIO_SET_RTS_LOW;
2177
2178 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2179 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2180 NULL, 0, ftdi->usb_write_timeout) < 0)
2181 ftdi_error_return(-1, "set of rts failed");
2182
2183 return 0;
2184}
2185
2186/**
2187 Set dtr and rts line in one pass
2188
2189 \param ftdi pointer to ftdi_context
2190 \param dtr DTR state to set line to (1 or 0)
2191 \param rts RTS state to set line to (1 or 0)
2192
2193 \retval 0: all fine
2194 \retval -1: set dtr/rts failed
2195 \retval -2: USB device unavailable
2196 */
2197int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2198{
2199 unsigned short usb_val;
2200
2201 if (ftdi == NULL || ftdi->usb_dev == NULL)
2202 ftdi_error_return(-2, "USB device unavailable");
2203
2204 if (dtr)
2205 usb_val = SIO_SET_DTR_HIGH;
2206 else
2207 usb_val = SIO_SET_DTR_LOW;
2208
2209 if (rts)
2210 usb_val |= SIO_SET_RTS_HIGH;
2211 else
2212 usb_val |= SIO_SET_RTS_LOW;
2213
2214 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2215 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2216 NULL, 0, ftdi->usb_write_timeout) < 0)
2217 ftdi_error_return(-1, "set of rts/dtr failed");
2218
2219 return 0;
2220}
2221
2222/**
2223 Set the special event character
2224
2225 \param ftdi pointer to ftdi_context
2226 \param eventch Event character
2227 \param enable 0 to disable the event character, non-zero otherwise
2228
2229 \retval 0: all fine
2230 \retval -1: unable to set event character
2231 \retval -2: USB device unavailable
2232*/
2233int ftdi_set_event_char(struct ftdi_context *ftdi,
2234 unsigned char eventch, unsigned char enable)
2235{
2236 unsigned short usb_val;
2237
2238 if (ftdi == NULL || ftdi->usb_dev == NULL)
2239 ftdi_error_return(-2, "USB device unavailable");
2240
2241 usb_val = eventch;
2242 if (enable)
2243 usb_val |= 1 << 8;
2244
2245 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2246 ftdi_error_return(-1, "setting event character failed");
2247
2248 return 0;
2249}
2250
2251/**
2252 Set error character
2253
2254 \param ftdi pointer to ftdi_context
2255 \param errorch Error character
2256 \param enable 0 to disable the error character, non-zero otherwise
2257
2258 \retval 0: all fine
2259 \retval -1: unable to set error character
2260 \retval -2: USB device unavailable
2261*/
2262int ftdi_set_error_char(struct ftdi_context *ftdi,
2263 unsigned char errorch, unsigned char enable)
2264{
2265 unsigned short usb_val;
2266
2267 if (ftdi == NULL || ftdi->usb_dev == NULL)
2268 ftdi_error_return(-2, "USB device unavailable");
2269
2270 usb_val = errorch;
2271 if (enable)
2272 usb_val |= 1 << 8;
2273
2274 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2275 ftdi_error_return(-1, "setting error character failed");
2276
2277 return 0;
2278}
2279
2280/**
2281 Init eeprom with default values for the connected device
2282 \param ftdi pointer to ftdi_context
2283 \param manufacturer String to use as Manufacturer
2284 \param product String to use as Product description
2285 \param serial String to use as Serial number description
2286
2287 \retval 0: all fine
2288 \retval -1: No struct ftdi_context
2289 \retval -2: No struct ftdi_eeprom
2290 \retval -3: No connected device or device not yet opened
2291*/
2292int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2293 char * product, char * serial)
2294{
2295 struct ftdi_eeprom *eeprom;
2296
2297 if (ftdi == NULL)
2298 ftdi_error_return(-1, "No struct ftdi_context");
2299
2300 if (ftdi->eeprom == NULL)
2301 ftdi_error_return(-2,"No struct ftdi_eeprom");
2302
2303 eeprom = ftdi->eeprom;
2304 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2305
2306 if (ftdi->usb_dev == NULL)
2307 ftdi_error_return(-3, "No connected device or device not yet opened");
2308
2309 eeprom->vendor_id = 0x0403;
2310 eeprom->use_serial = 1;
2311 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2312 (ftdi->type == TYPE_R))
2313 eeprom->product_id = 0x6001;
2314 else if (ftdi->type == TYPE_4232H)
2315 eeprom->product_id = 0x6011;
2316 else if (ftdi->type == TYPE_232H)
2317 eeprom->product_id = 0x6014;
2318 else
2319 eeprom->product_id = 0x6010;
2320 if (ftdi->type == TYPE_AM)
2321 eeprom->usb_version = 0x0101;
2322 else
2323 eeprom->usb_version = 0x0200;
2324 eeprom->max_power = 100;
2325
2326 if (eeprom->manufacturer)
2327 free (eeprom->manufacturer);
2328 eeprom->manufacturer = NULL;
2329 if (manufacturer)
2330 {
2331 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2332 if (eeprom->manufacturer)
2333 strcpy(eeprom->manufacturer, manufacturer);
2334 }
2335
2336 if (eeprom->product)
2337 free (eeprom->product);
2338 eeprom->product = NULL;
2339 if(product)
2340 {
2341 eeprom->product = malloc(strlen(product)+1);
2342 if (eeprom->product)
2343 strcpy(eeprom->product, product);
2344 }
2345 else
2346 {
2347 const char* default_product;
2348 switch(ftdi->type)
2349 {
2350 case TYPE_AM: default_product = "AM"; break;
2351 case TYPE_BM: default_product = "BM"; break;
2352 case TYPE_2232C: default_product = "Dual RS232"; break;
2353 case TYPE_R: default_product = "FT232R USB UART"; break;
2354 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2355 case TYPE_4232H: default_product = "FT4232H"; break;
2356 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2357 default:
2358 ftdi_error_return(-3, "Unknown chip type");
2359 }
2360 eeprom->product = malloc(strlen(default_product) +1);
2361 if (eeprom->product)
2362 strcpy(eeprom->product, default_product);
2363 }
2364
2365 if (eeprom->serial)
2366 free (eeprom->serial);
2367 eeprom->serial = NULL;
2368 if (serial)
2369 {
2370 eeprom->serial = malloc(strlen(serial)+1);
2371 if (eeprom->serial)
2372 strcpy(eeprom->serial, serial);
2373 }
2374
2375 if (ftdi->type == TYPE_R)
2376 {
2377 eeprom->max_power = 90;
2378 eeprom->size = 0x80;
2379 eeprom->cbus_function[0] = CBUS_TXLED;
2380 eeprom->cbus_function[1] = CBUS_RXLED;
2381 eeprom->cbus_function[2] = CBUS_TXDEN;
2382 eeprom->cbus_function[3] = CBUS_PWREN;
2383 eeprom->cbus_function[4] = CBUS_SLEEP;
2384 }
2385 else
2386 {
2387 if(ftdi->type == TYPE_232H)
2388 {
2389 int i;
2390 for (i=0; i<10; i++)
2391 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2392 }
2393 eeprom->size = -1;
2394 }
2395 eeprom->initialized_for_connected_device = 1;
2396 return 0;
2397}
2398/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2399void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2400{
2401 int i;
2402 for(i=0; i<5;i++)
2403 {
2404 int mode_low, mode_high;
2405 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2406 mode_low = CBUSH_TRISTATE;
2407 else
2408 mode_low = eeprom->cbus_function[2*i];
2409 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2410 mode_high = CBUSH_TRISTATE;
2411 else
2412 mode_high = eeprom->cbus_function[2*i];
2413
2414 output[0x18+i] = mode_high <<4 | mode_low;
2415 }
2416}
2417/* Return the bits for the encoded EEPROM Structure of a requested Mode
2418 *
2419 */
2420static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2421{
2422 switch (chip)
2423 {
2424 case TYPE_2232H:
2425 case TYPE_2232C:
2426 {
2427 switch (type)
2428 {
2429 case CHANNEL_IS_UART: return 0;
2430 case CHANNEL_IS_FIFO: return 0x01;
2431 case CHANNEL_IS_OPTO: return 0x02;
2432 case CHANNEL_IS_CPU : return 0x04;
2433 default: return 0;
2434 }
2435 }
2436 case TYPE_232H:
2437 {
2438 switch (type)
2439 {
2440 case CHANNEL_IS_UART : return 0;
2441 case CHANNEL_IS_FIFO : return 0x01;
2442 case CHANNEL_IS_OPTO : return 0x02;
2443 case CHANNEL_IS_CPU : return 0x04;
2444 case CHANNEL_IS_FT1284 : return 0x08;
2445 default: return 0;
2446 }
2447 }
2448 default: return 0;
2449 }
2450 return 0;
