Fix calculation of the Mode Bitfield
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
58 \retval none
59*/
60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
61{
62 if (ftdi && ftdi->usb_dev)
63 {
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
66 }
67}
68
69/**
70 Initializes a ftdi_context.
71
72 \param ftdi pointer to ftdi_context
73
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
76 \retval -2: couldn't allocate struct buffer
77 \retval -3: libusb_init() failed
78
79 \remark This should be called before all functions
80*/
81int ftdi_init(struct ftdi_context *ftdi)
82{
83 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
84 ftdi->usb_ctx = NULL;
85 ftdi->usb_dev = NULL;
86 ftdi->usb_read_timeout = 5000;
87 ftdi->usb_write_timeout = 5000;
88
89 ftdi->type = TYPE_BM; /* chip type */
90 ftdi->baudrate = -1;
91 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
92
93 ftdi->readbuffer = NULL;
94 ftdi->readbuffer_offset = 0;
95 ftdi->readbuffer_remaining = 0;
96 ftdi->writebuffer_chunksize = 4096;
97 ftdi->max_packet_size = 0;
98 ftdi->error_str = NULL;
99 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
100
101 if (libusb_init(&ftdi->usb_ctx) < 0)
102 ftdi_error_return(-3, "libusb_init() failed");
103
104 ftdi_set_interface(ftdi, INTERFACE_ANY);
105 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
106
107 if (eeprom == 0)
108 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
109 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
110 ftdi->eeprom = eeprom;
111
112 /* All fine. Now allocate the readbuffer */
113 return ftdi_read_data_set_chunksize(ftdi, 4096);
114}
115
116/**
117 Allocate and initialize a new ftdi_context
118
119 \return a pointer to a new ftdi_context, or NULL on failure
120*/
121struct ftdi_context *ftdi_new(void)
122{
123 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
124
125 if (ftdi == NULL)
126 {
127 return NULL;
128 }
129
130 if (ftdi_init(ftdi) != 0)
131 {
132 free(ftdi);
133 return NULL;
134 }
135
136 return ftdi;
137}
138
139/**
140 Open selected channels on a chip, otherwise use first channel.
141
142 \param ftdi pointer to ftdi_context
143 \param interface Interface to use for FT2232C/2232H/4232H chips.
144
145 \retval 0: all fine
146 \retval -1: unknown interface
147 \retval -2: USB device unavailable
148*/
149int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
150{
151 if (ftdi == NULL)
152 ftdi_error_return(-2, "USB device unavailable");
153
154 switch (interface)
155 {
156 case INTERFACE_ANY:
157 case INTERFACE_A:
158 ftdi->interface = 0;
159 ftdi->index = INTERFACE_A;
160 ftdi->in_ep = 0x02;
161 ftdi->out_ep = 0x81;
162 break;
163 case INTERFACE_B:
164 ftdi->interface = 1;
165 ftdi->index = INTERFACE_B;
166 ftdi->in_ep = 0x04;
167 ftdi->out_ep = 0x83;
168 break;
169 case INTERFACE_C:
170 ftdi->interface = 2;
171 ftdi->index = INTERFACE_C;
172 ftdi->in_ep = 0x06;
173 ftdi->out_ep = 0x85;
174 break;
175 case INTERFACE_D:
176 ftdi->interface = 3;
177 ftdi->index = INTERFACE_D;
178 ftdi->in_ep = 0x08;
179 ftdi->out_ep = 0x87;
180 break;
181 default:
182 ftdi_error_return(-1, "Unknown interface");
183 }
184 return 0;
185}
186
187/**
188 Deinitializes a ftdi_context.
189
190 \param ftdi pointer to ftdi_context
191*/
192void ftdi_deinit(struct ftdi_context *ftdi)
193{
194 if (ftdi == NULL)
195 return;
196
197 ftdi_usb_close_internal (ftdi);
198
199 if (ftdi->readbuffer != NULL)
200 {
201 free(ftdi->readbuffer);
202 ftdi->readbuffer = NULL;
203 }
204
205 if (ftdi->eeprom != NULL)
206 {
207 if (ftdi->eeprom->manufacturer != 0)
208 {
209 free(ftdi->eeprom->manufacturer);
210 ftdi->eeprom->manufacturer = 0;
211 }
212 if (ftdi->eeprom->product != 0)
213 {
214 free(ftdi->eeprom->product);
215 ftdi->eeprom->product = 0;
216 }
217 if (ftdi->eeprom->serial != 0)
218 {
219 free(ftdi->eeprom->serial);
220 ftdi->eeprom->serial = 0;
221 }
222 free(ftdi->eeprom);
223 ftdi->eeprom = NULL;
224 }
225
226 if (ftdi->usb_ctx)
227 {
228 libusb_exit(ftdi->usb_ctx);
229 ftdi->usb_ctx = NULL;
230 }
231}
232
233/**
234 Deinitialize and free an ftdi_context.
235
236 \param ftdi pointer to ftdi_context
237*/
238void ftdi_free(struct ftdi_context *ftdi)
239{
240 ftdi_deinit(ftdi);
241 free(ftdi);
242}
243
244/**
245 Use an already open libusb device.
246
247 \param ftdi pointer to ftdi_context
248 \param usb libusb libusb_device_handle to use
249*/
250void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
251{
252 if (ftdi == NULL)
253 return;
254
255 ftdi->usb_dev = usb;
256}
257
258
259/**
260 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
261 needs to be deallocated by ftdi_list_free() after use.
262
263 \param ftdi pointer to ftdi_context
264 \param devlist Pointer where to store list of found devices
265 \param vendor Vendor ID to search for
266 \param product Product ID to search for
267
268 \retval >0: number of devices found
269 \retval -3: out of memory
270 \retval -5: libusb_get_device_list() failed
271 \retval -6: libusb_get_device_descriptor() failed
272*/
273int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
274{
275 struct ftdi_device_list **curdev;
276 libusb_device *dev;
277 libusb_device **devs;
278 int count = 0;
279 int i = 0;
280
281 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
282 ftdi_error_return(-5, "libusb_get_device_list() failed");
283
284 curdev = devlist;
285 *curdev = NULL;
286
287 while ((dev = devs[i++]) != NULL)
288 {
289 struct libusb_device_descriptor desc;
290
291 if (libusb_get_device_descriptor(dev, &desc) < 0)
292 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
293
294 if (desc.idVendor == vendor && desc.idProduct == product)
295 {
296 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
297 if (!*curdev)
298 ftdi_error_return_free_device_list(-3, "out of memory", devs);
299
300 (*curdev)->next = NULL;
301 (*curdev)->dev = dev;
302
303 curdev = &(*curdev)->next;
304 count++;
305 }
306 }
307 libusb_free_device_list(devs,1);
308 return count;
309}
310
311/**
312 Frees a usb device list.
313
314 \param devlist USB device list created by ftdi_usb_find_all()
315*/
316void ftdi_list_free(struct ftdi_device_list **devlist)
317{
318 struct ftdi_device_list *curdev, *next;
319
320 for (curdev = *devlist; curdev != NULL;)
321 {
322 next = curdev->next;
323 free(curdev);
324 curdev = next;
325 }
326
327 *devlist = NULL;
328}
329
330/**
331 Frees a usb device list.
332
333 \param devlist USB device list created by ftdi_usb_find_all()
334*/
335void ftdi_list_free2(struct ftdi_device_list *devlist)
336{
337 ftdi_list_free(&devlist);
338}
339
340/**
341 Return device ID strings from the usb device.
342
343 The parameters manufacturer, description and serial may be NULL
344 or pointer to buffers to store the fetched strings.
345
346 \note Use this function only in combination with ftdi_usb_find_all()
347 as it closes the internal "usb_dev" after use.
348
349 \param ftdi pointer to ftdi_context
350 \param dev libusb usb_dev to use
351 \param manufacturer Store manufacturer string here if not NULL
352 \param mnf_len Buffer size of manufacturer string
353 \param description Store product description string here if not NULL
354 \param desc_len Buffer size of product description string
355 \param serial Store serial string here if not NULL
356 \param serial_len Buffer size of serial string
357
358 \retval 0: all fine
359 \retval -1: wrong arguments
360 \retval -4: unable to open device
361 \retval -7: get product manufacturer failed
362 \retval -8: get product description failed
363 \retval -9: get serial number failed
364 \retval -11: libusb_get_device_descriptor() failed
365*/
366int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
367 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
368{
369 struct libusb_device_descriptor desc;
370
371 if ((ftdi==NULL) || (dev==NULL))
372 return -1;
373
374 if (libusb_open(dev, &ftdi->usb_dev) < 0)
375 ftdi_error_return(-4, "libusb_open() failed");
376
377 if (libusb_get_device_descriptor(dev, &desc) < 0)
378 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
379
380 if (manufacturer != NULL)
381 {
382 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
383 {
384 ftdi_usb_close_internal (ftdi);
385 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
386 }
387 }
388
389 if (description != NULL)
390 {
391 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
392 {
393 ftdi_usb_close_internal (ftdi);
394 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
395 }
396 }
397
398 if (serial != NULL)
399 {
400 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
401 {
402 ftdi_usb_close_internal (ftdi);
403 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
404 }
405 }
406
407 ftdi_usb_close_internal (ftdi);
408
409 return 0;
410}
411
412/**
413 * Internal function to determine the maximum packet size.
414 * \param ftdi pointer to ftdi_context
415 * \param dev libusb usb_dev to use
416 * \retval Maximum packet size for this device
417 */
418static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
419{
420 struct libusb_device_descriptor desc;
421 struct libusb_config_descriptor *config0;
422 unsigned int packet_size;
423
424 // Sanity check
425 if (ftdi == NULL || dev == NULL)
426 return 64;
427
428 // Determine maximum packet size. Init with default value.
429 // New hi-speed devices from FTDI use a packet size of 512 bytes
430 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
431 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
432 packet_size = 512;
433 else
434 packet_size = 64;
435
436 if (libusb_get_device_descriptor(dev, &desc) < 0)
437 return packet_size;
438
439 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
440 return packet_size;
441
442 if (desc.bNumConfigurations > 0)
443 {
444 if (ftdi->interface < config0->bNumInterfaces)
445 {
446 struct libusb_interface interface = config0->interface[ftdi->interface];
447 if (interface.num_altsetting > 0)
448 {
449 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
450 if (descriptor.bNumEndpoints > 0)
451 {
452 packet_size = descriptor.endpoint[0].wMaxPacketSize;
453 }
454 }
455 }
456 }
457
458 libusb_free_config_descriptor (config0);
459 return packet_size;
460}
461
462/**
463 Opens a ftdi device given by an usb_device.
464
465 \param ftdi pointer to ftdi_context
466 \param dev libusb usb_dev to use
467
468 \retval 0: all fine
469 \retval -3: unable to config device
470 \retval -4: unable to open device
471 \retval -5: unable to claim device
472 \retval -6: reset failed
473 \retval -7: set baudrate failed
474 \retval -8: ftdi context invalid
475 \retval -9: libusb_get_device_descriptor() failed
476 \retval -10: libusb_get_config_descriptor() failed
477 \retval -11: libusb_detach_kernel_driver() failed
478 \retval -12: libusb_get_configuration() failed
479*/
480int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
481{
482 struct libusb_device_descriptor desc;
483 struct libusb_config_descriptor *config0;
484 int cfg, cfg0, detach_errno = 0;
485
486 if (ftdi == NULL)
487 ftdi_error_return(-8, "ftdi context invalid");
488
489 if (libusb_open(dev, &ftdi->usb_dev) < 0)
490 ftdi_error_return(-4, "libusb_open() failed");
491
492 if (libusb_get_device_descriptor(dev, &desc) < 0)
493 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
494
495 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
496 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
497 cfg0 = config0->bConfigurationValue;
498 libusb_free_config_descriptor (config0);
499
500 // Try to detach ftdi_sio kernel module.
501 //
502 // The return code is kept in a separate variable and only parsed
503 // if usb_set_configuration() or usb_claim_interface() fails as the
504 // detach operation might be denied and everything still works fine.
505 // Likely scenario is a static ftdi_sio kernel module.
506 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
507 {
508 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
509 detach_errno = errno;
510 }
511
512 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
513 ftdi_error_return(-12, "libusb_get_configuration () failed");
514 // set configuration (needed especially for windows)
515 // tolerate EBUSY: one device with one configuration, but two interfaces
516 // and libftdi sessions to both interfaces (e.g. FT2232)
517 if (desc.bNumConfigurations > 0 && cfg != cfg0)
518 {
519 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
520 {
521 ftdi_usb_close_internal (ftdi);
522 if (detach_errno == EPERM)
523 {
524 ftdi_error_return(-8, "inappropriate permissions on device!");
525 }
526 else
527 {
528 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
529 }
530 }
531 }
532
533 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
534 {
535 ftdi_usb_close_internal (ftdi);
536 if (detach_errno == EPERM)
537 {
538 ftdi_error_return(-8, "inappropriate permissions on device!");
539 }
540 else
541 {
542 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
543 }
544 }
545
546 if (ftdi_usb_reset (ftdi) != 0)
547 {
548 ftdi_usb_close_internal (ftdi);
549 ftdi_error_return(-6, "ftdi_usb_reset failed");
550 }
551
552 // Try to guess chip type
553 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
554 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
555 && desc.iSerialNumber == 0))
556 ftdi->type = TYPE_BM;
557 else if (desc.bcdDevice == 0x200)
558 ftdi->type = TYPE_AM;
559 else if (desc.bcdDevice == 0x500)
560 ftdi->type = TYPE_2232C;
561 else if (desc.bcdDevice == 0x600)
562 ftdi->type = TYPE_R;
563 else if (desc.bcdDevice == 0x700)
564 ftdi->type = TYPE_2232H;
565 else if (desc.bcdDevice == 0x800)
566 ftdi->type = TYPE_4232H;
567 else if (desc.bcdDevice == 0x900)
568 ftdi->type = TYPE_232H;
569
570 // Determine maximum packet size
571 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
572
573 if (ftdi_set_baudrate (ftdi, 9600) != 0)
574 {
575 ftdi_usb_close_internal (ftdi);
576 ftdi_error_return(-7, "set baudrate failed");
577 }
578
579 ftdi_error_return(0, "all fine");
580}
581
582/**
583 Opens the first device with a given vendor and product ids.
584
585 \param ftdi pointer to ftdi_context
586 \param vendor Vendor ID
587 \param product Product ID
588
589 \retval same as ftdi_usb_open_desc()
590*/
591int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
592{
593 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
594}
595
596/**
597 Opens the first device with a given, vendor id, product id,
598 description and serial.
