libftdi: (tomj) always set usb configuration
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2008 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/de/produkte/opensource/ftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <usb.h>
32#include <string.h>
33#include <errno.h>
34
35#include "ftdi.h"
36
37/* stuff needed for async write */
38#ifdef LIBFTDI_LINUX_ASYNC_MODE
39 #include <sys/ioctl.h>
40 #include <sys/time.h>
41 #include <sys/select.h>
42 #include <sys/types.h>
43 #include <unistd.h>
44 #include <linux/usbdevice_fs.h>
45#endif
46
47#define ftdi_error_return(code, str) do { \
48 ftdi->error_str = str; \
49 return code; \
50 } while(0);
51
52
53/**
54 Initializes a ftdi_context.
55
56 \param ftdi pointer to ftdi_context
57
58 \retval 0: all fine
59 \retval -1: couldn't allocate read buffer
60
61 \remark This should be called before all functions
62*/
63int ftdi_init(struct ftdi_context *ftdi)
64{
65 int i;
66
67 ftdi->usb_dev = NULL;
68 ftdi->usb_read_timeout = 5000;
69 ftdi->usb_write_timeout = 5000;
70
71 ftdi->type = TYPE_BM; /* chip type */
72 ftdi->baudrate = -1;
73 ftdi->bitbang_enabled = 0;
74
75 ftdi->readbuffer = NULL;
76 ftdi->readbuffer_offset = 0;
77 ftdi->readbuffer_remaining = 0;
78 ftdi->writebuffer_chunksize = 4096;
79
80 ftdi->interface = 0;
81 ftdi->index = 0;
82 ftdi->in_ep = 0x02;
83 ftdi->out_ep = 0x81;
84 ftdi->bitbang_mode = 1; /* 1: Normal bitbang mode, 2: SPI bitbang mode */
85
86 ftdi->error_str = NULL;
87
88#ifdef LIBFTDI_LINUX_ASYNC_MODE
89 ftdi->async_usb_buffer_size=10;
90 if ((ftdi->async_usb_buffer=malloc(sizeof(struct usbdevfs_urb)*ftdi->async_usb_buffer_size)) == NULL)
91 ftdi_error_return(-1, "out of memory for async usb buffer");
92
93 /* initialize async usb buffer with unused-marker */
94 for (i=0; i < ftdi->async_usb_buffer_size; i++)
95 ((struct usbdevfs_urb*)ftdi->async_usb_buffer)[i].usercontext = FTDI_URB_USERCONTEXT_COOKIE;
96#else
97 ftdi->async_usb_buffer_size=0;
98 ftdi->async_usb_buffer = NULL;
99#endif
100
101 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
102
103 /* All fine. Now allocate the readbuffer */
104 return ftdi_read_data_set_chunksize(ftdi, 4096);
105}
106
107/**
108 Allocate and initialize a new ftdi_context
109
110 \return a pointer to a new ftdi_context, or NULL on failure
111*/
112struct ftdi_context *ftdi_new()
113{
114 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
115
116 if (ftdi == NULL) {
117 return NULL;
118 }
119
120 if (ftdi_init(ftdi) != 0) {
121 free(ftdi);
122 return NULL;
123 }
124
125 return ftdi;
126}
127
128/**
129 Open selected channels on a chip, otherwise use first channel.
130
131 \param ftdi pointer to ftdi_context
132 \param interface Interface to use for FT2232C chips.
133
134 \retval 0: all fine
135 \retval -1: unknown interface
136*/
137int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
138{
139 switch (interface) {
140 case INTERFACE_ANY:
141 case INTERFACE_A:
142 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
143 break;
144 case INTERFACE_B:
145 ftdi->interface = 1;
146 ftdi->index = INTERFACE_B;
147 ftdi->in_ep = 0x04;
148 ftdi->out_ep = 0x83;
149 break;
150 default:
151 ftdi_error_return(-1, "Unknown interface");
152 }
153 return 0;
154}
155
156/**
157 Deinitializes a ftdi_context.
158
159 \param ftdi pointer to ftdi_context
160*/
161void ftdi_deinit(struct ftdi_context *ftdi)
162{
163 if (ftdi->async_usb_buffer != NULL) {
164 free(ftdi->async_usb_buffer);
165 ftdi->async_usb_buffer = NULL;
166 }
167
168 if (ftdi->readbuffer != NULL) {
169 free(ftdi->readbuffer);
170 ftdi->readbuffer = NULL;
171 }
172}
173
174/**
175 Deinitialize and free an ftdi_context.
176
177 \param ftdi pointer to ftdi_context
178*/
179void ftdi_free(struct ftdi_context *ftdi)
180{
181 ftdi_deinit(ftdi);
182 free(ftdi);
183}
184
185/**
186 Use an already open libusb device.
187
188 \param ftdi pointer to ftdi_context
189 \param usb libusb usb_dev_handle to use
190*/
191void ftdi_set_usbdev (struct ftdi_context *ftdi, usb_dev_handle *usb)
192{
193 ftdi->usb_dev = usb;
194}
195
196
197/**
198 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
199 needs to be deallocated by ftdi_list_free() after use.
200
201 \param ftdi pointer to ftdi_context
202 \param devlist Pointer where to store list of found devices
203 \param vendor Vendor ID to search for
204 \param product Product ID to search for
205
206 \retval >0: number of devices found
207 \retval -1: usb_find_busses() failed
208 \retval -2: usb_find_devices() failed
209 \retval -3: out of memory
210*/
211int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
212{
213 struct ftdi_device_list **curdev;
214 struct usb_bus *bus;
215 struct usb_device *dev;
216 int count = 0;
217
218 usb_init();
219 if (usb_find_busses() < 0)
220 ftdi_error_return(-1, "usb_find_busses() failed");
221 if (usb_find_devices() < 0)
222 ftdi_error_return(-2, "usb_find_devices() failed");
223
224 curdev = devlist;
225 *curdev = NULL;
226 for (bus = usb_get_busses(); bus; bus = bus->next) {
227 for (dev = bus->devices; dev; dev = dev->next) {
228 if (dev->descriptor.idVendor == vendor
229 && dev->descriptor.idProduct == product)
230 {
231 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
232 if (!*curdev)
233 ftdi_error_return(-3, "out of memory");
234
235 (*curdev)->next = NULL;
236 (*curdev)->dev = dev;
237
238 curdev = &(*curdev)->next;
239 count++;
240 }
241 }
242 }
243
244 return count;
245}
246
247/**
248 Frees a usb device list.
249
250 \param devlist USB device list created by ftdi_usb_find_all()
251*/
252void ftdi_list_free(struct ftdi_device_list **devlist)
253{
254 struct ftdi_device_list *curdev, *next;
255
256 for (curdev = *devlist; curdev != NULL;) {
257 next = curdev->next;
258 free(curdev);
259 curdev = next;
260 }
261
262 *devlist = NULL;
263}
264
265/**
266 Frees a usb device list.
267
268 \param devlist USB device list created by ftdi_usb_find_all()
269*/
270void ftdi_list_free2(struct ftdi_device_list *devlist)
271{
272 ftdi_list_free(&devlist);
273}
274
275/**
276 Return device ID strings from the usb device.
277
278 The parameters manufacturer, description and serial may be NULL
279 or pointer to buffers to store the fetched strings.