2451}
2452
2453/**
2454 Build binary buffer from ftdi_eeprom structure.
2455 Output is suitable for ftdi_write_eeprom().
2456
2457 \param ftdi pointer to ftdi_context
2458
2459 \retval >=0: size of eeprom user area in bytes
2460 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2461 \retval -2: Invalid eeprom or ftdi pointer
2462 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2463 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2464 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2465 \retval -6: No connected EEPROM or EEPROM Type unknown
2466*/
2467int ftdi_eeprom_build(struct ftdi_context *ftdi)
2468{
2469 unsigned char i, j, eeprom_size_mask;
2470 unsigned short checksum, value;
2471 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2472 int user_area_size;
2473 struct ftdi_eeprom *eeprom;
2474 unsigned char * output;
2475
2476 if (ftdi == NULL)
2477 ftdi_error_return(-2,"No context");
2478 if (ftdi->eeprom == NULL)
2479 ftdi_error_return(-2,"No eeprom structure");
2480
2481 eeprom= ftdi->eeprom;
2482 output = eeprom->buf;
2483
2484 if (eeprom->chip == -1)
2485 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2486
2487 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2488 eeprom->size = 0x100;
2489 else
2490 eeprom->size = 0x80;
2491
2492 if (eeprom->manufacturer != NULL)
2493 manufacturer_size = strlen(eeprom->manufacturer);
2494 if (eeprom->product != NULL)
2495 product_size = strlen(eeprom->product);
2496 if (eeprom->serial != NULL)
2497 serial_size = strlen(eeprom->serial);
2498
2499 // eeprom size check
2500 switch (ftdi->type)
2501 {
2502 case TYPE_AM:
2503 case TYPE_BM:
2504 user_area_size = 96; // base size for strings (total of 48 characters)
2505 break;
2506 case TYPE_2232C:
2507 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2508 break;
2509 case TYPE_R:
2510 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2511 break;
2512 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2513 case TYPE_4232H:
2514 user_area_size = 86;
2515 break;
2516 case TYPE_232H:
2517 user_area_size = 80;
2518 break;
2519 default:
2520 user_area_size = 0;
2521 break;
2522 }
2523 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2524
2525 if (user_area_size < 0)
2526 ftdi_error_return(-1,"eeprom size exceeded");
2527
2528 // empty eeprom
2529 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2530
2531 // Bytes and Bits set for all Types
2532
2533 // Addr 02: Vendor ID
2534 output[0x02] = eeprom->vendor_id;
2535 output[0x03] = eeprom->vendor_id >> 8;
2536
2537 // Addr 04: Product ID
2538 output[0x04] = eeprom->product_id;
2539 output[0x05] = eeprom->product_id >> 8;
2540
2541 // Addr 06: Device release number (0400h for BM features)
2542 output[0x06] = 0x00;
2543 switch (ftdi->type)
2544 {
2545 case TYPE_AM:
2546 output[0x07] = 0x02;
2547 break;
2548 case TYPE_BM:
2549 output[0x07] = 0x04;
2550 break;
2551 case TYPE_2232C:
2552 output[0x07] = 0x05;
2553 break;
2554 case TYPE_R:
2555 output[0x07] = 0x06;
2556 break;
2557 case TYPE_2232H:
2558 output[0x07] = 0x07;
2559 break;
2560 case TYPE_4232H:
2561 output[0x07] = 0x08;
2562 break;
2563 case TYPE_232H:
2564 output[0x07] = 0x09;
2565 break;
2566 default:
2567 output[0x07] = 0x00;
2568 }
2569
2570 // Addr 08: Config descriptor
2571 // Bit 7: always 1
2572 // Bit 6: 1 if this device is self powered, 0 if bus powered
2573 // Bit 5: 1 if this device uses remote wakeup
2574 // Bit 4-0: reserved - 0
2575 j = 0x80;
2576 if (eeprom->self_powered == 1)
2577 j |= 0x40;
2578 if (eeprom->remote_wakeup == 1)
2579 j |= 0x20;
2580 output[0x08] = j;
2581
2582 // Addr 09: Max power consumption: max power = value * 2 mA
2583 output[0x09] = eeprom->max_power / MAX_POWER_MILLIAMP_PER_UNIT;
2584
2585 if (ftdi->type != TYPE_AM)
2586 {
2587 // Addr 0A: Chip configuration
2588 // Bit 7: 0 - reserved
2589 // Bit 6: 0 - reserved
2590 // Bit 5: 0 - reserved
2591 // Bit 4: 1 - Change USB version
2592 // Bit 3: 1 - Use the serial number string
2593 // Bit 2: 1 - Enable suspend pull downs for lower power
2594 // Bit 1: 1 - Out EndPoint is Isochronous
2595 // Bit 0: 1 - In EndPoint is Isochronous
2596 //
2597 j = 0;
2598 if (eeprom->in_is_isochronous == 1)
2599 j = j | 1;
2600 if (eeprom->out_is_isochronous == 1)
2601 j = j | 2;
2602 output[0x0A] = j;
2603 }
2604
2605 // Dynamic content
2606 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2607 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2608 // 0xa0 (TYPE_232H)
2609 i = 0;
2610 switch (ftdi->type)
2611 {
2612 case TYPE_232H:
2613 i += 2;
2614 case TYPE_2232H:
2615 case TYPE_4232H:
2616 i += 2;
2617 case TYPE_R:
2618 i += 2;
2619 case TYPE_2232C:
2620 i += 2;
2621 case TYPE_AM:
2622 case TYPE_BM:
2623 i += 0x94;
2624 }
2625 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2626 eeprom_size_mask = eeprom->size -1;
2627
2628 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2629 // Addr 0F: Length of manufacturer string
2630 // Output manufacturer
2631 output[0x0E] = i; // calculate offset
2632 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2633 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2634 for (j = 0; j < manufacturer_size; j++)
2635 {
2636 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2637 output[i & eeprom_size_mask] = 0x00, i++;
2638 }
2639 output[0x0F] = manufacturer_size*2 + 2;
2640
2641 // Addr 10: Offset of the product string + 0x80, calculated later
2642 // Addr 11: Length of product string
2643 output[0x10] = i | 0x80; // calculate offset
2644 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2645 output[i & eeprom_size_mask] = 0x03, i++;
2646 for (j = 0; j < product_size; j++)
2647 {
2648 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2649 output[i & eeprom_size_mask] = 0x00, i++;
2650 }
2651 output[0x11] = product_size*2 + 2;
2652
2653 // Addr 12: Offset of the serial string + 0x80, calculated later
2654 // Addr 13: Length of serial string
2655 output[0x12] = i | 0x80; // calculate offset
2656 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2657 output[i & eeprom_size_mask] = 0x03, i++;
2658 for (j = 0; j < serial_size; j++)
2659 {
2660 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2661 output[i & eeprom_size_mask] = 0x00, i++;
2662 }
2663
2664 // Legacy port name and PnP fields for FT2232 and newer chips
2665 if (ftdi->type > TYPE_BM)
2666 {
2667 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2668 i++;
2669 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2670 i++;
2671 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2672 i++;
2673 }
2674
2675 output[0x13] = serial_size*2 + 2;
2676
2677 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2678 {
2679 if (eeprom->use_serial)
2680 output[0x0A] |= USE_SERIAL_NUM;
2681 else
2682 output[0x0A] &= ~USE_SERIAL_NUM;
2683 }
2684
2685 /* Bytes and Bits specific to (some) types
2686 Write linear, as this allows easier fixing*/
2687 switch (ftdi->type)
2688 {
2689 case TYPE_AM:
2690 break;
2691 case TYPE_BM:
2692 output[0x0C] = eeprom->usb_version & 0xff;
2693 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2694 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2695 output[0x0A] |= USE_USB_VERSION_BIT;
2696 else
2697 output[0x0A] &= ~USE_USB_VERSION_BIT;