599
600 \param ftdi pointer to ftdi_context
601 \param vendor Vendor ID
602 \param product Product ID
603 \param description Description to search for. Use NULL if not needed.
604 \param serial Serial to search for. Use NULL if not needed.
605
606 \retval 0: all fine
607 \retval -3: usb device not found
608 \retval -4: unable to open device
609 \retval -5: unable to claim device
610 \retval -6: reset failed
611 \retval -7: set baudrate failed
612 \retval -8: get product description failed
613 \retval -9: get serial number failed
614 \retval -11: libusb_init() failed
615 \retval -12: libusb_get_device_list() failed
616 \retval -13: libusb_get_device_descriptor() failed
617*/
618int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
619 const char* description, const char* serial)
620{
621 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
622}
623
624/**
625 Opens the index-th device with a given, vendor id, product id,
626 description and serial.
627
628 \param ftdi pointer to ftdi_context
629 \param vendor Vendor ID
630 \param product Product ID
631 \param description Description to search for. Use NULL if not needed.
632 \param serial Serial to search for. Use NULL if not needed.
633 \param index Number of matching device to open if there are more than one, starts with 0.
634
635 \retval 0: all fine
636 \retval -1: usb_find_busses() failed
637 \retval -2: usb_find_devices() failed
638 \retval -3: usb device not found
639 \retval -4: unable to open device
640 \retval -5: unable to claim device
641 \retval -6: reset failed
642 \retval -7: set baudrate failed
643 \retval -8: get product description failed
644 \retval -9: get serial number failed
645 \retval -10: unable to close device
646 \retval -11: ftdi context invalid
647*/
648int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
649 const char* description, const char* serial, unsigned int index)
650{
651 libusb_device *dev;
652 libusb_device **devs;
653 char string[256];
654 int i = 0;
655
656 if (ftdi == NULL)
657 ftdi_error_return(-11, "ftdi context invalid");
658
659 if (libusb_init(&ftdi->usb_ctx) < 0)
660 ftdi_error_return(-11, "libusb_init() failed");
661
662 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
663 ftdi_error_return(-12, "libusb_get_device_list() failed");
664
665 while ((dev = devs[i++]) != NULL)
666 {
667 struct libusb_device_descriptor desc;
668 int res;
669
670 if (libusb_get_device_descriptor(dev, &desc) < 0)
671 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
672
673 if (desc.idVendor == vendor && desc.idProduct == product)
674 {
675 if (libusb_open(dev, &ftdi->usb_dev) < 0)
676 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
677
678 if (description != NULL)
679 {
680 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
681 {
682 ftdi_usb_close_internal (ftdi);
683 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
684 }
685 if (strncmp(string, description, sizeof(string)) != 0)
686 {
687 ftdi_usb_close_internal (ftdi);
688 continue;
689 }
690 }
691 if (serial != NULL)
692 {
693 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
694 {
695 ftdi_usb_close_internal (ftdi);
696 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
697 }
698 if (strncmp(string, serial, sizeof(string)) != 0)
699 {
700 ftdi_usb_close_internal (ftdi);
701 continue;
702 }
703 }
704
705 ftdi_usb_close_internal (ftdi);
706
707 if (index > 0)
708 {
709 index--;
710 continue;
711 }
712
713 res = ftdi_usb_open_dev(ftdi, dev);
714 libusb_free_device_list(devs,1);
715 return res;
716 }
717 }
718
719 // device not found
720 ftdi_error_return_free_device_list(-3, "device not found", devs);
721}
722
723/**
724 Opens the ftdi-device described by a description-string.
725 Intended to be used for parsing a device-description given as commandline argument.
726
727 \param ftdi pointer to ftdi_context
728 \param description NULL-terminated description-string, using this format:
729 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
730 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
731 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
732 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
733
734 \note The description format may be extended in later versions.
735
736 \retval 0: all fine
737 \retval -1: libusb_init() failed
738 \retval -2: libusb_get_device_list() failed
739 \retval -3: usb device not found
740 \retval -4: unable to open device
741 \retval -5: unable to claim device
742 \retval -6: reset failed
743 \retval -7: set baudrate failed
744 \retval -8: get product description failed
745 \retval -9: get serial number failed
746 \retval -10: unable to close device
747 \retval -11: illegal description format
748 \retval -12: ftdi context invalid
749*/
750int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
751{
752 if (ftdi == NULL)
753 ftdi_error_return(-12, "ftdi context invalid");
754
755 if (description[0] == 0 || description[1] != ':')
756 ftdi_error_return(-11, "illegal description format");
757
758 if (description[0] == 'd')
759 {
760 libusb_device *dev;
761 libusb_device **devs;
762 unsigned int bus_number, device_address;
763 int i = 0;
764
765 if (libusb_init (&ftdi->usb_ctx) < 0)
766 ftdi_error_return(-1, "libusb_init() failed");
767
768 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
769 ftdi_error_return(-2, "libusb_get_device_list() failed");
770
771 /* XXX: This doesn't handle symlinks/odd paths/etc... */
772 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
773 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
774
775 while ((dev = devs[i++]) != NULL)
776 {
777 int ret;
778 if (bus_number == libusb_get_bus_number (dev)
779 && device_address == libusb_get_device_address (dev))
780 {
781 ret = ftdi_usb_open_dev(ftdi, dev);
782 libusb_free_device_list(devs,1);
783 return ret;
784 }
785 }
786
787 // device not found
788 ftdi_error_return_free_device_list(-3, "device not found", devs);
789 }
790 else if (description[0] == 'i' || description[0] == 's')
791 {
792 unsigned int vendor;
793 unsigned int product;
794 unsigned int index=0;
795 const char *serial=NULL;
796 const char *startp, *endp;
797
798 errno=0;
799 startp=description+2;
800 vendor=strtoul((char*)startp,(char**)&endp,0);
801 if (*endp != ':' || endp == startp || errno != 0)
802 ftdi_error_return(-11, "illegal description format");
803
804 startp=endp+1;
805 product=strtoul((char*)startp,(char**)&endp,0);
806 if (endp == startp || errno != 0)
807 ftdi_error_return(-11, "illegal description format");
808
809 if (description[0] == 'i' && *endp != 0)
810 {
811 /* optional index field in i-mode */
812 if (*endp != ':')
813 ftdi_error_return(-11, "illegal description format");
814
815 startp=endp+1;
816 index=strtoul((char*)startp,(char**)&endp,0);
817 if (*endp != 0 || endp == startp || errno != 0)
818 ftdi_error_return(-11, "illegal description format");
819 }
820 if (description[0] == 's')
821 {
822 if (*endp != ':')
823 ftdi_error_return(-11, "illegal description format");
824
825 /* rest of the description is the serial */
826 serial=endp+1;
827 }
828
829 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
830 }
831 else
832 {
833 ftdi_error_return(-11, "illegal description format");
834 }
835}
836
837/**
838 Resets the ftdi device.
839
840 \param ftdi pointer to ftdi_context
841
842 \retval 0: all fine
843 \retval -1: FTDI reset failed
844 \retval -2: USB device unavailable
845*/
846int ftdi_usb_reset(struct ftdi_context *ftdi)
847{
848 if (ftdi == NULL || ftdi->usb_dev == NULL)
849 ftdi_error_return(-2, "USB device unavailable");
850
851 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
852 SIO_RESET_REQUEST, SIO_RESET_SIO,
853 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
854 ftdi_error_return(-1,"FTDI reset failed");
855
856 // Invalidate data in the readbuffer
857 ftdi->readbuffer_offset = 0;
858 ftdi->readbuffer_remaining = 0;
859
860 return 0;
861}
862
863/**
864 Clears the read buffer on the chip and the internal read buffer.
865
866 \param ftdi pointer to ftdi_context
867
868 \retval 0: all fine
869 \retval -1: read buffer purge failed
870 \retval -2: USB device unavailable
871*/
872int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
873{
874 if (ftdi == NULL || ftdi->usb_dev == NULL)
875 ftdi_error_return(-2, "USB device unavailable");
876
877 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
878 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
879 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
880 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
881
882 // Invalidate data in the readbuffer
883 ftdi->readbuffer_offset = 0;
884 ftdi->readbuffer_remaining = 0;
885
886 return 0;
887}
888
889/**
890 Clears the write buffer on the chip.
891
892 \param ftdi pointer to ftdi_context
893
894 \retval 0: all fine
895 \retval -1: write buffer purge failed
896 \retval -2: USB device unavailable
897*/
898int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
899{
900 if (ftdi == NULL || ftdi->usb_dev == NULL)
901 ftdi_error_return(-2, "USB device unavailable");
902
903 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
904 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
905 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
906 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
907
908 return 0;
909}
910
911/**
912 Clears the buffers on the chip and the internal read buffer.
913
914 \param ftdi pointer to ftdi_context
915
916 \retval 0: all fine
917 \retval -1: read buffer purge failed
918 \retval -2: write buffer purge failed
919 \retval -3: USB device unavailable
920*/
921int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
922{
923 int result;
924
925 if (ftdi == NULL || ftdi->usb_dev == NULL)
926 ftdi_error_return(-3, "USB device unavailable");
927
928 result = ftdi_usb_purge_rx_buffer(ftdi);
929 if (result < 0)
930 return -1;
931
932 result = ftdi_usb_purge_tx_buffer(ftdi);
933 if (result < 0)
934 return -2;
935
936 return 0;
937}
938
939
940
941/**
942 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
943
944 \param ftdi pointer to ftdi_context
945
946 \retval 0: all fine
947 \retval -1: usb_release failed
948 \retval -3: ftdi context invalid
949*/
950int ftdi_usb_close(struct ftdi_context *ftdi)
951{
952 int rtn = 0;
953
954 if (ftdi == NULL)
955 ftdi_error_return(-3, "ftdi context invalid");
956
957 if (ftdi->usb_dev != NULL)
958 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
959 rtn = -1;
960
961 ftdi_usb_close_internal (ftdi);
962
963 return rtn;
964}
965
966/**
967 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
968 Function is only used internally
969 \internal
970*/
971static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
972 unsigned short *value, unsigned short *index)
973{
974 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
975 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
976 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
977 int divisor, best_divisor, best_baud, best_baud_diff;
978 unsigned long encoded_divisor;
979 int i;
980
981 if (baudrate <= 0)
982 {
983 // Return error
984 return -1;
985 }
986
987 divisor = 24000000 / baudrate;
988
989 if (ftdi->type == TYPE_AM)
990 {
991 // Round down to supported fraction (AM only)
992 divisor -= am_adjust_dn[divisor & 7];
993 }
994
995 // Try this divisor and the one above it (because division rounds down)
996 best_divisor = 0;
997 best_baud = 0;
998 best_baud_diff = 0;
999 for (i = 0; i < 2; i++)
1000 {
1001 int try_divisor = divisor + i;
1002 int baud_estimate;
1003 int baud_diff;
1004
1005 // Round up to supported divisor value
1006 if (try_divisor <= 8)
1007 {
1008 // Round up to minimum supported divisor
1009 try_divisor = 8;
1010 }
1011 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1012 {
1013 // BM doesn't support divisors 9 through 11 inclusive
1014 try_divisor = 12;
1015 }
1016 else if (divisor < 16)
1017 {
1018 // AM doesn't support divisors 9 through 15 inclusive
1019 try_divisor = 16;
1020 }
1021 else
1022 {
1023 if (ftdi->type == TYPE_AM)
1024 {
1025 // Round up to supported fraction (AM only)
1026 try_divisor += am_adjust_up[try_divisor & 7];
1027 if (try_divisor > 0x1FFF8)
1028 {
1029 // Round down to maximum supported divisor value (for AM)
1030 try_divisor = 0x1FFF8;
1031 }
1032 }
1033 else
1034 {
1035 if (try_divisor > 0x1FFFF)
1036 {
1037 // Round down to maximum supported divisor value (for BM)
1038 try_divisor = 0x1FFFF;
1039 }
1040 }
1041 }
1042 // Get estimated baud rate (to nearest integer)
1043 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1044 // Get absolute difference from requested baud rate
1045 if (baud_estimate < baudrate)
1046 {
1047 baud_diff = baudrate - baud_estimate;
1048 }
1049 else
1050 {
1051 baud_diff = baud_estimate - baudrate;
1052 }
1053 if (i == 0 || baud_diff < best_baud_diff)
1054 {
1055 // Closest to requested baud rate so far
1056 best_divisor = try_divisor;
1057 best_baud = baud_estimate;
1058 best_baud_diff = baud_diff;
1059 if (baud_diff == 0)
1060 {
1061 // Spot on! No point trying
1062 break;
1063 }
1064 }
1065 }
1066 // Encode the best divisor value
1067 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1068 // Deal with special cases for encoded value
1069 if (encoded_divisor == 1)
1070 {
1071 encoded_divisor = 0; // 3000000 baud
1072 }
1073 else if (encoded_divisor == 0x4001)
1074 {
1075 encoded_divisor = 1; // 2000000 baud (BM only)
1076 }
1077 // Split into "value" and "index" values
1078 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1079 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1080 {
1081 *index = (unsigned short)(encoded_divisor >> 8);
1082 *index &= 0xFF00;
1083 *index |= ftdi->index;
1084 }
1085 else
1086 *index = (unsigned short)(encoded_divisor >> 16);
1087
1088 // Return the nearest baud rate
1089 return best_baud;
1090}
1091
1092/**
1093 Sets the chip baud rate
1094
1095 \param ftdi pointer to ftdi_context
1096 \param baudrate baud rate to set
1097
1098 \retval 0: all fine
1099 \retval -1: invalid baudrate
1100 \retval -2: setting baudrate failed
1101 \retval -3: USB device unavailable
1102*/
1103int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1104{
1105 unsigned short value, index;
1106 int actual_baudrate;
1107
1108 if (ftdi == NULL || ftdi->usb_dev == NULL)
1109 ftdi_error_return(-3, "USB device unavailable");
1110
1111 if (ftdi->bitbang_enabled)
1112 {
1113 baudrate = baudrate*4;
1114 }
1115
1116 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1117 if (actual_baudrate <= 0)
1118 ftdi_error_return (-1, "Silly baudrate <= 0.");
1119
1120 // Check within tolerance (about 5%)
1121 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1122 || ((actual_baudrate < baudrate)
1123 ? (actual_baudrate * 21 < baudrate * 20)
1124 : (baudrate * 21 < actual_baudrate * 20)))
1125 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1126
1127 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1128 SIO_SET_BAUDRATE_REQUEST, value,
1129 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1130 ftdi_error_return (-2, "Setting new baudrate failed");
1131
1132 ftdi->baudrate = baudrate;
1133 return 0;
1134}
1135
1136/**
1137 Set (RS232) line characteristics.
1138 The break type can only be set via ftdi_set_line_property2()
1139 and defaults to "off".