280
281 \note Use this function only in combination with ftdi_usb_find_all()
282 as it closes the internal "usb_dev" after use.
283
284 \param ftdi pointer to ftdi_context
285 \param dev libusb usb_dev to use
286 \param manufacturer Store manufacturer string here if not NULL
287 \param mnf_len Buffer size of manufacturer string
288 \param description Store product description string here if not NULL
289 \param desc_len Buffer size of product description string
290 \param serial Store serial string here if not NULL
291 \param serial_len Buffer size of serial string
292
293 \retval 0: all fine
294 \retval -1: wrong arguments
295 \retval -4: unable to open device
296 \retval -7: get product manufacturer failed
297 \retval -8: get product description failed
298 \retval -9: get serial number failed
299 \retval -10: unable to close device
300*/
301int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct usb_device * dev,
302 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
303{
304 if ((ftdi==NULL) || (dev==NULL))
305 return -1;
306
307 if (!(ftdi->usb_dev = usb_open(dev)))
308 ftdi_error_return(-4, usb_strerror());
309
310 if (manufacturer != NULL) {
311 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iManufacturer, manufacturer, mnf_len) <= 0) {
312 usb_close (ftdi->usb_dev);
313 ftdi_error_return(-7, usb_strerror());
314 }
315 }
316
317 if (description != NULL) {
318 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, description, desc_len) <= 0) {
319 usb_close (ftdi->usb_dev);
320 ftdi_error_return(-8, usb_strerror());
321 }
322 }
323
324 if (serial != NULL) {
325 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, serial, serial_len) <= 0) {
326 usb_close (ftdi->usb_dev);
327 ftdi_error_return(-9, usb_strerror());
328 }
329 }
330
331 if (usb_close (ftdi->usb_dev) != 0)
332 ftdi_error_return(-10, usb_strerror());
333
334 return 0;
335}
336
337/**
338 Opens a ftdi device given by a usb_device.
339
340 \param ftdi pointer to ftdi_context
341 \param dev libusb usb_dev to use
342
343 \retval 0: all fine
344 \retval -3: unable to config device
345 \retval -4: unable to open device
346 \retval -5: unable to claim device
347 \retval -6: reset failed
348 \retval -7: set baudrate failed
349*/
350int ftdi_usb_open_dev(struct ftdi_context *ftdi, struct usb_device *dev)
351{
352 int detach_errno = 0;
353 if (!(ftdi->usb_dev = usb_open(dev)))
354 ftdi_error_return(-4, "usb_open() failed");
355
356#ifdef LIBUSB_HAS_GET_DRIVER_NP
357 // Try to detach ftdi_sio kernel module
358 // Returns ENODATA if driver is not loaded
359 if (usb_detach_kernel_driver_np(ftdi->usb_dev, ftdi->interface) != 0 && errno != ENODATA)
360 detach_errno = errno;
361#endif
362
363 if (usb_set_configuration(ftdi->usb_dev, dev->config[0].bConfigurationValue)) {
364 usb_close (ftdi->usb_dev);
365 if (detach_errno == EPERM) {
366 ftdi_error_return(-8, "inappropriate permissions on device!");
367 } else {
368 ftdi_error_return(-3, "unable to set usb configuration. Make sure ftdi_sio is unloaded!");
369 }
370 }
371
372 if (usb_claim_interface(ftdi->usb_dev, ftdi->interface) != 0) {
373 usb_close (ftdi->usb_dev);
374 if (detach_errno == EPERM) {
375 ftdi_error_return(-8, "inappropriate permissions on device!");
376 } else {
377 ftdi_error_return(-5, "unable to claim usb device. Make sure ftdi_sio is unloaded!");
378 }
379 }
380
381 if (ftdi_usb_reset (ftdi) != 0) {
382 usb_close (ftdi->usb_dev);
383 ftdi_error_return(-6, "ftdi_usb_reset failed");
384 }
385
386 if (ftdi_set_baudrate (ftdi, 9600) != 0) {
387 usb_close (ftdi->usb_dev);
388 ftdi_error_return(-7, "set baudrate failed");
389 }
390
391 // Try to guess chip type
392 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
393 if (dev->descriptor.bcdDevice == 0x400 || (dev->descriptor.bcdDevice == 0x200
394 && dev->descriptor.iSerialNumber == 0))
395 ftdi->type = TYPE_BM;
396 else if (dev->descriptor.bcdDevice == 0x200)
397 ftdi->type = TYPE_AM;
398 else if (dev->descriptor.bcdDevice == 0x500) {
399 ftdi->type = TYPE_2232C;
400 if (!ftdi->index)
401 ftdi->index = INTERFACE_A;
402 } else if (dev->descriptor.bcdDevice == 0x600)
403 ftdi->type = TYPE_R;
404
405 ftdi_error_return(0, "all fine");
406}
407
408/**
409 Opens the first device with a given vendor and product ids.
410
411 \param ftdi pointer to ftdi_context
412 \param vendor Vendor ID
413 \param product Product ID
414
415 \retval same as ftdi_usb_open_desc()
416*/
417int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
418{
419 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
420}
421
422/**
423 Opens the first device with a given, vendor id, product id,
424 description and serial.
425
426 \param ftdi pointer to ftdi_context
427 \param vendor Vendor ID
428 \param product Product ID
429 \param description Description to search for. Use NULL if not needed.
430 \param serial Serial to search for. Use NULL if not needed.
431
432 \retval 0: all fine
433 \retval -1: usb_find_busses() failed
434 \retval -2: usb_find_devices() failed
435 \retval -3: usb device not found
436 \retval -4: unable to open device
437 \retval -5: unable to claim device
438 \retval -6: reset failed
439 \retval -7: set baudrate failed
440 \retval -8: get product description failed
441 \retval -9: get serial number failed
442 \retval -10: unable to close device
443*/
444int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
445 const char* description, const char* serial)
446{
447 struct usb_bus *bus;
448 struct usb_device *dev;
449 char string[256];
450
451 usb_init();
452
453 if (usb_find_busses() < 0)
454 ftdi_error_return(-1, "usb_find_busses() failed");
455 if (usb_find_devices() < 0)
456 ftdi_error_return(-2, "usb_find_devices() failed");
457
458 for (bus = usb_get_busses(); bus; bus = bus->next) {
459 for (dev = bus->devices; dev; dev = dev->next) {
460 if (dev->descriptor.idVendor == vendor
461 && dev->descriptor.idProduct == product) {
462 if (!(ftdi->usb_dev = usb_open(dev)))
463 ftdi_error_return(-4, "usb_open() failed");
464
465 if (description != NULL) {
466 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, string, sizeof(string)) <= 0) {
467 usb_close (ftdi->usb_dev);
468 ftdi_error_return(-8, "unable to fetch product description");
469 }
470 if (strncmp(string, description, sizeof(string)) != 0) {
471 if (usb_close (ftdi->usb_dev) != 0)
472 ftdi_error_return(-10, "unable to close device");
473 continue;
474 }
475 }
476 if (serial != NULL) {
477 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, string, sizeof(string)) <= 0) {
478 usb_close (ftdi->usb_dev);
479 ftdi_error_return(-9, "unable to fetch serial number");
480 }
481 if (strncmp(string, serial, sizeof(string)) != 0) {
482 if (usb_close (ftdi->usb_dev) != 0)
483 ftdi_error_return(-10, "unable to close device");
484 continue;
485 }
486 }
487
488 if (usb_close (ftdi->usb_dev) != 0)
489 ftdi_error_return(-10, "unable to close device");
490
491 return ftdi_usb_open_dev(ftdi, dev);
492 }
493 }
494 }
495
496 // device not found
497 ftdi_error_return(-3, "device not found");