2698
2699 break;
2700 case TYPE_2232C:
2701
2702 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
2703 if ( eeprom->channel_a_driver == DRIVER_VCP)
2704 output[0x00] |= DRIVER_VCP;
2705 else
2706 output[0x00] &= ~DRIVER_VCP;
2707
2708 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2709 output[0x00] |= HIGH_CURRENT_DRIVE;
2710 else
2711 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2712
2713 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
2714 if ( eeprom->channel_b_driver == DRIVER_VCP)
2715 output[0x01] |= DRIVER_VCP;
2716 else
2717 output[0x01] &= ~DRIVER_VCP;
2718
2719 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2720 output[0x01] |= HIGH_CURRENT_DRIVE;
2721 else
2722 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2723
2724 if (eeprom->in_is_isochronous == 1)
2725 output[0x0A] |= 0x1;
2726 else
2727 output[0x0A] &= ~0x1;
2728 if (eeprom->out_is_isochronous == 1)
2729 output[0x0A] |= 0x2;
2730 else
2731 output[0x0A] &= ~0x2;
2732 if (eeprom->suspend_pull_downs == 1)
2733 output[0x0A] |= 0x4;
2734 else
2735 output[0x0A] &= ~0x4;
2736 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2737 output[0x0A] |= USE_USB_VERSION_BIT;
2738 else
2739 output[0x0A] &= ~USE_USB_VERSION_BIT;
2740
2741 output[0x0C] = eeprom->usb_version & 0xff;
2742 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2743 output[0x14] = eeprom->chip;
2744 break;
2745 case TYPE_R:
2746 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2747 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2748 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2749
2750 if (eeprom->suspend_pull_downs == 1)
2751 output[0x0A] |= 0x4;
2752 else
2753 output[0x0A] &= ~0x4;
2754 output[0x0B] = eeprom->invert;
2755 output[0x0C] = eeprom->usb_version & 0xff;
2756 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2757
2758 if (eeprom->cbus_function[0] > CBUS_BB)
2759 output[0x14] = CBUS_TXLED;
2760 else
2761 output[0x14] = eeprom->cbus_function[0];
2762
2763 if (eeprom->cbus_function[1] > CBUS_BB)
2764 output[0x14] |= CBUS_RXLED<<4;
2765 else
2766 output[0x14] |= eeprom->cbus_function[1]<<4;
2767
2768 if (eeprom->cbus_function[2] > CBUS_BB)
2769 output[0x15] = CBUS_TXDEN;
2770 else
2771 output[0x15] = eeprom->cbus_function[2];
2772
2773 if (eeprom->cbus_function[3] > CBUS_BB)
2774 output[0x15] |= CBUS_PWREN<<4;
2775 else
2776 output[0x15] |= eeprom->cbus_function[3]<<4;
2777
2778 if (eeprom->cbus_function[4] > CBUS_CLK6)
2779 output[0x16] = CBUS_SLEEP;
2780 else
2781 output[0x16] = eeprom->cbus_function[4];
2782 break;
2783 case TYPE_2232H:
2784 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
2785 if ( eeprom->channel_a_driver == DRIVER_VCP)
2786 output[0x00] |= DRIVER_VCP;
2787 else
2788 output[0x00] &= ~DRIVER_VCP;
2789
2790 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
2791 if ( eeprom->channel_b_driver == DRIVER_VCP)
2792 output[0x01] |= DRIVER_VCP;
2793 else
2794 output[0x01] &= ~DRIVER_VCP;
2795 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2796 output[0x01] |= SUSPEND_DBUS7_BIT;
2797 else
2798 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2799
2800 if (eeprom->suspend_pull_downs == 1)
2801 output[0x0A] |= 0x4;
2802 else
2803 output[0x0A] &= ~0x4;
2804
2805 if (eeprom->group0_drive > DRIVE_16MA)
2806 output[0x0c] |= DRIVE_16MA;
2807 else
2808 output[0x0c] |= eeprom->group0_drive;
2809 if (eeprom->group0_schmitt == IS_SCHMITT)
2810 output[0x0c] |= IS_SCHMITT;
2811 if (eeprom->group0_slew == SLOW_SLEW)
2812 output[0x0c] |= SLOW_SLEW;
2813
2814 if (eeprom->group1_drive > DRIVE_16MA)
2815 output[0x0c] |= DRIVE_16MA<<4;
2816 else
2817 output[0x0c] |= eeprom->group1_drive<<4;
2818 if (eeprom->group1_schmitt == IS_SCHMITT)
2819 output[0x0c] |= IS_SCHMITT<<4;
2820 if (eeprom->group1_slew == SLOW_SLEW)
2821 output[0x0c] |= SLOW_SLEW<<4;
2822
2823 if (eeprom->group2_drive > DRIVE_16MA)
2824 output[0x0d] |= DRIVE_16MA;
2825 else
2826 output[0x0d] |= eeprom->group2_drive;
2827 if (eeprom->group2_schmitt == IS_SCHMITT)
2828 output[0x0d] |= IS_SCHMITT;
2829 if (eeprom->group2_slew == SLOW_SLEW)
2830 output[0x0d] |= SLOW_SLEW;
2831
2832 if (eeprom->group3_drive > DRIVE_16MA)
2833 output[0x0d] |= DRIVE_16MA<<4;
2834 else
2835 output[0x0d] |= eeprom->group3_drive<<4;
2836 if (eeprom->group3_schmitt == IS_SCHMITT)
2837 output[0x0d] |= IS_SCHMITT<<4;
2838 if (eeprom->group3_slew == SLOW_SLEW)
2839 output[0x0d] |= SLOW_SLEW<<4;
2840
2841 output[0x18] = eeprom->chip;
2842
2843 break;
2844 case TYPE_4232H:
2845 if (eeprom->channel_a_driver == DRIVER_VCP)
2846 output[0x00] |= DRIVER_VCP;
2847 else
2848 output[0x00] &= ~DRIVER_VCP;
2849 if (eeprom->channel_b_driver == DRIVER_VCP)
2850 output[0x01] |= DRIVER_VCP;
2851 else
2852 output[0x01] &= ~DRIVER_VCP;
2853 if (eeprom->channel_c_driver == DRIVER_VCP)
2854 output[0x00] |= (DRIVER_VCP << 4);
2855 else
2856 output[0x00] &= ~(DRIVER_VCP << 4);
2857 if (eeprom->channel_d_driver == DRIVER_VCP)
2858 output[0x01] |= (DRIVER_VCP << 4);
2859 else
2860 output[0x01] &= ~(DRIVER_VCP << 4);
2861
2862 if (eeprom->suspend_pull_downs == 1)
2863 output[0x0a] |= 0x4;
2864 else
2865 output[0x0a] &= ~0x4;
2866
2867 if (eeprom->channel_a_rs485enable)
2868 output[0x0b] |= CHANNEL_IS_RS485 << 0;
2869 else
2870 output[0x0b] &= ~(CHANNEL_IS_RS485 << 0);
2871 if (eeprom->channel_b_rs485enable)
2872 output[0x0b] |= CHANNEL_IS_RS485 << 1;
2873 else
2874 output[0x0b] &= ~(CHANNEL_IS_RS485 << 1);
2875 if (eeprom->channel_c_rs485enable)
2876 output[0x0b] |= CHANNEL_IS_RS485 << 2;
2877 else
2878 output[0x0b] &= ~(CHANNEL_IS_RS485 << 2);
2879 if (eeprom->channel_d_rs485enable)
2880 output[0x0b] |= CHANNEL_IS_RS485 << 3;
2881 else
2882 output[0x0b] &= ~(CHANNEL_IS_RS485 << 3);
2883
2884 if (eeprom->group0_drive > DRIVE_16MA)
2885 output[0x0c] |= DRIVE_16MA;
2886 else
2887 output[0x0c] |= eeprom->group0_drive;
2888 if (eeprom->group0_schmitt == IS_SCHMITT)
2889 output[0x0c] |= IS_SCHMITT;
2890 if (eeprom->group0_slew == SLOW_SLEW)
2891 output[0x0c] |= SLOW_SLEW;
2892
2893 if (eeprom->group1_drive > DRIVE_16MA)
2894 output[0x0c] |= DRIVE_16MA<<4;
2895 else
2896 output[0x0c] |= eeprom->group1_drive<<4;
2897 if (eeprom->group1_schmitt == IS_SCHMITT)
2898 output[0x0c] |= IS_SCHMITT<<4;
2899 if (eeprom->group1_slew == SLOW_SLEW)
2900 output[0x0c] |= SLOW_SLEW<<4;
2901
2902 if (eeprom->group2_drive > DRIVE_16MA)
2903 output[0x0d] |= DRIVE_16MA;
2904 else
2905 output[0x0d] |= eeprom->group2_drive;
2906 if (eeprom->group2_schmitt == IS_SCHMITT)
2907 output[0x0d] |= IS_SCHMITT;
2908 if (eeprom->group2_slew == SLOW_SLEW)
2909 output[0x0d] |= SLOW_SLEW;
2910
2911 if (eeprom->group3_drive > DRIVE_16MA)
2912 output[0x0d] |= DRIVE_16MA<<4;
2913 else
2914 output[0x0d] |= eeprom->group3_drive<<4;
2915 if (eeprom->group3_schmitt == IS_SCHMITT)
2916 output[0x0d] |= IS_SCHMITT<<4;
2917 if (eeprom->group3_slew == SLOW_SLEW)
2918 output[0x0d] |= SLOW_SLEW<<4;
2919
2920 output[0x18] = eeprom->chip;
2921
2922 break;
2923 case TYPE_232H:
2924 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
2925 if ( eeprom->channel_a_driver == DRIVER_VCP)
2926 output[0x00] |= DRIVER_VCPH;
2927 else
2928 output[0x00] &= ~DRIVER_VCPH;
2929 if (eeprom->powersave)