1140
1141 \param ftdi pointer to ftdi_context
1142 \param bits Number of bits
1143 \param sbit Number of stop bits
1144 \param parity Parity mode
1145
1146 \retval 0: all fine
1147 \retval -1: Setting line property failed
1148*/
1149int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1150 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1151{
1152 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1153}
1154
1155/**
1156 Set (RS232) line characteristics
1157
1158 \param ftdi pointer to ftdi_context
1159 \param bits Number of bits
1160 \param sbit Number of stop bits
1161 \param parity Parity mode
1162 \param break_type Break type
1163
1164 \retval 0: all fine
1165 \retval -1: Setting line property failed
1166 \retval -2: USB device unavailable
1167*/
1168int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1169 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1170 enum ftdi_break_type break_type)
1171{
1172 unsigned short value = bits;
1173
1174 if (ftdi == NULL || ftdi->usb_dev == NULL)
1175 ftdi_error_return(-2, "USB device unavailable");
1176
1177 switch (parity)
1178 {
1179 case NONE:
1180 value |= (0x00 << 8);
1181 break;
1182 case ODD:
1183 value |= (0x01 << 8);
1184 break;
1185 case EVEN:
1186 value |= (0x02 << 8);
1187 break;
1188 case MARK:
1189 value |= (0x03 << 8);
1190 break;
1191 case SPACE:
1192 value |= (0x04 << 8);
1193 break;
1194 }
1195
1196 switch (sbit)
1197 {
1198 case STOP_BIT_1:
1199 value |= (0x00 << 11);
1200 break;
1201 case STOP_BIT_15:
1202 value |= (0x01 << 11);
1203 break;
1204 case STOP_BIT_2:
1205 value |= (0x02 << 11);
1206 break;
1207 }
1208
1209 switch (break_type)
1210 {
1211 case BREAK_OFF:
1212 value |= (0x00 << 14);
1213 break;
1214 case BREAK_ON:
1215 value |= (0x01 << 14);
1216 break;
1217 }
1218
1219 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1220 SIO_SET_DATA_REQUEST, value,
1221 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1222 ftdi_error_return (-1, "Setting new line property failed");
1223
1224 return 0;
1225}
1226
1227/**
1228 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1229
1230 \param ftdi pointer to ftdi_context
1231 \param buf Buffer with the data
1232 \param size Size of the buffer
1233
1234 \retval -666: USB device unavailable
1235 \retval <0: error code from usb_bulk_write()
1236 \retval >0: number of bytes written
1237*/
1238int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1239{
1240 int offset = 0;
1241 int actual_length;
1242
1243 if (ftdi == NULL || ftdi->usb_dev == NULL)
1244 ftdi_error_return(-666, "USB device unavailable");
1245
1246 while (offset < size)
1247 {
1248 int write_size = ftdi->writebuffer_chunksize;
1249
1250 if (offset+write_size > size)
1251 write_size = size-offset;
1252
1253 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1254 ftdi_error_return(-1, "usb bulk write failed");
1255
1256 offset += actual_length;
1257 }
1258
1259 return offset;
1260}
1261
1262static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1263{
1264 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1265 struct ftdi_context *ftdi = tc->ftdi;
1266 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1267
1268 packet_size = ftdi->max_packet_size;
1269
1270 actual_length = transfer->actual_length;
1271
1272 if (actual_length > 2)
1273 {
1274 // skip FTDI status bytes.
1275 // Maybe stored in the future to enable modem use
1276 num_of_chunks = actual_length / packet_size;
1277 chunk_remains = actual_length % packet_size;
1278 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1279
1280 ftdi->readbuffer_offset += 2;
1281 actual_length -= 2;
1282
1283 if (actual_length > packet_size - 2)
1284 {
1285 for (i = 1; i < num_of_chunks; i++)
1286 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1287 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1288 packet_size - 2);
1289 if (chunk_remains > 2)
1290 {
1291 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1292 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1293 chunk_remains-2);
1294 actual_length -= 2*num_of_chunks;
1295 }
1296 else
1297 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1298 }
1299
1300 if (actual_length > 0)
1301 {
1302 // data still fits in buf?
1303 if (tc->offset + actual_length <= tc->size)
1304 {
1305 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1306 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1307 tc->offset += actual_length;
1308
1309 ftdi->readbuffer_offset = 0;
1310 ftdi->readbuffer_remaining = 0;
1311
1312 /* Did we read exactly the right amount of bytes? */
1313 if (tc->offset == tc->size)
1314 {
1315 //printf("read_data exact rem %d offset %d\n",
1316 //ftdi->readbuffer_remaining, offset);
1317 tc->completed = 1;
1318 return;
1319 }
1320 }
1321 else
1322 {
1323 // only copy part of the data or size <= readbuffer_chunksize
1324 int part_size = tc->size - tc->offset;
1325 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1326 tc->offset += part_size;
1327
1328 ftdi->readbuffer_offset += part_size;
1329 ftdi->readbuffer_remaining = actual_length - part_size;
1330
1331 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1332 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1333 tc->completed = 1;
1334 return;
1335 }
1336 }
1337 }
1338 ret = libusb_submit_transfer (transfer);
1339 if (ret < 0)
1340 tc->completed = 1;
1341}
1342
1343
1344static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1345{
1346 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1347 struct ftdi_context *ftdi = tc->ftdi;
1348
1349 tc->offset += transfer->actual_length;
1350
1351 if (tc->offset == tc->size)
1352 {
1353 tc->completed = 1;
1354 }
1355 else
1356 {
1357 int write_size = ftdi->writebuffer_chunksize;
1358 int ret;
1359
1360 if (tc->offset + write_size > tc->size)
1361 write_size = tc->size - tc->offset;
1362
1363 transfer->length = write_size;
1364 transfer->buffer = tc->buf + tc->offset;
1365 ret = libusb_submit_transfer (transfer);
1366 if (ret < 0)
1367 tc->completed = 1;
1368 }
1369}
1370
1371
1372/**
1373 Writes data to the chip. Does not wait for completion of the transfer
1374 nor does it make sure that the transfer was successful.
1375
1376 Use libusb 1.0 asynchronous API.
1377
1378 \param ftdi pointer to ftdi_context
1379 \param buf Buffer with the data
1380 \param size Size of the buffer
1381
1382 \retval NULL: Some error happens when submit transfer
1383 \retval !NULL: Pointer to a ftdi_transfer_control
1384*/
1385
1386struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1387{
1388 struct ftdi_transfer_control *tc;
1389 struct libusb_transfer *transfer;
1390 int write_size, ret;
1391
1392 if (ftdi == NULL || ftdi->usb_dev == NULL)
1393 return NULL;
1394
1395 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1396 if (!tc)
1397 return NULL;
1398
1399 transfer = libusb_alloc_transfer(0);
1400 if (!transfer)
1401 {
1402 free(tc);
1403 return NULL;
1404 }
1405
1406 tc->ftdi = ftdi;
1407 tc->completed = 0;
1408 tc->buf = buf;
1409 tc->size = size;
1410 tc->offset = 0;
1411
1412 if (size < ftdi->writebuffer_chunksize)
1413 write_size = size;
1414 else
1415 write_size = ftdi->writebuffer_chunksize;
1416
1417 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1418 write_size, ftdi_write_data_cb, tc,
1419 ftdi->usb_write_timeout);
1420 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1421
1422 ret = libusb_submit_transfer(transfer);
1423 if (ret < 0)
1424 {
1425 libusb_free_transfer(transfer);
1426 free(tc);
1427 return NULL;
1428 }
1429 tc->transfer = transfer;
1430
1431 return tc;
1432}
1433
1434/**
1435 Reads data from the chip. Does not wait for completion of the transfer
1436 nor does it make sure that the transfer was successful.
1437
1438 Use libusb 1.0 asynchronous API.
1439
1440 \param ftdi pointer to ftdi_context
1441 \param buf Buffer with the data
1442 \param size Size of the buffer
1443
1444 \retval NULL: Some error happens when submit transfer
1445 \retval !NULL: Pointer to a ftdi_transfer_control
1446*/
1447
1448struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1449{
1450 struct ftdi_transfer_control *tc;
1451 struct libusb_transfer *transfer;
1452 int ret;
1453
1454 if (ftdi == NULL || ftdi->usb_dev == NULL)
1455 return NULL;
1456
1457 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1458 if (!tc)
1459 return NULL;
1460
1461 tc->ftdi = ftdi;
1462 tc->buf = buf;
1463 tc->size = size;
1464
1465 if (size <= ftdi->readbuffer_remaining)
1466 {
1467 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1468
1469 // Fix offsets
1470 ftdi->readbuffer_remaining -= size;
1471 ftdi->readbuffer_offset += size;
1472
1473 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1474
1475 tc->completed = 1;
1476 tc->offset = size;
1477 tc->transfer = NULL;
1478 return tc;
1479 }
1480
1481 tc->completed = 0;
1482 if (ftdi->readbuffer_remaining != 0)
1483 {
1484 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1485
1486 tc->offset = ftdi->readbuffer_remaining;
1487 }
1488 else
1489 tc->offset = 0;
1490
1491 transfer = libusb_alloc_transfer(0);
1492 if (!transfer)
1493 {
1494 free (tc);
1495 return NULL;
1496 }
1497
1498 ftdi->readbuffer_remaining = 0;
1499 ftdi->readbuffer_offset = 0;
1500
1501 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1502 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1503
1504 ret = libusb_submit_transfer(transfer);
1505 if (ret < 0)
1506 {
1507 libusb_free_transfer(transfer);
1508 free (tc);
1509 return NULL;
1510 }
1511 tc->transfer = transfer;
1512
1513 return tc;
1514}
1515
1516/**
1517 Wait for completion of the transfer.
1518
1519 Use libusb 1.0 asynchronous API.
1520
1521 \param tc pointer to ftdi_transfer_control
1522
1523 \retval < 0: Some error happens
1524 \retval >= 0: Data size transferred
1525*/
1526
1527int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1528{
1529 int ret;
1530
1531 while (!tc->completed)
1532 {
1533 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1534 if (ret < 0)
1535 {
1536 if (ret == LIBUSB_ERROR_INTERRUPTED)
1537 continue;
1538 libusb_cancel_transfer(tc->transfer);
1539 while (!tc->completed)
1540 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1541 break;
1542 libusb_free_transfer(tc->transfer);
1543 free (tc);
1544 return ret;
1545 }
1546 }
1547
1548 ret = tc->offset;
1549 /**
1550 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1551 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1552 **/
1553 if (tc->transfer)
1554 {
1555 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1556 ret = -1;
1557 libusb_free_transfer(tc->transfer);
1558 }
1559 free(tc);
1560 return ret;
1561}
1562
1563/**
1564 Configure write buffer chunk size.
1565 Default is 4096.
1566
1567 \param ftdi pointer to ftdi_context
1568 \param chunksize Chunk size
1569
1570 \retval 0: all fine
1571 \retval -1: ftdi context invalid
1572*/
1573int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1574{
1575 if (ftdi == NULL)
1576 ftdi_error_return(-1, "ftdi context invalid");
1577
1578 ftdi->writebuffer_chunksize = chunksize;
1579 return 0;
1580}
1581
1582/**
1583 Get write buffer chunk size.
1584
1585 \param ftdi pointer to ftdi_context
1586 \param chunksize Pointer to store chunk size in
1587
1588 \retval 0: all fine
1589 \retval -1: ftdi context invalid
1590*/
1591int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1592{
1593 if (ftdi == NULL)
1594 ftdi_error_return(-1, "ftdi context invalid");
1595
1596 *chunksize = ftdi->writebuffer_chunksize;
1597 return 0;
1598}
1599
1600/**
1601 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1602
1603 Automatically strips the two modem status bytes transfered during every read.
1604
1605 \param ftdi pointer to ftdi_context
1606 \param buf Buffer to store data in
1607 \param size Size of the buffer
1608
1609 \retval -666: USB device unavailable
1610 \retval <0: error code from libusb_bulk_transfer()
1611 \retval 0: no data was available
1612 \retval >0: number of bytes read
1613
1614*/
1615int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1616{
1617 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1618 int packet_size = ftdi->max_packet_size;
1619 int actual_length = 1;
1620
1621 if (ftdi == NULL || ftdi->usb_dev == NULL)
1622 ftdi_error_return(-666, "USB device unavailable");
1623
1624 // Packet size sanity check (avoid division by zero)
1625 if (packet_size == 0)
1626 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1627
1628 // everything we want is still in the readbuffer?