498}
499
500/**
501 Resets the ftdi device.
502
503 \param ftdi pointer to ftdi_context
504
505 \retval 0: all fine
506 \retval -1: FTDI reset failed
507*/
508int ftdi_usb_reset(struct ftdi_context *ftdi)
509{
510 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
511 ftdi_error_return(-1,"FTDI reset failed");
512
513 // Invalidate data in the readbuffer
514 ftdi->readbuffer_offset = 0;
515 ftdi->readbuffer_remaining = 0;
516
517 return 0;
518}
519
520/**
521 Clears the read buffer on the chip and the internal read buffer.
522
523 \param ftdi pointer to ftdi_context
524
525 \retval 0: all fine
526 \retval -1: read buffer purge failed
527*/
528int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
529{
530 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 1, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
531 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
532
533 // Invalidate data in the readbuffer
534 ftdi->readbuffer_offset = 0;
535 ftdi->readbuffer_remaining = 0;
536
537 return 0;
538}
539
540/**
541 Clears the write buffer on the chip.
542
543 \param ftdi pointer to ftdi_context
544
545 \retval 0: all fine
546 \retval -1: write buffer purge failed
547*/
548int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
549{
550 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 2, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
551 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
552
553 return 0;
554}
555
556/**
557 Clears the buffers on the chip and the internal read buffer.
558
559 \param ftdi pointer to ftdi_context
560
561 \retval 0: all fine
562 \retval -1: read buffer purge failed
563 \retval -2: write buffer purge failed
564*/
565int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
566{
567 int result;
568
569 result = ftdi_usb_purge_rx_buffer(ftdi);
570 if (result < 0)
571 return -1;
572
573 result = ftdi_usb_purge_tx_buffer(ftdi);
574 if (result < 0)
575 return -2;
576
577 return 0;
578}
579
580/**
581 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
582
583 \param ftdi pointer to ftdi_context
584
585 \retval 0: all fine
586 \retval -1: usb_release failed
587 \retval -2: usb_close failed
588*/
589int ftdi_usb_close(struct ftdi_context *ftdi)
590{
591 int rtn = 0;
592
593#ifdef LIBFTDI_LINUX_ASYNC_MODE
594 /* try to release some kernel resources */
595 ftdi_async_complete(ftdi,1);
596#endif
597
598 if (usb_release_interface(ftdi->usb_dev, ftdi->interface) != 0)
599 rtn = -1;
600
601 if (usb_close (ftdi->usb_dev) != 0)
602 rtn = -2;
603
604 return rtn;
605}
606
607/*
608 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
609 Function is only used internally
610 \internal
611*/
612static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
613 unsigned short *value, unsigned short *index)
614{
615 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
616 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
617 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
618 int divisor, best_divisor, best_baud, best_baud_diff;
619 unsigned long encoded_divisor;
620 int i;
621
622 if (baudrate <= 0) {
623 // Return error
624 return -1;
625 }
626
627 divisor = 24000000 / baudrate;
628
629 if (ftdi->type == TYPE_AM) {
630 // Round down to supported fraction (AM only)
631 divisor -= am_adjust_dn[divisor & 7];
632 }
633
634 // Try this divisor and the one above it (because division rounds down)
635 best_divisor = 0;
636 best_baud = 0;
637 best_baud_diff = 0;
638 for (i = 0; i < 2; i++) {
639 int try_divisor = divisor + i;
640 int baud_estimate;
641 int baud_diff;
642
643 // Round up to supported divisor value
644 if (try_divisor <= 8) {
645 // Round up to minimum supported divisor
646 try_divisor = 8;
647 } else if (ftdi->type != TYPE_AM && try_divisor < 12) {
648 // BM doesn't support divisors 9 through 11 inclusive
649 try_divisor = 12;
650 } else if (divisor < 16) {
651 // AM doesn't support divisors 9 through 15 inclusive
652 try_divisor = 16;
653 } else {
654 if (ftdi->type == TYPE_AM) {
655 // Round up to supported fraction (AM only)
656 try_divisor += am_adjust_up[try_divisor & 7];
657 if (try_divisor > 0x1FFF8) {
658 // Round down to maximum supported divisor value (for AM)
659 try_divisor = 0x1FFF8;
660 }
661 } else {
662 if (try_divisor > 0x1FFFF) {
663 // Round down to maximum supported divisor value (for BM)
664 try_divisor = 0x1FFFF;
665 }
666 }
667 }
668 // Get estimated baud rate (to nearest integer)
669 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
670 // Get absolute difference from requested baud rate
671 if (baud_estimate < baudrate) {
672 baud_diff = baudrate - baud_estimate;
673 } else {
674 baud_diff = baud_estimate - baudrate;
675 }
676 if (i == 0 || baud_diff < best_baud_diff) {
677 // Closest to requested baud rate so far
678 best_divisor = try_divisor;
679 best_baud = baud_estimate;
680 best_baud_diff = baud_diff;
681 if (baud_diff == 0) {
682 // Spot on! No point trying
683 break;
684 }
685 }
686 }
687 // Encode the best divisor value
688 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
689 // Deal with special cases for encoded value
690 if (encoded_divisor == 1) {
691 encoded_divisor = 0; // 3000000 baud
692 } else if (encoded_divisor == 0x4001) {
693 encoded_divisor = 1; // 2000000 baud (BM only)
694 }
695 // Split into "value" and "index" values
696 *value = (unsigned short)(encoded_divisor & 0xFFFF);
697 if(ftdi->type == TYPE_2232C) {
698 *index = (unsigned short)(encoded_divisor >> 8);
699 *index &= 0xFF00;
700 *index |= ftdi->index;
701 }
702 else
703 *index = (unsigned short)(encoded_divisor >> 16);
704
705 // Return the nearest baud rate
706 return best_baud;
707}
708
709/**
710 Sets the chip baud rate
711
712 \param ftdi pointer to ftdi_context
713 \param baudrate baud rate to set
714
715 \retval 0: all fine
716 \retval -1: invalid baudrate
717 \retval -2: setting baudrate failed
718*/
719int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
720{
721 unsigned short value, index;
722 int actual_baudrate;
723
724 if (ftdi->bitbang_enabled) {
725 baudrate = baudrate*4;
726 }
727
728 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
729 if (actual_baudrate <= 0)
730 ftdi_error_return (-1, "Silly baudrate <= 0.");
731
732 // Check within tolerance (about 5%)
733 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
734 || ((actual_baudrate < baudrate)
735 ? (actual_baudrate * 21 < baudrate * 20)
736 : (baudrate * 21 < actual_baudrate * 20)))
737 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
738
739 if (usb_control_msg(ftdi->usb_dev, 0x40, 3, value, index, NULL, 0, ftdi->usb_write_timeout) != 0)