2930 output[0x01] |= POWER_SAVE_DISABLE_H;
2931 else
2932 output[0x01] &= ~POWER_SAVE_DISABLE_H;
2933 if (eeprom->clock_polarity)
2934 output[0x01] |= FT1284_CLK_IDLE_STATE;
2935 else
2936 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
2937 if (eeprom->data_order)
2938 output[0x01] |= FT1284_DATA_LSB;
2939 else
2940 output[0x01] &= ~FT1284_DATA_LSB;
2941 if (eeprom->flow_control)
2942 output[0x01] |= FT1284_FLOW_CONTROL;
2943 else
2944 output[0x01] &= ~FT1284_FLOW_CONTROL;
2945 if (eeprom->group0_drive > DRIVE_16MA)
2946 output[0x0c] |= DRIVE_16MA;
2947 else
2948 output[0x0c] |= eeprom->group0_drive;
2949 if (eeprom->group0_schmitt == IS_SCHMITT)
2950 output[0x0c] |= IS_SCHMITT;
2951 if (eeprom->group0_slew == SLOW_SLEW)
2952 output[0x0c] |= SLOW_SLEW;
2953
2954 if (eeprom->group1_drive > DRIVE_16MA)
2955 output[0x0d] |= DRIVE_16MA;
2956 else
2957 output[0x0d] |= eeprom->group1_drive;
2958 if (eeprom->group1_schmitt == IS_SCHMITT)
2959 output[0x0d] |= IS_SCHMITT;
2960 if (eeprom->group1_slew == SLOW_SLEW)
2961 output[0x0d] |= SLOW_SLEW;
2962
2963 set_ft232h_cbus(eeprom, output);
2964
2965 output[0x1e] = eeprom->chip;
2966 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
2967 break;
2968
2969 }
2970
2971 // calculate checksum
2972 checksum = 0xAAAA;
2973
2974 for (i = 0; i < eeprom->size/2-1; i++)
2975 {
2976 value = output[i*2];
2977 value += output[(i*2)+1] << 8;
2978
2979 checksum = value^checksum;
2980 checksum = (checksum << 1) | (checksum >> 15);
2981 }
2982
2983 output[eeprom->size-2] = checksum;
2984 output[eeprom->size-1] = checksum >> 8;
2985
2986 return user_area_size;
2987}
2988/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
2989 * EEPROM structure
2990 *
2991 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
2992 */
2993static unsigned char bit2type(unsigned char bits)
2994{
2995 switch (bits)
2996 {
2997 case 0: return CHANNEL_IS_UART;
2998 case 1: return CHANNEL_IS_FIFO;
2999 case 2: return CHANNEL_IS_OPTO;
3000 case 4: return CHANNEL_IS_CPU;
3001 case 8: return CHANNEL_IS_FT1284;
3002 default:
3003 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
3004 bits);
3005 }
3006 return 0;
3007}
3008/**
3009 Decode binary EEPROM image into an ftdi_eeprom structure.
3010
3011 \param ftdi pointer to ftdi_context
3012 \param verbose Decode EEPROM on stdout
3013
3014 \retval 0: all fine
3015 \retval -1: something went wrong
3016
3017 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
3018 FIXME: Strings are malloc'ed here and should be freed somewhere
3019*/
3020int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
3021{
3022 unsigned char i, j;
3023 unsigned short checksum, eeprom_checksum, value;
3024 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
3025 int eeprom_size;
3026 struct ftdi_eeprom *eeprom;
3027 unsigned char *buf = ftdi->eeprom->buf;
3028 int release;
3029
3030 if (ftdi == NULL)
3031 ftdi_error_return(-1,"No context");
3032 if (ftdi->eeprom == NULL)
3033 ftdi_error_return(-1,"No eeprom structure");
3034
3035 eeprom = ftdi->eeprom;
3036 eeprom_size = eeprom->size;
3037
3038 // Addr 02: Vendor ID
3039 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
3040
3041 // Addr 04: Product ID
3042 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
3043
3044 release = buf[0x06] + (buf[0x07]<<8);
3045
3046 // Addr 08: Config descriptor
3047 // Bit 7: always 1
3048 // Bit 6: 1 if this device is self powered, 0 if bus powered
3049 // Bit 5: 1 if this device uses remote wakeup
3050 eeprom->self_powered = buf[0x08] & 0x40;
3051 eeprom->remote_wakeup = buf[0x08] & 0x20;
3052
3053 // Addr 09: Max power consumption: max power = value * 2 mA
3054 eeprom->max_power = MAX_POWER_MILLIAMP_PER_UNIT * buf[0x09];
3055
3056 // Addr 0A: Chip configuration
3057 // Bit 7: 0 - reserved
3058 // Bit 6: 0 - reserved
3059 // Bit 5: 0 - reserved
3060 // Bit 4: 1 - Change USB version on BM and 2232C
3061 // Bit 3: 1 - Use the serial number string
3062 // Bit 2: 1 - Enable suspend pull downs for lower power
3063 // Bit 1: 1 - Out EndPoint is Isochronous
3064 // Bit 0: 1 - In EndPoint is Isochronous
3065 //
3066 eeprom->in_is_isochronous = buf[0x0A]&0x01;
3067 eeprom->out_is_isochronous = buf[0x0A]&0x02;
3068 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
3069 eeprom->use_serial = (buf[0x0A] & USE_SERIAL_NUM)?1:0;
3070 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
3071
3072 // Addr 0C: USB version low byte when 0x0A
3073 // Addr 0D: USB version high byte when 0x0A
3074 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
3075
3076 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3077 // Addr 0F: Length of manufacturer string
3078 manufacturer_size = buf[0x0F]/2;
3079 if (eeprom->manufacturer)
3080 free(eeprom->manufacturer);
3081 if (manufacturer_size > 0)
3082 {
3083 eeprom->manufacturer = malloc(manufacturer_size);
3084 if (eeprom->manufacturer)
3085 {
3086 // Decode manufacturer
3087 i = buf[0x0E] & (eeprom_size -1); // offset
3088 for (j=0;j<manufacturer_size-1;j++)
3089 {
3090 eeprom->manufacturer[j] = buf[2*j+i+2];
3091 }
3092 eeprom->manufacturer[j] = '\0';
3093 }
3094 }
3095 else eeprom->manufacturer = NULL;
3096
3097 // Addr 10: Offset of the product string + 0x80, calculated later
3098 // Addr 11: Length of product string
3099 if (eeprom->product)
3100 free(eeprom->product);
3101 product_size = buf[0x11]/2;
3102 if (product_size > 0)
3103 {
3104 eeprom->product = malloc(product_size);
3105 if (eeprom->product)
3106 {
3107 // Decode product name
3108 i = buf[0x10] & (eeprom_size -1); // offset
3109 for (j=0;j<product_size-1;j++)
3110 {
3111 eeprom->product[j] = buf[2*j+i+2];
3112 }
3113 eeprom->product[j] = '\0';
3114 }
3115 }
3116 else eeprom->product = NULL;
3117
3118 // Addr 12: Offset of the serial string + 0x80, calculated later
3119 // Addr 13: Length of serial string
3120 if (eeprom->serial)
3121 free(eeprom->serial);
3122 serial_size = buf[0x13]/2;
3123 if (serial_size > 0)
3124 {
3125 eeprom->serial = malloc(serial_size);
3126 if (eeprom->serial)
3127 {
3128 // Decode serial
3129 i = buf[0x12] & (eeprom_size -1); // offset
3130 for (j=0;j<serial_size-1;j++)
3131 {
3132 eeprom->serial[j] = buf[2*j+i+2];
3133 }
3134 eeprom->serial[j] = '\0';
3135 }
3136 }
3137 else eeprom->serial = NULL;
3138
3139 // verify checksum
3140 checksum = 0xAAAA;
3141
3142 for (i = 0; i < eeprom_size/2-1; i++)
3143 {
3144 value = buf[i*2];
3145 value += buf[(i*2)+1] << 8;
3146
3147 checksum = value^checksum;
3148 checksum = (checksum << 1) | (checksum >> 15);
3149 }
3150
3151 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3152
3153 if (eeprom_checksum != checksum)
3154 {
3155 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
3156 ftdi_error_return(-1,"EEPROM checksum error");
3157 }
3158
3159 eeprom->channel_a_type = 0;
3160 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
3161 {
3162 eeprom->chip = -1;
3163 }
3164 else if (ftdi->type == TYPE_2232C)
3165 {
3166 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3167 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3168 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
3169 eeprom->channel_b_type = buf[0x01] & 0x7;
3170 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3171 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