1629 if (size <= ftdi->readbuffer_remaining)
1630 {
1631 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1632
1633 // Fix offsets
1634 ftdi->readbuffer_remaining -= size;
1635 ftdi->readbuffer_offset += size;
1636
1637 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1638
1639 return size;
1640 }
1641 // something still in the readbuffer, but not enough to satisfy 'size'?
1642 if (ftdi->readbuffer_remaining != 0)
1643 {
1644 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1645
1646 // Fix offset
1647 offset += ftdi->readbuffer_remaining;
1648 }
1649 // do the actual USB read
1650 while (offset < size && actual_length > 0)
1651 {
1652 ftdi->readbuffer_remaining = 0;
1653 ftdi->readbuffer_offset = 0;
1654 /* returns how much received */
1655 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1656 if (ret < 0)
1657 ftdi_error_return(ret, "usb bulk read failed");
1658
1659 if (actual_length > 2)
1660 {
1661 // skip FTDI status bytes.
1662 // Maybe stored in the future to enable modem use
1663 num_of_chunks = actual_length / packet_size;
1664 chunk_remains = actual_length % packet_size;
1665 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1666
1667 ftdi->readbuffer_offset += 2;
1668 actual_length -= 2;
1669
1670 if (actual_length > packet_size - 2)
1671 {
1672 for (i = 1; i < num_of_chunks; i++)
1673 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1674 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1675 packet_size - 2);
1676 if (chunk_remains > 2)
1677 {
1678 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1679 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1680 chunk_remains-2);
1681 actual_length -= 2*num_of_chunks;
1682 }
1683 else
1684 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1685 }
1686 }
1687 else if (actual_length <= 2)
1688 {
1689 // no more data to read?
1690 return offset;
1691 }
1692 if (actual_length > 0)
1693 {
1694 // data still fits in buf?
1695 if (offset+actual_length <= size)
1696 {
1697 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1698 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1699 offset += actual_length;
1700
1701 /* Did we read exactly the right amount of bytes? */
1702 if (offset == size)
1703 //printf("read_data exact rem %d offset %d\n",
1704 //ftdi->readbuffer_remaining, offset);
1705 return offset;
1706 }
1707 else
1708 {
1709 // only copy part of the data or size <= readbuffer_chunksize
1710 int part_size = size-offset;
1711 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1712
1713 ftdi->readbuffer_offset += part_size;
1714 ftdi->readbuffer_remaining = actual_length-part_size;
1715 offset += part_size;
1716
1717 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1718 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1719
1720 return offset;
1721 }
1722 }
1723 }
1724 // never reached
1725 return -127;
1726}
1727
1728/**
1729 Configure read buffer chunk size.
1730 Default is 4096.
1731
1732 Automatically reallocates the buffer.
1733
1734 \param ftdi pointer to ftdi_context
1735 \param chunksize Chunk size
1736
1737 \retval 0: all fine
1738 \retval -1: ftdi context invalid
1739*/
1740int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1741{
1742 unsigned char *new_buf;
1743
1744 if (ftdi == NULL)
1745 ftdi_error_return(-1, "ftdi context invalid");
1746
1747 // Invalidate all remaining data
1748 ftdi->readbuffer_offset = 0;
1749 ftdi->readbuffer_remaining = 0;
1750#ifdef __linux__
1751 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1752 which is defined in libusb-1.0. Otherwise, each USB read request will
1753 be divided into multiple URBs. This will cause issues on Linux kernel
1754 older than 2.6.32. */
1755 if (chunksize > 16384)
1756 chunksize = 16384;
1757#endif
1758
1759 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1760 ftdi_error_return(-1, "out of memory for readbuffer");
1761
1762 ftdi->readbuffer = new_buf;
1763 ftdi->readbuffer_chunksize = chunksize;
1764
1765 return 0;
1766}
1767
1768/**
1769 Get read buffer chunk size.
1770
1771 \param ftdi pointer to ftdi_context
1772 \param chunksize Pointer to store chunk size in
1773
1774 \retval 0: all fine
1775 \retval -1: FTDI context invalid
1776*/
1777int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1778{
1779 if (ftdi == NULL)
1780 ftdi_error_return(-1, "FTDI context invalid");
1781
1782 *chunksize = ftdi->readbuffer_chunksize;
1783 return 0;
1784}
1785
1786
1787/**
1788 Enable bitbang mode.
1789
1790 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1791
1792 \param ftdi pointer to ftdi_context
1793 \param bitmask Bitmask to configure lines.
1794 HIGH/ON value configures a line as output.
1795
1796 \retval 0: all fine
1797 \retval -1: can't enable bitbang mode
1798 \retval -2: USB device unavailable
1799*/
1800int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1801{
1802 unsigned short usb_val;
1803
1804 if (ftdi == NULL || ftdi->usb_dev == NULL)
1805 ftdi_error_return(-2, "USB device unavailable");
1806
1807 usb_val = bitmask; // low byte: bitmask
1808 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1809 usb_val |= (ftdi->bitbang_mode << 8);
1810
1811 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1812 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1813 NULL, 0, ftdi->usb_write_timeout) < 0)
1814 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1815
1816 ftdi->bitbang_enabled = 1;
1817 return 0;
1818}
1819
1820/**
1821 Disable bitbang mode.
1822
1823 \param ftdi pointer to ftdi_context
1824
1825 \retval 0: all fine
1826 \retval -1: can't disable bitbang mode
1827 \retval -2: USB device unavailable
1828*/
1829int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1830{
1831 if (ftdi == NULL || ftdi->usb_dev == NULL)
1832 ftdi_error_return(-2, "USB device unavailable");
1833
1834 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1835 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1836
1837 ftdi->bitbang_enabled = 0;
1838 return 0;
1839}
1840
1841/**
1842 Enable/disable bitbang modes.
1843
1844 \param ftdi pointer to ftdi_context
1845 \param bitmask Bitmask to configure lines.
1846 HIGH/ON value configures a line as output.
1847 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1848
1849 \retval 0: all fine
1850 \retval -1: can't enable bitbang mode
1851 \retval -2: USB device unavailable
1852*/
1853int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1854{
1855 unsigned short usb_val;
1856
1857 if (ftdi == NULL || ftdi->usb_dev == NULL)
1858 ftdi_error_return(-2, "USB device unavailable");
1859
1860 usb_val = bitmask; // low byte: bitmask
1861 usb_val |= (mode << 8);
1862 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1863 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1864
1865 ftdi->bitbang_mode = mode;
1866 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1867 return 0;
1868}
1869
1870/**
1871 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1872
1873 \param ftdi pointer to ftdi_context
1874 \param pins Pointer to store pins into
1875
1876 \retval 0: all fine
1877 \retval -1: read pins failed
1878 \retval -2: USB device unavailable
1879*/
1880int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1881{
1882 if (ftdi == NULL || ftdi->usb_dev == NULL)
1883 ftdi_error_return(-2, "USB device unavailable");
1884
1885 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1886 ftdi_error_return(-1, "read pins failed");
1887
1888 return 0;
1889}
1890
1891/**
1892 Set latency timer
1893
1894 The FTDI chip keeps data in the internal buffer for a specific
1895 amount of time if the buffer is not full yet to decrease
1896 load on the usb bus.
1897
1898 \param ftdi pointer to ftdi_context
1899 \param latency Value between 1 and 255
1900
1901 \retval 0: all fine
1902 \retval -1: latency out of range
1903 \retval -2: unable to set latency timer
1904 \retval -3: USB device unavailable
1905*/
1906int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1907{
1908 unsigned short usb_val;
1909
1910 if (latency < 1)
1911 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1912
1913 if (ftdi == NULL || ftdi->usb_dev == NULL)
1914 ftdi_error_return(-3, "USB device unavailable");
1915
1916 usb_val = latency;
1917 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1918 ftdi_error_return(-2, "unable to set latency timer");
1919
1920 return 0;
1921}
1922
1923/**
1924 Get latency timer
1925
1926 \param ftdi pointer to ftdi_context
1927 \param latency Pointer to store latency value in
1928
1929 \retval 0: all fine
1930 \retval -1: unable to get latency timer
1931 \retval -2: USB device unavailable
1932*/
1933int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1934{
1935 unsigned short usb_val;
1936
1937 if (ftdi == NULL || ftdi->usb_dev == NULL)
1938 ftdi_error_return(-2, "USB device unavailable");
1939
1940 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1941 ftdi_error_return(-1, "reading latency timer failed");
1942
1943 *latency = (unsigned char)usb_val;
1944 return 0;
1945}
1946
1947/**
1948 Poll modem status information
1949
1950 This function allows the retrieve the two status bytes of the device.
1951 The device sends these bytes also as a header for each read access
1952 where they are discarded by ftdi_read_data(). The chip generates
1953 the two stripped status bytes in the absence of data every 40 ms.
1954
1955 Layout of the first byte:
1956 - B0..B3 - must be 0
1957 - B4 Clear to send (CTS)
1958 0 = inactive
1959 1 = active
1960 - B5 Data set ready (DTS)
1961 0 = inactive
1962 1 = active
1963 - B6 Ring indicator (RI)
1964 0 = inactive
1965 1 = active
1966 - B7 Receive line signal detect (RLSD)
1967 0 = inactive
1968 1 = active
1969
1970 Layout of the second byte:
1971 - B0 Data ready (DR)
1972 - B1 Overrun error (OE)
1973 - B2 Parity error (PE)
1974 - B3 Framing error (FE)
1975 - B4 Break interrupt (BI)
1976 - B5 Transmitter holding register (THRE)
1977 - B6 Transmitter empty (TEMT)
1978 - B7 Error in RCVR FIFO
1979
1980 \param ftdi pointer to ftdi_context
1981 \param status Pointer to store status information in. Must be two bytes.
1982
1983 \retval 0: all fine
1984 \retval -1: unable to retrieve status information
1985 \retval -2: USB device unavailable
1986*/
1987int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1988{
1989 char usb_val[2];
1990
1991 if (ftdi == NULL || ftdi->usb_dev == NULL)
1992 ftdi_error_return(-2, "USB device unavailable");
1993
1994 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1995 ftdi_error_return(-1, "getting modem status failed");
1996
1997 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
1998
1999 return 0;
2000}
2001
2002/**
2003 Set flowcontrol for ftdi chip
2004
2005 \param ftdi pointer to ftdi_context
2006 \param flowctrl flow control to use. should be
2007 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2008
2009 \retval 0: all fine
2010 \retval -1: set flow control failed
2011 \retval -2: USB device unavailable
2012*/
2013int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2014{
2015 if (ftdi == NULL || ftdi->usb_dev == NULL)
2016 ftdi_error_return(-2, "USB device unavailable");
2017
2018 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2019 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2020 NULL, 0, ftdi->usb_write_timeout) < 0)
2021 ftdi_error_return(-1, "set flow control failed");
2022
2023 return 0;
2024}
2025
2026/**
2027 Set dtr line
2028
2029 \param ftdi pointer to ftdi_context
2030 \param state state to set line to (1 or 0)
2031
2032 \retval 0: all fine
2033 \retval -1: set dtr failed
2034 \retval -2: USB device unavailable
2035*/
2036int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2037{
2038 unsigned short usb_val;
2039
2040 if (ftdi == NULL || ftdi->usb_dev == NULL)
2041 ftdi_error_return(-2, "USB device unavailable");
2042
2043 if (state)
2044 usb_val = SIO_SET_DTR_HIGH;
2045 else
2046 usb_val = SIO_SET_DTR_LOW;
2047
2048 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2049 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2050 NULL, 0, ftdi->usb_write_timeout) < 0)
2051 ftdi_error_return(-1, "set dtr failed");
2052
2053 return 0;
2054}
2055
2056/**
2057 Set rts line
2058
2059 \param ftdi pointer to ftdi_context
2060 \param state state to set line to (1 or 0)
2061
2062 \retval 0: all fine
2063 \retval -1: set rts failed
2064 \retval -2: USB device unavailable
2065*/
2066int ftdi_setrts(struct ftdi_context *ftdi, int state)
2067{
2068 unsigned short usb_val;
2069
2070 if (ftdi == NULL || ftdi->usb_dev == NULL)
2071 ftdi_error_return(-2, "USB device unavailable");
2072
2073 if (state)
2074 usb_val = SIO_SET_RTS_HIGH;
2075 else
2076 usb_val = SIO_SET_RTS_LOW;
2077
2078 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2079 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2080 NULL, 0, ftdi->usb_write_timeout) < 0)
2081 ftdi_error_return(-1, "set of rts failed");
2082
2083 return 0;
2084}
2085
2086/**
2087 Set dtr and rts line in one pass
2088
2089 \param ftdi pointer to ftdi_context
2090 \param dtr DTR state to set line to (1 or 0)
2091 \param rts RTS state to set line to (1 or 0)
2092
2093 \retval 0: all fine
2094 \retval -1: set dtr/rts failed
2095 \retval -2: USB device unavailable
2096 */
2097int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2098{
2099 unsigned short usb_val;
2100
2101 if (ftdi == NULL || ftdi->usb_dev == NULL)
2102 ftdi_error_return(-2, "USB device unavailable");
2103
2104 if (dtr)
2105 usb_val = SIO_SET_DTR_HIGH;
2106 else
2107 usb_val = SIO_SET_DTR_LOW;
2108
2109 if (rts)
2110 usb_val |= SIO_SET_RTS_HIGH;
2111 else
2112 usb_val |= SIO_SET_RTS_LOW;
2113
2114 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2115 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2116 NULL, 0, ftdi->usb_write_timeout) < 0)
2117 ftdi_error_return(-1, "set of rts/dtr failed");
2118
2119 return 0;
2120}
2121
2122/**
2123 Set the special event character
2124
2125 \param ftdi pointer to ftdi_context
2126 \param eventch Event character
2127 \param enable 0 to disable the event character, non-zero otherwise
2128
2129 \retval 0: all fine
2130 \retval -1: unable to set event character
2131 \retval -2: USB device unavailable
2132*/
2133int ftdi_set_event_char(struct ftdi_context *ftdi,
2134 unsigned char eventch, unsigned char enable)
2135{
2136 unsigned short usb_val;
2137
2138 if (ftdi == NULL || ftdi->usb_dev == NULL)
2139 ftdi_error_return(-2, "USB device unavailable");
2140
2141 usb_val = eventch;
2142 if (enable)
2143 usb_val |= 1 << 8;
2144
2145 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2146 ftdi_error_return(-1, "setting event character failed");
2147
2148 return 0;
2149}
2150
2151/**
2152 Set error character
2153
2154 \param ftdi pointer to ftdi_context
2155 \param errorch Error character
2156 \param enable 0 to disable the error character, non-zero otherwise
2157
2158 \retval 0: all fine
2159 \retval -1: unable to set error character
2160 \retval -2: USB device unavailable
2161*/
2162int ftdi_set_error_char(struct ftdi_context *ftdi,
2163 unsigned char errorch, unsigned char enable)
2164{
2165 unsigned short usb_val;
2166
2167 if (ftdi == NULL || ftdi->usb_dev == NULL)
2168 ftdi_error_return(-2, "USB device unavailable");
2169
2170 usb_val = errorch;
2171 if (enable)
2172 usb_val |= 1 << 8;
2173
2174 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2175 ftdi_error_return(-1, "setting error character failed");
2176
2177 return 0;