740 ftdi_error_return (-2, "Setting new baudrate failed");
741
742 ftdi->baudrate = baudrate;
743 return 0;
744}
745
746/**
747 Set (RS232) line characteristics by Alain Abbas
748
749 \param ftdi pointer to ftdi_context
750 \param bits Number of bits
751 \param sbit Number of stop bits
752 \param parity Parity mode
753
754 \retval 0: all fine
755 \retval -1: Setting line property failed
756*/
757int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
758 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
759{
760 unsigned short value = bits;
761
762 switch(parity) {
763 case NONE:
764 value |= (0x00 << 8);
765 break;
766 case ODD:
767 value |= (0x01 << 8);
768 break;
769 case EVEN:
770 value |= (0x02 << 8);
771 break;
772 case MARK:
773 value |= (0x03 << 8);
774 break;
775 case SPACE:
776 value |= (0x04 << 8);
777 break;
778 }
779
780 switch(sbit) {
781 case STOP_BIT_1:
782 value |= (0x00 << 11);
783 break;
784 case STOP_BIT_15:
785 value |= (0x01 << 11);
786 break;
787 case STOP_BIT_2:
788 value |= (0x02 << 11);
789 break;
790 }
791
792 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x04, value, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
793 ftdi_error_return (-1, "Setting new line property failed");
794
795 return 0;
796}
797
798/**
799 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
800
801 \param ftdi pointer to ftdi_context
802 \param buf Buffer with the data
803 \param size Size of the buffer
804
805 \retval <0: error code from usb_bulk_write()
806 \retval >0: number of bytes written
807*/
808int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
809{
810 int ret;
811 int offset = 0;
812 int total_written = 0;
813
814 while (offset < size) {
815 int write_size = ftdi->writebuffer_chunksize;
816
817 if (offset+write_size > size)
818 write_size = size-offset;
819
820 ret = usb_bulk_write(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, ftdi->usb_write_timeout);
821 if (ret < 0)
822 ftdi_error_return(ret, "usb bulk write failed");
823
824 total_written += ret;
825 offset += write_size;
826 }
827
828 return total_written;
829}
830
831#ifdef LIBFTDI_LINUX_ASYNC_MODE
832/* this is strongly dependent on libusb using the same struct layout. If libusb
833 changes in some later version this may break horribly (this is for libusb 0.1.12) */
834struct usb_dev_handle {
835 int fd;
836 // some other stuff coming here we don't need
837};
838
839/**
840 Check for pending async urbs
841 \internal
842*/
843static int _usb_get_async_urbs_pending(struct ftdi_context *ftdi)
844{
845 struct usbdevfs_urb *urb;
846 int pending=0;
847 int i;
848
849 for (i=0; i < ftdi->async_usb_buffer_size; i++) {
850 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
851 if (urb->usercontext != FTDI_URB_USERCONTEXT_COOKIE)
852 pending++;
853 }
854
855 return pending;
856}
857
858/**
859 Wait until one or more async URBs are completed by the kernel and mark their
860 positions in the async-buffer as unused
861
862 \param ftdi pointer to ftdi_context
863 \param wait_for_more if != 0 wait for more than one write to complete
864 \param timeout_msec max milliseconds to wait
865
866 \internal
867*/
868static void _usb_async_cleanup(struct ftdi_context *ftdi, int wait_for_more, int timeout_msec)
869{
870 struct timeval tv;
871 struct usbdevfs_urb *urb=NULL;
872 int ret;
873 fd_set writefds;
874 int keep_going=0;
875
876 FD_ZERO(&writefds);
877 FD_SET(ftdi->usb_dev->fd, &writefds);
878
879 /* init timeout only once, select writes time left after call */
880 tv.tv_sec = timeout_msec / 1000;
881 tv.tv_usec = (timeout_msec % 1000) * 1000;
882
883 do {
884 while (_usb_get_async_urbs_pending(ftdi)
885 && (ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_REAPURBNDELAY, &urb)) == -1
886 && errno == EAGAIN)
887 {
888 if (keep_going && !wait_for_more) {
889 /* don't wait if repeating only for keep_going */
890 keep_going=0;
891 break;
892 }
893
894 /* wait for timeout msec or something written ready */
895 select(ftdi->usb_dev->fd+1, NULL, &writefds, NULL, &tv);
896 }
897
898 if (ret == 0 && urb != NULL) {
899 /* got a free urb, mark it */
900 urb->usercontext = FTDI_URB_USERCONTEXT_COOKIE;
901
902 /* try to get more urbs that are ready now, but don't wait anymore */
903 urb=NULL;
904 keep_going=1;
905 } else {
906 /* no more urbs waiting */
907 keep_going=0;
908 }
909 } while (keep_going);
910}
911
912/**
913 Wait until one or more async URBs are completed by the kernel and mark their
914 positions in the async-buffer as unused.
915
916 \param ftdi pointer to ftdi_context
917 \param wait_for_more if != 0 wait for more than one write to complete (until write timeout)
918*/
919void ftdi_async_complete(struct ftdi_context *ftdi, int wait_for_more)
920{
921 _usb_async_cleanup(ftdi,wait_for_more,ftdi->usb_write_timeout);
922}
923
924/**
925 Stupid libusb does not offer async writes nor does it allow
926 access to its fd - so we need some hacks here.
927 \internal
928*/
929static int _usb_bulk_write_async(struct ftdi_context *ftdi, int ep, char *bytes, int size)
930{
931 struct usbdevfs_urb *urb;
932 int bytesdone = 0, requested;
933 int ret, i;
934 int cleanup_count;
935
936 do {
937 /* find a free urb buffer we can use */
938 urb=NULL;
939 for (cleanup_count=0; urb==NULL && cleanup_count <= 1; cleanup_count++)
940 {
941 if (i==ftdi->async_usb_buffer_size) {
942 /* wait until some buffers are free */
943 _usb_async_cleanup(ftdi,0,ftdi->usb_write_timeout);
944 }
945
946 for (i=0; i < ftdi->async_usb_buffer_size; i++) {
947 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
948 if (urb->usercontext == FTDI_URB_USERCONTEXT_COOKIE)
949 break; /* found a free urb position */
950 urb=NULL;
951 }
952 }
953
954 /* no free urb position found */
955 if (urb==NULL)
956 return -1;
957
958 requested = size - bytesdone;
959 if (requested > 4096)
960 requested = 4096;
961
962 memset(urb,0,sizeof(urb));
963
964 urb->type = USBDEVFS_URB_TYPE_BULK;
965 urb->endpoint = ep;
966 urb->flags = 0;
967 urb->buffer = bytes + bytesdone;
968 urb->buffer_length = requested;
969 urb->signr = 0;
970 urb->actual_length = 0;
971 urb->number_of_packets = 0;
972 urb->usercontext = 0;
973
974 do {
975 ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_SUBMITURB, urb);
976 } while (ret < 0 && errno == EINTR);
977 if (ret < 0)
978 return ret; /* the caller can read errno to get more info */
979
980 bytesdone += requested;
981 } while (bytesdone < size);
982 return bytesdone;
983}
984
985/**
986 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip.