3172 eeprom->chip = buf[0x14];
3173 }
3174 else if (ftdi->type == TYPE_R)
3175 {
3176 /* TYPE_R flags D2XX, not VCP as all others*/
3177 eeprom->channel_a_driver = ~buf[0x00] & DRIVER_VCP;
3178 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
3179 if ( (buf[0x01]&0x40) != 0x40)
3180 fprintf(stderr,
3181 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3182 " If this happened with the\n"
3183 " EEPROM programmed by FTDI tools, please report "
3184 "to libftdi@developer.intra2net.com\n");
3185
3186 eeprom->chip = buf[0x16];
3187 // Addr 0B: Invert data lines
3188 // Works only on FT232R, not FT245R, but no way to distinguish
3189 eeprom->invert = buf[0x0B];
3190 // Addr 14: CBUS function: CBUS0, CBUS1
3191 // Addr 15: CBUS function: CBUS2, CBUS3
3192 // Addr 16: CBUS function: CBUS5
3193 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3194 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3195 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3196 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3197 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
3198 }
3199 else if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3200 {
3201 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3202 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3203
3204 if (ftdi->type == TYPE_2232H)
3205 {
3206 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3207 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3208 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
3209 }
3210 else
3211 {
3212 eeprom->channel_c_driver = (buf[0x00] >> 4) & DRIVER_VCP;
3213 eeprom->channel_d_driver = (buf[0x01] >> 4) & DRIVER_VCP;
3214 eeprom->channel_a_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 0);
3215 eeprom->channel_b_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 1);
3216 eeprom->channel_c_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 2);
3217 eeprom->channel_d_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 3);
3218 }
3219
3220 eeprom->chip = buf[0x18];
3221 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3222 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3223 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3224 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3225 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3226 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3227 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3228 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3229 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3230 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3231 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3232 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
3233 }
3234 else if (ftdi->type == TYPE_232H)
3235 {
3236 int i;
3237
3238 eeprom->channel_a_type = buf[0x00] & 0xf;
3239 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
3240 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3241 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3242 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
3243 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
3244 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3245 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3246 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3247 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3248 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3249 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3250
3251 for(i=0; i<5; i++)
3252 {
3253 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3254 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3255 }
3256 eeprom->chip = buf[0x1e];
3257 /*FIXME: Decipher more values*/
3258 }
3259
3260 if (verbose)
3261 {
3262 char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3263 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3264 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3265 fprintf(stdout, "Release: 0x%04x\n",release);
3266
3267 if (eeprom->self_powered)
3268 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3269 else
3270 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power,
3271 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3272 if (eeprom->manufacturer)
3273 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3274 if (eeprom->product)
3275 fprintf(stdout, "Product: %s\n",eeprom->product);
3276 if (eeprom->serial)
3277 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3278 fprintf(stdout, "Checksum : %04x\n", checksum);
3279 if (ftdi->type == TYPE_R)
3280 fprintf(stdout, "Internal EEPROM\n");
3281 else if (eeprom->chip >= 0x46)
3282 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3283 if (eeprom->suspend_dbus7)
3284 fprintf(stdout, "Suspend on DBUS7\n");
3285 if (eeprom->suspend_pull_downs)
3286 fprintf(stdout, "Pull IO pins low during suspend\n");
3287 if(eeprom->powersave)
3288 {
3289 if(ftdi->type >= TYPE_232H)
3290 fprintf(stdout,"Enter low power state on ACBUS7\n");
3291 }
3292 if (eeprom->remote_wakeup)
3293 fprintf(stdout, "Enable Remote Wake Up\n");
3294 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3295 if (ftdi->type >= TYPE_2232C)
3296 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3297 channel_mode[eeprom->channel_a_type],
3298 (eeprom->channel_a_driver)?" VCP":"",
3299 (eeprom->high_current_a)?" High Current IO":"");
3300 if (ftdi->type >= TYPE_232H)
3301 {
3302 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3303 (eeprom->clock_polarity)?"HIGH":"LOW",
3304 (eeprom->data_order)?"LSB":"MSB",
3305 (eeprom->flow_control)?"":"No ");
3306 }
3307 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
3308 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3309 channel_mode[eeprom->channel_b_type],
3310 (eeprom->channel_b_driver)?" VCP":"",
3311 (eeprom->high_current_b)?" High Current IO":"");
3312 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3313 eeprom->use_usb_version == USE_USB_VERSION_BIT)
3314 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3315
3316 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3317 {
3318 fprintf(stdout,"%s has %d mA drive%s%s\n",
3319 (ftdi->type == TYPE_2232H)?"AL":"A",
3320 (eeprom->group0_drive+1) *4,
3321 (eeprom->group0_schmitt)?" Schmitt Input":"",
3322 (eeprom->group0_slew)?" Slow Slew":"");
3323 fprintf(stdout,"%s has %d mA drive%s%s\n",
3324 (ftdi->type == TYPE_2232H)?"AH":"B",
3325 (eeprom->group1_drive+1) *4,
3326 (eeprom->group1_schmitt)?" Schmitt Input":"",
3327 (eeprom->group1_slew)?" Slow Slew":"");
3328 fprintf(stdout,"%s has %d mA drive%s%s\n",
3329 (ftdi->type == TYPE_2232H)?"BL":"C",
3330 (eeprom->group2_drive+1) *4,
3331 (eeprom->group2_schmitt)?" Schmitt Input":"",
3332 (eeprom->group2_slew)?" Slow Slew":"");
3333 fprintf(stdout,"%s has %d mA drive%s%s\n",
3334 (ftdi->type == TYPE_2232H)?"BH":"D",
3335 (eeprom->group3_drive+1) *4,
3336 (eeprom->group3_schmitt)?" Schmitt Input":"",
3337 (eeprom->group3_slew)?" Slow Slew":"");
3338 }
3339 else if (ftdi->type == TYPE_232H)
3340 {
3341 int i;
3342 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3343 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3344 "CLK30","CLK15","CLK7_5"
3345 };