2178}
2179
2180/**
2181 Init eeprom with default values.
2182 \param ftdi pointer to ftdi_context
2183 \param manufacturer String to use as Manufacturer
2184 \param product String to use as Product description
2185 \param serial String to use as Serial number description
2186
2187 \retval 0: all fine
2188 \retval -1: No struct ftdi_context
2189 \retval -2: No struct ftdi_eeprom
2190*/
2191int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2192 char * product, char * serial)
2193{
2194 struct ftdi_eeprom *eeprom;
2195
2196 if (ftdi == NULL)
2197 ftdi_error_return(-1, "No struct ftdi_context");
2198
2199 if (ftdi->eeprom == NULL)
2200 ftdi_error_return(-2,"No struct ftdi_eeprom");
2201
2202 eeprom = ftdi->eeprom;
2203 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2204
2205 eeprom->vendor_id = 0x0403;
2206 eeprom->use_serial = USE_SERIAL_NUM;
2207 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2208 (ftdi->type == TYPE_R))
2209 eeprom->product_id = 0x6001;
2210 else if (ftdi->type == TYPE_4232H)
2211 eeprom->product_id = 0x6011;
2212 else if (ftdi->type == TYPE_232H)
2213 eeprom->product_id = 0x6014;
2214 else
2215 eeprom->product_id = 0x6010;
2216 if (ftdi->type == TYPE_AM)
2217 eeprom->usb_version = 0x0101;
2218 else
2219 eeprom->usb_version = 0x0200;
2220 eeprom->max_power = 100;
2221
2222 if (eeprom->manufacturer)
2223 free (eeprom->manufacturer);
2224 eeprom->manufacturer = NULL;
2225 if (manufacturer)
2226 {
2227 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2228 if (eeprom->manufacturer)
2229 strcpy(eeprom->manufacturer, manufacturer);
2230 }
2231
2232 if (eeprom->product)
2233 free (eeprom->product);
2234 eeprom->product = NULL;
2235 if(product)
2236 {
2237 eeprom->product = malloc(strlen(product)+1);
2238 if (eeprom->product)
2239 strcpy(eeprom->product, product);
2240 }
2241
2242 if (eeprom->serial)
2243 free (eeprom->serial);
2244 eeprom->serial = NULL;
2245 if (serial)
2246 {
2247 eeprom->serial = malloc(strlen(serial)+1);
2248 if (eeprom->serial)
2249 strcpy(eeprom->serial, serial);
2250 }
2251
2252
2253 if (ftdi->type == TYPE_R)
2254 {
2255 eeprom->max_power = 90;
2256 eeprom->size = 0x80;
2257 eeprom->cbus_function[0] = CBUS_TXLED;
2258 eeprom->cbus_function[1] = CBUS_RXLED;
2259 eeprom->cbus_function[2] = CBUS_TXDEN;
2260 eeprom->cbus_function[3] = CBUS_PWREN;
2261 eeprom->cbus_function[4] = CBUS_SLEEP;
2262 }
2263 else
2264 {
2265 if(ftdi->type == TYPE_232H)
2266 {
2267 int i;
2268 for (i=0; i<10; i++)
2269 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2270 }
2271 eeprom->size = -1;
2272 }
2273 return 0;
2274}
2275/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2276void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2277{
2278 int i;
2279 for(i=0; i<5;i++)
2280 {
2281 int mode_low, mode_high;
2282 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2283 mode_low = CBUSH_TRISTATE;
2284 else
2285 mode_low = eeprom->cbus_function[2*i];
2286 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2287 mode_high = CBUSH_TRISTATE;
2288 else
2289 mode_high = eeprom->cbus_function[2*i];
2290
2291 output[0x18+i] = mode_high <<4 | mode_low;
2292 }
2293}
2294/**
2295 Build binary buffer from ftdi_eeprom structure.
2296 Output is suitable for ftdi_write_eeprom().
2297
2298 \param ftdi pointer to ftdi_context
2299
2300 \retval >=0: size of eeprom user area in bytes
2301 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2302 \retval -2: Invalid eeprom or ftdi pointer
2303 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2304 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2305 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2306 \retval -6: No connected EEPROM or EEPROM Type unknown
2307*/
2308int ftdi_eeprom_build(struct ftdi_context *ftdi)
2309{
2310 unsigned char i, j, eeprom_size_mask;
2311 unsigned short checksum, value;
2312 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2313 int user_area_size;
2314 struct ftdi_eeprom *eeprom;
2315 unsigned char * output;
2316
2317 if (ftdi == NULL)
2318 ftdi_error_return(-2,"No context");
2319 if (ftdi->eeprom == NULL)
2320 ftdi_error_return(-2,"No eeprom structure");
2321
2322 eeprom= ftdi->eeprom;
2323 output = eeprom->buf;
2324
2325 if (eeprom->chip == -1)
2326 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2327
2328 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2329 eeprom->size = 0x100;
2330 else
2331 eeprom->size = 0x80;
2332
2333 if (eeprom->manufacturer != NULL)
2334 manufacturer_size = strlen(eeprom->manufacturer);
2335 if (eeprom->product != NULL)
2336 product_size = strlen(eeprom->product);
2337 if (eeprom->serial != NULL)
2338 serial_size = strlen(eeprom->serial);
2339
2340 // eeprom size check
2341 switch (ftdi->type)
2342 {
2343 case TYPE_AM:
2344 case TYPE_BM:
2345 user_area_size = 96; // base size for strings (total of 48 characters)
2346 break;
2347 case TYPE_2232C:
2348 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2349 break;
2350 case TYPE_R:
2351 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2352 break;
2353 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2354 case TYPE_4232H:
2355 user_area_size = 86;
2356 break;
2357 default:
2358 user_area_size = 0;
2359 break;
2360 }
2361 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2362
2363 if (user_area_size < 0)
2364 ftdi_error_return(-1,"eeprom size exceeded");
2365
2366 // empty eeprom
2367 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2368
2369 // Bytes and Bits set for all Types
2370
2371 // Addr 02: Vendor ID
2372 output[0x02] = eeprom->vendor_id;
2373 output[0x03] = eeprom->vendor_id >> 8;
2374
2375 // Addr 04: Product ID
2376 output[0x04] = eeprom->product_id;
2377 output[0x05] = eeprom->product_id >> 8;
2378
2379 // Addr 06: Device release number (0400h for BM features)
2380 output[0x06] = 0x00;
2381 switch (ftdi->type)
2382 {
2383 case TYPE_AM:
2384 output[0x07] = 0x02;
2385 break;
2386 case TYPE_BM:
2387 output[0x07] = 0x04;
2388 break;
2389 case TYPE_2232C:
2390 output[0x07] = 0x05;
2391 break;
2392 case TYPE_R:
2393 output[0x07] = 0x06;
2394 break;
2395 case TYPE_2232H:
2396 output[0x07] = 0x07;
2397 break;
2398 case TYPE_4232H:
2399 output[0x07] = 0x08;
2400 break;
2401 case TYPE_232H:
2402 output[0x07] = 0x09;
2403 break;
2404 default:
2405 output[0x07] = 0x00;
2406 }
2407
2408 // Addr 08: Config descriptor
2409 // Bit 7: always 1
2410 // Bit 6: 1 if this device is self powered, 0 if bus powered
2411 // Bit 5: 1 if this device uses remote wakeup
2412 // Bit 4-0: reserved - 0
2413 j = 0x80;
2414 if (eeprom->self_powered == 1)
2415 j |= 0x40;
2416 if (eeprom->remote_wakeup == 1)
2417 j |= 0x20;
2418 output[0x08] = j;
2419
2420 // Addr 09: Max power consumption: max power = value * 2 mA
2421 output[0x09] = eeprom->max_power>>1;
2422
2423 if (ftdi->type != TYPE_AM)
2424 {
2425 // Addr 0A: Chip configuration
2426 // Bit 7: 0 - reserved
2427 // Bit 6: 0 - reserved
2428 // Bit 5: 0 - reserved
2429 // Bit 4: 1 - Change USB version
2430 // Bit 3: 1 - Use the serial number string
2431 // Bit 2: 1 - Enable suspend pull downs for lower power
2432 // Bit 1: 1 - Out EndPoint is Isochronous
2433 // Bit 0: 1 - In EndPoint is Isochronous
2434 //
2435 j = 0;
2436 if (eeprom->in_is_isochronous == 1)
2437 j = j | 1;
2438 if (eeprom->out_is_isochronous == 1)
2439 j = j | 2;
2440 output[0x0A] = j;
2441 }
2442
2443 // Dynamic content
2444 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2445 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2446 // 0xa0 (TYPE_232H)
2447 i = 0;
2448 switch (ftdi->type)
2449 {
2450 case TYPE_232H:
2451 i += 2;
2452 case TYPE_2232H:
2453 case TYPE_4232H:
2454 i += 2;
2455 case TYPE_R:
2456 i += 2;
2457 case TYPE_2232C:
2458 i += 2;
2459 case TYPE_AM:
2460 case TYPE_BM:
2461 i += 0x94;
2462 }
2463 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2464 eeprom_size_mask = eeprom->size -1;
2465
2466 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2467 // Addr 0F: Length of manufacturer string
2468 // Output manufacturer
2469 output[0x0E] = i; // calculate offset
2470 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2471 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2472 for (j = 0; j < manufacturer_size; j++)
2473 {
2474 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2475 output[i & eeprom_size_mask] = 0x00, i++;
2476 }
2477 output[0x0F] = manufacturer_size*2 + 2;
2478
2479 // Addr 10: Offset of the product string + 0x80, calculated later
2480 // Addr 11: Length of product string
2481 output[0x10] = i | 0x80; // calculate offset
2482 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2483 output[i & eeprom_size_mask] = 0x03, i++;
2484 for (j = 0; j < product_size; j++)
2485 {
2486 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2487 output[i & eeprom_size_mask] = 0x00, i++;
2488 }
2489 output[0x11] = product_size*2 + 2;
2490
2491 // Addr 12: Offset of the serial string + 0x80, calculated later
2492 // Addr 13: Length of serial string
2493 output[0x12] = i | 0x80; // calculate offset
2494 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2495 output[i & eeprom_size_mask] = 0x03, i++;
2496 for (j = 0; j < serial_size; j++)
2497 {
2498 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2499 output[i & eeprom_size_mask] = 0x00, i++;
2500 }
2501
2502 // Legacy port name and PnP fields for FT2232 and newer chips
2503 if (ftdi->type > TYPE_BM)
2504 {
2505 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2506 i++;
2507 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2508 i++;
2509 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2510 i++;
2511 }
2512
2513 output[0x13] = serial_size*2 + 2;
2514
2515 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2516 {
2517 if (eeprom->use_serial == USE_SERIAL_NUM )
2518 output[0x0A] |= USE_SERIAL_NUM;
2519 else
2520 output[0x0A] &= ~USE_SERIAL_NUM;
2521 }
2522
2523 /* Bytes and Bits specific to (some) types
2524 Write linear, as this allows easier fixing*/
2525 switch (ftdi->type)
2526 {
2527 case TYPE_AM:
2528 break;
2529 case TYPE_BM:
2530 output[0x0C] = eeprom->usb_version & 0xff;
2531 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2532 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2533 output[0x0A] |= USE_USB_VERSION_BIT;
2534 else
2535 output[0x0A] &= ~USE_USB_VERSION_BIT;
2536
2537 break;
2538 case TYPE_2232C:
2539
2540 output[0x00] = (eeprom->channel_a_type)?((1<<(eeprom->channel_a_type)) & 0x7):0;
2541 if ( eeprom->channel_a_driver == DRIVER_VCP)
2542 output[0x00] |= DRIVER_VCP;
2543 else
2544 output[0x00] &= ~DRIVER_VCP;
2545
2546 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2547 output[0x00] |= HIGH_CURRENT_DRIVE;
2548 else
2549 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2550
2551 output[0x01] = (eeprom->channel_b_type)?((1<<(eeprom->channel_b_type)) & 0x7):0;
2552 if ( eeprom->channel_b_driver == DRIVER_VCP)
2553 output[0x01] |= DRIVER_VCP;
2554 else
2555 output[0x01] &= ~DRIVER_VCP;
2556
2557 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2558 output[0x01] |= HIGH_CURRENT_DRIVE;
2559 else
2560 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2561
2562 if (eeprom->in_is_isochronous == 1)
2563 output[0x0A] |= 0x1;
2564 else
2565 output[0x0A] &= ~0x1;
2566 if (eeprom->out_is_isochronous == 1)
2567 output[0x0A] |= 0x2;
2568 else
2569 output[0x0A] &= ~0x2;
2570 if (eeprom->suspend_pull_downs == 1)
2571 output[0x0A] |= 0x4;
2572 else
2573 output[0x0A] &= ~0x4;
2574 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2575 output[0x0A] |= USE_USB_VERSION_BIT;
2576 else
2577 output[0x0A] &= ~USE_USB_VERSION_BIT;
2578
2579 output[0x0C] = eeprom->usb_version & 0xff;
2580 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2581 output[0x14] = eeprom->chip;
2582 break;
2583 case TYPE_R:
2584 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2585 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2586 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2587
2588 if (eeprom->suspend_pull_downs == 1)
2589 output[0x0A] |= 0x4;
2590 else
2591 output[0x0A] &= ~0x4;
2592 output[0x0B] = eeprom->invert;