987 Does not wait for completion of the transfer nor does it make sure that
988 the transfer was successful.
989
990 This function could be extended to use signals and callbacks to inform the
991 caller of completion or error - but this is not done yet, volunteers welcome.
992
993 Works around libusb and directly accesses functions only available on Linux.
994 Only available if compiled with --with-async-mode.
995
996 \param ftdi pointer to ftdi_context
997 \param buf Buffer with the data
998 \param size Size of the buffer
999
1000 \retval <0: error code from usb_bulk_write()
1001 \retval >0: number of bytes written
1002*/
1003int ftdi_write_data_async(struct ftdi_context *ftdi, unsigned char *buf, int size)
1004{
1005 int ret;
1006 int offset = 0;
1007 int total_written = 0;
1008
1009 while (offset < size) {
1010 int write_size = ftdi->writebuffer_chunksize;
1011
1012 if (offset+write_size > size)
1013 write_size = size-offset;
1014
1015 ret = _usb_bulk_write_async(ftdi, ftdi->in_ep, buf+offset, write_size);
1016 if (ret < 0)
1017 ftdi_error_return(ret, "usb bulk write async failed");
1018
1019 total_written += ret;
1020 offset += write_size;
1021 }
1022
1023 return total_written;
1024}
1025#endif // LIBFTDI_LINUX_ASYNC_MODE
1026
1027/**
1028 Configure write buffer chunk size.
1029 Default is 4096.
1030
1031 \param ftdi pointer to ftdi_context
1032 \param chunksize Chunk size
1033
1034 \retval 0: all fine
1035*/
1036int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1037{
1038 ftdi->writebuffer_chunksize = chunksize;
1039 return 0;
1040}
1041
1042/**
1043 Get write buffer chunk size.
1044
1045 \param ftdi pointer to ftdi_context
1046 \param chunksize Pointer to store chunk size in
1047
1048 \retval 0: all fine
1049*/
1050int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1051{
1052 *chunksize = ftdi->writebuffer_chunksize;
1053 return 0;
1054}
1055
1056/**
1057 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1058
1059 Automatically strips the two modem status bytes transfered during every read.
1060
1061 \param ftdi pointer to ftdi_context
1062 \param buf Buffer to store data in
1063 \param size Size of the buffer
1064
1065 \retval <0: error code from usb_bulk_read()
1066 \retval 0: no data was available
1067 \retval >0: number of bytes read
1068
1069 \remark This function is not useful in bitbang mode.
1070 Use ftdi_read_pins() to get the current state of the pins.
1071*/
1072int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1073{
1074 int offset = 0, ret = 1, i, num_of_chunks, chunk_remains;
1075
1076 // everything we want is still in the readbuffer?
1077 if (size <= ftdi->readbuffer_remaining) {
1078 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1079
1080 // Fix offsets
1081 ftdi->readbuffer_remaining -= size;
1082 ftdi->readbuffer_offset += size;
1083
1084 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1085
1086 return size;
1087 }
1088 // something still in the readbuffer, but not enough to satisfy 'size'?
1089 if (ftdi->readbuffer_remaining != 0) {
1090 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1091
1092 // Fix offset
1093 offset += ftdi->readbuffer_remaining;
1094 }
1095 // do the actual USB read
1096 while (offset < size && ret > 0) {
1097 ftdi->readbuffer_remaining = 0;
1098 ftdi->readbuffer_offset = 0;
1099 /* returns how much received */
1100 ret = usb_bulk_read (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi->usb_read_timeout);
1101 if (ret < 0)
1102 ftdi_error_return(ret, "usb bulk read failed");
1103
1104 if (ret > 2) {
1105 // skip FTDI status bytes.
1106 // Maybe stored in the future to enable modem use
1107 num_of_chunks = ret / 64;
1108 chunk_remains = ret % 64;
1109 //printf("ret = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", ret, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1110
1111 ftdi->readbuffer_offset += 2;
1112 ret -= 2;
1113
1114 if (ret > 62) {
1115 for (i = 1; i < num_of_chunks; i++)
1116 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
1117 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
1118 62);
1119 if (chunk_remains > 2) {
1120 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
1121 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
1122 chunk_remains-2);
1123 ret -= 2*num_of_chunks;
1124 } else
1125 ret -= 2*(num_of_chunks-1)+chunk_remains;
1126 }
1127 } else if (ret <= 2) {
1128 // no more data to read?
1129 return offset;
1130 }
1131 if (ret > 0) {
1132 // data still fits in buf?
1133 if (offset+ret <= size) {
1134 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, ret);
1135 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1136 offset += ret;
1137
1138 /* Did we read exactly the right amount of bytes? */
1139 if (offset == size)
1140 //printf("read_data exact rem %d offset %d\n",
1141 //ftdi->readbuffer_remaining, offset);
1142 return offset;
1143 } else {
1144 // only copy part of the data or size <= readbuffer_chunksize
1145 int part_size = size-offset;
1146 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1147
1148 ftdi->readbuffer_offset += part_size;
1149 ftdi->readbuffer_remaining = ret-part_size;
1150 offset += part_size;
1151
1152 /* printf("Returning part: %d - size: %d - offset: %d - ret: %d - remaining: %d\n",
1153 part_size, size, offset, ret, ftdi->readbuffer_remaining); */
1154
1155 return offset;
1156 }
1157 }
1158 }
1159 // never reached
1160 return -127;
1161}
1162
1163/**
1164 Configure read buffer chunk size.
1165 Default is 4096.
1166
1167 Automatically reallocates the buffer.
1168
1169 \param ftdi pointer to ftdi_context
1170 \param chunksize Chunk size
1171
1172 \retval 0: all fine
1173*/
1174int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1175{
1176 unsigned char *new_buf;
1177
1178 // Invalidate all remaining data
1179 ftdi->readbuffer_offset = 0;
1180 ftdi->readbuffer_remaining = 0;
1181
1182 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1183 ftdi_error_return(-1, "out of memory for readbuffer");
1184
1185 ftdi->readbuffer = new_buf;
1186 ftdi->readbuffer_chunksize = chunksize;
1187
1188 return 0;
1189}
1190
1191/**
1192 Get read buffer chunk size.
1193
1194 \param ftdi pointer to ftdi_context
1195 \param chunksize Pointer to store chunk size in
1196
1197 \retval 0: all fine
1198*/
1199int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1200{
1201 *chunksize = ftdi->readbuffer_chunksize;
1202 return 0;
1203}
1204
1205
1206/**
1207 Enable bitbang mode.
1208
1209 For advanced bitbang modes of the FT2232C chip use ftdi_set_bitmode().
1210
1211 \param ftdi pointer to ftdi_context
1212 \param bitmask Bitmask to configure lines.