3346 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3347 (eeprom->group0_drive+1) *4,
3348 (eeprom->group0_schmitt)?" Schmitt Input":"",
3349 (eeprom->group0_slew)?" Slow Slew":"");
3350 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3351 (eeprom->group1_drive+1) *4,
3352 (eeprom->group1_schmitt)?" Schmitt Input":"",
3353 (eeprom->group1_slew)?" Slow Slew":"");
3354 for (i=0; i<10; i++)
3355 {
3356 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3357 fprintf(stdout,"C%d Function: %s\n", i,
3358 cbush_mux[eeprom->cbus_function[i]]);
3359 }
3360 }
3361
3362 if (ftdi->type == TYPE_R)
3363 {
3364 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3365 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3366 "IOMODE","BB_WR","BB_RD"
3367 };
3368 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3369
3370 if (eeprom->invert)
3371 {
3372 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3373 fprintf(stdout,"Inverted bits:");
3374 for (i=0; i<8; i++)
3375 if ((eeprom->invert & (1<<i)) == (1<<i))
3376 fprintf(stdout," %s",r_bits[i]);
3377 fprintf(stdout,"\n");
3378 }
3379 for (i=0; i<5; i++)
3380 {
3381 if (eeprom->cbus_function[i]<CBUS_BB)
3382 fprintf(stdout,"C%d Function: %s\n", i,
3383 cbus_mux[eeprom->cbus_function[i]]);
3384 else
3385 {
3386 if (i < 4)
3387 /* Running MPROG show that C0..3 have fixed function Synchronous
3388 Bit Bang mode */
3389 fprintf(stdout,"C%d BB Function: %s\n", i,
3390 cbus_BB[i]);
3391 else
3392 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3393 }
3394 }
3395 }
3396 }
3397 return 0;
3398}
3399
3400/**
3401 Get a value from the decoded EEPROM structure
3402
3403 \param ftdi pointer to ftdi_context
3404 \param value_name Enum of the value to query
3405 \param value Pointer to store read value
3406
3407 \retval 0: all fine
3408 \retval -1: Value doesn't exist
3409*/
3410int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3411{
3412 switch (value_name)
3413 {
3414 case VENDOR_ID:
3415 *value = ftdi->eeprom->vendor_id;
3416 break;
3417 case PRODUCT_ID:
3418 *value = ftdi->eeprom->product_id;
3419 break;
3420 case SELF_POWERED:
3421 *value = ftdi->eeprom->self_powered;
3422 break;
3423 case REMOTE_WAKEUP:
3424 *value = ftdi->eeprom->remote_wakeup;
3425 break;
3426 case IS_NOT_PNP:
3427 *value = ftdi->eeprom->is_not_pnp;
3428 break;
3429 case SUSPEND_DBUS7:
3430 *value = ftdi->eeprom->suspend_dbus7;
3431 break;
3432 case IN_IS_ISOCHRONOUS:
3433 *value = ftdi->eeprom->in_is_isochronous;
3434 break;
3435 case OUT_IS_ISOCHRONOUS:
3436 *value = ftdi->eeprom->out_is_isochronous;
3437 break;
3438 case SUSPEND_PULL_DOWNS:
3439 *value = ftdi->eeprom->suspend_pull_downs;
3440 break;
3441 case USE_SERIAL:
3442 *value = ftdi->eeprom->use_serial;
3443 break;
3444 case USB_VERSION:
3445 *value = ftdi->eeprom->usb_version;
3446 break;
3447 case USE_USB_VERSION:
3448 *value = ftdi->eeprom->use_usb_version;
3449 break;
3450 case MAX_POWER:
3451 *value = ftdi->eeprom->max_power;
3452 break;
3453 case CHANNEL_A_TYPE:
3454 *value = ftdi->eeprom->channel_a_type;
3455 break;
3456 case CHANNEL_B_TYPE:
3457 *value = ftdi->eeprom->channel_b_type;
3458 break;
3459 case CHANNEL_A_DRIVER:
3460 *value = ftdi->eeprom->channel_a_driver;
3461 break;
3462 case CHANNEL_B_DRIVER:
3463 *value = ftdi->eeprom->channel_b_driver;
3464 break;
3465 case CHANNEL_C_DRIVER:
3466 *value = ftdi->eeprom->channel_c_driver;
3467 break;
3468 case CHANNEL_D_DRIVER:
3469 *value = ftdi->eeprom->channel_d_driver;
3470 break;
3471 case CHANNEL_A_RS485:
3472 *value = ftdi->eeprom->channel_a_rs485enable;
3473 break;
3474 case CHANNEL_B_RS485:
3475 *value = ftdi->eeprom->channel_b_rs485enable;
3476 break;
3477 case CHANNEL_C_RS485:
3478 *value = ftdi->eeprom->channel_c_rs485enable;
3479 break;
3480 case CHANNEL_D_RS485:
3481 *value = ftdi->eeprom->channel_d_rs485enable;
3482 break;
3483 case CBUS_FUNCTION_0:
3484 *value = ftdi->eeprom->cbus_function[0];
3485 break;
3486 case CBUS_FUNCTION_1:
3487 *value = ftdi->eeprom->cbus_function[1];
3488 break;
3489 case CBUS_FUNCTION_2:
3490 *value = ftdi->eeprom->cbus_function[2];
3491 break;
3492 case CBUS_FUNCTION_3:
3493 *value = ftdi->eeprom->cbus_function[3];
3494 break;
3495 case CBUS_FUNCTION_4:
3496 *value = ftdi->eeprom->cbus_function[4];
3497 break;
3498 case CBUS_FUNCTION_5:
3499 *value = ftdi->eeprom->cbus_function[5];
3500 break;
3501 case CBUS_FUNCTION_6:
3502 *value = ftdi->eeprom->cbus_function[6];
3503 break;
3504 case CBUS_FUNCTION_7:
3505 *value = ftdi->eeprom->cbus_function[7];
3506 break;
3507 case CBUS_FUNCTION_8:
3508 *value = ftdi->eeprom->cbus_function[8];
3509 break;
3510 case CBUS_FUNCTION_9:
3511 *value = ftdi->eeprom->cbus_function[8];
3512 break;
3513 case HIGH_CURRENT:
3514 *value = ftdi->eeprom->high_current;
3515 break;
3516 case HIGH_CURRENT_A:
3517 *value = ftdi->eeprom->high_current_a;
3518 break;
3519 case HIGH_CURRENT_B:
3520 *value = ftdi->eeprom->high_current_b;
3521 break;
3522 case INVERT:
3523 *value = ftdi->eeprom->invert;
3524 break;
3525 case GROUP0_DRIVE:
3526 *value = ftdi->eeprom->group0_drive;
3527 break;
3528 case GROUP0_SCHMITT:
3529 *value = ftdi->eeprom->group0_schmitt;
3530 break;
3531 case GROUP0_SLEW:
3532 *value = ftdi->eeprom->group0_slew;
3533 break;
3534 case GROUP1_DRIVE:
3535 *value = ftdi->eeprom->group1_drive;
3536 break;
3537 case GROUP1_SCHMITT:
3538 *value = ftdi->eeprom->group1_schmitt;
3539 break;
3540 case GROUP1_SLEW:
3541 *value = ftdi->eeprom->group1_slew;
3542 break;
3543 case GROUP2_DRIVE:
3544 *value = ftdi->eeprom->group2_drive;
3545 break;
3546 case GROUP2_SCHMITT:
3547 *value = ftdi->eeprom->group2_schmitt;
3548 break;
3549 case GROUP2_SLEW:
3550 *value = ftdi->eeprom->group2_slew;
3551 break;
3552 case GROUP3_DRIVE:
3553 *value = ftdi->eeprom->group3_drive;
3554 break;
3555 case GROUP3_SCHMITT:
3556 *value = ftdi->eeprom->group3_schmitt;
3557 break;
3558 case GROUP3_SLEW:
3559 *value = ftdi->eeprom->group3_slew;
3560 break;
3561 case POWER_SAVE:
3562 *value = ftdi->eeprom->powersave;
3563 break;
3564 case CLOCK_POLARITY:
3565 *value = ftdi->eeprom->clock_polarity;
3566 break;
3567 case DATA_ORDER:
3568 *value = ftdi->eeprom->data_order;
3569 break;
3570 case FLOW_CONTROL:
3571 *value = ftdi->eeprom->flow_control;
3572 break;
3573 case CHIP_TYPE:
3574 *value = ftdi->eeprom->chip;
3575 break;
3576 case CHIP_SIZE:
3577 *value = ftdi->eeprom->size;
3578 break;
3579 default:
3580 ftdi_error_return(-1, "Request for unknown EEPROM value");
3581 }
3582 return 0;
3583}
3584
3585/**
3586 Set a value in the decoded EEPROM Structure
3587 No parameter checking is performed
3588
3589 \param ftdi pointer to ftdi_context
3590 \param value_name Enum of the value to set
3591 \param value to set
3592
3593 \retval 0: all fine
3594 \retval -1: Value doesn't exist
3595 \retval -2: Value not user settable
3596*/
3597int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3598{
3599 switch (value_name)
3600 {
3601 case VENDOR_ID:
3602 ftdi->eeprom->vendor_id = value;
3603 break;
3604 case PRODUCT_ID:
3605 ftdi->eeprom->product_id = value;
3606 break;
3607 case SELF_POWERED:
3608 ftdi->eeprom->self_powered = value;
3609 break;
3610 case REMOTE_WAKEUP:
3611 ftdi->eeprom->remote_wakeup = value;