2593 output[0x0C] = eeprom->usb_version & 0xff;
2594 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2595
2596 if (eeprom->cbus_function[0] > CBUS_BB)
2597 output[0x14] = CBUS_TXLED;
2598 else
2599 output[0x14] = eeprom->cbus_function[0];
2600
2601 if (eeprom->cbus_function[1] > CBUS_BB)
2602 output[0x14] |= CBUS_RXLED<<4;
2603 else
2604 output[0x14] |= eeprom->cbus_function[1]<<4;
2605
2606 if (eeprom->cbus_function[2] > CBUS_BB)
2607 output[0x15] = CBUS_TXDEN;
2608 else
2609 output[0x15] = eeprom->cbus_function[2];
2610
2611 if (eeprom->cbus_function[3] > CBUS_BB)
2612 output[0x15] |= CBUS_PWREN<<4;
2613 else
2614 output[0x15] |= eeprom->cbus_function[3]<<4;
2615
2616 if (eeprom->cbus_function[4] > CBUS_CLK6)
2617 output[0x16] = CBUS_SLEEP;
2618 else
2619 output[0x16] = eeprom->cbus_function[4];
2620 break;
2621 case TYPE_2232H:
2622 output[0x00] = (eeprom->channel_a_type)?((1<<(eeprom->channel_a_type)) & 0x7):0;
2623 if ( eeprom->channel_a_driver == DRIVER_VCP)
2624 output[0x00] |= DRIVER_VCP;
2625 else
2626 output[0x00] &= ~DRIVER_VCP;
2627
2628 output[0x01] = (eeprom->channel_b_type)?((1<<(eeprom->channel_b_type)) & 0x7):0;
2629 if ( eeprom->channel_b_driver == DRIVER_VCP)
2630 output[0x01] |= DRIVER_VCP;
2631 else
2632 output[0x01] &= ~DRIVER_VCP;
2633 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2634 output[0x01] |= SUSPEND_DBUS7_BIT;
2635 else
2636 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2637
2638 if (eeprom->suspend_pull_downs == 1)
2639 output[0x0A] |= 0x4;
2640 else
2641 output[0x0A] &= ~0x4;
2642
2643 if (eeprom->group0_drive > DRIVE_16MA)
2644 output[0x0c] |= DRIVE_16MA;
2645 else
2646 output[0x0c] |= eeprom->group0_drive;
2647 if (eeprom->group0_schmitt == IS_SCHMITT)
2648 output[0x0c] |= IS_SCHMITT;
2649 if (eeprom->group0_slew == SLOW_SLEW)
2650 output[0x0c] |= SLOW_SLEW;
2651
2652 if (eeprom->group1_drive > DRIVE_16MA)
2653 output[0x0c] |= DRIVE_16MA<<4;
2654 else
2655 output[0x0c] |= eeprom->group1_drive<<4;
2656 if (eeprom->group1_schmitt == IS_SCHMITT)
2657 output[0x0c] |= IS_SCHMITT<<4;
2658 if (eeprom->group1_slew == SLOW_SLEW)
2659 output[0x0c] |= SLOW_SLEW<<4;
2660
2661 if (eeprom->group2_drive > DRIVE_16MA)
2662 output[0x0d] |= DRIVE_16MA;
2663 else
2664 output[0x0d] |= eeprom->group2_drive;
2665 if (eeprom->group2_schmitt == IS_SCHMITT)
2666 output[0x0d] |= IS_SCHMITT;
2667 if (eeprom->group2_slew == SLOW_SLEW)
2668 output[0x0d] |= SLOW_SLEW;
2669
2670 if (eeprom->group3_drive > DRIVE_16MA)
2671 output[0x0d] |= DRIVE_16MA<<4;
2672 else
2673 output[0x0d] |= eeprom->group3_drive<<4;
2674 if (eeprom->group3_schmitt == IS_SCHMITT)
2675 output[0x0d] |= IS_SCHMITT<<4;
2676 if (eeprom->group3_slew == SLOW_SLEW)
2677 output[0x0d] |= SLOW_SLEW<<4;
2678
2679 output[0x18] = eeprom->chip;
2680
2681 break;
2682 case TYPE_4232H:
2683 output[0x18] = eeprom->chip;
2684 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
2685 break;
2686 case TYPE_232H:
2687 output[0x00] = (eeprom->channel_a_type)?((1<<(eeprom->channel_a_type)) & 0xf):0;
2688 if ( eeprom->channel_a_driver == DRIVER_VCP)
2689 output[0x00] |= DRIVER_VCPH;
2690 else
2691 output[0x00] &= ~DRIVER_VCPH;
2692 if (eeprom->powersave)
2693 output[0x01] |= POWER_SAVE_DISABLE_H;
2694 else
2695 output[0x01] &= ~POWER_SAVE_DISABLE_H;
2696 if (eeprom->clock_polarity)
2697 output[0x01] |= FT1284_CLK_IDLE_STATE;
2698 else
2699 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
2700 if (eeprom->data_order)
2701 output[0x01] |= FT1284_DATA_LSB;
2702 else
2703 output[0x01] &= ~FT1284_DATA_LSB;
2704 if (eeprom->flow_control)
2705 output[0x01] |= FT1284_FLOW_CONTROL;
2706 else
2707 output[0x01] &= ~FT1284_FLOW_CONTROL;
2708 if (eeprom->group0_drive > DRIVE_16MA)
2709 output[0x0c] |= DRIVE_16MA;
2710 else
2711 output[0x0c] |= eeprom->group0_drive;
2712 if (eeprom->group0_schmitt == IS_SCHMITT)
2713 output[0x0c] |= IS_SCHMITT;
2714 if (eeprom->group0_slew == SLOW_SLEW)
2715 output[0x0c] |= SLOW_SLEW;
2716
2717 if (eeprom->group1_drive > DRIVE_16MA)
2718 output[0x0d] |= DRIVE_16MA;
2719 else
2720 output[0x0d] |= eeprom->group1_drive;
2721 if (eeprom->group1_schmitt == IS_SCHMITT)
2722 output[0x0d] |= IS_SCHMITT;
2723 if (eeprom->group1_slew == SLOW_SLEW)
2724 output[0x0d] |= SLOW_SLEW;
2725
2726 set_ft232h_cbus(eeprom, output);
2727
2728 output[0x1e] = eeprom->chip;
2729 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
2730 break;
2731
2732 }
2733
2734 // calculate checksum
2735 checksum = 0xAAAA;
2736
2737 for (i = 0; i < eeprom->size/2-1; i++)
2738 {
2739 value = output[i*2];
2740 value += output[(i*2)+1] << 8;
2741
2742 checksum = value^checksum;
2743 checksum = (checksum << 1) | (checksum >> 15);
2744 }
2745
2746 output[eeprom->size-2] = checksum;
2747 output[eeprom->size-1] = checksum >> 8;
2748
2749 return user_area_size;
2750}
2751/* FTD2XX doesn't allow to set multiple bits in the interface mode bitfield*/
2752unsigned char bit2type(unsigned char bits)
2753{
2754 switch (bits)
2755 {
2756 case 0: return 0;
2757 case 1: return 1;
2758 case 2: return 2;
2759 case 4: return 3;
2760 case 8: return 4;
2761 default:
2762 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
2763 bits);
2764 }
2765 return 0;
2766}
2767
2768/**
2769 Decode binary EEPROM image into an ftdi_eeprom structure.
2770
2771 \param ftdi pointer to ftdi_context
2772 \param verbose Decode EEPROM on stdout
2773
2774 \retval 0: all fine
2775 \retval -1: something went wrong
2776
2777 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2778 FIXME: Strings are malloc'ed here and should be freed somewhere
2779*/
2780int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2781{
2782 unsigned char i, j;
2783 unsigned short checksum, eeprom_checksum, value;
2784 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2785 int eeprom_size;
2786 struct ftdi_eeprom *eeprom;
2787 unsigned char *buf = ftdi->eeprom->buf;
2788 int release;
2789
2790 if (ftdi == NULL)
2791 ftdi_error_return(-1,"No context");
2792 if (ftdi->eeprom == NULL)
2793 ftdi_error_return(-1,"No eeprom structure");
2794
2795 eeprom = ftdi->eeprom;
2796 eeprom_size = eeprom->size;
2797
2798 // Addr 02: Vendor ID
2799 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2800
2801 // Addr 04: Product ID
2802 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2803
2804 release = buf[0x06] + (buf[0x07]<<8);
2805
2806 // Addr 08: Config descriptor
2807 // Bit 7: always 1
2808 // Bit 6: 1 if this device is self powered, 0 if bus powered
2809 // Bit 5: 1 if this device uses remote wakeup
2810 eeprom->self_powered = buf[0x08] & 0x40;
2811 eeprom->remote_wakeup = buf[0x08] & 0x20;
2812
2813 // Addr 09: Max power consumption: max power = value * 2 mA
2814 eeprom->max_power = buf[0x09];
2815
2816 // Addr 0A: Chip configuration
2817 // Bit 7: 0 - reserved
2818 // Bit 6: 0 - reserved
2819 // Bit 5: 0 - reserved
2820 // Bit 4: 1 - Change USB version on BM and 2232C
2821 // Bit 3: 1 - Use the serial number string
2822 // Bit 2: 1 - Enable suspend pull downs for lower power
2823 // Bit 1: 1 - Out EndPoint is Isochronous
2824 // Bit 0: 1 - In EndPoint is Isochronous
2825 //
2826 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2827 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2828 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2829 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
2830 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
2831
2832 // Addr 0C: USB version low byte when 0x0A
2833 // Addr 0D: USB version high byte when 0x0A
2834 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2835
2836 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2837 // Addr 0F: Length of manufacturer string
2838 manufacturer_size = buf[0x0F]/2;
2839 if (eeprom->manufacturer)
2840 free(eeprom->manufacturer);
2841 if (manufacturer_size > 0)
2842 {
2843 eeprom->manufacturer = malloc(manufacturer_size);
2844 if (eeprom->manufacturer)
2845 {
2846 // Decode manufacturer
2847 i = buf[0x0E] & (eeprom_size -1); // offset
2848 for (j=0;j<manufacturer_size-1;j++)
2849 {
2850 eeprom->manufacturer[j] = buf[2*j+i+2];
2851 }
2852 eeprom->manufacturer[j] = '\0';
2853 }
2854 }
2855 else eeprom->manufacturer = NULL;
2856
2857 // Addr 10: Offset of the product string + 0x80, calculated later
2858 // Addr 11: Length of product string
2859 if (eeprom->product)
2860 free(eeprom->product);
2861 product_size = buf[0x11]/2;
2862 if (product_size > 0)
2863 {
2864 eeprom->product = malloc(product_size);
2865 if (eeprom->product)
2866 {
2867 // Decode product name
2868 i = buf[0x10] & (eeprom_size -1); // offset
2869 for (j=0;j<product_size-1;j++)
2870 {
2871 eeprom->product[j] = buf[2*j+i+2];
2872 }
2873 eeprom->product[j] = '\0';
2874 }
2875 }
2876 else eeprom->product = NULL;
2877
2878 // Addr 12: Offset of the serial string + 0x80, calculated later
2879 // Addr 13: Length of serial string
2880 if (eeprom->serial)
2881 free(eeprom->serial);
2882 serial_size = buf[0x13]/2;
2883 if (serial_size > 0)
2884 {
2885 eeprom->serial = malloc(serial_size);
2886 if (eeprom->serial)
2887 {
2888 // Decode serial
2889 i = buf[0x12] & (eeprom_size -1); // offset
2890 for (j=0;j<serial_size-1;j++)
2891 {
2892 eeprom->serial[j] = buf[2*j+i+2];
2893 }
2894 eeprom->serial[j] = '\0';
2895 }
2896 }
2897 else eeprom->serial = NULL;
2898
2899 // verify checksum
2900 checksum = 0xAAAA;
2901
2902 for (i = 0; i < eeprom_size/2-1; i++)
2903 {
2904 value = buf[i*2];
2905 value += buf[(i*2)+1] << 8;
2906
2907 checksum = value^checksum;
2908 checksum = (checksum << 1) | (checksum >> 15);
2909 }
2910
2911 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2912
2913 if (eeprom_checksum != checksum)
2914 {
2915 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2916 ftdi_error_return(-1,"EEPROM checksum error");
2917 }
2918
2919 eeprom->channel_a_type = 0;
2920 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
2921 {
2922 eeprom->chip = -1;
2923 }
2924 else if (ftdi->type == TYPE_2232C)
2925 {
2926 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2927 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2928 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2929 eeprom->channel_b_type = buf[0x01] & 0x7;
2930 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2931 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
2932 eeprom->chip = buf[0x14];
2933 }
2934 else if (ftdi->type == TYPE_R)
2935 {
2936 /* TYPE_R flags D2XX, not VCP as all others*/
2937 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2938 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2939 if ( (buf[0x01]&0x40) != 0x40)
2940 fprintf(stderr,
2941 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2942 " If this happened with the\n"
2943 " EEPROM programmed by FTDI tools, please report "
2944 "to libftdi@developer.intra2net.com\n");
2945
2946 eeprom->chip = buf[0x16];
2947 // Addr 0B: Invert data lines
2948 // Works only on FT232R, not FT245R, but no way to distinguish
2949 eeprom->invert = buf[0x0B];
2950 // Addr 14: CBUS function: CBUS0, CBUS1
2951 // Addr 15: CBUS function: CBUS2, CBUS3
2952 // Addr 16: CBUS function: CBUS5
2953 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2954 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2955 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2956 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2957 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
2958 }
2959 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
2960 {
2961 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2962 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2963 eeprom->channel_b_type = buf[0x01] & 0x7;
2964 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2965
2966 if (ftdi->type == TYPE_2232H)
2967 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
2968
2969 eeprom->chip = buf[0x18];