1213 HIGH/ON value configures a line as output.
1214
1215 \retval 0: all fine
1216 \retval -1: can't enable bitbang mode
1217*/
1218int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1219{
1220 unsigned short usb_val;
1221
1222 usb_val = bitmask; // low byte: bitmask
1223 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1224 usb_val |= (ftdi->bitbang_mode << 8);
1225
1226 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1227 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1228
1229 ftdi->bitbang_enabled = 1;
1230 return 0;
1231}
1232
1233/**
1234 Disable bitbang mode.
1235
1236 \param ftdi pointer to ftdi_context
1237
1238 \retval 0: all fine
1239 \retval -1: can't disable bitbang mode
1240*/
1241int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1242{
1243 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1244 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1245
1246 ftdi->bitbang_enabled = 0;
1247 return 0;
1248}
1249
1250/**
1251 Enable advanced bitbang mode for FT2232C chips.
1252
1253 \param ftdi pointer to ftdi_context
1254 \param bitmask Bitmask to configure lines.
1255 HIGH/ON value configures a line as output.
1256 \param mode Bitbang mode: 1 for normal mode, 2 for SPI mode
1257
1258 \retval 0: all fine
1259 \retval -1: can't enable bitbang mode
1260*/
1261int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1262{
1263 unsigned short usb_val;
1264
1265 usb_val = bitmask; // low byte: bitmask
1266 usb_val |= (mode << 8);
1267 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1268 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1269
1270 ftdi->bitbang_mode = mode;
1271 ftdi->bitbang_enabled = (mode == BITMODE_BITBANG || mode == BITMODE_SYNCBB)?1:0;
1272 return 0;
1273}
1274
1275/**
1276 Directly read pin state. Useful for bitbang mode.
1277
1278 \param ftdi pointer to ftdi_context
1279 \param pins Pointer to store pins into
1280
1281 \retval 0: all fine
1282 \retval -1: read pins failed
1283*/
1284int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1285{
1286 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0C, 0, ftdi->index, (char *)pins, 1, ftdi->usb_read_timeout) != 1)
1287 ftdi_error_return(-1, "read pins failed");
1288
1289 return 0;
1290}
1291
1292/**
1293 Set latency timer
1294
1295 The FTDI chip keeps data in the internal buffer for a specific
1296 amount of time if the buffer is not full yet to decrease
1297 load on the usb bus.
1298
1299 \param ftdi pointer to ftdi_context
1300 \param latency Value between 1 and 255
1301
1302 \retval 0: all fine
1303 \retval -1: latency out of range
1304 \retval -2: unable to set latency timer
1305*/
1306int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1307{
1308 unsigned short usb_val;
1309
1310 if (latency < 1)
1311 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1312
1313 usb_val = latency;
1314 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x09, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1315 ftdi_error_return(-2, "unable to set latency timer");
1316
1317 return 0;
1318}
1319
1320/**
1321 Get latency timer
1322
1323 \param ftdi pointer to ftdi_context
1324 \param latency Pointer to store latency value in
1325
1326 \retval 0: all fine
1327 \retval -1: unable to get latency timer
1328*/
1329int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1330{
1331 unsigned short usb_val;
1332 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0A, 0, ftdi->index, (char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1333 ftdi_error_return(-1, "reading latency timer failed");
1334
1335 *latency = (unsigned char)usb_val;
1336 return 0;
1337}
1338
1339/**
1340 Poll modem status information
1341
1342 This function allows the retrieve the two status bytes of the device.
1343 The device sends these bytes also as a header for each read access
1344 where they are discarded by ftdi_read_data(). The chip generates
1345 the two stripped status bytes in the absence of data every 40 ms.
1346
1347 Layout of the first byte:
1348 - B0..B3 - must be 0
1349 - B4 Clear to send (CTS)
1350 0 = inactive
1351 1 = active
1352 - B5 Data set ready (DTS)
1353 0 = inactive
1354 1 = active
1355 - B6 Ring indicator (RI)
1356 0 = inactive
1357 1 = active
1358 - B7 Receive line signal detect (RLSD)
1359 0 = inactive
1360 1 = active
1361
1362 Layout of the second byte:
1363 - B0 Data ready (DR)
1364 - B1 Overrun error (OE)
1365 - B2 Parity error (PE)
1366 - B3 Framing error (FE)
1367 - B4 Break interrupt (BI)
1368 - B5 Transmitter holding register (THRE)
1369 - B6 Transmitter empty (TEMT)
1370 - B7 Error in RCVR FIFO
1371
1372 \param ftdi pointer to ftdi_context
1373 \param status Pointer to store status information in. Must be two bytes.
1374
1375 \retval 0: all fine
1376 \retval -1: unable to retrieve status information
1377*/
1378int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1379{
1380 char usb_val[2];
1381
1382 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x05, 0, ftdi->index, usb_val, 2, ftdi->usb_read_timeout) != 2)
1383 ftdi_error_return(-1, "getting modem status failed");
1384
1385 *status = (usb_val[1] << 8) | usb_val[0];
1386
1387 return 0;
1388}
1389
1390/**
1391 Set the special event character
1392
1393 \param ftdi pointer to ftdi_context
1394 \param eventch Event character
1395 \param enable 0 to disable the event character, non-zero otherwise
1396
1397 \retval 0: all fine
1398 \retval -1: unable to set event character
1399*/
1400int ftdi_set_event_char(struct ftdi_context *ftdi,
1401 unsigned char eventch, unsigned char enable)
1402{
1403 unsigned short usb_val;
1404
1405 usb_val = eventch;
1406 if (enable)
1407 usb_val |= 1 << 8;
1408
1409 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x06, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1410 ftdi_error_return(-1, "setting event character failed");
1411
1412 return 0;
1413}
1414
1415/**
1416 Set error character
1417
1418 \param ftdi pointer to ftdi_context
1419 \param errorch Error character
1420 \param enable 0 to disable the error character, non-zero otherwise
1421
1422 \retval 0: all fine
1423 \retval -1: unable to set error character
1424*/
1425int ftdi_set_error_char(struct ftdi_context *ftdi,
1426 unsigned char errorch, unsigned char enable)
1427{
1428 unsigned short usb_val;
1429
1430 usb_val = errorch;
1431 if (enable)
1432 usb_val |= 1 << 8;
1433
1434 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x07, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1435 ftdi_error_return(-1, "setting error character failed");
1436
1437 return 0;
1438}
1439
1440/**
1441 Set the eeprom size
1442
1443 \param ftdi pointer to ftdi_context
1444 \param eeprom Pointer to ftdi_eeprom
1445 \param size
1446
1447*/
1448void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
1449{
1450 ftdi->eeprom_size=size;
1451 eeprom->size=size;