3612 break;
3613 case IS_NOT_PNP:
3614 ftdi->eeprom->is_not_pnp = value;
3615 break;
3616 case SUSPEND_DBUS7:
3617 ftdi->eeprom->suspend_dbus7 = value;
3618 break;
3619 case IN_IS_ISOCHRONOUS:
3620 ftdi->eeprom->in_is_isochronous = value;
3621 break;
3622 case OUT_IS_ISOCHRONOUS:
3623 ftdi->eeprom->out_is_isochronous = value;
3624 break;
3625 case SUSPEND_PULL_DOWNS:
3626 ftdi->eeprom->suspend_pull_downs = value;
3627 break;
3628 case USE_SERIAL:
3629 ftdi->eeprom->use_serial = value;
3630 break;
3631 case USB_VERSION:
3632 ftdi->eeprom->usb_version = value;
3633 break;
3634 case USE_USB_VERSION:
3635 ftdi->eeprom->use_usb_version = value;
3636 break;
3637 case MAX_POWER:
3638 ftdi->eeprom->max_power = value;
3639 break;
3640 case CHANNEL_A_TYPE:
3641 ftdi->eeprom->channel_a_type = value;
3642 break;
3643 case CHANNEL_B_TYPE:
3644 ftdi->eeprom->channel_b_type = value;
3645 break;
3646 case CHANNEL_A_DRIVER:
3647 ftdi->eeprom->channel_a_driver = value;
3648 break;
3649 case CHANNEL_B_DRIVER:
3650 ftdi->eeprom->channel_b_driver = value;
3651 break;
3652 case CHANNEL_C_DRIVER:
3653 ftdi->eeprom->channel_c_driver = value;
3654 break;
3655 case CHANNEL_D_DRIVER:
3656 ftdi->eeprom->channel_d_driver = value;
3657 break;
3658 case CHANNEL_A_RS485:
3659 ftdi->eeprom->channel_a_rs485enable = value;
3660 break;
3661 case CHANNEL_B_RS485:
3662 ftdi->eeprom->channel_b_rs485enable = value;
3663 break;
3664 case CHANNEL_C_RS485:
3665 ftdi->eeprom->channel_c_rs485enable = value;
3666 break;
3667 case CHANNEL_D_RS485:
3668 ftdi->eeprom->channel_d_rs485enable = value;
3669 break;
3670 case CBUS_FUNCTION_0:
3671 ftdi->eeprom->cbus_function[0] = value;
3672 break;
3673 case CBUS_FUNCTION_1:
3674 ftdi->eeprom->cbus_function[1] = value;
3675 break;
3676 case CBUS_FUNCTION_2:
3677 ftdi->eeprom->cbus_function[2] = value;
3678 break;
3679 case CBUS_FUNCTION_3:
3680 ftdi->eeprom->cbus_function[3] = value;
3681 break;
3682 case CBUS_FUNCTION_4:
3683 ftdi->eeprom->cbus_function[4] = value;
3684 break;
3685 case CBUS_FUNCTION_5:
3686 ftdi->eeprom->cbus_function[5] = value;
3687 break;
3688 case CBUS_FUNCTION_6:
3689 ftdi->eeprom->cbus_function[6] = value;
3690 break;
3691 case CBUS_FUNCTION_7:
3692 ftdi->eeprom->cbus_function[7] = value;
3693 break;
3694 case CBUS_FUNCTION_8:
3695 ftdi->eeprom->cbus_function[8] = value;
3696 break;
3697 case CBUS_FUNCTION_9:
3698 ftdi->eeprom->cbus_function[9] = value;
3699 break;
3700 case HIGH_CURRENT:
3701 ftdi->eeprom->high_current = value;
3702 break;
3703 case HIGH_CURRENT_A:
3704 ftdi->eeprom->high_current_a = value;
3705 break;
3706 case HIGH_CURRENT_B:
3707 ftdi->eeprom->high_current_b = value;
3708 break;
3709 case INVERT:
3710 ftdi->eeprom->invert = value;
3711 break;
3712 case GROUP0_DRIVE:
3713 ftdi->eeprom->group0_drive = value;
3714 break;
3715 case GROUP0_SCHMITT:
3716 ftdi->eeprom->group0_schmitt = value;
3717 break;
3718 case GROUP0_SLEW:
3719 ftdi->eeprom->group0_slew = value;
3720 break;
3721 case GROUP1_DRIVE:
3722 ftdi->eeprom->group1_drive = value;
3723 break;
3724 case GROUP1_SCHMITT:
3725 ftdi->eeprom->group1_schmitt = value;
3726 break;
3727 case GROUP1_SLEW:
3728 ftdi->eeprom->group1_slew = value;
3729 break;
3730 case GROUP2_DRIVE:
3731 ftdi->eeprom->group2_drive = value;
3732 break;
3733 case GROUP2_SCHMITT:
3734 ftdi->eeprom->group2_schmitt = value;
3735 break;
3736 case GROUP2_SLEW:
3737 ftdi->eeprom->group2_slew = value;
3738 break;
3739 case GROUP3_DRIVE:
3740 ftdi->eeprom->group3_drive = value;
3741 break;
3742 case GROUP3_SCHMITT:
3743 ftdi->eeprom->group3_schmitt = value;
3744 break;
3745 case GROUP3_SLEW:
3746 ftdi->eeprom->group3_slew = value;
3747 break;
3748 case CHIP_TYPE:
3749 ftdi->eeprom->chip = value;
3750 break;
3751 case POWER_SAVE:
3752 ftdi->eeprom->powersave = value;
3753 break;
3754 case CLOCK_POLARITY:
3755 ftdi->eeprom->clock_polarity = value;
3756 break;
3757 case DATA_ORDER:
3758 ftdi->eeprom->data_order = value;
3759 break;
3760 case FLOW_CONTROL:
3761 ftdi->eeprom->flow_control = value;
3762 break;
3763 case CHIP_SIZE:
3764 ftdi_error_return(-2, "EEPROM Value can't be changed");
3765 default :
3766 ftdi_error_return(-1, "Request to unknown EEPROM value");
3767 }
3768 return 0;
3769}
3770
3771/** Get the read-only buffer to the binary EEPROM content
3772
3773 \param ftdi pointer to ftdi_context
3774 \param buf buffer to receive EEPROM content
3775 \param size Size of receiving buffer
3776
3777 \retval 0: All fine
3778 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3779 \retval -2: Not enough room to store eeprom
3780*/
3781int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3782{
3783 if (!ftdi || !(ftdi->eeprom))
3784 ftdi_error_return(-1, "No appropriate structure");
3785
3786 if (!buf || size < ftdi->eeprom->size)
3787 ftdi_error_return(-1, "Not enough room to store eeprom");
3788
3789 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3790 if (size > FTDI_MAX_EEPROM_SIZE)
3791 size = FTDI_MAX_EEPROM_SIZE;
3792
3793 memcpy(buf, ftdi->eeprom->buf, size);
3794
3795 return 0;
3796}
3797
3798/** Set the EEPROM content from the user-supplied prefilled buffer
3799
3800 \param ftdi pointer to ftdi_context
3801 \param buf buffer to read EEPROM content
3802 \param size Size of buffer
3803
3804 \retval 0: All fine
3805 \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing
3806*/
3807int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
3808{
3809 if (!ftdi || !(ftdi->eeprom) || !buf)
3810 ftdi_error_return(-1, "No appropriate structure");
3811
3812 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3813 if (size > FTDI_MAX_EEPROM_SIZE)
3814 size = FTDI_MAX_EEPROM_SIZE;
3815
3816 memcpy(ftdi->eeprom->buf, buf, size);
3817
3818 return 0;
3819}
3820
3821/**
3822 Read eeprom location
3823
3824 \param ftdi pointer to ftdi_context
3825 \param eeprom_addr Address of eeprom location to be read
3826 \param eeprom_val Pointer to store read eeprom location
3827
3828 \retval 0: all fine
3829 \retval -1: read failed
3830 \retval -2: USB device unavailable
3831*/
3832int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3833{
3834 if (ftdi == NULL || ftdi->usb_dev == NULL)
3835 ftdi_error_return(-2, "USB device unavailable");
3836
3837 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3838 ftdi_error_return(-1, "reading eeprom failed");
3839
3840 return 0;
3841}
3842
3843/**
3844 Read eeprom
3845
3846 \param ftdi pointer to ftdi_context
3847
3848 \retval 0: all fine
3849 \retval -1: read failed
3850 \retval -2: USB device unavailable
3851*/
3852int ftdi_read_eeprom(struct ftdi_context *ftdi)
3853{
3854 int i;
3855 unsigned char *buf;
3856
3857 if (ftdi == NULL || ftdi->usb_dev == NULL)
3858 ftdi_error_return(-2, "USB device unavailable");
3859 buf = ftdi->eeprom->buf;
3860
3861 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
3862 {
3863 if (libusb_control_transfer(
3864 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3865 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
3866 ftdi_error_return(-1, "reading eeprom failed");
3867 }
3868
3869 if (ftdi->type == TYPE_R)
3870 ftdi->eeprom->size = 0x80;
3871 /* Guesses size of eeprom by comparing halves
3872 - will not work with blank eeprom */