2970 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2971 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2972 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2973 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2974 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2975 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2976 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2977 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2978 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2979 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2980 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2981 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
2982 }
2983 else if (ftdi->type == TYPE_232H)
2984 {
2985 int i;
2986
2987 eeprom->channel_a_type = buf[0x00] & 0xf;
2988 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
2989 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
2990 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
2991 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
2992 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
2993 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2994 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2995 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2996 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
2997 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
2998 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
2999
3000 for(i=0; i<5; i++)
3001 {
3002 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3003 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3004 }
3005 eeprom->chip = buf[0x1e];
3006 /*FIXME: Decipher more values*/
3007 }
3008
3009 if (verbose)
3010 {
3011 char *channel_mode[] = {"UART","245","CPU", "OPTO", "FT1284"};
3012 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3013 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3014 fprintf(stdout, "Release: 0x%04x\n",release);
3015
3016 if (eeprom->self_powered)
3017 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3018 else
3019 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
3020 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3021 if (eeprom->manufacturer)
3022 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3023 if (eeprom->product)
3024 fprintf(stdout, "Product: %s\n",eeprom->product);
3025 if (eeprom->serial)
3026 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3027 fprintf(stdout, "Checksum : %04x\n", checksum);
3028 if (ftdi->type == TYPE_R)
3029 fprintf(stdout, "Internal EEPROM\n");
3030 else if (eeprom->chip >= 0x46)
3031 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3032 if (eeprom->suspend_dbus7)
3033 fprintf(stdout, "Suspend on DBUS7\n");
3034 if (eeprom->suspend_pull_downs)
3035 fprintf(stdout, "Pull IO pins low during suspend\n");
3036 if(eeprom->powersave)
3037 {
3038 if(ftdi->type >= TYPE_232H)
3039 fprintf(stdout,"Enter low power state on ACBUS7\n");
3040 }
3041 if (eeprom->remote_wakeup)
3042 fprintf(stdout, "Enable Remote Wake Up\n");
3043 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3044 if (ftdi->type >= TYPE_2232C)
3045 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3046 channel_mode[eeprom->channel_a_type],
3047 (eeprom->channel_a_driver)?" VCP":"",
3048 (eeprom->high_current_a)?" High Current IO":"");
3049 if (ftdi->type >= TYPE_232H)
3050 {
3051 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3052 (eeprom->clock_polarity)?"HIGH":"LOW",
3053 (eeprom->data_order)?"LSB":"MSB",
3054 (eeprom->flow_control)?"":"No ");
3055 }
3056 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
3057 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3058 channel_mode[eeprom->channel_b_type],
3059 (eeprom->channel_b_driver)?" VCP":"",
3060 (eeprom->high_current_b)?" High Current IO":"");
3061 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3062 eeprom->use_usb_version == USE_USB_VERSION_BIT)
3063 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3064
3065 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3066 {
3067 fprintf(stdout,"%s has %d mA drive%s%s\n",
3068 (ftdi->type == TYPE_2232H)?"AL":"A",
3069 (eeprom->group0_drive+1) *4,
3070 (eeprom->group0_schmitt)?" Schmitt Input":"",
3071 (eeprom->group0_slew)?" Slow Slew":"");
3072 fprintf(stdout,"%s has %d mA drive%s%s\n",
3073 (ftdi->type == TYPE_2232H)?"AH":"B",
3074 (eeprom->group1_drive+1) *4,
3075 (eeprom->group1_schmitt)?" Schmitt Input":"",
3076 (eeprom->group1_slew)?" Slow Slew":"");
3077 fprintf(stdout,"%s has %d mA drive%s%s\n",
3078 (ftdi->type == TYPE_2232H)?"BL":"C",
3079 (eeprom->group2_drive+1) *4,
3080 (eeprom->group2_schmitt)?" Schmitt Input":"",
3081 (eeprom->group2_slew)?" Slow Slew":"");
3082 fprintf(stdout,"%s has %d mA drive%s%s\n",
3083 (ftdi->type == TYPE_2232H)?"BH":"D",
3084 (eeprom->group3_drive+1) *4,
3085 (eeprom->group3_schmitt)?" Schmitt Input":"",
3086 (eeprom->group3_slew)?" Slow Slew":"");
3087 }
3088 else if (ftdi->type == TYPE_232H)
3089 {
3090 int i;
3091 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3092 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3093 "CLK30","CLK15","CLK7_5"
3094 };
3095 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3096 (eeprom->group0_drive+1) *4,
3097 (eeprom->group0_schmitt)?" Schmitt Input":"",
3098 (eeprom->group0_slew)?" Slow Slew":"");
3099 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3100 (eeprom->group1_drive+1) *4,
3101 (eeprom->group1_schmitt)?" Schmitt Input":"",
3102 (eeprom->group1_slew)?" Slow Slew":"");
3103 for (i=0; i<10; i++)
3104 {
3105 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3106 fprintf(stdout,"C%d Function: %s\n", i,
3107 cbush_mux[eeprom->cbus_function[i]]);
3108 }
3109
3110 }
3111
3112 if (ftdi->type == TYPE_R)
3113 {
3114 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3115 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3116 "IOMODE","BB_WR","BB_RD"
3117 };
3118 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3119
3120 if (eeprom->invert)
3121 {
3122 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3123 fprintf(stdout,"Inverted bits:");
3124 for (i=0; i<8; i++)
3125 if ((eeprom->invert & (1<<i)) == (1<<i))
3126 fprintf(stdout," %s",r_bits[i]);
3127 fprintf(stdout,"\n");
3128 }
3129 for (i=0; i<5; i++)
3130 {
3131 if (eeprom->cbus_function[i]<CBUS_BB)
3132 fprintf(stdout,"C%d Function: %s\n", i,
3133 cbus_mux[eeprom->cbus_function[i]]);
3134 else
3135 {
3136 if (i < 4)
3137 /* Running MPROG show that C0..3 have fixed function Synchronous
3138 Bit Bang mode */
3139 fprintf(stdout,"C%d BB Function: %s\n", i,
3140 cbus_BB[i]);
3141 else
3142 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3143 }
3144 }
3145 }
3146 }
3147 return 0;
3148}
3149
3150/**
3151 Get a value from the decoded EEPROM structure
3152
3153 \param ftdi pointer to ftdi_context
3154 \param value_name Enum of the value to query
3155 \param value Pointer to store read value
3156
3157 \retval 0: all fine
3158 \retval -1: Value doesn't exist
3159*/
3160int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3161{
3162 switch (value_name)
3163 {
3164 case VENDOR_ID:
3165 *value = ftdi->eeprom->vendor_id;
3166 break;
3167 case PRODUCT_ID:
3168 *value = ftdi->eeprom->product_id;
3169 break;
3170 case SELF_POWERED:
3171 *value = ftdi->eeprom->self_powered;
3172 break;
3173 case REMOTE_WAKEUP:
3174 *value = ftdi->eeprom->remote_wakeup;
3175 break;
3176 case IS_NOT_PNP:
3177 *value = ftdi->eeprom->is_not_pnp;
3178 break;
3179 case SUSPEND_DBUS7:
3180 *value = ftdi->eeprom->suspend_dbus7;
3181 break;
3182 case IN_IS_ISOCHRONOUS:
3183 *value = ftdi->eeprom->in_is_isochronous;
3184 break;
3185 case SUSPEND_PULL_DOWNS:
3186 *value = ftdi->eeprom->suspend_pull_downs;
3187 break;
3188 case USE_SERIAL:
3189 *value = ftdi->eeprom->use_serial;
3190 break;
3191 case USB_VERSION:
3192 *value = ftdi->eeprom->usb_version;
3193 break;
3194 case MAX_POWER:
3195 *value = ftdi->eeprom->max_power;
3196 break;
3197 case CHANNEL_A_TYPE:
3198 *value = ftdi->eeprom->channel_a_type;
3199 break;
3200 case CHANNEL_B_TYPE:
3201 *value = ftdi->eeprom->channel_b_type;
3202 break;
3203 case CHANNEL_A_DRIVER:
3204 *value = ftdi->eeprom->channel_a_driver;
3205 break;
3206 case CHANNEL_B_DRIVER:
3207 *value = ftdi->eeprom->channel_b_driver;
3208 break;
3209 case CBUS_FUNCTION_0:
3210 *value = ftdi->eeprom->cbus_function[0];
3211 break;
3212 case CBUS_FUNCTION_1:
3213 *value = ftdi->eeprom->cbus_function[1];
3214 break;
3215 case CBUS_FUNCTION_2:
3216 *value = ftdi->eeprom->cbus_function[2];
3217 break;
3218 case CBUS_FUNCTION_3:
3219 *value = ftdi->eeprom->cbus_function[3];
3220 break;
3221 case CBUS_FUNCTION_4:
3222 *value = ftdi->eeprom->cbus_function[4];
3223 break;
3224 case CBUS_FUNCTION_5:
3225 *value = ftdi->eeprom->cbus_function[5];
3226 break;
3227 case CBUS_FUNCTION_6:
3228 *value = ftdi->eeprom->cbus_function[6];
3229 break;
3230 case CBUS_FUNCTION_7:
3231 *value = ftdi->eeprom->cbus_function[7];
3232 break;
3233 case CBUS_FUNCTION_8:
3234 *value = ftdi->eeprom->cbus_function[8];
3235 break;
3236 case CBUS_FUNCTION_9:
3237 *value = ftdi->eeprom->cbus_function[8];
3238 break;
3239 case HIGH_CURRENT:
3240 *value = ftdi->eeprom->high_current;
3241 break;
3242 case HIGH_CURRENT_A:
3243 *value = ftdi->eeprom->high_current_a;
3244 break;
3245 case HIGH_CURRENT_B:
3246 *value = ftdi->eeprom->high_current_b;
3247 break;
3248 case INVERT:
3249 *value = ftdi->eeprom->invert;
3250 break;
3251 case GROUP0_DRIVE:
3252 *value = ftdi->eeprom->group0_drive;
3253 break;
3254 case GROUP0_SCHMITT:
3255 *value = ftdi->eeprom->group0_schmitt;
3256 break;
3257 case GROUP0_SLEW:
3258 *value = ftdi->eeprom->group0_slew;
3259 break;
3260 case GROUP1_DRIVE:
3261 *value = ftdi->eeprom->group1_drive;
3262 break;
3263 case GROUP1_SCHMITT:
3264 *value = ftdi->eeprom->group1_schmitt;
3265 break;
3266 case GROUP1_SLEW:
3267 *value = ftdi->eeprom->group1_slew;
3268 break;
3269 case GROUP2_DRIVE:
3270 *value = ftdi->eeprom->group2_drive;
3271 break;
3272 case GROUP2_SCHMITT:
3273 *value = ftdi->eeprom->group2_schmitt;
3274 break;
3275 case GROUP2_SLEW:
3276 *value = ftdi->eeprom->group2_slew;
3277 break;
3278 case GROUP3_DRIVE:
3279 *value = ftdi->eeprom->group3_drive;
3280 break;
3281 case GROUP3_SCHMITT:
3282 *value = ftdi->eeprom->group3_schmitt;
3283 break;
3284 case GROUP3_SLEW:
3285 *value = ftdi->eeprom->group3_slew;
3286 break;
3287 case POWER_SAVE:
3288 *value = ftdi->eeprom->powersave;
3289 break;
3290 case CLOCK_POLARITY:
3291 *value = ftdi->eeprom->clock_polarity;
3292 break;
3293 case DATA_ORDER:
3294 *value = ftdi->eeprom->data_order;
3295 break;
3296 case FLOW_CONTROL:
3297 *value = ftdi->eeprom->flow_control;
3298 break;
3299 case CHIP_TYPE:
3300 *value = ftdi->eeprom->chip;
3301 break;
3302 case CHIP_SIZE:
3303 *value = ftdi->eeprom->size;
3304 break;
3305 default:
3306 ftdi_error_return(-1, "Request for unknown EEPROM value");
3307 }
3308 return 0;
3309}
3310
3311/**
3312 Set a value in the decoded EEPROM Structure
3313 No parameter checking is performed
3314
3315 \param ftdi pointer to ftdi_context
3316 \param value_name Enum of the value to set
3317 \param value to set
3318
3319 \retval 0: all fine
3320 \retval -1: Value doesn't exist
3321 \retval -2: Value not user settable
3322*/
3323int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3324{
3325 switch (value_name)
3326 {
3327 case VENDOR_ID:
3328 ftdi->eeprom->vendor_id = value;
3329 break;
3330 case PRODUCT_ID:
3331 ftdi->eeprom->product_id = value;
3332 break;
3333 case SELF_POWERED:
3334 ftdi->eeprom->self_powered = value;
3335 break;
3336 case REMOTE_WAKEUP:
3337 ftdi->eeprom->remote_wakeup = value;
3338 break;
3339 case IS_NOT_PNP:
3340 ftdi->eeprom->is_not_pnp = value;
3341 break;
3342 case SUSPEND_DBUS7:
3343 ftdi->eeprom->suspend_dbus7 = value;
3344 break;
3345 case IN_IS_ISOCHRONOUS:
3346 ftdi->eeprom->in_is_isochronous = value;
3347 break;
3348 case SUSPEND_PULL_DOWNS:
3349 ftdi->eeprom->suspend_pull_downs = value;
3350 break;
3351 case USE_SERIAL:
3352 ftdi->eeprom->use_serial = value;
3353 break;
3354 case USB_VERSION:
3355 ftdi->eeprom->usb_version = value;
3356 break;
3357 case MAX_POWER:
3358 ftdi->eeprom->max_power = value;
3359 break;
3360 case CHANNEL_A_TYPE:
3361 ftdi->eeprom->channel_a_type = value;
3362 break;
3363 case CHANNEL_B_TYPE:
3364 ftdi->eeprom->channel_b_type = value;
3365 break;
3366 case CHANNEL_A_DRIVER:
3367 ftdi->eeprom->channel_a_driver = value;
3368 break;
3369 case CHANNEL_B_DRIVER:
3370 ftdi->eeprom->channel_b_driver = value;
3371 break;
3372 case CBUS_FUNCTION_0:
3373 ftdi->eeprom->cbus_function[0] = value;
3374 break;
3375 case CBUS_FUNCTION_1:
3376 ftdi->eeprom->cbus_function[1] = value;
3377 break;
3378 case CBUS_FUNCTION_2:
3379 ftdi->eeprom->cbus_function[2] = value;
3380 break;
3381 case CBUS_FUNCTION_3:
3382 ftdi->eeprom->cbus_function[3] = value;
3383 break;
3384 case CBUS_FUNCTION_4:
3385 ftdi->eeprom->cbus_function[4] = value;
3386 break;
3387 case CBUS_FUNCTION_5:
3388 ftdi->eeprom->cbus_function[5] = value;
3389 break;
3390 case CBUS_FUNCTION_6:
3391 ftdi->eeprom->cbus_function[6] = value;
3392 break;
3393 case CBUS_FUNCTION_7:
3394 ftdi->eeprom->cbus_function[7] = value;
3395 break;
3396 case CBUS_FUNCTION_8:
3397 ftdi->eeprom->cbus_function[8] = value;
3398 break;
3399 case CBUS_FUNCTION_9:
3400 ftdi->eeprom->cbus_function[9] = value;
3401 break;
3402 case HIGH_CURRENT:
3403 ftdi->eeprom->high_current = value;
3404 break;
3405 case HIGH_CURRENT_A:
3406 ftdi->eeprom->high_current_a = value;
3407 break;
3408 case HIGH_CURRENT_B:
3409 ftdi->eeprom->high_current_b = value;
3410 break;
3411 case INVERT:
3412 ftdi->eeprom->invert = value;
3413 break;
3414 case GROUP0_DRIVE:
3415 ftdi->eeprom->group0_drive = value;
3416 break;
3417 case GROUP0_SCHMITT:
3418 ftdi->eeprom->group0_schmitt = value;
3419 break;
3420 case GROUP0_SLEW:
3421 ftdi->eeprom->group0_slew = value;
3422 break;
3423 case GROUP1_DRIVE:
3424 ftdi->eeprom->group1_drive = value;
3425 break;
3426 case GROUP1_SCHMITT:
3427 ftdi->eeprom->group1_schmitt = value;
3428 break;
3429 case GROUP1_SLEW:
3430 ftdi->eeprom->group1_slew = value;
3431 break;
3432 case GROUP2_DRIVE:
3433 ftdi->eeprom->group2_drive = value;
3434 break;
3435 case GROUP2_SCHMITT:
3436 ftdi->eeprom->group2_schmitt = value;
3437 break;
3438 case GROUP2_SLEW:
3439 ftdi->eeprom->group2_slew = value;
3440 break;
3441 case GROUP3_DRIVE:
3442 ftdi->eeprom->group3_drive = value;
3443 break;
3444 case GROUP3_SCHMITT:
3445 ftdi->eeprom->group3_schmitt = value;
3446 break;
3447 case GROUP3_SLEW:
3448 ftdi->eeprom->group3_slew = value;
3449 break;
3450 case CHIP_TYPE:
3451 ftdi->eeprom->chip = value;
3452 break;
3453 case POWER_SAVE:
3454 ftdi->eeprom->powersave = value;
3455 break;
3456 case CLOCK_POLARITY:
3457 ftdi->eeprom->clock_polarity = value;
3458 break;
3459 case DATA_ORDER:
3460 ftdi->eeprom->data_order = value;
3461 break;
3462 case FLOW_CONTROL:
3463 ftdi->eeprom->flow_control = value;
3464 break;
3465 case CHIP_SIZE:
3466 ftdi_error_return(-2, "EEPROM Value can't be changed");
3467 default :
3468 ftdi_error_return(-1, "Request to unknown EEPROM value");
3469 }
3470 return 0;
3471}
3472
3473/** Get the read-only buffer to the binary EEPROM content
3474
3475 \param ftdi pointer to ftdi_context
3476 \param buf buffer to receive EEPROM content
3477 \param size Size of receiving buffer
3478
3479 \retval 0: All fine
3480 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3481 \retval -2: Not enough room to store eeprom
3482*/
3483int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3484{
3485 if (!ftdi || !(ftdi->eeprom))
3486 ftdi_error_return(-1, "No appropriate structure");
3487
3488 if (!buf || size < ftdi->eeprom->size)
3489 ftdi_error_return(-1, "Not enough room to store eeprom");
3490
3491 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3492 if (size > FTDI_MAX_EEPROM_SIZE)
3493 size = FTDI_MAX_EEPROM_SIZE;
3494
3495 memcpy(buf, ftdi->eeprom->buf, size);
3496
3497 return 0;
3498}
3499
3500/**
3501 Read eeprom location
3502
3503 \param ftdi pointer to ftdi_context
3504 \param eeprom_addr Address of eeprom location to be read
3505 \param eeprom_val Pointer to store read eeprom location
3506
3507 \retval 0: all fine
3508 \retval -1: read failed
3509 \retval -2: USB device unavailable
3510*/
3511int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3512{
3513 if (ftdi == NULL || ftdi->usb_dev == NULL)
3514 ftdi_error_return(-2, "USB device unavailable");
3515
3516 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3517 ftdi_error_return(-1, "reading eeprom failed");
3518
3519 return 0;
3520}
3521
3522/**
3523 Read eeprom
3524
3525 \param ftdi pointer to ftdi_context
3526
3527 \retval 0: all fine
3528 \retval -1: read failed
3529 \retval -2: USB device unavailable
3530*/
3531int ftdi_read_eeprom(struct ftdi_context *ftdi)
3532{
3533 int i;
3534 unsigned char *buf;
3535
3536 if (ftdi == NULL || ftdi->usb_dev == NULL)
3537 ftdi_error_return(-2, "USB device unavailable");
3538 buf = ftdi->eeprom->buf;
3539
3540 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
3541 {
3542 if (libusb_control_transfer(
3543 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3544 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
3545 ftdi_error_return(-1, "reading eeprom failed");
3546 }
3547
3548 if (ftdi->type == TYPE_R)
3549 ftdi->eeprom->size = 0x80;
3550 /* Guesses size of eeprom by comparing halves
3551 - will not work with blank eeprom */
3552 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3553 ftdi->eeprom->size = -1;
3554 else if (memcmp(buf,&buf[0x80],0x80) == 0)
3555 ftdi->eeprom->size = 0x80;
3556 else if (memcmp(buf,&buf[0x40],0x40) == 0)
3557 ftdi->eeprom->size = 0x40;
3558 else
3559 ftdi->eeprom->size = 0x100;
3560 return 0;
3561}
3562
3563/*
3564 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3565 Function is only used internally
3566 \internal
3567*/
3568static unsigned char ftdi_read_chipid_shift(unsigned char value)
3569{
3570 return ((value & 1) << 1) |
3571 ((value & 2) << 5) |
3572 ((value & 4) >> 2) |
3573 ((value & 8) << 4) |
3574 ((value & 16) >> 1) |
3575 ((value & 32) >> 1) |
3576 ((value & 64) >> 4) |
3577 ((value & 128) >> 2);
3578}
3579
3580/**
3581 Read the FTDIChip-ID from R-type devices
3582
3583 \param ftdi pointer to ftdi_context
3584 \param chipid Pointer to store FTDIChip-ID
3585
3586 \retval 0: all fine
3587 \retval -1: read failed
3588 \retval -2: USB device unavailable
3589*/
3590int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3591{
3592 unsigned int a = 0, b = 0;
3593
3594 if (ftdi == NULL || ftdi->usb_dev == NULL)
3595 ftdi_error_return(-2, "USB device unavailable");
3596
3597 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3598 {
3599 a = a << 8 | a >> 8;
3600 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3601 {
3602 b = b << 8 | b >> 8;
3603 a = (a << 16) | (b & 0xFFFF);
3604 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3605 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3606 *chipid = a ^ 0xa5f0f7d1;
3607 return 0;
3608 }
3609 }
3610
3611 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3612}
3613
3614/**
3615 Write eeprom location
3616
3617 \param ftdi pointer to ftdi_context
3618 \param eeprom_addr Address of eeprom location to be written
3619 \param eeprom_val Value to be written
3620
3621 \retval 0: all fine
3622 \retval -1: write failed
3623 \retval -2: USB device unavailable
3624 \retval -3: Invalid access to checksum protected area below 0x80
3625 \retval -4: Device can't access unprotected area
3626 \retval -5: Reading chip type failed
3627*/
3628int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3629 unsigned short eeprom_val)
3630{
3631 int chip_type_location;
3632 unsigned short chip_type;
3633
3634 if (ftdi == NULL || ftdi->usb_dev == NULL)
3635 ftdi_error_return(-2, "USB device unavailable");
3636
3637 if (eeprom_addr <0x80)
3638 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3639
3640
3641 switch (ftdi->type)
3642 {
3643 case TYPE_BM:
3644 case TYPE_2232C:
3645 chip_type_location = 0x14;
3646 break;
3647 case TYPE_2232H:
3648 case TYPE_4232H:
3649 chip_type_location = 0x18;
3650 break;
3651 case TYPE_232H:
3652 chip_type_location = 0x1e;
3653 break;
3654 default:
3655 ftdi_error_return(-4, "Device can't access unprotected area");
3656 }
3657
3658 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3659 ftdi_error_return(-5, "Reading failed failed");
3660 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3661 if ((chip_type & 0xff) != 0x66)
3662 {
3663 ftdi_error_return(-6, "EEPROM is not of 93x66");
3664 }
3665
3666 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3667 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3668 NULL, 0, ftdi->usb_write_timeout) != 0)
3669 ftdi_error_return(-1, "unable to write eeprom");
3670
3671 return 0;
3672}
3673
3674/**
3675 Write eeprom
3676
3677 \param ftdi pointer to ftdi_context
3678
3679 \retval 0: all fine
3680 \retval -1: read failed
3681 \retval -2: USB device unavailable
3682*/
3683int ftdi_write_eeprom(struct ftdi_context *ftdi)
3684{
3685 unsigned short usb_val, status;
3686 int i, ret;
3687 unsigned char *eeprom;
3688
3689 if (ftdi == NULL || ftdi->usb_dev == NULL)
3690 ftdi_error_return(-2, "USB device unavailable");
3691 eeprom = ftdi->eeprom->buf;
3692
3693 /* These commands were traced while running MProg */
3694 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3695 return ret;
3696 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3697 return ret;
3698 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3699 return ret;
3700
3701 for (i = 0; i < ftdi->eeprom->size/2; i++)
3702 {
3703 usb_val = eeprom[i*2];
3704 usb_val += eeprom[(i*2)+1] << 8;
3705 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3706 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3707 NULL, 0, ftdi->usb_write_timeout) < 0)
3708 ftdi_error_return(-1, "unable to write eeprom");
3709 }
3710
3711 return 0;
3712}
3713
3714/**
3715 Erase eeprom
3716
3717 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3718
3719 \param ftdi pointer to ftdi_context
3720
3721 \retval 0: all fine
3722 \retval -1: erase failed
3723 \retval -2: USB device unavailable
3724 \retval -3: Writing magic failed
3725 \retval -4: Read EEPROM failed
3726 \retval -5: Unexpected EEPROM value
3727*/
3728#define MAGIC 0x55aa
3729int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3730{
3731 unsigned short eeprom_value;
3732 if (ftdi == NULL || ftdi->usb_dev == NULL)
3733 ftdi_error_return(-2, "USB device unavailable");
3734
3735 if (ftdi->type == TYPE_R)
3736 {
3737 ftdi->eeprom->chip = 0;
3738 return 0;
3739 }
3740
3741 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3742 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3743 ftdi_error_return(-1, "unable to erase eeprom");
3744
3745
3746 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3747 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3748 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3749 Chip is 93x66 if magic is only read at word position 0xc0*/
3750 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3751 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3752 NULL, 0, ftdi->usb_write_timeout) != 0)
3753 ftdi_error_return(-3, "Writing magic failed");
3754 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3755 ftdi_error_return(-4, "Reading failed failed");
3756 if (eeprom_value == MAGIC)
3757 {
3758 ftdi->eeprom->chip = 0x46;
3759 }
3760 else
3761 {
3762 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3763 ftdi_error_return(-4, "Reading failed failed");
3764 if (eeprom_value == MAGIC)
3765 ftdi->eeprom->chip = 0x56;
3766 else
3767 {
3768 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3769 ftdi_error_return(-4, "Reading failed failed");
3770 if (eeprom_value == MAGIC)
3771 ftdi->eeprom->chip = 0x66;
3772 else
3773 {
3774 ftdi->eeprom->chip = -1;
3775 }
3776 }
3777 }
3778 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3779 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3780 ftdi_error_return(-1, "unable to erase eeprom");
3781 return 0;
3782}
3783
3784/**
3785 Get string representation for last error code
3786
3787 \param ftdi pointer to ftdi_context
3788
3789 \retval Pointer to error string
3790*/
3791char *ftdi_get_error_string (struct ftdi_context *ftdi)
3792{
3793 if (ftdi == NULL)
3794 return "";
3795
3796 return ftdi->error_str;
3797}
3798
3799/* @} end of doxygen libftdi group */