1452}
1453
1454/**
1455 Init eeprom with default values.
1456
1457 \param eeprom Pointer to ftdi_eeprom
1458*/
1459void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
1460{
1461 eeprom->vendor_id = 0x0403;
1462 eeprom->product_id = 0x6001;
1463
1464 eeprom->self_powered = 1;
1465 eeprom->remote_wakeup = 1;
1466 eeprom->BM_type_chip = 1;
1467
1468 eeprom->in_is_isochronous = 0;
1469 eeprom->out_is_isochronous = 0;
1470 eeprom->suspend_pull_downs = 0;
1471
1472 eeprom->use_serial = 0;
1473 eeprom->change_usb_version = 0;
1474 eeprom->usb_version = 0x0200;
1475 eeprom->max_power = 0;
1476
1477 eeprom->manufacturer = NULL;
1478 eeprom->product = NULL;
1479 eeprom->serial = NULL;
1480
1481 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
1482}
1483
1484/**
1485 Build binary output from ftdi_eeprom structure.
1486 Output is suitable for ftdi_write_eeprom().
1487
1488 \param eeprom Pointer to ftdi_eeprom
1489 \param output Buffer of 128 bytes to store eeprom image to
1490
1491 \retval >0: used eeprom size
1492 \retval -1: eeprom size (128 bytes) exceeded by custom strings
1493*/
1494int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
1495{
1496 unsigned char i, j;
1497 unsigned short checksum, value;
1498 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
1499 int size_check;
1500
1501 if (eeprom->manufacturer != NULL)
1502 manufacturer_size = strlen(eeprom->manufacturer);
1503 if (eeprom->product != NULL)
1504 product_size = strlen(eeprom->product);
1505 if (eeprom->serial != NULL)
1506 serial_size = strlen(eeprom->serial);
1507
1508 size_check = eeprom->size;
1509 size_check -= 28; // 28 are always in use (fixed)
1510
1511 // Top half of a 256byte eeprom is used just for strings and checksum
1512 // it seems that the FTDI chip will not read these strings from the lower half
1513 // Each string starts with two bytes; offset and type (0x03 for string)
1514 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
1515 if(eeprom->size>=256)size_check = 120;
1516 size_check -= manufacturer_size*2;
1517 size_check -= product_size*2;
1518 size_check -= serial_size*2;
1519
1520 // eeprom size exceeded?
1521 if (size_check < 0)
1522 return (-1);
1523
1524 // empty eeprom
1525 memset (output, 0, eeprom->size);
1526
1527 // Addr 00: Stay 00 00
1528 // Addr 02: Vendor ID
1529 output[0x02] = eeprom->vendor_id;
1530 output[0x03] = eeprom->vendor_id >> 8;
1531
1532 // Addr 04: Product ID
1533 output[0x04] = eeprom->product_id;
1534 output[0x05] = eeprom->product_id >> 8;
1535
1536 // Addr 06: Device release number (0400h for BM features)
1537 output[0x06] = 0x00;
1538
1539 if (eeprom->BM_type_chip == 1)
1540 output[0x07] = 0x04;
1541 else
1542 output[0x07] = 0x02;
1543
1544 // Addr 08: Config descriptor
1545 // Bit 7: always 1
1546 // Bit 6: 1 if this device is self powered, 0 if bus powered
1547 // Bit 5: 1 if this device uses remote wakeup
1548 // Bit 4: 1 if this device is battery powered
1549 j = 0x80;
1550 if (eeprom->self_powered == 1)
1551 j |= 0x40;
1552 if (eeprom->remote_wakeup == 1)
1553 j |= 0x20;
1554 output[0x08] = j;
1555
1556 // Addr 09: Max power consumption: max power = value * 2 mA
1557 output[0x09] = eeprom->max_power;
1558
1559 // Addr 0A: Chip configuration
1560 // Bit 7: 0 - reserved
1561 // Bit 6: 0 - reserved
1562 // Bit 5: 0 - reserved
1563 // Bit 4: 1 - Change USB version
1564 // Bit 3: 1 - Use the serial number string
1565 // Bit 2: 1 - Enable suspend pull downs for lower power
1566 // Bit 1: 1 - Out EndPoint is Isochronous
1567 // Bit 0: 1 - In EndPoint is Isochronous
1568 //
1569 j = 0;
1570 if (eeprom->in_is_isochronous == 1)
1571 j = j | 1;
1572 if (eeprom->out_is_isochronous == 1)
1573 j = j | 2;
1574 if (eeprom->suspend_pull_downs == 1)
1575 j = j | 4;
1576 if (eeprom->use_serial == 1)
1577 j = j | 8;
1578 if (eeprom->change_usb_version == 1)
1579 j = j | 16;
1580 output[0x0A] = j;
1581
1582 // Addr 0B: reserved
1583 output[0x0B] = 0x00;
1584
1585 // Addr 0C: USB version low byte when 0x0A bit 4 is set
1586 // Addr 0D: USB version high byte when 0x0A bit 4 is set
1587 if (eeprom->change_usb_version == 1) {
1588 output[0x0C] = eeprom->usb_version;
1589 output[0x0D] = eeprom->usb_version >> 8;
1590 }
1591
1592
1593 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
1594 // Addr 0F: Length of manufacturer string
1595 output[0x0F] = manufacturer_size*2 + 2;
1596
1597 // Addr 10: Offset of the product string + 0x80, calculated later
1598 // Addr 11: Length of product string
1599 output[0x11] = product_size*2 + 2;
1600
1601 // Addr 12: Offset of the serial string + 0x80, calculated later
1602 // Addr 13: Length of serial string
1603 output[0x13] = serial_size*2 + 2;
1604
1605 // Dynamic content
1606 i=0x14;
1607 if(eeprom->size>=256) i = 0x80;
1608
1609
1610 // Output manufacturer
1611 output[0x0E] = i | 0x80; // calculate offset
1612 output[i++] = manufacturer_size*2 + 2;
1613 output[i++] = 0x03; // type: string
1614 for (j = 0; j < manufacturer_size; j++) {
1615 output[i] = eeprom->manufacturer[j], i++;
1616 output[i] = 0x00, i++;
1617 }
1618
1619 // Output product name
1620 output[0x10] = i | 0x80; // calculate offset
1621 output[i] = product_size*2 + 2, i++;
1622 output[i] = 0x03, i++;
1623 for (j = 0; j < product_size; j++) {
1624 output[i] = eeprom->product[j], i++;
1625 output[i] = 0x00, i++;
1626 }
1627
1628 // Output serial
1629 output[0x12] = i | 0x80; // calculate offset
1630 output[i] = serial_size*2 + 2, i++;
1631 output[i] = 0x03, i++;
1632 for (j = 0; j < serial_size; j++) {
1633 output[i] = eeprom->serial[j], i++;
1634 output[i] = 0x00, i++;
1635 }
1636
1637 // calculate checksum
1638 checksum = 0xAAAA;
1639
1640 for (i = 0; i < eeprom->size/2-1; i++) {
1641 value = output[i*2];
1642 value += output[(i*2)+1] << 8;
1643
1644 checksum = value^checksum;
1645 checksum = (checksum << 1) | (checksum >> 15);
1646 }
1647
1648 output[eeprom->size-2] = checksum;
1649 output[eeprom->size-1] = checksum >> 8;
1650