3873 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3874 ftdi->eeprom->size = -1;
3875 else if (memcmp(buf,&buf[0x80],0x80) == 0)
3876 ftdi->eeprom->size = 0x80;
3877 else if (memcmp(buf,&buf[0x40],0x40) == 0)
3878 ftdi->eeprom->size = 0x40;
3879 else
3880 ftdi->eeprom->size = 0x100;
3881 return 0;
3882}
3883
3884/*
3885 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3886 Function is only used internally
3887 \internal
3888*/
3889static unsigned char ftdi_read_chipid_shift(unsigned char value)
3890{
3891 return ((value & 1) << 1) |
3892 ((value & 2) << 5) |
3893 ((value & 4) >> 2) |
3894 ((value & 8) << 4) |
3895 ((value & 16) >> 1) |
3896 ((value & 32) >> 1) |
3897 ((value & 64) >> 4) |
3898 ((value & 128) >> 2);
3899}
3900
3901/**
3902 Read the FTDIChip-ID from R-type devices
3903
3904 \param ftdi pointer to ftdi_context
3905 \param chipid Pointer to store FTDIChip-ID
3906
3907 \retval 0: all fine
3908 \retval -1: read failed
3909 \retval -2: USB device unavailable
3910*/
3911int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3912{
3913 unsigned int a = 0, b = 0;
3914
3915 if (ftdi == NULL || ftdi->usb_dev == NULL)
3916 ftdi_error_return(-2, "USB device unavailable");
3917
3918 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3919 {
3920 a = a << 8 | a >> 8;
3921 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3922 {
3923 b = b << 8 | b >> 8;
3924 a = (a << 16) | (b & 0xFFFF);
3925 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3926 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3927 *chipid = a ^ 0xa5f0f7d1;
3928 return 0;
3929 }
3930 }
3931
3932 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3933}
3934
3935/**
3936 Write eeprom location
3937
3938 \param ftdi pointer to ftdi_context
3939 \param eeprom_addr Address of eeprom location to be written
3940 \param eeprom_val Value to be written
3941
3942 \retval 0: all fine
3943 \retval -1: write failed
3944 \retval -2: USB device unavailable
3945 \retval -3: Invalid access to checksum protected area below 0x80
3946 \retval -4: Device can't access unprotected area
3947 \retval -5: Reading chip type failed
3948*/
3949int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3950 unsigned short eeprom_val)
3951{
3952 int chip_type_location;
3953 unsigned short chip_type;
3954
3955 if (ftdi == NULL || ftdi->usb_dev == NULL)
3956 ftdi_error_return(-2, "USB device unavailable");
3957
3958 if (eeprom_addr <0x80)
3959 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3960
3961
3962 switch (ftdi->type)
3963 {
3964 case TYPE_BM:
3965 case TYPE_2232C:
3966 chip_type_location = 0x14;
3967 break;
3968 case TYPE_2232H:
3969 case TYPE_4232H:
3970 chip_type_location = 0x18;
3971 break;
3972 case TYPE_232H:
3973 chip_type_location = 0x1e;
3974 break;
3975 default:
3976 ftdi_error_return(-4, "Device can't access unprotected area");
3977 }
3978
3979 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3980 ftdi_error_return(-5, "Reading failed failed");
3981 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3982 if ((chip_type & 0xff) != 0x66)
3983 {
3984 ftdi_error_return(-6, "EEPROM is not of 93x66");
3985 }
3986
3987 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3988 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3989 NULL, 0, ftdi->usb_write_timeout) != 0)
3990 ftdi_error_return(-1, "unable to write eeprom");
3991
3992 return 0;
3993}
3994
3995/**
3996 Write eeprom
3997
3998 \param ftdi pointer to ftdi_context
3999
4000 \retval 0: all fine
4001 \retval -1: read failed
4002 \retval -2: USB device unavailable
4003 \retval -3: EEPROM not initialized for the connected device;
4004*/
4005int ftdi_write_eeprom(struct ftdi_context *ftdi)
4006{
4007 unsigned short usb_val, status;
4008 int i, ret;
4009 unsigned char *eeprom;
4010
4011 if (ftdi == NULL || ftdi->usb_dev == NULL)
4012 ftdi_error_return(-2, "USB device unavailable");
4013
4014 if(ftdi->eeprom->initialized_for_connected_device == 0)
4015 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
4016
4017 eeprom = ftdi->eeprom->buf;
4018
4019 /* These commands were traced while running MProg */
4020 if ((ret = ftdi_usb_reset(ftdi)) != 0)
4021 return ret;
4022 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
4023 return ret;
4024 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
4025 return ret;
4026
4027 for (i = 0; i < ftdi->eeprom->size/2; i++)
4028 {
4029 usb_val = eeprom[i*2];
4030 usb_val += eeprom[(i*2)+1] << 8;
4031 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4032 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
4033 NULL, 0, ftdi->usb_write_timeout) < 0)
4034 ftdi_error_return(-1, "unable to write eeprom");
4035 }
4036
4037 return 0;
4038}
4039
4040/**
4041 Erase eeprom
4042
4043 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
4044
4045 \param ftdi pointer to ftdi_context
4046
4047 \retval 0: all fine
4048 \retval -1: erase failed
4049 \retval -2: USB device unavailable
4050 \retval -3: Writing magic failed
4051 \retval -4: Read EEPROM failed
4052 \retval -5: Unexpected EEPROM value
4053*/
4054#define MAGIC 0x55aa
4055int ftdi_erase_eeprom(struct ftdi_context *ftdi)
4056{
4057 unsigned short eeprom_value;
4058 if (ftdi == NULL || ftdi->usb_dev == NULL)
4059 ftdi_error_return(-2, "USB device unavailable");
4060
4061 if (ftdi->type == TYPE_R)
4062 {
4063 ftdi->eeprom->chip = 0;
4064 return 0;
4065 }
4066
4067 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4068 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4069 ftdi_error_return(-1, "unable to erase eeprom");
4070
4071
4072 /* detect chip type by writing 0x55AA as magic at word position 0xc0
4073 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
4074 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
4075 Chip is 93x66 if magic is only read at word position 0xc0*/
4076 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4077 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
4078 NULL, 0, ftdi->usb_write_timeout) != 0)
4079 ftdi_error_return(-3, "Writing magic failed");
4080 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
4081 ftdi_error_return(-4, "Reading failed failed");
4082 if (eeprom_value == MAGIC)
4083 {
4084 ftdi->eeprom->chip = 0x46;
4085 }
4086 else
4087 {
4088 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
4089 ftdi_error_return(-4, "Reading failed failed");
4090 if (eeprom_value == MAGIC)
4091 ftdi->eeprom->chip = 0x56;
4092 else
4093 {
4094 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
4095 ftdi_error_return(-4, "Reading failed failed");
4096 if (eeprom_value == MAGIC)
4097 ftdi->eeprom->chip = 0x66;
4098 else
4099 {
4100 ftdi->eeprom->chip = -1;
4101 }
4102 }
4103 }
4104 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4105 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4106 ftdi_error_return(-1, "unable to erase eeprom");
4107 return 0;
4108}
4109
4110/**
4111 Get string representation for last error code
4112
4113 \param ftdi pointer to ftdi_context
4114
4115 \retval Pointer to error string
4116*/
4117char *ftdi_get_error_string (struct ftdi_context *ftdi)
4118{
4119 if (ftdi == NULL)
4120 return "";
4121
4122 return ftdi->error_str;
4123}
4124
4125/* @} end of doxygen libftdi group */