1651 return size_check;
1652}
1653
1654/**
1655 Read eeprom
1656
1657 \param ftdi pointer to ftdi_context
1658 \param eeprom Pointer to store eeprom into
1659
1660 \retval 0: all fine
1661 \retval -1: read failed
1662*/
1663int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
1664{
1665 int i;
1666
1667 for (i = 0; i < ftdi->eeprom_size/2; i++) {
1668 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
1669 ftdi_error_return(-1, "reading eeprom failed");
1670 }
1671
1672 return 0;
1673}
1674
1675/*
1676 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
1677 Function is only used internally
1678 \internal
1679*/
1680static unsigned char ftdi_read_chipid_shift(unsigned char value)
1681{
1682 return ((value & 1) << 1) |
1683 ((value & 2) << 5) |
1684 ((value & 4) >> 2) |
1685 ((value & 8) << 4) |
1686 ((value & 16) >> 1) |
1687 ((value & 32) >> 1) |
1688 ((value & 64) >> 4) |
1689 ((value & 128) >> 2);
1690}
1691
1692/**
1693 Read the FTDIChip-ID from R-type devices
1694
1695 \param ftdi pointer to ftdi_context
1696 \param chipid Pointer to store FTDIChip-ID
1697
1698 \retval 0: all fine
1699 \retval -1: read failed
1700*/
1701int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
1702{
1703 unsigned int a = 0, b = 0;
1704
1705 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, 0x43, (char *)&a, 2, ftdi->usb_read_timeout) == 2)
1706 {
1707 a = a << 8 | a >> 8;
1708 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, 0x44, (char *)&b, 2, ftdi->usb_read_timeout) == 2)
1709 {
1710 b = b << 8 | b >> 8;
1711 a = (a << 16) | b;
1712 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
1713 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
1714 *chipid = a ^ 0xa5f0f7d1;
1715 return 0;
1716 }
1717 }
1718
1719 ftdi_error_return(-1, "read of FTDIChip-ID failed");
1720}
1721
1722/**
1723 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
1724 Call this function then do a write then call again to see if size changes, if so write again.
1725
1726 \param ftdi pointer to ftdi_context
1727 \param eeprom Pointer to store eeprom into
1728 \param maxsize the size of the buffer to read into
1729
1730 \retval size of eeprom
1731*/
1732int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
1733{
1734 int i=0,j,minsize=32;
1735 int size=minsize;
1736
1737 do{
1738 for (j = 0; i < maxsize/2 && j<size; j++) {
1739 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
1740 ftdi_error_return(-1, "reading eeprom failed");
1741 i++;
1742 }
1743 size*=2;
1744 }while(size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
1745
1746 return size/2;
1747}
1748
1749/**
1750 Write eeprom
1751
1752 \param ftdi pointer to ftdi_context
1753 \param eeprom Pointer to read eeprom from
1754
1755 \retval 0: all fine
1756 \retval -1: read failed
1757*/
1758int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
1759{
1760 unsigned short usb_val;
1761 int i;
1762
1763 for (i = 0; i < ftdi->eeprom_size/2; i++) {
1764 usb_val = eeprom[i*2];
1765 usb_val += eeprom[(i*2)+1] << 8;
1766 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x91, usb_val, i, NULL, 0, ftdi->usb_write_timeout) != 0)
1767 ftdi_error_return(-1, "unable to write eeprom");
1768 }
1769
1770 return 0;
1771}
1772
1773/**
1774 Erase eeprom
1775
1776 \param ftdi pointer to ftdi_context
1777
1778 \retval 0: all fine
1779 \retval -1: erase failed
1780*/
1781int ftdi_erase_eeprom(struct ftdi_context *ftdi)
1782{
1783 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x92, 0, 0, NULL, 0, ftdi->usb_write_timeout) != 0)
1784 ftdi_error_return(-1, "unable to erase eeprom");
1785
1786 return 0;
1787}
1788
1789/**
1790 Get string representation for last error code
1791
1792 \param ftdi pointer to ftdi_context
1793
1794 \retval Pointer to error string
1795*/
1796char *ftdi_get_error_string (struct ftdi_context *ftdi)
1797{
1798 return ftdi->error_str;
1799}
1800
1801/*
1802 Flow control code by Lorenz Moesenlechner (lorenz@hcilab.org)
1803 and Matthias Kranz (matthias@hcilab.org)
1804*/
1805/**
1806 Set flowcontrol for ftdi chip
1807
1808 \param ftdi pointer to ftdi_context
1809 \param flowctrl flow control to use. should be
1810 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
1811
1812 \retval 0: all fine
1813 \retval -1: set flow control failed
1814*/
1815int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1816{
1817 if (usb_control_msg(ftdi->usb_dev, SIO_SET_FLOW_CTRL_REQUEST_TYPE,
1818 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->interface),
1819 NULL, 0, ftdi->usb_write_timeout) != 0)
1820 ftdi_error_return(-1, "set flow control failed");
1821
1822 return 0;
1823}
1824
1825/**
1826 Set dtr line
1827
1828 \param ftdi pointer to ftdi_context
1829 \param state state to set line to (1 or 0)
1830
1831 \retval 0: all fine
1832 \retval -1: set dtr failed
1833*/
1834int ftdi_setdtr(struct ftdi_context *ftdi, int state)
1835{
1836 unsigned short usb_val;
1837
1838 if (state)
1839 usb_val = SIO_SET_DTR_HIGH;
1840 else
1841 usb_val = SIO_SET_DTR_LOW;
1842
1843 if (usb_control_msg(ftdi->usb_dev, SIO_SET_MODEM_CTRL_REQUEST_TYPE,
1844 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->interface,
1845 NULL, 0, ftdi->usb_write_timeout) != 0)
1846 ftdi_error_return(-1, "set dtr failed");
1847
1848 return 0;
1849}
1850
1851/**
1852 Set rts line
1853
1854 \param ftdi pointer to ftdi_context
1855 \param state state to set line to (1 or 0)
1856
1857 \retval 0: all fine
1858 \retval -1 set rts failed
1859*/
1860int ftdi_setrts(struct ftdi_context *ftdi, int state)
1861{
1862 unsigned short usb_val;
1863
1864 if (state)
1865 usb_val = SIO_SET_RTS_HIGH;
1866 else
1867 usb_val = SIO_SET_RTS_LOW;
1868
1869 if (usb_control_msg(ftdi->usb_dev, SIO_SET_MODEM_CTRL_REQUEST_TYPE,
1870 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->interface,
1871 NULL, 0, ftdi->usb_write_timeout) != 0)
1872 ftdi_error_return(-1, "set of rts failed");
1873
1874 return 0;
1875}
1876
1877/* @} end of doxygen libftdi group */